0?7,

P /
2 bea
L/

ay

BEAAqualogic
Data Services
Platform=

Data Services
Developer’s Guide

Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site::

http://e-docs.bea.com/aldsp/docs25/index.html

Version: 2.5
Document Date: June 2005
Revised: September 2006

http://e-docs.bea.com/aldsp/docs25/index.html

Copyright

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA Aqualogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

1. Introduction to Data Services

Data Services and the Enterpriset
Data Access Integration Architectureo i i i,
AquaLogic Data Services Platform Applications and Projects.....................
AquaLogic Data Services Platform: Roles and Responsibilities
AquaLogic Data Services Platform: Typical Development Process.................

Examples, Samples, and Tutorials.ovueeiiiii i,

2. Aqualogic Data Services Platform Projects and Project
Components

AquaLogic Data Services Platform-Based BEA WebLogic Applications.................

Creating a AquaLogic Data Services Platform-based Application..................

Adding a AquaLogic Data Services Platform Project to an Existing BEA WebLogic

APPIiCAtioN ... it e e

Data Service Right-click Menu Options,
Using the WebLogic Workshop IDEo e
Survey of AquaLogic Data Services Platform Additions to WebLogic Workshop
Building and Deploying Applications, JARs, and SDO Mediator Clients
Building, Deploying, and Updating Applications.ccoovvivivnn.,
Creating the SDO Mediator AP e
Refactoring AquaLogic Data Services Platform Artifacts.............................

Artifacts Supporting Refactoringco i i i

Administration Guide

Setting Refactor Options.ovuiiiiiiii i e e e e e 2-30

Impacts of Various Refactoring Operationso, 2-35
Creating and Working with XQuery Function Librariesc.ooiiion, 2-37
XQuery Function Library VIeWst 2-38
XFL Database Function VIEWsovvvvii i 2-41

3. Obtaining Enterprise Metadata

Creating Data Source Metadata.ot 3-1
Identifying AquaLogic Data Services Platform Procedures 3-5
Obtaining Metadata from Relational Sources.t 3-7
Importing Relational Table and View Metadata.coooiiiiin ... 3-8
Importing Stored Procedure-Based Metadatacooiiiiain., 3-16
Using SQL to Import Metadata. . ..o 3-30
Providing Role-based Access to AquaLogic Data Services Platform Relational Sources. .3-32
Importing Web Services Metadata.c.ooiiiiiiii e 3-34
Testing Metadata Import With an Internet Web Service URL........................ 3-39
Setting Up Handlers for Web Services Accessed by AquaLogic Data Services Platform . .3-39
Importing Java Function Metadatao 3-45
Supported Java Function Types e e 3-45
Adding Java Function Metadata Using Import Wizard 3-46
Creating XMLBean Support for Java Functions.......................... 3-50
Inspecting the Java SOUTCe.ovitt i e e 3-53
How Metadata for Java Functions Is Created., 3-56
Importing Delimited File Metadata.ot 3-61
Providing a Document Name, a Schema Name, orBoth......................... ... 3-61
Using the Metadata Import Wizard on Delimited Files............................. 3-62
Importing XML File Metadataooiiiii i e 3-65
XML File Import Sample.ount e e 3-65

vi Administration Guide

Testing the Metadata Import Wizard with an XML Data Source..................... 3-68

Updating Data Source Metadataccoiiiiiiiiiiiiiiiiiii e 3-69
Considerations When Updating Source Metadata.....................coovvveen... 3-70
Using the Update Source Metadata Wizard, 3-70
Archival of Source Metadataooviiiiiiiiiii 3-74

4. Designing Data Services

Data Services in the Enterpriseooiiiiiiiiiii i 4-2
Physical and Logical Data Services.ootiiiiiiiiii i, 4-2
Data Service Functions ... 4-3

Data Service Design View COmponentsouvurueenintenineennneeennnnn., 44
XML Types and Return Types.o o vnvee e e e e e 4-7

Creatinga Data Serviceouuiii i e e e 4-8
Adding a Function to Your Data Service.cooviiiiiiiiii i, 4-11
Adding a Procedure to Your Data Serviceccooiiiiiiiiiiiiii 4-11
Adding a Private Function to Your Data Service...................cooiiiine.. 4-11
Adding a Relationship to Your Data Service, 4-11
Working with Logical Data Service XML Typescoovvviiiiiiiennnn... 4-23
Creating an XMLTYPecovi e e 4-25

Managing Your Data Serviceooinitiii e e 4-26
Refactoring Data Service Functions. ... 4-27
Finding Usages of AquaLogic Data Services Platform artifacts...................... 4-27
Setting Update OPtionsooureti e i 4-27
Adding Security ReSOUCEScvutttii e e 4-31
Caching Functionsot e e 4-38
Notable Design View Propertiesccoviiiiiiiiiiii i 4-40

Publishing Data Service Functions for SQLUse, 4-46
Making Data Service Objects Available for SQLUse...............cooiiiiiinn. 4-47

Administration Guide vii

Publishing Data Service Functions Examplecoooiiiiii ., 4-48

Constraints on Publishing Data Service Objectsto SQL..................covvit.. 4-54

5. Modeling Data Services

Model-Driven Data Serviceso.ouiiuiiiiii i 5-3
Logical and Physical Data Models......... ...t 5-3
Rules Governing Model Diagrams ...ttt b-4

Building a Simple Model Diagramc.oourtiii i 5-b
Displaying Relationships Automatically oo i, 5-10
Generated Relationship Declarations in Source View.coove.t. 5-10
Modeling Logical Datac.oiiiiii e 5-11

Building Data Service RelationshipsinModels, 5-12
Direction, Role, and Relationships 5-12

Working with Model Diagramsottt i 5-16
Model Right-click Menu Optionsovveineeni e 5-17
Creating Relationships in Model Diagramsccooiviiiiiiiiinenn.. 5-19
Locating Data Services in Large Model Diagramscoiievonan.. 5-19
Generating Reports on Your Models ..., 5-20
ZoOM MOGeot e 5-22
Editing XML Types in Model Diagramscooiieiiiiiiiii e, 5-23

How Changes to Data Services and Data Sources Can Impact Models 5-24
How Metadata Update Can Affect Models. ..., 5-24

6. Working with the XQuery Editor

Role of the XQuery Editor.t i e e e 6-2
Data Source Representations. ... 6-4
XQuery Editor Optionsovuni e e e 6-b

Creating a Simple Data Service Function............ ...ttt 6-7

viii Administration Guide

Key Concepts of Query Function Buildingo i i, 6-15

Data SOUICESot e 6-15
Source Schemas and Return Types.ottt 6-16
XQuery Editor Components.c.vutiiituiiiiiiiiii e i e 6-16
Setting Conditionsc.vuuiiitr it e 6-31
Using XQuery FUNCioNS.ttt e 6-35
Setting EXPresSiOnSvvuttt ettt e 6-41
Managing Query COMPONENTESvvutt ettt ittt ettt e i 6-41
Working With Data Representations and Return Type Elements 6-42
Mapping to Return Typesot e e 6-43
Modifying a Return Typettt e e e s 6-47

/. Testing Query Functions and Viewing Query Plans

Running Queries Using TeSt VIEWottt e 71
UsIng Test VIeWottt e e e 7-3
Using Query Plan View oo e e e e 7-17
Using Query Plan Viewot e e 7-18
Analyzing a Sample QUETYttt e 7-21
Working With Your Query Plan. 7-23
Obtaining an Ad Hoc QueryPlan.t 7-24
8. Working with XQuery Source
What is Source VIEW? 8-1
DA TS) 0N 111 0) 410) P P 8-2
USINgG SOUICE ViBW. . .\ttt ettt ittt e e e 8-3
FInding Text. . .\ v vttt e e 8-3
Function Navigationttt e e e 8-4
Code Editing Featuresvvvtttt ittt e 8-4
Administration Guide ix

9. Handling Updates Through Data Services

Updating Source Dataccoiuiii e 9-2
What is an Update Override?oviinnieen i 9-4
An Update Override isa Java Classooureive e 9-5
When Update Override Classes Are Neededc.oiiviiiiiiiiiinennn.. 9-6
Registering an Update Override Class.covviviieiiii e, 9-7
Developing an UpdateOverride Classcovviriiiiniii e, 9-7
Creating Update Overrides for Relational Data Sources...................ccoovvn... 9-10
Invoking Data Service Procedures from an UpdateOverride 9-14
Testing Submit Resultsooiuie 9-16
Common Update Override Programming Patterns., 9-17
Overriding the Decomposition and Update Processcoovvnitt. 9-17
Augmenting Data Object Contentco it 9-19
Customizingan Update Plan, 9-21
Retrieving the Container of the Current Data Object.............................. 9-23
Invoking Other Data Service Functions and Procedures 9-24
Capturing Runtime Data About Overrides in the Server Log 9-24
Default Optimistic Locking Policy: What it Means, How to Change. 9-26
Invoking JPDs from AquaLogic Data Services Platform 9-27
Invoking a JPD from an Update Override, 9-28

10.Best Practices and Advanced Topics

Using a Layered Data Integration and Transformation Approach........................ 10-1
Using Inverse Functions to Improve Query Performance 10-3
Sample Invertible Data.cooo i 104
Considerations When Running Queries Against Logical Data, 104
Improving Performance Using Inverse Functions: an Example...................... 10-6
Leveraging Data Service Reusability................co i i 10-15

X Administration Guide

Modeling Relationships

Administration Guide

Xi

Xii Administration Guide

CHAPTERa

Introduction to Data Services

Just as the BEA WebLogic Application Server freed application developers from the tedium associated
with managing multi-user applications across the Internet, BEA Aqualogic Data Services Platform
allows data application developers to concentrate on developing and extending enterprise
information without a need to directly program to the underlying physical data sources.

AquaLogic Data Services Platform takes advantage of emerging standards to enable you to create
hierarchical, enterprise-wide data services which can be accessed by any Web-based application.

Specifically, data services enable you to:

o Insulate integrated applications and processes from complexity of divergent data forms and
potentially disconnected sources of enterprise data.

e Manage the metadata information imported from disparate data sources.

o Create data models showing the relationships between various data services.

Note: AquaLogic Data Services Platform was originally named Liquid Data. Some artifacts of the
original name remain in the product, installation path, and components.

Data Services Developer’s Guide 1-1

Introduction to Data Services

Figure 1-1 BEA Integrated Development Environment

User Integration Application Integration
WebLogic Portal BEA WebLogic Integration

Enterprise Data Services
Aqualogic Data Services Platform

Application Framework
Beehive

Application Server
BEA WebLogic Server

-
f
[}
£
S

o
[}
>
o}

o

o
o}

2
©
o
=)
o}

]

£

Environment
BEA WebLogic Workshop

JVM:
BEA WebLogic JRockit

Data Services and the Enterprise

In modern enterprises data is generally readily available. While this has reduced that need to move
physical data into data warehouses, data marts, data mines, or other costly replications of existing
data structures, the problems of dynamic data integration, immediate secured access and update,
data transformation, and data synchronization remain some of the most vexing challenges facing the
IT world.

AquaLogic Data Services Platform provides a comprehensive approach to this challenge by:

e Providing a unified means of importing metadata representing the structure of any data source
using its Metadata Import wizard.

o Allowing for the creation of hierarchical data structures from tradition column-row data.

e Providing a query-driven interface to extend the physical model so data specialists can create
powerful transformations of existing data and queries.

o Automatically creating data models that introspect physical data structures (and their
contents) i situ, normalizes representation of diverse data, and allow the representation of
the relationship of physical and logical data.

e Maintaining the accuracy of metadata through automated updates from the data source.

AquaLogic Data Services Platform can be used to create, refine, and validate logical data structures
through a process of importing data sources, creating physical and logical models, and designing

1-2 Data Services Developer's Guide

Data Services and the Enterprise

queries for use by applications in an infrastructure that provides for easy maintenance, while
enhancing security and performance.

Through standardized Service Data Objects (SDO) technology, web-based applications can
automatically read and update relational data. Through simple Java programs AquaLogic Data
Services Platform update capabilities can be extended to support any logical data source.

e For an overview of the AquaLogic Data Services Platform system, see the AquaLogic Data
Services Platform Concepts Guide.

e For detailed, hands-on tutorial illustrating many AquaLogic Data Services Platform features and
techniques see the AquaLogic Data Services Platform Samples Tutorial.

Data Access Integration Architecture

In contemporary enterprise computing, data typically passes through multiple processing and storage
layers. While enterprise data can easily be accessed, turning that data into useful information
economically and efficiently, particularly updateable information, remains a difficult and
high-maintenance task.

Data Services Developer's Guide 1-3

../concepts/index.html
../samples_tutorial/index.html

Introduction to Data Services

Figure 1-2 AquaLogic Data Services Platform Component Architecture

data users

XQuery
Web [Java clients [(ad hoc } [SDLIJDB%
services

queries)

read/update
calls

Client API

Java API®Workshop Control
VWebServices *xXQuery *JDBC

R Administration
Console

Data Service
Development

Tools T caching, security
management

Data Processing Engine

Model
Repository

data sourcesv Y * y
Web Java
Services functions

Files
ML = CSV

AquaLogic Data Services Platform approaches the problem of creating integration architectures by
building logical data services around physical data sources and then allowing business logic to be
added as part of easily maintained, graphically designed XML query functions (also called XQueries).

JDBC
RDBMS

Using standard protocols such as JDBC, AquaLogic Data Services Platform automatically introspects
data sources, creating physical data services and corresponding schemas that model a physical data
source. Optional model diagrams capture relationships between relational data sources, such as
primary and foreign keys.

Any WebLogic Workshop application can include AquaLogic Data Services Platform-based projects.
And any application can access AquaLogic Data Services Platform queries — including update
functions — through a mediator API or a AquaLogic Data Services Platform Control. In the case of
relational data, updates can be performed automatically through Service Data Objects (SDO) (For

1-4 Data Services Developer's Guide

Data Services and the Enterprise

details see “Programming with Service Data Objects” in the AquaLogic Data Services Platform Client
Application Developer’s Guide.)

AquaLogic Data Services Platform provides for the development of integrated queries within any
WebLogic Workshop application. Each application can contain multiple AquaLogic Data Services
Platform-based projects, as well as any other types of projects offered by WebLogic Workshop.

Figure 1-3 Sample Data Service

|| Application 5 || Customet.xds - {DataServicesH,
[=]

24 Demo = | [Customer.xds ML Data Service |
(&1 crwsProject Return Type - CUSTOMER # Jﬁ]
[= {33 DanubeWeb At (2 CLiSEOMEY (& CUSTOMER 2\;-

(20 CustomerPF @ CUSTOMERID xa:int
PAYMENTSL \:J B CUSTOMERS

(20 DataServiceCrls & @ CUSTOMERNAME xs:sting L]
(1 resources @ "

@ WEB-TNF 0ok PayIENELISE e _CREDIT —
- - @ CREDITSCORE ik peid

error.jsp = getPavmentTest = .
| (@) CREDITRATING xs:skring M
48 TestProcess.jws — B CUSTOMERS

@ ORDER*
(@ ORDERID xs:int
@ CUSTOMERID xs:int
B @) POITEM*

(&) ORDERID xs:int
@ KEY wsiink
@ ITEMMUMBER ? xsuir
&) QUANTITY ? xsuint

[= (29 Datagervices
(2 diagrams
(L META-INF

) Processes
(1 schemas

19 CreditRatingUpdate ja %

Fj Customer.xds

PO ITEMS 4

Fj CUSTOMERS, %ds stomerCreditRating +
'-Z Customerlpdatelogic, 7 ’—‘ E
Fj gebCustomerCreditRati |

[¢3) TTEMS s
[68) PaTMENTS s
i

Aqualogic Data Services Platform Applications and
Projects
AquaLogic Data Services Platform query and model development services are available through a

AquaLogic Data Services Platform-based WebLogic Workshop project. After you have installed
AquaLogic Data Services Platform (see the Installation Guide), you have two options:

e Creating a AquaLogic Data Services Platform-based project within any WebLogic Workshop
application:
File — New — Project — AquaLogic Data Services Platform Project

o (Creating a new AquaLogic Data Services Platform-based application:
File — New — Application — AquaLogic Data Services Platform Application

Data Services Developer's Guide 1-5

../appdev/sdo.html
../install/index.html

Introduction to Data Services

Services Available to a AquaLogic Data Services Platform-Based Project

A AquaLogic Data Services Platform-based project is comprised of a number of interrelated data
services used in developing models and query functions. Service components are designed to enable
rapid development, prototyping, and deployment of these services and functions in your applications.

Major services provided by the Aqualogic Data Services Platform platform are listed in Table 1-4.

Table 1-4 Survey of Major Services Provided by AqualLogic Data Services Platform

Service Feature

Data Services and Data Modeling e Physical models
e Logical models
e Relationships
* Read functions
e Procedures
e Navigation functions
* Roles

Metadata Management e Browse metadata
e Search metadata

e Impact analysis

e Auditing
e Reports
Import Metadata * Relational, Web services, XML files, delimited files, Java

e Update metadata

Query Management e (raphical query development
e Testing
e Plan analysis
e Performance reporting

e Auditing
e Source editing
e (Caching
e Security

1-6 Data Services Developer's Guide

Data Services and the Enterprise

Table 1-4 Survey of Major Services Provided by AqualLogic Data Services Platform

Service Feature

Application Services e Mediator API
e AquaLogic Data Services Platform control
e JDBC

Service Data Objects (SDO) e Automatic read-write to relational sources

e (Custom update

XQuery Engine e Inverse functions

For more information on WebLogic Workshop applications and projects see “Applications and
Projects” in WebLogic Workshop online documentation.

Aqualogic Data Services Platform: Roles and
Responsibilities

e Metadata Development. Using the AquaLogic Data Services Platform Metadata Import wizard,
any team member can quickly create a set of physical data services from enterprise data
sources.

e Data Service Development. A data architect with knowledge of the relationships between
enterprise data sources can then create data services based on physical and previously
developed logical services.

e Query Development. Once data services are created, any IT team member can create reusable
query functions using the graphical XQuery Editor. The editor is directly tied to a Source View
that facilitates code-based modifications to automatically-generated designs.

e Application Development. Application designers can use data service query functions in their
BEA WebLogic applications. Through Service Data Objects (SDO) and the Mediator API or a
AquaLogic Data Services Platform control, applications can retrieve and update data, yet
remaining insulated from the complexities of managing the underlying data interaction.

e Metadata Management. Administrators, architects, and designers can use the Metadata
Browser for real-time introspection of disparate data source metadata that has been developed
through AquaLogic Data Services Platform.

Data Services Developer's Guide 1-1

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/project/conWorkspaces.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/project/conWorkspaces.html

Introduction to Data Services

1-8

Aqualogic Data Services Platform: Typical Development
Process

The following steps summarize a typical AquaLogic Data Services Platform-based project development
cycle.

1.

Create your project. Create a AquaLogic Data Services Platform-based project in a new or
existing WebLogic Workshop application as described in “Creating a AquaLogic Data Services
Platform-based Application” on page 2-2 and “Adding a AquaLogic Data Services Platform Project
to an Existing BEA WebLogic Application” on page 2-4.

Import metadata. Metadata can be obtained for any data source that is available through your
local application or BEA WebLogic Server. This may include relational data, Web service data,
delimited files (spreadsheets), custom Java functions, and XML files. See Chapter 3, “Obtaining
Enterprise Metadata.”

Create a data model. You can graphically build a data model that shows the relationships and
cardinality between the data services you have selected (see Chapter 5, “Modeling Data Services”
for details). In the data model, you can also modify and extend relationships between various data
services as well as their return type.

Develop data services. You can elaborate on existing physical data through queries that span
multiple physical and/or logical data services (Chapter 4, “Designing Data Services”. The built-in
XQuery Editor (Chapter 6, “Working with the XQuery Editor”) includes standard XQuery functions
and language construct prototypes. Using the editor you can map source elements or
transformations to a return type.

The Data Service Palette provides access to all data services available to your application.
Queries and data service logic are maintained in a single, editable source file that is fully
integrated with your data service (Chapter 8, “Working with XQuery Source”).

Test your function. The data service functions you create can be tested at any time. You can select
any query in the current data service, add a simple or complex parameter (if required), run the
query, and see the results (Chapter 7, “Testing Query Functions and Viewing Query Plans”). If you
have appropriate permissions, you can also update source data through Test View.

Review the query plan. You can view the query plan prior to or after running your query. The query
plan describes the generated statements used to retrieve and update data. Execution time
statistics are also available (“Using Query Plan View” on page 7-17).

Data Services Developer's Guide

Data Services and the Enterprise

Examples, Samples, and Tutorials

Samples and examples used in this book are based on the Sample Retail Application (RTLApp) that
isincluded with AquaLogic Data Services Platform. See also the “Sample Retail Application Overview”
in the AquaLogic Data Services Platform Installation Guide.

A number of examples of AquaLogic Data Services Platform technology can be found in the AquaLogic
Data Services Platform Samples Tutorial. This tutorial is also based on RTLApp.

Data Services Developer's Guide 1-9

../samples_tutorial/index.html
../install/sampleapp.html

Introduction to Data Services

1-10 Data Services Developer's Guide

CHAPTERa

AquaLogic Data Services Platform
Projects and Project Components

BEA Aqualogic Data Services Platform-enabled projects can be added to WebLogic Workshop in two
ways:

e Asaproject in a new application.

e As aproject in any existing BEA WebLogic application.

The basic menus, common behavior, and look-and-feel associated with WebLogic Workshop apply to
AquaLogic Data Services Platform. For detailed information on WebLogic Workshop see:

http://e-docs.bea.com/workshop/docs81/index.html

This chapter discusses:

o Built-in and extended WebLogic Workshop facilities that you can use in creating and managing
your AquaLogic Data Services Platform-based projects.

e AquaLogic Data Services Platform extensions to WebLogic Workshop.

The following major topics are covered:
e AquaLogic Data Services Platform-Based BEA WebLogic Applications
e Building and Deploying Applications, JARs, and SDO Mediator Clients
o Refactoring AquaLogic Data Services Platform Artifacts

o (Creating and Working with XQuery Function Libraries

Data Services Developer's Guide 2-1

http://e-docs.bea.com/workshop/docs81/index.html

Aqualogic Data Services Platform Projects and Project Components

Aqualogic Data Services Platform-Based BEA WebLogic
Applications

2-2

As noted above, you can create a WebLogic Workshop application that automatically includes a
AquaLogic Data Services Platform project. Or you can add AquaLogic Data Services Platform projects
to any BEA WebLogic application.

Note: It often makes sense to consolidate AquaLogic Data Services Platform queries into a
WebLogic Workshop application dedicated to AquaLogic Data Services Platform
development. Other applications can then access these queries through the DSP Mediator
API or a AquaLogic Data Services Platform control. For complete details related to how client
applications can access AquaLogic Data Services Platform functions and procedures see the
Client Application Developer’s Guide.

Verifying Your Aqualogic Data Services Platform Version Number

To ascertain that AquaLogic Data Services Platform is available to your application or to determine
the version that you are running, start your BEA WebLogic Server and access its Administration
Console.

As an example, the WebLogic Server Console for the sample domain provided with BEA WebLogic can
be accessed from:

http://localhost:7001/console

Navigate to the Console — Versions page (Console being the top menu item) and find the version
number and creation date for AquaLogic Data Services Platform.

Creating a Aqualogic Data Services Platform-based
Application

To create a AquaLogic Data Services Platform-based application select File — New — Application
from WebLogic Workshop menu. When the dialog appears, select AquaLogic Data Services Platform
Application (Figure 2-1).

Data Services Developer's Guide

../appdev/index.html

Aqualogic Data Services Platform-Based BEA WeblLogic Applications

Figure 2-1 Creating a New AquaLogic Data Services Platform Application

-
s

Cal éﬁl Data Services Application E
1) Data Service éﬁl Default Application
(CPortal éﬁl Empty Application
] Proce.ss éﬁl Partal Application
[C) Tutarial r o

@j Process Application

éﬁl Tutorial: Enterprise JavaBeans

éﬁl Tutorial: Hello World Process Application

éﬁl Tutorial: Java Control B
Direckory: | Ciibealuser_projectstapplicationsintitled | | Browse, .. |
Mame: | Untitled |

I~
Server: | C:'l,bea'l,weblﬁ&ics1'l,samples'l,domains'l,ldplatfo‘ - | | Browse, .. |

Creates a new empty application with a Data Service project,

You probably will want to change the name of the application from Untitled to something else. Your
new application automatically contains an initial AquaLogic Data Services Platform-based project.

Figure 2-2 Application View of a New AquaLogic Data Services Platform Application

('] My - BEA WebLogic Workshop (==
File Edit Wew Buld Debug Tools Window Help
DEE@ > ~|s @ B B
Applicatic]w; *
2y
@MyDataServices
£ Modules
(T Libraries
(3 Security Raoles
Build ™. *
Ready @ Server Stopped

Data Services Developer's Guide 2-3

Aqualogic Data Services Platform Projects and Project Components

2-4

You can save your application at any time using the File — Save, Save As, or Save All commands.
Save All saves any modified files in your application.

When you initially create a WebLogic Workshop application such as “myLD”, a file called myLD . work
is created in the root directory of your application. Invoking Workshop using this file also opens your
application.

An application can contain any number of AquaLogic Data Services Platform or other types of
WebLogic Workshop projects.

Adding a AquaLogic Data Services Platform Project to an
Existing BEA WebLogic Application

You can also add one or several AquaLogic Data Services Platform projects to any WebLogic Workshop
application.

To do this select File — New — Project. When the project creation dialog appears, choose
AquaLogic Data Services Platform Project.

Figure 2-3 Application Tab of a New AqualLogic Data Services Platform Application
Application | Files *

Zqmy
= @ yDataServices
|<—j xquery-types%sd
£ Modules
(T Libraries
(3 Security Rales

Major Components of a Aqualogic Data Services Platform Project

When a new AquaLogic Data Services Platform application or project is created, a AquaLogic Data
Services Platform project folder is also created. This becomes the root directory of your project (see
Figure 2-3). Two Java archive (. jar) files are added to the application’s Libraries folder including
ld-server-app.jar and the mediator.jar. The latter file manages creation of Service Data
Objects (SDOs), described in detail in the Client Application Developer’s Guide.

Data Services Developer's Guide

../appdev/index.html

Aqualogic Data Services Platform-Based BEA WeblLogic Applications

Table 2-4 lists major AquaLogic Data Services Platform file types and their purposes.

Table 2-4 AqualLogic Data Services Platform Components, Including File Types

Component

Purpose

Data Services (. ds files)

Data services are contained in DS files and can be located anywhere in
your application. Each data service file is an XQuery document.

Note: Since a DS file may contain numerous XQueries as well as
other automatically-generated pragma directives, care should
be taken when editing this file directly.

Model Diagrams (. md files)

Model diagrams provide a graphical representation of the relationships
between various data services, which themselves represent the physical
and logical data services available to your AquaLogic Data Services
Platform queries.

Model diagrams have the extension . md and can be located anywhere
in your AquaLogic Data Services Platform project.

Metadata information

Metadata information is contained in META-INF folders associated
with JAR files. The non-editable contents of this Libraries folder
contains information on data sources used by data services.

Data Services Developer's Guide 2-5

Aqualogic Data Services Platform Projects and Project Components

Tahle 2-4 Aqualogic Data Services Platform Components, Including File Types

2-6

Component

Purpose

Schemas (. xsd files)

Data services typically are associated with XML types whose physical
representation is an XML schema file. Schema files can be located
anywhere in your application. Schemas automatically created by the
Metadata Import wizard are placed in a schemas project inside your
application.

Schema files can be manually created or modified using any text editor.
There is also a built-in schema editor in AquaLogic Data Services
Platform Design View and in model diagrams containing the data
service.

The XML type associated with a data service is also the return type of
each function in your data service.The return type precisely describes
the shape of the document to be returned by your query.

The return type can be modified through the XQuery Editor or directly
in source. However, this generally should only be done in conjunction
with the Save and Associate Schema command (see “Creating a Simple
Data Service Function” on page 6-7 for details).

XQuery function libraries
(.x£1 files)

XQuery function libraries typically contain utility XQuery functions that
can be used by application data services and in building data
transformations. A typical example would be a routine for converting
currencies based on daily exchange rate. Such transformational
functions could be used by any data service in your application.

Other files which may appear in AquaLogic Data Services Platform projects include Java files
containing custom update logic and SDO configuration files such as sdo . xsdconfig, which allows
XMLBean technology to create SDOs rather than XMLBeans.

Data Service Project Right-click Menu Options
AquaLogic Data Services Platform adds several options to the standard WebLogic Workshop project

right-click menu (Figure 2-5).

Data Services Developer's Guide

Aqualogic Data Services Platform-Based BEA WebLogic Applications

Figure 2-5 Data Service Project Right-click Menu Options

| Application . Files x
S RTLAPD sl
E= @ DakaZeryices
= 24 Apps 2l Find in Files...
% e r
@ Install b
:[E Build Dataservices
% Clean DataServices
[Eill Import. .
Cush
SR= Delete
| i
:[E Remove from Application
:[E Rename
Qe Irpart Source Metadata
Elect
a pdate Source Metadata
Camer
Cmon Publish Data Services fe
RTLS
tl Properties
[ser =
Fj sdo, xsdconfig
Fj wquery-kyvpes,xsd |
[E) Elecws
(=) RTLSelFService
Schemas]

The following table describes AquaLogic Data Services Platform additions to the Project right-click
menu.

Table 2-6 Data Service Extensions to the Workshop Right-click Menu

Option Usage

New You can create the following data service-specific artifacts in
WebLogic Workshop projects:

e Model Diagram
e Data Service
e XQuery Function Library

Install New data service libraries can be installed through this option.

Data Services Developer's Guide 2-1

Aqualogic Data Services Platform Projects and Project Components

Tahle 2-6 Data Service Extensions to the Workshop Right-click Menu

Opens a dialog for importing source metadata into your
project.

Import Source Metadata

Opens a dialog for updating source metadata for your entire
project.

Update Source Metadata

Publish Data Services for SQL Use Opens a dialog for selecting project artifacts for publication

through the AquaLogic Data Services Platform JDBC driver.

Data Service Right-click Menu Options

AquaLogic Data Services Platform adds several options to the right-click menu associated with data
services. (Figure 2-7).

Figure 2-7 Data Service Right-click Menu Options

|| Application [Files . s
Y RTLApP []
=] @ DataServices
=2 ApparellE
[T schemas
qﬁ CUSTOMER _ORDER.ds
42 CUSTOMER_ORDER _LINE_ITEM.ds
@ LineItemUpdate java
Y PRODUCT.d3 ;
~ Switch To PRODUCT . ds
129 BilingDE =
[T schemas ST (50
42 crepiT_cap Close
(Z1) CustomerDE e
& Q3 0emo] Refactor
129 FlatFiles
(C) Document Lack
[C) FlatFileCol Duplicate
g FlatFilePr Delete
library
(C) InverseFuncti Rename
) Java Generate WSDL File For Service Bus
C schemas Update Source Metadata
ML
1B CustomerProfile.ds
[} ElectronicsWws =]

Data Services Developer's Guide

Aqualogic Data Services Platform-Based BEA WeblLogic Applications

The following table describes AquaLogic Data Services Platform additions to the standard right-click

menu options.

Table 2-8 Data Service Extensions to the Workshop Right-click Menu

Option Usage

Find Usages For information on determining where various AquaLogic
Data Services Platform artifacts are used see “Usages of Data
Services Artifacts” on page 2-22.

Refactor For information on data service refactoring operations see

“Refactoring AquaLogic Data Services Platform Artifacts” on
page 2-217.

Generate WSDL File for Service Bus

Create a WSDL file that enables users of AquaLogic Service
Bus to invoke data service functions. See the Accessing Data
Services Through AquaLogic Service Bus chapter in the Client
Application Developer’s Guide for details.

Update Source Metadata

Opens a dialog for updating source metadata for your data
service.

Using the WebLogic Workshop IDE

WebLogic Workshop is fully described in on-line and printed documentation. A good place to start is:

http://e-docs.bea.com/workshop/docs81/index.html

Alternatively, WebLogic Workshop provides complete on-line help.

Data Services Developer's Guide 2-9

http://e-docs.bea.com/workshop/docs81/index.html

Aqualogic Data Services Platform Projects and Project Components

2-10

Figure 2-9 Some WebLogic Workshop Components in a AquaLogic Data Services Platform-Based Project

& Databgrvices
) ApharelDB
CaBilingge
) CustomierDB
1 Demo
() Electranics
CAMETA-INF
CAMOoDELS

¥ appiProduct.as
S case.ds

1 caseview.ds

SR creditcard.ds

(¥ customer.ds

B customerview.ds
I Elecorder.ds

B ElecOrderDetailview. ds|
{2 ElecProduct.ds
& ordeDetaillpdate. jav,

10

B (R RTLSer . .
o Applicat
i~ Structu

|[{]2" Customer¥iew Data Service

Pruhle\/\ewjﬁ

re

QetCust

Build
Results

= @ CUSTOMER retafler: CLISTOMER_VIEW
® CustomerlD xschstring

@ Firstame xsditring
© Lasthlame xsdistring
aetPrafileView St JEESS

(@ retallerType:ORDER_SUMMARY * retailerType: ORDER_SUMMARY_TYPE
@ Type? xssiring
@ OrderID xsistring
@ CustomerlD xsistring

QU ery @ OrderDate 7 xs:date

@ TotaldrderAmount xsedecimal
Functions

tomeryiew

@ shipToName xs:string
@ Estimatedshipbate xsidate
@ Trackinghumber ? xs:string

|
Data Service
. escription xs:sking
Views

xseint

(schema

XML Type

RTLServices(Custo,
o h

RTLServices(Order
s h

L -’

Desigh View [¥QUery Editor View Query Plan View

File Edit Wiew DataService Buld Debug Tools Window Help

DFE@ o o B> [EE0F |0/ HEIEe ~¢ 0 HE|

J Application Files . || CustomerView, ds - {DataServices HRTLServices), X
9 RTLapp. (=] =

B ordersummaryView.ds
S orderview.ds
B Productiew.ds
S ProfileYiew.ds
B test.ds
[test.xsd
() ServiceDB
[} sdo.xsdeonfi
[6] xauery-types xsd
(EXElecws
() RTLsefservice
(B Schemas

Property Editar
Data Service
General

Hame
Description
Author
Creat
Type
Type

Data E

Allow

Properties

AQuery Construct Palette | ¥Query Function

CustomerView.ds

John Smith

XQuery
Functions

XQuery
Constructs

ditor

Decomposition Function

]

Ready

(£ Modules || Update Override Class =

(] Libraries Description =

< O] General Data Service properties %
@ Server Running ms [l finz

Table 2-10 briefly describes:

o WebLogic Workshop functionality extensively used by AquaLogic Data Services Platform.

o AquaLogic Data Services Platform extensions to the Workshop user interface.

Service

Purpose

Application pane

Lists the projects and other components in your application.

Files pane

Provides an ordered listing of files used in your application.

Build pane

Provides feedback while the application is being built and reports
build success or failure.

Data Services Developer's Guide

Table 2-10 Summary of WebLogic Workshop Windows Used by AqualLogic Data Services Platform

Aqualogic Data Services Platform-Based BEA WeblLogic Applications

Table 2-10 Summary of WehLogic Workshop Windows Used by Aqualogic Data Services Platform

Service Purpose

Output pane Shows data sources accessed, execution times, and query
statement.

Property Editor Provides information on properties associated with the currently

selected object. Some properties are configurable or editable.

Table 2-11 describes the several WebLogic Workshop menu commands often used with AquaLogic
Data Services Platform projects.

Table 2-11 Summary of WebLogic Workshop Menu Services Used by AquaLlogic Data Services Platform

Service Purpose

File menu When working with AquaLogic Data Services Platform projects you
will often use the following File menu options:

e Save, Save As, Save All. The Save command saves the current
file while the Save All command saves all open or modified files
inyour project. Use the Save All command to make sure that all
changes you have made to your application will be persisted.

e Import commands. Use the Import file browser to add files or
libraries to your application. For example, if you have an
externally developed schema you can use the Import command
and associated file browser to bring a copy of it into your
application.

Property Editor

You can use the Property Editor to view details related to any WebLogic Workshop artifact (see
Figure 2-12). For example, in Design View (see “Design View” on page 2-16) if you click on the general
data service, the Property Editor provides details on that service. If you click on a relationship
representation in your data service, property details on that relationship appear. In many cases,
property settings are editable or configurable.

Data Services Developer's Guide 2-11

Aqualogic Data Services Platform Projects and Project Components

2-12

Figure 2-12 Relationship Properties in a Data Service

Customer,xds* - {DataServicesH, 4

4]

Customer.xds %ML Data Service
Return Type - CUSTO,,, #
getCustomer © CUSTOMER ’_\3‘* CUSTOMERS. xds
(&) CUSTOMERID xsvir
&) CUSTOMERMAME
(&) CREDIT*

L

CUSTOMERS +

l

e et PaventList O e — 5 PO_CUSTOMERS, xds
¥ i R
W
P etPavment Test &

PO CUSTOMERS 4

’—_--: :IPO ITEMS, xd
w\ﬁ] xds

PAYMEN. .. .ﬁ

L% "
PO ITEMS 4
EH] getCustomerCredit. ..
= ,\
stomerCreditRating 4
1 [—‘ =
[« |
| Design Yiew [®GQuery Editar | Source View | Test Yiew | Query Flan Yiew
| Build | Oukput " Property Editar ®
PAYMENTS - Relationship
General
Role-Mame PAYMENTS
Target-xDS Id:DataServices/PAYMENTS.xds
min-occurs
Max-0CCUrs
opposite getCustomer
Description B

The role name of the relationship in the target ¥DS which traverses is in the opposite direction from this relationship,

Finding Text in Files

WebLogic Workshop provides a comprehensive file search facility with its Find in Files option,
available from the Edit menu (Edit — Find in Files).

Data Services Developer's Guide

Aqualogic Data Services Platform-Based BEA WeblLogic Applications

Figure 2-13 Workshop File Search Facility

Find in Files
Text to Find: | cus| |~] [Fnd
]

Search files of type: | ".jws,*.jcx,*.jcs,*.ctrl,*.jpd,*.ij,*.jsp,*.jspf,*.java,*.jsx,*.xml,*.ejb| - | | Cancel |
Search in: | [:\bealweblogics1isamplesiLiquidDatalR TLAppiDataServices | -

Search in subdirectaories Browse. ..
Options
[] Case sensitive Use * and ? far pattern matching
[Find whale words anly [Qutput in new pane

You can use Find in Files to search for references to any AquaLogic Data Services Platform artifacts
such as particular data sources, use of functions, and so forth.

Survey of AquaLogic Data Services Platform Additions to
WebLogic Workshop

An AquaLogic Data Services Platform project adds menu items and views to the basic WebLogic
Workshop environment to support the following functionality:

o Metadata Import

e Data Models

e Data Services

o (Creating and Working with XQuery Function Libraries
o Usages of Data Services Artifacts

e Updating Application or Project Data Service Libraries

Metadata Import

Data services are central to creating data models and physical and logical data views that can be used
in AquaLogic Data Services Platform queries. The first step in creating a data service is to import
metadata from physical data sources so that corresponding physical data services can be created.

Data Services Developer's Guide 2-13

Aqualogic Data Services Platform Projects and Project Components

Figure 2-14 Selecting Metadata Import for a AquaLogic Data Services Platform Project
| | Application ~ Files . *

Y RTLApP
=] @ DataServices
Cas @ Find in Files. ..

s Mew »
4d
Cao Install 4
=L Build DataServices
&
Clean DataServices
& =
Car Import...
5
El Delete
<3 S -
Fj o Remove from Application
(30 Elec Rename
RTLS Import Source Metadata...
e (@0 Sche Update 5 Metadat.
(] Mody pdate Source Metadata, ..
) Libra Properties
(3 Security Raoles

For details related to importing and updating metadata into your AquaLogic Data Services Platform
project see Chapter 3, “Obtaining Enterprise Metadata.”

Data Models

Through the data model interface that you can:
e Establish or modify relationships between data services.
o Edit a data service’s return type.

o Create annotations to a model or a data service.

2-14 Data Services Developer's Guide

Aqualogic Data Services Platform-Based BEA WebLogic Applications

Figure 2-15 Creating a Data Model Diagram from the File Menu

E Demo - BEA Weblogic Workshop - model5. xmd

Edit “iew ®DS Buld Debug Tools ‘Window Help
@ Java Class
Open » Model Diagram

Close modelS.xmd — Chrl4F4 Fj il It SR
Close Al Files Chrl+Shift+F4 Other File Types... Cbrl+N
Close Application Application. ..
n Project...
Save As...
a a

Import Project...

Impart Library...

Import Module. ..
O Impart Files. ..

Page Setup...
Print... Chrl+P

Recent Files 4

Recent Applications »

Exit
= |

(3 Security Raoles

For details on developing and maintaining data models see Chapter 5, “Modeling Data Services.”

Data Services

Every data service provides a Design View, XQuery Editor View, Source View, Test View, and Query
Plan View. Each data service is based around a single XQuery source file. And every data service has
an associated XML type (XDS file).

Data services are composed of read and navigation functions and procedures. Read functions must
return the XML type of the data service. Navigation functions, return the XML type of their native data
service. Procedures, also known as side-effecting functions, need not return anything.

Data Services Developer's Guide 2-15

Aqualogic Data Services Platform Projects and Project Components

Figure 2-16 Sample Data Service

& RTLApp - BEA WebLogic Workshop - Customer. ds E]@

File Edt View DataService Buld Debug Tools Window Hslp

DEEHF » |t RR|+-> |09 |0 HHEs ~¢H EBR|
Customer.ds - {DataServicesHRTLServices) %

R Customer Data Service |
5@ PROFILE retallerType:PROFILE_TYPE

- CustomerDB{ADDR...
@ Firsthame xsd:string

qetCustomerByCustD -
= @ LastName xsd:string

- CustomerDB{CUST...
@ CustomerSince xsd:date
T @ Emaidddress xsd:string

@ Telephonehiumber ? xsd:string
@ 55N ? xsdistring
® BirthDay ? xsd:date
e @ DefauishippmentMethod xsd:stiing
@ EmailNotification xsd:short
@ OnlineStatement xsd:short
@ ADDRESS * retallerType:ADDRESS_TYR

qetCreditCard

ElecOrder

qetElecOrder

4 | [v]
[EQ]] [+
Design Yiew [¥Query Editor View | Source Yiew | Test View | Query Plan Yiew |
Buid . =
Ready @ Server Stopped s [eof100

Design View

Design View is the central reference point of every data service. Through Design View that you can:
o Add or modify the XML type (associated schema).
e Add read functions using the XQuery Editor View.
e Add private functions.

o Add relationships in the form of navigation functions. These functions are typically developed
using the Relationship wizard.

For details on developing and maintaining data services see Chapter 4, “Designing Data Services.”

XQuery Editor View

Through the XQuery Editor View you can develop query functions by projecting data service function
elements, as well as transformations, to the function’s return type.

2-16 Data Services Developer's Guide

AquaLlogic Data Services Platform-Based BEA WebLogic Applications

Figure 2-17 Sample XQuery Editor Query with Its Return Type

Customerliew.ds* - {DataservicesHR TLServices) %
B getCustomer\u‘lew(CustID)‘ -
= (@ Return)
=qFor: $Profile_type & 0
R = g Ty [Customerview
B Input L] (5 CUSTOMER _WIEW * CLISTOMER_VIEW
e Sid)eting D CustomerID string
== output

Firsthame string
LastMarme string
= ORDERS

= ORDER_SUMMARY * ORDER_SUMMARY _TVPE
Type 7 string
OrderID string
CustarmnerID string
OrderDate 7 date
TotalOrderdmount decimal
ShipToMame string
EstimatedshipDate date
Trackinghumber 7 string
Status string

[= PROFILE * PROFILE_TYPE
CustamerIDr string=————
FirstMame string
LastMame string
FickamerSines date =]

< [l

/

{?]Parameter: §Cus... #

CustID string

=49For: $0rder_type &
=5+ Input

v)
custamer_id string
[=I4=] Oukput
[= ORDER * CORDER_TYPE

@TYPE ? string
OrderID string

) LINE_ITEM *
ProductDescription string

=qFor: $Line_item & 0] CustomerID string Quantity ink
[} LIME_ITEM * LINE_ITEM_[=] Order_Date I)
@TVPE? string Sh\ppl.ngMethod string
LineltemID string Ha:;vdhngltzarqa ‘damma\
OrderlD string SubTotl deciml
TotalOrderAmount decimal
ProductID string
5 SaleTaxamount decimal
ProductDescription st
. EstimatedshipmentDate dat
Cuantity int ol o
Status string IZ‘
Price decimal] o
Status string E‘
4

[0 [.] .

Design Yiew | xQuery Editor Yiew [Source View | Test Yiew | Query Plan View |

The graphical editor directly supports common constructs of the 1.0 XQuery standard. Several
resources are available to help in the development and maintenance of business logic. These are all
available from the WebLogic Workshop View or View — Windows menu).

For details on developing queries using XQuery Editor View see Chapter 6, “Working with the XQuery
Editor.”

XQuery Function Palette

An XQuery function palette (Figure 2-18) is available that supports standard XQuery and BEA-specific
functions. This function palette is also available from the Workshop View — Windows menu.

Data Services Developer's Guide 2-11

Aqualogic Data Services Platform Projects and Project Components

2-18

Figure 2-18 XQuery Function Palette

| #Query Function Palette | XQuery Canstruct Palette . LiquidData Palette
I-1 #QueryFunctions
[Z1) Accessor Functions
[C Error and Trace Functions
(221 Mumeric Functions
(2 String Functions
(Z) URI Functions
(C1) Boolean Functions %
(Z) Duration, Date, and Time Functions
- C) QMame Functions
J friresolve-Qhamei$gname as xs:string?, $element as element()) as xs:QMame?
J fr:expanded-Qiame($paramURI as xs:string?, $paramLocal as xs:string) as xs:QMame
J fr-bea: QMame-from-string{$param as xs:string) as xs:Qhame
J frilocal-name-from-QMamel$arg as xs:QMame?) as xs:NCNAME?
J fr:namespace-uri-from-Qilamei$arg as xs:QMame?) as xs:anyURI?
J Fr:namespace-uri-for-prefix{$prefix as xs:string, $element as element()) as xs:anyURI?
J friin-scope-prefixesi$element as element()) as xs:string*
(C1 Mode Functions
(Z11 Sequence Functions
C| Aggregate Functions
(C) IdfTdref Functions
= C) %ML Data Source Functions
J frdoc{$uri as xsistring?) as document-noded)?
J fricollection{$arg as xs:string?) as noded)*
[C) Context Accessors

Like all Workshop panes, the XQuery Function Palette can be placed anywhere in the WebLogic
Workshop window. Functions from this palette can be dragged into XQuery Editor View, as well as
Source View.

XQuery Constructs Palette

AquaLogic Data Services Platform projects also have access to the XQuery Constructs palette
(Figure 2-19). This palette supports creation of different types of XQuery statements in the XQuery
Editor View or Source View. Many of the construct prototypes such as FLWGR, FGWOR, FWGR, and so
forth are variations on the most common XQuery construct, FLWR (for-let-where-return).

Data Services Developer's Guide

Aqualogic Data Services Platform-Based BEA WeblLogic Applications

Figure 2-19 XQuery Constructs Palette

%Query Function Palette | XQuery Construct Palette | LiquidData Palette
=) #Query Constructs
O FLWDR
COFLwGR
COFLwWoR
COFLwR
COFWoR
CaFweR
COAFWOR
CaFwR
CaFoR
CAFGR
CaFoR
CaFr
() IFTHEMELSE
() IFTHEMELSEIF

For example, FLWGR adds the AquaLogic Data Services Platform extension Group By. The prototype

is shown below in Source View.
for Svar in ()
let Svar2:=()
where (true)
group by () as $var3 with partitions $var as $vard
return

()
For details on Group By and other BEA XQuery extensions see the XQuery Developer’s Guide.

Data Services Palette

The Data Services Palette (Figure 2-20) is only available to AquaLogic Data Services Platform
projects. It provides the AquaLogic Data Services Platform XQuery Editor with access to data service
and XFL (XQuery function library) routines.

Data Services Developer's Guide 2-19

../xquery/index.html

Aqualogic Data Services Platform Projects and Project Components

2-20

Figure 2-20 Data Services Palette

|| Data Services Palette *
|~) DataServices
1 ApparelE %
(C11 BilingDE
-] CustomerDE
5} £ ADDRESS.ds
£ ADDRESS()
&7 getCUSTOMER()
£ CUSTOMER. ds
1 Demo
(C) ElectronicsWws
) RTLServices
) Address.ds
1 Applorder.ds
21 ApplorderDetailview . ds
1 ApplProduct.ds
) Case.ds
[T Caseview.ds
(C) CreditCard.ds
(C Customer ds
[Z1) Customerview,ds
[C) ElecCrder.ds
[C) ElecrderDetailview.ds
[C) ElecProduct.ds
[C1) ©rderDetailview.ds
[C1) ©rderSummaryviewds
(C) Orderview.ds
(C1 Productview.ds
[C Profileview.ds
(C1) ServiceDE

For details on using the XQuery Editor see Chapter 6, “Working with the XQuery Editor.”

Editing XML Types and Return Types

A schema editor for modifying XML types in model diagrams and data services, as well as return types
in the XQuery Editor, is available. See “Working with Logical Data Service XML Types” on page 4-23.
Most editor options are available from the right-click menu.

Right-click menu commands for return types differ slightly from those in the XML type editor. The
reason is that you can use the XQuery Editor to create if-then-else constructs, zones, and cloned
elements as a means of more exactly specifying the form your query result document should take. (See
“Modifying a Return Type” on page 6-47.)

Data Services Developer's Guide

Aqualogic Data Services Platform-Based BEA WeblLogic Applications

Figure 2-21 Editing an XML Type Element

|| PO_CUSTOMERS.xds XML Data Service
Return Type - PO_CUSTOMERS &
= PO_CIISTOMERS Q PO_CUSTOMERS
B@ cus %
B

A Add Attribute
d

d
& @ne

Delete

Felationships kS

Test View

After you have developed a query you can run it using Test View. For details see Chapter 7, “Testing
Query Functions and Viewing Query Plans.”

Source View

If you are working in Source View you can easily add pre-built XQuery functions and constructs to your
source, as well as make other editing changes to your data service. For additional details see
Chapter 8, “Working with XQuery Source.”

Query Plan View

You can review the query plan developed by AquaLogic Data Services Platform for a particular
function in order to verify the generated SQL or look for opportunities to improve performance. See
“Using Query Plan View” on page 7-17.

Query Plan Viewer Utility

A query plan viewer utility is available from the Start menu of a AquaLogic Data Services
Platform-enable WebLogic Workshop application:

start — All Programs — BEA WebLogic Platform 8.1 — BEA AquaLogic Data Services Platform
2.5— Query Plan Viewer

Although this utility can be used while developing data services, it is more typically used by client
application developers. Documentation for the utility can be found in the “Using SQL to Access Data
Services” chapter of the Client Application Developer’s Guide.

Data Services Developer's Guide 2-21

../appdev/jdbcclt.html

../appdev/jdbcclt.html

Aqualogic Data Services Platform Projects and Project Components

2-22

Usages of Data Services Artifacts

It is often convenient to determine which AquaLogic Data Services Platform artifacts are in use by
which other artifacts. For example, before making changes in an XML type it is important to
determine what other data services might be impacted. Of course you can do this through the
Metadata Browser, described in the “Viewing Metadata” chapter of the AquaLogic Data Services
Platform Administration Guide. However, it is often more convenient to do this in the context of the
WebLogic Workshop navigation pane or the AquaLogic Data Services Platform Design View.

For example, in the RTLApp, right-clicking on a data service shows a number of options including Find
Usages (Figure 2-22).

Figure 2-22 Finding Data Service Usages in RTLApp

*

Application [Files ™.
ZARTLADP [4]

=] @ DataServices
=2 ApparellE
[T schemas
t[E CUSTOMER_ORDER.ds
412 CUSTOMER _ORDER _LINE_ITEM.ds
"Z LineItemUpdate java
Y PRODUCT.d3
129 BilingDE
[T schemas
42 crepiT_cap Close
(Z1) CustomerDE

Switch To PRODUCT . ds

Save As..

[C) FlatFilePr

Find Usages
{23 Deme) Refactor 4
=29 FlatFiles
() Dacument Lock
(C) FlatFileCol Duplicate

Delete

libr ar
tl b . Renarme
(C) InverseFuncti =
) Java Generate WSDL File For Service Bus
schemas
a Update Source Metadata
ML

[} ElectronicsWws

1B CustomerProfile.ds

]

Data Services Developer's Guide

When you pick this option, usages of the artifact are displayed, as shown in Figure 2-23.

../admin/index.html

Building and Deploying Applications, JARs, and SDO Mediator Clients

Figure 2-23 Usages of the Customer Data Service in the RTLAPP

”'J Find Usages *
Usgages For | CustomerDB;/CUSTOMER.ds
= @ DataServices (5 usages)

QIB CustomerDBfADDRESS.ds (2 usages)

= QIB DemofCustomerProfile.ds (1 usages)

{51, 18) Far $CUSTOMERD in ns11:CUSTOMER()

B8 MODELS|Physical/Customer.md (2 usages)

B8 MODELS/Physical/EnterpriseDataModel.md (2 usages)

Ekf]ﬁ RTLServices/Customer.ds (1 usages)

{25, 11)for $x0in ns10:CUSTOMER)

You can find the usages of the following types of AquaLogic Data Services Platform artifacts:
o Data services
o XML library function files
e Read and relationship functions
e Procedures
e Private functions

e Schemas

Updating Application or Project Data Service Libraries

When you save a AquaLogic Data Services Platform application its JAR libraries files are bound to that
application. If you subsequently migrate to a newer version of AquaLogic Data Services Platform, you
also need to upgrade your application to the latest library files. For details see the AquaLogic Data
Services Platform Installation Guide.

Building and Deploying Applications, JARs, and SDO
Mediator Clients

AquaLogic Data Services Platform attempts to rebuild your application as necessary. However, there
are times when you will need to initiate a build directly.

Data Services Developer's Guide 2-23

../install/index.html

Aqualogic Data Services Platform Projects and Project Components

2-24

Building, Deploying, and Updating Applications
Table 2-24 describes relevant Build menu options and their uses.

Table 2-24 Build Menu Options and Usage

Build Menu Options Usage

Build Application Builds or rebuilds your application. The result is that the contents
of all the project-specific JAR files are updated according to the
underlying project script. If your application has already been
deployed, this option will automatically redeploy after a successful
build.

You can also build individual projects.

Clean Application Attempts to undeploy EJBs and other resources that were produced
by the compilation process. In some cases this is not possible
because of the state of the server. If Clean Application does not
solve the problem, stop and restart WebLogic Server.

Clean Application addresses problems that occur due to cyclic
compilation of Java files during iterative development, not on
production servers.

You can also clean individual projects.

Build EAR Creates a Java archive (JAR) file of your application. The EAR file
has the same name as your application.

When to Rebuild Your Aqualogic Data Services Platform Project

You need to rebuild your project whenever you delete a file from a AquaLogic Data Services
Platform-based project. Rebuilds can occur on a project or at the application level. Generally
speaking, there is no need to rebuild your entire application unless you have made changes to multiple
projects.

Rebuild your project (or application) in two steps:

1. Clean your project (application). You can do this by right-clicking on your project (application) in
the Application pane and selecting the available Clean option. Alternatively, use the appropriate
Clean option available from the WebLogic Workshop Build menu.

2. Build your project (or application) using the appropriate right-click or Build menu options.

Data Services Developer's Guide

Building and Deploying Applications, JARs, and SDO Mediator Clients

Note: Ifyou try to run a function in Test View and it fails unexpectedly, it is often curative to clean,
then rebuild your application before attempting to run your query again.

Deploying Your Application
If your application is already deployed, it will be automatically redeployed whenever you rebuild it.

Under some conditions you may want to undeploy your application first. Table 2-25 describes relevant
deployment menu options available when you click on your application folder in the Application pane.

Table 2-25 Deployment Menu Options

Application Level Right-click Menu Usage
Deployment Options

Deployment — Redeploy Redeploys your application.
Note: When you build your application it is automatically
redeployed.
Deployment —> Full Redeploy First removes your application from the server, then
redeploys it.
Deployment — Undeploy Removes your application from the server.

For additional information on deploying WebLogic Workshop applications see:
e “Building and Deploying Integrated Applications”

e “Deploying Applications to a Production Server”

Creating the SD0 Mediator API

After you have created and tested your application’s query functions, you need to make them available
to client applications. The SDO mediator API is the primary means of providing access to your
updateable functions.

Note: For details on SDO programming and accessing data in Java clients through the mediator API
see “Data Programming Model and Update Framework” in the Client Application
Developer’s Guide.

Data Services Developer's Guide 2-25

http://e-docs.bea.com/workshop/docs81/doc/en/integration/deploy/deployIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/deployment/navDeployingApplications.html
../appdev/sdo.html

Aqualogic Data Services Platform Projects and Project Components

2-26

Generating the SDO Mediator JAR in Workshop

One way to create the SDO mediator client Java archive (. jar) file is through the right-click menu
option Build SDO Mediator Client. This is only available from the root folder of your application.

When successful, your SDO mediator client will be created in the root directory of your application.
The file will be named as:

<name of your application>-ld-client.jar
The SDO mediator JAR file will also be automatically added to your application’s Libraries folder.

Note: Insure that all of your projects are up-to-date and built before creating your SDO mediator
JAR file. See also “Building, Deploying, and Updating Applications” on page 2-24.

Command-line Generation of the SD0 Mediator API

You can also create the SDO mediator client JAR file through the command line using ant scripts.

When an EAR File is Available

If you already have an EAR file you can use the script:

ant -f SWL HOME/liquiddata/bin/ld clientapi.xml
-Darchive=</your path/name of your application>.ear>

in which case the name of your JAR file will be taken from the EAR file:
<name of your application>-ld-client.jar

It will be created in the same directory as the EAR file.

Generating an SDO Mediator JAR File

You can generate an SDO mediator client JAR file (without needing an EAR file) by simply specifying
an application directory:

ant -f SWL_HOME/liquiddata/bin/l1d_clientapi.xml
-Dapproot=</your path/name of your application>/root>

This approach will use the directory name of the application root to compute the JAR file name; in the
above case the name would be root-1d-client.jar. If that's not what is wanted, you could specify:

-Dsdojarname=<MyApp-ld-client.jar>

to override this. Either way the JAR file will be generated in the application root directory.

Generating JAR Files in Non-default Directories

For either case you could specify the additional ant parameter:

Data Services Developer's Guide

Refactoring Aqualogic Data Services Platform Artifacts

-Doutdir=</path/to/dir>
to generate the JAR file to a specific directory location.
Similarly you could use:
-Dtmpdir=</path/to/tmp>
to specify an alternate directory for temporary files, including the generated . java code.
The default tmp file location is specified by the Java system property:
java.io.tmpdir

In any case, when building from the command line, the SDO mediator. jar file will not be added to
your application’s Libraries folder (shown in Figure 2-2).

Refactoring Aqualogic Data Services Platform Artifacts

There are times when you will want to move, rename, or delete artifacts in your AquaLogic Data
Services Platform projects. A typical example: your application is first developed with test data, so as
to not expose confidential information to unauthorized individuals. Then, once developed, your
application is ready for deployment with the actual, secured data sources. You can use refactoring to
greatly simplify the renaming, deleting, or relocating of AquaLogic Data Services Platform
components.

Data Services Developer's Guide 2-21

Aqualogic Data Services Platform Projects and Project Components

2-28

Figure 2-26 Refactoring Options Available for the RTLApp’s Address Data Service

el RTLApp - BEA WebLogic Workshop - ADDRESS. ds

File Edit Wiew DataService Build Debug Tools ‘Window Help

DEE@| - ~|& 8

[« e

I P HEEs ~¢ HHE|

Application \@\ ¥ || ADDRESS.ds - {DataServicesHCustomerDE), 2
[a]

RTLADD = _’E\ADDRESS Data Service =
@ DataServices =& ADDRESS
(£ ApparelDB ——P}— ADDRESS @ ADDR_ID xsistring
() BillngDB — @ CUSTOMER_ID xs:string
(=29 CustomerDB = i’ @ FIRST_NAME xs:string

(0 schemas hCLISTOMER (@) LAST_MAME xa:stving

ADDRESS.ds - i
D a— () STREET_ADDRESS1 xs:shring
[Fz.ds = @ STREET_ADDRESS2 ? xsistring

1 Demo Close @ CITY xs:string
(C) Electronicsia's @ STATE xs:shing
CAMETA-INF @ ZIPCODE xs:skring
I MODELS - @ COUNTRY xs:string
(O RTLServices Duplicate ki @ DAY_PHONE ? xs:string
(0 ServiceDB Delete @ EVE PHONE ? xsistring

% sdo.Ts:cofllﬂﬁg Rename @ ALIAS ? xsistring

<3| Unkitled, «d = i

(@) STATUS ? xsushring

Fj xquery-types.xsd Update Source Metadata, .. © 15_DEFAULT xs:short
(28 Elecws External Tools]
(C contrals
(i) WEB-INF
39 RTLSelfService
(C1 Contrals B
crystalreportviewers1C
[0 erystalrep I [l

(£ 1d_canceptual_files

177 Danar

| Design Yiew [®GQuery Editar View | Source View | Test View | Query Plan View

Without refactoring, changes you make to artifact names can easily result in invalid references. For
example, renaming a data service file automatically invalids any relationship functions in other data
services that refer to that file. The alternative to refactoring is to manually find all usages of a given
artifact and make manual edits to data service source; this can be quite tedious and error-prone,

particular as projects grow.

When you use the Refactor option you initially see the effect your refactoring change will have on
impacted application artifacts (Figure 2-27). A checkbox allows you to exempt any artifact from the

refactoring operation.

Note:

Care should be taken when deselecting elements recommended for refactoring, Without

additional manual changes to the underlying source you likely will no longer be able to build
or deploy your application.

Data Services Developer's Guide

Refactoring Aqualogic Data Services Platform Artifacts

Figure 2-27 Artifacts Impacted by a Refactoring
%Refactor...

IUsages For : ApparelDB/PRODUCT.ds

= Froject DataServices (5 usages)
= Fil= ApparelDB/CUSTOMER_ORDER _LINE_ITEM.ds (Z usages)
Pragma nds
Function call F3:PRODUCT
Fil= MODELS,/Physical/Apparel.md (2 usages)
Fil= MODELS/Physical /EnterpriseDataModel.md (2 usages)
Fil= RTLServices,/ApplProduct.ds (1 usages)
Fil= RTLServices,/Product¥iew.ds (1 usages)

JE2 R Ea R IR e

Do Refactor

Artifacts Supporting Refactoring

Table 2-28 describes artifacts subject to refactoring and their options.

Tahle 2-28 Data Service Artifacts Supporting Refactoring and Available Refactoring Options

Artifact Refactoring Options
Data service (DS files) Move, refactor rename, safe delete
XML File Library (XFL files) Move, refactor rename, safe delete

Schemas (XSD files) referred to within a data service Move, refactor rename, safe delete

Functions (data service and XFL) Rename, safe delete, add/remove parameters

Namespace declarations Rename selected prefix or propagate the
change through the project.

Schema import (data service and XFL) Rename selected schema import prefix or
propagate the renaming through the project.

Artifacts published as SQL Objects Move, refactor rename, safe delete

Move, rename, and add/remove parameter operations are typically accomplished without adverse
consequence. Delete operations, however, can adversely affect your project. For this reason the usages
of the artifact you have identified for deletion are shown (see Figure 2-29). From this information you
can easily determine the trade-offs between the automation of the refactoring operation and its
consequences, which may require additional manual actions on your part.

Data Services Developer's Guide 2-29

Aqualogic Data Services Platform Projects and Project Components

Figure 2-29 Implications of a Safe Delete Operation

& Safe Delete...

The file you are trying to delete has usages that are not safe to delete:

Igages For . CustomerDB/z.ds L\\§
[Projeck DataServices (7 usages)
[File CustomerDB,/ttb.ds (2 usages)
Fragmz nds
Function call F22CUSTOMER
[File Demo,/CustomerProfile.ds (1 usages)
Funchior call ns11:CUSTOMER
[File MODELS,/Physical /Customer.md (2 usages)
XML Abbribube XML SIMPLE YALUE: Id:DataServices/CustomerDB,/z.ds LINE: 3
XML Abkribute XML SIMPLE YALUE: Id:DataServices/CustomerDB,/z.ds LINE: 5
[File MODELS,/Physical /EnterpriseDataModel.md (2 usages)
XML Abkribube XML SIMPLE YALUE: Id:DataServices/CustomerDB,/z.ds LINE: 2
XML Akkribube XML SIMPLE YALUE: Id:DataServices/CustomerDB/z.ds LINE: 13

Ignore and proceed | | Cancel |

Setting Refactor Options

Access to refactor options depends on the artifact:

e Data services, XFL files, schemas. Refactor operations for data services, XFL files, and
schemas can be accessed by right-clicking on the artifact in the Application pane.

e Functions and procedures. Refactor options for functions and procedures can be access by

right-clicking on name of the function or procedure in Design View or by right-clicking on its
associated arrow.

2-30 Data Services Developer's Guide

Refactoring Aqualogic Data Services Platform Artifacts

Figure 2-30 Refactoring a Data Service Function

ElecOrder.ds - {DataServicesHRTLServices),

getElecOrderByOrdID

ElecOrder Data Service

Bl © ELEC_ORDER retailerType:ELEC_ORDER_TYPE
@ OrderlD xsdistring
@ CustomerID xsd:skring
@ OrderDate xsd:date
@ shippingMethod xsd:string
@ HandlingCharge xsd:decimal
k1St SubTotal xsd:decimal
iy W Totalorderamount xsd:decimal
SaleTax xsdidecimal

getElecOrdersByCustID

Customer E

Edit in Source Yiew B

Find Usages) EstimatedshipDate xsddake
Rename
Safe Delete
watting

@ BillTo xsdistring
@ TrackingMurmber ? xsdistring

@ retailerType:ELEC_LINE_ITEM * retailer Type:ELEC_LINE_ITEM_TYPE
(@) TYPE ? xsdistring

o Namespace declarations and schema import declarations. Refactor operations related to

namespaces and schema import declarations are accessed through the Prefix Bindings section
of Property Editor.

You can refactor a namespace or external schema prefix simply by changing its prefix name
(binding) in the Property Editor (Figure 2-30).

Data Services Developer's Guide 2-31

Aqualogic Data Services Platform Projects and Project Components

Figure 2-31 Refactoring Namespace Declarations

|| Property Editor

Data Service

General

Mame CreditCard.ds

Description MNormalized view of Credit Cards
Authar Bob Johnes

Creation Date 2005-03-17T10:06:53

Type

Data Service Update
Security Resources
Prefix Bindings
[Mamespace "urn:retailerType"
Prefix retailer1|
[Mamespace "ld:DataServices/RTLServices Customer”

Prefix | Mamespace "ld:DataServices/RTLServicesCustomer”
Mamespace "ld:DataServices/BilingDE/CREDIT_CARD"
[Mamespace "urn:retailerType"

Prefix ns0
Mamespace "ld:DataServices/RTLServices/CreditCard"”
User defined properties
Propertyi{1)
Property(2)

Description
Prefix for "urn:retailer Type"

When you change a prefix binding you are also given the option of making the change
throughout your project (globally).

If you choose this option (see anywhere the URI (urn:retailerType) appears in your project, the
prefix will become “retailer1”.

2-32 Data Services Developer's Guide

Refactoring Aqualogic Data Services Platform Artifacts

Figure 2-32 Changing a Prefix Binding Throughout Your Project

|| Property Editor *

Data Service

General
Mame CreditCard.ds
Description MNormalized view of Credit Cards
Authar Bob Johnes
Creation Date 2005-03-17T10:06:53
Type
Data Service Update
Security Resources
Prefix Bindings
[Mamespace "urn:retailerType"
Prefix retailerl
[Mamespace "ld:DataServices/RTLServices Custamer"
Prefix ns6

Sl
A

":h Would you also like ‘retailer1’ to be the global prefix for namespace -
"urn:retailer Type™?

| ¥es *| Mo || Cancel |

LR

Description

[} =

Mamespace

If you choose Yes, a list of usages of the URI appears.

Figure 2-33 List of Prefix Bindings Potentially Affected by a Global Prefix Change

X

Bl Global prefix for namespace...

eI

Uzages For | workshop.liquiddata.refactor.model.NodeRef$Factory$Applicati
= &1 DataServices (64 usages)
E {8 W RTLServices)bddress.ds (1 usages)
{2, 100} import schema namespace ns21="urn:retailerType" at "ld:DataServices/RT
=] QIB TLServices/ApplOrder.ds (2 usages)
<hz; b L
{5, 101 Jimport schema namespace ns0="urn:retailerType" at "ld:DataServices/RTL:
QIB RTLServicesApplOrderDetailview.ds (1 usages)
RTLServicesapplProduct.ds (1 usages)
QIB RTLServices{Case.ds (2 usages)
QIB RTLServicesCaseView.ds (2 usages) B

[« | [l

Caution: Although you can deselect any artifact that you do not want to be included in a refactor
operation, doing so will invalidate that artifact and any files dependent on that artifact.
For this reason selective deselection of artifacts scheduled for refactoring should
generally not be employed.

]

) = 3 3 3

Data Services Developer's Guide 2-33

Aqualogic Data Services Platform Projects and Project Components

Note: Inthe case of namespace prefixes, names should be changed (or not) based on readability
or consistency issues. Neither a local or a global change will adversely affect your code.

2-34 Data Services Developer's Guide

Refactoring Aqualogic Data Services Platform Artifacts

Impacts of Various Refactoring Operations

It is useful to understand the various potential effects of a refactoring operation. In Table 2-34 each
type of refactoring operation is described in terms of its potential impact on related artifacts.

Data Services Developer's Guide 2-35

Aqualogic Data Services Platform Projects and Project Components

Tahle 2-34 Effect of Refactoring on Various Types of AquaLogic Data Services Platform Artifacts

Artifact(s)

Renaming Operations

Move Operations

Safe Delete Operations

Data service

Renames data service

Updates:

Name in source.

Namespace URI for
data service
functions

Dependent
annotations

Dependent function
references

Dependent model
diagrams

Dependent data
service controls

Function dependent
on read function and
relationship
functions

Moves data service to a

new location in the
project.

Move operations update
the same artifacts listed

under Renaming
Operations.

Deletes after warning
regarding any
dependencies.

e Data service read
functions

e Relationship
functions

e Private functions
e XFL functions

Updates:

Name in source.

External or internal
references to this
function in other
function bodies, if
any.

References to this
function in inverse
and equivalent
transform
annotations, if any.

N/A

Delete name in
source.

Warns of any
dependencies,
including:

— references to
this function
in other
function
bodies

— references to
this function
in inverse and
equivalent
transform
annotations.

2-36 Data Services Developer's Guide

Creating and Working with XQuery Function Libraries

Tahle 2-34 Effect of Refactoring on Various Types of AquaLogic Data Services Platform Artifacts

Artifact(s) Renaming Operations Move Operations Safe Delete Operations

e Namespace Updates: N/A N/A

declarations e Prefix declaration
e Schema import and usages in source
declarations (local).

e Prefix usages for the
specified namespace
URI for the entire
project (global
option).

External schema Updates: N/A N/A
declarations e ExternalschemaURI
(local)

e [Externalschema URI
for the entire project
(global option).

Creating and Working with XQuery Function Libraries

XQuery function libraries (XFLs) contain functions that can be used by any data service or any other
XFL in your application. Such libraries provide for:

e (Collection of an arbitrary set of user-defined functions

e Automatic collection of functions originating from some kinds of physical sources in the form of
annotated collections of XQuery functions.

Functions in XFL files cannot be directly invoked by data service clients. Instead, they are used by
other data services. XFL functions provide user-defined routines that can be shared across a set of
executable artifacts.

An XQuery function library (. x£1 file) is ideal for creating sharable transformation, security, and
other types of functions.

Table 2-35 File Types Supported by XQuery Function Libraries

XFL file type Purpose

Relational Associates an XQuery function with relational data source.

Data Services Developer's Guide 2-31

Aqualogic Data Services Platform Projects and Project Components

2-38

Table 2-35 File Types Supported by XQuery Function Libraries

Web service Associates an XQuery function with a WSDL.
Java function Associates an XQuery function with a class file.
User-defined User-defined XQuery functions

External database functions Registers external built-in or custom database functions so that they can be
invoked by data service or other XFL functions.

The first three types of files contain functions bound to an instance of a certain type of physical source
(that is relational, WSDL, or class file). User-defined XQuery functions provide you with the ability to
share common functions across all the data services in your project. External database functions
provide application programs with the ability to invoke user-defined or built-in vendor-specific SQL
functions from data services.

XQuery function libraries can be created in two ways:
e Using the File — New XQuery Function Library option.

e Automatically, when Java functions, stored procedures, or Web service operations returning
simple types are imported as metadata (see “Obtaining Enterprise Metadata” on page 3-1).

XQuery function libraries are available from the Data Services Palette.

Also see in the Aqualogic Data Services Platform Samples Tutorial:

- Creating an XQuery Function Library

XQuery Function Library Views

An XQuery function library (XFL) can contain any number of functions. In an AquaLogic Data Services
Platform-enabled project, you will find that XFL Design View is similar to the data service Design View
(shown in “Sample Data Service” on page 1-5). The primary differences are:

e No schema is associated with a library, therefore there is no XML type.

e There are no relationship functions.

Data Services Developer's Guide

../samples_tutorial/index.html

Creating and Working with XQuery Function Libraries

The tabular modes available in data services — Source View, XQuery Editor View, Test View, and
Query Plan View — are available to XQuery function libraries as well. Similarly, XFL functions have
associated properties that can be viewed through the Property Editor.

Note: XFL files also play an important role in creating inverse functions. See “Using Inverse
Functions to Improve Query Performance” on page 10-3 in Chapter 10, “Best Practices and
Advanced Topics.”

Creating an XFL Function

It is not difficult to make a function in a data service available throughout your project as an XML
function library. For example, the following function is available in the RTLApp’s
DataServices/RTLServices/Credit Card data service (namespace declarations from a separate section
of the source file are also included):

declare namespace nsl="ld:DataServices/BillingDB/CREDIT CARD";

import schema namespace nsO="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/CreditCard.xsd";

declare namespace tns="ld:DataServices/RTLServices/CreditCard";
(: ... 1)

declare function tns:getCreditCard() as element (nsO:CREDIT CARD)* {

for $CREDIT_CARD in nsl:CREDIT CARD()

return <ns0:CREDIT CARD>
<CreditCardID>{fn:data($CREDIT_CARD/CC_ID)}</CreditCardID>
<CustomerID>{fn:data($CREDIT_CARD/CUSTOMER_ID)}</CustomerID>

<CustomerName>{fn:data (SCREDIT_CARD/CC_CUSTOMER NAME) }</CustomerName>
<CreditCardType>{fn:data (SCREDIT CARD/CC TYPE) }</CreditCardType>
<CreditCardBrand>{fn:data (SCREDIT CARD/CC BRAND) }</CreditCardBrand>

<CreditCardNumber>{fn:data($CREDIT_CARD/CC_NUMBER)}</CreditCardNumber>
<LastDigits>{fn:data ($CREDIT CARD/LAST DIGITS) }</LastDigits>
<ExpirationDate>{fn:data ($SCREDIT CARD/EXP DATE) }</ExpirationDate>
{fn-bea:rename (SCREDIT CARD/STATUS,<Status/>)}
{fn-bea:rename ($CREDIT CARD/ALIAS,<Alias/>)}
<AddressID>{fn:data($CREDIT_CARD/ADDR_ID)}</AddressID>

</nsO:CREDIT_CARD>

}i

Here are the steps you would take to create this function in an XQuery library:

1. The first step is to create and name a library, if you do not already have one:

File — New — XQuery Function Library

Data Services Developer's Guide 2-39

Aqualogic Data Services Platform Projects and Project Components

Figure 2-36 Creating an XQuery Function Library

MNew File
Caal B8 Madel Diagram
() Business Logic {8 Data Service
(] Liquid Data 3] #cuery Function Library

(O Web Services
[C) Web User Interface
[Z) Comman

File name:| mylibrary.x£1l |

Create in: {DataServicesHRTLServices),

Create a new XQuery Function Library,

2. Name your library, such as myXQueryLibrary.
3. Copy your function into the newly created file.

4, Change the function declaration to match the namespace of your library file.

Source for the XQuery library file containing the CREDIT_CARD function appears below. To simplify,
the object is returned as $x rather than as a set of individually-mapped elements.

xquery version "1.0" encoding "WINDOWS-1252";

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com"></x:xfl> ::)

declare namespace tns="lib:DataServices/myXQueryLibrary";

declare namespace nsl="ld:DataServices/BillingDB/CREDIT_ CARD";
import schema namespace nsO="urn:retailerType" at

"ld:DataServices/RTLServices/schemas/CreditCard.xsd";

declare function tns:getCreditCard() as element (nsl:CREDIT CARD)* {
for $x in ns1l:CREDIT CARD ()
return S$x

}i

2-40 Data Services Developer's Guide

Creating and Working with XQuery Function Libraries

XFL Datahase Function Views

A database function library is an XFL that contains only database function locations and signatures.
Such libraries can contain only database functions.

Database functions are designed to extend SQL support beyond that provided through standard JDBC
functionality. There are several benefits:

e Application programmers can access the full array of data services, as well as SQL services
provided by their DBMS system through a single API.

e SQL-based technologies — such as reporting tools — can query data services using SQL.

Support for Built-in and User-Defined SQL Functions

A database function library provides access to two additional types of SQL functions:

e Functions provided by a DBMS (sometimes called built-in functions). These are functions that
are not supported by the JDBC driver.

e Special-purpose database functions (sometimes called user-defined functions). These functions
reside on the database; they are typically written in PL/SQL. These also are not supported by
the JDBC driver.

Once a function has been registered in a library, it can be become available through XQuery or as SQL:

o To make a SQL database function available to client applications simply register the function in
a database function library as an XQuery function. Once registered, the function becomes
available through XQuery for use in other data service functions and, in turn, data service
clients. See “Creating a Database XFL and Registering Database Functions.”

e You can also make the function available as SQL to client applications. The specific mechanism
of publishing data service artifacts, including registered database functions, is described in
“Publishing Data Service Functions for SQL Use” on page 4-46.

Creating a Database XFL and Registering Database Functions

The following example shows how such a library is created:
1. Create a new XFL, as described previously in this section.
2. Start your server, if it is not already running.

3. Right-click on the titlebar of your new library, select Designate as Database Function Library...
(Figure 2-37).

Data Services Developer's Guide 2-11

Aqualogic Data Services Platform Projects and Project Components

Figure 2-37 Designating an XFL as a Database Function Library

myDatabaseFunctions, xfl - {DataServices}, =
mmyDatahaseFunctiuns Library B
Add Library Function
Designate as Database Function Library. ..
[« | L]
Design View | ¥Query Editor Wiew [Source Yiew | Test Wiew | Query Plan Wiew |

4. Select one or more data sources from the drop-down list of data sources available to your server
(Figure 2-38). You should identify data sources containing the built-in or user-defined database
functions you want to access through your data services.

Note: Once you have created your database function library, you can add additional database
functions through your XFL Properties Editor (see Figure 2-40).

2-42 Data Services Developer's Guide

Creating and Working with XQuery Function Libraries

Figure 2-38 Selecting Data Sources Containing Database Functions Planned for Registration
I =1
b Designate as Database Function Library

Flease select at least one data source.,

Diaka Source Name

cgDataSource

cgDataSource-nonss

| Add || Remove || QK || Cancel |

5. After you have selected your data sources you are ready to add support for specific database
functions to your library. Do this by right-clicking on your database function library in Design View
and selecting the only available option: Add Database Function.

6. Enter the information necessary to identify your database function (see Figure 2-39). All fields are
optional but the SQL function name and XQuery function name. A placeholder XQuery function
name is also generated; it should be changed to any valid, non-conflicting XQuery function name.

Data Services Developer's Guide 2-43

Aqualogic Data Services Platform Projects and Project Components

2-44

Figure 2-39 Adding Database Function Information

™ =

& Add Database Function

Database Function Information

Catalog (optional): | catl

Package (optional): | sql_functions1

|
Schema (optional): | schemal |
|
|

Function Mame: | POAMER

®uery Function: | power| |

| [al'4 I| Cancel |

7. Click OK.

8. Complete the function definition including identifying parameters in Source View.

XFL database function libraries are available from the Data Services Palette.

Note: A mapping of XML to JDBC types can be found in the Using SQL to Access Data Services
chapter of the Client Application Developer’s Guide.

Modifying XFL Database Function Information

You can adjust catalog, schema, package, and XQuery function name settings through the Property
Editor (Figure 2-40) at any time.

Data Services Developer's Guide

../appdev/jdbcclt.html

Creating and Working with XQuery Function Libraries

Figure 2-40 XFL Database Function in Design View and Its Associated Property Editor

mySOLFuncs, xfI* - {DataServicesH,

*

[+

Q]B mySQLFuncs Library

=
n power

[0 |

]

A

| Design Yiew [®GQuery Editar View | Source View | Tg

Build ! Oukput

% |

|| Property Editor *

XQuery Library Function

General

Marne power

Function Description

Database Function Information

Catalog {optional) cat1

Schema {optional) schemal

Package {optional) sgl_functions1

Function Mare POWER

Cache

Enabled true

User defined properties
Description B
¥Query Library Function Properties

Once your XFL database functions have been published to SQL (as described in “Publishing Data
Service Functions for SQL Use” on page 4-46) and your AquaLogic Data Services Platform application
deployed, your functions will be available to client application developers through standard data
service calls, including JDBC, the mediator API and, as a Data Service control.

Note: If you build a SQL query using a reporting tool, the unqualified JDBC function name is used
in the generated SQL. When an application developer invokes an XFL database function, the
default catalog and schema name must be defined when the JDBC connection is created. For
this reason it is also a requirement that any JDBC connection utilize functions available from
a single catalog:schema pair location.

The following is an example URL defining a default catalog and schema for a JDBC

connection:

Jjdbc:dsp@localhost:7001/myApplication/myCatalog/mySchema

Adding Data Sources to an XFL Database Function Library

It is easy to associate or disassociate DFL data sources using the XFL Properties Editor. Figure 2-41
shows two data sources associated with a sample XFL database function library: cgDataSource and

cgDataSource-nonXA.

Data Services Developer's Guide 2-45

Aqualogic Data Services Platform Projects and Project Components

Figure 2-41 Data Sources for Registered XFL Database Functions

|| Property Editor x

XQuery Library File
General
Mame mydBFunction2.xf
Descripkion
Aukhor
Creation Date 2006-07-11T18:52:26
Registered Function(s) Data Sources
[l Data Sourcel1) El
Mame cgDataSource
[Data Sourcel2) El
Marne cgDataSource-nonZA
Prefix Bindings
B Mamespace "lib: Dataservices/mydEFunctionz”
Prefix tns
User defined properties

by

You can change a database name designation by clicking on the database name and then selecting
another database from the drop-down list. You can add a new database by clicking the “+” next to the
Registered Function(s) Data Sources property. Similarly, you can remove a registered database
function data source by clicking the “-” next to that data source name.

Understanding XFL Database Function Calls Through Source View

When you declare an XFL as a database function library, an underlying pragma statement is generated
in Source View identifying your XFL as dedicated to database function declarations.

In Listing 2-1 names of databases available to function declarations are contained in a
customNativeFunctions type. (Custom native functions are the same as XFL database functions.)

Listing 2-1 Pragma ldentifying an XFL as a Database Function Library

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com">
<creationDate>
2006-07-11T11:13:18
</creationDate>
<customNativeFunctions>
<relational>

2-46 Data Services Developer's Guide

Creating and Working with XQuery Function Libraries

<dataSource>cgDataSource-nonXA</dataSource>
<dataSource>bpmArchDataSource</dataSource>
</relational>
</customNativeFunctions>
</xixfl> :r)

XFL Database Function Declarations

The sample in Listing 2-2 shows code automatically created when you add an XFL database function
declaration to your library.

Listing 2-2 XFL Database Function Declaration

(::pragma function

<f:function xmlns:f="urn:annotations.ld.bea.com"
nativelevellContainer="catl"
nativelLevel2Container="schemal"
nativelLevel3Container="sqgl functionsl"
nativeName="POWER">

</f:function>::)

declare function tns:Power () as xdt:anyAtomicType? external;

Notice that function is identified as external to the application.

Note: The sequence of dataSource elements carry the names of the relational sources to which the
specified functions apply. The native qualified name of each function is captured in the values
of:

"nativeLevelNContainer" (N = 1,2,3)
and:

"nativeName"

For example, the qualified name of a custom SQL function MEDIAN, defined under package
STATISTICS, will be represented by the following annotation:

(::pragma function
<f:function xmlns:f="urn:annotations.ld.bea.com"

nativeName="MEDIAN" nativelevel3Container="STATISTICS"/> ::)

Data Services Developer's Guide 2-41

Aqualogic Data Services Platform Projects and Project Components

2-48

The qualified name (the grame) of the XQuery function representing the native function is
user-defined.

The native signature of each function is reflected in the signature specified by the XQuery function
declaration. In the case of user-defined SQL functions, the SQL type of an input parameter or output
of the SQL function (e.g., TIME) is reflected in the corresponding XQuery type in the function
signature (e.g., xs:time).

Note: It isimportant that type mappings between XML and SQL be correct. See “XML and SQL Type

Mappings” in the Using SQL to Access Data Services chapter of the Client Application
Developer’s Guide.

Support for Polymorphism

Native functions that expose a certain type of polymorphism, in that their output type is determined
by the actual type of one of their parameters, may use the optional annotation element isPolymorphic.
The element isPolymorphic accepts the required parameter element as its content. The element
“parameter” accepts the index attribute, as described in Table 2-42.

Table 2-42 Use of the isPolymorphic Index Parameter

isPolymorphic Usage
Parameter

index An optional attribute denoting the index of the parameter based on which
function parameter is declared polymorphic.

The index of the first parameter is assumed to be 1. It may be omitted if the
function being annotated has a single parameter.

The following example illustrates the use of the isPolymorphic element.

declare namespace stat = "urn:sample";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
nativeName="MEDIAN" nativelLevel3Container="STATISTICS">

<isPolymorphic><parameter/></isPolymorphic>
</function>::)

declare function stat:median ($x as xdt:anyAtomicType*) as xdt:anyAtomicType

external;

Data Services Developer's Guide

../appdev/jdbcclt.html

CHAPTERa

Obtaining Enterprise Metadata

A first step in creating data services for the BEA Aqualogic Data Services Platform is to obtain
metadata from physical data needed by your application.

This chapter describes this process, including the following topics:

e Creating Data Source Metadata

Obtaining Metadata from Relational Sources
— Importing Relational Table and View Metadata
— Importing Stored Procedure-Based Metadata

— Using SQL to Import Metadata

Importing Web Services Metadata

Importing Java Function Metadata

Importing Delimited File Metadata

Importing XML File Metadata

Updating Data Source Metadata

Creating Data Source Metadata

Metadata is simply information about the structure of a data source. For example, a list of the tables
and columns in a relational database is metadata. A list of operations in a Web service is metadata.

Data Services Developer's Guide 3-1

Obtaining Enterprise Metadata

In AquaLogic Data Services Platform, a physical data service is based almost entirely on the
introspection of physical data sources.

Figure 3-1 Data Services Available to the RTL Sample Application

|| Data Services Palette *
|~) DataServices
1 ApparelE %
(C11 BilingDE
-] CustomerDE
5} £ ADDRESS.ds
£ ADDRESS()
&7 getCUSTOMER()
£ CUSTOMER. ds
1 Demo
(C) ElectronicsWws
) RTLServices
) Address.ds
1 Applorder.ds
21 ApplorderDetailview . ds
1 ApplProduct.ds
) Case.ds
[T Caseview.ds
(C) CreditCard.ds
(C Customer ds
[Z1) Customerview,ds
[C) ElecCrder.ds
[C) ElecrderDetailview.ds
[C) ElecProduct.ds
[C1) ©rderDetailview.ds
[C1) ©rderSummaryviewds
(C) Orderview.ds
(C1 Productview.ds
[C Profileview.ds
(C1) ServiceDE

Table 3-2 list the types of sources from which AquaLogic Data Services Platform can create metadata.

Table 3-2 Data Sources Available for Creating Data Service Metadata

Data Source Type Access

Relational (including JDBC
tables, views, stored
procedures, and SQL)

Web services (WSDL files) ~ URI, UDDI, WSDL

Delimited (CSV files) File-based data, such as spreadsheets.

3-2 Data Services Developer's Guide

Creating Data Source Metadata

Tahle 3-2 Data Sources Available for Creating Data Service Metadata

Data Source Type Access
Java functions (. java) Programmatic
XML (XML files) File- or data stream-based XML

When information about physical data is developed using the Metadata Import Wizard two things
happen:

e A physical data service (extension .ds) is created in your AquaLogic Data Services
Platform-based project.

e A companion schema of the same name (extension.xsd), is created. This schema describes
quite exactly the XML type of the data service. Such schemas are placed in a directory named
schemas which is a sub-directory of your newly created data service.

Data Services Developer's Guide 3-3

Obtaining Enterprise Metadata

Figure 3-3 AquaLogic Data Services Platform Application Pane Displaying a Data Service and Its Schema
Directory

Application /_Files . *

Y RTLApP
=] @ DataServices
=2 ApparellE
= (-4 schemas
Fj CUSTOMER_ORDER. xsd
[£8] cUSTOMER_ORDER _LINE_ITEM. xsd
[¢8] PRODUCT.xsd
t]f CUSTOMER _ORDER.ds
412 CUSTOMER_ORDER_LIME_ITEM.ds
"Z LineItemUpdate java
{2 PRODUCT . ds
(C11 BilingDE
(Z1) CustomerDE
1 Demo
(C) ElectronicsWws
[T META-INF
T MODELS
A RTLServices
(C1) ServiceDE
|<—j sdo,xsdconfig
|<—j xquery-types, xsd
(31 Elecws
[E1 RTLSelFService
(B Schemas
(C) Modules
(T Libraries
(3 Security Rales

You can import metadata on the data sources needed by your application using the AquaLogic Data
Services Platform Metadata Import wizard. This wizard introspects available data sources and
identifies data objects that can be rendered as data services and functions. Once created, physical
data services become the building-blocks for queries and logical data services.

Data source metadata can be imported as AquaLogic Data Services Platform functions or procedures.
For example, the following source resulted from importing a Web service operation:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com" kind="read"
nativeName="getCustomerOrderByOrderID" nativelLevellContainer="ElecDBTest"
nativelevel2Container="ElecDBTestSoap" style="document"/>::)

declare function fl:getCustomerOrderByOrderID($x1l as
element (tl:getCustomerOrderByOrderID)) as
schema-element (tl:getCustomerOrderByOrderIDResponse) external;

3-4 Data Services Developer's Guide

Creating Data Source Metadata

Notice that the imported Web service is described as a “read” function in the pragma. “External” refers
to the fact that the schema is in a separate file. You can find a detailed description of source code
annotations in “Understanding AquaLogic Data Services Platform Annotations” in the XQuery
Reference Guide.

For some data sources such as Web services imported metadata represents functions which typically
return void (in other words, these functions perform operations rather than returning data). Such
routines are classified as side-¢ffecting functions or, more formally, as AquaLogic Data Services
Platform procedures. You also have the option of marking routines imported from certain data sources
as procedures. (See “Identifying AquaLogic Data Services Platform Procedures” on page 3-5.)

The following source resulted from importing Web service metadata that includes an operation that
has been identified as a side-effecting procedure:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="hasSideEffects" nativeName="setCustomerOrder" style="document"/>::)

declare function fl:setCustomerOrder ($xl1 as element (t3:setCustomerOrder)) as
schema-element (t3:setCustomerOrderResponse) external;

In the above pragma the function is identified as “hasSideEffects”.

Note: AquaLogic Data Services Platform procedures are only associated with physical data services
and can only be created through the metadata import process. So, for example, attempting to
add procedures to a logical data service through Source View will result in an error condition.

Identifying AquaLogic Data Services Platform Procedures

When you import source metadata for Web services, relational stored procedures, or Java functions
you have an opportunity to identify the metadata that represents side-effecting routines. A typical
example is a Web service that creates a new customer record. From the point of view of the data
service such routines are procedures.

Procedures are not standalone; they always are part of a data service from the same data source.

When importing data from such sources the Metadata Import wizard automatically categorizes
routines that return void as procedures. The reason for this is simply: if a routine does not return data
it cannot inter-operate with other data service functions.

There are, however, routines that both return data and have side-effects; it is these routines which
you need to identify as procedures during the metadata import process. Identification of such
procedures provides the application developer with two key benefits:

o (Creating a procedure during metadata input makes that the routine more easily available to the
application programmer through the AquaLogic Data Services Platform invokeProcedure() API.

Data Services Developer's Guide 3-5

../xquery/index.html
../xquery/index.html

Obtaining Enterprise Metadata

3-6

e If you import a routine that has side effects simply as a data service or as an executable
function in an XML Function Library, invoking that routine through XQuery may have
unexpected results, including the possibility that the routine will not be invoked at all. (The
reason for this is that XQuery is a declarative language. You define your goals and the query
engine determines how to achieve those goals. If a function is not intrinsic to achieving the
overall goal of the query then its execution may be skipped even though it is specified as part of

the overall query.)

Table 3-4 lists common AquaLogic Data Services Platform operations, identifying which operations
are available or unavailable for data service procedures.

Table 3-4 Aqualogic Data Services Platform Scope of Procedures

Artifact

Procedures Available

Procedures Unavailable

AquaLogic Data Services Platform
IDE

Metadata import operations
Function execution from Test
View

AquaLogic Data Services
Platform Control query
function palette

AquaLogic Data Services
Platform Palette

XQuery Editor function list
Query Plan Viewer function
list

For use in queries

For use in logical data services

AquaLogic Data Services Platform
Console

Function security settings
Left tree access

Cache operations

AquaLogic Data Services Platform
APIs

invokeProcedure()
Strongly typed API

AquaLogic Data Services
Platform control

invoke () API (only for use with
functions)

prepareExpression() for
running queries

Procedures greatly simplify the process of updating non-relational back-end data sources by providing
an invokeProcedure() API. This API encapsulates the operational logic necessary to invoke relational
stored procedures, Web services, or Java functions. In such cases update logic can be built into a

back-end data source routine which, in turn, updates the data.

For information on updating non-relational sources and other special cases see Chapter 9, “Handling

Updates Through Data Services.”

For an example showing how you can identify side-effecting procedures during the metadata import
process see “Importing Web Services Metadata” on page 3-34.

Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Obtaining Metadata from Relational Sources

You can obtain metadata on any relational data source available to the BEA WebLogic Platform. For
details see the BEA Platform document entitled “How Do I Connect a Database Control to a Database
Such as SQL Server or Oracle.”

Four types of metadata can be obtained from a relational data source:

o Table-based

e View-based

e Stored procedure-based

e SQL-based

e Functions

Note:

When using an XA transaction driver you need to mark your data source’s connection pool to
allow LocalTransaction in order for single database reads and updates to succeed.

For additional information in XA transaction adaptor settings see “Developing Adaptors” in
BEA WebLogic Integration documentation:
http://e-docs.bea.com/wli/docs81l/devadapt/dbmssamp.html

Data Services Developer's Guide 3-7

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howConnectDatabaseControlSQLServerOracle.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howConnectDatabaseControlSQLServerOracle.html
http://e-docs.bea.com/wli/docs81/devadapt/dbmssamp.html

Obtaining Enterprise Metadata

Importing Relational Table and View Metadata

To create metadata on relational tables and views follow these steps:

1. Select the project in which you want to create your metadata. For example, if you have a project
called myLDProject right-click on the project name and select Import Source Metadata... from the

pop-up menu. Click Next.

2. From the available data sources in the Import Wizard select Relational (see Figure 3-5).

Figure 3-5 Selecting a Relational Source from the Import Metadata Wizard

Dl Select data source type

Data Source Type: | Relational N IZ|

| Mext || || Cancel |

3. Either select a data source from available sources or make a new data source available to the WLS.

3-8 Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Figure 3-6 Import Data Source Metadata Selection Dialog Box

& Select data source

Data Source: | bpmarchDataSource | - | | Mew, .. |

(1 Select all

Displays all tables, wiews, and procedures in the data source,

(@) Filter data source objects

Enter specific tables, views, or procedures ta restrict returned objects,

Catalog |

Schema |

Table,l’\n'iew| CLISTYs, PRODY|

Procedure |

JDEC wildcard operators: _ For single characters; % for strings,

(C1 50U skatement

Allowe data service creation from a user-provided SGL staternent,

| Previous | | NextN | | | Cancel |

Data Object Selection Options

For information on creating a new data source see “Creating a New Data Source” on page 3-10.

If you choose to select from an existing data source, several options are available (Figure 3-6).

Select All Database Objects

If you choose to select all, a table will appear containing all the tables, views, and stored procedures
in your data source organized by catalog and schema.

Filter Data Source Objects

Sometimes you know exactly the objects in your data source that you want to turn into data services.
Or your data source may be so large that a filter is needed. Or you may be looking for objects with
specific naming characteristics (such as %audit2003%, a string which would retrieve all objects
containing the enclosed string).

In such cases you can identify the exact parts of your relational source that you want to become data
service candidates using standard JDBC wildcards. An underscore (_) creates a wildcard for an

Data Services Developer's Guide 3-9

Obtaining Enterprise Metadata

3-10

individual character. A percentage sign (%) indicates a wildcard for a string. Entries are
case-sensitive.

For example, you could search for all tables starting with CUST with the entry: CUST%. Or, if you had
arelational schema called ELECTRONICS, you could enter that term in the Schema field and retrieve
all the tables, views, and stored procedure that are a part of that schema.

Another example:
CUST%, PAY$
entered in the Tables/Views field retrieves all tables and views starting with either CUST or PAY.

Note: If no items are entered for a particular field, all matching items are retrieved. For example,
if no filtering entry is made for the Procedure field, all stored procedures in the data object
will be retrieved.

For relational tables and views you should choose either the Select all option or Selected data source
objects.

You can also use wildcards to support importing metadata on internal stored procedures. For example,
entering the following string as a stored procedure filter:

STRIMS
retrieves metadata on the system stored procedure:

STANDARD.TRIM

In such a situation you would also want to make a nonsense entry in the Table/View field to avoid
retrieving all tables and views in the database.

For details on stored procedures see “Importing Stored Procedure-Based Metadata” on page 3-16.

SQL statement

Allows you to enter an SQL statement that is used as the basis for creating a data service. See “Using
SQL to Import Metadata” on page 3-30 for details.

Creating a New Data Source

Most often you will work with existing data sources. However, if you choose New... the WLS DataSource
Viewer appears (Figure 3-7). Using the DataSource Viewer you can create new data pools and sources.

Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Figure 3-7 BEA WebLogic Data Source Viewer

E DataSource Yiewer

)9 Data Sources Data Source
J coDatasource DataSource Name cgDataSource
J cgDakaSource-nonss
Pool cgPool
J cgSamplebataSource
J weblogic, jdbe. jts. ebusinessPg Drop Data Source
[E-23 Connection Pools
J cgIMSPool-nonsa
J cgPool
Connection Pool
Pool Mame cgPool
Drriver com. pointbase, jdbe. jdbcUniversalDriver
LRL jdbc:pointbase:server: fflocalhost: 9093 warkshop
Properties {user=weblogich
Drop Pool
Mew Data Source

For details on using the DataSource Viewer see “Configuring a Data Source” in WebLogic
Workshop documentation.

Selecting an Existing Data Source

Only data sources that have set up through the BEA WebLogic Administration Console are available
to a AquaLogic Data Services Platform application or project. In order for the BEA WebLogic Server
used by AquaLogic Data Services Platform to access a particular relational data source you need to set
up a JDBC connection pool and a JDBC data source.

e For details on setting up a JDBC connection pool see:

http://e-docs.bea.com/wls/docs81l/ConsoleHelp/domain jdbcconnectionpool config
general.html

o For details on setting up a JDBC data source see:

http://e-docs.bea.com/wls/docs81l/ConsoleHelp/domain jdbcdatasource config.html

Data Services Developer's Guide 3-11

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/datasource/navWorkingWithDataSources.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcdatasource_config.html

Obtaining Enterprise Metadata

Figure 3-8 Selecting a Data Source

{& Select data source

|

Data Source: | cgDataSource | Mew, ., |

[»]] «

bpmArchDataﬁurce
cgDakaSource!

® S?bd dl cgDakaSource-nonss
Displays al cqDatasourcel caDatasource |2 S2uree:
() Selected g caDataSource2
Displays id cgSampleDataSource the data source,

Catalog contentDataSource

plan.datasyncDataSource
Schema lz‘

Once you have selected a data source, you need to choose how you want to develop your metadata —

by selecting all objects in the database, by filtering database objects, or by entering a SQL statement.
(see Figure 3-6).

Creating Table- and View-Based Metadata

Once you have selected a data source and any optional filters, a list of available database objects
appears.

3-12 Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Figure 3-9 Identifying Database Objects to be Used as Data Services

Dl Select database objects to import

Available database objects Selected database chjects
| | | Search | |- Schemas
=1 Schemas B C] RTLBILLING
(C) BROADEAND =20 Tf-.bles
CacrM (@ CREDIT_CARD
O RTLAPPLOMS B £ RTLCUSTOMER
- =] |:|T?bles
2 (_) ADDRESS
2 @) CUSTOMER
2 B [C] RTLELECOMS
(£ WEBLOGIC [Remove | BT (] Tables
() WIRELESS (_) CUSTOMER,_ORDER.
Q @ CUSTOMER_ORDER_LIME_ITEM
@ PRODUCT
B C RTLSERVICE
=T Tables
(&) SERMWICE_CASE
| Previous | | Mext | | | | Cancel |

Using standard dialog commands you can add one or several tables to the list of selected data
objects. To deselect a table, select that table in the right-hand column and click Remove.

A Search field is also available. This is useful for data sources which have many objects. Enter a
search string, then click Search repeatedly to move through your list.

Once you have selected one or several data sources, click Next to verify the location of the

to-be-created data services and the names of your new data services.

The imported data summary screen:

— Lists selected objects by name. You can mouse over the XML type to see the complete path
(Figure 3-10).

— Lists the location of the generated data service in the current application.

— Identifies any name conflicts. Name conflicts occur when there is an data service of the
same name present in the target directory. Any name conflicts are highlighted in red.

You can edit the file name to clarify the name or to avoid conflicts. Simply click on the name
of the file and make any editing changes.

Data Services Developer's Guide 3-13

Obtaining Enterprise Metadata

Alternatively, choose Remove All to return to the initial, nothing-is-selected state.

5. There are several situations where you will need to change the name of your data service:
— There already is a data service of the same name in your application.
— You are trying to create multiple data services with the same name.

In such cases the name(s) of the data service(s) having name conflicts appear in red. Simply
change to a unique name using the built-in line editor.

Figure 3-10 Relational Source Import Data Summary Screen

& Summary E
The following data service(s) will be created. Edit suggested name(s) as needed.
AML Type Marme
ADDRESS ADDRESS sl
CREDIT_CARD CREDIT_CARD
CUSTOMER. CUSTOMER.
CUSTOMER _ORDER. CUSTOMER _ORDER.
CUSTOMER_ORD%LINE_ITEM CUSTOMER_ORDER_LIME_ITEM
PRODUCT [POINTEASE. RTLELECOMS. CUSTOMER_ORDER_LINE_ITEM |
SERNICE_CASE | SERNICE_CASE E
Location | D:\bealuser_projectsiapplicationsidanube\RTLApp\DataServices | | Browse, .. |
| Previous | | | | Finish | | Cancel |

6. Click Finish. A data service will be created for each object selected. The file extension of the
created data services will always be . ds.

3-14 Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Database-specific Considerations
Database vendors variously support database catalogs and schemas. Table 3-11 describes this support

for several major vendors.

Table 3-11 Vendor Support for Catalog and Schema Objects

Vendor Catalog Schema
Oracle Does not support catalogs. When specifying Typically the name of an Oracle user ID.
database objects, the catalog field should
be left blank.
DB2 If specifying database objects, the catalog ~ Schema name corresponds to the catalog
field should be left blank. owner of the database, such as db2admin.
Sybase Catalog name is the database name. Schema name corresponds to the database
owner.
Microsoft SQL Catalog name is the database name. Schema name corresponds to the catalog
Server owner, such as dbo. The schema name
must match the catalog or database owner
for the database to which you are
connected.
Informix Does not support catalogs. If specifying Not needed.
database objects, the catalog field should
be left blank.
PointBase PointBase database systems do not support ~ Schema name corresponds to a database

catalogs. If specifying database objects, the
catalog field should be left blank.

name.

XML Name Conversion Considerations
When a source name is encountered that does not fit within XML naming conventions, default
generated names are converted according to rules described by the SQLX standard. Generally
speaking, an invalid XML name character is replaced by its hexadecimal escape sequence (having the

form xuuuu).

For additional details see section 9.1 of the W3C draft version of this standard:

http://www.sglx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

Once you have created your data services you are ready to start constructing logical views on your
physical data. See Chapter 4, “Designing Data Services.” and Chapter 5, “Modeling Data Services.”

Data Services Developer's Guide 3-15

http://www.sqlx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

Obtaining Enterprise Metadata

3-16

Importing Stored Procedure-Based Metadata

Many DBMS systems utilize stored procedures to improve query performance, manage and schedule
data operations, enhance security, and so forth. For specifically supported vendors you can import

metadata based on stored procedures. Each stored procedure becomes a data service.

Note:

DBMS.

See “Supported Configurations” in AquaLogic Data Services Platform Release Notes. For
details on creating and managing stored procedures see the documentation for the particular

Stored procedures are essentially database objects that logically group a set of SQL and native
database programming language statements together to perform a specific task.

Table 3-12 defines some commonly used terms as they apply to this discussion of stored procedures.

Table 3-12 Terms Commonly Used When Discussing Stored Procedures

Term Usage

Function A function is identical to a procedure except a function always return one or more
values to the caller and a procedure never returns a value. The value can be a
simple type, a row type, or a complex user defined type.

Package A package is a group of related procedures and functions, together with the
cursors and variables they use, stored together in a database for continued use as
a unit. Similar to standalone procedures and functions, packaged procedures and
functions can be called explicitly by applications or users.

Stored A sequence of programming commands written in an extended SQL (such as

Procedure PL/SQL or T-SQL), Java or XQuery, stored in the database where it is to be used to
maximize performance and enhance security. The application can call a
procedure to fetch or manipulate database records, rather than using code outside
the database to get the same results. Stored procedures do not return values.

AquaLogic Data Typically a routine which performs work but does not return data. An example

Services would be a routine callable from a data service which writes information to a log

Platform file.

Procedure

Rowset The set of rows returned by a procedure or query.

Result set JDBC term for rowset.

Parameter mode

Procedures can have three modes: IN, OUT, and INOUT. There roughly correspond

to “write”, “read”, and “read/write”.

Data Services Developer's Guide

../relnotes/relnotes.html#wp73335

Obtaining Metadata from Relational Sources

Importing Stored Procedures Using the Metadata Import Wizard

Imported stored procedure metadata is quite similar to imported metadata for relational tables and
views. The initial three steps for importing stored procedures are the same as importing any relational
metadata (described under “Importing Relational Table and View Metadata” on page 3-8).

Note: Ifastored procedure has only one return value and the value is either simple type or a RowSet
which is mapping to an existing schema, no schema file created.

Also see in the Aqualogic Data Services PlatformSamples Tutorial:

- Accessing Data in Stored Procedures

You can select any combination of database tables, views, and stored procedures. If you select one or
several stored procedures, the Metadata Import wizard will guide you through the additional steps
required to turn a stored procedure into a data service. These steps are:

1. Select one or several stored procedures. A data service can represent only one stored procedure.
In other words, if you have five stored procedures, you will create five data services.

Data Services Developer's Guide 3-17

../samples_tutorial/index.html

Obtaining Enterprise Metadata

Figure 3-13 Selecting Stored Procedure Database Objects to Import

. . [|
= Select database objects to import
Available database objects Selected database objects
| | | — | |- Schemas
B C) WIRELESS
I_1 Schemas -] Tables
(£ BROADBAND © CUsSTOMER
Cacrm (&) CUSTOMER_ORDER
COARTLAPPLOMS @ CUSTOMER_ORDER_LINE_ITE
CARTLCUSTOMER @ PRODUCTS
A RTLELECOMS) Procedures

I RTLSERVICE © GETORDERINFO
(T WEBLOGIC
i~ [[Remove]
5&
@
@
@
@
=0
@
[« | [] [« |]

| Previous | | NEthl | | | Cancel |

2. After you have added the database objects that you want to become data services.

3. From the selected procedures (Figure 3-14) configure each stored procedure. If your stored
procedure has an OUT parameter requiring a complex element, you may need to provide a schema.

3-18 Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Figure 3-14 Configuring a Stored Procedure in Pre-editing Mode

= X
s
Selected Procedures | [Procedure Profil
“ud GERIEUEAETER Editable Parameters:
=+ TESTPROC_RICH
ame Mode Type Schema Location
| Previous | | Mext | | | | Cancel |

Data objects in the stored procedure that cannot be identified by the Metadata Import wizard
will appear in red, without a datatype. In such cases you need to enter Edit mode (click the
Edit button) to identify the data type.

Your goal in correcting an “<unknown>" condition associated with a stored procedure

(Figure 3-14) is to bring the metadata obtained by the import wizard into conformance with the
actual metadata of the stored procedure. In some cases this will be by correcting the location of
the return type. In others you will need to adjust the type associated with an element of the
procedure or add elements that were not found during the initial introspection of the stored
procedure.

Data Services Developer's Guide 3-19

Obtaining Enterprise Metadata

3-20

Figure 3-15 Stored Procedure in Editing Mode (with Callouts)

= Configure Procedure

Selected Procedures | [SETORDERINFO

| GETORDERINFC

Parameters:

Mame 2 Mode Type Schema Location
1 P1 in xsistring
P2 in xstint 5
P3 out wsiink
P4 out wsiink
3
| Add | | Remove | I Up I | Down
4
Editable Row Set:
| Type Schema Location
Add | | Remove | | Up | | Down
6

| Accept Changes | | Cancel Changes |

| Previous | | NEXtR{J | | | Cancel |

4. Edit your procedure as appropriate using the following steps:

a.

f.

Select a stored procedure from the complete list of stored procedures that you want to turn
into data services.

Edit the stored procedure parameters including setting mode (in, out, inout), type, and for out
parameters, schema location.

Verify and, if necessary, add, remove, or change the order of parameters.
Verify and, if necessary, add, remove, or change any editable rowset.

Supply a return type (either simple or complex through identifying a schema location) in cases
the Metadata Import wizard was unable to determine the type.

Accept or cancel your changes.

You need to complete information for each selected stored procedure before you can move to
the next step. In particular, any stored procedures shown in red must be addressed.

Details for each section of the stored procedure import dialog box appear below.

Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Procedure Profile

Each element in a stored procedure is associated with a type. If the item is a simple type, you
can simply choose from the pop-up list of types.

Figure 3-16 Changing the Type of an Element in a Stored Procedure

& Configure Procedure
Selected Procedures (3P _TIMESTAMP_ZONE
=] GETCLSTOMER [=] F[%ameters:
=+ TEST
=+ TESTPROC_RICH Marme Mode Type Schema Location
=+ SP_WARCHARZ P_TIMESTAMP_Z... in xsidateTime -
T SP_UROWID P_TIMESTAMP_Z... aut xsidateTime [~
—+ SP_TIMESTAMP_ZOME istring
—+| SP_TIMESTAMP_LOCAL P_TIMESTAMP_Z... it sinormalized. .
=+ SP_TIMESTAMP FID OUT ok xsikoken
T =P_ROWID — xzzi: nedByte
T SPREAL Remave xs:basegE;‘lBin:ry EI
& SP_Raw wsihexBinary 7]
=+ SP_CMNLYOUT_ROWTYPE Editable Fow Seb:
=+ SP_MYARCHARZ
=+ SP_MUMBER_MN_5 | Type Schema Location
=+| 5P_MUMEBER_M
| SP_NUMBER Add || Remove || up || Down
=+ SP_MNCHAR
| SP_LONG_RAw
=+ SP_INTERYALYM
=+| SP_INTERYALDS B | Accept Changes | | Cancel Changes |
| Previous | | Mext | | | | Cancel |

If the type is complex, you may need to supply an appropriate schema. Click on the schema
location button and either enter a schema path name or browse to a schema. The schema must
reside in your application.

After selecting a schema, both the path to the schema file and the URI appear. For example:

http://temp.openuri.org/schemas/Customer.xsd}CUSTOMER

Procedure Parameters

The Metadata Import wizard, working through JDBC, also identifies any stored procedure
parameters. This includes the name, mode (input [in], output [out], or bidirectional [inout])
and data type. The out mode supports the inclusion of a schema.

Complex type is only supported under three conditions:

Data Services Developer's Guide 3-21

Obtaining Enterprise Metadata

3-22

— as the output parameter
— as the return type
— as arowset
All parameters are editable, including the name.

Note: Ifyou make an incorrect choice you can use the Previous, then Next button to return the
dialog to its initial state.

Rowsets

Not all databases support rowsets. In addition, JDBC does not report information related to
defined rowsets. In order to create data services from stored procedures that use rowset
information, supply the correct ordinal (matching number) and a schema. If the schema has
multiple global elements, you can select the one you want from the Type column. Otherwise the
type will be the first global element in your schema file.

The order of rowset information is significant; it must match the order in your data source. Use
the Move Up / Move Down commands to adjust the ordinal number assigned to the rowset.

Complete the importation of your procedures by reviewing and accepting items in the Summary
screen (see step 4 in “Importing Relational Table and View Metadata” for details).

Note: XML types in data services generated from stored procedures do not display native types.
However, you can view the native type in the Source View pragma (see “Working with
XQuery Source”).

Handling Stored Procedure Rowsets

A rowset type is a complex type. The name of the rowset type can be:
— The parameter name (in case of a input/output or output only parameter)
— An assigned name such as RETURN_VALUE (if return value)
— The referenced element name (result rowsets) in a user-specified schema

The rowset type contains a sequence of a repeatable elements (for example called CUSTOMER)
with the fields of the rowset.

Note: All rowset-type definitions must conform to this structure.

In some cases the Metadata Import wizard can automatically detect the structure of a rowset
and create an element structure. However, if the structure is unknown, you will need to provide
it through the wizard.

Data Services Developer's Guide

Obtaining Metadata from Relational Sources

5. Mark Appropriate Imported Stored Procedure Metadata as AquaLogic Data Services Platform
Procedures

Identifying Stored Procedures as Data Service Procedures

It is often convenient to leverage independent routines as part of managing enterprise
information through a data service. An obvious example would be to leverage standalone update
or security functions through data services. Such functions have noXML type; in fact they
typically return nothing (or void). Instead the data service knows that they have side-effects
and are associated as procedures with a data service of the same data source.

Stored procedures are very often side-effecting from the perspective of the data service, since
they perform internal operations on data. In such cases all you need to do is identify the stored
procedures as a data service procedure during the metadata import process.

After you have identified the stored procedures that you want to add to your data service or
XML file library (XFL), you also have an opportunity to identify which of these should be
identified as data service procedures.

Figure 3-17 Identifying Stored Procedures Having Side Effects

& Select Side Effect Functions
Select: Side Effect Function Function
ADD_IOB_HISTORY
N
O b SECURE_DML
| Previous | | Mext | | | | Cancel |

Data Services Developer's Guide 3-23

Obtaining Enterprise Metadata

3-24

Note: Data service procedures based around atomic (simple) types are collected in an
identified XML function library (XFL) file. Other procedures need to be associated with
a data service that is local to your AquaLogic Data Services Platform-enabled project.

Internal Stored Procedure Support

You can import metadata for an internal stored procedures. See “Filter Data Source Objects” on
page 3-9 for details.

Stored Procedure Version Support

Only the most recent version of a stored procedure can be imported into AquaLogic Data Services
Platform. For this reason you cannot identify a version number when importing a stored procedure
through the Metadata Import wizard. Similarly, adding a version number to AquaLogic Data Services
Platform source will result in a query exception.

Supporting Stored Procedures With Nullable Input Parameter(s)

If you know that an input parameter of a stored procedure is nullable (can accept null values), you can
change the signature of the function in Source View to make such parameters optional by adding a
question mark at end of the parameter. For example (question-mark shown in bold):

function myProc ($argl as xs:string)

would become:

function myProc($argl as xs:string?)

For additional information on Source View see “Working with XQuery Source” on page 8-1.

Stored Procedure Support for Commonly Used Databases

Each database vendor approaches stored procedures differently. XQuery support limitations are, in
general, due to JDBC driver limitations.

General Restriction
AquaLogic Data Services Platform does not support rowset as an input parameter.

Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Oracle Stored Procedure Support

Table 3-18 summarizes AquaLogic Data Services Platform support for Oracle database procedures.

Table 3-18 Support for Oracle Store Procedures

Term Usage
Procedure types ® Procedures
e Functions
e Packages
Parameter e Input only
modes

e Qutput only
e Input/Output
e None

Parameter data

types

Any Oracle PL/SQL data type except those listed below:
e ROWID
e UROWID

Note: When defining function signatures, note that the Oracle ¥TYPE and
%ROWTYPE types must be translated to XQuery types that match the
true types underlying the stored procedure’s %TYPE and ¥ROWTYPE
declarations. ¥TYPE declarations map to simple types; SROWTYPE
declarations map to rowset types.

For a list of database types supported by AquaLogic Data Services Platform see
“Relational Data Types to XQuery Data Types” on page 3-32.

Data returned
from a function

Oracle supports returning PL/SQL data types such as NUMBER, VARCHAR,
%TYPE, and ¥ROWTYPE as parameters.

Comments

The following identifies limitations associated with importing Oracle database
procedure metadata.

e The Metadata Import wizard can only detect the data structure for cursors
that have a binding PL/SQL record. For a dynamic cursor you need to manually
specify the cursor schema.

e Data from a PL/SQL record structure cannot be retrieved due to Oracle JDBC
driver limitations.

e The Oracle JDBC driver supports rowset output parameters only if they are
defined as reference cursors in a package.

e The Oracle JDBC driver does not support NATURALN and POSITIVEN as
output only parameters.

Data Services Developer's Guide 3-25

Obtaining Enterprise Metadata

Sybase Stored Procedure Support

Table 3-19 summarizes AquaLogic Data Services Platform support for Sybase SQL Server database
procedures.

Table 3-19 Support for Sybase Stored Procedures

Term Usage

Procedure types ® Procedures
e Grouped procedures
e Functions

Functions are categorized as a scalar or inline table-valued and
multi-statement table-valued function. Inline table-valued and
multi-statement table-valued functions return rowsets.

Parameter e Input only
modes e Qutput only

Parameter data For the complete list of database types supported by AquaLogic Data Services
types Platform see “Relational Data Types to XQuery Data Types” on page 3-32.

3-26 Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Tahle 3-19 Support for Sybase Stored Procedures

Term

Usage

Data returned
from a function

Sybase functions supports returning a single value or a table.

Procedures return data in the following ways:

As output parameters, which can return either data (such as an integer or
character value) or a cursor variable (cursors are rowsets that can be
retrieved one row at a time).

As return codes, which are always an integer value.

As a rowset for each SELECT statement contained in the stored procedure or
any other stored procedures called by that stored procedure.

As a global cursor that can be referenced outside the stored procedure
supports, returning single value or multiple values.

Comments

The following identifies limitations associated with importing Sybase database
procedure metadata:

The Sybase JDBC driver does not support input/output or output only
parameters that are rowsets (including cursor variables).

The Jconnect driver and some versions of the BEA Sybase driver cannot detect
the parameter mode of the procedure. In this case, the return mode will be
UNKNOWN, preventing importation of the metadata. To proceed, you need to
set the correct mode in order to proceed.

Only data types generally supported by AquaLogic Data Services Platform
metadata import can be imported as part of stored procedures.

Data Services Developer's Guide 3-21

Obtaining Enterprise Metadata

IBM DB2 Stored Procedure Support

Table 3-20 summarizes AquaLogic Data Services Platform support for IBM DB2 database procedures.

Table 3-20 Support for IBM DB2 Stored Procedures

Term Usage

Procedure types ® Procedures
e Functions
e Packages
Each function is also categorized as a scalar, column, row, or table function.
Here are additional details on function categorization:

e A scalar function is one that returns a single-valued answer each time it is
called.

e A column function is one which conceptually is passed a set of like values (a
column) and returns a single-valued answer (AVG()).

e A row function is a function that returns one row of values.

e A table function is function that returns a table to the SQL statement that
referenced it.

Parameter e Input only
modes e Qutput only

e Input/output

Parameter data For the complete list of database types supported by AquaLogic Data Services
types Platform see “Relational Data Types to XQuery Data Types” on page 3-32.

Data returned DB2 supports returning a single value, a row of values, or a table.
from a function

Comments The following identifies limitations associated with importing DB2 database
procedure metadata:

e Column type functions are not supported.
e Rowsets as output parameters are not supported.

e The DB2 JDBC driver supports float, double, and decimal input only and
output only parameters.

Float, double, and decimal data types are not supported as input/output
parameters.

e Only data types generally supported by AquaLogic Data Services Platform
metadata import can be imported as part of stored procedures.

3-28 Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Microsoft SQAL Server Stored Procedure Support
Table 3-21 summarizes AquaLogic Data Services Platform support for Microsoft SQL Server database

procedures.

Table 3-21 Aqualogic Data Services Platform Support for Microsoft SQL Server Stored Procedures

Term Usage

Procedure types SQL Server supports procedures, grouped procedures, and functions. Each
function is also categorized as a scalar or inline table-valued and multi-statement
table-valued function.
Inline table-valued and multi-statement table-valued functions return rowsets.

Parameter SQL Server supports input only and output only parameters.

modes

Parameter data

types

SQL Server procedures/functions support any SQL Server data type as a
parameter.

Data returned
from a function

SQL Server functions supports returning a single value or a table.

Data can be returned in the following ways:

e Asoutput parameters, which can return either data (such as an integer or
character value) or a cursor variable (cursors are rowsets that can be
retrieved one row at a time).

e Asreturn codes, which are always an integer value.

e Asarowset for each SELECT statement contained in the stored procedure or
any other stored procedures called by that stored procedure.

Comments

The following identifies limitations associated with importing SQL Server
procedure metadata.

¢ Result sets returned from SQL server (as well as those returned from Sybase)
are not detected automatically. Instead you will need to manually add
parameters as a result.

e The Microsoft SQL Server JDBC driver does not support rowset input/output
or output only parameters (including cursor variables).

e Only data types generally supported by AquaLogic Data Services Platform
metadata import can be imported as part of stored procedures.

Data Services Developer's Guide 3-29

Obtaining Enterprise Metadata

3-30

Using SQL to Import Metadata

One of the relational import metadata options (see Figure 3-6) is to use an SQL statement to
customize introspection of a data source. If you select this option the SQL Statement dialog appears.

Figure 3-22 SQL Statement Dialog Box
@}SQL Statement

SOL Staktement
Enter SELECT staternent, User ? for parameters,

Parameters
Enter paramater walues,

Position Type

1

]

2

3

[«

[ea¢|[Remoe |

| Previous | | Mext | | | | Cancel |

You can type or paste your SELECT statement into the statement box (Figure 3-22), indicating
parameters with a “?” question-mark symbol. Using one of the AquaLogic Data Services Platform data
samples, the following SELECT statement can be used:

SELECT * FROM RTLCUSTOMER.CUSTOMER WHERE CUSTOMER ID = ?
RTLCUSTOMER is a schema in the data source, CUSTOMER is, in this case, a table.

For the parameter field, you would need to select a data type. In this case, CHAR or VARCHAR.
The next step is to assign a data service name.

When you run your query under Test View, you will need to supply the parameter in order for the query
to run successfully.

Data Services Developer's Guide

Obtaining Metadata from Relational Sources

Once you have entered your SQL statement and any required parameters click Next to change or verify
the name and location of your new data service.

Also see in the AqualLogic Data Services Platform Samples Tutorial:

- Creating Data Services Based on SQL Statements

Figure 3-23 Relational SQL Statement Imported Data Summary Screen

S
(=]
& Summary
The following data service(s) will be created. Edit suggested name(s) as needed.
AML Type Marme
=]
sqlCiuery SQLQueryCustID| =
Location | D:\bealuser_projectsiapplicationsidanube\RTLApp\DataServices | | Browse, .. |
| Previous | | | | Finish | | Cancel |

The imported data summary screen identifies a proposed name for your new data service.

The final steps are no different than you used to create a data service from a table or view.

Data Services Developer's Guide

3-31

../samples_tutorial/index.html

Obtaining Enterprise Metadata

3-32

Relational Data Types to XQuery Data Types

Relational data types are necessarily mapped to XQuery data types when metadata is obtained.
Specific mappings related to core and base support for relational data is described in the XQuery-SQL
Mapping Reference in the XQuery Reference Guide.

Providing Role-based Access to Aqualogic Data Services
Platform Relational Sources

When you import metadata from relational sources, you can provide logic in your application that
maps users to different data sources depending on the user’s role. This is accomplished by creating an
interceptor and adding an attribute to the RelationalDB annotation for each data service in your
application.

The interceptor is a Java class that implements the SourceBindingProvider interface. This class
provides the logic for mapping a users, depending on their current credentials, to a logical data source
name or names. This makes it possible to control the level of access to relational physical source based
on the logical data source names.

For example, you could have the data source names cgDataSourcel, cgDataSourc2, and
cgDataSource3 defined on your WebLogic Server and define the logic in your class so that an user who
is an administrator can access all three data sources, but a normal user only has access to the data
source cgDataSourcel.

Note: Allrelational, update overrides, stored procedure data services, or stored procedure XFL files
that refer to the same relational data source should also use the same source binding
provider; that is, if you specify a source binding provider for at least one of the data service
(. ds) files, you should set it for the rest of them.

To implement the interceptor logic, do the following:
1. Write a Java class SQLInterceptor that implements the interface

com.bea.ld.binds.SourceBindingsProvider and define a getBindings () public
method within the class. The signature of this method is:

public String getBinding (String genericLocator, boolean isUpdate)

The genericLocator parameter specifies the current logical data source name. The isUpdate
parameter indicates whether a read or an update is occurring. A value of true indicates an
update. A value of false indicates a read. The string returned is the logical data source name to
which the user is to be mapped. Listing 3-1 shows an example SQLInterceptor class.

2. Compile your class into a JAR file.

Data Services Developer's Guide

../xquery/xquery_sql_mapping_reference.html
../xquery/xquery_sql_mapping_reference.html

Obtaining Metadata from Relational Sources

3. Inyour application, save the JAR file in the APP-INF/lib directory of your WebLogic Workshop
application.

4. Define the configuration interceptor for the data source in your DS or XFL files (or both if
necessary) by adding a sourceBindingProviderClassName attribute to the RelationalDB
annotation. The attribute must be assigned the name of a valid Java class, which is the name of as
your interceptor class. For example (the attribute and Java class are in bold):

<relationalDB dbVersion="4" dbType="pointbase" name="cgDataSource"
sourceBindingProviderClassName="sql.SQLInterceptor" />

5. Compile and run you application. The interceptor will be invoked on execution.

Listing 3-1 Interceptor Class Example

public class SqglProvider implements com.bea.ld.bindings.SourceBindingProvider{
public String getBinding(String dataSourceName, boolean isUpdate) {

weblogic.security.Security security = new weblogic.security.Security();
javax.security.auth.Subject subject = security.getCurrentSubject();
weblogic.security.SubjectUtils subUtils =

new weblogic.security.SubjectUtils();

System.out.println (" the user name is " + subUtils.getUsername (subject));

if (subUtils.getUsername (subject) .equals ("weblogic"))

dataSourceName = "cgDataSourcel";
System.out.println ("The data source is " + dataSourceName) ;
System.out.println("SDO " + (isUpdate ? "™ YES "™ : " NO "));

return dataSourceName;

Data Services Developer's Guide 3-33

Obtaining Enterprise Metadata

Importing Web Services Metadata

3-34

A Web service is a self-contained, platform-independent unit of business logic that is accessible
through application adaptors, as well as standards-based Internet protocols such as HTTP or SOAP.

Web services greatly facilitate application-to-application communication. As such they are
increasingly central to enterprise data resources. A familiar example of an externalized Web service
is a frequent-update weather portlet or stock quotes portlet that can easily be integrated into a Web
application. Similarly, a Web service can be effectively used to track a drop shipment order from a
seller to a manufacturer.

Note: Multi-dimensional arrays in RPC mode are not supported.

Creating a data service based on a Web service definition (schema) is similar to importing relational
data source metadata (see “Importing Relational Table and View Metadata” on page 3-8).

Here are the Web service-specific steps involved:

1. Select the AquaLogic Data Services Platform-based project in which you want to create your Web
service metadata. For example, if you have a project called DataServices right-click on the project
name and select Import Metadata... from the pop-up menu.

2. From the available data sources in the Metadata Import wizard select Web service and click Next.

3. There are three ways to access a Web service:

— From a Web service description language (WSDL) file that is in your current AquaLogic
Data Services Platform project.

— From a URI which is a WSDL accessible via a URL (HTTP).

— From a Universal Description, Discovery, and Integration service (UDDI).

Data Services Developer's Guide

Importing Web Services Metadata

Figure 3-24 Locating a Web Service

Bl Specify web service URI
URI or WSDL file: | http:fflocalhost: 7001 fElecw'S/controls ElecDBTestContract wsdl | | Browse, .. |
R
| Previous | | Mext | | | | Cancel |

Note: Forthe purpose of showing how to import Web service metadata a WSDL file from the RTLApp
sample is used for the remaining steps. If you are following these instructions enter the
following into the URI field to access the WSDL included with RTLApp:

http://localhost:7001/ElecWS/controls/ElecDBTestContract.wsdl

4, From the selected Web service choose the operations that you want to turn into data services or
XFL functions.

5. Identify which, if any, Web service-based data services should be marked as having side-effects.

Note: Imported operations returning void are automatically imported as AquaLogic Data Services
Platform procedures. You can identify other operations as procedures using the Select Side
Effect Procedures dialog (Figure 3-25).

It is often convenient to leverage side-effecting operations as part of managing enterprise
information through a data service. An obvious example would be to manage standalone update
or security functions through data services. The data service registers that such operations have
side-effects.

Procedures are not standalone; they always are part of a data service from the same data
source.

Data Services Developer's Guide 3-35

Obtaining Enterprise Metadata

Web services are side-effecting from the perspective of the data service even when they do
return data. In such cases, you need to associate the Web service operation with a data service
during the metadata import process.

Figure 3-25 Marking Imported Operations AquaLogic Data Services Platform Procedures

& Select Side Effect Procedures

Select: Side Effect Procedure Procedure

O getCustomerOrderByCustomer 1D

getCustomerOrderByOrderID

oo

getProductList

sebCustomerOrder

&

| Previous | | Mext | | | | Cancel |

Procedures must be associated with a data service that is local to a AquaLogic Data Services
Platform-enabled project.

3-36 Data Services Developer's Guide

Importing Web Services Metadata

Figure 3-26 Identifying Web Service Operations to be Used as Data Services

& Summary
The following data service(s) will be created. Edit suggested name(s) as needed.
Function Mame Type Data Service Mame Add ko Existing Data 5...
getallProducts PRODUCTS PRODUCTS %
The following side effect procedure(s) will be created. Edit suggested name(s) as needed.
Procedure Name Data Service Mame
qgetFirstPraduct sl
rain =]
These function{s) will be saved to the specified XML library file:
Function Marme Library Mame Add ko Existing Library File
echoBigDecimal, echoBigDecimal... | library %
Location | D:\beaiweblogicdisamplesiLiquidDatalR TLAPP Dataservices | | Browse, .. |
| Previous | | | Finish | Cancel |

Using standard dialog editing commands you can select one or several operations to be added to
the list of selected Web service operations. To deselect an operation, click on it, then click
Remove. Or choose Remove All to return to the initial state.

Click Next to verify the location of the to-be-created data services and their names.

Data Services Developer's Guide 3-37

Obtaining Enterprise Metadata

3-38

Figure 3-27 Web Services Imported Data Summary Screen

& Summary
The following data service(s) will be created. Edit suggested name(s) as needed.

Function Mame AML Type Data Service Mame Add ko Existing Data Services
getCustomerOrder, .. |getCustomerOrderByCustomerl... | getCustomerOrderByCustomerID O ;
getCustomerOrder ... [getCustomerOrderByOrderIDRe. .. | getCustomerOrderByOrderID O
getProductList getProductListResponse getProductList O E

The following side effect procedure(s) will be created. Edit suggested name(s) as needed.

Procedure Name Data Service Mame

setCustomerOrder D getCustomerOrderByCustomerID h |v =
D getCustomerOrderByCustomer 1D
getCustomerOrderByCustomer IDResponse
D getCustomerOrderByOrderID
getCustomerOrderByOrderIDResponse

[getProductList

getProductListResponse

Location | D:\beaiweblogicdisamplesiLiquidDatalR TLAPP Dataservices | | Browse, .. |

| Previous | | | | Finish | | Cancel |

The summary screen shown in Figure 3-27:

Note:

Note:

Lists the Web service operations you have selected.
Lists the target name for the generated data services.
Identifies in red any data service name conflicts.

Even if there are no name conflicts you may want to change a data service name for clarity.
Simply click on the name of the data service and enter the new name.

Provides an option for adding the function to an existing data service based on the same
WSLD. This option is only enabled if such a data service exists in your project. If there are
several data services based on the same WSDL, a dropdown menu allows you to choose the
data service for your function.

Web Service functions identified as side-effecting procedures must be associated with a data
service based on the same WSDL.

When importing a Web service operation that itself has one or more dependent (or
referenced) schemas, the Metadata Import wizard creates second-level schemas according to

Data Services Developer's Guide

Importing Web Services Metadata

internal naming conventions. If several operations reference the same secondary schemas,
the generated name for the secondary schema may change if you re-import or synchronize
with the Web service.

7. Click Finish. A data service will be created for each selected operation.

Also see in the Aqualogic Data Services Platform Samples Tutorial:

- Accessing Data in Web Services

Testing Metadata Import With an Internet Web Service URI

If you are interested in trying the Metadata Import wizard with an internet Web service URI, the
following page (available as of this writing) provides sample URIs:

http://www.strikeiron.com/BrowseMarketplace.aspx?c=14&m=1

Simply select a topic and navigate to a page showing the sample WSDL address such as:

http://ws.strikeiron.com/SwanandMokashi/StockQuotes?WSDL

Copy the string into the Web service URI field and click Next to select the operations want to turn into
sample data services or procedures.

Another external Web service that can be used to test metadata import can be located at:

http://www.whitemesa.net/wsdl/std/echoheadersvc.wsdl

Setting Up Handlers for Web Services Accessed hy
Aqualogic Data Services Platform

When you import metadata from web services for AquaLogic Data Services Platform, you can create
SOAP handler for intercepting SOAP requests and responses. The handler will be invoked when a web
service method is called. You can chain handlers that are invoked one after another in a specific
sequence by defining the sequence in a configuration file.

To create and chain handlers, follow these two steps:

1. Create Java class implements the interface javax.xml.rpc.handler.GenericHandler.
This will be your handler. (Note that you could create more than one handler. For, example you
could have one named WShandler and one named AuditHandler.) Listing 3-2 shows an example

Data Services Developer's Guide 3-39

../samples_tutorial/index.html

Obtaining Enterprise Metadata

3-40

implementation of a GenericHandler class. Place your handlers in a folder named WShandler in
WebLogic Workshop. (For detailed information on how to write handlers, refer to “Creating SOAP
Message Handlers to Intercept the SOAP Message” in Programming WebLogic Web Services.

Listing 3-2 Example Intercept Handler

package WShandler;

import
import
import
import
import
import
import

/**

* Purpose:

*/

java.util.
javax.
javax.
javax.
javax.
javax.
javax.

xml
xml

Iterator;

.rpc.handler.MessageContext;
.rpc.handler.soap.SOAPMessageContext;
.soap.SOAPElement;
.rpc.handler.HandlerInfo;
.rpc.handler.GenericHandler;
.namespace.QName;

Log all messages to the Server console

public class WShandler extends GenericHandler

{

HandlerInfo hinfo = null;

public void init (HandlerInfo hinfo) {
this.hinfo = hinfo;
System.out.println(“*****************************");
System.out.println("ConsolelLoggingHandler r: init");
System.out.println(

"ConsolelLoggingHandler : init HandlerInfo" + hinfo.toString());

System.out.println(“*****************************");

/**

* Handles incoming web service requests and outgoing callback requests

*/

public boolean handleRequest (MessageContext mc) {
logSoapMessage (mc, "handleRequest") ;
return true;

/**

* Handles outgoing web service responses and
* incoming callback responses

*/

public boolean handleResponse (MessageContext mc) {
this.logSoapMessage (mc, "handleResponse");

Data Services Developer's Guide

http://e-docs.bea.com/wls/docs81/webserv/design.html#1053805
http://e-docs.bea.com/wls/docs81/webserv/design.html#1053805

Importing Web Services Metadata

return true;

/*'k
* Handles SOAP Faults that may occur during message processing
x/
public boolean handleFault (MessageContext mc) {
this.logSoapMessage (mc, "handleFault");
return true;

public QName[] getHeaders() {
QName [] gname = null;
return dgname;

/**

* Log the message to the server console using System.out

*/

protected void logSoapMessage (MessageContext mc, String eventType) {
try{

System‘out'println("*****************************") ;

System.out.println("Event: "+eventType) ;

System.out.prlntln("*****************************") B

}

catch(Exception e){
e.printStackTrace ()

7

/'k*

* Get the method Name from a SOAP Payload.

*/

protected String getMethodName (MessageContext mc) {

String operationName = null;

try{
SOAPMessageContext messageContext = (SOAPMessageContext) mc;
// assume the operation name is the first element
// after SOAP:Body element
Iterator i1 = messageContext.

getMessage () .getSOAPPart () .getEnvelope () .getBody () .getChildElements () ;
while (i.hasNext ())
{
Object obj = i.next();
if (obj instanceof SOAPElement)
{

Data Services Developer's Guide 3-41

Obtaining Enterprise Metadata

SOAPElement e (SOAPElement) obj;
operationName = e.getElementName () .getLocalName () ;
break;

}
catch (Exception e) {
e.printStackTrace () ;

return operationName;

}

2. Define a configuration file in your application. This file specifies the handler chain and the order
in which the handlers will be invoked. The XML in this configuration file must conform to the
schema shown in Listing 3-3.

Listing 3-3 Handler Chain Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.bea.com/2003/03/wlw/handler/config/"
xmlns="http://www.bea.com/2003/03/wlw/handler/config/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="wlw-handler-config">
<xs:complexType>
<Xs:sequence>
<xs:element name="handler-chain" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element name="handler">
<xs:complexType>
<Xs:sequence>
<xs:element name="init-param"
minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xXS:sequence>
<xs:element name="description"
type="xs:string" minOccurs="0"/>
<xs:element name="param-name" type="xs:string"/>
<xs:element name="param-value" type="xs:string"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="soap-header"
type="xs:QName" minOccurs="0" maxOccurs="unbounded" />

3-42 Data Services Developer's Guide

Importing Web Services Metadata

<xs:element name="soap-role"
type="xs:string" minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="handler-name"
type="xs:string" use="optional"/>
<xs:attribute name="handler-class"
type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

The following is an example of the handler chain configuration. In this configuration, there are
two chains. One is named LoggingHandler. The other is named SampleHandler. The first chain
invokes only one handler named AuditHandler. The handler-class attribute specifies the fully
qualified name of the handler.

<?xml version="1.0"?>
<hc:wlw-handler-config name="sampleHandler"
xmlns:hc="http://www.bea.com/2003/03/wlw/handler/config/">
<hc:handler-chain name="LoggingHandler">
<hc:handler
handler-name="handlerl"handler-class="WShandler.AuditHandler" />
</hc:handler-chain>
<hc:handler-chain name="SampleHandler">
<hc:handler
handler-name="TestHandlerl" handler-class="WShandler.WShandler"/>
<hc:handler handler-name="TestHandler2"
handler-class="WShandler.WShandler" />
</hc:handler-chain>
</hc:wlw-handler-config>

In your AquaLogic Data Services Platform application, define the interceptor configuration for the
method in the data service to which you want to attach the handler. To do this, add a line similar
the bold text shown in the following example:

xquery version "1.0" encoding "WINDOWS-1252";

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"
targetType="t:echoStringArray_return"

Data Services Developer's Guide 3-43

Obtaining Enterprise Metadata

3-44

xmlns:t="1d:SampleWS/echoStringArray_ return">
<creationDate>2005-05-24T12:56:38</creationDate>

<webService targetNamespace=
"http://soapinterop.org/WSDLInteropTestRpcEnc"
wsdl="http://webservice.bea.com:7001/rpc/WSDLInteropTestRpcEncService?W
SDL"/></x:xds>::)

declare namespace fl = "ld:SampleWS/echoStringArray return";

import schema namespace tl = "ld:AnilExplainsWS/echoStringArray_return"
at "ld:SampleWS/schemas/echoStringArray paramO.xsd";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="read" nativeName="echoStringArray"
nativeLevellContainer="WSDLInteropTestRpcEncService"
nativeLevel2Container="WSDLInteropTestRpcEncPort" style="rpc">
<params>

<param nativeType="null"/>
</params>
<interceptorConfiguration aliasName="LoggingHandler"
fileName="1d:SampleWS/handlerConfiguration.xml" />

</f:function>::)

declare function fl:echoStringArray ($xl as

element (tl:echoStringArray_param0)) as

schema-element (tl:echoStringArray_return) external;
<interceptorConfiguration aliasName="LoggingHandler"
fileName="1d:testHandlerWS/handlerConfiguration.xml">

Here the aliasName attribute specifies the name of the handler chain to be invoked and the
fileName attribute specifies the location of the configuration file.

Include the JAR file in the library module that defines the handler class referred to in the
configuration file.

Compile and run your application. Your handlers will be invoked in the order specified in the
configuration file.

Data Services Developer's Guide

Importing Java Function Metadata

Importing Java Function Metadata

You can create metadata based on custom Java functions. When you use the Metadata Import wizard
to introspect a . c1ass file, metadata is created around both complex and simple types. Complex
types become data services while simple Java routines are converted into XQueries and placed in an
XQuery function library (XFL). In Source View (see Chapter 8, “Working with XQuery Source”) a
pragma is created that defines the function signature and relevant schema type for complex types
such as Java classes and elements.

In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate Java
function metadata import.

Also see in the AqualLogic Data Services Platform Samples Tutorial:
- Updating Data Services Using Java

- Accessing Data with Java Functions

Supported Java Function Types

Your Java file can contains two types of functions. These are described in Table 3-28:

Table 3-28 Types of Java Functions Supported for Metadata Import

Types of Java Functions Application in AqualLogic Data Services Platform

Functions processing Grouped into an XQuery Function Library file, callable by any data service in
primitive types or arrays of the same application.
primitive types

Functions processing Grouped into a data services, using XMLBean Java-to-XML technology.
complex types or arrays of
complex types

Data Services Developer's Guide 3-45

../samples_tutorial/index.html

Obtaining Enterprise Metadata

Before you can create metadata on a custom Java function you must create a Java class containing
both schema and function information. A detailed example is described in “Creating XMLBean

Support for Java Functions” on page 3-50.

Adding Java Function Metadata Using Import Wizard

Importing Java function metadata is similar to importing relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-8). Here are the Java function-specific

steps involved:

1. Select the AquaLogic Data Services Platform-based project in which you want to create your Java
function metadata. (In the DataServices project of the RTLApp there is a special Demo folder
containing XML, CSV, and Java data and schema samples.)

2. Build your project to validate its contents. A build will create a . c1ass file from your . java
function and place it in your application’s library.

3. Right-click on the Java folder and select Import Source Metadata from the pop-up menu.

4. From the available data sources in the Metadata Import wizard select Java Function (see

Figure 3-29). Click Next.

Figure 3-29 Selecting a Java Function as the Data Source

EQ‘Select data source type

Data Source Type:

Java Function

-]

Delimited Source
Java Function
Relational

Web Service
#ML Source

|| Mext ||

|| Cancel |

5. Your Java .class file must be in your BEA WebLogic application. You can browse to your file or
enter a fully-qualified path name starting from the root directory of your AquaLogic Data Services

Platform-based project.

3-46 Data Services Developer's Guide

Importing Java Function Metadata

Figure 3-30 Specifying a Java Class File for Metadata Import

ta

Look In: | Java

El-[=] DataServices.jar
1 ApparelE
[C) dataServices
=] Dema
B Java
E‘ FuncData.class
(C) Electronicsws
(C) noMamespace
Cora
.

O

-

File: Mame: | Demo,Java.FuncData.class

Files of Types: | Class File

-]

6. Select Java functions for import.

Figure 3-31 Selecting Java Functions to Become Either Data Services or XFL Functions

ta

Available Java Functions

Ik

Remove Al

Java functions with the following input and output types are supported for import:
simple types, XMLBean types, java arrays of simple types and java arrays of XMLBean types

Selected Java Functions

echoBigDecimal
echoBigDecimall
echoBiglnteger
echoBigntegerl
echolnt
echoMaxBiginteger
echostr
getallProducts
getFirstProduct
rnain

|| Cancel |

| Previous | | Mext [\LJ

7. Java functions with the following input and output types are supported for import:

Data Services Developer's Guide

3-41

Obtaining Enterprise Metadata

3-48

8.

e Simply types
o XMLBean types
e Java arrays of simple types

e Java arrays of XMLBean types

Identify which, if any, Java function-based data services should be identified as having
side-effects.

It is often convenient to leverage independent routines as part of managing enterprise
information through a data service. An obvious example would be to leverage standalone update
or security functions through data services. Such functions have noXML type; in fact they
typically return nothing (or void). Instead the data service knows that the routine has
side-effects, but those effects are not transparent to the service. AquaLogic Data Services
Platform procedures can also be thought of as side-¢ffecting functions.

Java functions are “side-effecting” from the perspective of the data service when they perform
internal operations on data.

After you have identified the Java functions that you want to add to your project, you can also
identify which, if any, of these should be treated as AquaLogic Data Services Platform
procedures (Figure 3-32). In the case of main(), the Metadata Import wizard detects that it
returns void so it is already marked as a procedure.

Data Services Developer's Guide

Importing Java Function Metadata

Figure 3-32 Marking Java Functions as AquaLogic Data Services Platform Procedures

& Select Side Effect Procedures

Select: Side Effect Procedure

Procedure

O

echoBigDecimal

echoBigDecimall

echoBiginteger

echoBigintegerl

echoMaxBiginteger

echolnt

Oojoooio|o

echogtr

&

qgetFirstProduct

|

getallProducts

rain

| Previous | | Next% | | | Cancel |

Functions based around atomic (simple) types are collected in an identified XML function

library (XFL) file.

Note: Side-effecting procedures must to be associated with a data service that is from the same data
source. In this case, the source is your Java file. In other words, in order to specify a Java
function as a procedure, a function in the same file that returns a complex element must
either be created at the same time or already exist in your project.

9. Click Next to verify the name and location of your new data service(s).

Data Services Developer's Guide 3-49

Obtaining Enterprise Metadata

Figure 3-33 Java Function Imported Data Summary Screen

& Summary
The following data service(s) will be created. Edit suggested name(s) as needed.
Function Mame Type Data Service Mame Add ko Existing Data 5...

getallProducts PRODUCTS PRODUCTS %
The following side effect procedure(s) will be created. Edit suggested name(s) as needed.

Procedure Name Data Service Mame
qgetFirstPraduct sl
rain =]
These function{s) will be saved to the specified XML library file:

Function Marme Library Mame Add ko Existing Library File
echoBigDecimal, echoBigDecimal... | library |%
Location | D:\beaiweblogicdisamplesiLiquidDatalR TLAPP Dataservices | | Browse, .. |
| Previous | | | Finish | Cancel |

You can edit the proposed data service name either for clarity or to avoid conflicts with other
existing or planned data services. All functions returning complex data types will be in the
same data service. Click on the proposed data service name to change it.

Procedures must be associated with a data service that draws data from the same data source
(Java file). In the sample shown in Figure 3-33, the only available data service is PRODUCTS
(or whatever name you choose).

If there are existing XFL files in your project you have the option of adding atomic functions to
that library or creating a new library for them. All the Java file atomic functions are located in
the same library.

10. Click Finish.

Creating XMLBean Support for Java Functions

Before you can import Java function metadata, you need to create a . c1ass file that contains
XMLBean classes based on global elements and compiled versions of your Java functions. To do this,
you first create XMLBean classes based on a schema of your data. There are several ways to

3-50 Data Services Developer's Guide

Importing Java Function Metadata

accomplish this. In the example in this section you create a WebLogic Workshop project of type
Schema.

Generally speaking, the process involves:

e Creating a WebLogic Workshop project of type Schema. Schema projects (and applications)
generate XMLBeans from schema files.

e Importing a schema (. xsd file) representing the shape of the global elements invoked by your
function.

e Importing your custom Java function into your AquaLogic Data Services Platform-based project
or Java project.

o Building your application to create a Java . c1ass file, if under a AquaLogic Data Services
Platform-based project, or you can add the JAR file from a Java project to the Library folder of
your application.

e (reating metadata for your data service based on the .c1ass file.

e Use the resulting data service or functions in your application.

Note: The Java function import wizard requires that all the complex parameter or return types used
by the functions correspond to XMLBean global element types whose content model is an
anonymous type. Thus only functions referring to a top level element are importend.

Creating a Metadata-enriched Java Class: An Example

In the following example there are a number of custom functions in a . java file called

FuncData.java. In the RTLApp this file can be found at:
ld:DataServices/Demo/Java/FuncData.java

Some functions in this file return primitive data types, while others return a complex element
(Table 3-34). The complex element representing the data to be introspected is in a schema file called
FuncData.xsd.

Table 3-34 Metadata-enriched Java Class Artifacts

File Purpose

FuncData.java Contains Java functions to be converted into data service
query functions. Also contains as small data sample.

FuncData.xsd Contains a schema for the complex element identified in
FuncData.java

Data Services Developer's Guide 3-51

Obtaining Enterprise Metadata

3-52

The schema file can be found at:

ld:DataServices/Demo/Java/schema/FuncData.xsd

To simplify the example a small data set is included in the . java file as a string.

The following steps will create a data service from the Java functions in Funcbata.java:

1.
2.

Create a new AquaLogic Data Services Platform-based application called CustomFunctions.
Create a new project of type Schema in your application; name it Schemas.

Right-click on the newly created Schemas project and select the Import... option.

Browse to the RTLApp and select Funcbata . xsd for import.

Importing a schema file into a schema project automatically starts the project build process.

When successful, XMLBean classes are created for each function in your Java file and placed in
a JAR file called savaFunctSchema.jar

The JAR file is located in the Libraries section of your application.
Build your project.

In your AquaLogic Data Services Platform-based project (customFunctionsDataServices) create a
folder called JavaFuncMetadata.

Right-click on the newly created JavaFuncMetadata folder and select the Import... option.

Browse to the 1d:DataServices/Demo/Java folder in the RTLApp and select
FuncData.java for import. Click Import.

Build your project.

The JAR file named for your AquaLogic Data Services Platform-based project is updated to
include a. class file named FuncbData.class; It is this file that can be introspected by the
Metadata Import wizard. The file is located in a folder named JavaFuncMetadata in the Library
section of your application.

Data Services Developer's Guide

Importing Java Function Metadata

Figure 3-35 Class File Generated Java Function XML Beans

Aq:lication | Files ™. *
29 JavaTest

=23 JavaFuncschema
I MFL Classes
[C1 %ML Bean Classes
|<—j FuncData.xsd
=] @ JavaTestDataServices
=29 FuncDataMetadata
"Z FuncData.java
(£ javaFunction
[T META-INF
|<—j sdo,xsdconfig
|<—j xquery-types, xsd
(C) Modules
29 Libraries
- [=] JavaFuncschema.jar
(C) noMamespace
[C schema
=] Q JavaTestDataServices. jar
=29 FuncDataMetadata
@ FuncData.class
(C1 JavaTestDataServices
[T META-INF
Cora
[C schema
gj sdo,xsdconfig
Q ld-server-app.jar
(3 Security Rales

10. Now you are ready to create metadata from your Java function. These steps are described in
“Adding Java Function Metadata Using Import Wizard” on page 3-46.

Inspecting the Java Source

The . java file used in this example contains both functions and data. More typically, your routine will
access data through a data import function.

The first function in Listing 3-4 simply retrieves the first element in an array of PRODUCTS. The
second returns the entire array.

Listing 3-4 JavaFunc.java getFirstPRODUCT() and getAlIPRODUCTS() Functions

public class JavaFunc {

public static noNamespace.PRODUCTSDocument.PRODUCTS getFirstProduct () {

Data Services Developer's Guide 3-53

Obtaining Enterprise Metadata

noNamespace.PRODUCTSDocument . PRODUCTS products = null;
try{
noNamespace.DbDocument dbDoc =
noNamespace.DbDocument.Factory.parse (testCustomer) ;
products = dbDoc.getDb () .getPRODUCTSArray (1) ;
//return products;
}catch (Exception e) {
e.printStackTrace() ;
}
return products;

}

public static noNamespace.PRODUCTSDocument.PRODUCTS[] getAllProducts () {
noNamespace.PRODUCTSDocument.PRODUCTS[] products = null;
tryf
noNamespace.DbDocument dbDoc =
noNamespace.DbDocument.Factory.parse (testCustomer) ;
products = dbDoc.getDb () .getPRODUCTSArray () ;
//return products;
}catch (Exception e) {
e.printStackTrace () ;
}

return products;

The schema used to create XMLBeans is shown in Listing 3-5. It simply models the structure of the
complex element; it could have been obtained by first introspecting the data directly.

Listing 3-5 B-PTest.xsd Model Complex Element Parsed by Java Function

<xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="db">
<xs:complexType>
<xs:sequence>
<xs:element ref="PRODUCTS" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AVERAGE SERVICE COST" type="xs:decimal"/>

3-54 Data Services Developer's Guide

Importing Java Function Metadata

<xs:element name="LIST PRICE" type="xs:decimal"/>
<xs:element name="MANUFACTURER" type="xs:string"/>
<xs:element name="PRODUCTS">
<xs:complexType>
<xs:sequence>
<xs:element ref="PRODUCT NAME"/>
<xs:element ref="MANUFACTURER"/>
<xs:element ref="LIST PRICE"/>
<xs:element ref:"PRODUCTiDESCRIPTION"/>
<xs:element ref="AVERAGE SERVICE COST"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="PRODUCT DESCRIPTION" type="xs:string"/>
<xs:element name="PRODUCT NAME" type="xs:string"/>

</xs:schema>

Java functions require that an element returned (as specified in the return signature) come from a
valid XML document. A valid XML document has a single root element with zero or more children, and
its content matches the schema referred.

Listing 3-6 Approach When Data is Retrieved Through a Document

public static noNamespace.PRODUCTSDocument.PRODUCTS getNextProduct () {

// create the dbDocument (the root)

noNamespace.DbDocument dbDoc =
noNamespace.DbDocument.Factory.newInstance () ;

// the db element from it

noNamespace.DbDocument.Db db = dbDoc.addNewDb () ;

// get the PRODUCTS element

PRODUCTS product = db.addNewPRODUCTS () ;

//.. create the children

product.setPRODUCTNAME ("productName") ;

product.setMANUFACTURER ("Manufacturer") ;

product.setLISTPRICE (BigDecimal.valueOf ((long)12.22));

product.setPRODUCTDESCRIPTION ("Product Description");

product.setAVERAGESERVICECOST (BigDecimal.valueOf ((long) 122.22));

Data Services Developer's Guide 3-55

Obtaining Enterprise Metadata

// .. update children of db
db.setPRODUCTSArray (0, product) ;

// .. update the document with db
dbDoc.setDb (db) ;

//.. now dbDoc is a valid document with db and is children.
// we are interested in PRODUCTS which is a child of db.
// Hence always create a valid document before processing the
children.
// Just creating the child element and returning it, is not
// enough, since it does not mean the document is valid.
// The child needs to come from a valid document, which is created
// for the global element only.

return dbDoc.getDb () .getPRODUCTSArray (0);

3-56

How Metadata for Java Functions Is Created

In AquaLogic Data Services Platform, user-defined functions are typically Java classes. The following
are supported:

e Java primitive types and single-dimension arrays.

e (Global elements, global complex types, and global arrays through XMLBean classes.

In order to support this functionality, the Metadata Import wizard supports marshalling and
unmarshalling so that token iterators in Java are converted to XML and vice-versa.

Functions you create should be defined as static Java functions. The Java method name when used in
an XQuery will be the XQuery function name qualified with a namespace.

Table 3-36 shows the casting algorithms for simple Java types, schema types and XQuery types.
Tahle 3-36 Simple Java Types and XQuery Counterparts

Java Simple or Defined Type Schema Type
boolean xs:boolean
byte xs:byte
char xs:char

Data Services Developer's Guide

Importing Java Function Metadata

Tahle 3-36 Simple Java Types and XQuery Counterparts

Java Simple or Defined Type

Schema Type

double xs:double
float xs:float
int xs:int
long xs:long
short xs:short
string xd:string

java.lang.Date

xs:datetime

java.lang.Boolean

xs:boolean

java.math.BigInteger

xXs:integer

java.math.BigDecimal

xs:decimal

java.lang.Byte

xs.byte

java.lang.Char

xs:char

java.lang.Double

xs:double

java.lang.Float

xs:float

java.lang.Integer

xXs:integer

java.lang.Long xs:long
java.lang.Short xs:short
java.sgl.Date xs:date
Jjava.sql.Time Xs:time

java.sgl.Timestamp

xs:datetime

java.util.Calendar

xs:datetime

Data Services Developer's Guide 3-57

Obtaining Enterprise Metadata

Java functions can also consume variables of XMLBean type that are generated by processing a
schema via XMLBeans. The classes generated by XMLBeans can be referred in a Java function as
parameters or return types.

The elements or types referred to in the schema should be global elements because these are the only
types in XMLBeans that have static parse methods defined.

The next section provides additional code samples that illustrate how Java functions are used by the
Metadata Import wizard to create data services.

Technical Details, with Additional Example Code

In order to create data services or members of an XQuery function library, you would first start with a
Java function.

Processing a Function Returning an Array of Java Primitives

As an example, the Java function getListGivenMixed() can be defined as:

public static float[] getListGivenMixed (float[] fpList, int size) {
int listLen = ((fplList.length > size) ? size : fpList.length);
float fplListop = new float[listLen];

for (int i =0; i < listLen; i++)

fpListop[i]=fpList[i];

return fpListop;

}

After the function is processed through the wizard the following metadata information is created:
xquery version "1.0" encoding "WINDOWS-1252";

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com">
<creationDate>2005-06-01T14:25:50</creationDate>
<javaFunction class="DocTest"/>

</xixfl>::)

declare namespace fl = "lib:testdoc/library";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
nativeName="getListGivenMixed">
<params>
<param nativeType="[F"/>
<param nativeType="int"/>
</params>
</f:function>::)

declare function fl:getlistGivenMixed ($x1l as xsd:float*, $x2 as xsd:int) as
xsd:float* external;

3-58 Data Services Developer's Guide

Importing Java Function Metadata

Here is the corresponding XQuery for executing the above function:

declare namespace fl = "ld:javaFunc/float";
let $y := (2.0, 4.0, 6.0, 8.0, 10.0)
let $x := fl:getlListGivenMixed ($Sy, 2)

return $x

Processing complex types represented via XMLBeans
Consider that you have a schema called Customer (customer . xsd), as shown below:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema targetNamespace="1ld:xml/cust:/BEA BB10000"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="CUSTOMER">

<xs:complexType>

<xs:sequence>

<xs:element name="FIRST NAME" type="xs:string" minOccurs="1"/>
<xs:element name="LAST NAME" type="xs:string" minOccurs="1"/>
</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

If you want to generate a list conforming to the CUSTOMER element you could process the schema via
XMLBeans and obtain xm1 . cust .beaBB10000.CUSTOMERDocument . CUSTOMER. Now you can use
the CUSTOMER element as shown:

public static xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER []
getCustomerListGivenCustomerList (
xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER[] ipListOfCust)
throws XmlException {
xml.cust.beaBB10000.CUSTOMERDocument.CUSTOMER [] mylocalver =
ipListOfCust;

return mylocalver;

}
Then the metadata information produced by the wizard will be:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="datasource" access="public">

<params>

<param nativeType="[Lxml.cust.beaBB10000.CUSTOMERDocument$CUSTOMER; " />
</params>

</f:function>::)

declare function fl:getCustomerListGivenCustomerList ($x1 as
element (t1:CUSTOMER) *) as element (t1l:CUSTOMER) * external;

The corresponding XQuery for executing the above function is:

Data Services Developer's Guide 3-59

Obtaining Enterprise Metadata

declare namespace fl = "1ld:javaFunc/CUSTOMER";
let Sz := (

validate (<n:CUSTOMER
xmlns:n:"ld:xml/cust:/BEA_BBIOOOO"><FIRST_NAME>John2</FIRST_NAME><LAST_
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>) ,

validate (<n:CUSTOMER
xmlns:n="1d:xml/cust:/BEA BB10000"><FIRST NAME>John2</FIRST NAME><LAST
NAME>Smith2</LAST7NAME>

</n:CUSTOMER>) ,

validate (<n:CUSTOMER
xmlns:n="1d:xml/cust:/BEA BB10000"><FIRST NAME>John2</FIRST NAME><LAST
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>) ,

validate (<n:CUSTOMER
xmlns:n:"ld:xml/cust:/BEA_BBIOOOO"><FIRST_NAME>John2</FIRST_NAME><LAST_
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>))

for $zz in $z
return
fl:getCustomerListGivenCustomerList ($z)

Restrictions on Java Functions

The following restrictions apply to Java functions:
e Function overloading is based on the number of arguments; not on the types of the parameter.
e Array support is restricted to single-dimension arrays only.

o In functions returning complex types the return element needs to be extracted from a valid
XML document.

3-60 Data Services Developer's Guide

Importing Delimited File Metadata

Importing Delimited File Metadata

Spreadsheets offer a highly adaptable means of storing and manipulating information, especially
information which needs to be changed quickly. You can easily turn such spreadsheet data in a data
services.

Spreadsheet documents are often referred to as CSV files, standing for comma-separated values.
Although CSV is not a typical native format for spreadsheets, the capability to save spreadsheets as
CSV files is nearly universal.

Although the separator field is often a comma, the Metadata Import wizard supports any ASCII
character as a separator, as well as fixed-length fields.

Note: Delimited files in a single server must share the same encoding format. This encoding can be
specified through the system property ld.csv.encoding and set through the JVM
command-line directly or via a script such as startWebLogic.cmd (Windows) or
startWebLogic.sh (UNIX).

Here is the format for this command:
-Dld.csv.encoding=<encoding format>

If no format is specified through ld.csv.encoding, then the format specified in the
file.encoding system property is used.

In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate delimited
file metadata import.

Also see in the Aqualogic Data Services Platform Samples Tutorial:

- Accessing Data in Flat Files

Providing a Document Name, a Schema Name, or Both

There are several approaches to developing metadata around delimited information, depending on
your needs and the nature of the source.

e Provide a delimited document name only. If you supply the Metadata Import wizard with the
name of a valid CSV file, the wizard will automatically create a schema based on the columns in
the document. All the columns will be of type string, although you can later modify the
generated schema with more accurate type information.

Data Services Developer's Guide 3-61

../samples_tutorial/index.html
../samples_tutorial/index.html

Obtaining Enterprise Metadata

3-62

Note: The generated schema takes the name of the source file.

e Providing a schema name only. This option is typically used when the source file is dynamic;

for example, when data is streamed.

o Providing both a schema and a document name. Providing a schema gives you the ability to

more accurately type information in the columns of a delimited document.

Using the Metadata Import Wizard on Delimited Files

Importing XML file information is similar to importing a relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-8). Here are the steps that are involved:

1.

Select the project in which you want to create your delimited file metadata. For example, if you
have a project called myProject right-click on the project name and select Import Source Metadata
from the pop-up menu.

From the available data sources in the Metadata Import wizard select Delimited Source as the
data type (see Figure 3-37).

Figure 3-37 Selecting a Delimited Source from the Import Metadata Wizard

3.

&&elect data source type

Data Source Type: | Delimited Source -

Delimited Source
Java Function
Relational

Web Service
#ML Source

| || Mext || || Cancel |

You can supply either a schema name, a source file name, or both. Through the wizard you can
browse to a file located in your project. You can also import data from any CSV file on your system
using an absolute path prepended with the following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root
C: directory using the following URI:

file:///<c:/home>/Orders.csv

On a UNIX system, you would access such a file with the URI:

Data Services Developer's Guide

Importing Delimited File Metadata

file:///<home>/Orders.csv
4. Select additional import options:

— Header. Indicates whether the delimited file contains header data. Header data is located
in the first row of the spreadsheet. If you check this option, the first row will not be treated
as data.

— Delimited or Fixed Width. Data in your file is either separated by a specific character
(such as a comma) or is of a fixed width (such as 10 spaces). If the data is delimited, you
also need to provide the delimited character. By default the character is a comma (,).

Figure 3-38 Specifying Import Delimited Metadata Characteristics

& Select Delimited Source

~Specify a schema file, a delimited file, or bath files:

Schema File Browse. ..

Delimited Source | Data\RTLAppiDataServices\DemoiFlatFilesiFlatFileConsumer\DatatcdTitles_Large.csy || Browse..,

Has Header %
(@) Delimited ") Fixed Width

Delimiter | ,

| Previous | | Mext | | | | Cancel |

5. Once you have selected a document and, optionally, a schema, click Next to verify the location and
unique location/name of your new data service.

Data Services Developer's Guide 3-63

Obtaining Enterprise Metadata

Figure 3-39 Delimited Document Imported Data Summary Screen

& Summary
The following data service(s) will be created. Edit suggested name(s) as needed.
AML Type Marme

-] =]

cdTitles_Large cdTitles_Large =
Target Namespace | |
Location | [:\bealweblogics1isamplesiLiquidDatalR TLAppiDataServices | | Browse, .. |

| Previous | | | | Finish | | Cancel |

You can edit the data service name either to clarify the name or to avoid conflicts with other
existing or planned data services. Any name conflicts are displayed in red. To change the name,
double click on the name of the data service to activate the line editor.

6. Click Finish. A data service (. ds file) will be created with your schema as its XML type.
Note: When importing CSV-type data there are several things to keep in mind:

e The number of delimiters in each row must match the number of header columns in
your source minus one (# of columns-1). If subsequent rows contain more than the

maximum number of delimiters (fields), subsequent use of the data service will not be
successful.

o If the delimited file has rows with a variable number of delimiters (fields), you can
supply a schema that contains optional elements for the trailing set of extra elements.

o Not all characters are not equal. Some may need special escape sequences before
spreadsheet data can be accessed at run-time.

3-64 Data Services Developer's Guide

Importing XML File Metadata

Importing XML File Metadata

XML files are a convenient means of handling hierarchical data. XML files and associated schemas are
easily turned into data services.

Importing XML file information is similar to importing a relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-8).

The Metadata Import wizard allows you to browse for an XML file anywhere in your application. You
can also import data from any XML file on your system using an absolute path prepended with the
following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root C:
directory using the following URI:

file:///c:/Orders.xml

On a UNIX system, you would access such a file with the URI:

file:///home/Orders.xml

XML File Import Sample

In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate XML file
metadata import.

Here are the steps involved:

1. Select your AquaLogic Data Services Platform-based project in which you want to create your XML
file metadata. For example, if you have a project called myProject, right-click on the project name
and select Import Metadata... from the pop-up menu.

2. From the available data sources in the Metadata Import wizard select XML Source.

Data Services Developer's Guide 3-65

Obtaining Enterprise Metadata

Figure 3-40 Selecting an XML File from the Import Metadata Wizard

Dl Select data source type

Data Source Type: | WML Source

Delimited Source
Java Function
Relational

Web Service

#ML Source #ML Source

| || Mext || || Cancel |

3. Inorder to access XML data you must first identify a schema; the schema must be located in your

application.

Figure 3-41 Specify an XML File Schema for XML Metadata Import

& %ect XML Source

~Specify a schema file:

Schema File rataServicesschemasiCustomerCredit, xsd

Browse. ..

¥ML Source {optional)

Browse. ..

| Previous | | Mext | | | | Cancel |

4, Optionally specify an XML file. If the XML file exists in your AquaLogic Data Services
Platform-based project you can simply browse to it. More likely your document is available as a
URI, in which case you want to leave the XML file field empty and supply a URI at runtime.

5. Once you have selected a schema and optional document name, click Next to verify that the name

of your new data service is unique to your application.

3-66 Data Services Developer's Guide

Importing XML File Metadata

Figure 3-42 XML File Imported Data Summary Screen
ﬁSummaryr

The wizard will create the following XML Data Service file. Edit file names, if needed.

Source Files #ML Data Service Mame
Ciibealuser_projectstapplicationsidanubeDemolDataServices\CUSTOMER _WILLA. xsd | CUSTOMER

Ciibealuser_projectstapplicationsidanubeDemolDataServices\CUSTOMER., xml

Location | C:ibealuser_projectsiapplicationsidanube)\Demo || Browse, .. |

| Previous | | | | Finish | | Cancel |

You can edit the data service name either to clarify the name or to avoid conflicts with other
existing or planned data services. Conflicts are shown in red. Simply click on the name of the
data service to change its name. Then click Next.

6. Next select a global element in your schema (Figure 3-43). Click Ok.

Figure 3-43 A Selecting a Global Element When Importing XML Metadata

& Select Global Element DHalog

Please select a global element:
wilcusts %
CITY

CUSTOMER.

CUSTOMER._ID
EMAIL_ADDRESS
FIRST_MAME

LAST_MAME

7. Complete the importation of your procedures by reviewing and accepting items in the Summary
screen (see step 4 in “Importing Relational Table and View Metadata” for details).

Data Services Developer's Guide 3-67

Obtaining Enterprise Metadata

3-68

Also see in the Aqualogic Data Services Platform Samples Tutorial:

- Filtering, Sorting, and Truncating XML Data

- Accessing Data in XML Files

Testing the Metadata Import Wizard with an XML Data
Source

When you create metadata for an XML data source but do not supply a data source name, you will need
to identify the URI of your data source as a parameter when you execute the data service’s read
function (various methods of accessing data service functions are described in detail in the Client
Application Developer’s Guide).

The identification takes the form of:

<uri>/path/filename.xml

where uri is representative of a path or path alias, path represents the directory and filename.xml
represents the filename. The . xm1 extension is needed.

You can access files using an absolute path prepended with the following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root C:
directory using the following URI:

file:///c:/Orders.xml

On a UNIX system, you would access such a file with the URI:

file:///home/Orders.xml

Figure 3-44 shows how the XML source file is referenced.

Data Services Developer's Guide

../appdev/index.html
../appdev/index.html
../samples_tutorial/index.html

Updating Data Source Metadata

Figure 3-44 Specifying an XML Source URI in Test View

OrderskML.ds - {DataServicesH, 4

Select Function:
|-B Orders{x1) | - |

Farameters

wsdistring ®1: | Id:DataServices Demo/XMLIOrders, xml |

Mumber Element hy path)

Limit elements in array results to:

[s0]| [~]
[start Client Transaction
Result [Tem || me

- <miOrders xminsin="ld:DataServicesDemofXMLischemas/Crder xsd" xmlns:xsi="http:,|’,|’www.\E
- <MWL_CUSTOMER_ORDER =
<WL_ORDER_DATE > 2002-04-09 </l _ORDER_DATE>
<WL_ORDER_ID> ORDER_ID_1_0 </%L_ORDER_ID:=
WL _CUSTOMER_ID= CUSTOMER_1 </WL_CUSTOMER_ID=
<WL_TOTAL_ORDER_AMOUNT> 11000.00 </%L_TOTAL_ORDER_AMOUNT =
<l _CUSTOMER_ORDER =
+ <MWL_CUSTOMER_ORDER =
+ <MWL_CUSTOMER_ORDER =
+ =Wl _CUSTOMER_ORDER = =

[0 0]

Updating Data Source Metadata

When you first create a physical data service its underlying metadata is, by definition, consistent with
its data source. Over time, however, your metadata may become “out of sync” for several reasons:

o The structure of underlying data sources may have changed, in which case it is important to be
able to identify those changes so that you can determine when and if you need to update your
metadata.

e You have modified schemas or added relationships to your data service.

You can use the Update Source Metadata right-click menu option to identify differences between your
source metadata files and the structure of the source data including:

e Object added
e Object deleted

Data Services Developer's Guide 3-69

Obtaining Enterprise Metadata

3-10

e Object modified

e Source Unavailable

In the case of Source Unavailable, the issue likely relates to connectivity or permissions. In the case
of the other types of reports, you can determine when and if to update data source metadata to
conform with the underlying data sources.

If there are no differences between your metadata and the underlying source, the Update Source
Metadata wizard will report up-to-date for each data service tested.

Considerations When Updating Source Metadata

Source metadata should be updated with care since the operation can have both direct and indirect
consequences. For example, if you have added a relationship between two physical data services,
updating your source metadata can potentially remove the relationship from both data services. If the
relationship appears in a model diagram, the relationship line will appear in red, indicating that the
relationship is no longer described by the respective data services.

In many cases the Update Source Metadata Wizard can automatically merge user changes with the
updated metadata. See “Using the Update Source Metadata Wizard,” for details.

Direct and Indirect Effects

Direct effects apply to physical data services. Indirect effects occur to logical data services, since such
services are themselves ultimately based — at least in part — on physical data service. For example,
if you have created a new relationship between a physical and a logical data service, updating the
physical data service can invalidate the relationship. In the case of the physical data service, there
will be no relationship reference. The logical data service will retain the code describing the
relationship but it will be invalid if the opposite relationship notations is no longer be present.

Thus updating source metadata should be done carefully. Several safeguards are in place to protect

your development effort while preserving your ability to keep your metadata up-to-date. See “Archival
of Source Metadata” on page 3-74 for information of how your current metadata is preserved as part
of the source update.

Using the Update Source Metadata Wizard
The Update Source Metadata wizard allows you to update your source metadata.

Note: Before attempting to update source metadata you should make sure that your build project
has no errors.

Data Services Developer's Guide

Updating Data Source Metadata

Figure 3-45 Updating Source Metadata for Several Data Services
| Application *
Y RTLApP

=] Datas —

a AJ @ Find in Files. ..
i = Mew »
Cac
Cap
CEl Build DataServices
CIME Clean DataServices
Cam
CarT
Cdss Delste

:[E cy Remove from Application

:[ECL

Install 4

Import...

Rename
gl ®
:[E fe] Irmport Source Metadata. ..
|<—j sd

Update Source Metadata,

Bu
|<—j xc‘ Properties
& Elecws
(3 RTLSelfService
Schemas
£ Modules
29 Libraries
[DataServices.jar
[ElecDBTest.jar
Q ld-server-app.jar
Q LiquidDataContral jar
Q Schemas. jar
(3 Security Rales

O B

£ Ea R IR e

You can verify that your data structure is up-to-date by performing a metadata update on one or
multiple physical data services in your AquaLogic Data Services Platform-based project. For example,
in Figure 3-45 all the physical data services in the project will be updated.

After you select your target(s), the wizard identifies the metadata that will be verified and any
differences between your metadata and the underlying source.

You can select/deselect any data service or XFL file listed in the dialog using the checkbox to the left
of the name (Figure 3-46).

Data Services Developer's Guide 3-N1

Obtaining Enterprise Metadata

Figure 3-46 Data Services Metadata to be Updated

&

Dl Metadata Update Targets

The following local data services and libraries will be updated:
C1 Data Service(s) and library filefs) for Metadata Update
=] 1 coDatasourcez
QIB |d:DataServices!ServiceDB/SERVICE _CASE . ds
=] 1 coDatasource
QIB |d:DataServices!ApparelDBfCUSTOMER _ORDER.ds
QIE ld:DataServices/CustomerDE/CUSTOMER. ds
QIB Id:DataServices/CustomerDEfADDRESS. ds
=] 1 coDakasourcel
QIB ld:DataServices!ApparelDB{CUSTOMER _ORDER_LIME_ITEM.ds
QIB |d:DataServices)ApparelDE/PRODUCT ds
=] 1 coDatasources
QIB Id:Dataservices/BilingDE/CREDIT_CARD.ds
= 1 htkpy/flocalhost: 7001 /Elecvws/rontrols ElecDETest, juws?WSDL= L
QIB |d:DataServices/Electronicsws/getProductList . ds
QIE |d:DataServices Electronicsws/getCustomer OrderByCustomer 1D, ds
QIB ld:DataServices Electronicsws/getCustomer OrderByOrder 1D, ds
= 1 Demo.Java.JavasourceZCentral
QIB Id:Dataservices/Demof JavaiPhysical/ShipSourcez . ds
= I:l Dema, InverseFunction. functions, LastMameFirstMamme
|<—j lib: DataServices/DemojInverseFunctionlibrary froncatLibrary «fl
=] 1 pemo.Java.FuncData
|<—j lib: DataServices/Demo) lavaPhysicalflibrary, xfl
18 :Dataservices/Demoj JavalPhysical PRODUCTS. ds =

[|]

]

| Mext [‘H || Cancel |

Metadata Update Analysis
Next, an analysis is performed on your metadata by the wizard. The following types of synchronization

mismatches are identified:

e Structural differences between the data source and the metadata. These will be resolved in
favor of the data source and includes generated schema (data services XML type) based on the
physical source.

o Differences that will be overwritten in favor of the values coming from the data source.

o Additions and modifications to the physical data service that will automatically be merged back
into the updated metadata. This includes data service functions.

A update preview screen report (Figure 3-47) is prepared describing these differences both generally
and for field-level data.

3-12 Data Services Developer's Guide

Updating Data Source Metadata

Figure 3-47 Metadata Update Plan for RTLApp’s DataServices Project

&I Metadata Update Preview &3
p

The Following changes will be made to the local data services and libraries:
20 Id:DataServices| [2]
{8 |d:Dataservices/ServiceDB/SERWICE_CASE.ds Up-to-date
{18 Id:Dataservices/CustomerDB/CUSTOMER. ds Up-to-date
= {1 Id:Dataservices/CustomerDB/ADDRESS. ds Modified
= & MetaData Changes Applied
= [& Function Madified
>> {ld:Dataservices/CustomerDE/ADDRESS hget CUSTOMER({id: DataServices/Customer DE/ADDRESSHADDRESS) returns {Id:DataServices/CustomerDE/CLSTOMER}CUSTOMER, {1}
<< {ld:Dataservices/CustomerDE/ADDRESS hget CUSTOMER({id: DataServices/Customer DE/ADDRESSHADDRESS) returns {Id:DataServices/CustomerDE/CLSTOMER}CUSTOMER, {¥
= User changes carried forward
= [& Function Madified
5[] 41d:Dataservices/Customer DB ADDRESSFADDRESS() returns {id:DataServices{CustomerDE/ADDRESSHADDRESS {+}
= [0] Nan-Cacheable
>> false
<< true %
{18 |d:Dataservices ApparelDB/CUSTOMER_ORDER. ds Up-to-date
{18 |d:Dataservices ApparelDB/PRODUCT ds Up-to-date
=) §18 Id:Dataservices ApparelDE/CUSTOMER _ORDER_LINE_ITEM.ds Modified
= & MetaData Changes Applied
= [& Function Madified
>> {ld:Dataservices/AppareDB/CUSTOMER_ORDER,_LINE_ITEM}getPRODUCT({ld: DataServices| ApparelDE{CUSTOMER,_ORDER _LINE _ITEMHCUSTOMER_ORDER,_LINE_ITEM) return
<< {/d:DataServices/ApparelDE/CUSTOMER_ORDER_LINE_ITEM} getPRODUCT({ldiDataServices/ApparelDB/CUSTOMER_ORDER_HINE_ITEMHCUSTOMER_ORDER_LINE_ITEM) return < |

< | [l

Tree Wiew Source Yiew

O Finish, this update report wil be saved as file Idiupdatetstadataistory/metadata-diff <timestamp> xml

[Previous | | | [Fnisn || cancal |

The Metadata Update Preview screen identifies:

o Metadata changes to be applied. These changes are necessary in order for the physical data
service to remain a valid representation of a underlying physical data source.

o User changes dropped. These are changes which cannot be merged into the updated metadata.

o User changes carried forward. These are changes will can be merged into the update
metadata.
Icons differentiate elements as to be added, removed, or changed. Table 3-48 describes the update
source metadata message types and color legends.

Tahle 3-48 Source Metadata Update Targets and Color Legend

Category Color Description

Data source field added Green A data source field has been added since
the last metadata update.

Data service schema (XML type) modified ~ Black A change has been made in a schema that
was derived from a data source.

Data Services Developer's Guide 3-13

Obtaining Enterprise Metadata

3-14

Tahle 3-48 Source Metadata Update Targets and Color Legend

Category Color Description

Data source field deleted Red A field used by your metadata is no longer
appearing in source.

Field modified Blue A field in your metadata does not exactly
match the data source field.

Function modified Blue A function in your metadata does not
exactly match the data source function.

Synchronization Mismatches

Under some circumstances the Update Source Metadata wizard flags data service artifacts as changed
locally when, in fact, no change was made.

For example, in the case of importing a Web service operation, a schema that is dependent (or
referenced) by another schema will be assigned an internally-generated filename. If a second
imported Web service operation in your project references the same dependent schema, upon
synchronization the wizard may note that the name of the imported secondary schema file has
changed. Simply proceed with synchronization; the old second-level schema will automatically be
removed.

Archival of Source Metadata

When you update source metadata two files are created and placed in a special directory in your
application:
e A copy of the update report in the form:

1d:/updateMetadataHistory/metadatadiff<timestamp>.xml

e The XQuery source data services and other artifacts that were overwritten by the update
operation are saved in the form of:

1d:/updateMetadataHistory/sourceBackUp<timestamp>.zip

An update metadata source operations assigns the same timestamp to both generated files.

Data Services Developer's Guide

Updating Data Source Metadata

Figure 3-49 UpdateMetadataHistory Directory Sample Content

L7 D:\beaweblogic 81\samples\LiquidData\RTLApp\updateMetadataHistory

File Edit View Favorites Tools Help

1) domains
1) inkegration
=3 LiquidData
1 Demo
1) EvalGuide
=3 RTLAPR
10 workshop
03 APP-INF
1) DataServices
1 Elecw's
10 Idejbtrmp
) META-INF
10 RTLSelFService
10 Schemas
) updateMetadataHistory [«
< > [<]

Folders x Mame
[integration | [Zlmetadata-dif1116277532161 xml |
) javelin " [®]metadata-diff1116290621650.ml
123 liquiddata If@sourceBacld_lpl1162??5321!31.2“3
23 pi3n If@sourceBacld_lpl116290!321!350.2“3
12 portal
=-3) samples %

Size
56 KB
3KB
16 KB
& KB

eI

Tvpe

#ML Docurment
#ML Docurment
WinZip File
WinZip File

Working with a particular update operations report and source, you can often quickly restore
relationships and other changes that were made to your metadata while being assured that your

metadata is up-to-date.

Data Services Developer's Guide

3-15

Obtaining Enterprise Metadata

3-76 Data Services Developer's Guide

Designing Data Services

A data service gives you access to a structured view of a unit of information in the enterprise such as
a customer, sales order, product, or service.

Collectively, a set of data services comprise the data integration layer in an IT environment. For
additional information on data services see “Unifying Information with Data Services” in the BEA
Aqualogic Data Services Platform Concepts Guide.

Design View presents the data service as a “integrated chip” or schematic representation (Figure 4-1)
of all the query functions, underlying data sources, navigational relationships, and transformation
logic needed to support returning results in a particular arrangement, the return type. For details see
Chapter 2, “AquaLogic Data Services Platform Projects and Project Components.”

A data service exists in a AquaLogic Data Services Platform-based project as a single XQuery file
containing query functions and metadata support. For details see Chapter 8, “Working with XQuery
Source” and the AquaLogic Data Services Platform XQuery Developer’s Guide.

For information on setting security and caching policies for functions and elements see “Securing
AquaLogic Data Services Platform Resources” in the Administration Guide.

The following major topics are included in this chapter:
e Data Services in the Enterprise
e Data Service Design View Components
e (Creating a Data Service

e Managing Your Data Service

Data Services Developer's Guide 4-1

../concepts/dataServices.html
../xquery/index.html
../admin/security.html

Designing Data Services

e Publishing Data Service Functions for SQL Use

Also see in the AqualLogic Data Services Platform Samples Tutorial:
- Creating a Physical Data Service
- Creating a Logical Data Service

- Integrating Data from Multiple Data Services

Data Services in the Enterprise

42

In modern enterprises there are increasingly two “data worlds”: the traditional relational world of
tables, columns, views, and stored procedures and the world of Web services and other forms of data
that is accessed through the desktop or through various Web interfaces.

Increasingly, the cost of accessing and updating data across systems with fundamentally different
architectures and purposes can rival the cost of setting up the services themselves.

Comparing Data Services with Web Services
A data service is similar to a conventional Web service in the following respects:

o It consists of public functions.
o The functions that access services are modular, reusable, and extensible.

e Implementation details are hidden.

Of course a conventional Web service does not have a core XML data type that allows for easy
manipulation of the shape of the return data. Another minor difference is that data services can access
private functions contained in XQuery library files (. xf1 files).

In concrete terms, a data service is a file that contains XML Query (XQuery) instructions for
retrieving, aggregating, and transforming data.

Physical and Logical Data Services

There are two types of data services: physical and logical. Physical data services comprise both
relational and service data. Logical data services are consumers of physical or other logical data
services. The data access layer of the enterprise includes both logical and physical data services.

Data Services Developer's Guide

../samples_tutorial/index.html

Data Services in the Enterprise

An important benefit of this approach is that in the case of a virtual data access layer such as the
AquaLogic Data Services Platform provides there is no transfer or storage of data — other than for
application-controlled caching. Instead data services simply expose interface calls to read functions
that dynamically retrieve data from data sources. The retrieved data is then arranged based on the
data service’s XML type. Update logic is associated with each data service. In the case of relational
data the update logic is automatic; otherwise custom update functions can be developed. See
Chapter 9, “Handling Updates Through Data Services” for details.

Note: Logical data services are built upon physical data services which in turn represent an
underlying physical data source. Physical data service are created by importing metadata on
a physical source and updated through synchronization. The schema file or XML type
generated by this process should never be modified either in AquaLogic Data Services
Platform or externally. Doing so risks invalidating your data service and dependent logical
data services. (If you need to modify a data service based on a single source it is a simple
matter to create a logical data service based on that one source.)

Data Service Functions

Data services should be designed so as to present client applications with a sensible, uniform data
access layer for obtaining and updating data.

The data service interface consists of several types of functions:

o Read functions. Return data in the form of the data service’s XML type. Read functions can be
developed either in the XQuery Editor or through Source View. Data services are ideal for
encapsulating any number of specific functions with roles such as “Get all customers with
pending orders”, “Find customer number ", and so forth.

e Procedures. Procedures are also known as side-¢ffecting functions. They refer to external
functions that typically return void. Procedures are identified during the metadata import
process and are only associated with physical data services. Sources for procedures include
Java routines, Web services, and relational stored procedures.

e Navigation functions. Return data in the form of a related data service’s XML type using an
instance of the current data service as a parameter. See“Understanding Navigation Functions”
on page 4-11.

e Private functions. In addition to public functions, a data service or a XQuery function library
(.xf1 file) can contain private functions. Private functions can be accessed only by other
functions within the data service or XFL. Such functions generally contain common processing
logic, that is, operations for use in more than one function in the data service. (For functions

Data Services Developer's Guide 4-3

Designing Data Services

designed to be shared across data services, see “Creating and Working with XQuery Function
Libraries” on page 2-37.)

In Source View you will notice that private functions are so identified in the pragma statement
above the function.

o A submit function. Allows clients to persist changes (update) to underlying (physical) data.

Note: The single submit() function can be found in Source View. It is not represented in the
Design View of the data service.

Data Service Design View Components

44

Design View provides a means of visualizing the entire data service (see Figure 4-1). Each data service
appears in WebLogic Workshop optionally bounded by panes that describe the application
components, properties of selected Design View properties, and so forth. For details on AquaLogic
Data Services Platform-based project components see Chapter 2, “AquaLogic Data Services Platform
Projects and Project Components.”

At the heart of each data service is its XML type. The XML type describes the shape of the document
that will be returned when read functions are called either from this or a related navigation function.
(For additional information see “XML Types and Return Types” on page 4-7.)

Design View displays:

e Read functions, also called query functions, that return data according to the XML type
associated with the service. Navigation functions to related data services; these return data in
the shape of their native XML type.

e Immediate underlying physical and logical data services and their read functions.

Data Services Developer's Guide

Data Service Design View Components

Figure 4-1 Major Visual Components of a Data Service

B ordersummaryview.ds
{8 orderview.ds
A8 Productview.ds

=
[RTLApp - BEA WebLogic Workshop - Customer. ds =1
File Edit Wiew DataService Buld Debug Tools Window Help
- . 2
D E@ o | Bl EEqJPVEEE>EHEE B
|| Application | [Customer.ds - {DataServices}{RTL Services) %
=] %LADD = ({5 Customer Dataservics | -
1 4 Dataservices =
£ © CUSTOMER FROFILE retaller Type: CUSTCMER_PROFILE_TYPE
L -~ - = CustomerDBJADDR.
schemas
FirstName xsdsti
{2 CUSTOMER_ORDER.ds b aetcustomergyCustio g e — Xsd‘s,,::j 2
{2 CUSTOMER_ORDER_LINE_ITEM.ds, e ——t CustomerDBJCUST. .
& UneltemLpdate java 4—b'H— getCustomertvloginis 1 .
& P © Emailaddress esdisting 4
7 PRODUCT.ds
e D S @ Telephonekiumber 7 xsd:string
e 0 55N 7 wedistiing
(Z1 CustomerDB @ BirthDay ? xsdidate
3 pemo © Defaulshipmentiethod xsdistring
[#-(C] Electronicsws getapplorder @ EmailMotification xsd:short
(£ META-THF ® Orlinestatement xsd:short
=2 E:)LliELSI @ LognD xsd:string
ervices =) ADDRESS ™* retalerType:ADCRESS_TYPE
() schemas getCase @ AddressID xsdrsting
%AdTrESS-? 3 @ CustomerID sdistring
Applorder.ds e
Firstilame xsd:sting
%inn\::de‘;Det:l‘:ﬂEW-ds @ Lasthame xsdistring
pplProduct.ds getCreditCard @ swesthddress 1 xedhstiing
%Camds . @ Stresthddress_2 7 xsdhstring
Caseigwds
ElecCrder @ ity xsdstring
B creditCard.ds @ stat ek
4 Customer.ds e
= getFlerOrder @ Zpcode xsdistring
%;ust;l\;er\ffw- s @ Country xsdrsting
lecOrder.ds L
1R EconderDetalhion.d myPrivateFunction 5 ® Cayphone 7 xsdistring
® Iec I :r ede\ e, ds) EveningPhone 7 xsd:skring
2 ElecProduct.ds
&) OrderDetallUpdate.java =]
4R OrderDetaltvin.ds Design Yiew | BCouery Edtor View Query Plan Vien

J_] DataServices

Dita Services Palette | OUEpLE | RQUery Construct Paletts | XQuery Function Palette

[

AppareDE
{2 Profilevis,ds 20 Appare
s e [#-(C] BilingDE
® (] Service
[=]|| @ £2 Custormerds
K1l 107 [|@ £y oemo &

@ server Running

putiy 57 /83

Data Services Developer's Guide 4-5

Designing Data Services

46

Table 4-2 details the functional components of the data service shown in Figure 4-1.

Table 4-2 Graphical Components

of a Data Service

Key Component

Purpose

1 Query functions
and procedures

Read function and AquaLogic Data Services Platform procedures are
typically developed through the XQuery Editor.

Read functions provide an API for the data service. In Figure 4-1 the
getCustomer() function accepts a custID and returns data in the shape of
the customer XML type. (See “Modifying a Return Type” on page 6-47).

Procedures refer to functions which have side effects; often such
functions return void.

2 Base data services

The data services that are used as immediate building blocks for the current

data service are shown. Click on its chevron symbol :: inside the
underlying data service representation to view its functions that are used by
the current data service. If you click on the function name itself the data
service will open. (Use the Back button to return to the original data
service.)

Note: Underlying data services are only displayed to one level. Use the
Metadata Browser to identify all underlying data services and
dependencies (see “Viewing Metadata” in the AquaLogic Data
Services Platform Administration Guide).

3 Navigation
functions

Relationships that are both inferred (relational) or created are shown.
Navigation functions return data in the shape of their native type. Clicking

on the chevron symbol :: inside your relationship representation, you will
see the navigation functions that are defined for that relationship.

If you click on the function name your view will switch to the XQuery Editor.

Relationships can be created through the AquaLogic Data Services Platform
modeler (see Chapter 5, “Modeling Data Services”) or directly in your data
service using the relationship wizard (see “Using the Relationship Wizard to
Create Navigation Functions” on page 4-13).

4 XML type

The XML type is represented by an editable XML schema. The return type
of read functions shown in the XQuery Editor (see Chapter 6, “Working
with the XQuery Editor”) should match the data service XML type.

5 Private functions

Private functions are only available to other functions in the data service.
They appear in Design View between read functions and navigation
functions.

Data Services Developer's Guide

../admin/metadataBrowser.html

Data Service Design View Components

Note: Multiple data services can depend on a single XML type. In such situations it is advantageous
to design such data services as a group, so that they always should return the same XML type.

XML Types and Return Types

A key product of AquaLogic Data Services Platform-based projects are data service query functions
and return types, sometimes called target schemas. XML schemas are used to represent in
hierarchical form physical and logical data and the shape of documents returned from AquaLogic Data
Services Platform queries.

Return types can be thought of as the backbone of both data services and data models.
Programmatically, return types are the “r” in for-let-where-return (flwr) queries.

Figure 4-3 Sample Return Type from the RTLApp

customerOrderReport, xsd

CustomerOrderReport
=] customerOrder®
=] CUSTOMER.
FIRST_MAME -xs:string
LAST_MAME -xs:skring
CUSTOMER_ID -xs:string
STATE -xs:string
EMAIL_ADDRESS -xs:string
TELEPHOME_MUMEER. -xs:long
=} wireless_orders
= CUSTOMER _ORDER™
ORDER_DATE -xs:string
ORDER_ID -xs:string
CUSTOMER_ID -xs:string
SHIP_METHOD -xs:string
TOTAL_ORDER_AMOUNT -xs:decimal
=} broadband_orders
= CUSTOMER _ORDER™
ORDER_DATE -xs:string
ORDER_ID -xs:string
CUSTOMER_ID -xs:string
SHIP_METHOD -xs:string
TOTAL_ORDER_AMOUNT -xs:decimal

Return types have the following main purposes:
e Provide a template for the mapping of data from a variety of data sources.

o Help determine the arrangement of the XML document generated by the XQuery.

For more information on specifying the XML type in a data service see “Associating an XML Type” on
page 4-23.

Data Services Developer's Guide 4-7

Designing Data Services

Where XML Types are Used

The AquaLogic Data Services Platform modeler, data services, XQuery Editor, and Metadata Browser
use XML type representations as follows:

e Modeler. A AquaLogic Data Services Platform Model shows the relationships and cardinality
between data services, as well as read query functions. For details see Chapter 5, “Modeling
Data Services.”

e Data Service. A data service generally contains an editable return type.

e Data Sources. Hierarchical-structured XML types represent both relational and non-relational
data. For details see Chapter 3, “Obtaining Enterprise Metadata.”

e XQuery Editor. The XQuery Editor uses physical and logical data source representations and
transformational functions to develop queries that are mapped to a return type. For details see
Chapter 6, “Working with the XQuery Editor.”

e Metadata Browser. The Metadata Browser can display the return type associated with a data
service. For details see “Viewing Metadata” in the AquaLogic Data Services Platform
Administration Guide).

For the versions of the XQuery and XML specifications implemented in AquaLogic Data Services
Platform see the XQuery Developer’s Guide.

Note: Data services supporting ADO.NET have additional, specific XML type requirements. For
details see “Supporting ADO.NET Clients” in the Client Application Developer’s Guide.

Where Return Types are Used

Return types describes the structure or shape of data that a query produces when it is run. A return
type can be thought of as an object of XML type.

Note: In order to maintain the integrity of AquaLogic Data Services Platform queries used by your
application, it is important that the query return type match the XML type in the containing
data service. Thus if you make changes in the return type, you should use the XQuery Editor’s
“Save and associate schema” command to make the data service’s XML type consistent with
query-level changes. Alternatively, create a new data service based on your return type. For
details see “Creating a Simple Data Service Function” on page 6-7.

Creating a Data Service

You can create a data service in several ways:

4-8 Data Services Developer's Guide

../appdev/adodotnetintegration.html
../admin/metadataBrowser.html

Creating a Data Service

o Through the AquaLogic Data Services Platform Metadata Import wizard, which automatically
generates physical data services from available data sources. See Chapter 3, “Obtaining
Enterprise Metadata.”

e By selecting a AquaLogic Data Services Platform-based project and then choosing
File — New — Data Service. Alternatively, right click on the project folder and choose
New — Data Service.

o By selecting Create Data Service from a data model and then opening the newly-created data
service. See Chapter 5, “Modeling Data Services.”

Figure 4-4 Adding a Function to a Data Service

*

myLogicalDs.ds - {myLogicalDataServicesH,

_’E\ myLogicalDS Data Service

Add Function {empty)
Add Relationship
Add Private Function

Associate XML Type
Create XML Type

Data Services Developer's Guide 4-9

Designing Data Services

Data services always reside in the current AquaLogic Data Services Platform-based project. Once
created, you can use the Data Service menu (or right-click) to develop your data service. Table 4-5 lists
available right-click options and their usage.

Table 4-5 Data Service Menu Options

Command Usage

Add Function Adds a function to your data service. After entering a name for the
function, clicking on the name will open the XQuery Editor.

Add Function (empty) Adds an empty function to your data service. An empty function will
not initially contain a representation of the XML type even if a type
is associated with your data service. In such cases, the schema
“mark-up” can be added manually. This is particularly useful in
cases where your XML type contains a large number of elements,
many of which will not be used in the query functions planned for
the data service.

Add Relationship Creates a relationship to another data service. A file browser allows
you to enter the name of the data service which you want to relate
to your current data service. This, in turn, will bring up the
Relationship wizard, where you can define the navigation functions
that will relate the two services.

Add Private Function Adds a private function to your data service. After entering a name
for the function, clicking on the name will open the XQuery Editor.

Associate XML Type Associates your data service with an XML type. You can choose the
type (. xsd schema) from anywhere in your application. If your
data service currently has an associated XML type, it will be
replaced.

Create XML Type Allows you to create an XML type using the built-in schema editor.

Note: Once your data service is associated with a XML type, this
option becomes unavailable.

Display XML Type / For physical data services you can display either the element’s XML
Display Native Type type (example: xs:int) or its native type (example: CUSTOMERID
INTEGER(10)).

Subsequent sections describe each of these commands in detail.

4-10 Data Services Developer's Guide

Creating a Data Service

Adding a Function to Your Data Service

Read functions can be accessed by any calling application with the appropriate security credentials.
When adding a read function to your data service, you can accept the default function name or edit it
directly. Then, when you click on the name of your new function, you will be placed in the XQuery
Editor. See Chapter 6, “Working with the XQuery Editor”.

Note: It is important that function names in any given data service be unique even when their arity
(number of parameters) does not match. This is because JDBC is not able to differentiate
between functions of the same name.

Adding a Procedure to Your Data Service

Data service procedures or side-effecting functions enable you to invoke external routines that do not
necessarily return data. A common scenario would to use a procedure to invoke a Web service which
in turn updates data. Another use of a procedure would be to invoke a relational stored procedure
which in turn performs a database operation. The only thing returned in such a case might be a
“success” message and that would only happen if the stored procedure was designed to report its
status and the calling procedure was set up to handle such returned data.

Procedures are added to physical data services only, as part of the metadata import process. For
details see “Identifying AquaLogic Data Services Platform Procedures” on page 3-5.

Adding a Private Function to Your Data Service

A private function is similar to a read function, but it is only available to other functions in your data
service. You can change a private function to a read function through the Property Editor or by editing
the Source View pragma.

Adding a Relationship to Your Data Service

Relationships allow you to call out to another data service using an instance of your data service as a
parameter. Data is returned in the shape of the related service. In this way you can populate your data
services with a set of functions.

Understanding Navigation Functions

Two data services can be related by one or more relationships.

For example, CUSTOMER and ORDER might be related by a CUSTOMER-ORDER relationship that has
three navigation functions in all:

Data Services Developer's Guide 4-1

Designing Data Services

4-12

cst:getAllOrders (CUSTOMER) —>» ORDER*
cst:getOpenOrders (CUSTOMER) —>» ORDER*

ord:getCustomer (ORDER) —» CUSTOMER

The first two functions are different ways of navigating the CUSTOMER-ORDER relationship from a
customer to all or some of their orders. The third function is a way to navigate from an ORDER to the
associated CUSTOMER.

In the most common case, a relationship will result in the availability of two navigation functions, one
for moving through the relationship in one direction and one for moving in the other direction.

In the less common case of a unidirectional relationship, there will be only one navigation function.

Effect of Using a Navigation Function to Return Data

In a data service the functional difference between a read function and a navigation function is the
shape of the returned data. Here is a simple example:

In a read function if you have an OpenOrders data service with an XML type of:

<openOrders>
<custID>
<first name>
<last name>
<orderID>

</openOrders>

and pass it a customer ID such as 101 and an order ID such as LRP-111. The query result
appears as:

<customerInfo>
<custID>101</custID>

<first name>Jane</first name>
<last_name>Smith</last_name>
<orderID>Smith</orderID>

</customerInfo>

However, if your data service has a navigation function associated with a table called
TrackOrders, the query parameter can remain the same but data will be returned in the shape
of the TrackOrders type, which looks like this:

<TrackOrders>
<custID>
<first name>
<last name>

Data Services Developer's Guide

Creating a Data Service

<orderID>

<ship date>
<weight>
<delivery date>

;;frackOrders>
Creating a Relationship Between Data Services
In a data service adding a relationship is a three-part process:
1. Add and name the relationship.

Figure 4-6 Adding a Relationship to a Data Service Using Right-click Menu Option

CreditCard. ds - {DataServicesHRTLServices),

_’@\ CreditCard Data Service
Bl @ CREDIT_CARD retailerType: CREDIT_CARD_ TYPE

¢ a§ etCreditCard 0 CreditCardID xsd:shring

0 CustomerID xsd:shring
Ay p getCreditCardByCustiD

0 CustomerMame xsgd:shring

0 CreditCardType xsdisking

0 CreditCardBrand xsd:skring
0 CreditCardiumber xsd:skring

) LastDigits xsd:stei
Add Function = " g

Add Relationship

) ExpirationDate xsd:dake
) Status 7 xsdisking
Associate XML Type 0 alias 7 xsdishring

) AddressID xsd:skring
Customer
ﬁ e

2. Associate the relationship with an existing data service.

3. Use the Relationship wizard to define the relationship.

Using the Relationship Wizard to Create Navigation Functions

You can develop fully-functional binary navigation functions using the Relationship wizard.
The value of navigation functions is that client applications can call the function using complex
parameters without having to know the internal structure of function, join conditions, and so forth.

From the perspective of the data service creator, the internals of the function can be changed without
affecting applications dependent on the ability to invoke the data service function.

Data Services Developer's Guide 4-13

Designing Data Services

4-14

When you choose to create a relationship through Design View or within a model diagram, the
Relationship wizard is invoked. With the wizard you can set the following navigation function
notations:

e Role names
e Direction

e Cardinality

You can also identify parameters and specify where clauses.

Setting Relationship Notations: Role Names, Direction, Cardinality

The first dialog of the Relationship wizard allows you to set role names, direction, and cardinality.

Figure 4-7 Relationship Wizard Specifying Direction, Cardinality, and Role Name

-

[Ea Relationship Properties

Relationship CUSTOMER_ORDER. -3 PRODUCT 1 Relationship PRODUCT - CUSTOMER_ORDER

Dataservice CUSTOMER_ORDER: ————— rDataService PRODUCT:

Target Role name: | ppopoct 2 | TargstRole name: | CUSTOMER_ORDER. |

Min occurs: | 1 | - | Min occurs: | 1 | - |
Max occurs: | ! | M | Max occurs: | ! | M |
| Mext | | Finish | | Cancel |

Data Services Developer's Guide

Creating a Data Service

Table 4-8 provides details on the callouts shown in Figure 4-7.

Table 4-8 Primary Relationship Settings

Key

Component

Purpose

1

Direction

Query functions are typically developed using the XQuery Editor. A
bidirectional relationship is the default condition. This means that each
data service will have a navigation function that invokes the related data
service. Direction notations have no run-time effect.

Direction can also be specified through the Property Editor associated with
each data service or through a model diagram.

2

Role name

Each end of a relationship can have a target role name. By default, the role
name is the same as its adjacent data service. For example, the default role
name for the ADDRESS data service is ADDRESS. You can change the role
name in the Relationship wizard.

Role names can also be specified through the Property Editor associated
with your data service or through a model diagram showing the relationship.

Note: Role name notations have no run-time effect.

3

Cardinality

Cardinality notations can be set for each side of the relationship. The
default cardinality is 1-to-1 but this can be changed to any combination of
<blank>, 0, 1, and %.

Cardinality can also be specified through the Property Editor associated
with your data service or through a model diagram showing the relationship.

Note: Cardinality notations have no run-time effect

Setting Function Name, Identifying the Opposite Data Service, Mapping Parameters, and

Building Where Clauses

The second Relationship wizard dialog page allows you to set the navigation function name and other
characteristics.

Data Services Developer's Guide 4-15

Designing Data Services

4-16

Figure 4-9 Relationship Wizard Dialog Specifying Function Name, Parameters, and Where Clauses

el Co nfigure navigation

function in CUSTOMER_ORDER

Mavigation Function name:

QetCLISTOMER-N | 1

in the navigation function

Choose a read function From the Following list. IF you do not choose a read function, FOR loop will not be created

Select Function : (<Function> [~] from cusTomER Data Service 2
<Function
Map Input Parameters
Parameter name Parameter bype Map from CUSTOMER_ORDER
|
3
Build 'WHERE clause
CUSTOMER _ORDER. CUSTOMER.
4

5 [oas | [romoe)

6 |Previ0us || Mext || Finish || Cancel |

Table 4-10 provides details on callouts shown in Figure 4-9.

Table 4-10 Primary Relationship Settings

Key Component

Purpose

1 Navigation
function name

By default, the navigation function name is the name of the target data
service with “get” prepended, as in “getCustomer”. If a function of that
name exists, numbers will be appended to the function name as in
getCustomerl.

However, you can change the navigation function name to any valid function
name.

Note: When you invoke the Relationship wizard through a model
diagram the opposite data service is determined by the gesture of
drawing a line from one data service to another. In such cases the
option of selecting a navigation function name is not present.

2 Related data
service function

By default, the root function in the target data service is selected. However,
you can select any available read function in the target data service.

Data Services Developer's Guide

Creating a Data Service

Tahle 4-10 Primary Relationship Settings

Key Component

Purpose

3 Map input
parameters

If the related function has input parameters, the name and type of the
available parameters are displayed. You can then use a pulldown menu to
select an element from the target data service to map as the input
parameter.

4 Build WHERE
clause

Where clauses can be added to the function using pulldown menus that
allow you to select join elements from each side of the relationship.

5 Add or Remove

Allows you to add additional where clauses or delete a selected where
clause.

6 Next

When the relationship between data services is bidirectional clicking Next
changes the focus to the second data service, where you can identify a
navigation function name, parameters, and add where clauses for the
second side of the relationship.

Example of Creating a Navigation Function

This section contains a small example showing how you can use the Relationship wizard to create
fully-formed navigation functions. The goal is to create a navigation function that returns the first
available address on file for a particular customer by supplying a customer ID.

The following steps use the RTLApp provided with AquaLogic Data Services Platform.

1. Starting with the RTLServices/ApplOrder data service in Design View, select Add Relationship

from the right-click menu.

2. Select a target data service. In this case RTLServices/CustomerProfile.

Data Services Developer's Guide 4-11

Designing Data Services

Figure 4-11 Selecting a Target Data Service for the ApplOrder Navigation Function

Applorder,ds* - {DataServicesHRTLServices),

_IE\AppIDrder Data Service
=@ APPL_ORDER. rebaisrType:APPL_ORCER _TYPE[~]

— ’ ApparelDBICUSTO,.,
0 CustomerID xed:string

A b Apparel Order By CustID —
S SRR) OrderDate xsd:date

- ApparelDB/CUSTO...

& Select Target Data Service. ..
Laok In: |C| RTLServices | - |
[C1 schemas 4 CustomerProfile.ds
ik Address.ds ik Customer'iew.ds
i Applorder.ds i ElecOrder.ds
i ApplProduct.ds i ElecProduct.ds
ik Case.ds i OrderDetailview.ds
ik CaseView.ds i OrderSummaryView,ds
ik CreditCard.ds i Orderview.ds
4 CreditCardOld.ds [Profiletiew.ds
i Customer.ds

Mame: | CustomerProfile. ds |

Tvpe: |Data Service Files | - |

3. Next you can set direction and cardinality.

The relationship remains bidirectional, meaning that you can get customer profile information
by supplying an address object and you get can address information using a customer profile
object. However, the cardinality relationship notation of Customer Profile — Address is 1-to-n,
since a customer can have multiple orders.

4-18 Data Services Developer's Guide

Creating a Data Service

Figure 4-12 Setting Direction and Cardinality for the Relationship

r .
& Relationship Properties
Relationshi%\pplOrder -z CustomerProfile Relationship CustomerProfile - = ApplCrder
~DataService Applorder: ~DataService CustomerProfile:
Target Role name: | CustomerProfile | Target Role name: | ApplOrder |
Min occurs: | 1 | - | Min occurs: | 1 | - |
N -] ;o - |
Max occurs: Max occurs:
| Mext | | Finish | | Cancel |

4. Click Next. This creates the first navigation function which is given a default name of
getCustomerProfile().

The next stage for each navigation function is to:
— accept or change the name of the navigation function
— identify a read function contained in the navigation function (there may be more than one)
— specify parameters to invoke if parameters are supported by the underlying query function

— optionally add one or multiple where clauses

Data Services Developer's Guide 4-19

Designing Data Services

Figure 4-13 Defining the First Navigation Function

Bl Configure navigation function in ApplOrder

Mavigation Function name: getCustomerProFilﬁ’

Choose a read function From the Following list. IF you do not choose a read function, FOR loop will not be created
in the navigation function

Select Function : betCustomerProFile | M | From CustomerProfile Data Service

Map Input Parameters
Parameter name Parameter type Map from ApplOrder

Build 'WHERE clause

Applorder CustomerProfile
A4PPL_CRDERCustamerID = | CuustomerProfils/CLISTOMER (O ISTOMER 10| ™ |

|Previ0us || Mext || Finish || Cancel |

In the case of the getCustomerProfile() navigation function:
— there is only a single read function
— there are no parameters

— the where clause join elements are APPL,_ORDER/CustomerID and
CustomerProfile/Customer/CUSTOMER_ID

5. Click Next to define the opposite navigation function whose default name is getApplOrder().

The apparel orders data service more typically contains multiple read functions. If you select
getApparelOrdersByCustID(), then you will be able to map an element (cust_id) from the
opposite data service.

Notice in Figure 4-14 that the where clause you defined for the first navigation function is
pre-determined and shown in read-only format.

4-20 Data Services Developer's Guide

Creating a Data Service

Figure 4-14 Selecting a Parameter

Bl Configure r'!a\n'gation function in CustomerProfile

Mavigation Function name: getAppIOrderbyCustID|

Choose a read function From the Following list. IF you do not choose a read function, FOR loop will not be created
in the navigation function

Select Function : betApparelOrderByCustID |~ | from ApplOrder Data Service

Map Input Parameters
Parameter name Parameter type Map from CustomerProfile
usk_jd xsiskring CustomerProfile/CUSTOMERCUST, ..

Build 'WHERE clause

CustomerProfile Applorder
ustomerProfile CUSTOMERCUSTOMER._ID = APPL_ORDER;CustomerID

| Previous | | | | Finish | | Cancel |

6. Click Finish.

Data Services Developer's Guide 4-1

Designing Data Services

Figure 4-15 Resulting getCustomerProfile() Navigation Function

Applorder.ds - {DataServicesHRTLServices)|

getCustomerProfile(arg) | - ‘

{?}Parameter: §arg —

[MPPL_ORDER APPL_ORDER_TYPE [+]
WTYPE ¢ string
OrderID string
CustormerID string
OrderDate date
ShippingMethad string
HandlingCharge decimal
SubTotal decimal
TotalOrderamount decimal
SaleTax decimal
EstimatedshipDate date
Status string
shipTa string
ShipTahlame string
BillTo string
Trackinghurber 7 string

APPAREL_LINE_ITEM * APPARE —

K| 0]

TR

— P [ZFor: $b U”

(@ Return

[

[7- O CustomerProfile
= CUSTOMER *
CUSTOMER _ID skring

(= CustamerProfile *
(= CUSTOMER. *

for $b in nsE:getCustom
here jarg/CustonerID =

erProfile()
§b/COSTOMER/CUSTOMER_ID|

CUSTOMER— =
FIRST_NAME string
LAST_MAME string
EMAIL_ADDRESS string

[=}-CUSTOMER_ORDER *

ORDER_ID string
QRDER_DATE date
SHIP_METHOD string |~

<0

TSI _ADDRE]
= CUSTOMER_ORDER *
ORDER_ID skring
ORDER_DATE date
SHIP_METHOD string
t TOTAL_ORDER_AMOUNT decim

0B [||V

Where $arg/CustomerID = $b/CUSTOMER JCUSTOMER_ID

Design ¥iew | ¥Query Editor Yiew [Source View | Test View [Query Plan Yiew

Testing Your Navigation Function

When you execute a navigation function in Test View, you can provide input in the form of a complex
parameter such as would result from, for example, getting back a customer record. Alternatively, you
could use the Test View template option to supply the appropriate parameter. See “Using the XML

Type to Identify Input Parameters” on page 7-10.

Navigation Functions in Source View

In data service Source View the navigation function is defined through a pragma and a function body.

(For details see the AquaLogic Data Services Platform XQuery Developer’s Guide).

For example, a navigation function named Payment() has a read function getPaymentList().

The navigation function appears as:

declare function nsl:getCustomer ($arg as element (nsO:APPL ORDER)) as

element (nsl5:PROFILE) *

{

for $b in nsl6:getCustomerByCustID ($arg/CustomerID)

return S$b
}i

4-22

Data Services Developer's Guide

Creating a Data Service

A key element in understanding this function is in the namespace ns15 which imports the schema that
models the XML type, PAYMENTList . xsd. The namespace is defined as:

import schema namespace nsl5="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/Profile.xsd";
Note: If you modify a role name in the pragma of your data service, and that relationship exists in
any model diagram, then you will need to similarly modify the role name in any model
diagrams in which the relationship appears. Otherwise the relationship will become invalid.

Working with Logical Data Service XML Types

Read functions associated with data services return information in the shape of the data service’s XML

type.

Note: Logical data services are built upon physical data services which in turn represent an
underlying physical data source. Physical data service are created by importing metadata on
a physical source and updated through synchronization. The schema file or XML type
generated by this process should never be modified either in AquaLogic Data Services
Platform or externally. Doing so risks invalidating your data service and dependent logical
data services. (If you need to modify a data service based on a single source it is a simple
matter to create a logical data service based on that one source.)

Associating an XML Type

You can add or replace an XML type that has been associated with an data service using a browser.
Your type must be located in the your application file structure.

Selecting a Global Element

If the schema you select has more than one global element, a dialog allows you to choose the global
element you want to use.

Figure 4-16 Select Global Element Dialog Box

¥ Global Element x|

Select the global element. to use

getCustomerCreditRating -

getCustomerCreditRating

gd getCustomerCreditRatingResponse L
|

Ok Cancel

Data Services Developer's Guide 4-23

Designing Data Services

Editing an XML Type

You can also edit an XML type. Several XML type right-click menu options are available (Table 4-17).
WARNING: Editing changes to an XML types in Design View immediately modify the
schema file upon which the XML type is based. Such changes cannot be reversed
through the Undo command. For this reason, XML types should be modified
carefully, with adequate backup in case you need to revert to the original version.

4-24

Table 4-17 Right-click XML Type Editing Options

Option Purpose

Add Child Adds a child element to the currently selected element. Available sub-menu options
include special-purpose schema elements Choice and All.

Add Sibling Adds a sibling element to the currently selected element. Available sub-menu options
include special-purpose schema elements Sequence and Choice.

Add Attribute Adds an attribute to the currently selected element.

Delete Deletes the currently selected element or attribute. This option is not available for the
root element of the schema.

Allow Global A toggle that applies to the entire schema. Schemas should be edited with care. To do so,

Types and this option must be selected.

Elements Editing

Go to Source

Opens the XML type in the built-in schema editor.

Move Up Moves the selected element towards the top of the schema.
Move Down Moves the selected element towards the bottom of the schema.
Find Finds text within the selected complex element (such as the root element).

Another option, Enable Optimistic Locking, becomes available for elements in relational-based XML

types under some conditions. See “Enable/Disable Optimistic Locking” on page 4-28.

Data Services Developer's Guide

Creating a Data Service

Table 4-18 identifies how various right-click options apply to different XML type elements.
Table 4-18 XML Type Editing Right-click Menu Options / Element Matrix

Element Add Child Add Add Delete Move
Element/ Sibling Attribute Up/
Choice/ Element/ Move

All Sequence/ Down
Choice

Root element

Complex element

Leaf element

Conditional

element

All element

Sequence element

Choice element

Attribute

In some cases complex type components that appear in schemas will not appear in your XML type.

Caution: XML types are based on schemas which may be used by other data services. For this
reason, XML types should be modified carefully, with adequate backup in case you need
to revert to the original version. Similarly, all the functions in your data service should be
written to return the XML type of your data service.

External Editing of XML Types

In addition to the right-click menu described in Table 4-18, you can use the Go to source command to
edit your schema file using WebLogic Workshop’s assigned text editor.

Creating an XML Type

You can choose to create an XML type for a new data service. Since your data service already has a
name, you need only supply:

Data Services Developer's Guide 4-25

Designing Data Services

e A schema file (XSD file) name
e An XML type root element

o A target namespace

By default, the name of your data service is the same as the schema file name, the schema, and the

target namespace.

Figure 4-19 Create New Schema File Dialog

& Create Mew Schema Fl\ile

b

Schema File | 1ube'l,Demo'l,DataServices,l’myNewDataService.xsd|| lz‘

Return bype | myMewDataService

Target Mamespace | Id:DataServices myNewDataService |

Once created, you can use the data services built-in schema editor to create your schema.
Alternatively, you can create a schema in a program such as XMLSpy.

Managing Your Data Service

There are several important pre-deployment tasks you need to accomplish before you can make your
data service available to client applications. This includes setting properties for your data service and

it's functions.

Figure 4-20 Data Service Properties

| | Property Editor

Data Servic%
General
Mame
Description
Type
Type
Data Service Update
Allow Update
Decormposition Function
Update Override Class
User Defined Properties

Customer.ds

{http:/ /temp.openuri.org,/schemi

true

-

true
false

You can use the Properties Editor (View — Property Editor) to set or change key data service

functionality including:

4-26 Data Services Developer's Guide

Managing Your Data Service

e Enabling or disabling update logic.
e Specifying the Java file to access for update logic.

e Creating user-defined properties, which then become available to the AquaLogic Data Services
Platform Metadata Browser.

e Enabling or disabling caching for particular functions.

e Changing relationship settings include role name, target data service, and cardinality.

See “Notable Design View Properties” on page 4-40.

Refactoring Data Service Functions

You can refactor data service functions insofar as they can be renamed or safely deleted. See
“Refactoring AquaLogic Data Services Platform Artifacts” on page 2-27.

Finding Usages of Aqualogic Data Services Platform
artifacts

For most AquaLogic Data Services Platform artifacts you can quickly determine the artifacts usage
through a right-click menu option. See “Usages of Data Services Artifacts” on page 2-22.

Setting Update Options

Each data service contains a set of properties that control its update characteristics.

Note: For information on decomposition functions, override classes, optimistic locking settings,
and other SDO-related information see Chapter 9, “Handling Updates Through Data
Services.”

Also see in the AqualLogic Data Services PlatformSamples Tutorial:

- Performing Custom Data Manipulation Using Update
Override

- Updating Web Services Using Update Override
- Overriding SQL Updates Using Update Overrides

Data Services Developer's Guide 4-21

../samples_tutorial/index.html

Designing Data Services

4-28

Allowing Updates

You can use the Allow Update option in the Property Editor to control whether calling applications
can exercise update logic associated with your data service. This is especially important in regard to
relational-based data services, since update logic is automatically available unless disabled.

Set the option to True to allow update; False to prevent updates.

Setting the Override Class

In order to update non-relational sources that are associated with your data service you need to create
an update override class. In addition, you may want to overwrite built-in update logic for relational
sources to apply custom logic to the update process.

Before you can set the override class, you need to develop it. The steps involved are:
e Add an appropriately named Java class to your AquaLogic Data Services Platform-based project.
o Within the Java file, implement the UpdateOverride interface.
o Import the required packages into your class and add a performChange() function to the class.
e Implement your processing logic.
e Associate your data service with the class.

<javaUpdateExit className="nameOfYourJavaClass”/>

For information on developing an override class see Chapter 9, “Handling Updates Through Data
Services.”

Note: Each data service can have only one update override class. However, multiple data services
can share the same update override class.

Enable/Disable Optimistic Locking

The SDO update mechanism for relational data uses an optimistic locking policy to avoid change
conflicts. With optimistic locking, the data source is not locked after the SDO client acquires the data.
Later, when an updated is needed, the data in the source is compared to a copy of the data at a time
when it was acquired. If there are discrepancies, the update is not committed.

Data Services Developer's Guide

Managing Your Data Service

Optimistic locking update policy is set for each data service. The following table lists optimistic
locking update policy options.

Table 4-21 Optimistic Locking Update Policy Options

Optimistic Locking

Update Policy

Effect

Projected

Projected is the default setting. It uses a 1-to-1 mapping of elements
in the SDO data graph to the data source to verify the
“updateability” of the data source.

This is the most complete means of verifying that an update can be
completed, however if many elements are involved updates will
take longer due to the greater number of fields needing to be
verified.

Updated

Only fields that have changed in your SDO data graph are used to
verify the changed status of the data source.

Selected Fields

Selected fields are used to validate the changed status of the data
source.

For relational-based data service the Enable/Disable Optimistic Locking option becomes available for
elements in its XML type when the optimistic locking property is set to Selected. (Optimistic locking
policies are viewed and set through the Property Editor (Figure 4-22). For information on additional
properties see “Notable Design View Properties” on page 4-40.

Data Services Developer's Guide 4-29

Designing Data Services

Figure 4-22 Data Service Allowing Updates and Optimistic Locking on Selected Fields

CUSTOMER. ds - {DataServicesH\CustomerDBY X | [Property Editor £

Data Service

f[g\ CUSTOMER Data Service
Al General

3

Ay T CLISTOMER Mame CUSTOMER ds
Description

ADDRESS Author
Creation Date 2005-05-18T15:39:45

getADDRESS Type

Type {ld:Dataservices/CustomerDB,/ CUSTOMER} CUSTOMER
Data Service Update
fllow Update true

Decomposition Function
Update Overrids Class
OptmisticLockingFields
Optmistic Locking Fields PROJECTED
Security Resources
Prefix Bindings
Bl Namespace "ld:DataServices/CustomerDBJCUSTOMER”
Frefisc f
Namespace 'Id:DataServicss/CustomerDE/CLISTOMER” Q
Namespace "Id:DataServicss/CustomerDE{ADDRESS”
Namespace "Id:DataServicss/CustomerDE{ADDRESS”

User defined properties
4 [Description ¥
Design View [#Query Editor Yiew Te{ | Mamespace %

When active, the Selected Fields option allows you to validate optimistic locking logic prior to an
update. Any number of fields can be selected through the right-click menu associated with the XML
type. (If a complex element is selected, all its children are selected even though they are not so
marked.)

When the Selected Fields option is picked, a right-click toggle option named Enable/Disable
Optimistic Locking becomes available. Multiple elements can be selected.

4-30 Data Services Developer's Guide

Figure 4-23 Disabling Optimistic Locking Policy for a Field

Managing Your Data Service

CIUSTOMER_CRDER_LIME_ITEM.ds* - {DataServicesHApparelDEBY

*

| [/ CUSTOMER_ORDER_LINE_ITEM Data Service [
@ CUSTOMER_ORDER_LIME_ITEM
Ay ot CLISTOMER_ORDER _LINE_ITEM © LNEID xsistring
¥ ORDER_ID xs:skring
(@) PROD_ID xs:skring
(@ PROD_DSC xsiskring
© QU add chid »
O PRIC add Sibling »
@574 Add Attribute
Delete
Enable © tic Locking
Allow Global Types & Elements Editing
QetCUSTOMER. ORDER G0 to Source
PRODUCT rzeEl
MoveDown
EtPRODUCT Find
[« 0]

| Design Yiew [®GQuery Editar View | Source View | Test View | Query Plan View

In Figure 4-23 two fields are selected, PRODUCT_ID and QUANTITY.

These choices are reflected in the Source View pragma.

<optimisticLockingFields>

<field name="PRODUCT ID"/>

<field name="QUANTITY"/>
</optimisticLockingFields>

For details on handling change conflicts based on optimistic locking policies see Chapter 9,
“Handling Updates Through Data Services.”

Adding Security Resources

Security resource settings are created at the data service level and activated at through the AquaLogic
Data Services Platform Console. The steps involved are:

e Create as many security resources as are needed by your data service.

e Structure your query to support security resource validation.

Data Services Developer's Guide

4-31

Designing Data Services

e Assign security resources to your element through the AquaLogic Data Services Platform

Console.

e Use Test View to validate your security policy settings.

An easy way to understand security settings is to create an example using the Shipping data service

found in the DataServices/Demo/Java/Logical folder of RTLApp.

Goal. The goal is to restrict access for the East shipping region to the XML type’s ShipRegion string

to a particular traffic monitor named Igor.

The following section describe the steps involved.

Create Necessary Security Resources

1. Open your data service.
2. Open the Property Editor.

3. Create a security resource by clicking the + on the Security Resource line. Any value (name) can
be assigned to a security resource. In this case the name of an element in your XML type is used.

Figure 4-24 Create a Security Resource

Shipping.ds - {DataServicesH Demot JavaiLogicall %_| || Property Editar b3
hi ; Data Service
—’E\S = General
=@ ShipSource Type
p— ipping = -
stshippingsource =@ SHIPPING * Data Service Update
(@ shiplDRegionCd xs:string Security Resources
@ shiplD xs:skring [Security resource(1)
@ shipSource xs:string value shipregion
@ ShipDest xs:string Prefix Bindings
@ ShipPrice xs:decimal User defined properties
(@ shipRegion xs:string L
@ shipTime xs:string
(@ Datalineage ¥ xs:sking
[«] [] [v] Description ¥
| Design Yiew [®GQuery Editar View | Source View | Test View | Query Plan View General Data Service properties %

This action add your new security resource (highlighted below) to the data service pragma in

Source View.

(::pragma

xmlns:ship="http://Logical/ShipSource"
xmlns:x="urn:annotations.ld.bea.com">
<creationDate>2005-11-01T15:50:28</creationDate>

4-32 Data Services Developer's Guide

xds <x:xds targetType="ship:ShipSource"

Managing Your Data Service

<userDefinedView/>
<secureResources>
<secureResource>shipregion</secureResource>

</secureResources>
</x:xds>
1)
Structure Your Query To Support Security Resource Validation

In this section you use the XQuery Editor to attach your newly created security resource to the EAST
group, ShipRegion element.

1. Click XQuery Editor View.

2. In the return type attach a security resource to the EAST group, ShipRegion element. Do this by
right-clicking on the element to which you want to attach a security resource, then select the Make

Conditional option.

Figure 4-25 Creating an If-Else Construct for East Group’s ShipRegion String

@Return [l

) B shipSource

v} - Conditional

v} =] SHIPPING *
@Datalineage ? string
ShipIDRegionCd string
ShipID string
ShipSource string

ShipDest string
ShipPrice decimal
B Conditiona!
= ShipRegi% skring
= ShipRegion string
i ShipTime string
rlpm— | orditional

A

]

3. Associate your new conditional element with the built-in fn-bea:is-access-allowed() function by
clicking on the element and dragging the function into the Expression editor. The function takes
two parameters: a string and the name of a data service. In this case the string exactly matches
your security resource name.

Note: (For details on built-in BEA functions see the AquaLogic Data Services Platform XQuery
Developer’s Guide. For details on editing expressions see “Transforming Data Using
XQuery Functions” on page 6-38.)

Data Services Developer's Guide 4-33

../xquery/index.html
../xquery/index.html

Designing Data Services

4, Populate the function parameters by either entering the appropriate strings or dragging elements
into the function placeholders.

Figure 4-26 Establishing Security Control for East Group’s ShipRegion Element

Shipping.ds* - {DataServices}Demo' JavalLogical, 4
-B getShippingSourcelSourcesState, DestState)| - |
{?}Parameter: $SourceSt... = | ?—’?‘T'ijor: $ShipSourcel # [@Return sl
SourceState string +—4 [SHIPPING * E) B shipSource
W/ ShipID string v EF-Conditiona!
W ShipSource skring o [=1 SHIPPING *
i
In ShipDest string @Dhatalineage ¥ string
) g ShipPrice decimal ShipIDRegionCd string
@Let $SourceRegion = 0 ShipRegion string ShipID string
[=l=+ Input E) ShipTime string B ShipSource skring
shipSourceState string |:' v — 5 ShipDest string L
[=l4=| Output 1= ’|’_T'—jF0r: $ShipSource2 ¥ U | ShipPrice decimal
bring B 1 B Conditiona!
s ’|?T'ijor: $ShipSource3 ¥ U | & Sh{:@egion string
< = ShipReqion string
?lp - A = n £} ShipTime string
{?]Parameter: §Des_._ » — >|E - ¥ |
=4 For: $ShipSource4 Lw] & BT Conditiona!
DestState string
[« Dl

Expression fr-bea:is-access-allowed("shipregion”, "Id:DataServices/DemoflavalLogical/Shipping™)

| Design View | ¥Query Editor View [Source Wiew | Test View [Query Plan Yiew ||

5. The If-Else construct may now be read as “if access is allowed to the element return data,
otherwise return nothing”. In many cases it is appropriate to return the fact that access is not

allowed. This can be accomplished by setting the expression associated with the Else side of the
conditional to “N/A” (not available).

In Source View your conditional is rendered as an XQuery if-else statement.

if (fn:upper-case ($SourceRegion) eq 'EAST') then
(
for $ShipSourcel in nsl0O:getShipSourcel () /SHIPPING
where $ShipSourcel/ShipSource eq $SourceState
and $ShipSourcel/ShipDest eqg $DestState
return

<SHIPPING Datalineage?="{'EAST Shipping Source'}">

4-34 Data Services Developer's Guide

Managing Your Data Service

<ShipPrice>{fn:data ($ShipSourcel/ShipPrice) }</ShipPrice>
{
if (fn-bea:is-access-allowed("shipregion",

"ld:DataServices/Demo/Java/Logical/Shipping")) then

<ShipRegion>{£fn:data ($ShipSourcel/ShipRegion) }</ShipRegion>

else

<ShipRegion>{"N/A"}</ShipRegion>

}

<ShipTime>{fn:data ($ShipSourcel/ShipTime) }</ShipTime>
</SHIPPING>

6. Build your project. This deploys your new security settings to the server.

Assign Security Resources Through the AquaLogic Data Services Platform
Console

The next steps involve the AquaLogic Data Services Platform Console (see “Securing Data Service
Platform Resources” in the AquaLogic Data Services Platform Administration Guide for complete
details).

1.

Sign into the AquaLogic Data Services Platform Console. For the RTLApp sample the user name
and password are both ‘weblogic’.

Note: Unless a secured resource has been marked as available to user weblogic or some group
that user weblogic is a member of, it will not be available.

Find the heading Search Metadata. Click on the Search ldplatform (the RTLApp sample domain
server).

In the data service name field search for “shipping”.

In the Search Results click on the Shipping.ds name link to view the various administrative,
caching, auditing, metadata search, and security options available to the data service.

Click the Security tab.

Data Services Developer's Guide 4-35

../admin/security.html
../admin/security.html

Designing Data Services

Figure 4-27 Security Policies Associated with the RTLApp’s Shipping Data Service

ldplatform > RTLApp = DataServices/Demo/Java/Logical/Shipping

Metadata

Cache || Audit |§ Security

CISTV AR ITST Secured Elements |
This page shows all resources associated with Shipping data
service. Click on the action to assign a security policy for the listed
resource. Resources can be associated with XQuery Functions for
Security by clicking the XQuery Functions for Security icon. Administrator
can create XQuery Functions for Security at application node.
XQuery
Resource Name Type | Action Qunctions All‘;:?ays pefaut
- ype for Tads Value
Security g
getShippingSource Read o] T T T
Function
shipragion null q%m A, A, A,
Update e
submit Function 75 [orS [orS [orS
Apply
|
< m | B

6. Since you created a security resource named shipregion for your data service, it appears as an
available resource name. Now security policies must be associated with the resource. Click the
Action icon.

7. Inthe Administration Policies pane select the User name of the caller policy condition, then click
Add.

8. A dialog box appears where you can enter the name of the user.

4-36 Data Services Developer's Guide

Figure 4-28 Associating a User Name with a Security Resource

9.

Validating Security Policies Through Test View

Once security policies are established, they should be tested.
1.
2.

Managing Your Data Service

& http:/flocalhost: 7001 - Users - Mozilla Firefox

-

/oS

Type one name at a time and click Add.

Enter User Name : o

Users :

Username of the caller is

Add

Move Up
Mave Down
Change
Remave

Ok | Cancel

Done

Click Apply.

With the Shipping data service selected click the Test View tab.

The getShippingSource() function requires a source state and a destination state. (Valid states are
shown in the Examples. txt source file which is located in the Demo/Java/Logical folder.)

Enter MA as the source state and VA as the destination, then click Execute.

Data Services Developer's Guide 4-31

Designing Data Services

4-38

Figure 4-29 Validating that the ShipRegion Element is Secured

Shipping.ds - {DataServicesH Demot JavaiLogicall 4

Select Function:

v

|-B getShippingSourcelSourcesState, DestState)| - |

Parameters

x5istring SourceState: || MA |

xsistring DestState:

=
p=y

Mumber Element hy path)
Limit elements in array results to:

| 500 | | ShipSource | - |

[start Client Transaction [] Yalidate Results

Result

- <tl:ShipSource xmins:t1="http:/{Logical/ShipSource" =
- «SHIPPING Datalineage="EAST Shipping Source” =
<ShiplDRegionCd> EA <fShipIDRegionCd:=
<ShiplD= 001 </ShiplD>
<ShipSource= MA <fShipSource =
<ShipDest> WA </ShipDest =
<ShipPrice = 299.95 </ShipPrice=
<ShipRegion= N/A </ShipRegion:z
<ShipTime> 1 Day %ShipTime>
<fSHIPPING = B
<ft1:shipSource =

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

4. Notice that rather than returning the region, the Else string N/A is returned. This is because the
registered user of Test View is user weblogic, not user Igor.

Caching Functions

For each function in your data service, the Allow Caching option can be set to True or False. If False,
results from executing your query function cannot be cached. If True, results from earlier invocations
of your function can be cached if cache for that function is enabled through the AquaLogic Data
Services Platform Console. In other words, in order to cache a function it must be Enabled:True in its
data service and also enabled through the AquaLogic Data Services Platform Console. For details on
enabling cache for a function as well as setting the cache’s TTL (time-to-live) see the AquaLogic Data
Services Platform Administration Guide.

Data Services Developer's Guide

../admin/index.html

Managing Your Data Service

Caching Considerations

There are several things to keep in mind when considering whether to enable caching for a particular
function:

o If the data accessed by your function is updated frequently, the function is not a good candidate
for caching.

e Generally speaking, you should only enable cache to data service functions that have
parameters. Since relational tables do not, by definition, have parameters, the cache for such
tables should generally not be enabled.

Setting Caching Policy for a Function

To inspect or set the Allowed caching policy for a particular read function in your data service, click
on the arrow to the left of the name of the function, then set its caching policy through the Properties
Editor.

Figure 4-30 Click Arrow to the Left of a Function Name to Inspect or Set Its Caching Policy

ApplOrder.ds - {DataServicesHRTLServices),

_’@\ ApplOrder Data Service
4—@— getApparelOrder

4—@— getApparelOrderByCustID

Customer
ﬁ A e

You need to build your application in order for cache policy changes effective.

Note: When a cache policy of Enabled:False is set for a function it cannot be overridden through the
AquaLogic Data Services Platform Console.

Data Services Developer's Guide 4-39

Designing Data Services

Notahle Design View Properties

The following table, Table 4-31, identifies notable AquaLogic Data Services Platform Design View

properties.

Table 4-31 Notable Design View Properties

Update

Focus Property Settings Comments

Data service Name Editable Must end in . ds
Description Text Optional
Author Text Optional
Creation Date Non-editable
Type URI to optional XML type Also known as XML type.
DS Update : Allow True / False Allows calling applications

to execute the data service’s
update logic.

4-40 Data Services Developer's Guide

Tahle 4-31 Notable Design View Properties

Managing Your Data Service

Focus

Property Settings Comments

DS Update : Selectable for logical data Identifies the function used
Decomposition services with more than one | for decomposition of the
Function read functions. By default data service. In the case of

the topmost read function is
the decomposition function.

physical data services the
decomposition function is
pre-defined by the source
metadata.

For logical data services,
however, you can change the
default decomposition
function to another read
function in your data service.

For important information
on decomposition functions
see:

e “Overriding the
Decomposition and
Update Process” on
page 9-17

e “Leveraging Data
Service Reusability” on
page 10-15

DS Update : Override | Optional and editable Identifies a external Java

Class class that provides custom
update logic.

Optimistic Locking Projected / Updated / Applies only to

Fields Selected Fields relational-based data
services.

Security Resources Any number of name:value See “Adding Security

pairs. Resources” on page 4-31.
Prefix bindings Any valid, non-conflicting See “Refactoring AquaLogic

prefix can be entered for
namespaces defined in the
data service.

Data Services Platform
Artifacts” on page 2-27.

Data Services Developer's Guide 4-4

Designing Data Services

Tahle 4-31 Notable Design View Properties

4-42

Focus Property Settings Comments
User-defined Optional and editable Create any number of
Properties name/value pairs.

Data Service Name Editable

Read and Private

Functions and

Procedures

Function type Selectable (read or private) | Selectable for read function
or private functions; not
selectable for procedures.

Cache enabled True / False Enables cache for the
function.

User Defined Optional and editable Create any number of

Properties name/value pairs.

XML type Root: Name Editable Typically same name as the
data service without the
file’s extension.

Root: Is Referenced False Read only. For the root

element the Is Referenced
property is always false as it
is always a global element in
the schema.

Root: Type

<blank> or named type

Blank if the root element is
an anonymous type;
otherwise named type is
shown

Element: Is
Referenced

True / False

Read only. Identifies any
elements that are imported
into the current function. In
source this appears as
ref="element”.

Element: Type

XML type

Examples: xs:int; retailer:
CUSTOMER_VIEW

Data Services Developer's Guide

Tahle 4-31 Notable Design View Properties

Managing Your Data Service

Focus

Property Settings Comments

Element: Min Occurs | 1,0, orn

Element: Max Occurs | 1,0, 0orn

Element: Native Type | Data type Available only for physical
data. Example: VARCHAR

Element: Native Size | Size of the data Available only for physical

data. Example: 10

Data Services Developer's Guide 4-43

Designing Data Services

4-44

Tahle 4-31 Notable Design View Properties

Focus

Property Settings Comments
Primary key: <blank>, identity, sequence, | This and the Sequence
AutoNumber or userComputed Object Name option appear

for elements representing
primary keys in
relational-based physical
data services.

Autonumber can be used to
provide a value for a

database primary key.
e Leaving the field blank
means you will provide a

value for the primary
key.

e The identity option
pertains to IBM DB2,
Sybase, SQL Server, and
MySQL. In this case the
database will provide a
value for the primary
key.

e Sequence objects are
available for DB2 and
Oracle. You must
provide a sequence
object name.

e User computed is a
notational flag
indicating that the
primary key information
has been provided to the
database through your
SDO custom update
override class.

Note: It is not necessary
to set this flag in
order for the
update override
computed primary
key logic to be
used.

Data Services Developer's Guide

Tahle 4-31 Notable Design View Properties

Managing Your Data Service

Focus Property Settings Comments
Primary key: Ifsequence is selected in the
Sequence Object AutoNumber property
Name (above), then the sequence
object name must be
supplied
Related Data Role Name Editable Also changes the role name
Service shown in a model diagram.
Related Data Service | Path to the related data
service
Min Occurs 1,0,0rn
Max Occurs 1,0,0orn
Opposite Role Name Editable Also changes the role name
shown in the model diagram.
Relationship Name Editable
Read Function
Cache True / False Enables cache for the
function.
Return type Non-editable Always navigation type.
User Defined Editable Create any number of
Properties name/value pairs.
XML File Library | Name Editable Must end in . xf1
(XFL)
Prefix bindings Any valid, non-conflicting See “Refactoring AquaLogic
prefix can be entered for Data Services Platform
namespaces defined in the | Artifacts” on page 2-27.
data service.
Registered database Identifies data sources See “Creating a Database
function(s) data associated with a database XFL and Registering
source XFL. Database Functions” on
page 2-41.

Data Services Developer's Guide

4-45

Designing Data Services

Tahle 4-31 Notable Design View Properties

Focus

Property

Settings

Comments

Database XFL
Function

Catalog

Editable and optional

Can be optional if the JDBC
driver is pre-configured with
a default catalog name.

Schema

Editable and optional

Can be optional if the JDBC
driver is pre-configured with
default catalog and schema

names.

Package

Editable and optional

Can be optional if the JDBC
driver is pre-configured with
default catalog, schema, and
package names.

Function name

Editable

Required field providing the
name of the database
function.

Cache

True / False

Enables cache for the
function.

Publishing Data Service Functions for SQL Use

Data sources modeled in XQuery can be exposed as a relational data source usable by SQL queries
under the following conditions:

o The data service XQuery function signature involves types that are consistent with the
relational (JDBC) type system.

o The semantics of the function is support for publication as SQL. For example, private functions
and scalar XFL functions cannot be published.

o The structure of the underlying schema (function parameters and return type) can be rendered

into a normalized relational model.

Such functions can be thought of as relational-compatible XQuery functions. Depending on their
signature, such functions can be published for use as SQL tables, stored procedures, or database
functions. The association between the function and the SQL object is defined at design time.

Types of artifacts publishable for SQL access include:

4-46 Data Services Developer's Guide

Publishing Data Service Functions for SQL Use

o Data service functions. These are functions created into data services. See “Creating a Data
Service” on page 4-8.

e External database functions. These are database-specific functions which are either built into
a particular commercial database or which were custom-designed on the database side. For
details see “XFL Database Function Views” on page 2-41.

Table 4-32 shows the compatibility matrix between data service artifacts and SQL objects.

Table 4-32 Aqualogic Data Services Platform Function Types and Their Corresponding SQL Objects

Function Type Tables Stored Procedures Functions
Read functions Yes Yes No
Navigation functions Yes Yes No
Procedures No Yes No
Standard XFL functions No No No
Private functions No No No
Database Function library functions No No Yes

Note: See “Data Services” on page 2-15 for detailed information on read and navigation functions
and procedures and “Creating and Working with XQuery Function Libraries” on page 2-37 for
detailed information on XFL functions.)

Making Data Service Objects Available for SQL Use

You can make your data service functions available for SQL use through a wizard (Figure 4-33)
associated with your AquaLogic Data Services Platform-enabled project. Initially the wizard displays
all data service functions in the project. Functions ineligible for publication are grayed out.

The right-side of the wizard is initially populated only by a renameable schema containing SQL object
type names (Figure 4-33).

There are a number of ways that a function will be seen as ineligible for publication as a SQL object.
For example:

o XFL functions other than those specifically created as database functions are not eligible. For
more information see “Creating and Working with XQuery Function Libraries” on page 2-37.

Data Services Developer's Guide 4-41

Designing Data Services

e Data service functions and procedures containing non-tabular types cannot be mapped as SQL
objects. Non-tabular types occur whenever the structure of the XML cannot easily be rendered
into a normalized SQL object. For more information see “How Non-Tabular Element Types
Affect the Ability to Publish Functions as SQL Objects” on page 4-56.

The wizard supports the creation of any number of schemas under a catalog name that is the
same as that of the AquaLogic Data Services Platform project. Using the right-click menu, you
can rename, add, or delete schemas. For details see the “Publishing Data Service Functions
Example” on page 4-48.

Publishing Data Service Functions Example

The several steps involved in publishing data services for SQL use are described in this section.

1. Right click on your WebLogic Workshop project folder and select the Publish Data Services for SQL
Use option (shown in Figure 2-5). This automatically opens the wizard and associates your project
as a catalog in the virtual database you are preparing to publish.

Note: If you have previously created mappings between data service artifacts and SQL objects
in the currently selected project, these mappings will appear. Otherwise you will see a
wizard with no mappings to SQL objects (Figure 4-33).

4-48 Data Services Developer's Guide

Publishing Data Service Functions for SQL Use

Figure 4-33 RTLAPP Data Services Available for Publishing for SQL Use

@ Publish Data Services for SOL Use

Select data service functions and publish for SOL use:

Data Service Functions

£l DataServices
SR | .ﬁ.ppareIDB[}S
:[E CUSTOMER _CRDER.ds
:[E CUSTOMER _ORDER_LINE_ITEM.ds
18 PRODUCT.ds
=29 BilingDE
{2 cREDIT_CARD.ds
& enf.xfl
=29 CustomerDE
{IE ADDRESS ds
18 cusToMER.ds
B9 Dema
T8 CustomerProfile. ds
=129 FlatFiles
=24 FlatFileConsumer
=129 CSYDynarmic
ﬂ:ﬁ cdTitles_DelimitedComma,c

[CSWStatic
| D]

[«

[4]

A

Remove

I0E

Remove Al

SGL Objects
129 DataServices
=29 MewSchema
(C] Tables (0}
(Z] Stored Procedures (0)
(Z1 Functions {0}

Save Cancel

column.

Data Services Developer's Guide

2. Optionally, rename your schema by right-clicking on the NewSchema name in the SQL Objects

4-49

Designing Data Services

Figure 4-34 Adding a Schema to the Virtual Database Catalog

@ Publish Data Services for SOL Use

Select data service functions and publish for SOL use:

[rata Service Functions SGL Objects
= 418 getProductList. ds (=] =1 29 DataGervices
) getProductList =29 Schema
=29 RTLServices CTabl
=18 address.ds (Z) Stor
-B getaddress (C1 Fung
-B getaddressByCustID =129 Schema
=412 Applorder.ds (C) Tables (0}
-B getapparelOrdar (C] Stored Procedures (0)

(21 Functions (0}
@ getCustomer AEERE
= 118 ApplorderDetailview,ds
-B getapplOrderDetailview
=18 ApplProduct.ds
-B getapplProducts
=3 caseds
-B getiase
-B getCaseByCustiD
@ getiZustomer E|
[« | D]

-B getipparelOrderByCustID [

Remove Al

Save Cancel

3. Select the data service functions you want to publish for SQL use. You can expand any data service
individually or right-click on the project name to expand all. If you select a folder, the wizard will
attempt to map all the functions contained in the folder to the selected SQL object type.

Tip: You can also drag-and-drop functions or folders to a selected SQL object type.

4-50 Data Services Developer's Guide

Publishing Data Service Functions for SQL Use

Figure 4-35 Expanded List of Data Service Functions

@ Publish Data Services for SOL Use

Select data service functions and publish for SOL use:

[rata Service Functions SGL Objects
£l DataService (=] 129 DataServices
SR | .ﬁ.ppar Expand Al [[=}-{Z3 NewSchema
o, cleen | e
CUSTOMER_ORDER (Z] Stored Procedures (0)
¥ getCUSTOMER _ORDER _LINE_ITEM (£ Functions ()

=18 CUSTOMER_ORDER_LINE_ITEM.ds
=] CUSTOMER_ORDER_LINE_ITEM

&) getCUSTOMER _ORDER -
] getPRODUCT m
=38 PRODUCT ds
£ PrRODUCT
&) getCUSTOMER _ORDER_LINE_ITEM
=29 BilingDE

=¥ CREDIT_cCARD.ds
=] CREDIT_CARD
o] enf.xfl
E-{2¥ CustomerDE
=¥ ADDRESS.ds =

[« | D]

Save Cancel

Notice in Figure 4-35 that some functions are grayed-out and unavailable for publication as SQL
objects. If you attempt to map such a function, the alert dialog provides some detail on why the
function cannot be mapped. In some cases, there may be several reasons why a function is not
mapable; however, only one reason will be displayed.

4, Select a schema (if more than one) and the SQL object type you want to map to. As noted,
functions without parameters can be mapped as tables or stored procedures. Functions with
parameters must be mapped as stored procedures. Scalar functions defined through a function
library can only be mapped as a SQL object function.

Note: Why would you map a function that has no parameter as a stored procedure object? On
the JDBC side different APIs are used for tables, stored procedures, and for functions. In
some cases, it may be convenient to invoke a function without parameters as a stored
procedure.

Data Services Developer's Guide 4-51

Designing Data Services

5. Using the Add button to map the functions you want to publish to the selected SQL object. Once a
function is mapped it will appear in bold, italic font (Figure 4-36). Folders associated with the SQL
object type in each schema display the number of objects contained therein.

Note: You can map the same data service function to multiple schemas. The wizard will,
however, notify you when you map a function to multiple SQL object types.

Figure 4-36 Data Services Selected for SQL Use

&4 Publish Data Services for 5QL Use r‘S_(

Select data service functions and publish for SOL use:

Data Service Functions S0L Objects

(=1 4] UnifarmIDLibrary =l =] =29 DataServices
--B mklniformIdFromaPPId =29 mySchema
--B rnkAPPIdFromUniformId =29 Tables (3)
J[#] rkUniFormIdFromELECT CUSTOMER,_ORDER
--B mkELECIdFromUniformId CUSTOMER_ORDER._LIME_ITEM
J[#] egaPRID FRODUCT
--B eqELECID =29 Stared Procedures (3)

=29 services |:| m @ getCustomer

=] :[B Concatenation.ds @ getCustomerByMNarme
-B getCuskomer @ getCustomerByMamelessThen
-B getCustomerByName =29 Functions (1)
-B getfustomerByNamelessT) { Power

= 18 ordersmount. ds
-B getOpenOrders
-B getOpenOrdersUpToDate

=18 Union.ds
-B getCrders
-B getOrderByID B

[« | [

Save Cancel

6. Edit mapped names as necessary using the wizard’s alert page (Figure 4-37).

Tip: Inthe SQL objects area, you can also drag and drop published functions between various
table, stored procedure, and function folders in the same or different schemas. The only
requirement is that the function conform to publishing requirements. See “Constraints on
Publishing Data Service Objects to SQL” on page 4-54 for details.

4-52 Data Services Developer's Guide

Publishing Data Service Functions for SQL Use

Publish Data Service Functions Alert Dialog

After you have mapped functions to SQL objects and attempted to save your virtual database catalog,
you may see an alert dialog. This dialog provides a comprehensive summary of warnings and errors
associated with your mappings, if any.

Figure 4-37 Publish Data Services for SQL Use Alert Dialog

& Publish Data Service Functions for SOL Use Alert

] X

Ay The following data service functions are already mapped to SQL objects. Additional mappings will be created.

Data Service Function S0L Object

DataServices,Schemal CUSTOMER _ORDER(D)
DataServices,Schemal CUSTOMER _ORDER(D)
DataServices, Schemaz CUSTOMER_ORDER

DataServices,Schemal CUSTOMER_ORDER_Z

HId: DataServices/ApparelDEPRODUCT {PRODUCT DataServices, Schemal PRODUCT

{ld:Dataservices!ApparelDB{CUSTOMER _ORDER}ICUSTOMER_ORDER

Ay Names of the following SQL objects have been modified due to name conflicts or SQL naming requirements. Edit as neccessar

Data Service Function SOL Mame
{ld:DataServices/ApparelDB/CUSTOMER _ORDERMCUSTOMER _ORDER | CUSTOMER ORDER 2T

“ The following data service functions cannot be published and will be ignored.

Data Service Function Message
4{ld:Dataservices!ApparelDB{CUSTOMER _ORDER }getCUSTOMER_ORDER_LIN... Functions with element parameter types cannot be published as store
{ld:Dataservices!ApparelDBfCUSTOMER _ORDER_LIME_ITEMPgetCUSTOMER ... Functions with element parameter bypes cannot be published as storelZ‘

[«

Proceed Cancel

The alert dialog appears:

— As a warning when function names have been normalized to SQL names. The new names
are displayed and can be edited in place.

— As a warning you attempt to map a function that has previously be mapped to the same
combination of a schema and a table, stored procedure, or function. The operation is legal,
so the warning is for information only.

— As a warning when the generated SQL name will collide with an existing SQL object name.
The signature of an SQL object — that is, the combination of the SQL object name and
function arity — must be unique throughout a schema. New names are automatically
suggested (such as CUSTOMER_ORDER_2 for CUSTOMER_ORDER). The suggested names
can be changed using the built-in line editor.

Data Services Developer's Guide 4-53

Designing Data Services

— A selected function, data service folder, or XFL folder cannot be mapped. Names of these
functions are reported and the mapping is disallowed.

7. Click Save when you are ready to save your virtual database or cancel to revert to the most recent
version you have created, if any. You can test your published SQL objects through JDBC after your
application has been redeployed.

Constraints on Publishing Data Service Objects to SQL

There are some semantic and structural constraints to publishing data service objects to SQL.

Semantic constraints include some general types of objects as private functions. Table 4-32 provides
a matrix showing publishable AquaLogic Data Services Platform object types and their corresponding
SQL object types.

There are also a number of structural constraints on publishing data service artifacts to SQL.
Table 4-38 lists many of the more common limitations.

Tahle 4-38 General and Specific Limitations when Publishing Data Service Artifacts to SQL

Limitation Discussion

Limitation affecting all SQL objects Limitations in this section affect publication to any type of SQL
object.

e Functions referring to types that ~ Examples of such types include item, node, and attribute.
are neither simple nor elements

e Functions with simple typesthat The simple type on the XQuery side must correspond with a
have no corresponding SQL type JDBC-supported SQL type.

e Functions containing Functions containing elements where the name is not defined are not
anonymous element types mapable.

e Functions containing recursive ~ Contact of type Person <Person>
XML types

e XML types with content models XML wildcards include:
containing wildcards « xs:any

* xs:anyAttribute

4-54 Data Services Developer's Guide

Publishing Data Service Functions for SQL Use

Tahle 4-38 General and Specific Limitations when Publishing Data Service Artifacts to SQL

XML types with mixed content

An example of a document containing mixed content is:

<a>
<child/>
this is simply text
<child/>

Limitations affecting publishing as
a SQL Table

Limitations in this category affect publishing as SQL tables.

Functions with parameters

Functions with parameters can be mapped as stored procedures.

Functions containing simple
return types

Functions containing simple return types can be mapped as SQL
functions.

Functions containing any
non-tabular element type

See “How Non-Tabular Element Types Affect the Ability to Publish
Functions as SQL Objects” on page 4-56. Also applies to stored
procedures.

Functions with any AtomicType
types

Also applies to stored procedures.

Limitations affecting publishing as
a stored procedure

Limitations in this category affect publishing as a stored
procedure.

Functions containing any
sequence simple return types

The function declaration is not eligible. For example:

declare function f ($p as xs:string*) as xs:int

Functions with any anonymous
element types

Unnamed elements are not mapable. For example:

declare function f() as element ()

Functions with anyAtomicType
types

Also applies to tables.

Functions with any non-tabular
element types

See “How Non-Tabular Element Types Affect the Ability to Publish
Functions as SQL Objects” on page 4-56. Also applies to tables.

Limitations affecting publishing as
a SQL Function

Limitations in this category affect publishing as a SQL functions.

Data Services Developer's Guide 4-55

Designing Data Services

Tahle 4-38 General and Specific Limitations when Publishing Data Service Artifacts to SQL

e Function with a sequence An example shows xs:int* as the sequence parameter type:
parameter type and an arity

declare function f($p as xs:int¥,
greater than 1.

$q as xs:string) as xs:int

e Functions with element types declare function f (Sp as element (e)) as xs:int

How Non-Tabular Element Types Affect the Ability to Publish Functions as SQL Objects

The structure of a data service functions determines whether it can be mapped to an SQL object or
not. For example, a parameterized function cannot be published as an SQL table since by definition
SQL tables do not take parameters. Some structural constraints are practically self-evident; others are
less obvious.

Tip: A quick way to determine if a particular function can be published to a particular type of SQL
object is to drag the function to a SQL object table, stored procedure, or functions folder. Even
if the function is grayed out — meaning that it cannot be published to any type of SQL object
— an alert dialog (Figure 4-37) will appear explaining why the selected object cannot be
published.

For example, functions with non-tabular element types cannot be published as tables or stored
procedures because XML output structure cannot be mapped to a normalized SQL table.

Underlying each data service is an XML type, or schema. Some XML types are readily mapped for JDBC
use because they are — like SQL tables — two dimensional.

<CUSTOMER>
<FIRST NAME>
<LAST_ NAME>
<CUSTOMER ID>

</CUSTOMER>

When published as SQL, the table structure corresponds to Table 4-39:
Table 4-39 Customer Table

first_name last_name customer_id

Jack Black CUSTOMER1

4-56 Data Services Developer's Guide

Publishing Data Service Functions for SQL Use

As long as the object mapper can reduce the structure of the XML document to rank-one, the mapping
can occur. For example:

<CUSTOMER>
<FIRST_ NAME>
<LAST NAME>
<CUSTOMER_NUMBER>
<CUSTOMER ORDER>
<ORDER_ID>
<C_ID>
<ORDER_DT>
</CUSTOMER ORDER>
</CUSTOMER>

is publishable as a table in the following form as long as there is one or fewer customer orders
associated with the customer:

Table 4-40 Customer-Order Table

first_name last_name customer_id order_id c_id order_dt

Jack Black CUSTOMER1 ORDER 1 O CUSTOMER1 2001-10-01

If, however, the CUSTOMER_ORDER type is unbounded, meaning that it can represent more than one
order associated with a single customer, the structure no longer corresponds to a well-formed
relational table and the mapping is not allowed.

Note: In WebLogic Workshop an unbounded type is created and identified by zones in the return
type zones. See “Setting Zones in Your Return Type” on page 6-50.

The function in that example would initially not be mapable since multiple orders are
associated with a single customer (master-detail in relational terms). However, if the zone
associated with CUSTOMER_ORDER were removed, the function could be mapped and the
resulting table would be similar to that shown in Table 4-40.

Data Services Developer's Guide 4-51

Designing Data Services

4-58 Data Services Developer's Guide

Modeling Data Services

Using BEA Aqualogic Data Services Platform, you can create and maintain models of your enterprise
data services. Models describe data, relationship between data objects, data semantics, and
consistency constraints.

Models also express relationships between physical data services, logical data services, or a
combination. In DSP all model relationships are binary; each binary relationship is expressed in a
model diagram as one or more lines between two data services.

You can use DSP model diagrams to:
o Obtain a high-level, visual view of data resources
o View the relationships between physical and logical data resources
e Facilitate the creation or modification of relationships between resources
e Quickly access or create a data service

e Modify a XML type of a data service

The following topics are covered in this chapter:
e Model-Driven Data Services
e Building a Simple Model Diagram
o Building Data Service Relationships in Models

o Working with Model Diagrams

Data Services Developer's Guide 5-1

Modeling Data Services

o How Changes to Data Services and Data Sources Can Impact Models

Note: For more information on data service modeling concepts see “Modeling and a
Service-Oriented Architecture” in the AquaLogic Data Services Platform Concepts Guide.

Also see in the Aqualogic Data Services Platform Samples Tutorial:
- Modeling Data Services

- Implementing Relationship Functions and Logical Modeling

Figure 5-1 Model Diagram of Physical Data Services

CananicalMadel.md* - {DataservicesH\MODELS|Logicall %
1]
I,
:[EElEtUﬁEI H customer
B @ ELEC_ORDER retalerType:ELEC [~ =@ PROFILE retslerTypeiPROFLE_TTPE [2]
@ orderlD xsdistring ¢ @ CustomerID wsdistring 1
0 CustomerID xsd:string) FirstName xsd:string
@ OrderDate xsdidate > @ LastMame xsdistring
® Shippingitethod xsdistring [~ | ® CustomerSince xsdrdste £ ApplOrder
£ | IO @ Emailaddress xsdistring = {© APPL_CRDER. retailerType:APPL_ORDE| <
5] getelecOrderByordin() @ Telephonehumber ? xsdrstring] B OrderID xsdistring
5] getElecOrdersByCustiDg) @ 55N 7 xsdistring D CustomerID xsd:string
57 getEmntyElecOrder() @ EirthDay ? xsdidate @ OrderDate xsd:date
@ DefaulshippmentiMethod xschstring @ shippingMethod xsd:string
@ Emailotification xsd:shert @ HandingCharge xsd:decimal
7l - sob siodibo] mlzl @ subTotal xsd:gecimal
@ Totalorderamount xsdidecimal [~
-] getcustomer() [=]] il]
) gettustnmerﬂytu.s.tlD() E| 5 gecapparelonder)
T T) getApparelOrderByCustiD)
{E cresitcara {Ecase
(@ CREDIT_CARD rebaierType: CREDIT_CARD_TYFE [@ CASE retailerTypeiCASE_TYPE
0 CredieCardD xsdistring 0 CaselD xsdistring
@ CustomesID xschstring @ CustomerID xsdistring
@ Customerlame xsdstring @ ProductlD xsd:string
0 CreditCardTyps xsdistring 0 Caselype xsdistring
@ CrediCardBrand xsdistring 10 CaseDescription xsd:string
@ CreditCardiumber xsd:string @ CaseDate xsd:date
) LastDigts xsd:skring 0 AsigneslD xsd:string
) ExpirationDate xsd:date) Status xsdisting
10 Status ? xsdhsting @ StatusDate xsddate
Alias 7 xsdisti
g AddressiD xs:zmng #oetcased
4] getCaseByCustin() =]
£ getcreditCard()]
] getCreditcardBycustog [=
K| o]

A model diagram is a graphical representation of a data model supported by DSP. In addition to
showing collections of data services and relationships between data services, model diagrams also

5-2 Data Services Developer's Guide

../concepts/modeling.html
../concepts/modeling.html
../samples_tutorial/index.html

Model-Driven Data Services

identify role direction and cardinality information at each end of the relationship. By default, types
shown in model diagrams are XML schema types, but you can change this to display native data source
types in the case of physical data services.

Model-Driven Data Services

In large enterprises modeling is — or at least should be — an early task in developing a data services
layer. By starting with a graphical representation of physical data resources it is easier to view data
resources globally, leveraging existing information in interesting and useful ways. It is also easy to see
opportunities for creating additional business logic in the form of logical services.

Model diagrams are quite flexible; they can be based on existing data services (and corresponding
underlying data sources), planned data services, or a combination. You can also create and modify
data services and data service XML types directly in a modeler diagram.

In DSP model relationships are logical connections between two data services. The connections
describe:

o The direction of the binary relationship (one- or two-way)
e The cardinality of the relationship (1-to-1, 1-to-many, 0-to-many, or many-to-many)

o Arole name for each side of the relationship

Relationships can have one or more navigation functions that allows data associated with one data
service (such as Customer) to potentially become a complex parameter for a related data service
(such as Orders).

Some relationships — such as between relational data services — are automatically inferred through
introspection of primary and foreign keys. See “Importing Relational Table and View Metadata” on
page 3-8 for details.

Additional relationships can be created in several ways:

e Automatically, by dragging two or more relational-based data services into a model diagram
simultaneously. In such cases primary/foreign key relationships are automatically identified.

e Graphically, through gestures you make in your model diagram.

e Programmatically, through Source View of a data service.

Logical and Physical Data Models

Models can represent any combination of logical and physical data services.

Data Services Developer's Guide 5-3

Modeling Data Services

Physical Data Models

Physical data services represent data that physically resides in the enterprise (see Chapter 3,
“Obtaining Enterprise Metadata”). The source may be from a relational database, a Web service, an
XML data stream or document, a flat file such as a spreadsheet, or a Java file contain custom
functions.

Logical Data Models

Logical data models are developed in DSP and are based on physical other logical data.

In other words, each physical model entity represents a single data source. Logical data model
entities represent composite views of physical and/or logical models.

Rules Governing Model Diagrams

Model diagrams follow a set of rules:

e Each entity in the model has a title which is the data service local name (the fully-qualified
name is visible as a mouse-over).

e Data services in models need not be associated with an XML type. However, if they are, the type
is always displayed. For physical data services you have the option of displaying native schema
types such as Integer(10).

e Associated read functions can be displayed, with or without signatures.

e Model diagrams do not “own” data services, but simply reference them. Multiple models can,
without limit, contain representations of the same data service or relationships between data
services.

e Models are not nested. That is, one model diagram cannot reference another.
e Multiple models can be defined and located anywhere in your project.

e (Changes made to a model diagram can be reversed using the Edit — Undo command.
However it is important to keep in mind that changes to any underlying files such as schemas
(XML types) or data services made through the model will not be undone. Instead, edit the data
service directly or close and reopen your application before saving your changes.

Note: Changes to a model diagram that affect data services such as when a new relationship is
created are only made permanent in WebLogic Workshop after you do a File — Save AlL

5-4 Data Services Developer's Guide

Building a Simple Model Diagram

Building a Simple Model Diagram
You can create a data model by selecting a DSP-based project and then choosing:

File — New — Model Diagram

The following example describes how to create a model around physical data.

Figure 5-2 Creating a Data Model Using the File Menu

|| Application ¥ || logical.md* - {DataServicestidiagrams!,
23 Demo
(31 crwsProject
E%E New File
Toa B
-
ERw)
Caal 28 Model Diagram it
(C1 Business Logic ik Data Service E xs:st
|:| Liquid Diata |<—j ¥Query Function Library
[C) Web Services ORE xg0
g [C) Web User Interface MG x|
O [Z) Comman B
-
q .
E gt
- bie] xs.'iv'lZ‘
&]
4
E Filz game:| myHodelL mid |
4 ; ; N
Create in: {DataServicesHdiagrams), M
a Bronse...|
M| | Create a new Model Diagram,
r-; A
P ustomer2
4
‘
4
[k PO_ITEMS.ds]
|<—j sdo,xsdconfig
[3) untitled.xf
(C) Modules

This example assumes that you are using the DSP demonstration program RTLApp.

The data services used in the example in this chapter are PRODUCT, CUSTOMER_ORDER, and
CUSTOMER_ORDER_LINE_ITEM. See Chapter 3, “Obtaining Enterprise Metadata” for details
related to importing metadata.

Here are the steps required to create and populate a simple model:

1. First choose a name and physical location for your model. It can be created anywhere in your BEA
WebLogic application. In the demonstration application provided with DSP, models are located in
a MODELS folder.

Data Services Developer's Guide 5-5

Modeling Data Services

2. Right-click on your project and select New — Model Diagram.

3. Pick a location for your model and name it myModel Diagram.

Figure 5-3 Selecting a Data Service

-

New File
Caal 3] Model Diagram
(1 Business Logic [3) Data service
(] Liquid Data |<—j Liquid Drata ¥Query
(O Web Services
[C) Web User Interface
[Z) Comman

File: game:| myHodelDiagraml. nd |

Create in: {DataServicesH,

Create a new Model Diagram,

4. Right-click in the work area of your new model and select Add Data Service.

5. From the dialog box select the CUSTOMER_ORDER data service in Data Services/ApparelDB.

5-6 Data Services Developer's Guide

Figure 5-4 Adding Data Services to a Data Model

Building a Simple Model Diagram

|| Application | | Untitled md* - {DataServicesHMODELS} %
S9RTLADD | [«]
(&1 Bilingw's
g DataServices
3 I £ CUSTOMER_ORDER
(=) schemas [y .
419 CUSTOMER,_CRDER.ds B @ CUSTOMER_ORDER. .
41 CUSTOMER_CRDER_LINE_ITEM.ds ? ORDER_ID xs:sking
& LineltemUpdate. java © cIp xsistring
22 myModel.md (:) ORDER_DT xs:date
¥ PRODUCT.ds @ SHIP_METHOD_DSC xs:shing
419 Untitled, ds Q HANDLING_CHRG_BMT xs:decimal
12 Untitled1.ds © SUBTOTAL_AMT xs:decimal
[¢d] urtitledL xsd @ TOTAL_ORDER_AMT xsvdecimal
{27 BilingDE (:) SALE_TAX_AMT xs:decimal
(£ Bilingws L_) SHIP_TO_ID xs:shring
[=29 CustomerDB L_) SHIP_TO_NM xs:string
[schemas © BILLTOID xsistring
412 ADDRESS.ds © ESTIMATED_SHIF DT xsidste
{2 cusToMER.ds @ STATUS ssistiing
£ Demo @ TRACKING_NO ? xs:string
(2 Electronicsws -+ CUSTOMER _ORDER()
£ Jawa L
CaMETATNF
£ MODELS
O RTLServices
(£ ServiceDB
Fj sdo, xsdconfig lz‘
Fj Untitled. xfl [¥]
8] Uniitleda 1 7] =
+ Updating

Since the data services in this example are representations of relational sources, a considerable
amount of metadata is available. For example, primary keys are identified from the data; these

are shown in data service type as a key icon (¥).

6. Right-click on the CUSTOMER_ORDER data service titlebar and choose the Add Related Services
command.

In this case you will see that two relationship already exists: CUSTOMER and
CUSTOMER_ORDER_LINE_ITEM (Figure 5-5).

Data Services Developer's Guide 5-1

Modeling Data Services

5-8

Figure 5-5 Adding Related Services

myModel. md* - {DataServices}ApparelDEY

*

{2 CUSTOMER_ORDER |

Open

B @ CUSTOMER_CRD)

¥ ORDER_ID k
@ C_ID xs:ski Remove Data Service
@ ORDER_DT Create Relationship to Another Data Service

@ SHIP_METHO
@ HANDLING (]

CUSTOMER.
CUSTOMER_ORDER_LIME_ITEM

@ SUETOTAL_A Mative XML Types

© TOTAL_ORDE Shaw Read Functions
© SALE_Tax_A Show Function Signatures

@ SHIP_TO_ID xsrsermng —
@ SHIP_TO_MM xs:string
@ BILL_TO_ID xs:string

B cermren cum nr wetose)

K1 | [

-] CUSTOMER_ORDER()

Kl

=
D]

Y
d 00% |

7. Mouse over to the related data service that you want to add to your model diagram. For this
example perform this operation twice, adding both related data services to your model.

Once you have done this, you should automatically see the relationships between these three
data services (Figure 5-6). (If not, try selecting the Show Relationship command for the

Address data Service.)

Data Services Developer's Guide

Building a Simple Model Diagram

Figure 5-6 Automatically Inferred Relationships Between Physical Data Sources

As described previously, relationship lines are graphical representations of relationship

yModel.md" - {DataservicesHMODELS,

{E ADDRESS

OIOTOXOTTOT IO 0T L)

El @) ADDRESS
@ ADDR_ID xs:string

CUSTOMER_ID xs:string
FIRST _MNAME xs:string
LAST_NAME xs:string

STREET_ADDRESSL xs:string
STREET_ADDRESSZ 7 xs:string

CITY xsistring
STATE xsusting
ZIPCODE xs:string
COUNTRY xs:string
DAV_PHONE 7 xs:string
EVE_PHONE 7 xs:string
ALIAS ? xs:string
STATUS 7 xs:string
15_DEFALLT xs:short

o 0.0

0.n
ADDRESS

1.1
CUSTOMER

CREDIT_CARD)

3% CREDIT_CARD

B &) CREDIT_CARD

P CC_ID xsistring
5 CUSTOMER_ID xs:string
CC_CUSTOMER_NAME xs:string
CC_TYPE xs:string
CC_BRAND xs:string
CC_NUMEER, xs:string
LAST_DIGITS xs:string
EXP_DATE xsidate
STATUS ? xs:string
15 _DEFALILT xs:short
ALIAS 7 xs:string
ADDR_ID xs:string

C00OOOOOOO®

{ CREDIT_CARD()

f ADDRESS()

Remove Data Service

Show Relationship

Create relationship ko Data Service

SERWICE_CASE
CUSTOMER _ORDER

» CUSTOMER _ORDER

getCustomerOrderByCUstIDResponse

Hative XML Types

v Show Read Functions

(| Show Function Signatures

{ CUSTOMER()

Fan

[

declarations and navigation functions.

There is a role at each end of a relationship. Initially, role names simply reflect their respective
data service. Table 5-7 details the model diagram’s services, roles, and cardinality of the model
diagram, shown in Figure 5-1.

Table 5-7 Relationship Declarations in Sample Model’s Data Services

data Role Role Opposite Role Current Minimum
service Name Number data service Role Occurrences Occurrences
Address Customer 1 customer.xds Address 1
CreditCard 2 credit_card.xds Address 0
Credit_Card Address 1 address.xds Credit_card 1
Customer Address 2 address.xds Customer 0

Data Services Developer's Guide

5-9

Modeling Data Services

5-10

Displaying Relationships Automatically

In the Application pane you can multi-select data services using either Shift-click (contiguous
services) or Control-click (individual services). If you drag a set of data services into a model diagram,
any existing relationships to other data services in the model will be created automatically.

The relationships shown in the example are based on automatically created navigation functions
found in the respective physical data services (see Table 5-8).

Tahle 5-8 Navigation Functions in a Model's Data Services

data service Returns Navigation Function
Address Customer, Credit_ Card getCustomer()
Customer Address getAddress()

Generated Relationship Declarations in Source View

An example of a navigation function in the underlying source is:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="navigate" roleName="ADDRESS"/>::)

This specifies a relationship to the Address data service from the Customer data service.

Data services also contain declarations describing the nature of the relationship; this information is
the source for the role names and cardinality values that appear in your model diagram.

For example, the data service Address contains the following relationship declarations:

<relationshipTarget roleName="CUSTOMER" roleNumber="1"
XDS="1d:DataServices/CustomerDB/CUSTOMER.ds" opposite="ADDRESS"/>

For each data service, a relationship is created which identifies its role name, cardinality, opposite
data service, and a unique (to the data service) role number.

In the above example, a navigation function is automatically created that retrieves customer
information based on the customerID. The Customer data service getAddress() function is show in
Listing 5-1.

Data Services Developer's Guide

Building a Simple Model Diagram

Listing 5-1 Customer Data Service getAddress() Navigation Function

import schema namespace t2 = "ld:DataServices/CustomerDB/ADDRESS" at
"ld:DataServices/CustomerDB/schemas/ADDRESS.xsd";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="navigate" roleName="ADDRESS"/>::)

declare function fl:getADDRESS ($pk as element (t1:CUSTOMER)) as
element (t2:ADDRESS) *
{
for $fk in f£2:ADDRESS ()
where $pk/CUSTOMER ID eq $fk/CUSTOMER ID
return $fk
}i

In the case of the relationship between Customer and Address, the relationship is 0-to-n for the
Address role (it can make and appearance any number of times or not at all) based on CustomerID
being a foreign key in Address and a primary key in the Customer data service (and the underlying
relational data sources respectively).

Since the relationships are bilateral, Customer’s opposite is Address while Address’s opposite is
Customer. This is shown in the Properties Editor (Figure 5-9).

Figure 5-9 Property Editor for New Model Diagram

|| Property Editor *
Relationship: ADDRESS{CUSTOMER) - CUSTOMER{ADDRESS)
Role {1)
role-name % CUSTOMER
target-DS Id:DataServices/CustomerDB,/CUSTOMER.ds
min-occurs 1
Max-occurs 1
Role {2)
role-name ADDRESS
target-DS Id:DataServices/CustomerDB,;/ADDRESS.ds
min-occurs 1}
Max-0CCUrs n

Modeling Logical Data

The major difference between a logical model and a physical model is that the logical model contains
representations of at least one logical data service, in addition to physical data services. In practice

Data Services Developer's Guide 5-11

Modeling Data Services

there are no constraints between creating models that contain mixtures of logical or physical data
services, including data services which are themselves composed of logical data services.

If your data model is composed of both physical and logical data services, you should keep in mind that
a metadata update on any underlying physical data services will remove any relationships you have
created involving those data services. For details see “Updating Data Source Metadata” on page 3-69.

Building Data Service Relationships in Models

5-12

In model diagrams, a relationship is created by the gesture of drawing a line from one data service to
another (see Figure 5-1). In some cases (such as relational data services) relationships and the lines
representing the relationship can be automatically inferred. In other cases, you need to create the
relationship.

A relationship has several editable properties:

e Cardinality. Is the relationship zero-to-one (0:1 or 1:0) as in customer and promotion,
one-to-one (1:1) as in customerID and custID, one-to-many (1:z) as in customers and orders, or
many-to-many (%:%) as in customer orders and ordered items?

e Direction. Arrows indicate possible navigation paths. Is there an originating entity associated
with a subordinate entity (such as orders and order items) or is the relationship bidirectional
(such as customers and orders)?

e Roles. A name matching the name of the adjacent data services navigation function (see
below). Does the assigned relationship name capture the purpose of the navigation function it
represents?

Navigation functions are visible as properties of each data service in the binary relationship. They can
be fully inspected in Source View for each data service. Navigation functions also appear as
mouse-over text over each endpoint of the relationship line.

Direction, Role, and Relationships

In a model diagram, each side of a relationship represents the role played by the adjacent data service.
For example, in an ADDRESS: CUSTOMER relationship the end of the line near the customer is, by
default, also called CUSTOMER. If you mouse over the role name, the opposite role name appears
(Figure 5-10), as well as the name of the navigation function.

Data Services Developer's Guide

Building Data Service Relationships in Models

Figure 5-10 Model of Two Relational Data Services, ADDRESS and CUSTOMER

Titled. md - {DataServicesHMODELSY 4
Navigation runctions [=]
{EADDRESS Cardinality notations
E-@ ADDRESS on navigation functions
¥ ADOR_ID xsstving
@ CUSTOMER_ID xs:string
@ FIRST_MAME xs:sting
(@) LAST_MNAME xs:shring
© STREET_ADDRESS1 xsistring {E CUSTOMER
(@ STREET_ADDRESSZ ? xsiskring =
@ CITY xsistring =@ CUSTOMER
© STATE xs:sting ¥ CUSTOMER_ID xs:stving
@ ZIPCODE xaistring 1.1 CUSTOMER RS EE
= - () LAST_NAME xs:shring
() COUNTRY xs:shring - getCUSTOMER() -
© DAY_PHONE ? xsistring @ CUSTOMER_SINCE xs:date
© EVE_PHONE ? xsistring (@ EMAIL_ADDRESS xs:string
@ e shing [(@ TELEPHOME_MUMBER. xs:stving
@ STATUS 7 xssbring © 55N 7 xsisking
@ IS_DEFALLT s:short © BIRTH DAY ? xsidate
= (@ DEFAULT_SHIP_METHOD 7 xs:string
2] ADDRESS() @ EMAIL_NOTIFICATION 7 xs:short
@ MEWS_LETTTER ? xs:short
Read fundions (@) OMLIME_STATEMEMT ? xs:short
] CUSTOMER()

In the model diagram shown in Figure 5-10 the ADDRESS role is accessed by CUSTOMER through its
primary key, ADDR_ID. In the CUSTOMER data service the ADDRESS relationship has an
automatically created function called getADDRESS(). Its role is to return address-type information
about the holders of specific credit cards.

Data Services Developer's Guide 5-13

Modeling Data Services

Figure 5-11 getAddress(pk) Function in the CUSTOMER Data Service

WCIISTOMER, ds* - {DataServicesHCustomerDEY

&7 getADDRESS(pK)| ~

{?IParameter: $pk A 7
= CUSTOMER
CUSTOMER_ID string
FIRST_MAME string

@Return

- 3-ADDRESS
ADDR_ID skring
CUSTOMER_ID string
FIRST_MAME string

LAST_MAME string
CUSTOMER _SINCE date

=49For: $fk

= ADDRESS *

LAST_MAME string
STREET_ADDRESS! string

EMAIL_ADDRESS string
TELEPHOME _MUMEER. string
55N ? skring

BIRTH_DAY 7 date

DEFALLT _SHIP_METHOD 7 skring
EMAIL_MOTIFICATION ? short
MEWS_LETTTER 7 short
OMLINE_STATEMENMT ? short

ADDR_ID skring
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
STREET_ADDRESS! string
STREET_ADDRESSZ ? string
CITY string

STATE skring

ZIPCODE string
COUNTRY skring
DAY_PHOME 7 string
EVE_PHOME 7 string
ALIAS 7 string

STATUS 7 skring
I5_DEFALLT short

STREET_ADDRESSZ ? string
CITY string
STATE skring
ZIPCODE string
COUNTRY skring
DAY_PHOME 7 string
EVE_PHOME 7 string
ALIAS 7 string
STATUS 7 skring

] I5_DEFALLT short

In the function shown in Figure 5-11 the navigation function getADDRESS(pk) can take any
CUSTOMER parameter input that includes a primary key CUSTOMER_ID and returns customer

address information.

At the other end of the relationship in Figure 5-10 is the CUSTOMER role, which supplies customer

information to the ADDRESS data service also based on a unique customer ID.

In Figure 5-10 notational arrows also identify cardinality notations. The ADDRESS role has a 0-to-1
cardinality with CUSTOMER, since your data source can have a customer without address information.
The ADDRESS role has a 1-to-1 cardinality with CUSTOMER, since each ADDRESS must be identified

with a single customer.

Cardinality notations can be modified in three places:

e Through your model diagram’s Property Editor (see “Model Diagram Properties” on page 5-23).

e Through each data service Design View, using the Property Editor.

5-14 Data Services Developer's Guide

Building Data Service Relationships in Models

e Through Source View in each data service (not recommended).

Role Names

You can change role names to better express the relationship between two data services. This is
particularly useful when there are multiple relationships between two data services.

Take, for example: Customers and Orders. One relationship between these two data services would
typically by 1: n, expressing two facts about the relationship:

e There is no limit to the number of orders a customer may have made.

e An order must be associated with one and only one customer.

By default, the role names would also be Customers and Orders. However you could change the role
names to Supplies_Customer_Info and Orders_Array, respectively, to more precisely express the role
of each side of the relationship.

A second relationship line could represent a different function, getMostRecentOrder(). This
relationship would be 1:1 and the roles could be expressed as CustInfo and getOrder.

Figure 5-12 Mousing Over a Role Displays Its Navigation Function Name

1E caseview

Bl @ CASE retaller:CASE_VIEW
) CaselD xsdiskring

0 CustomerID xsd:shring
) CaseType xsd:shing

0 ProductID xsd:shring 1.1 Profile¥iew

0 Status xsdistring - [
) StatusDate xsddake - getProfieVien()

-F‘] getCaseYiew()

If you mouse over the end of a relationship line you will either see the navigation functions defined for
that particular role (Figure 5-12) or a message indicating that no navigation functions have been
defined.

Relationships

In a model diagram, drawing a line between two data services opens the Relationship Wizard.

Data Services Developer's Guide 5-15

Modeling Data Services

Figure 5-13 First Dialog of Relationship Wizard

& Relationship Properties

Relationship CUSTOMER. - = CustomerProfile Relationship CustomerProfile - = CUSTOMER
DataService CUSTOMER: ———— -DataService CustomerProfile:

Role name: [cisToMERS | || Rolename: | customerProfies |

Min occurs: | 1 | - | Min occurs: | 1 | - |
Max occurs: | ! | M | Max occurs: | ! | M |

N
| Mext | | Finish | | Cancel |

The wizard allows you to specify:
e Direction
e Role name

e Cardinality

Then, for each data service, you can additionally specify:
e Join conditions

e Parameters

When you are done you will have created a fully functional navigation function.

For an example and additional details see “Adding a Relationship to Your Data Service” on page 4-11.
With a few minor exceptions the Relationship wizard works the same when invoked in a model
diagram as it does when you add a relationship to an existing data service.

Working with Model Diagrams

This section describes some of the common operations you will use when working with model
diagrams.

5-16 Data Services Developer's Guide

Working with Model Diagrams

Model Right-click Menu Options

You can edit your model using a combination of right-click menu options and the model Property
Editor. Table 5-14 describes right-click options based on the functional area of the model diagram that

is in scope.

Table 5-14 Data Model Options

Scope

Command

Meaning

Data Model

Add Data Service

Allows you to add one or several data services in your application to
the current model diagram. The Add command brings up a file
browser from which you can select a data service.

Alternatively, you can drag data services from the Application pane
into the model either individually or in groups (press the Ctrl key to
select non-contiguous data services from your application).

Inthe case of relational-based data services, dragging multiple data
services into a model diagram at the same time will create
relationships between the data services, if any exist. The
relationships, of course, are based on primary/foreign key
relationships that are available through imported metadata.

Note: If a data service is already represented in your diagram,
dragging will have no effect.

New Data Service

Allows you to create a new data service. After selecting a name and
physical location for the data service (. ds) file using a browser,
the service is created and placed on the diagram.

Select All Nodes

Select all nodes in the model diagram.

Generate Report

Creates either a Summary or Detail report describing the data
services in the model, their bilateral relationships, and a
description of each data service. See “Generating Reports on Your
Models” on page 5-20.

Find Data Service

Locates a data service within your model. See “Locating Data
Services in Large Model Diagrams” on page 5-19 for details.

Data Service

Open

Opens the currently selected data service in Design View (see
“Creating a Data Service” on page 4-8). Alternatively, double-click
on the data service representation.

Data Services Developer's Guide 5-11

Modeling Data Services

Tahle 5-14 Data Model Options

Scope Command Meaning

Add Related Data | The Add Related command is available when one or several data

Service services are selected in the model. Add Related lists data services
that contain navigation functions referencing your currently
selected data source. Click on the service you want to add and then
repeat the process to add other available related services, if any.

Remove Data Removes the selected data service from the model diagram.

Service Alternatively, use the Delete key.
Note: This operation does not affect the underlying data service.

Create Dialog allows you to select from a list of data services in the model

Relationship to diagram. As with drawing a line between two data services, this

Another Data option brings up the Relationship wizard. (See “Using the

Service Relationship Wizard to Create Navigation Functions” on page 4-13.

Show Optionally displays/hides relationship lines associated with the

Relationship currently selected data service. Click a relationship name in the
sub-menu to select/deselect the display of its relationships.

Show/Hide Native | Optionally displays/hides native types for elements representing

XML Types physical objects associated with simple data types. Example:
VARCHAR (25).

Show/Hide Read | Display/hides read functions associated with the data service.

Functions

Show Function Displays/hides full read function signatures such as:

Signatures getAddress () as element (Address)

Relationship line | Remove Removes the relationship from the diagram without affecting the

Relationship underlying data service.

Delete Removes relationship notations in each respective data services

Relationship and removes the relationship line from the model diagram.

Show/Hide Role Displays/hides the role name assigned to each side of the

Name relationship.

Data Services Developer's Guide

Tahle 5-14 Data Model Options

Working with Model Diagrams

Scope Command Meaning
Show/Hide Displays/hides the cardinality of each side of the relationship. Only
Cardinality relationships between relational sources typically display
cardinality.
XML type Various XML types can be edited in your model diagram. For important
editing information see “Editing an XML Type” on page 4-24.

Creating Relationships in Model Diagrams

You can create additional relationship notations in model diagrams in several ways:

1. By drawing a line between two data services in your model diagram.

2. Byright-clicking on a data service representation and selecting Add Related Data Service. Then
select a data service from the sub-menu. The related data service will appear in the diagram along
with a relationship line.

3. Byselected a data service already in the model. Right-click on your data service and select Create
Relationship to Another Data Service. Then, from the dropdown list in the resulting dialog, choose
the data service to which you want to create a relationship. This will create a relationship line
between the two data service representations.

4. By editing in Source View.

In the cases of options 1and 2, above, the Relationship wizard will appear. The wizard is fully described
in “Adding a Relationship to Your Data Service” on page 4-11. Note that in the model diagram you do
not have the option of changing the names of each side of the relationships since this has already been
defined by the line connecting the two data services.

Locating Data Services in Large Model Diagrams

You can locate data services in your model diagram using the Find Data Services option, available from
the right-click menu in your model diagram. Alternatively, use Ctrl-F when your model diagram is in

focus.

Data Services Developer's Guide 5-19

Modeling Data Services

5-20

Figure 5-15 Find Data Service Dialog Box

-y

Find Data Service
Data Service ko find: | Cust* M | Find |
Options: [] Match case

[] Match whale waord anly
Wildcard (* and ?) search

[] Reqular Expressions

Options include the ability to:
e Match case
e Restrict search to whole words only
e Restrict the search to regular expressions

Wildcard character (?) and string (*) search is available.

Nodes matching the search criteria are highlighted and the model diagram view changes to show the
first matching node.

Searches made during the current session can be retrieved using the drop-down combination listbox
and entry field.

Generating Reports on Your Models

You can generate summary and detailed reports on the current model using the right-click Generate
Report menu option, available from the title bar of your model. There are two types of reports:
Summary and Detailed.

o Summary Report. Provides general information related the model including:
— Location of each data service in the model

— Type: logical or physical

Allows updates: true/false

Owner (if any)

Comment (if any)

Date created

Date last modified

Data Services Developer's Guide

Working with Model Diagrams

o Detail Report. A detailed model report contains all summary information listed above and, for
each relationship between data services, the following additional information:

Return type fully qualified name (known as the gname)

Details on each read function including return type, description, and comments

Details on the data service relationships including role name, target data service, minimum
and maximum occurrences, opposite role name, navigation functions including return type,
description, comment and user-defined properties

— Dependencies — a list of all dependent data services

Creating a Model Report
When you choose the Create a Model Report right-click option you are asked to select a name for the
HTML document that is generated. By default, the name of the summary report is:

<model name> md summary.html

and the name of the detail report is:

<model name> md detail.html
Figure 5-16 Model Report Generator Dialog Box

=
Lo

[C1 warkshop
(0] APP-INF

[C) crwsProject
(C1) Danubetweh
(O] DataServices
0] META-TNF
@7 Untitled. bl

Mame: | logical_model_summary, html |

Type: |HTML Files I~]

You can save the report to any location in your application (Figure 5-16) including to a new folder.

Data Services Developer's Guide 5-21

Modeling Data Services

Model Report Format

The model report is in HTML format. When you initially run your report it opens in a WebLogic
Workshop pane in HTML. A source tab is also available (Figure 5-17).

Figure 5-17 Sample Summary Model Report

*

&) logical_dm_summary.html - D:\bealuser_projectsiapplicationsidanubelDema’,

loiical.md

s Data Service: Customer
o General Information:
» Locator: ldDataZervices/Customer. ds
Type: logical
Description:
Allows Updates: true
Cwner:
Comnent:
Date Created:
» Last Modified: Feb-22-2005 12:11:32 0500
s Data Service: PATIENTS
o General Information:
» Locator: ldDataZervices PATIENTS ds
» Type: physical
» Description:
n Allows Updates: true
» Data Sowrce Type: relational
» Data Sowrce Name: cglataZource
L]
L]
L]
L]

Cwner:

Comnent:

Date Created:

Last Modified: Fek-22-2005 12:11:32 0500

[

| Design Yiew [Source View |

Note: Print your report from any browser or application that supports HTML printing.

Zoom Mode

For larger models you can use a display-only zoom option, available in the lower right-hand corner of
your model diagram (Figure 5-19). When in zoom mode an “lock” icon appears, indicating that Zoom
mode is active and the model is read only.

5-22 Data Services Developer's Guide

Working with Model Diagrams

Editing XML Types in Model Diagrams

You can edit any data service XML type represented in your model diagram. For XML type options see
“Editing an XML Type” on page 4-24.

Model Diagram Properties

Properties both reflect and define relationships created in the model diagram. Table 5-18 describes
data model properties based on scope: data service, relationship, navigation functions, and XML type.

Tahle 5-18 Notable Data Modeling Properties

Scope Property Settings Comments
Data Service Properties described in
“Managing Your Data
Service” on page 4-26.
Relationship data servicel(Role 1) | Read only Shows names of the related
- data service? (Role 2 data services and their

respective roles.

Role (1) Provides information on Role
L.

role-name Editable text

target data service Read only Name of data servicel.

min-occurs Drop down, editable Minimum occurrences can

be blank, 0, 1, or 7.

max-occurs Drop down, editable Maximum occurrences can
be blank, 0, 1, or 7.

Role (2) See above. Same settings as Role (1).
Navigation Name Read only
function
Return Cardinality Read only, 1 or * Returns single type or an
array
return type See “Editing XML Types and

Return Types” on page 2-20.

Data Services Developer's Guide 5-23

Modeling Data Services

How Changes to Data Services and Data Sources Can
Impact Models

5-24

A model diagram is dependent on its components including physical data, logical data, and
relationships, all of which are subject to change outside the model itself.

Changes in a qualified name or deletion of a data service or changes in the underlying data can all
cause a data model to become an incorrect representation of data services and their relationships.

A model diagram is revalidated when:
e it is opened or regains focus
e when the application is saved

e when metadata is updated

You can also use the Property Editor to correct a qualified name reference or to delete a stale
reference. See “Model Diagram Properties” on page 5-23 for details.

How Metadata Update Can Affect Models

Updating metadata will remove any manually created relationships between affected data services. In
your model diagram this change is represented by the relationship line, appearing in red. In such
cases, you will need to recreate the relationship with the newly updated data services.

Data Services Developer's Guide

How Changes to Data Services and Data Sources Can Impact Models

Figure 5-19 Relationships Invalidated by Metadata Update Appear in Red

Titled. md* - {DataServicesHMODELSY

*

JEADDRESS

J Unable to display Schema Tree - unl

K1

] ADDRESS()

ADDRESS1

{E cusTOMER

1.1
CUSTOMER1

B @ CUSTOMER

¥ CUSTOMER_ID xs:stving

(@ FIRST_MNAME xs:string

(@) LAST_MNAME xs:shring

@ CUSTOMER_SINCE xs:date

(@ EMAIL_ADDRESS xs:string

(@ TELEPHOME_MNUMEER. xs:string

@) 55M 7 xs:string

(@ BIRTH_DAY ? xs:date

(@ DEFAULT_SHIP_METHOD ? xs:string
(@ EMAIL_NOTIFICATION ? xs:short

ADDRESS1

TTER ? xsishort

o Mavigation Functions Defined

ATEMENT ? xs:short

[+ cusTOMER()

]

A

=

A oo -]

Data Services Developer's Guide

5-25

Modeling Data Services

5-26 Data Services Developer's Guide

CHAPTERa

Working with the XQuery Editor

BEA Aqualogic Data Services Platform services provide a framework for creation and maintenance of
functions that access and transform available data. You can use the XQuery Editor to create such
functions.

A valid query function is always associated with a return type. In Source View a return type is
described for each function. It typically matches the XML type — or schema — that defines the shape
of your data service.

Once created, your query functions can be called by client applications. Details on the various
methods of invoking AquaLogic Data Services Platform functions can be found in the AquaLogic Data
Services Platform Client Application Developer’s Guide.

You can also use the XQuery Editor to create standalone, queries that can be run in Test View (see
Chapter 7, “Testing Query Functions and Viewing Query Plans”).

Topics discussed in this chapter include:
o Role of the XQuery Editor

o Creating a Simple Data Service Function

Key Concepts of Query Function Building

Managing Query Components

Working With Data Representations and Return Type Elements

Data Services Developer's Guide 6-1

../appdev/index.html

Working with the XQuery Editor

Role of the XQuery Editor

Using the XQuery Editor you can create query functions using an intuitive, drag-and-drop approach.
During the creation process you can easily move back and forth between the editor to Source View.

Figure 6-1 Sample Parameterized Function in the XQuery Editor

Customeriew.ds* - {DataServices HRTLServices) %

H] getCustamer Visw(CustiD)| ~

{?}Parameter: §Cus... »

CustID string

[=}- PROFILE * PROFILE_TYPE
CuskomerID string =
Firsthame string
LastMame string

CustamerSinee_ date

6-2

=]

[*]
0]

=4For: $Line_item)
) LINE_ITEM * LINE_ITEM |~]
@TYPE ? string
LinelterID string
OrderID string
ProductID string
ProductDescription st

Guantity int
Frice decimal
Status string

=
0]

SqFor: $0rder_type 2
=== Input
custamer_id string

(== Output

= ORDER * ORDER_TVPE
@TYPE ? string
OrderlD string
CustomerID string
OrderDate date
ShippingMethod string
HandlingCharge decimal
SubTatal decimal

TotalOrderamaunt decimal
SaleTaxAmount decimal

v}
EstimatedshipmentDate dat

[

FirstName string

- (@ Return i
<=4For. $Profile e 2 U
[}S = § _typ =1 Customer View
= Inpt.-lt . E‘ [= CUSTOMER_VIEW * CUSTOMER _VIEW
cust_id string |:| CustomerID string
(=4=] outpur

LastMarne string
= ORDERS
[=-ORDER_SUMMARY * ORDER_SUMMARY_TVPE
Type ? string
OrderID string
CuskomerID string
OrderDate 7 date
Totalorderamount decimal
ShipToMame string
EstimatedshipDate date
Trackinghumber ? string
Status string
[=1-LINE_ITEM *
ProductDescription string
Quantity int

[1]

Status string E
1| [

[o8 (.|

[Desian Wiew | #Query Editor View [Source View | Test Yiew | Query Plan View |

The XQuery Editor relies on data services functions for the metadata necessary to represent various
types of data. (For detailed information on importing metadata see Chapter 3, “Obtaining Enterprise

Metadata”.)

Data Services Developer's Guide

Role of the XQuery Editor

Also see in the Aqualogic Data Services PlatformSamples Tutorial:
- Building XQueries in XQuery Editor View

- Building XQueries in Source View

A data service may represent a physical data source or it may represent logical data that has previously
been created. Data service and custom XQuery library functions are both represented from the Data
Services Palette (Figure 6-2), a WebLogic Workshop pane available when XQuery Editor View is active.

Figure 6-2 Data Service Functions Available to the RTL Sample Application

|| Data Services Palette X
|~) DataServices
1 ApparelE %
(C11 BilingDE
-] CustomerDE
5} £ ADDRESS.ds
£ ADDRESS()
&7 getCUSTOMER()
£ CUSTOMER. ds
1 Demo
(C) ElectronicsWws
) RTLServices
) Address.ds
1 Applorder.ds
21 ApplorderDetailview . ds
1 ApplProduct.ds
) Case.ds
[T Caseview.ds
(C) CreditCard.ds
(C Customer ds
[Z1) Customerview,ds
[C) ElecCrder.ds
[C) ElecrderDetailview.ds
[C) ElecProduct.ds
[C1) ©rderDetailview.ds
[C1) ©rderSummaryviewds
(C) Orderview.ds
(C1 Productview.ds
[C Profileview.ds
(C1) ServiceDE

Notice in Figure 6-2 that there are two different type of function representations: Functions represent
by a straight (green) arrow are read functions, while functions represented by a more stylized (blue)
arrow are navigation functions.

Data Services Developer's Guide 6-3

../samples_tutorial/index.html

Working with the XQuery Editor

6-4

Essentially you create a query function by:

e Dragging in data representations from the Data Services Palette to the XQuery Editor work
area.

o Identifying conditions, parameters, functions, and expressions that for your query.

e Associating elements with a return type.
As you work graphically you are automatically creating an XQuery in Source View.

Once created, you can execute your function using Test View (see Chapter 7, “Testing Query Functions
and Viewing Query Plans”). When you execute your query function, underlying data sources are
accessed and the results appear. If you have appropriate permissions, data can be updated directly
after the query is run.

Data Source Representations

Metadata representations of source are available to the XQuery Editor from the Data Services Palette.
The Data Services Palette lists available data services and their read and relationship functions. Any
such function can be dragged into the XQuery Editor work area where it will be transformed into a for
clause.

Read functions and Web services often have input parameters. For example, the logical data service
Customer (customer.ds) can be represented in the XQuery Editor by its read functions:
getCustomer() and getPaymentList(). If you drag the getCustomer() item from the Data Services
Palette to the XQuery Editor, the source representation shown in Figure 6-3 appears in the work area.

Data Services Developer's Guide

Role of the XQuery Editor

Figure 6-3 Data Service Function From the Data Services Palette

H For: $x3
=+ Input
xsistring ¥
4= Oubpuk
b1 CUSTOMER *
ELCUSTOMERID xsvint
ELCUSTOMERMAME xs:skring
[} t1:CREDIT *
ELCREDITSCORE xsvint
ELCREDITRATING xs:string
[t1:ORDER *
E1:ORDERID xsvint
ELCUSTOMERID xsvint
[} t1:POITEM *
E1:ORDERID xsvint
E1LKEY xavink
ELITEMNUMBER. 7 xsvint
ELQUANTITY 7 xsvint

In some cases you may want to use a physical or logical data source representation several times in a
query.

See Chapter 3, “Obtaining Enterprise Metadata” and Chapter 4, “Designing Data Services” for details
on creating physical and logical data services.

XQuery Editor Options

When you create a new function in your data service and then click on the name of your new function
(Figure 6-1), you will automatically be placed in the XQuery Editor. Alternatively, click the XQuery
Editor View tab and select your function from the drop-down menu. Initially your XQuery will have only
a return type, assuming that your data service is associated with an XML type (see “Associating an
XML Type” on page 4-23).

Data Services Developer's Guide 6-5

Working with the XQuery Editor

6-6

Figure 6-4 Right-click Menu Options in the XQuery Editor

CIUSTOMER, ds* - {DataServicesHCustomerDEY 4

-B newFunction() | -

v

@Return

U B CUSTOMER

CUSTOMER_ID string
FIRST_NAME string
LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS string
Default Layout TELEPHOME_NUMEER string

MR - 2o
[#4 Show Condition Line BIRTH_DAY 7 date

DEFALLT _SHIP_METHOD 7 skring
EMAIL_MOTIFICATION ? short
MEWS_LETTTER 7 short
OMLINE_STATEMENMT ? short

Ju LOGIM_ID 7 string

Edit in Source Yiew

Remove Selected Itemis)
Collapse Al
Expand All

A

[

|]

Several right-click menu options are available when you click in any unoccupied part of the work area.

Table 6-5 XQuery Editor Right-click Menu Options

Option

Meaning

Edit in Source View

Opens Source View to the section containing the currently selected
function.

Default layout The elements in the XQuery Editor are rearranged according to a
pre-established formula including docking the return type to the
right side of the work area.

Add Parameter Adds a simple or complex parameter to your work area. Complex

parameters require you to select a schema file and global type. See
“Parameter Nodes” on page 6-20.

Show Condition Lines

Hides/displays lines that identify conditions such as where clause
predicates. By default condition lines are shown.

Remove Selected Item(s)

Deletes selected items from the work area.

Data Services Developer's Guide

Creating a Simple Data Service Function

Table 6-5 XQuery Editor Right-click Menu Options

Option Meaning
Collapse All Collapses all nodes in the work area including the return type.
Expand All Expands all nodes in the work area.

Creating a Simple Data Service Function

Creating a data service — as you will if you follow the steps in this section — is a good way to get the
feel of working with the XQuery Editor, as well as other aspects of data services.

Tip: Changes made in the XQuery Editor are immediately reflected in Source View.

The goal of this exercise is to quickly create a logical data service, including creating an XML type for
your data service, using the XQuery Editor. The basic steps are:

o (reate a new data service.

e (Create a function.

e Add data source metadata to the function.

o Build up a return type (schema) from the source metadata.
e (reate a join between the source representations.

o Test the function.

Tip: The quickest way to change something you have done in the XQuery Editor is to use the
Edit — Undo command (or Ctrl-Z). Prior to saving your application you can undo any
number of previous steps. Thus it is often preferable to use Undo rather than redrawing
mappings, zone settings, or conditions.

In the sample it is assumed that you have the RTLApp sample installed and running, as well as its
server.

Data Services Developer's Guide 6-7

Working with the XQuery Editor

Importing Metadata from Physical Data Sources

In this section you create a new data service-enabled project and import metadata for the data sources
you plan to use in your logical data service.

1.

AT - B

9.

In RTLApp create a new project of data services type. Name the project myLogicalDS, then click
Create. (For details on creating AquaLogic Data Services Platform projects and applications see
“AquaLogic Data Services Platform-Based BEA WebLogic Applications” on page 2-2.)

Right-click on your new data service and select Import Source Metadata. (If your ldplatform
samples server is not already running you will need to start it now.)

Select Relational as the data source type, click Next.

Choose cgDataSource from the drop-down list of available relational data sources.
Allow the default Select All radio button to remain selected. Click Next.

From the RTLCUSTOMER database select the CUSTOMER table.

Add it as a selected database object.

Repeat steps b and 6 for CUSTOMER_ORDER table in the RTLAPPLOMS database.

Click through the remaining default options in the wizard to created two new data services.

Creating Your Logical Data Service

In this section you create a logical data service that provides client applications with the ability to
retrieve customer-order information. In this section you will:

e Create a new data service and a new function.
e Add functions that represent source data (in this case customers and orders).

o Build up your return type using graphical gestures. This is where the master-detail arrangement

of your returned data is defined.

e Modify return type zones to reflect nested for statements. This supports the nesting of all order

details for a particular customer under that customer.

Here are the specific steps involved:

1.
2.

6-8

Right-click again on the myLogicalDS project and choose New — Data Service.

Name the data service myLogicalDS, then click Create.

Data Services Developer's Guide

Creating a Simple Data Service Function

Note: At this point your data service has no XML type (schema).

3. Click on the titlebar of your new data service; select Add function. Name your new function
CustOrder. Enter the XQuery Editor by clicking on the newly assigned name.

Drag the CUSTOMER_ORDER() function from ApparelDB:CUSTOMER_ORDERS in the work
area (Figure 6-6).

5. From your Data Services Palette drag the CUSTOMER() function from the CUSTOMER data
service in the CustomerDB folder into the XQuery editor work area.

Figure 6-6 XQuery Editor With Two Data Sources and an Empty Return Type

myLogical ds* - {myLogicalDataServicest,

] Custorder()| +
(@ Return =
- 1 O B-list
=4For: §CUSTOMER # U 5 empty

B} CUSTOMER: *]
CUSTOMER_ID string
FIRST_NAME string
LAST_NAME string
CUSTOMER_SINCE dat
EMAIL_ADDRESS string|
TELEPHONE_NUMBER s
S5N? string
BIRTH_DAY 7 date
DEFALLT_SHIP_METHOI
EMAIL_NOTIFICATION
NEWS_LETTTER ? shork]
ONLINE_STATEMENT ?

ampty

=4 For: §CUSTOMER_ORDER =
El CUSTOMER_ORDER, *
ORDER_ID string
C_ID string
ORDER_DT date
SHIP_METHOD_DSC string
HARDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAX_AMT decimal
SHIP_TO_ID string
SHIP_TO_NM string
BILL_TO_ID string
ESTIMATED_SHIP_DT date
STATUS string
K1 b

<

1 [+

[
4 | O]

The existence of the two incomplete for clauses, SCUSTOMER and $CUSTOMER_ORDER, is
accounted for by the return type’s two empty elements.

Next, you need to populate your function’s return type. CUSTOMER_ORDER should be set up as
a child of CUSTOMER so that information will be return in the following shape:

Customerl
. 'Orderl
' 'Order2
él:lS tomer2

6. Holding down the Ctrl key map the CUSTOMER* element in the CUSTOMER for node to the
topmost empty element in the return type.

Data Services Developer's Guide 6-9

Working with the XQuery Editor

6-10

Figure 6-7 Return Type After An Induced Mapping of the Customer For Node

7.

myLogical ds* - {myLogicalDataServicesH,

-B CustOrder()| -

@Return

>

T B-list

SqFor: §CUSTOMER = U
Bl CUSTOMER *

[CLSTOMER,
1USTOMER_ID string

FIRST_MAME string

SqFor: §CUSTOMER... =
= CUSTOMER_ORDER *

@

ORDER_ID skring
C_ID skring
ORDER_DT date
SHIP_METHOD_DSC s
HAMNDLING _CHRG_AM’
SUBTOTAL_AMT decin
TOTAL_ORDER_AMT ¢
SALE_TAY_AMT decim
SHIP_TO_ID skring

CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS skring
TELEPHOMNE _MUMEER. striny
SEN? skring

BIRTH_DAY 7 date
DEFALLT _SHIP_METHOD ?

LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS skring
TELEPHOME _MUMEER. string
SEN? skring

BIRTH_DAY 7 date
DEFALLT_SHIP_METHCOD 7 5
EMAIL_MOTIFICATION ? shc
MEWS_LETTTER 7 short

SHIP_TO_MM string EMAIL_MNOTIFICATION 7 sl ful OMNLIME_STATEMENT 7 shart
BILL_TCQ_ID string L MEWS_LETTTER 7 short H empty
ESTIMATED_SHIP_DT OMLINE_STATEMENT 7 shg
STATUS string =]
L 1 0] O 1 [
I | D

In your return type right-click on the new CUSTOMER root element and select Expand Complex
Mapping. This maps all the elements in your CUSTOMER node to corresponding elements in your
return type.

As the returned document is to list all customer orders associated with a specific customer, you
need to create a subordinate complex element. One way to do this is to simply add the
CUSTOMER_ORDER type as a subordinate to CUSTOMER, as shown in the next step.

Holding down Shift+Ctrl keys, select the root element in the $CUSTOMER_ORDER for node and
drag it over the CUSTOMER root element in your return type.

Data Services Developer's Guide

Figure 6-8 Append Mapping of the §CUSTOMER_ORDER to the Return Type

myLogical ds* - {myLogicalDataServicesH,

-B CustOrder()| -

SqFor: §CUSTOMER = U

SqFor: §CUSTOMER... = U
[CUSTOMER_ORDER * ;
ORDER_ID skring

C_ID skring

ORDER_DT date
SHIP_METHOD_DSC strir
HANDLING _CHRG_AMT c
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT dec
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string L
ESTIMATED _SHIP_DT da
STATUS string =

[D]

[CUSTOMER. *
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMEER. striny
55N ? skring
BIRTH_DAY 7 date
DEFALLT _SHIP_METHOD ?
EMAIL_MOTIFICATION sl
MEWS_LETTTER 7 short
OMLINE_STATEMENMT 7 shg

[]

>

= CUSTQMER *
CMER_ string
FIRST_I skring
AME skring
CUSTOMER _SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMEER. string
SEN? skring ¥
BIRTH_DAY ? date ?
DEFALLT_SHIP_METHCOD ? 5
EMAIL_MOTIFICATION ? shc
MEWS_LETTTER 7 short 7
OMLINE_STATEMENMT ? short
empky

i3

i}

I

| L]

A

The CUSTOMER_ORDER elements will appear as subordinate to CUSTOMER (Figure 6-9).

Data Services Developer's Guide

Creating a Simple Data Service Function

6-11

Working with the XQuery Editor

6-12

Figure 6-9 Subordinate Node Added to the Return Type

@Return

w

7 = CUSTOMER *

CUSTOME&D skring
FIRST_MAME string
LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMEER. string
SEN? skring ¥
BIRTH_DAY ? date ?
DEFALLT_SHIP_METHOD 7 skring 7
EMAIL_MOTIFICATION ? short 7
MEWS_LETTTER 7 short ?
OMLINE_STATEMENT ? short 7
LOGIN_ID ? string 7
EHCUSTOMER _ORDER
ORDER_ID skring
C_ID skring
ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MNC 7 string

If you try to run a query at this point it will fail for several reasons:

— Your data service has no associated XML type (schema).

— Your project (or application) needs to be build to create the proper SDO infrastructure.

— No where clause connecting the customer ID keys in the two data source representations

has been created.

— The master-detail structure of the document has not been created.

Similarly, if you attempt to map source elements to CUSTOMER_ORDER, you will not be
successful. This is because the implicit assumption behind the mapping of a complex element is

that all the child elements are mapped to the return type.

These issues are resolved through the steps that follow.

9. Inyour CUSTOMER_ORDER node select the zone icon (see Figure 6-10) and drag it over the
CUSTOMER_ORDER element in your return type. (Notice that now when you mouse over the

Data Services Developer's Guide

Creating a Simple Data Service Function

CUSTOMER_ORDER note, only the subordinate CUSTOMER_ORDER node is highlighted.) This
action creates an inner zone in your return type which in source becomes an inner for clause for
your query. An inner zone corresponds to the detail part of a relational master-detail ordering.
(For more information on return type zones see “Setting Zones in Your Return Type” on page 6-50.)

Figure 6-10 Creating a Zone Supporting CUSTOMER_ORDER

myLogical ds* - {myLogicalDataServicesH, 4

-B CustOrder()| -

. @Return sl
SqFor: §CUSTOMER = U Zone icon 0 B CUSTOMER *
[E} CUSTOMER * CUSTOMER_ID string
CUSTOMER_ID string FIRST_MAME string
FIRST_MAME string LAST_NAME string

CUSTOMER _SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMEER. string
SEN? skring ¥

BIRTH_DAY ? date ?

DEFALLT _SHIP_METHOD 7 skring
EMAIL_MOTIFICATION ? short 7
MEWS_LETTTER 7 short 7
OMLINE_STATEMENT ? short 7

SyqFor: $CUSTOMER_ORDER 2@
[CUSTOMER_ORDER *
ORDER_ID skring
C_ID skring
ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal

TOTAL_ORDER_AMT. decimal ol =) CUS&MER_ORDER
SALE_TAX_AMT.deumaI DER_ID string
SHIP_TO_ID skring C_ID string

SHIP_TO_MM - string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC ? string

ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decit
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decima
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring

] TRACKING_MC ? string

A

(I | o

10. Right-click on CUSTOMER_ORDER and choose Expand Complex Mapping so that individual
elements are mapped.

11. Create a join between your two data source representations by dragging the CUSTOMER_ID
element in the CUSTOMER node to the C_ID element in the CUSTOMER_ORDER node. A dotted
green line connecting the two elements appears.

12. Data service functions that are added to the XQuery Editor workspace have namespaces. Since all
elements in a return type need to share the same namespace, minor editing is necessary.
Double-click on the second complex element (CUSTOMER_ORDER) and change:

Data Services Developer's Guide 6-13

Working with the XQuery Editor

6-14

nsO:customer

to:

customer

Finishing Up
Now the default name for your new schema matches the name of your data service; the default
namespace is the qualified name (gname) of the root element of your return type.

1.

Click on the titlebar of your return type and select Save and Associate XML Type from the
right-click menu. In order to complete this operation you need to provide the location of your new
schema file, its namespace, and a name for the root element in your return type. In each case a
default setting is provided, as shown in Figure 6-11.

Figure 6-11 Save and Associate XML Type Dialog

Dl Save and Associate XML Type

Location | -ationsimyLogicalimyLogicalDataServices/myLogicalDs, xsd | | " |

Mamespace | Id:myLogicalDataServices/CUSTOMER |

Narme | cusTomeR |

N

Since the proposed qualified namespace of your new XML type is identical to the qualified name
of your CUSTOMER data service, a type conflict will occur unless you modify either the namespace
or the root name. Change the name from CUSTOMER to CUST_ORDER_DETAIL, then click OK.
(This will also change the root name of your return type.)

Open Design View. Notice that you now have an XML type.
Build your project (or application).

Execute your query through Test View. Results should show customer orders nested for each
customer. (See partial results in Figure 6-12.)

Data Services Developer's Guide

Key Concepts of Query Function Building

Figure 6-12 Test Results

Result [Tem || me

- <aiArrayOFCUST _ORDER_DETAIL xmins:a="ld:myLogicalDataServices/CUSTOMER" =
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"

<laArrayOFCUST_ORDER_DETAIL™ %

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

WOOWOOWOW W W W W

Although there are several ways to go about accomplishing the same task. It is also important to be
aware that there were points along the way where an effort to build or deploy your application would
not have been successful because the query or the return type was not fully formed. Thus the order in

which steps are accomplished can be significant.

Key Concepts of Query Function Building

The following terms and concepts are introduced in this section:
e Data Sources

e Source Schemas and Return Types

XQuery Editor Components

The Distinct By node represents a single distinct by clause.

Setting Expressions

Mapping to Return Types

Modifying a Return Type

Data Sources

AquaLogic Data Services Platform supports multiple data sources including:

Data Services Developer's Guide

6-15

Working with the XQuery Editor

6-16

o RDBMS (relational database management systems)
o Web services

e Java functions

e Delimited files (such as spreadsheets)

o XML files

For details on importing data source metadata from these sources into AquaLogic Data Services
Platform-based projects see “Obtaining Enterprise Metadata.”

Source Schemas and Return Types
The XQuery Editor uses XML schema representations as:
o XML type. An XML schema that describes the structure of a physical or logical data source.

e Return type. The return type of a function. In the XQuery Editor the return type contains
information necessary to support customized queries in terms of the ordering of information
returned from the query.

For more information see “XML Types and Return Types” on page 4-7.

XQuery Editor Components

Using the XQuery Editor, query functions can be built up graphically using a combination of graphical
gestures and functions, including:

o Standard XQuery for and let clauses

e XQuery constructs such as where and order by

o XQuery extensions such as group by and if-then-else
o Standard and user-defined XQuery functions

e Physical and logical data source references

The following topics describe XQuery clauses as rendered in the XQuery Editor. (For information on
the XQuery engine used by AquaLogic Data Services Platform and specific uses of XQuery in Source
View see the AquaLogic Data Services Platform XQuery Developer’s Guide. This document also
contains references to the most up-to-state XQuery W3C specifications.)

Data Services Developer's Guide

../xquery/index.html

Key Concepts of Query Function Building

Return Type Node

Query functions always map to a single return type. If your data service is associated with a return
type, that type will appear in the Return node.

Figure 6-13 Sample Return Type

@qu\urn
0 L CUSTOMER, *
CUSTOMERID xsd:int
CIUSTOMERMAME xsd:string 7
[=HCREDIT
CREDITSCORE xsd:int 7
CREDITRATING xsd:string 7
[} = ORDER *
ORDERID xsd:int
CUSTOMERID xsd:int ?
v = POITEM *
ORDERID xsdtint 7
KEY wsdtint
ITEMMUMEER xsdiint 7
(] QUANTITY xsd:int 7

The return type can be thought of as extending the XML type to in support of:
o If-then-else constructs using the right-click Conditional operation.

e Zones (see “Setting Zones in Your Return Type” on page 6-50).

When you click on a simple element in the return type, the expression on that element’s constructor
appears.

For Clause Nodes

A for clause node represents a named XQuery for clause construct. For and let clause nodes are always
based data service functions.

Figure 6-14 Sample For Statement Node

|T_°‘ For: $i

F3:PO_ITEMS *
KEY wsdtint
ORDERID ? xsdtint
ITEMMUMEER ? xsd:int
QUANTITY 7 xsd:int

By default, whenever you add a data service to the XQuery Editor work area, it is represented in a for
node. The for node typically represents looping over a query function using either:

Data Services Developer's Guide 6-17

Working with the XQuery Editor

e avariable reference
e an expression

Parameterized Input

A for node, representing a parameterized query function, provides both Input and Output sections. As
you would expect, parameters are mapped to the Input elements while Output elements either serve
as input to other nodes or to the return type.

Figure 6-15 Example of Parameterized For Node

SyqFor: $x0 =
===+ Input
customer_jd string %
=l4= Dutpuk
[ORDER * ORDER_TYPE
@TYPE ? string
OrderID string
CuskomerID string
OrderDate date
Shippingiethod string

@

HandlingCharge decimal
SubTotal decimal
TotalOrderamount decimal
SaleTaxamount decimal
EstimatedShipmentDate date
Status skring

ShipTa string

ShipToMame string
BillTo string
Trackinghumber 7 string
= LIME_ITEM * LIME_ITEM_TY¥PE
@TYPE ? string
LineltemIDr skring Iz‘

[[| [+]

For and Let Node Options

Table 6-16 shows options available when you right-click on the title of a for or let node.

Table 6-16 For or Let Node Right-click Options
Option Meaning

Rename Brings up a dialog which allows you to rename your node. Names
cannot contain spaces.

Delete Removes the node and any mappings in or out of the node from the
work area.

6-18 Data Services Developer's Guide

Key Concepts of Query Function Building

Tahle 6-16 For or Let Node Right-click Options

Option Meaning

Convert to let/for Clause Changes the clause from a for to a let or from a let to a for. This
operation is reversible.

Go to definition Opens the data service that is represented by the node. The data
service is opened to the current function in XQuery Editor View.
However, if the function represents a physical data service (termed
external in Source View), then the function definition in Source
View appears. You can use the back arrow to return to your initial
data service.

Relationship Functions Relationship functions associated with the data service are listed.
Selecting a relationship function allows your for or let node to serve
as input for the relationship. See “Adding Relationship Functions to
an Existing Data Service” on page 6-24 for an illustration and code
sample.

View Source Shows the source underlying the currently selected node.

Converting Between For and Let Clauses

For and let clauses (see “Let Statement Nodes” on page 6-20) have many interchangeable
characteristics.

The following code shows the conversion of the DataServices/RTLServices/Case/getCaseByCustID()

function expression from a for clause:

declare function nsl:getCaseByCustID($cust id as xs:string) as
element (ns0:CASE) * {

for $x0 in nsl:getCase ()

where $cust id eqg $x0/CustomerID

return $x0

}r
to a let clause:

declare function nsl:getCaseByCustID($cust id as xs:string) as
element (ns0:CASE) * {

let $x0 := nsl:getCase()

where $cust id eqg $x0/CustomerID

return $x0

}i

Data Services Developer's Guide

6-19

Working with the XQuery Editor

6-20

Let Statement Nodes

A let clause binds a sequence of elements (graphically contained in a node) to a variable that in turn
becomes available to the FLWR expression.

Options available for use with for clauses are also available for let clauses. See “For and Let Node
Options” on page 6-18.

Figure 6-17 Let Statement in the RTLServices/OrderSummaryView Data Service

BlLet sy0 | 20|
===+ Input e 1
customer_jflet 70 1= nsZ:getOrderSummaryView(fcustomer_id)
=l4= Dutpuk

[Ordersummaryiew
= ORDER_SUMMARY_YIEW * ORDER_SUMMARY_VIEW
= ORDER_SUMMARY * ORDER_SUMMARY _TYPE
Type ¥ string
OrderID string
CuskomerID string
OrderDate ? date
TotalOrderamount decimal
ShipToMame string
EstimatedShipDate date
Trackinghumber 7 string
Status skring
= LINE_ITEM *
ProductDescription string
Quankity ink

When examining a let clause, you can read the assign string (:=) as the “be bound to”. For example, in
the following let clause:

let $x := (1, 2, 3)
Can be read as "let the variable named & be bound to the sequence containing the items 1, 2, and 3."

See also “Converting Between For and Let Clauses” on page 6-19.

Parameter Nodes

Parameter nodes enable you to associate a parameter with a for or let clause. Parameter nodes are
created in the XQuery Editor work area (Figure 6-4). Three right-click menu options are available:
Rename, Delete, and View Source.

Data Services Developer's Guide

Key Concepts of Query Function Building

Figure 6-18 XQuery Editor Add Parameter Dialog Box

&Add Parameter...

Parameter Mame |myParam| '|' |

Specify the type of the parameter

(®) Primitive Type |xs:string | - |

(1 Complex Type

You can create parameters that range from simple data elements to elements of any complexity.

Adding a Parameter Requiring a Simple Type

You can create a simple type parameter by selecting the type from the drop-down list and clicking Ok.

Figure 6-19 Setting a Simple Parameter Types

&Add Parameter...

Parameter Narne ryParam |

Specify the type of the parameter

(®) Primitive Type |xs:string -
) Complex Type stinteger B
x5 positivelnteger
xs:negativelnteger |:|

x5 inonhegativelnteger
x5 nonPositivelnkeger
xsint

s iunsignedIng
xs:long % =]

The act of mapping a parameter to a for or a let node containing an Input creates a parameterized
query and also establishes a where condition. In Figure 6-20 the customer_id string parameter is

Data Services Developer's Guide 6-21

Working with the XQuery Editor

dragged over the element in the ADDRESS node which is to be associated with the parameter through
a where clause.

Figure 6-20 Parameter Mapped to a For Node

Caseliew,ds* - {DataServicesHRTLServices)

-B getCaseView(argD)l -

{?IParameter: ... =
custID skring =
=49For: $x0 2 U
% (=== Input
cust_jd string
[=l4=| Output

[E CASE * CASE_TYPE
CaselD skring
CuskomerID string
ProductID string
CaseType skring
CaseDescription skring
CaseDate date
AsigneeID skring
Status skring
StatusDate date

The corresponding Source View code highlights the parameter:

declare function nsb:getCaseView ($custID as xs:string) as
element (ns6:CaseView) {

<ns6:CaseView>

{

<CASE_VIEW>

<CASES>{

for S$Case in ns7:getCaseByCustID ($custID)

return <CASE>

<CaseID> {fn:data($Case/CaseID)} </CaseID>
<CustomerID>{fn:data ($Case/CustomerID) }</CustomerID>
<CaseType> {fn:data ($Case/CaseType)} </CaseType>
<ProductID> {fn:data ($Case/ProductID)} </ProductID>
<Status> {fn:data($Case/Status)} </Status>
<StatusDate> {fn:data ($Case/StatusDate)} </StatusDate>
</CASE>

}

</CASES>

</CASE_VIEW>

}

6-22 Data Services Developer's Guide

Key Concepts of Query Function Building

</ns6:CaseView>
}i

When you invoke your function from an application — or execute your function in Test View — you
will supply a value for your parameter.

Adding a Complex Parameter

Complex parameters are established by identifying a schema and a global element. Some schemas
have only one global element.

Figure 6-21 Setting a Complex Parameter Type

&Add Parameter...

Parameter Narne ryParam |

Specify the type of the parameter
("3 Primitive Type

(®) Complex Type

Schema file | vices\schemas\Orderyiew_ArrayOFORDER, xsd | | - |

Type |ArrayOFORDER N -
ArrayOFORDER L
ORDER
LIMNE_ITEM

The resulting parameter can be associated with any for or let node. See also “Parameterized Input” on
page 6-18.

Using the Parameter Dialog to Create a WHERE Clause

You can use the parameter dialog to create a where clause condition simply by dragging the simple or
complex parameter over an element in a for or let clause. In Figure 6-22 the newly created parameter
productID is mapped to PRODUCT _ID. Since the $PRODUCT for node is selected, the where clause is
in scope.

Data Services Developer's Guide 6-23

Working with the XQuery Editor

6-24

Figure 6-22 Parameterized Where Clause

ApplProduct. ds* - {DataServicesHRTLServices),

-B getAppIProducts()| -
{?lParameter: $product... = [— 7
productID string =
~P|S9For: $PRODUCT | = U||
= PRODUCT * ™ !

@Return £

] B -APPAREL_PRODUCT AR
ProductID string
CategoryID skring

PRODUCT_ID string
CATEGORY_ID strin

where $productID

for $PRODUCT in nsl:PRODUCT ()

= $PRODUCT/PRODUCT_ID

PRODUCT_MAME skring
PRODUCT_DESC string
MANUFACTIURER. skring
LIST_PRICE decimal
AVERAGE_SERWICE_COST 7 deci

[]

T O ST ST T
ListPrice decimal
i AverageServiceCosl

1 L]

OB [[V

‘WWhere $productID = $PRODUCT/PRODUCT_ID

o [€B]

Design Yiew | »Query Editor View [Source View | Test View | Query Plan Yiew

Adding Relationship Functions to an Existing Data Service

There are several ways to add relationship functions to existing data services. The recommended way
is to use the right-click menu option available from for and let nodes,
appropriately nested clauses than simply dragging a relationship function from the Data Services

Palette into the work area.

For example, if you want to create a logical data service that was a union of customer order and order

since this will created more

line items, you could start with a customer order and add the related line item data.

Figure 6-23 takes the RTLApp DataServices/ApparelDB/CUSTOMER_ORDER() function and shows

the process of adding the related getCUSTOMER_ORDER_LINE_ITEM() function.

Data Services Developer's Guide

Figure 6-23 Adding a Relationship Function

Key Concepts of Query Function Building

Untitledl .ds* - {DataServicesHRTLServices),

X
-B newFunction()| -
@ Return el
%] Let: $CUSTOMER_ORDER = 0| ©
Rename -E-CUSTOMER _ORDER
[CUSTOMER_ORDER * .
5 Delete CRDER_ID string
ORDER_ID skring .
C_ID string Corvert to for clause C_ID string
- Py =N ol e date
ORDER_DT date Relationship Funck gns F1:getCUSTOMER _ORDER_LIME_ITEM .
SHIP_METHOD_DSC stri k = - D_DSC string
strin i
iy - - BI=ED SR | HANDLING_CHRG_AMT decimal
HANDLING_CHRG_AMT decimal)
. SUBTOTAL_AMT decimal
SUBTOTAL_AMT decimal . L
. TOTAL_ORDER_AMT decimal
TOTAL_ORDER_AMT decimal)
. SALE_TAX_AMT decimal
SALE_TAX_AMT decimal .
. SHIP_TO_ID skring
SHIP_TO_ID skring A
. SHIP_TO_MM - string
SHIP_TO_MM - string ;
. BILL_TO_ID string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
ESTIMATED_SHIP_DT date -
. STATUS string
STATUS skring _
- = Ju] TRACKING_MNO 7 string
TRACKTNG MO ? shrinn
[« I[r]
Kl []

The function initially appears as:

declare function tns:newFunction ()

for $CUSTOMER ORDER in ns28:CUSTOMER ORDER ()

}i

return $CUSTOMER ORDER

Adding the relationship function changes it to:

declare function tns:newFunction ()

for $CUSTOMER ORDER in ns28:CUSTOMER ORDER ()
for $CUSTOMER ORDER LINE ITEM in
ns28:getCUSTOMER ORDER LINE ITEM (SCUSTOMER ORDER)
return S$CUSTOMER ORDER

}i

as element (ns30:CUSTOMER ORDER9) * {

as element (ns30:CUSTOMER ORDER9) * {

To complete this simple example you would need to add elements from the related data service to your
return type and complete your mappings, as well as any transformations.

Group By Statement Nodes

The Group By node represents a single group by clause with zero or more grouping expressions. The
top part of the Group By node defines variables available to the generated group by expression. The
bottom part defines the grouping expression itself.

Data

Services Developer’s Guide

6-25

Working with the XQuery Editor

Group By expressions are often used with aggregation functions such as grouping customers by total
sales. A for or let clause supports multiple group by elements.

You can generate a Group By node by right-clicking on any element in a for or let node and selecting
Create Group By from the right-click menu.

Figure 6-24 Creating a Group By Expression

SqFor: $§CUSTOMER_ORDER # 0

[CUSTOMER_ORDER *
ORDER_ID skring

C_ID skrirm

ORDER_DT

SHIP_METH

HANDLIMNG_| Create Distinck By
SUBTOTAL Fing

TOTAL_CRDER_AFT OECImal
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC 7 string

In Figure 6-24 output will be grouped by the C_ID (customer ID) element. Once a GroupBy node is
created, mappings to target objects — such as the return type — are done through the new node.

6-26 Data Services Developer's Guide

Key Concepts of Query Function Building

Figure 6-25 Projecting Total Orders Grouped by Customer 1D

GroupBy2, ds* - {DataServicestH

H

@ getCustomerOrderAmount()| - |

(@ Return
7 B} CUSTOMER,_ORDER,

=4For: §CUSTOMER_ORDER = U

[=1 CUSTOMER _ORDER *
ORDER_ID string
C_ID string
ORDER_DT date
SHIP_METHOD_DSC string
HAMDLING_CHRG_AMT dedimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAX_AMT decimal
SHIP_TO_ID string
SHIP_TO_WNM string
BILL_TO_ID string
ESTIMATED_SHIF_DT date

{E GroupBy: $CUSTOMER_OR._..

[=4=| Group

E-CUSTOMER_CRDER *
ORDER_ID string
Z_ID string
ORDER_DT date
SHIP_METHOD_DSC string
HANDLIMNG_CHRG_AMT decimal
SUBTOTAL_AMT dedimal
TOTAL_ORDER_AMT decimal
SALE_TAX_AMT decimal
SHIP_TO_ID string

ORDER_ID string

Z_ID string

OQRDER_DT date
SHIP_METHOD _DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_CORDER,_AMT decimal
SALE_TAX_AM%
SHIP_TO_ID string
SHIP_TO_NM string
BILL_TO_ID string
ESTIMATED_SHIP_DT date
STATUS skring

ecimal

I

STATUS string SHIP_TO_MM string [ul TRACKING_MC ? string
TRACKING_NO 7 string ELISTONESHing
ESTIMATED_SHIP_DT date
STATUS string
TRACKING_MO 7 string
=i By
C_ID string
IcT o
OE| | :
Expression {fn:sum{$CUSTOMER _ORDER _groupf TOTAL_ORDER_AMT)} |

The default name of the group by node will be a unique name based on the local name of the for/let
node. Thus the CUSTOMER_ORDER for clause becomes the basis for CUSTOMER_ORDER_group0.
Group By nodes cannot be renamed from the XQuery Editor.

As seen in Figure 6-25, any node mappings are automatically transferred to the Group By node.
The resulting source is:

declare function tns:getCustomerOrderAmount () as
element (ns5:CUSTOMER ORDER) * {
for $CUSTOMER ORDER in ns6:CUSTOMER ORDER ()
group $CUSTOMER_ORDER as $CUSTOMER_ORDER_grOup by $CUSTOMER_ORDER/C_ID
as $C_ID group

return

<ns5:CUSTOMER ORDER>
<ORDER71D></ORDER71D>
<C_ID>{fn:data($C_ID group) }</C_ID>
<ORDER_DT></ORDER_DT>
<SHIP7METHOD7DSC></SHIPiMETHODiDSC>
<HANDLING_CHRG_AMT></HANDLING_CHRG_AMT>

Data Services Developer's Guide 6-27

Working with the XQuery Editor

6-28

<SUBTOTAL AMT></SUBTOTAL AMT>

<TOTAL ORDER AMT>{fn:sum($CUSTOMER ORDER group/TOTAL ORDER AMT) }</TOTAL
_ORDER_AMT>
<SALE_TAX AMT></SALE TAX AMT>
<SHIP TO ID></SHIP_TO_ ID>
<SHIP TO NM></SHIP TO NM>
<BILL TO ID></BILL TO ID>
<ESTIMATED SHIP DT></ESTIMATED SHIP DT>
<STATUS></STATUS>
<TRACKING_NO?></TRZ—\CKING_NO>
</ns5:CUSTOMER ORDER>
}i

If you delete a Group By node any mappings from the parent node will need to be redrawn.

Creating Multiple Group By Elements

In the example you can add additional grouping expressions simply by dragging new elements over the
“By” separator, (Figure 6-26).

Figure 6-26 Adding a Second Group By Element

SqFor: §CUSTOMER_ORDER = 0
= CUSTOMER_ORDER *

ORDER_ID skring
C_ID skring
ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string {E GroupBy: $CUSTOMER_OR...
ESTIMATED _SHIP_DT date =
STATUS skring
TRACKING_MC 7 string

m»

SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC 7 string

= B
C, Ih atring
— *‘
-

[| D]

K1

The act of dragging the element over an existing group by expression, adds a second group by
expression, as shown in Figure 6-27.

Data Services Developer's Guide

Key Concepts of Query Function Building

Figure 6-27 The New Group By Expression Element

SqFor: §CUSTOMER_ORDER = U
[CUSTOMER_ORDER *

ORDER_ID skring

C_ID skring

ORDER_DT date

SHIP_METHOD_DSC string {2 GroupBy: §CUSTOMER_OR... #

HAMDLING _CHRG_AMT decimal =4 Group

SUBTOTAL_AMT decimal E-CUSTOMER_ORDER *

TOTAL_ORDER_AMT decimal ORDER_ID string

SALE_TAX_AMT decimal C_ID string

SHIP_TC_ID string ORDER_DT date

SHIP_TO_MM string SHIP_METHOD_DSC string

BILL_TO_ID string HANDLING_CHRG_AMT decimal

ESTIMATED _SHIP_DT date SUBTOTAL_AMT decimal

STATUS string TOTAL_ORDER_AMT decimal

TRACKING_MO 7 string SALE_TAX_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string

BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC 7 string
==+ By
_I0 skring
==+ By

STATUS strir[%S

The effect of adding the second group by in the above example is to group total orders by their status
value.

<ORDER_ID/>
<C_ID>CUSTOMERO</C_ID>
<TOTAL ORDER_AMT>1173.2</TOTAL ORDER AMT>
<STATUS>CLOSED</STATUS>
</ns0: CUSTOMER ORDERS5>
<ns0:CUSTOMER ORDER5
xmlns:nsO0="1d:DataServices/ApparelDB/CUSTOMER ORDER5">
<ORDER_ID/>
<C_ID>CUSTOMERO</C_ID>
<TOTAL ORDER AMT>436.3< / TOTAL ORDER AMT>
<STATUS>OPEN</STATUS>
</ns0:CUSTOMER ORDER5>
<ns0:CUSTOMER ORDERS
xmlns:ns0="1d:DataServices/ApparelDB/CUSTOMER ORDER5">
<ORDER_ID/>

Using Multiple Group Nodes

You can create additional multiple Group By expressions to enable creation of logic such as:

Data Services Developer's Guide 6-29

Working with the XQuery Editor

6-30

Group by A, then
Group by B

In order to do this you need to introduce an additional for or let clause to establish the parent-child
structure that will support the needed logic.

To creating a second-level group by:

1.

7.

Creating a child for clause. Right-click on the root element in your primary group by node and
select Create For Clause.

Create a new zone (see “Setting Zones in Your Return Type” on page 6-50) in your return type.
There are several ways to do this. One is to Add a Child Element.

Right-click on the new child element and select Mark as Zone.

Set the zone of your new for clause to the new child element. Do this by dragging the zone symbol
over your new child element. You will know you have succeeded when the newChildElement
displays an array symbol.

NewChildElement * empty

And, when you mouse over the new child element, it will be highlighted, indicating that it is a
zone unto itself.

Create a group by right-clicking on the grouping element in the new for clause node.

Replace the new child element by dragging the group by element over the new child element while
holding down the control key. This effectively overwrites the element with the group by expression.

Save and associate your new return type so that it become the XML type of your data service.

You can use Test View to verify your work.

Distinct By Statement Nodes

The Distinct By node represents a single distinct by clause.

Distinct by is useful:

e When you what to return all distinct values for a particular element.

e When you want to perform functional operations on the result of a distinct by, such as the total

number of distinct elements.

Data Services Developer's Guide

Key Concepts of Query Function Building

Setting Conditions

Several types of conditions can be graphically applied to for and let clauses. You can create these
conditions using a multifunction editor that appears at the bottom of XQuery Editor work area.
(Figure 6-28).

Figure 6-28 Multifunction Condition Editor

Caseliew,ds* - {DataServicesHRTLServices) 4
-B getCaseView(cust_id)l -
© Return =]
7] - 2 =
L FETELCTRCR SqFor: §rase 2 O T 5 CASE CASE_VIEW
cust_id string =) Tnput L CaselD string
cust_id string CustomerID string
[=14=| Cukput CaseType string
[E CASE * CASE_TYPE ProductID string
Casellr string Skatus string
CustomerID skring £} SkatusDate date

ProductID string —
CaseType skring
CaseDescription skring
Condition Editor Casebate date
AsigneelD skring
Status skring
StatusDate date

[D
O []vi ¢

%+
¥
]

Design View | ¥Query Editor View [Source Wiew | Test View [Query Plan Yiew

To add or modify constraints for a for or let node first select the node, then click anywhere in the
multifunction editor. Everything but your selected expression will become unavailable, as indicated
by the “grayed out” appearance of unselected objects.

Condition types are:
e where

e group by

Figure 6-29 provides a closer look at the multifunction dialog which includes the ability to:

o Add any number of where or order by conditions.

Data Services Developer's Guide 6-31

Working with the XQuery Editor

o Edit a condition using the built-in line editor.

o Adjust the order in which the conditions are applied.

e Select XQuery operators from a drop-down list.

o Accept or cancel editing changes to a particular condition.

e Delete a where or order by clause.

Functions from the XQuery Function Palate can be dragged into the multifunction box and then
edited.

Figure 6-29 Detail of Multifunction Box

XQuery Operators
Add Add
Cancel Accept Where Order By

FIT I EEY .
Move Up ﬁ Where $case/CustomerID eq "Jack”
Move Down— _Q, Where $casefStatus eq "Open”
Close .ﬁ.l COrderBy $case/CaseDate %

| [Design Yiew | ¥Cuery Editor View [Source View | Test Yiew | Query Flan Yiew |

The Where Clause

The where clause places a condition on a for and/or let clause. A where clause can be any query
expression, including another FLWR expression. The where clause typically filters the number of
matches in a FLWR loop.

A common use of the where clause is to specify a join between two sources. For example, consider the
following query:

<results>
{
for $x in (1, 2, 3), Sy in (2, 3, 4)
where $x eq Sy
return
<matches>{$x}</matches>
}
</results>

6-32 Data Services Developer's Guide

Key Concepts of Query Function Building

The where clause in this query filters (or joins or constraints) the results that match two sequences
specified in the for clause. In this case, the numbers 2 and 3 match, and the query returns the
following results:

<results>
<matches>2</matches>
<matches>3</matches>
</results>

To effect this in the XQuery Editor you would select the for or let clause to which the where condition
applies. Then, in the where condition field, you enter:
$x eq Sy

You can type in the name of an element or drag it from the a node in the work area into the
multifunction editor.

The eq XQuery operator can be entered directly or selected from the conditional pop-up list
(Figure 6-30).

Figure 6-30 Conditional Operator Selection List

=: Compare Single Yalues
I=; Compare Single Values
< Compare Single Values

<= Compare Single Yalues =

== Compare Single Values
eq: Compare Sequences
= ne: Cormpare Sequences

It: Compare Sequences

le: Compare Sequences
— gt: Compare Sequences

TR

ge: Compare Sequences

and: Logical Conjunction
or: Logical Disjunction

not; Logical Negation

is: Compare Mode Identities

<< Compare Document Order

=2 Compare Document Order

{ 1 Logical Grouping

Here is a more complete example involving an XQuery function (see “Using XQuery Functions” on
page 6-35). It involves finding all customers whose first name is Jack.

Data Services Developer's Guide 6-33

Working with the XQuery Editor

6-34

Using a Where Clause as a Filtering Device
The following example illustrates the use of a where clause in the multifunction editor:

1.

10.
11.

12.

Using the RTLApp sample application DataServices project create a new data service. Choose any
name.

Select the Add Function option from the Data Service menu. Use any name.
Click on the new function name to enter the XQuery Editor.

From the Data Services Palette (View — Windows — Data Services Palette) select the
CUSTOMER() function from the CustomerDB/CUSTOMER data service; drag it into the work area.

Associate the empty return type with the CUSTOMER elements by mapping the top node
CUSTOMER element to the empty element in the return type while holding down the Control key
(Ctrl-map).

In your return type select Expand Complex Mapping from the right-click menu associated with the
top element in your return type (now CUSTOMER).

In the return type title select the Save and Associate right-click menu option associated with the
return type title.

You can create a valid XML type (schema file) for your new data service by associating your
return type with your data service. The name of the global element in your return type or the
alias assigned to the namespace or both needs to be changed because there already is a schema
named CUSTOMER that was based on the physical data source you started with. (For details on
Save and Associate see “Creating a Simple Data Service Function” on page 6-7.)

If you change the name field CUSTOMER to CUSTOMER_WHERE and click Ok you will notice
that the name of the complex element in your return type will change.

Click on the title bar of the Customer node. This highlights the multifunction editor.
Click on the Where clause icon (Figure 6-33). A field for the where clause appears.
Click on FIRST_NAME in the CUSTOMER node.

Add an equals operator following by “Jack” so that the entire clause appears as:
$CUSTOMER/FIRST NAME eq "Jack"

Notice that the clause becomes red whenever your expression is invalid.

In Test View run your new function. Notice in your results that the where conditions are fulfilled.

See also “Using the Parameter Dialog to Create a WHERE Clause” on page 6-23.

Data Services Developer's Guide

Key Concepts of Query Function Building

The Order By Clause

The order by clause indicates output order for a given set of data.

Unless otherwise specified, the order data appears will follow the XML tree. This is known as the
document order. The order by keyword indicates that the content should be sorted in ascending
order by the identified element(s).

XQuery keywords such as descending are supported. For example, an XQuery can be written that
orders the customers by last name in descending order:

for Scustomer in document ('customers.xml')//customer
order by last name descending

return

<customer>

{Scustomer/first name}

{Scustomer/last name}

</customer>

In the XQuery Editor you would select the for or let clause to which the order by condition applies and
in the order by condition field enter:

last name descending

You can type in the name of an element or drag it from the work area into the multifunction editor
Figure 6-29.

Creating Join Conditions

Join conditions are represented as equality relationships in where clauses. Therefore you can create
such an equality relationship by dragging and dropping the eq function onto a row in the Conditions
tab and then selecting two source elements/attributes into the same row.

Using XQuery Functions

AquaLogic Data Services Platform contains a full set of built-in XQuery functions. Most XQuery
functions in the XQuery Function Palette are standard XQuery functions supported by the W3C.
However, there are several BEA-specific functions as well as several extensions to the language. (For
details on the BEA implementation of the 1.0 XQuery engine see XQuery Developer’s Guide. For more
detailed information on standard XQuery functions, see the W3C XQuery 1.0 and XPath 2.0 Functions
and Operators specification.)

The functions available from the XQuery Functions palette help you create conditions around for and
let clauses. XQuery functions can be used in several contexts:

Data Services Developer's Guide 6-35

../xquery/index.html
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/

Working with the XQuery Editor

6-36

e In where clauses.
e As input to another XQuery function.
o Mapped to a target element.

e Asinput to a data service function.

Using XQuery Functions in Where Clauses

To create a where clause condition that filters customers a query returns you can follow these steps:
1. Follow steps 1-7 under “Using XQuery Functions in Where Clauses” on page 6-36.

2. Click on the title bar of your CUSTOMER node.

3. Click the Where icon (see “The Where Clause” on page 6-32) to create a new where condition.

4, Open the XQuery Function palette (View — Windows — XQuery Function Palette).

5. Drag the fn:string-length() as xs:integer function from the XQuery Palette into the Where
condition.

Data Services Developer's Guide

Figure 6-31 XQuery Palette

Key Concepts of Query Function Building

|| #Query Function Palette

*

|| fr-bearsqlliked$source as xsistring?, $patkern as xsistring?, $ascap

|| fr-beaitrim-left{$arg as xs:string) as xs:string

| | fr-beatrim-right($arg as xs:string) as xs:string

|| fricodepoints-to-string($arg as xsiinteger*) as xs:string

|| fricompare$eomparand] as xsistring?, $romparand2 as xs:string?)
|| fricompare$eomparandl as xsistring?, $romparandz as xs:string?,
|| friconcat($argl as xdtanyAtomicType?, $arg2 as xdtianyAtomicTy)
|| fricontainsi$argl as xs:string?, $arg2 as xs:string?) as xs:boolean
|| fricontainsi$argl as xsistring?, $arg2 as xsistring?, $eollation as xs
|| freends-withi$argl as xs:string?, $arg2 as xs:string?) as xs:boolean
|| freends[ithi$argl as xs:string?, $arg2 as xs:string?, $eollation as x
| | friescape-uri($uri-part as xsistring?, $escape-reserved as xs:boole:
|| frelower-case($arg as xs:string?) as xs:string

|| frematches{$input as xs:string?, $pattern as xs:string) as xs:boolea
|| frematches{$input as xs:istring?, $pattern as xs:string, $flags as xs::
|| frenormalize-space($arg as xs:string?) as xs:string

|| frenormalize-space() as xs:string

|| frenormalize-unicode($arg as xs:string?) as xs:string

| | frenormalize-unicode($arg as xs:string?, $normalizationForm as xs:st
|| frereplace($input as xs:string?, $pattern as xs:string, $replacement
|| frereplace($input as xs:string?, $pattern as xs:string, $replacement

(£ Liquid Data SGL Functions =]

(C1 Mode Functions

(21 Mumeric Functions

(Z1 QMame Functions

(21 Sequence Functions

=] String Functions
|| fr-beaimatchi$source as xsistring?, $regularExp as xsistring?) as x
|| fr-bearsglliked$source as xsistring?, $pattern as xsistring?) as xsib—

fr-bea:trim{$source as xs:string?) as xs:string?

|| Frustarts-with($argl as xs:string?, $arg2 as xs:string?) as xs:boolea
|| Frustarts-with($argl as xs:string?, $arg2 as xsistring?, $ollation as

|| frustring-join{$argl as xsistring®, $arg2 as xs:string) as xs:string

|| frustring-lengthi$arg as xs:string?) as xs:integer

|| frustring-lengthi) as xstinteger

|| frustring-to-codepoints($arg as xs:string?) as xstinteger®

|| fresubstring{$sourceString as xs:string?, $startingloc as xs:double) B

L B Sy S SR S S AU TS RO SO 1

[«

6. Using the condition and expression built-in line editor highlight the function argument ($arg).

7. Click on $CUSTOMER/LAST_NAME. The string appears as:

Where fn:string-length ($CUSTOMER/LAST7NAME)

8. Add <5 as the predicate so the string appears as:

Where fn:string-length ($1/0ORDERID)>5

Data Services Developer's Guide

Working with the XQuery Editor

6-38

Figure 6-32 Editing an XQuery Function

eE [vl

4

w
x|

| ‘Where fristring-lengthf $CUSTOMERD/LAST _MAME)<S %

Design Yiew | »Query Editor View [Source Yiew | Test View | Query Plan Yiew

9. Click the checkmark in the editor.

Figure 6-33 Mouseover of Node Title Displays Its Conditions

SqFor: §CUSTAMERD

o]

If you mouse over the title of your for clause, you can see that the condition has been associated
with the fragment. You can also verify this change in source view.

7 = CUSTOMERS
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE da
EMAIL_ADDRESS skrin

B CUSTOMER *
CUSTOME
FIRST_MAMe—scrrg

for $CUSTOMEROD in ns4:CUSTOMER()
here fn:string-length{ $CUSTOMERO/LAST MNAME) =<5

TELEPHOME _MUMEER.
SEN? skring
BIRTH_DAY 7 date

LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS skring

TELEPHOME _MUMBER. string

SEN? skring
BIRTH_DAY 7 date

DEFAULT_SHIP_METHCD 7 st
EMAIL_MNOTIFICATION ? sharl

MNEW'S_LETTTER 7 shaort

OMNLINE_STATEMENT 7 shart

[L]

Data Services Developer's Guide

Transforming Data Using XQuery Functions

There are many transformational XQuery functions. In the following example the concat() function is
used to quickly enrich data returned from a physical data service by adding functionality to the
expression associated with an element returned by the function.

DEFAULT _SHIP_METH:
EMAIL_MOTIFICATION
MNEW'S_LETTTER 7 sho
£y OMLIME_STATEMENT ?

When you run the function only records with LAST_NAMEs shorter than five characters will

Automatic type casting generally ensures that input parameters used in functions and mappings are
appropriate to the function in which they are used.

Key Concepts of Query Function Building

1. Follow steps 1-7 under “Using XQuery Functions in Where Clauses” on page 6-36.
2. Open the XQuery Function palette.
3. Inthe return type add a child element.

4, Rename it to NAME_ID_STATEMENTSTATUS. Initially no type is assigned to the element. This
will be derived from the element or function mapped to it.

5. Click on your new element.
6. Then click in the expression field of the multifunction editor.

7. Drag the fn:concat($argl,$arg2,...) function into the expression field.

Figure 6-34 Creating a Concatinated Element in the Return Type

concat.ds* - {DataServicesH, *
-B name_and_custID()l -
@Return S
SyqFor: §CUSTOMER # 0 0 5 CUSTOMER *
= CUSTOMER * CUSTOMER._ID string
CUSTOMER_ID string FIRST_NAME string
FIRST_MAME string LAST_MAME string
LAST_MAME string CUSTOMER _SINCE date
CUSTOMER_SIMNCE date EMAIL_ADDRESS string
EMAIL_ADDRESS string TELEPHOME _MUMEER. string
TELEPHOME_MUMBER. string S3M P string ?
SSM ¥ string BIRTH_D&Y 7 date 7
BIRTH_D&Y 7 date DEFALLT_SHIP_METHOD 7 skring 7
DEFALLT_SHIP_METHOD 7 string EMAIL_MOTIFICATION ? short 7
EMAIL_MOTIFICATION ? short MNEWS_LETTTER ? short ?
MEWS_LETTTER 7 short OMLINE_STATEMENT ? short 7
OMLIME_STATEMENT 7 shart LOGIM_ID # string ?
LOGEIM_ID 7 skring] MAME_ID_STATEMENTSTATUS
QW[v
Expressi0n| friconcat{$argl, $arg2, ...} L
| [Design Yiew | »Query Editor Yiew [Source View | Test View | Query Plan View

8. Highlight the first argument ($argl) and click on FIRST_NAME in the $CUSTOMER node.
Similarly, select $arg2 and click on LAST_NAME. Select the ellipses and then click on
ONLINE_STATEMENT.

Data Services Developer's Guide 6-39

Working with the XQuery Editor

9. The concat() function requires that all input parameters be of type string. Since
ONLINE_STATEMENT of type short, it needs to be cast as a string. You can do this through the
editor. Similarly, you can add spaces and a small legend to make the results more readable.

When your editing is complete, the XQuery function will appear as:

{fn:concat ($CUSTOMER/FIRST7NAME, ' ', $CUSTOMER/LAST7NAME, '
', (SCUSTOMER/ONLINE STATEMENT cast as xs:string),' (online=1; printed=0)"')}

10. Check the green box to accept your changes.
11. Since you made changes to the return type schema, rebuild your application.

Notice also (Figure 6-35) how the new functionality is reflected in the source-to-target mapping.

Figure 6-35 XQuery Editor Work Area After Adding an Element Containing a Function to the Return Type

concat3,ds* - {DataServicesH 4
-B concatS()| -
(@ Return 1=
SyqFor: §CUSTOMER & 0 [[concat3

= CUSTOMER * CUSTOMER_ID string
FIRST_MAME string

CLEIONERID swing LAST_NAME stri
(FIRST Ml ha - string

LAST_NAME string CUSTOMER_SIMCE date

CUSTOMER_SINCE date EMAIL_ADDRESS string .
EMAIL_ADDRESS string TELEPHOME _MUMBER. string

TELEF| SSN 7 st
ELEPHOME_MUMBER. string SN ? string

BIRTH_DAY 7
SSM 7 string 1 DAY 7 date
BIRTH_DA& DEFAULT_SHIP_METHOD 7 stri
1 DAY 7 date LT_SHIP_METHOD 7 string

r
DEFALILT_SHIP_METHOD 7 strir T TONLeher

r
EMAIL_NOTIFICATION 7 shart LRTRH G BT
r
e ONLIME_STATEMENT ? short

o
CMLINE_STATEMEMT 7 shart R LOGIN_ID ¥ string
LOGIN_ID 7 string f MAME_ID_STATEMENTSTATUS st

K1 | [B

[D
0N [] ¢

Expression {fn:gcat{ $CUSTOMER/FIRST_MAME,' ', $CUSTOMER/LAST MAME,' ', ($CUSTOME. .,

12. When you run you program in Test View results will now include the following type of information:

<NAME71D75TATEMENTSTATUS>
Jack Black | 1 (online=1; printed=0)
</NAME_I D _STATEMENTSTATUS>

6-40 Data Services Developer's Guide

Managing Query Components

Setting Expressions

The Expression editor is most commonly used to edit return type expressions. For example, if the
return type contains:

ORDERID xsd:int
The editor can be used to limit the scope of the expression to a single customer:

Expression>{fn:data ($o/ORDERID)} eq “1001”

Prototypes of functions available from the XQuery Function Palette can be dragged into the editor or
you can use the build-in line editor to enter them yourself.

Figure 6-36 Expression Editor

Cancel Accept Operators Condition Editor

rita

Expression | {fr:datal$ifkETTr eq "10"]

Design Yiew | »Query Editor [Source View | Test Yiew | Query Flan View

Operation of the Expression editor is similar to that for the multifunction box. When you select a
element other workspace artifacts are grayed out. However, you can drag elements from any part of
the work area into the Expression Editor.

XQuery operators are available as a drop down list, as shown in Figure 6-30, or you can simply type
them in.

Managing Query Components

If you think of selected data elements as nouns (what you want to work on), the functions as verbs
(the action), then the mapping among the data elements creates a logical sentence that expresses
the query.

Results and query performance can change significantly depending on how you:
e Map (or project) source data from one or more sources to the return type.

o Specify zones and other conditions (filter source data) and expressions (element level
operations).

Data Services Developer's Guide 6-41

Working with the XQuery Editor

Although you can simply type in an XQuery and run it from Test View, the more common way to create
a query is build it up through the following operations:

e Map simple or complex elements to the return type

e Define query parameters

o Transform information using built-in or custom functions
o Filter data using where or order by conditions

o Adjust expressions as required by business requirements

Note: Some operations are not deterministic. For example if a node has elements mapped to a
return type, deleting the node before removing the mappings may create error conditions.
Instead you can use Undo and then delete the mappings or you can make the necessary
changes in Source View.

Working With Data Representations and Return Type
Elements

6-42

Mapping elements involves establishing a visual relationship between data source elements and the
return type or an intermediary node requiring input parameters.

There are two types of schema elements: simple and complex. Complex elements contain elements
and/or attributes.

Data Services Developer's Guide

Working With Data Representations and Return Type Elements

Figure 6-37 Expanded Schema Showing Complex and Simple Elements

@Return

] B ORDER_DETAIL ORDER_DETAIL_WIEW

v} =1 ORDER_DETAIL * ORDER_DETAIL_TVPE
@TYPE ? string
OrderID string
CustomerID string %
OrderDate date
Shippingiethod string

HandlingCharge decimal
SubTotal decimal
TotalOrderamount decimal
SalesTax decimal
EstimatedShipDate date
Status skring
Trackinghumber 7 string
ShipToMame string
v} = LIME_ITEM * LIME_ITEM_TY¥PE
@TYPE ? string
LineltemIDr skring
OrderID string
ProductID string
ProductDescription string
Quankity ink
Price decimal
i Skatus string

To expand a complex element, click on the plus sign (+) to the left of its name. (If you double click on
the name itself, you will enter edit mode.)

Mapping to Return Types

As shown in “Creating a Simple Data Service Function” on page 6-7, the XQuery Editor automatically
generates queries based on graphical mappings into a return type.

The XQuery Editor supports two types of mappings: value mappings and complex element mappings.
Value mappings map (assign) only the value of an element or attribute from a source to the value of
its target element or attribute. Element mappings allow mapping source elements (simple or
complex) to target.

In order to map an element to a return type, that element needs to be ¢n scope. If the element you are
attempting to map is not in scope, a message will appear indicated that the mapping is invalid (see
XX). Invalid mappings occur whenever the underlying for or let statement would not be able to validly
handle the association of the data element(s) with the return type schema.

Data Services Developer's Guide 6-43

Working with the XQuery Editor

6-44

Figure 6-38 Invalid Mapping Attempt Flagged by Alert

| RTLApp - BEA WebLogic Workshop - Customer. ds E]@
Fie Edi WView DataService Buld Debug Tooks window Help
s = P ‘L P
DEHI e c|dBbR|l¢+s |00 HEEs>¢HE |t i
| | [Customer.ds* - {DataServicesHRTLServices) x
g R | £] getCustamer() |-
E =49For: $x0 & U (@ Return &
=
5} CUSTOMER * [] =.For SADDRESS - U ONLINE_STATEMENT 7 short ?]
CUSTOMER_ID string — LOGINID ? string 7
& FIRST_NAME string E-ADDRESS . = T [ADDRESS *
= LAST_NAME string {RERID Sl e — ADDR_ID string
= CUSTOMER_SINCE dats CUSTOMEE_ID 5_”‘”9 CU%OMER_ID string
= EMAIL_ADDRESS string g ina FIRST_NAME string
= TELEPHONE_MUMBER string LASTAUAME string LAST_MAME string

SEN? string STREET_ADDRESS1 st STREET_ADDRESS1 string
BIRTH_DAY ? date R DRE STREET_ADDRESSZ 7 string
DEFAULT_SHIP_METHOD ? st ITY string CITY string
EMAIL_NOTIFICATION ? short SIEAE Er] / STATE string
HEWS_LETTTER ? short ZIFCODE string

ZIPCODE string
ONLINE_STATEMENT ? short COUNTRY string
LOGIN_ID ? string

DAY _PHONE 7 string
KT —— EWE_PHOKE 7 string =]
= KNl
Y BB v
%Query Editor Yiew [Source View | Tes viev/l Query Plan View
Dutput 1/ x
os| /
Mapping invalid, Your source element may not be in scope. @ Server Stopped ms [F7iss

For more information on element scoping and other related issues see “XML Types and Return Types”
on page 4-7 and “Editing XML Types and Return Types” on page 2-20.

Mapping Elements and Attributes to the Type

A questionmark symbol [?] next to an element name represents an optional element, meaning that it
is not required by the query. Primary keys are never optional.

Complex Element Mappings to a Return Type

You can rapidly map complex elements from source to your return type. This known as an induced
mapping is useful where all or part of the return type should match source representations.

There are many situations when you will find it convenient to map elements into your type, including;
e When you are creating a type from scratch.

e When you want elements individually mapped but it is easier to map complex elements, expand
the mappings to include values, and then add or delete some mappings using right-click return
type management commands.

If the match is not exact, mapping a complex element to your return type will be appended.

Data Services Developer's Guide

Working With Data Representations and Return Type Elements

There are several benefits of mapping or projecting elements:
e Manual one-to-one mapping of multiple elements is less often needed.
o The query is often easier to read.

o If the underlying structure of the complex element changes — an element is added, deleted, or
an attribute is changed — the generated query does not change.

Figure 6-39 shows the results of the mapping of a complex element to a return type.

Figure 6-39 Example of Mapping of a Complex Element

Customer, xds* - {DataServicesH

{Il}getPaymentList()l -

Parameter: % — 7
ELCUSTOMER. anyType 4

Return

—™ L E2:PAYMENTS

/ CUSTID xsdint
PAYMENT xsd:int

] COMMENT 7 xsd:istring

= W [£] For: $p

L2 PAYMENTS *
CUSTID xsdink
PAYMENT xsd:int
COMMENT ? xsd:strin

[0 I

Note: You cannot map multiple elements to a single target element.

Source-to-Target Mapping Options
Three source-to-return type gesture mappings are available — value mappings, overwrite mappings,
and append mappings.

o Value mappings. Individual source node elements are individually mapped to simple elements
or attributes in the return type. You can create a value or simple mapping by dragging and
dropping elements from the source node to a corresponding target element in the return type.
All elements may not need to be mapped, depending on the information you want in the XML
document generated by your query function. However, special attention should be paid to

Data Services Developer's Guide 6-45

Working with the XQuery Editor

non-optional elements (those without adjacent question-marks (?)), since your query will fail if
non-optional elements are not projected.

Overwrite mappings. When you hold down the Ctrl key when mapping an element, the source
element (and any children) will replace the target element (and any children). This gesture
sometimes results in an induced mapping. An induced mapping occurs when a complex
element in source is mapped to a comparable (exactly named) element in the return type. For
example, you create an induced map when you drag and drop the CREDIT_CARD* element
(root element in a source node) onto the CREDIT_CARD complex element in the return type.

The following code expresses the results of an induced mapping:

declare function tns:newFunction() as element (ns5:CREDIT CARD)* {
for SCREDIT_CARD in tns:getCreditCard()

return

$CREDIT7CARD

In many cases an induced mapping is insufficient either for further building your query function
or running it. You can always expand an induced mapping by right-clicking on the element in
the return type and selecting the only available option: Expand Complex Elements.

In the above case the source would be correspondingly modified:

declare function tns:newFunction() as element (ns5:CREDIT CARD)* {

for SCREDIT_CARD in tns:getCreditCard()
return

<ns5:CREDIT CARD>

<CreditCardID>{fn:data ($SCREDIT CARD/CreditCardID) }</CreditCardID>
<CustomerID>{fn:data (SCREDIT CARD/CustomerID) }</CustomerID>
<CustomerName>{fn:data (SCREDIT CARD/CustomerName) }</CustomerName>
<CreditCardType>{fn:data ($CREDIT CARD/CreditCardType) }</CreditCardType>
<CreditCardBrand>{fn:data (SCREDIT CARD/CreditCardBrand) }</CreditCardBrand>

<CreditCardNumber>{fn:data (SCREDIT CARD/CreditCardNumber) }</CreditCardNumber>

<LastDigits>{fn:data (SCREDIT CARD/LastDigits)}</LastDigits>
<ExpirationDate>{fn:data ($CREDIT CARD/ExpirationDate) }</ExpirationDate>
<Status?>{fn:data($CREDIT_CARD/Status)}</Status>
<Alias?>{fn:data ($SCREDIT CARD/Alias) }</Alias>
<AddressID>{fn:data ($SCREDIT CARD/AddressID) }</AddressID>

</ns5:CREDIT CARD>

}i

6-46

Data Services Developer's Guide

Working With Data Representations and Return Type Elements

Figure 6-40 Expanded Complex Element

Customer, xds* - {DataServicesH

{Il}getPaymentList()l -

Parameter: $c — 7 %

ELICUSTOMER. anyType

Return

L E2:PAYMENTS
CUSTID xsdink
PAYMENT xsd:int

] COMMENT xsd:string 7

= W [£] For: $p

E2:PAYMENTS *
CUSTID xsdiink
PAYMENT xsdiink f
COMMENT 7 xsd:strind

[0 I

e Append mappings. You can append a source element and children (if any) to an element in a
return type using the key combination of Ctrl+Shift. Click the source element, press the key
combination of Ctrl+Shift and drag the element over an element in the return type. If the
underlying element is highlighted, you can add the source as its child.

Note: Any changes you make to a return type should be propagated to your data services XML type
using the Save and Associate XML Type right-click option, available from the return type
titlebar.

Removing Mappings
You can delete mappings between elements by selecting the mapping line (link) and pressing Delete.
Alternatively, use the Delete key.

Modifying a Return Type

The shape of the information returned by your query is determined by its return type. Using a
combination of mapping techniques and return type options you can:

e Add or remove elements and attributes from your return type.

e Set up repeatable sections, known as zones.

Data Services Developer's Guide 6-47

Working with the XQuery Editor

6-48

You should only modify a return type if you intend to propagate the change to the data service’s XML
type using the Save and Associate XML Type command, described in “Creating a Simple Data Service
Function” on page 6-7.

Editing a Return Type

You can edit your return type by right-clicking any element. Editing options for a type in the XQuery
Editor are somewhat different options described in “Editing an XML Type” on page 4-24. For example,
in a return type you can create zones automatically add for clauses to your query, allowing for a
“master-detail” arrangement of results.

Caution: While it is possible to modify a return type and run a query in an manner, problems will
likely arise when your application calls a query with a mismatch between the return
clause and the XML type of the data service.

Table 6-41 describes notable return type editing options.
Table 6-41 Notable Return Type Right-click Menu Options

Option Meaning

Add Child Element Creates a child element for the currently selected element.

Add Complex Child Allows you to specify a schema and type for a new complex child
Element element. By default, the type is the root element of the schema. If

the schema has several global elements, however, you will first
need to specify the element that you want to become the root.

Add Attribute Creates an attribute for the selected element.

Make Conditional Inserts an element named Conditional above the currently selected
element and clones the element (and children, if any).

Conditional elements can be used in conjunction with if-then-else
constructs. Transformational logic can then be developed through
the XQuery Editor and mapped to the appropriate branch of the
condition.

Clone Duplicates the selected element (and children, if any) to the same
level of the schema hierarchy.

Ifyou clone a simple element an unmapped, untyped element of the
same name will be created.

Data Services Developer's Guide

Working With Data Representations and Return Type Elements

Tahle 6-41 Notable Return Type Right-click Menu Options

Option Meaning
Mark as Zone / Sets (or removes) a zone setting for the current element and its
Remove Zone children (if any).

If the elements are in a zone the query will return them in a
master-detail arrangement. See “Setting Zones in Your Return
Type” on page 6-50.

Delete Deletes the selected element and any child elements or attributes.

Find The Find dialog allows you to search for text strings in the return
type with options to match case, match whole words only, use
wildcards (*, ?), or regular expressions.

A special option, Expand Complex Mappings, is becomes available for use with Induced mappings. See
“Complex Element Mappings to a Return Type” on page 6-44 for details.

There are several things to keep in mind when making changes to a return type:
e Changes to a return type should be propagated the your data service’s XML type.

e Changes to a return type through AquaLogic Data Services Platform components exist only in
memory until you run the File — Save All command in WebLogic Workshop.

o Changes to a file using the Save All command cannot be reversed through Undo.

Adding a Complex Child Element

You can add a complex child element to a return type by selecting a schema and identifying a global
element (a type). Complex child elements incorporate data service schemas (. xsd file) into the
return type.

To add a complex global element to your return type:
1. Click on the element you want to be the parent of the complex element.
2. Right-click and select Add Complex Child Element.

3. Inthe dialog that appears navigate to the schema you want to use. If your schema only has one
global element, then it will be automatically selected. Otherwise, you will need to pick which
global element to use.

Data Services Developer's Guide 6-49

Working with the XQuery Editor

6-50

When you add a complex child element it will be place at the end of its peers in the return

type.

Setting Zones in Your Return Type

In AquaLogic Data Services Platform return types zones identify how query results will be arranged.
Adding or changes zones through the XQuery Editor is the same as adding or changing the order of
subordinate for statements in Source View. (For a detailed example of building a logical data service
that makes use of zones to create a nested master-detail arrangement of data see “Creating a Simple
Data Service Function” on page 6-7.

For example in Figure 6-42 the CUSTOMER_ORDER elements for a particular customer will be

grouped under that customer.

Figure 6-42 Sample Return Type With Two Zones

Zones
Markers

@Return

D

Da CUSTOMER *

CUSTOMERSID string
FIRST_MAME string

LAST_MAME string []uter zone

CUSTOMER_SINCE date
EMAIL_ADDRESS skring
TELEPHOME _MUMEER. string
SEN? skring ¥

BIRTH_DAY ? date ?
DEFALLT_SHIP_METHOD 7 skring 7
EMAIL_MOTIFICATION ? short 7
MEWS_LETTTER 7 short 7
OMLINE_STATEMENT ? short 7
LOGIN_ID ? string 7

= CUSTOMER _ORDER. Inner zone

ORDER_ID skring

C_ID skring

ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC 7 string

By default, return types have only a single zone. However, without additional zones elements simply
repeat in their natural order. In the simple example shown in Figure 6-42 this would mean that if a

Data Services Developer's Guide

Working With Data Representations and Return Type Elements

customer had more than one order, both the customer information and the order information would
be repeated it your report until all matching orders had appeared.

The following slightly simplified XML illustrates a single-zone approach.

<CUSTOMERID>987655</CUSTOMERID>
<CUSTOMERNAME >Supermart</CUSTOMERNAME>
<ORDER>

<ORDERID>632</ORDERID>
<CUSTOMERID>987655</CUSTOMERID>
<CUSTOMERID>987655</CUSTOMERID>
<CUSTOMERNAME >Supermart</CUSTOMERNAME>
<ORDER>

<ORDERID>888</0ORDERID>
<CUSTOMERID>987655</CUSTOMERID>

Notice the repetition of CUSTOMERNAME and CUSTOMERID.
XQuery source for a similar function clearly shows why this is:

for $CUSTOMER in ns0:CUSTOMER ()
for $CUSTOMER70RDER in nsl:CUSTOMERioRDER()
where $CUSTOMER/CUSTOMER ID = SCUSTOMER ORDER/C_ID
return <ns2:CUSTOMER7>
<CUSTOMER ID>{fn:data ($CUSTOMER/CUSTOMER ID) }</CUSTOMER ID>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>

<nsl:CUSTOMER_ ORDER>
<ORDER_ID>{fn:data ($CUSTOMER ORDER/ORDER ID) }</ORDER_ ID>
<C_ID>{fn:data ($CUSTOMER ORDER/C ID) }</C ID>

<TOTAL_ORDER_AMT>{fn:data($CUSTOMER_ORDER/TOTAL_ORDER_AMT)}</TOTAL_ORDE
R_AMT>

</nsl:CUSTOMERfORDER>

</ns2:CUSTOMER7>

If you were, however, to create a repeatable zone around the CUSTOMER_ORDER element, a
subordinate for clause will be introduced in Source View.

for $SCUSTOMER in nsO:CUSTOMER ()

return <ns2:CUSTOMER7>
<CUSTOMER ID>{fn:data ($CUSTOMER/CUSTOMER ID) }</CUSTOMER ID>
<LAST_NAME>{fn:data($CUSTOMER/LAST_NAME)}</LAST_NAME>{

for $CUSTOMER ORDER in nsl:CUSTOMER ORDER ()

where S$CUSTOMER/CUSTOMER ID = $CUSTOMER ORDER/ORDER ID

return

<nsl:CUSTOMER ORDER>
<ORDER_ID>{fn:data ($CUSTOMER ORDER/ORDER ID) }</ORDER ID>
<C_ID>{fn:data (SCUSTOMER ORDER/C_ID) }</C_ID>

Data Services Developer's Guide 6-51

Working with the XQuery Editor

6-52

<TOTAL ORDER_AMT>{fn:data ($CUSTOMER ORDER/TOTAL ORDER AMT) }</TOTAL ORDE
R_AMT>
</nsl:CUSTOMER_ORDER>

}
</ns2:CUSTOMER7>

Specifically the highlighted where clause in the second code fragment mandates that all orders be
collected under a single instance of customer.

To create a zone simply right-click on an element and select Mark as Zone. Once created, the zone will
appear highlighted whenever you move your cursor into areas under its control (Figure 6-42).

Associating XQuery Editor Nodes With Zones

In XQuery for, let, and group by clauses can enclose other for, let, or group by clauses. Similarly, nodes
representing these constructs can be associated with return type zones using the create zone icon in
the titlebar of the node (see Figure 6-10 in the XQuery Editor example at the beginning of this
chapter). Simply drag the icon over an existing zone to associate the node with the zone.

To verify that the operation is successful mouse-over the zone icon after the association is complete.
If successful, the appropriate zone will be highlighted (see Figure 6-42). Alternatively, look at Source
View to verify that your operation has been successful or simply run your query under Test View.

Note: The order in which you create zones and other aspects of your XQuery in the XQuery Editor
can be significant. For example, zones should be created before creating a where clause
associating two nodes.

Removing Zones
To remove a zone, right-click on the parent element in the zone and select the Remove Zone option.

Validating and Saving Your Return Type

You can make changes in your function’s return type and, optimally, bring your data service into
conformance with the changes that you have made.

Data Services Developer's Guide

Working With Data Representations and Return Type Elements

Figure 6-43 Return Type Management Options

Returr B

LELiCUST
5]

CUs1
5 CRET Dock to Right

Compare Return bype

Save and associate schema

CREDITSCORE xsd:int 7
CREDITRATING xsd:string 7
[} = ORDER *
ORDERID xsd:int
CUSTOMERID xsd:int ?
v = POITEM *
ORDERID xsdtint 7
KEY wsdtint
ITEMMUMEER xsdiint 7
(] QUANTITY xsd:int 7

Several right-click menu options are available for managing the return type, including:

o Show Type Difference. A toggle that displays or hides distinctions between your return type
and the data service XML type. When activated Show Type Difference color coding (Table 6-44)
shows discrepancies between your return type and your data service’s XML type.

Tahle 6-44 Color Map for Differences Between Function Return Type and XML Type

Color Meaning

Black Unchanged from XML type.

Red Removed from the return type (but still present in the XML type).
Blue In the return type but not the XML type.

Notice in the following example that two new child elements have been added to the return

type.

Elements differences detected when comparing the return type with the content of the XML
type are shown in red. This includes elements you have deleted from the return type as well as
those you have added to the return type.

The addition of DESCRIPTION to the return type is shown in blue in Figure 6-45.

Data Services Developer's Guide 6-53

Working with the XQuery Editor

Figure 6-45 Return Type With a New Element

@Return(Tvpe Difference)
CUSTOMER.
CUSTOMERID int
CUSTOMERNAME string
[E}4e= CREDIT
= CREDITSCORE ink
ez CREDITRATIMG string
[J E ORDER *
ORDERID int {empty)
CUSTOMERID int {empty)
= POITEM *
ORDERID int {empty)
KEY int {empty)
ITEMMUMEER. ? int {empty)
QUANTITY 7 ink {empty)
<= POITEM_child1
0 > DESCRIPTION empy

The arrows to the left of changed items indicate whether the change is originating locally in the
return type (—) or in the data service’s XML type (<—).

o Save and Associate Schema. Provides a means for substituting the schema of a revised return
type for the data service XML type. In order to change the data service XML type using this
command you should not change the return type name.

Figure 6-46 Save and Associate Dialog

Dl Save and Associate XML Type

Location | -ationsimyLogicalimyLogicalDataServices/myLogicalDs, xsd | | " |

Mamespace | Id:myLogicalDataServices/CUSTOMER |

Narme | cusTomeR |

N

This command can also be used to save the revised return type to a schema, schema location,
target Namespace, or root name that is different than that used by the containing data service.

When you are building a return type from data service functions it is sometimes necessary to
change either the namespace or the root name prior to using the Save and Associate Schema
command. This is because the qualified name of your return type will initially be the same as
the function used to create the return type.

6-54 Data Services Developer's Guide

Working With Data Representations and Return Type Elements

Other options include:

— Going to Design View and use the right-click menu Associate XML Type to change the
schema associated with the data service (see “Associating an XML Type” on page 4-23). This
will change the return type for all the read functions in your data service.

— Saving your data service to a new name using the Save As command. Then associate the new
XML type. This is probably the better option if you have other data services that are
dependent on the XML type.

e Dock to Right. A toggle that attaches/detaches the return type to the right edge of the work
area.

o View Source. Shows your return type in its native XML format.

Data Services Developer's Guide 6-55

Working with the XQuery Editor

6-56 Data Services Developer's Guide

CHAPTERa

Testing Query Functions and Viewing
Query Plans

You can use Test View to execute any data service read or relationship function for which data is
available.

When you run a query in Test View results appear in an editable window in text or structured XML
form. When updates are available for your data, you can immediately update your back-end data. Query
results can also be used as complex parameters for other queries.

In creating support for query functions, BEA Aqualogic Data Services Platform determines Test View
options from your query function’s signature. Several types of query function signatures are supported
including queries with and without parameters, simple and complex parameters, and ad hoc queries.

The following major topics are covered in this chapter:
o Running Queries Using Test View
o Using Query Plan View
e Obtaining an Ad Hoc Query Plan

Running Queries Using Test View

In Test View you can select any read or navigation functions or procedures defined in your data service
from a drop-down list.

Data Services Developer's Guide 1-1

Testing Query Functions and Viewing Query Plans

1-2

Figure 7-1 Test View Options for a Function Accepting a Simple Parameter

Customer,ds - {DataServicesHRTLServices) 4

Select Function:

5] meteustomersyeustiogeust id) | -— 1 Available query functions

Parameters

xsstring cust_id: | || CUSTOMER1 |

2 A 0uerfunction-pars
uumy anouuort VCIIGI
1

mataria)
Lliviivi} \D)

Mumber Element hy path)

Limit elements in array results to: |

_ 500

5 [Timitelementsin qpnr‘lflnd array results
WTransaction lidate Results Validate results
6 Inifiate ol - 7)
[Eecue) 6 Initiate client transaction against schema
Result Text Kl
- <ns:ArrayOFCUSTOMER _PROFILE xmins:ns0="urr:retailer Type" = E

- =ns0iCUSTOMER _PROFILE =
<CustomerlD> CUSTOMER1 </CustomerID
<Firstame = Jack </FirstMame:> 5
<LastMame> Black <fLastMame:= 3 ReSU|tS
<CustomerSince> 2001-10-01 </CustomerSince =
<Emailaddress > Jack@hotmail.com </Emailaddress=
<TelephoneMumber > 2145134119 < TelephoneMumber =
£55N>= 295-13-4119 </55N>
<BirthDay> 1970-01-01 <[BirthDay =
«DefaulshippmentMethod > AIR </DefaulshipprentMethod:= B

4 Edit results

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

If the query accepts complex parameters, the parameter entry dialog automatically adjusts, as shown
in Figure 7-2.

Also see in the Aqualogic Data Services Platform Samples Tutorial:
- Running Ad Hoc Queries

- Understanding the Query Plan

Data Services Developer's Guide

../samples_tutorial/index.html

Figure 7-2 Function Accepting a Complex Parameter As Input

Running Queries Using Test View

Customer,ds - {DataServicesHRTLServices)

*

Parameters

ns2CUSTOMER, _PROFILE arg:

Browse... | | Faste Result| | Insert Template |

string</FirstMame =
ing</LastMame=

<Firsthame xmin:
<LastMame xmins="
<CuskomerSince xmins

<1--Optional:-- =

<1--Optional:-- =

<CUSTOMER,_PROFILE xmins="urn:retailerType" =
<CustomerID xmins="">CUSTOMER 3 </CustomerID =

"= 2008-09-28 < fCustomerSince =
<Emailaddress xmins=""=string </Emailaddress =

<TelephoneMumber xmins=""=string </ TelephoneMumber =

B
]

MNumber

Element {by path)

Limit elements in array results to:
[500

[start Client Transaction Yalidate Results

(e |

Result | [Results are valid,

+ <ns0CREDIT_CARD =
+ <ns0CREDIT_CARD =
<ins0:ArrayOFCREDIT_CARD =

- <ns:ArrayOFCREDIT_CARD xmins:ns0="urn:retailer Type" =

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

Using Test View

To use Test View, follow these steps:

1. Select the Test View tab, then chose a function from the pulldown menu. The menu contains the
read and navigation functions in your current data service, as well as the data service’s

procedures.

2. Enter parameters, if any.

3. Click on Execute to run the query and view the results.

4, Ifyou have back-end data write permission, you can make changes in your data as well. Click on
Edit Results and make any necessary changes. Then click Submit to update your data.

Data Services Developer's Guide

1-3

Testing Query Functions and Viewing Query Plans

You can review your generated query in the Output window. See “Auditing Query Performance” on
page 7-13 for details.

Running a Query That Needs No Parameters

In the case of a query such as getAllCustomers(), no parameters are needed (Figure 7-3).

Figure 7-3 Query Without Parameters

Customer,ds - {DataServicesHRTLServices) 4

Select Function:

|-B gekCustomeri) | - |

Parameters

Mumber Element hy path)
Limit elements in array results to:

EZN) -]

[start Client Transaction [[] Yalidate Results

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

When you click Execute the query will run.
Results are returned in text or XML form. Click on the + next to a complex element (in this case, a
table representation) to see more detailed results.

Editing Results

When you have appropriate update permissions — as is commonly the case with “sand box” testing —
you can directly edit results using the Edit command (Figure 7-4).

Figure 7-4 Editing Query Results

Result | ||

- <CUSTOMERDocument =
- <CUSTOMER =
<CUSTOMERID> 987654 </CUSTOMERID>
<CUSTOMERMAME = Acme Widget Store #1 </CUSTOMERMAME =
+ <CREDITArray >
ORDERArTay =
<fCUSTOMER =
</CUSTOMERDocument =

| || Subrmit || Cancel |

14 Data Services Developer's Guide

Running Queries Using Test View

You also have the option of adding a record once you are in Edit mode.

Figure 7-5 Adding a Record to a Data Set

Customer,ds - {DataServicesHRTLServices)

Select Function:

>

|-B gekCustomeri) | - |

Parameters

Mumber Element hy path)
Limit elements in array results to:

EZN) -]

[start Client Transaction [] Yalidate Results

[ron oo]|
+ <ns0CUSTOMER_PROFILE xmins:nsO="urn:retailerType" = E

+ 2nsDiCUSTOMER_PROFILE xmins:nsO="urn:retailer Type" >

+ 2nsDiCUSTOMER_PROFILE xmins:nsO="urn:retailer Type" >

+ 2nsDiCUSTOMER_PROFILE xmins:nsO="urn:retailer Type" >

[

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

The structure for the root XML Type will be added to end of the data set. You will need to supply the

content, of course. If you right-click on the root element of your new record, you can also add complex
child elements.

When you are satisfied with the changes click Submit.

Running a Query Function With Simple Parameters

When your query requires one or multiple simple parameters, Test View display each parameter in its
own field, identified by name and required type.

Data Services Developer's Guide 1-5

Testing Query Functions and Viewing Query Plans

1-6

Figure 7-6 Function with Two Input Parameters

OrderDetailview. ds - {DataServicesHRTLServices) 4

Select Function:

|-B getapplorderDetailview{order_id, customer_id)l - |

Parameters

xsistring order_id: | ORDER_1_0 |

xsistring customer_id: | Jack] |

Mumber Element hy path)

Limit elements in array results to:
[s0]| [~]

[start Client Transaction [] Yalidate Results

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

See “Running a Query That Needs No Parameters” on page 7-4 for details or executing a query and
editing and submitting results.

Testing a Query Function With Complex Parameters

Enterprise-scale queries often require a complex parameter type as input. For example, an inventory
query may require a set of parameters which are based on a Web service supplying details of orders
received. It is usually easier to just pass the entire object than to specify a large set of individual
parameters.

When your query requires a complex parameter, the function will be listed with a parameter as in:

getProfileView (arqg)

The arg parameter indicates that a complex parameter type is needed.

For such parameters Test View displays a box (Figure 7-2) into which you can:

o Paste the results of the most recently run query (assuming the results match the input
requirements of the current function).

o Paste a template of the complex parameter into which you can enter necessary (that is,
required primary key) values.

o Identify to an XML file to serve as input.

e Enter your complex parameter directly.

Data Services Developer's Guide

Running Queries Using Test View

Using Prior Results as Input

For any given data service you can use results from a previously run query as input. This is particularly
useful when invoking navigation functions, since navigation functions generally require complex
parameters.

Note: When pasting prior results it's important to keep in mind that queries returning multiple
results (arrays) cannot be input to functions looking for a single object as a parameter. For
example, a function that gets orders for a particular customer is likely to return multiple
orders. Those results cannot be used as input to a function that returns information about a
particular customer.

The following steps show how results of a singleton query can be repurposed as input for a complex
parameter.

1. Assume that you have first run a simple query, selecting information on a particular order. Then
you want to get additional information on the customer who placed the order.

Results shown below contain elements called for by the function:
getElecOrderByOrdID (ORDER ID)

located in the RTLServices/ElecOrder data service.

2. Inthe Test View parameter area supply a valid order ID such as ORDER_1_0.

Data Services Developer's Guide 1-1

Testing Query Functions and Viewing Query Plans

Figure 7-7 Executing a simple parameterized query

ElecOrder.ds - {DataServicesHRTLServices) 4

Select Function:

5] getElecorderByOrdID{ORDER_ID)| ~ |

Parameters

xs:string ORDER_ID: | | ORDER_1 D |

Mumber Element hy path)

Limit elements in array results to:
[s0]| [~]

[start Client Transaction [] Yalidate Results

(e |

)
Result Text KL

- <ns:ArrayOFELEC _ORDER xmins:ns0="urn:retailerType" =
- <ns:ELEC_ORDER TYPE="ELEC" =

<OrderID= DRDER_1_0 </OrderID=
<CustomerlD> CUSTOMER1 </CustomerID
<OrderDate> 2001-10-01-07:00 </OrderDate=
<ShippingMethod> AIR </ShippingiMethod =
<HandlingCharge> 6.8 </HandlingCharge =
<SubTotal> 309.85 </SubTotal>
<TotalCrderamount = 316.65 < TotalOrderAmount =
<SaleTax>= D <fSaleTax=
<EstimatedShipDate> 2001-10-04-07:00 </EstimatedShipDate =
<Status> CLOSED </Status:=
=shipTo> ADDR_1_1 <{ShipTo:
<ShipToMame = Lucy Black </ShipToMame >
<EillTo» CC_1_1 «/BillTo= =]

Design View | »Query Editar View | Source View | Test View

]

3. Your results now contain the required customer ID. Select the getCustomer() relationship
function from the dropdown list of available functions.

4. Click on the Paste Result button. Your previous results appear as an editable complex parameter
in XML format (Figure 7-8).

1-8 Data Services Developer's Guide

Running Queries Using Test View

Figure 7-8 Using Query Results in a New Query

ElecOrder.ds - {DataServicesHRTLServices)

Select Function:

|za getCustomer{arg) |~ |

Parameters

ns1&:ELEC_ORDER Erowse... | | Faste Result | | Insert Template |

I,

<nsD: ArrayOFELEC_ORDER xmlns:nsD="urn:retailerType"H\ﬁﬂsD:ELEC_ORDER E
TYPE="ELEC"=><0OrderID=0RDER _1_0<fOrderID> <CustomerID=CUSTOMER] <
'CustomerID = <OrderDate =2001-10-01-07:00 <fOrderDate = <ShippingMethod ;|
wIR </ShippingMethod = <HandlingCharge =6, 8 < /HandlingCharge = <SubTotal =3
09,85</SubTotal = <TotalOrderAmount =316,65 </ TokalOrderAmount = <SaleTax
=0<[SaleTax > <EstimatedShipDate =2001-10-04-07:00 < EstimatedShipDate = <
Bhatus =CLOSED </Status = <ShipTo=ADDR_1_1 </ShipTo=<ShipToMame =Lucy
Black</ShipToMame = <BillTo=CC_1_1</BillTo><TrackingMumber =ORDER _1_07
708338681 </ Trackinghumber = <ns0ELEC_LINE_ITEM=><LineltemID =0 <,|’LineIt|z|

o : T T

Mumber Element hy path)

Limit elements in array results to:
[s0]| [~]

[start Client Transaction [] Yalidate Results

Note: Your results have been returned as a singleton element in an array (highlighted in blue

in Figure 7-8). The array element needs to removed before you can successfully execute
your navigation function.

5. Edit your results to remove the ArrayOfELEC_ORDER element. The outermost elements of your
XML document will change from:

<ns0:ArrayOfELEC ORDER xmlns:nsO="urn:retailerType">
<ns0:ELEC_ORDER TYPE="ELEC">
<0rderID>ORDER 1 0</OrderID>

</ns0:ELEC_ORDER>
</ns0:ArrayOfELEC_ORDER>

to:

<ns0:ELEC ORDER TYPE="ELEC" xmlns:nsO="urn:retailerType">
<OrderID>ORDER 1 0</OrderID>

</ns(3 :‘E.LEC_ORDER>
6. After making the necessary changes click Execute. Results of your new query are based on the

Customer XML type appear (Figure 7-9).

Data Services Developer's Guide 1-9

Testing Query Functions and Viewing Query Plans

Figure 7-9 Complex Parameterized Query Results

Result Text KL ‘
- <ns:ArrayOFCUSTOMER _PROFILE xmins:ns0="urr:retailer Type" = E
- =ns0iCUSTOMER _PROFILE =
<CustomerlD> CUSTOMER1 </CustomerID
<Firstame = Jack </FirstMame:>

<LastMame> Black <fLastMame:=

<CustomerSince> 2001-10-01 </CustomerSince =

<Emailaddress > Jack@hotmail.com </Emailaddress=
<TelephoneMumber > 2145134119 <[TelephoneMumber = B

Using the XML Type to Identify Input Parameters

You can automatically enter a template of the XML type of your data service. In Figure 7-10, a
customer ID (CUSTOMER3) and order ID (ORDER_3_0), are provided through the template. Results
are also shown.

1-10 Data Services Developer's Guide

Running Queries Using Test View

Figure 7-10 Using XML Type Template to Guide Data Input

ElecOrder.ds - {DataServicesHRTLServices)

*

Select Function:

v

|za getCustomer{arg) | - |
Parameters
ns13ELEC_ORDER arg: | Erowse... | | Faste Result| | Insert Template |
<ELEC_ORDER TY¥PE="string" xmins="urr:retailerType"= E
<OrderID xmins="">=CRDER_3_0</OrderID =
<CustomerID xmins="">CUSTOMER 3 </CustomerID =
<OrderDate xmins="">2008-09-28 </OrderDate =

<ShippingMethod xmins=""=string </Shippingrethod =

<HandlingCharge xmins="">1000,00</HandlingCharge =

<SubTatal xmins="">1000,00</SubTotal=

<TotalCrderamount. xmins=""=1000,00 </ TotalCrderAmount =

<SaleTax xmins="">1000.00</SaleTax > B

Mumber Element hy path)
Limit elements in array results to:

EZN) -]

[start Client Transaction [] Yalidate Results

N

- <ns:ArrayOFCUSTOMER _PROFILE xmins:ns0="urr:retailer Type" = E
- =ns0iCUSTOMER _PROFILE =
<CustomerlD> CUSTOMER3 </CustomerID |:
<FirstMame > Britt </Firsthamez=
<LastMame: Pierce <fLastMame: B

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

Template parameters are useful when you know the key parameters required by your query.

See “Running a Query That Needs No Parameters” on page 7-4 for details or executing a query and
editing and submitting results.

Testing AquaLogic Data Services Platform Procedures

In Test View procedures are selected and run from the Select Functions drop-down list box in the same
was that functions are selected. Running a procedure under Test View shows results only if the
procedure returns data or a confirming message as to whether the operation was successful, for
example.

Limiting Array Results

You can filter query results through Test View to # instances of a single element such as the first five
of an array of 5,000 customers.

Data Services Developer's Guide 1-11

Testing Query Functions and Viewing Query Plans

Figure 7-11 shows a function where the results for RTLServices/Address/getAddress() are limited to
three Address elements. Without such a limitation, all customer records would be returned.

Figure 7-11 Limiting Elements in an Array Result

Address.ds - {DataServicesHRTLServices),

el

Select Function:

|-B getaddress() | - |

Parameters

Mumber Element hy path)
Limit elements in array results to:

[3 | [aDDRESS I~]
s

[start Client Transaction Validate Resuls "%

|

+ <11 ADDRESS xmins:k1="urn:retailer Type" >

+ <11 ADDRESS xmins:k1="urn:retailer Type" >
+ <11 ADDRESS xmins:k1="urn:retailer Type" >

i
[

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

Starting Client Transaction Option

The Client Transaction Option supports functions that query more than multiple (two or more)
relational sources using XA transaction drivers. By default this option is not selected, meaning that

the NotSupported EJB transaction method is used. If the option is checked, the Required transaction
mode will be used instead.

For general information on the subject see “Transactions in EJB Applications” WebLogic Server
documentation.

1-12 Data Services Developer's Guide

http://e-docs.bea.com/wls/docs81/jta/trxejb.html

Running Queries Using Test View

Validating Results

Test View results are validated against the data service’s schema file when the Validate Results
checkbox (shown in Figure 7-11) is selected. When active the following conditions will be flagged as
invalid:

e An illegal type mismatch between source elements and the return type. For example, if an
element of type string is mapped to an element of type date, the query results are invalid since
a string cannot be guaranteed to cast successfully to a date.

e An element or attribute that is required in the schema is removed from the return type.

o An element or attribute is added to the return type.

Invalid results are reported in the Output window. Such results can be addressed by correcting the
return type or associating the return type with a new, corrected schema. See “Validating and Saving
Your Return Type” on page 6-52.

Notes: Whenever you attempt to edit results of a query, those results are re-validated. The criteria is
the same as that used for the Validate Results option.

Results are validated by calling the XMLBean validate() method, currently documented at
the following URL:

http://edocs.bea.com/workshop/docs8l/doc/en/workshop/java-class/com/bea/xml/Xm
10bject.html#validate ()

Disregarding a Running Query

An executing query can be ended through the AquaLogic Data Services Platform Console or by ending
your server process. However, you can start a new query by changing your selection in Test View.

Auditing Query Performance

You can audit query performance by activating Audit for your application. This is a one-time operation
which is accomplished through the AquaLogic Data Services Platform Console.

When a query function is invoked through Test View and AquaLogic Data Services Platform auditing
is enabled, basic validation and performance information appears in the WebLogic Workshop Output
window (View — Windows — Output). You can find the most recent query results at the bottom of
the Output pane.

Note: For details on enabling auditing and tuning audit options see the “Audit and Log Information”
chapter in the AquaLogic Data Services Platform Administration Guide.

Data Services Developer's Guide 1-13

http://edocs.bea.com/workshop/docs81/doc/en/workshop/java-class/com/bea/xml/XmlObject.html#validate()
../admin/monitor.html

Testing Query Functions and Viewing Query Plans

By default an audit includes such information as query compilation and execution time, user, server, and
so forth (Figure 7-12).

Figure 7-12 Output Window Audit Results

Output x
Query compilation time: 0 ms
Query evaluation time: 0 ms
Operation duration: 40 m=s
common/application
name: RTLApp
eventkind: evaluation
user: weblogic [%
Server: cgServer

query/per formance
compiletime: 0

queryfwrappersijava
name: public static Jjava.math.BigDecimal Demo.Jawva.FuncData.echoBig]
time: 0

query/per formance
evaltime: 0

querysfservice

query:
declare namespace nsO="ld:DataServices/PRODUCTS1™:
declare namespace nsl="http://www.w3.org/2001/XML5chena™;
declare wvariable §_ fparam0 as nsl:decimal external;
n3l:echoBigDecinal (§_ fparam0)

dataservice: ld:DataServices/PRODUCTS1.d=

function: {ld:DataSerwvices/PRODUCTS1}echoBigDecimal

commonytime
timestamp: Mon Feb 13 16:33:40 PST 2006
duration: 40

il []

Note: Query plan audit properties are not collected when a function is executed from Test View. This
is because the function cache is not utilized for functions executed in Test View.

Running Ad Hoc Queries Under Test View

It is often useful to quickly enter and test queries. You can do this through any data service’s Test View.
Simply pull down the list of available functions and select either the Ad hoc XQuery option (Figure 7-21).

1-14 Data Services Developer's Guide

Running Queries Using Test View

Figure 7-13 Selecting Ad Hoc Query Option From Test View

CUSTOMER_ORDER . ds - {DataServicesH apparelDEYL =

Select Function:

<Function= -

=Funckion =
| CUSTOMER _ORDER)
] getCUSTOMER _ORDER_LINE_ITEMIpk)

<Ad hoc ¥Query = %

| Design Yiew | =Query Editor Wiew | Source Yiew | Test Wiew [Query Flan View

As the name implies, an ad hoc query is not specific to the currently selected data service, if any.

Note: An ad hoc query remains available whenever the data service active when it was created is
open to Test View. However, ad hoc queries are not visible in Source View; such queries can
be saved by first copying the text to an external application.

Example Ad Hoc XQuery

Figure 7-22 shows an example ad hoc XQuery. Although the constructor function for the current data
service was used (DataServices/CustomerDB/CUSTOMER), it does not need to be present in order for
the query to successfully run.

Data Services Developer's Guide 1-15

Testing Query Functions and Viewing Query Plans

1-16

Figure 7-14 Creating an Ad Hoc XQuery in Test View

Customer,ds - {DataServicesHRTLServices) Y
Select Function:

<Ad hoc Query = | - |

Query

declare variable $p_firstname as xs:string external; |Z|

declare variable $p_lastname as xs:string external;
declare namespace ns0="|d:DataServicesCustomerDB/CUSTOMER";

<query =
for $customer in ns0: CUSTOMERL)
return $customer
<lquery =

Show Parameters

Parameters e

[start Client Transaction

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

If your query requires simple or complex parameters, these can be exposed using the Show
Parameters button.

A Results pane below the Execute button contains the data returned by the query (if any).

If you want to try out the example while running the RTLApp sample program, copy the code in
Listing 7-2 to an ad hoc query pane, available from any data service.

The query is designed to take some moments to run. (It can also be used to experiment with
monitoring and stopping executing queries through the AquaLogic Data Services Platform Console.)

Tip: In order to execute a query under Test View the Check Access Control option in
AqualLogic Data Services Platform Console’s General tab for your application must be
deselected.

See the chapter Configuring Aqualogic Data Services Platform Applications in the
Administration Guide for details.

Data Services Developer's Guide

../admin/server.html
../admin/index.html

Using Query Plan View

Listing 7-1 Sample Ad Hoc Query Executable From RTLApp’s Test View

import schema namespace ns2="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/CustomerProfile.xsd";

declare namespace ns9="ld:DataServices/RTLServices/Customer";
declare function ns9:getCustomerSlowly() as element (ns2:CUSTOMER PROFILE) * ({

for $CUSTOMER_PROFILE in ns9:getCustomer (),

$cl in ns9:getCustomer () [CustomerID 1t $CUSTOMER PROFILE/CustomerID
$c2 in ns9:getCustomer () [CustomerID gt SCUSTOMER PROFILE/CustomerID
$c3 in ns9:getCustomer () [CustomerID eq $CUSTOMER_PROFILE/CustomerID
$c4 in ns9:getCustomer () [CustomerID 1t $CUSTOMER PROFILE/CustomerID
$c5 in ns9:getCustomer () [CustomerID gt SCUSTOMER PROFILE/CustomerID
$c6 in ns9:getCustomer () [CustomerID eq $CUSTOMER_PROFILE/CustomerID

O [

O [

O [

r

’

’

’

4

’

’

)
)
)
)
)
$c7 in ns9:getCustomer () [CustomerID = $SCUSTOMER PROFILE/CustomerID],

)

)

$c8 in ns9:getCustomer CustomerID != $CUSTOMER PROFILE/CustomerID],
$c9 in ns9:getCustomer CustomerID = $CUSTOMER_PROFILE/CustomerIDJ,
$cl0 in ns9:getCustomer () [CustomerID !=

$CUSTOMER_PROFILE/CustomerID] ,
Scll in ns9:getCustomer () [CustomerID eq $CUSTOMER7PROFILE/CustomerIDJ,
$cl2 in ns9:getCustomer () [CustomerID eq $CUSTOMER PROFILE/CustomerID]
return $CUSTOMER_PROFILE
}i

ns9:getCustomerSlowly ()

Once an ad hoc query has been entered, its query plan can be reviewed. See “Obtaining an Ad Hoc
Query Plan.”

Using Query Plan View

Two types of information are available to help you analyze the design and performance of your query.
o Auditing information which appears in the Results window (see Auditing Query Performance).

e Query Plan View

Query Plan View helps in understanding how a query is designed. In addition to being able to view the
plan, you can also print it (using the right-click menu option) or save it to a file in XML format.

Data Services Developer's Guide 1-11

Testing Query Functions and Viewing Query Plans

You can obtain a query plan for any function in your data service. Simply select the Query Plan tab and
select a function, just as you would in Test View. In addition, as a convenience, you can obtain an ad
hoc query plan for XQuery or SQL.

Note: For details see “Obtaining an Ad Hoc Query Plan” on page 7-24. Also, a standalone ad hoc
query utility for XQuery and SQL is provided with AquaLogic Data Services Platform. See
Using SQL to Access Data Services in Client Application Developer’s Guide for details.

Using Query Plan View

The interface for Query Plan View is quite similar to that used for testing your query functions. You
select a function or procedure from a drop down list and then click the Show Query Plan button
(Figure 7-15).

Figure 7-15 Query Plan Right-Click Options

Customer,ds - {DataServicesHRTLServices) S
<Functionz sl
|getCust0mer() | - |
Show Query Plan
Query Plan [Tree || we || Tem | ‘
Bl FLWOR
‘true” sglGenDetails="[StopNode:
Design View | ®Query Editor View | Source Wiew | Test View | Query Plan Yiew

A query plan identifies the following query components:
e Joins
e Outer join
e Select statements
e Data sources
e Custom function calls
e Order-bys

e Remove duplicates

7-18 Data Services Developer's Guide

../appdev/jdbcclt.html

Using Query Plan View

e Source access operator

Figure 7-16 Query Plan Fragment for RTLApp’s Customer Data Service getCustomerByCustID(cust_id)
Function

=Function=

[etcustomergycustiDieust i) |~ |

Show Query Plan

Queg Plan ESE RS

= FLWOR
= return

El <PROFILE>
<CustomerID:= {$162879}
<FirstMame > {}162874}
<Lasthame> {$162877}

<CustomerSince:= {5162878}
Return type <Emaladdress = {§162873} V|eW Options
<Telephonelumber = {$162869}

<55z {$l62870}

<BirthDay > {$162876}
<DefaulshippmentMethod: {$162875
<Emailtotification = {}162872}
<OlineStatement = {}162871}

sibznz Temporary Traceable
= [let $l62882 — .
B FLwoR Variables
= return
= <ADDRESS >
<AddressID > {f62881,/{t62831}}
=CustomerID> {f62881,/{t62846}
<FirstMame > {f62881/{t62845}+
<Lasthame: {f62881,{t62838}}
=StreetAddress_1 > {f62881,/{t62833}}
=StreetAddress_2:> {f62881,/{t62832}}
=City> {62881/ {t62836}}
<state {f62881,/{t62835}}
=ZipCode> {f62881,/{t62841}}
=Country {f62881,/{t62839}}
<DayPhone: {62881/ {t62843}}
<EveningPhone = {f62881/{t62842}}
zhlias= {f62881,/{t62834}}
=Status: {62881/ {t62844})
<IsDefault > {f62881/{t62840}}
B where
= friexists()
${f62881/{t62837}
[for ¢f62881
roupBy preclustered="true" stable="true"

. iy . relational source :cgDataSource :
SOU rce |dent|flcat|0n SELECT £1."BIRTH_DAY" AS cl, t1,"CUSTOMER_ID" AS c2, t1."CLSTOMER_SINCE" AS c3,
T ULDEFAULTSHIP_METHOD' AS cf, L1 "EMAIL_ADDRESS' A5 o5, tL/EMALL NOTIFICATION' A5 <6,
L1LFIRST_MAME" AS c7, £1"LAST_NAME" AS c8, t1."ONLINE_STATEMENT" AS c9, t1."SSN" AS c10,

t1"TELEPHORE _MUMBER" A5 c11, t2."ADDR_ID" AS c12, t2."ALIAS" AS C13, t2,"CITY" AS c14,
12, "COUNTRY" A5 C15, t2."CUSTOMER_ID" AS 16, £2."DAY_PHONE" AS c17, 12."E¥E_PHONE" AS c18,
12, "FIRST_MAME" AS £19, t2,"I5_DEFALLT" A5 c20, t2."LAST_MAME" AS c21, £2."STATE" AS 22,
12,"STATUS" AS 23, t2,"STREET_ADDRESS1" AS 24, t2."STREET_ADDRESS2" AS c25, t2."ZIPCODE" AS (26
f FROM "RTLCUSTOMER" "CLISTOMER" £
Join —_ LEFT OUTER. JOIN "RTLCUSTOMER","ADDRESS" k2

Fr—————— ON{t1,"CUSTOMER_ID" = £2."CLISTOMER _ID")
WHERE (7 = t1."CUSTOMER_ID")
ORDER BY £1."CLSTOMER_ID" ASC

[Desian View | ¥Guery Edtor View | Source View | Test View | Query Plan Yisw |

There are several ways that a query plan can be viewed:
o Tree view. A collapsible graphical presentation of the query plan.
o XML view. A collapsible XML document view of the query plan.

o Text view. Presents the information as text.

Data Services Developer's Guide 1-19

Testing Query Functions and Viewing Query Plans

1-20

Query Plan Information and Warnings

The query plan shows both informational and warning messages. When a section of the plan is flagged
with a warning, the plan segment is highlighted in red. If you mouse over the segment, the warning
message appears.

Informational messages also can appear with plan segments. Such segments are highlighted in yellow.
Table 7-17 identifies the conditions associated with informational and warning messages.

Table 7-17 Informational and Warning Messages Associated With Query Plans

Warning Message Type

Informational Message Type

XQuery compiler: Typematch. Typematch issues will be
resolved by the compiler (may affect performance)

e Audit. Auditing has been set for this
particular function (will affect
performance).

XQuery compiler: No where clause. There is no predicate
associated with the query function (will affect
performance).

e (Cache. Function is cached (may
enhance performance).

XQuery compiler: Untyped data. Possible untyped atomic
data found in the node constructor.

e SQL pushdown generation details.

XQuery compiler: No such element. The element (name
provided) is not found in in-scope schemas.

SQL generation: missing key. Underlying table/view does
not have a key.

SQL generation: cannot generate subquery. isSubquery
property is set to false on the data service. (See the
“Function Annotations” section of the Understanding Data
Services Platform Annotations section of XQuery
Developer’s Guide.

SQL generation: cannot generate SQL for join
expression. Unable to translate join condition.

SQL generation: cannot generate SQL for aggregate
expression (named). Function does not operate on a
sequence.

SQL generation: fn:string() function encountered. Use
xs:string() instead since xs:string() can be pushed down
to the database for processing.

Data Services Developer's Guide

../xquery/annotations.html
../xquery/annotations.html

Using Query Plan View

Printing Your Query Plan
A right-mouse option allows you to print a query plan to a printer or a file. Right-click on any node in
the plan and select either the print or print to a file option.
If you print to a file the filename will be of type XML. The name of the file will be the function name
followed by the letters _qp, as in:

getCustomerView gp.xml

The file can be saved anywhere in your application.

Analyzing a Sample Query

The following query is from the AquaLogic Data Services Platform RTLApp:
(RTLServices/OrderDetailView/getElecOrderDetailView (order id,
customer id)

From the function signature you know that the query returns data related to order details after it is
passed an order ID and a customer ID.

The following pseudocode describes the query:

Jor electronic orders matching CustomerID and OrderID
return order information and ship-to information
Jfor credit card information matching an AddressiD
return credit information and bill-to address information
Jfor electronic line item information matching the line item in the order
return line item information

A compressed version of the query plan is shown in Figure 7-18.

Data Services Developer's Guide 1-21

Testing Query Functions and Viewing Query Plans

Figure 7-18 Query Plan for getElecOrderDetailView()

Query Plan

=l =OrderDetailview =

[=ORDER_DETAIL_WIEW =

= FLWOR
return %
57 where

=] let $112260
let $112259
let $112258
let $112257
let $112256
let $112255
let $112254
let $112253
let $112252
let $112251
let $112250
let $112249
let $112248
let $112247
let $112246
= let $112245
{E groupBy preclustered="true" stable="true"
join impl="index-cpp" kind="left-outer"
right
left
¥ condition

B

[N e e R 3 e

The let statements represent mappings or projections in the data service. This can be useful when
trying to trace performance issues.

The join conditions are identified in the plan as a left-outer join driven by a complex parameter. By
definition, joins have left and right sides, each of which can contain additional joins. One of the best
uses of the query plan is to see how the query logic works up the various data threads to return results,
as shown in Figure 7-19.

1-22 Data Services Developer's Guide

Using Query Plan View
Figure 7-19 Top Down Schematic of getElecOrderDetailView() Function

| left-outer join |

index-cpp
| ‘
| let-outer join | RTLCUSTOMER : ADDRESS
index-cpp :
I
| left-outer join | RTLCUSTOMER : ADDRESS
index-cpp
| ‘
getCustomerOrderByCustomerID RTLBILLING :CREDITCARD

(order by emptyOrder ascending)

Working With Your Query Plan

Two options are available in Query Plan.

e Expand All. This right-click menu option expands the currently selected element and any
children. If applied to the top-most element in the plan, all elements are expanded.

e Match highlighting. When you click on a variable name any elements (open or closed)
containing a match for that variable are highlighted. This feature helps you trace variables in
the query plan.

Data Services Developer's Guide 1-23

Testing Query Functions and Viewing Query Plans

1-24

Identifying Problematic Conditions Through the Query Plan

When you show a query plan for a particular function, you may notice red or yellow highlighting of
particular routines. These correspond to warnings or informational messages from the plan
interpreter. For example, if a for statement is missing a where clause (potentially leading to slow
performance or retrieval of a massive amount of data) a red warning will appear adjacent to the
statement.

Figure 7-20 Query Plan Viewer Flagging a For Statement with a Missing Where Clause

Query Plan [Tree || we || Tem |

= FLWOR

return
£l =4 for $4f596
relational source :cgDataSource :
SELE’EU SCUSTOMER_ID! AS cl, b1,"ORDER_DATE" AS c2, £1,"ORDER_ID" AS €3, £1,"SHIP_METHOD" AS

b1 "TesfAL ORDER AMOUMNT" AS c5
FROM Generated SOL query does not have a WHERE clause, This may cause the query to take longer to finish

[| [

Simply mouse-over the highlighted section of the plan to view the information or warning.

Obtaining an Ad Hoc Query Plan

Just as you can create an ad hoc test query, you can also create an ad hoc query plan. This is especially
useful when multiple data sources are involved and, potentially, multiple updates across these data

sources.
You can obtain a query plan on an ad hoc query through:
e Query Plan View in WebLogic Workshop

o A standalone query plan viewer provided with AquaLogic Data Services Platform. Installation of
the standalone query plan viewer is described in the Using SQL to Access Data Services chapter
of the Client Application Developer’s Guide.

Data Services Developer's Guide

../appdev/jdbcclt.html

Using Query Plan View

Ad hoc query plans can be developed for either XQuery or SQL (see Figure 7-21). Resulting plans can
be printed or saved to a file (see “Printing Your Query Plan” on page 7-21).

Figure 7-21 Selecting an Ad Hoc Query Option From Test View

CIUSTOMER_ORDER. ds - {DataServices}H ApparelDEY

Select Function:

el

&7 getCUSTOMER,_ORDER_LINE_ITEM{pk)| +
|: =<Function =
] CUSTOMER _ORDER()

[:{-_ﬂgetcusTOMER_ORDER_LINE_ITEM(pk) - ” S ” = ”
<Ad hoo XCuery =

<Ad hoc SQL= E
= [La[] FOWOR
return |:

[=-join impl="index-cpp" kind="inner"
= right
£l S for $F168 [

Design View | ®Query Editor View | Source Wiew | Test View | Query Plan Yiew

Note: An ad hoc query remains available whenever the data service active when it was created is
open to Test View. However, ad hoc queries are not visible in Source View and can only be
saved by first copying the text to an external application.

XQuery Ad Hoc Query Example

Figure 7-22 shows an example ad hoc XQuery. Although the constructor function for the current data
service was used (DataServices/CustomerDB/CUSTOMER), this was unnecessary.

Data Services Developer's Guide 1-25

Testing Query Functions and Viewing Query Plans

Figure 7-22 Creating an Ad Hoc Query

Customer,ds - {DataServicesHRTLServices) Y
Select Function:

<Ad hoc Query = | - |

Query

declare variable $p_firstname as xs:string external; |Z|

declare variable $p_lastname as xs:string external;
declare namespace ns0="|d:DataServicesCustomerDB/CUSTOMER";

<query =
for $customer in ns0: CUSTOMERL)
return $customer
<lquery =

Show Parameters

Parameters e

[start Client Transaction

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

If your query requires simple or complex parameters, these can be exposed using the Show
Parameters button.

A Results pane below the Execute button will contain the data returned by the query (if any).

In the RTLApp sample application you can copy the code in Listing 7-2 into an ad hoc query pane. This
query is designed to take several minutes to complete. It can also be used to experiment with
monitoring and stopping executing queries through the AquaLogic Data Services Platform Console.

Note: In order to execute this query the applications Check Access Control option in AquaLogic
Data Services Platform Console’s General tab must be deselected. See AquaLogic Data
Services Platform Administration Guide for details.

Listing 7-2 Sample Ad Hoc Query Executable From RTLApp’s Test View

import schema namespace ns2="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/CustomerProfile.xsd";

declare namespace ns9="ld:DataServices/RTLServices/Customer";
declare function ns9:getCustomerSlowly() as element (ns2:CUSTOMER PROFILE)* {

for $CUSTOMER PROFILE in ns9:getCustomer(),

1-26 Data Services Developer's Guide

../admin/index.html

Scl
Sc2
Sc3
Scd
Sch
Sc6
Sc7
$c8
$Sc9

in
in
in
in
in
in
in
in
in

ns9
ns9

ns9

ns9

:getCustomer
:getCustomer
ns9:
:getCustomer
ns9:
ns9:
:getCustomer
ns9:
ns9:

getCustomer

getCustomer
getCustomer

getCustomer
getCustomer

$cl0 in ns9:getCustome

$CUSTOMER7PROFILE/CustomerID],
$cll in ns9:getCustomer () [CustomerID eq $CUSTOMER PROFILE/CustomerID],
$cl2 in ns9:getCustomer () [CustomerID eqg $CUSTOMER_PROFILE/CustomerID}

return S$CUSTOMER PROFILE

}i

ns9:getCustomerSlowly ()

(
(
(
(
(
(
(
(
(
r

)
)
)
)
)
)
)
)
)

() [CustomerID

[CustomerID
[CustomerID
[CustomerID
[CustomerID
[CustomerID
[CustomerID
[CustomerID
[CustomerID
[CustomerID

1t
gt
€q
1t
gt
€q

Using Query Plan View

$CUSTOMER_PROFILE/CustomerID
$CUSTOMER_PROFILE/CustomerID
$CUSTOMER PROFILE/CustomerID
$CUSTOMER_PROFILE/CustomerID
$CUSTOMER_PROFILE/CustomerID
$CUSTOMER PROFILE/CustomerID

’

’

14

’

’

’

= SCUSTOMER PROFILE/CustomerID],

SCUSTOMER PROFILE/CustomerID],

$CUSTOMER PROFILE/CustomerID],

Once an ad hoc query has been entered, its query plan can be reviewed. See “Using Query Plan View.”

- Running Ad Hoc Queries

Also see in the AqualLogic Data Services Platform Samples Tutorial:

SQL Ad Hoc Queries

You can also enter ad hoc SQL queries and view the resulting query plan. There are several

prerequisites:

e Only published SQL objects can be queried. For details on publishing data service functions as
SQL objects see “Publishing Data Service Functions for SQL Use” on page 4-46.

e Projects containing data service functions published as SQL must be build before a SQL query
can be run against the published function. See “Building and Deploying Applications, JARs, and
SDO Mediator Clients” on page 2-23.

Data Services Developer's Guide 1-21

../samples_tutorial/index.html

Testing Query Functions and Viewing Query Plans

1-28

o Parameterized SQL queries must be associated with the correct parameter type(s), as verified
at runtime through JDBC.

e If the parameter is a table parameter, it must be so identified. See “Running an Ad Hoc SQL
Query Containing Table Parameters” on page 7-29.

SQL Ad Hoc Query Example

For example, once the CUSTOMER_ORDER function (DataServices:ApparelDB:CUSTOMER_ORDER)
has been published as a table, you can — from any data service — run an ad hoc SQL query as long
as your data sources are available.

The following query also includes a parameter:
SELECT * CUSTOMER ORDER where bill to id=?

Note: The project name and the name of the schema associated with published SQL are identified
through the Default Schema field. If no schema is selected then you would need to fully
identify the SQL data source as in:

SELECT * from DataServices.NewSchema.CUSTOMER ORDER where bill to id=?

The ad hoc SQL query interface provides you with the ability to select appropriate parameter types.
Parameter types should be selected in the same order in which they appear in your query (see
Figure 7-23).

SELECT * from DataServices.NewSchema.CUSTOMER ORDER where bill to id=?

Data Services Developer's Guide

Using Query Plan View

Figure 7-23 Ad Hoc SQL Query, Parameter, and Resulting Query Plan

library xfl - {DataServices}iDemao' JavalPhysicaly 4

Select Function:

<id hoe 5QL> I~]

sQL

Default Schema DataServices.NewSchema| - |

select * from CUSTOMER_ORDER where bill_to_id=? |Z|
Parameters
Position Table Parameter Parameter Type
1 | O | YARCHAR, |%

Show Query Plani

Query Plan [Tree || we || Tem |

= FLWOR

return
£l =+ for $f53
relational source :cgDataSource :
SELECT £1"BILL_TO_ID" A5 cl, b1."C_ID" A5 c2, t1."DATE_INT" A5 c3, t1."ESTIMATED_SHIP_DT" A5 c4,
£ "HANDLING_CHRG_AMT" AS 5, t1,"ORDER_DT" AS o6, t1."ORDER_ID" A5 c7, t1."SALE_TAX_AMT" A5 c8,
B b "SHIP_METHOD_DSC" AS c9, E1,"SHIP_TO_ID" AS c10, t1,"SHIP_TO_MM" AS c11, t1,"STATUS" A5 c12,
b1 "SUBTOTAL_AMT" A5 c13, £1."TOTAL_ORDER_AMT" A5 c14, t1."TRACKING_MO" A5 c15
FROM "RTLAPPLOMS" "CUSTOMER _ORDER" £1
WHERE (t1."BILL_TO_ID" =7
®ro

Design View | ®Query Editor View | Source Wiew | Test Wiew | Query Plan Yiew |

Standard JDBC parameter types are available in the drop-down parameter list.

Running an Ad Hoc SQL Query Containing Table Parameters

AquaLogic Data Services Platform extends SQL/92 to support table parameters. For details on usage
and restrictions associated with table parameters see “Table Parameter Support” in the Using SQL to
Access Data Services chapter of the Client Application Developer’s Guide.

You can obtain an ad hoc query plan on a SQL query that uses table parameters. To do this you need
to identify the appropriate valid parameter(s) that are to be processed as table parameters by
selecting a checkbox associated with the parameter type (see Figure 7-23).

Data Services Developer's Guide 1-29

../appdev/jdbcclt.html
../appdev/jdbcclt.html

Testing Query Functions and Viewing Query Plans

1-30 Data Services Developer's Guide

Working with XQuery Source

This chapter describes BEA Aqualogic Data Services Platform Source View. It includes the following
topics:

o What is Source View?

e Using Source View

What is Source View?

The underlying XQuery source of a data service typically:
e References a schema as the data service’s XML type
o Defines one or several read functions and, optionally, one or several relationship functions
e Declares namespaces for referenced services

e (Contains various pragma directives to the XQuery engine

In addition, data services created from physical data sources contain metadata related to the physical
sources. For example, data services based on relational data describe the XML field type (such as
xs:string), the xpath, native size, native type, null-ability setting and so forth.

In developing data services there are many occasions when it is more convenient or necessary to
modifying source.

Data Services Developer's Guide 8-1

Working with XQuery Source

8-2

Also see in the Aqualogic Data Services Platform Samples Tutorial:

- Configuring Alternatives for Unavailable Data Sources

There are times when it may be preferable to develop or troubleshoot data services by working directly
in source. The Source View tab allows you to directly edit data service source code, as well as schemas.
Changes to source are immediately reflected in other data service modes such as the XQuery Editor;
similarly, source is immediately updated when changes are made through the XQuery Editor View or
Design View.

XQuery Support

AquaLogic Data Services Platform supports the XQuery language as specified in XQuery 1.0: An XML
Query Language, W3C Working Draft of July, 23, 2004. You can use any feature of the language
described by the specification.

AquaLogic Data Services Platform supplements the base XQuery syntax with a set of elements and
directives that appear in Source View as pragmas. Pragmas are a standard XQuery feature that give
implementors and vendors a way to include custom elements and directives within XQuery code.

The BEA implementation of XQuery also contains some extensions to the language and additional
functions. BEA extensions to XQuery and links to W3C documentation are described in the AquaLogic
Data Services Platform XQuery Developer’s Guide.

Data Services Developer's Guide

../xquery/index.html
../samples_tutorial/index.html

Using Source View

Figure 8-1 Source View Showing Pragmas, Namespace Declarations, and a Function

Customer.xds* - {DataServicest,

fripragma xds «wxrxds targetType="t:CUSTOMER™ xmlns:x="urn:rannotations.ld.bea
<userDefinedView >

<relationshipTarget roleName="payment"/=<functionForDecomposition name="1:get
</Hrxds=rr)

Do

"ld:Datafervices /CUSTOMERS: POINTEASE /WEBLOGIC™
"ld:Datafervices/P0_CUSTOMERS: POINTEASE /WEELOGIC™;
"ld:Datafervicea/P0_ITEMZ: POINTBASE /WEBLOGIC™ ;
"ld:Datadervices/Custoner”;

declare namespace £l
declare namespace £2
declare namespace £3
declare namespace 11

import schema namespace tl = "http: //temp.openuri.orgs/schenas/Custoner.xsd™ a
import schema namespace crxsd = "http://wwmr, openuri.org/” at "ld:Datafervices
declare namespace f£ll = "ld:Datajerwvices/getCustonerCreditRatingResponse:crRa

(sipragme function <f:function xplns: f="urn:amnotations.ld, by on™ kind="dat

[# declare function 11:getCustomer(sirgd as xs:int) as elemen

import schema namespace t3 = "1d:/DataServices/schemas/PAYMENTLi=t" at "ld:Da
declare namespace £5 = "ld:Datafervices/PAYMENTS:POINTEASE /WEBLOGIC™:
import schema namespace t2Z = "ld:Datalfervices/PAYMENTS:POINTEASE/WEELOGIC™ at

(:ipragme function <f:function kind="navigete" retwrns="payment" xmlns:f="ur
declare function ll:getPaymentlist(ic as element(tl:CUSTOMER)) as element|ti:
fn-bea:probe (<t3: PAYMEHTLiSt> {

for sp im £5:PAYMENTE()

where §p/CUSTID = 987654

return

<PAYMEHTS -

<CUSTID: {fn:data(sp/CUSTID))} <ACUSTID-

<PRYMEHT> {fr:data|sp/PATMENT)} </PRYMENT>

<COMMEHT> {fn:data(sp/COMMENT) } - /COMMENT:-

< /PAYMEHT S~

}

“<ft3: PRYMEHTList =)
ke
Kl |]
| Design Yiew | xGQuery Editor | Source Yiew | Test View | Query Plan Yiew

Using Source View

You can view a file in Source View by clicking the Source View tab. To open Source View to a particular
query function, first select the function from Design View or XQuery Editor View, then click the Source
View tab.

Finding Text

You can search for specific text strings in Source View using is open you can access file search using
WebLogic Workshop’s Edit — Find command option or <Ctrl-f>. Complete search and replace
facilities are available including specifying case, whole words only, wildcard search patterns, and
limited search. You also have the option to mark all occurrences of found strings.

Found items are highlighted in yellow. This makes it easy to trace the use of variables, for example.

Data Services Developer's Guide 8-3

Working with XQuery Source

8-4

Figure 8-2 Source View Search Dialog Box

"Find Text
Text ko find: | getall | - | | Find |
Options: [] Case sensitive

[Find whale words anly
Use * and 7 for pattern matching
[J search fram the start of the fils
Wrap back to the start of the fils
Search inside collapsed regions
Mark all occurrences

Direction: () Forward () Backward

Function Navigation

As a convenience you can quickly navigate to the data service represented by a particular function by
clicking Ctrl while holding your mouse over a particular function call such as:

for $fk in f£3:ADDRESS ()

If you click the pop-up which repeats the function name, the data service that contains that function
will open to that function.

Code Editing Features

WebLogic Workshop contains a rich code editing environment.

Color Coding

XQuery documents in Source View are color-coded to highlight the various elements of the source
code. By default keywords are blue and bold, comments (including pragmas) are colored grey, and
variables are colored magenta.

Data Services Developer's Guide

Using Source View

Figure 8-3 Color Coding in Source View

declare namespace £l = "1d:TEippLiquidDbatadpp/CUSTOMER™ :

import schema namespace t6 = "ld:TEipplLicuidDatabdpp/CUSTOMER™ at "1d:TEippLimuidDatadpp/schenas/CUSTOMER.x=d";
(:ipragme function <f:function xmlns:f="wrn:amnotations.ld.bed.con™ kind="read" nativeName="CUSTOMER™ nativel
declare function f£1:CUSTOMER() as schema-element|té:CUSTOMER)* external;

declare namespace £2="1d:TEippLimquidDatadpp/ADDRESS™;

import schema namespace t4 = "l1d:TEipplLicuidDatabdpp/ADDEESS™ at "1d:TEAppLicuidDatadpp/schenmas/ADDRESS . xsd™;
(:ipragme function «<f:function xmlns:f="urn:amnotations.ld.bed.con™ Xind="navigate" roleName="ADDRESS" >::)
declare function f£l:getiDDBRESS3s(5pk as element(t6:CUSTOMER)) as element(td:ADDRESS)*
! for 5fk in £2:ADDRESS()

where spi/CUSTOMER_ID eqg §7k/CUSTOMER_ID

return $7k
b:

You can customize color coding through the Preferences dialog (Tools — Preferences).

Code Completion
If you know the namespace prefix, you can activate the function-completion mechanism.

Function completion is invoked when you type a namespace prefix followed by a colon. The namespace
prefix should be bound to a URI corresponding to a data service or XFL file. Alternatively, you can type
the prefix followed by a colon followed by Ctrl-Space.

Figure 8-4 Function Completion Using Namespace Prefixes

import schema namespace ©3 = "ld:DatafServices/ApparelDB/CUSTOMER_ORDER_LINE ITEN" at “ld:Datafeq

declare function f£l:getCUSTOMER_ORDER_LINE_ITEH($pk as element(t2:CUSTOMER_ORDER)) as element

{

for §fk inwfz:T

vhere §pk/ORDEE]: COSTOMER_ORDER_LINE_ITEM()

recurn §fk El:getCUSTOMER_ORDER (t3: CUSTOMER_ORDER_LINE_ITEM £k)
£1: getPRODUCT {£3: CUSTOMER_ORDER_LINE_ITEH fk)

)i

Completing Xpath Expressions

The function-completion facility can also be used to complete Xpath expressions:
1. Position your cursor at the end of the existing path expression.

2. Press the key combination of Ctrl-Space.

Data Services Developer's Guide 8-5

Working with XQuery Source

8-6

3. Select the appropriate element from the pop-up list (Figure 8-5).

Figure 8-5 XPath Code Completion in Source View

CreditCard. ds - {DataServicesHRTLServices)

|

import schema namespace nsS="urn:retailerType™ at "ld:DataServices/I
declare namespace nsf="ld:DataServices/RTL3erwvices/Custoner™;
declare namespace nsl="ld:DataServices/BillingDE/CREDIT CARD™:
import schema namespace nsl="urn:retailerType™ at "ld:DataServices/I
declare namespace tns="ld:Datajervices/RTL3erwvices/CreditCard”;

clare function tns:getCreditCard() as elementins0:CEEDIT_CARD)* |
for FCREDIT CARD in nsl:CREDIT CARD()

return <ns0:CREDIT CAED-

<CreditCardID={fn: data(§CREDIT CARM) }</CreditCardID>

<CustomerID>{fn:data(§CREDIT CARD/(/ADDE_ID omerID>

<CustomerHame’-{fn:data(sCREDIT CAR) /ALIAS 1< fCustomer
<CreditCardType>{fn:data|sCREDIT C4/CC_BRAND litCardType:
<CreditCardBrand-{fn:data|$CREDIT (/CC_CUSTOMER NAME feditCardBri
<CreditCardiumber>{fn:data(fCREDIT| /CC ID CreditCardt
<LastDigits>{fn:data(§CREDIT CARD/]/CC NUMERR IDigits>

<ExpirationDate>{fn:data($CRENIT C4/CC_TYPE irationDate

<Status- [fn:data($CREDIT CARD/SETE /CUSTOMER_ID

<flias?> {fn:data|$CREDIT CARD/ALIL/EXP DATE

<hddressID={fn:data(§CREDIT CARD/AL /TS DEFAULT >
<fns0: CREDIT_CARD- ALAST DIGITS
AETATUS

clare function tns:getfreditCardByCustID (foustoner id as xs:strinc_lz‘

Kl | [

Design View | ®Query Editor View | Source View |Test View [Query Plan Yiew

Error Identification

Syntax errors that occur in source either as a result of editing or as a result of changes made in the
XQuery Editor are flagged on Source View scroll bar (Figure 8-6). Clicking on the error mark takes the
cursor to that line of code.

The actual code in question is underlined in red. Mouse-over the text to see the complete error

For additional information on editing the WebLogic Workshop properties configuration file see:
http://e-docs.bea.com/workshop/docs70/help/reference/configfiles/conWorksh
op_propertiesConfigurationFile.html

Data Services Developer's Guide

http://e-docs.bea.com/workshop/docs70/help/reference/configfiles/conWorkshop_propertiesConfigurationFile.html
http://e-docs.bea.com/workshop/docs70/help/reference/configfiles/conWorkshop_propertiesConfigurationFile.html

Using Source View

Figure 8-6 Syntax Errors Are Flagged and Mouse-over Text Provides Details

ElecProduct.ds* - {DataServicesHRTLServices)

[l

ERROR: |d:DataServices/RTLServices ElecProduct.ds, line 11, column 1: {errkxPO003: Invalid -
expression; expecting EQF, found 'declare
gg&&%;g namspace nzS="http://temp.openuri.ory/Sanpledpp /Product.xsd™;

declare namespace nsd="http:/ mn. operuri.org/”;

declare namespace ns3="ld:Datalervices/ElectronicsWs/getProductlistResponse™;
import schema namespace nsZ="urn:retailerType” at "ld:DataServices/RTL3ervices/schemas
declare namespace tns="ld:Datalervices/RTLServices/ElecProduct"”;

declare function tns:getElecProducts() as element(nszZ:ELEC_PRODUCT)* |
for ggetProductlistResponse in ns3:getProductlist(<nsd:getProductlists< /nsd:getPrc

1/nsh: Products/nss: PRODUCT

return <nszZ:ELEC_PRODUCT-
<ProductID>{fn:data(sgetProductlistResponse /nas: FRODUCT ID) < /ProductID:
<CategqoryID-{fn:data(§getProductlistResponse /ma5: CATEGORY_ID) }</CategorylDs
<ProductName>{fn: data(fgetProductlistResponse /ns5: PRODUCT NAME) }</ProductNames
<ProductDescriptions{fn:data(fgetProductlistResponse/ns5: PRODUCT DESC) }</ProductDe
<ManufacturerName>{fn:data(fgetProductlistResponse /ns5: MANUFACTURER) 1< /Marfacture
<LiztPrice>{fn:data(sgetProductlistResponse/ns5: LIST PRICE) }</ListPrices
{fn-bea:rename (§getProductlistResponse /ms5: AVERAGE SERVICE_COST, <AwverageServiceCc

</nsz:ELEC_PRODUCT:
b

A

Kl [

If you would like Source View to provide code completion and error highlighting for additional classes,
you can edit the workshop.properties file to add class files or JAR files to the paths.classPath

property, then restart WebLogic Workshop.

Data Services Developer's Guide

8-1

Working with XQuery Source

8-8 Data Services Developer's Guide

CHAPTERa

Handling Updates Through Data
Services

BEA Aqualogic Data Services Platform handles updates to relational data sources automatically.
Non-relational data sources, including Web services, can be updated as well.

In the case of non-relational sources, update logic is always provided through an update override class
that is associated with your logical or physical data service. In addition, there are times when you may
want (or need) to provide custom update logic for relational data sources.

This chapter explains how to create an update override class (the class comprising update behavior)
for your data service. It includes the following topics:

e Updating Source Data

e What is an Update Override?

o When Update Override Classes Are Needed

e Common Update Override Programming Patterns

e Invoking JPDs from AquaLogic Data Services Platform

In reading this chapter it is important to keep your overall goal in mind: providing application
developers with the capability to access and update enterprise information through data services.

From the application developer’s perspective, a Service Data Objects (SDO) mediator API is the

vehicle for flowing information through data services. (Similarly, a AquaLogic Data Services Platform
Control can be used for the same purpose.) For more information on SDO as it applies to data services
see "Data Programming Model and Update Framework" in the Client Application Developer’s Guide.

Data Services Developer's Guide 9-1

../appdev/sdo.html

Handling Updates Through Data Services

Updating Source Data

An update override class can programmatically access several update framework artifacts, including:
e The update plan.
e The decomposition map.

o The tree of modified data objects.

The content available at any time depends on the data service context, as follows:

o Top-level logical data service object. The update override class has access to the entire tree of
changed data objects.

o Any lower-level or physical data service. Only the objects in the change tree bound to the data
service are available, along with the contents of the immediate container object — the
performChange() method cannot access objects at any layer above it.

Figure 9-1 illustrates the context visibility within an update override.

Figure 9-1 Context Visibility in Update Override

Q customer

O customerlD

- customerName
) oOrders
—O OrderIiD
<) Items

—— ItemID
46 Parts

Update Overrides and Physical Data Services

Considerations for implementing update override classes for physical level data services include the
following:

e For updated data objects bound to physical data services, further decomposition does not occur.
Therefore, requesting a decomposition map or update plan in the override class of an object
bound to such a service returns null.

9-2 Data Services Developer's Guide

Updating Source Data

o If the data service is bound to a relational data source, returning True causes the Mediator to
apply the changes currently indicated by the data object to the database. It does so using the
optimistic locking strategy specified for the data service. (Note that if the data service is not
bound to a relational data source, returning True will cause an exception.)

e For physical data services, the update override can calculate a primary key value or perform
other validations or calculations on the submitted data object. If an object bound to a physical
data service is being updated in the context of an update to a higher-level data service object
(that is, as a product of decomposition), changes in the physical update override (such as the
primary key calculation) will be available when the higher-level update plan is applied.
Therefore, if a primary key is calculated in the physical update override as part of a data object
insert, the key will be available in the logical update plan, so that it can be assigned as a
foreign key for the containing object.

o A modified SDO that is passed to the physical level update override can see only those data
object properties projected in the higher-level data service (Figure 9-2). To access the
unprojected values as well, the update override must re-instantiate the data object.

Figure 9-2 Projected Data Objects

Changed object data tree
With new values only:

customer Not projected

@ customerlD = 123

-4 FirstName = Edna
' LastName = Smith-Owens

Composite:

customer

customerlID = 123
Instantiated to access
existing values:

— FirstName = Edna
' LastName = Smith-Owens

customer

customerlD = 123

— FirstName = Edna

£ LastName = Smith

Additional considerations concerning update overrides for relational data services include:

Data Services Developer's Guide 9-3

Handling Updates Through Data Services

o If performChange() returns True, the Mediator applies the changes indicated in the data
object to the source database using the optimistic locking strategy specified for the data
service.

e If an object is inserted with unset property values:
— If default values for the property are indicated by the data service schema, they are used.

— If default values are not configured, NULL is used.

o If a primary key was not projected or specified, the automated update raises an error and
cancels the update request.

For physical non-relational data services, your performChange() method must:

e Provide an implementation for propagating the data change because the Mediator does not
provide automatic updates for non-relational sources. Using the change summary information in
the data object, the method can identify the changes to make and submit them to the data
source using any interface or mechanism supported by the data source.

e If no update override exists for a non-relational physical data service object for which an update
call is made, an error occurs indicating that the change cannot be persisted.

What is an Update Override?

9-4

An update override provides you with a mechanism for customizing or completely replacing the
default update process.

With an update override associated with your data service, you can:
o Invoke data service functions or procedures that update back-end data.

o Execute externally defined JPDs (Java Process Definition files) to perform workflow operations
from a data service. For example, you can initiate a workflow that ties together numerous data
services (and other resources) to accomplish distributed transactional semantics across data
services that comprise non-XA-compliant data sources (such as Web services). For information
on using JPDs in this context see “Using Workflow with AquaLogic Data Service
Platform-Enabled Applications.”

e Validate changes before submitting them, checking or modifying the values in some way.
o Execute SQL statements directly within the update plan.

o Log changes to an external file.

Data Services Developer's Guide

What is an Update Override?

e Perform virtually any other data service operational customization your application developer
requires.

For a more conceptual discussion of update overrides see the topic "Updating Data" in the Using
Service Data Objects (SDO) chapter of the AquaLogic Data Services Platform Concepts Guide.

An Update Override is a Java Class

In programming terms, an update override is a compiled Java source code file that implements the
UpdateOverride interface (<UpdateOverride>), one of the AquaLogic Data Services Platform APIs.
This API is located in the com.bea.ld.dsmediator.update package. The UpdateOverride interface has
a single, empty method named performChange().

It’s important to understand how your application developer will use this method. As shown in
Listing 9-1, the performChange() method takes a DataGraph object (passed to it by the
dsmediator.update package, or Mediator). It is on this Mediator object that your update override class
operates. The DataGraph contains the data object, the changes to the object, and other artifacts, such
as metadata (as discussed in "Data Programming Model and Update Framework" in Client
Application Developer’s Guide.)

Listing 9-1 UpdateOverride Interface

package com.bea.ld.dsmediator.update;

import commonj.sdo.DataGraph;

import commonj.sdo.Property;

public interface UpdateOverride

{
public boolean performChange (DataGraph sdo)

{

As you can see from the performChange() method signature in Listing 9-1, the method returns a
Boolean value. This value serves as something of a flag to the mediator, as follows:

Data Services Developer's Guide 9-5

../concepts/sdo.html
../concepts/sdo.html
../appdev/sdo.html

Handling Updates Through Data Services

e True returned signals the mediator to continue with the automated update process.

o False signals the mediator to discontinue the automated update process.

How an Update Override Affects Update Processing

The performChange() method will be executed whenever a submit is issued for objects bound to the
overridden data service.

If the object being passed in the submit() is an array of DataService objects, the array is decomposed
into a list of singleton DataService objects. Some of these objects may have been added, deleted, or
modified; therefore, the update override might be executed more than once (that is, once per changed
object.)

Application developers need to verify that the root data object for the datagraph being passed at
runtime is an instance of the singleton data object bound to the data service (configured with the
update override).

When Update Override Classes Are Needed

You must create custom update classes in order for applications executing data service functions to
update a non-relational data source. Web services, XML files, flat files, and AquaLogic Data Services
Platform procedures all would require custom update classes if, in fact, updates are required.

Similar you would need to create custom update classes in the following types of situations:

e When initiating a workflow (business process or JPD) from a AquaLogic Data Services Platform
application. (For detailed information see “Invoking a JPD from an Update Override” on
page 10-7.)

e When computing your own primary key value as part of the process of adding a data object as a
new record to an RDBMS. (For detailed information see “Creating Update Overrides for
Relational Data Sources.”)

e In order to handle circular dependencies that arise when modifying or adding objects with
mutual dependencies.

For example, if the client application needs to add both a department and a manager; however,
manager is also a required field of department. How can you set the department’s manager field
before the manager exists? As follows:

a. Add department with manager set to a temporary value

b. Add the employee manager

9-6 Data Services Developer's Guide

When Update Override Classes Are Needed

c. Reset the department manager to the new employee.

These types of customized operations need to be done through an update override class.

Registering an Update Override Class

Once you have written and compiled the Java code that comprises the update override class, you must
register the class with your data service. Update overrides can be registered with physical or logical

data services. Each data service has an Override Class property that can be associated with a specific
Java class file that comprises the implementation of the UpdateOverride for that data service.

The actual association can be done in WebLogic Workshop through Design View or Source View. Here
are details on the two approaches:

e Enter the class name in the Update Override property WebLogic Workshop (see “Setting the
Override Class” on page 4-28). Source similar to that shown in Listing 9-2 will be automatically
inserted into source.

o Alternatively, in Source View add the name of the update override class (classname only,
without the . c1ass extension) as an attribute of an empty javaUpdateExit element tag (in
the pragma statement of the data service). For example:

<javaUpdateExit className="SpecialOrderUpdate" />

At runtime, the data service executes the UpdateOverride class identified in the data service through
a property setting. See the topic "The Decomposition Process" in the Using Service Data Objects
chapter of the AquaLogic Data Services Platform Concepts Guide.

Developing an UpdateOverride Class

Here are the general steps involved in creating an update override class:

1. Create a new Java class file in your AquaLogic Data Services Platform project. For basic projects,
you can simply add the class to the same directory as your data services. For larger projects, you
may want to keep update classes in their own folder. Alternatively, you can add the Java class file
to your classpath; this allows you to put the class anywhere in your application folder.

a. Import the appropriate AquaLogic Data Services Platform API and SDO DataGraph packages
into the class in which you are implementing the UpdateOverride interface:

import com.bea.ld.dsmediator.update.UpdateOverride;
import commonj.sdo.DataGraph;

b. Your Java class declaration must implement the UpdateOverride interface, as in:

Data Services Developer's Guide 9-7

../concepts/sdo.html

Handling Updates Through Data Services

public class SpecialOrders implements UpdateOverride

c¢. Add a performChange() method to the class. This public method takes a DataGraph object
(containing the modified data object) and returns a Boolean value. For example:

public boolean performChange (DataGraph graph)

d. Inthe body of the performChange() method, implement your processing logic. Your
processing logic can:

— Access the changed object.

— Instantiate new data objects.

— Modify and submit objects.

— Access the Mediator’s update plan and decomposition map.
— Invoke a data service procedure.

— Invoke a JPD.
2. Compile the Java source code to create your class file.

3. Associate the class file with a specific data service by setting the Update Override property on the
data service (see “Registering an Update Override Class” on page 9-7). Listing 9-2 shows a sample
update override implementation.

Listing 9-2 Update Override Sample

package RTLServices;

import com.bea.ld.dsmediator.update.UpdateOverride;
import commonj.sdo.DataGraph;

import java.math.BigDecimal;

import java.math.BigInteger;

import retailer.ORDERDETAILDocument;

import retailerType.LINEITEMTYPE;

import retailerType.ORDERDETAILTYPE;

public class OrderDetailUpdate implements UpdateOverride
{
public boolean performChange (DataGraph graph) {
ORDERDETAILDocument orderDocument =
(ORDERDETAILDocument) graph.getRootObject () ;
ORDERDETAILTYPE order =
orderDocument .getORDERDETAIL () .getORDERDETAILArray (0) ;
BigDecimal total = new BigDecimal (0);

9-8 Data Services Developer's Guide

When Update Override Classes Are Needed

LINEITEMTYPE[] items = order.getLINEITEMArray();
for (int y=0; y < items.length; y++) {
BigDecimal quantity =
new BigDecimal (Integer.toString(items[y].getQuantity()));
total = total.add(quantity.multiply(items[y].getPrice()));
}
order.setSubTotal (total) ;
order.setSalesTax (
total.multiply (new BigDecimal (".06")) .setScale(2,BigDecimal .ROUND UP)) ;
order.setHandlingCharge (new BigDecimal (15)) ;
order.setTotalOrderAmount (
order.getSubTotal () .add (
order.getSalesTax () .add (order.getHandlingCharge())));
System.out.println (">>> OrderDetail.ds Exit completed");
return true;

In the sample class shown in Listing 9-2, an OrderDetailUpdate class implements the UpdateOverride
class, and, as required by the interface, defines a performChange() method. The listing demonstrates
a common coding pattern for update overrides:

e The submitted data graph (as changed by the client application) is passed to the
performChange() method.

o The data graph’s root data object is obtained and then cast to an ORDERDETAILDocument
using the variable name orderDocument:

ORDERDETAILDocument orderDocument =
(ORDERDETAILDocument) graph.getRootObject();

e Objects in the changed object list are accessed through the appropriate get call and index
value. For example, to obtain the first such object:

ORDERDETAILTYPE order =
orderDocument .getORDERDETAIL () .getORDERDETAILArray (0)

e A processing loop iterates through the array of line items and calculates sub-totals and sales tax
for each order item, adding the amounts to the order object.

o Finally, the method returns True and the Mediator continues with the normal course of update
processing (using the modified update plan).

See also “Common Update Override Programming Patterns” on page 9-17.

Data Services Developer's Guide 9-9

Handling Updates Through Data Services

9-10

Creating Update Overrides for Relational Data Sources

In some cases, such as those listed Table 9-3, update override logic is needed for relational update

processing.

Table 9-3 Issues Which Can Require Update Overrides for Relational Data Sources

Issue

Description, example, or recommendation

Ambiguous data lineage

The data service decomposition function cannot contain “if-then-else”
constructs that provide alternate composition from lower-level data
services.

Transformation issues

The lineage involves a transformation other than data() or rename. For
example, the following would not be supported by automatic updates:

<ACCOUNT> { sum(data (SC/ACCOUNT)) }; </ACCOUNT>

Multiple lineage for a
composed property

An example of a property with more than one lineage, or data source,
for a property is:

<customerName>{ cat (data ($SC/FNAME), " ",
data ($WS/LAST NAME)) }; </customerName>

Nested matching logic issue

Typically, nested containment is expressed in XQuery using a where
clause. If the query does not use a where clause to implement nesting,
AquaLogic Data Services Platform cannot determine the foreign
key-primary key association. (Nested matching logic should be
expressed in a where predicate clause.)

For example, if an element of a complex type has values from more than
one source (that is, a data object has fields from more than one source),
the where predicate does not indicate a 1-N cardinality between the two
sources because the where predicate does not involve a primary key.

A M:N join like Orders with Payments is not usually a common join, and
in this case neither Orders nor Payments would be decomposed.

Ambiguous tuple identity

Distinct-values or group-by would lead to an arbitrary tuple remaining
from a set of duplicate tuples.

Redundant instance values

If the same source value instance gets projected in the SDO (or the
same physical data source value), and if it is updated in the SDO, it will
not be automatically decomposed.

Data Services Developer's Guide

When Update Override Classes Are Needed

Tahle 9-3 Issues Which Can Require Update Overrides for Relational Data Sources

Issue Description, example, or recommendation
Repeating complex type In some complex types (such as Part and Item values), the Part values
values issue may repeat and are therefore not decomposed. For example:

¢ You can determine whether a primary key is projected or derivable
by knowing the cardinality between two tuples that provide the
data object values. If the predicate between the tuples identifies a
primary key on one side (tuplel) but not on the other side (tuple2),
values from tuplel may repeat. Tuplel values would not be
decomposed, but tuple2 values would be decomposed. If the
predicate identifies both tuples primary keys as being equal, then
values for both tuples would be decomposed.

e Iftwo Lists of Orders occur in a data object, the predicates used to
produce them may or may not make them disjointed. No attempt is
made to detect this case. Updates from each instance will be
decomposed as separate updates. Depending on the chosen
optimistic locking strategy for the data service, the second update
may or may not succeed and may overwrite changes made in the
first update.

Typematch issue If the query plan of the decomposition function has a typematch node,
the decomposition will stop at that point for the SDO.

Primary-Foreign Key Relationships Mapped Using a KeyPair

Most RDBMSs can automatically generate primary keys, which means that if you are adding new data
objects to a data service that is backed by a relational database, you may want or need to handle a
primary key as a return value in your code. For example, if a submitted data graph of objects includes
anew data object, such as a new Customer, AquaLogic Data Services Platform generates the necessary
primary key.

For data inserts of autonumber primary keys, the new primary key value is generated and returned to
the client. Only primary keys of top-level data objects (top-level of a multi-level data service) are
returned; nested data objects that have computed primary keys are not returned.

By returning the top-level primary key of an inserted tuple, AquaLogic Data Services Platform allows
you to re-fetch tuples based on their new primary keys, if necessary.

The Mediator saves logical primary-foreign keys as a KeyPair (see the KkeyPair class in the Mediator
API). A KeyPair object is a property map that is used to populate foreign-key fields during the process
of creating a new data object:

Data Services Developer's Guide 9-11

Handling Updates Through Data Services

9-12

The value of the property will be propagated from the parent to the child, if the property is an

autonumber primary key in the container, which is a new record in the data source after the
autonumber has been generated.

The KeyPair object is used to identify corresponding data elements at adjacent levels of a
decomposition map; it ensures that a generated primary key value for a parent (container) object will
be mapped to the foreign key field of the child (contained) element.

As an example, Figure 9-4 shows property mapping for the decomposition of a Customers data service.

Figure 9-4 Logical Data Services Use KeyPairs for Property Mapping (Primary-Foreign Key Mapping)

Property Mapping
customer Data Service

_ - —QO customerlD

Customers Data Service O customerName

@ customerlD ®
Q customerName ®
orderiD®

Order Data Service
POltem @

- -e customerlD

orderlD

POltem

AquaLogic Data Services Platform manages the primary-foreign key relationships between data

services; how the relationship is managed depends on the layer (of a multi-layered data service), as
follows:

o Top-level data service. Inserts generate a new primary key, which is returned to the client.
Adding a data object at the top-level of a data service data objects have been added which have
primary keys that are automatically generated by the RDBMS, the values of the primary keys for

the inserted fuples will be returned as an array of Java properties (XPath name/value pairs)
after a successful update submit:

Properties[] keys = ds.submit (doc);

A tuble is basically a record; in the context of data services, a tuble may comprise data that
spans several layers of data services.

e Nested data objects. Generates and inserts a new primary key, but does not return to the
client.

Data Services Developer's Guide

When Update Override Classes Are Needed

AquaLogic Data Services Platform propagates the effects of changes to a primary or foreign key.

For example, given an array of Customer objects with a primary key field CustID into which two
customers are inserted, the submit would return an array of two properties with the name being
CustID, relative to the Customer type, and the value being the new primary key value for each inserted
Customer.

Managing Key Dependencies

AquaLogic Data Services Platform manages primary key dependencies during the update process. It
identifies primary keys and can infer foreign keys in predicate statements. For example, in a query
that joins data by comparing values, as in:

where customer/id = order/id
The Mediator performs various services given the inferred key/foreign key relationship when updating
the data source.

If a predicate dependency exists between two SDOToUpdate instances (data objects in the update
plan) and the container SDOToUpdate instance is being inserted or modified and the contained
SDOToUpdate instance is being inserted or modified, then a key pair list is identified that indicates
which values from the container SDO should be moved to the contained SDO after the container SDO
has been submitted for update.

This Key Pair List is based on the set of fields in the container SDO and the contained SDO that were
required to be equal when the current SDO was constructed, and the key pair list will identify only
those primary key fields from the predicate fields.

The KeyPair maps a container primary key to container field only. If the KeyPair does not container’s
complete primary key is not identified by the map then no properties are specified to be mapped.

A Key Pair List contains one or more items, identifying the node names in the container and contained
objects that are mapped.

Foreign Keys

When computable by SDO submit decomposition, foreign key values are set to match the parent key
values.

Foreign keys are computed when an update plan is produced.

Transaction Management

Each submit() to the Mediator operates as a transaction. Depending upon whether the submit()
succeeds or fails, you should do one of two things:

Data Services Developer's Guide 9-13

Handling Updates Through Data Services

9-14

o Submit() succeeds. You can re-query the SDO to be sure it matches the current data because
side effects of the update may have changed the result of the query. (Re-querying the data
service to obtain a new data object also clears the change summary.)

o Submit() fails. You can reinvoke submit() on the data object to execute the same updates
(since the original data objects and change summary still exist).

Nested Transactions

All submits perform immediate updates to data sources. If a data object submit occurs within the
context of a broader transaction, commits or rollbacks of the containing transaction have no effect on
the submitted data object or its change summary, but they will affect any data source updates that
participated in the transaction.

Invoking Data Service Procedures from an UpdateOverride

Listing 9-3 shows an example of an update override class that invokes a data service procedure. Since
UpdateOverrides are invoked locally — that is, within the AquaLogic Data Services Platform server
— the sample uses the typed Mediator API. In this case a data service based on the setCustomerOrder
Web service setCustomerOrder() is created. The service contains an update function which is
referenced from the data service by a side-effecting function of the same name. Finally the class that
implements the update override is shown.

Here are the details:

First, a Web service update is defined. For the update logic see in the RTLApp sample the ElecDBTest
Web service (ElecDBTest . jws). The method is:
setCustomerOrder (String doc);

The a data service procedure (side-effecting function) is declared in the following data service:

ld:DataServices/ElectronicsWS/getCustomerOrderByOrderID
The declaration is:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="hasSideEffects" nativeName="setCustomerOrder"
nativelLevellContainer="ElecDBTest"
nativeLevel2Container="ElecDBTestSoap"
style="document">
<nonCacheable/>

</f:function>::)

Then the update logic can be written. It is shown, with comments, in Listing 9-3.

Data Services Developer's Guide

When Update Override Classes Are Needed

Listing 9-3 Invoking a Data Service Procedure from an UpdateOverride

public boolean performChange (DataGraph datagraph) {
String order = "ld:DataServices/ElectronicsWS/getCustomerOrderByOrderID";
System.out.println ("INSIDE EXIT >>>> ");
ChangeSummary cs = datagraph.getChangeSummary() ;
if (cs.getChangedDataObjects () .isEmpty()) {
System.out.println ("WEB SERVICE EXIT COMPLETE!");
return false;
}
else {
GetCustomerOrderByOrderIDResponseDocument doc =
(GetCustomerOrderByOrderIDResponseDocument) datagraph.getRootObject () ;
try {
Context cxt = getInitialContext();

// get the handle of the data service that contains the data service procedure
update function

DataService creditDS =
DataServiceFactory.newDataService (cxt,
"RTLApp",
order) ;
// create a xmlbean object that will be passed into the side effect function

SetCustomerOrderDocument docl =
SetCustomerOrderDocument.Factory.newInstance () ;

// populate the xmlbean object with values from SDO

docl.addNewSetCustomerOrder () .setDoc (doc.getDataGraph () .toString()) ;
creditDS.invokeProcedure ("setCustomerOrder",
new Object[]{ docl });
} catch (Exception e) {
e.printStackTrace() ;
throw new RuntimeException ("UPDATE ERROR: SQL ERROR: " +
e.getMessage ());Fine
System.out.println ("WEB SERVICE EXIT COMPLETE!");
return false;

The example in Listing 9-3 involves a Web service running locally on the WebLogic Server instance; it
does not include setup code to obtain context and location. (If the Web service is not local to the
WebLogic Server instance, your code must obtain an InitialContext and providing appropriate location

Data Services Developer's Guide 9-15

Handling Updates Through Data Services

and security properties. See "Obtaining a WebLogic JNDI Context" in the Accessing Data Services
from Java Clients chapter of the Client Application Developer’s Guide.

Listing 9-4 shows an update override that adjusts the update plan in order to enforce referential
integrity by removing product information from the middle of a list and adding it to the end.

Listing 9-4 Update Override Example Showing Enforcement of Referential Integrity

// delete order, item, product, due to RI between ITEM and Product
// product has to be deleted after items
public boolean performChange (DataGraph graph)
{
DataServiceMediatorContext context =
DataServiceMediatorContext.currentContext () ;
UpdatePlan up =context.getCurrentUpdatePlan(graph, false);
Collection dsCollection = up.getDataServicelList();
DataServiceToUpdate ds2u = null;
for (Iterator it=dsCollection.iterator();it.hasNext();)
{
ds2u = (DataServiceToUpdate)it.next();
if
(ds2u.getDataServiceName () .compareTo ("1d:DataServices/PRODUCT.ds") ==) {
// remove product from the mid of list and add it back at the end
up.removeContainedDataService (ds2u.getDataGraph());
up.addDataService (ds2u.getDataGraph (), ds2u);
bi
}
context.executeUpdatePlan(up);

return false;

Testing Submit Results

Data service updates should always be tested to ensure that changes occur as expected. You can test
submits using Test View. For information on Test View see “Using Test View” on page 7-3.

9-16 Data Services Developer's Guide

../appdev/ejbclt.html
../appdev/ejbclt.html

Common Update Override Programming Patterns

While Test View gives you a quick way to test simple update cases in the data services you create, for
more substantial testing and troubleshooting you can use an update override class to inspect the
decomposition mapping and update plan for the update.

Common Update Override Programming Patterns

This section provides code samples and commentary that illustrate common update override
programming patterns. Topics include:

e Overriding the Decomposition and Update Process

e Augmenting Data Object Content

e (Customizing an Update Plan

e Executing an Update Plan

e Retrieving the Container of the Current Data Object

e Invoking Other Data Service Functions and Procedures

e Capturing Runtime Data About Overrides in the Server Log

e Default Optimistic Locking Policy: What it Means, How to Change

Your update override class must include an implementation of the performChange() method; it is
inside this method that you provide all custom code required for the programming task at hand. The
performChange() method returns a Boolean value that either continues or aborts processing by the
Mediator, as discussed in the topic "How It Works: The Decomposition Process" in Data Programming
Model and Update Framework chapter in the Client Application Developer’s Guide.

Overriding the Decomposition and Update Process

For a logical data service to be properly updateable — in fact, for it to be a well-designed data service
in general — the lineage for the data coming from the data service should be the same independent
of which data service function is providing the data. For example, a CustomerProfile data service
might have the following functions:

® getAllCustomers()
® getCustomerByID()

® getCustomersByZipcode ()

Data Services Developer's Guide 9-17

../appdev/sdo.html
../appdev/sdo.html

Handling Updates Through Data Services

9-18

All three functions should be getting customer data from the same underlying data sources. It
therefore follows that the correct way to propagate changes back to the underlying sources should be
independent of which of these functions was used to obtain the customers being updated at any given
point in time.

A recommended practice is to put all of the data integration logic for such a data service into a single
function whenever possible (e.g., in getAllCustomers()) and then to use that function when defining
the remaining data service functions. An expression such as:

getAllCustomers() [cid = $custId])

accomplishes this goal and saves you from having to replicate all of the data mappings, join predicates,
and so on in each function in your data service.

When data service data is updated, AquaLogic Data Services Platform analyzes data lineage in order
to determine how to propagate the changes to all affected data sources. To automatically perform such
lineage analysis, a designated data service function is introspected ("reverse engineered"). If no such
function is designated, the top-most read function in the data service is used.

The data service designer should ensure that the designated (or default) decomposition function for
the data service is not dependent on other read functions in the same data service and is, in fact, an
accurate representative function for lineage determination. In the example above, getAllCustomers()
would be the proper function to choose, so it should either be the first read function in the data service
or should be designated explicitly as the decomposition function through the Property Editor.

It is the data service designer's responsibility to ensure that the chosen decomposition function is
valid for the purpose of lineage analysis. Violation of this requirement can lead to unexpected and
undesirable runtime errors such as optimistic locking failures (or worse).

Note: In the event that the designated decomposition function for a data service calls other read
functions in the same data service, an error condition will occur. Specifically, the update
mediator will detect the error at runtime and throw an exception that informs the user about
the errant internal data service read function dependency.

Using the performChange() Method

To customize the entire decomposition and update process, the performChange() method can
implement the following types of routines:

e Instantiating lower-level data objects and submit them for update.
o (Calling a Web service and passing the appropriate data.

e Using JDBC to execute SQL statements.

Data Services Developer's Guide

Common Update Override Programming Patterns

If your performChange() method takes over decomposition, it should be set to return False so that
the Mediator does not proceed with automated decomposition.

Augmenting Data Object Content

The performChange() method can include code to inspect changed data object values and raise a
DataServiceException to signal errors, rolling back the transaction in such cases.

Return True to have the Mediator proceed with update propagation using the objects as changed.

Accessing the Data Service Mediator Context

To access the change plan and decomposition map for an update, you first must get the data service’s
Mediator context. The context enables you to view the decomposition map, produce an update plan,
execute the update plan, and access the container data service instance for the data service object
currently being processed.

The following code snippet shows how to get the context:

DataServiceMediatorContext context =

DataServiceMediatorContext () .getInstance () ;

Accessing the Decomposition Map
Once you have the context, you can access the decomposition map as follows:

DecompositionMapDocument.DecompositionMap dm =

context.getCurrentDecompositionMap () ;

Once you have a decomposition map, you can use its toString() method to obtain the rendering of the
XML map as a string value, as shown in Listing 9-5. (Note that although you can access the default
decomposition map, you should not modify it.)

In addition to accessing the decomposition map, you can access the update plan in the override class.
You can modify values in the tree, remove nodes, or rearrange them (to change the order in which they
are applied). However, if you modify the update plan, you should execute the plan within the override
if you want to keep the changes. As you modify the values in the tree, remove nodes or rearrange them,
the update plan will track your changes automatically in the change list.

Data Services Developer's Guide 9-19

Handling Updates Through Data Services

Listing 9-5 Decomposition Map Example (XML Fragment)

<xml-fragment xmlns:upd="update.dsmediator.ld.bea.com">
<Binding>
<DSName>1d:DataServices/CUSTOMERS.ds</DSName>
<VarName>f1603</VarName>
</Binding>
<AttributeLineage>
<ViewProperty>CUSTOMERID</ViewProperty>
<SourceProperty>CUSTOMERID</SourceProperty>
<VarName>f1603</VarName>
</Attributelineage>
<AttributeLineage>
<ViewProperty>CUSTOMERNAME</ViewProperty>
<SourceProperty>CUSTOMERNAME</SourceProperty>
<VarName>f1603</VarName>
</Attributelineage>
<upd:DecompositionMap>
<Binding>
<DSName>ld:DataServices/getCustomerCreditRatingResponse.ds</DSName>
<VarName>getCustomerCreditRating</VarName>
</Binding>
<AttributeLineage>
<ViewProperty>CREDITSCORE</ViewProperty>
<SourceProperty>
getCustomerCreditRatingResult/TotalScore
</SourceProperty>
<VarName>getCustomerCreditRating</VarName>
</Attributelineage>

</upd:DecompositionMap>
</upd:DecompositionMap>
<ViewName>ld:DataServices/Customer.ds</ViewName>

</xml-fragment>

9-20 Data Services Developer's Guide

Common Update Override Programming Patterns

Customizing an Update Plan

After possibly validating or modifying the values in the submitted data object, the function retrieves
the update plan by passing in the current data object to the following function:

DataServiceMediatorContext.getCurrentUpdatePlan ()
The update plan can be augmented in several ways, including:
e Setting values on decomposed data objects.
e Adding, removing, or rearranging data objects in the update tree.
o Passing the modified update plan executeUpdatePlan() method, as in:
DataServiceMediatorContext.executeUpdatePlan ()

After executing the update plan, the performChange() method should return False so that the
Mediator does not attempt to apply the update plan.

The update plan lets you modify the values to be updated to the source. It also lets you modify the
update order.

You can programmatically view an update plan’s contents using your own method, similar to the
navigateUpdatePlan(). As shown in Listing 9-6, the navigateUpdatePlan() method takes a Collection
object and uses an iterator to recursively walk the plan.

Listing 9-6 Walking an Update Plan

public boolean performChange (DataGraph datagraph) {

UpdatePlan up = DataServiceMediatorContext.currentContext ().
getCurrentUpdatePlan(datagraph);
navigateUpdatePlan(up.getDataServicelList ());

return true;

private void navigateUpdatePlan(Collection dsCollection) {
DataServiceToUpdate ds2u = null;
for (Iterator it=dsCollection.iterator();it.hasNext ();) {

ds2u = (DataServiceToUpdate)it.next();

Data Services Developer's Guide 9-21

Handling Updates Through Data Services

// print the content of the SDO
System.out.println (ds2u.getDataGraph());

// walk through contained SDO objects
navigateUpdatePlan (ds2u.getContainedDSToUpdatelList ());

}

A sample update plan report would look like the following

UpdatePlan
SDOToUpdate
DSName: ... :PO_CUSTOMERS
DataGraph: ns3:PO _CUSTOMERS to be added
CUSOTMERID = 01

ORDERID = unset
PropertyMap = null

Now consider an example in which a line item is deleted along with the order that contains it. Given
the original data, Listing 9-7 illustrates an update plan in which item 1001 will be deleted from Order
100, and then the Order is deleted.

Listing 9-7 Example of Deleting a Line Item and Then Its Container

UpdatePlan
SDOToUpdate

DSName: ...:PO CUSTOMERS

DataGraph: ns3:PO _CUSTOMERS to be deleted
CUSTOMERID = 01
ORDERID = 100

PropertyMap = null

SDOToUpdate

DSName:...:PO_ITEMS

9-22 Data Services Developer's Guide

Common Update Override Programming Patterns

DataGraph: ns4:PO _ITEMS to be deleted
ORDERID = 100
ITEMNUMBER = 1001

PropertyMap = null

In this case, the execution of the update plan is as follows: before deleting the PO_CUSTOMERS, the
contained SDOToUpdates routines are visited and processed. So the PO_ITEMS is deleted first and
then PO_CUSTOMERS is deleted.

If the contents of the update plan are changed, the new plan can then be executed. The update exit
should then return False, signaling that no further automation should occur.

The plan can then be propagated to the data source.

Executing an Update Plan

After modifying an update plan, you can execute it. Executing the update plan causes the Mediator to
propagate changes to the indicated data sources.

Given a modified update plan named up, the following statement executes it:

context.executeUpdatePlan (up) ;

Retrieving the Container of the Current Data Object

For a data service being processed for an update plan, you can obtain its SDO container. The container
must exist in the original changed object tree, as decomposed. If no container exists, null is returned.
Consider the following example:

String containerDS = context.getContainerDataServiceName () ;

DataObject container = context.getContainerSDO () ;

In this example, if in the update override class for the Orders data service for which you ask to see the
container, the Customer data service object for the Order instance being processed would be
returned. If that Customer instance was in the update plan, then it would be returned. If it was not in
the update plan, then it would be decomposed from CustOrders and returned.

The update plan only shows what has been changed. In some cases, the container will not be in the
update plan. When the code asks for the container, it will be returned from the update plan, if present;
otherwise, it will be decomposed from the source SDO.

Data Services Developer's Guide 9-23

Handling Updates Through Data Services

9-24

Invoking Other Data Service Functions and Procedures

Other data services may be accessed and updated from an update override. The Mediator can be used
to access data objects, modify and submit them. Alternatively, the modified data objects can be added
to the update plan and updated when the update plan is executed. If the data object is added to the

update plan, it will be updated within the current context and its container will be accessible inside
its data service update override.

If the DataService Mediator API is used to perform the update, a new DataService context is
established for that submit, just as if it were being executed from the client. This submit() acts just
like a client submit — changes are not reflected in the data object. Instead, the object must be
re-fetched to see the changes made by the submit.

Capturing Runtime Data About Overrides in the Server Log

AquaLogic Data Services Platform uses the underlying WebLogic Server for logging. WebLogic logging
is based on the JDK 1.4 logging APIs (available in the java.util.logging package). You can open the log
(from an update override) by acquiring a DataServiceMediatorContext instance, and then calling the
getLogger() method on the context, as follows:

DataServiceMediatorContext context =

DataServiceMediatorContext () .getInstance();

Logger logger = context.getLogger ()
You can then write to the log by issuing the appropriate log level call. When WebLogic Server message
catalogs and the NonCatalogLogger generate messages, they convert the message severity to a
weblogic.logging. WLLevel object. A WLLevel object can specify any of the values listed in Table 9-5,
from lowest to highest impact:

Table 9-5 WebLogic Server Log Level Definitions

Level Description
DEBUG Debug information, including execution times.
INFO Normal events with informational value. This will allow you

to see SQL that is executed against the underlying databases.

WARNING Events that may cause errors.

ERROR Events that cause errors.

Data Services Developer's Guide

Common Update Override Programming Patterns

Tahle 9-5 WebLogic Server Log Level Definitions

Level Description

NOTICE Normal but significant events.

CRITICAL, ALERT, Significant events that require immediate intervention.
EMERGENCY

Note: Development_time logging is written to the following location:

<bea home>\user projects\domains\<domain name>

Given the specified logging level, the Mediator logs the information shown in Table 9-6.

Table 9-6 Aqualogic Data Services Platform Log Levels

Level Information provided for... Information captured

Notice or summary Each submit from a client o

Fully qualified data service name
Invocation time

Total execution time

Invocation by user/group

Information or Detail Each submit on a data For a fully qualified data service name:

service at any level .
L]

Invocation time
Number of times executed

Total execution time

For relational sources, per SQL statement type per
table:

SQL script
Total execution time

Number of times executed

Each update override .
invocation .

Name of data service being overridden
Number of times called
Total execution time

Listing 9-8 shows a sample log entry.

Data Services Developer's Guide 9-25

Handling Updates Through Data Services

9-26

Listing 3-8 Sample Log Entry

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo - begin
client sumbitted DS: ld:DataServices/Customer.ds>

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo -
ld:DataServices/Customer.ds number of execution: 1 total execution
time:171>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo -
ld:DataServices/CUSTOMERS.ds number of execution: 1 total execution time:0>
<Nov 4, 2004 11:50:10 AM PST> <Info> <LigquidData> <000000> <Demo - EXECUTING
SQL: update WEBLOGIC.CUSTOMERS set CUSTOMERNAME=? where CUSTOMERID=? AND
CUSTOMERNAME=? number of execution: 1 total execution time:0>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo -
ld:DataServices/PO_ITEMS.ds number of execution: 3 total execution
time:121>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LigquidData> <000000> <Demo - EXECUTING
SQL: update WEBLOGIC.PO ITEMS set ORDERID=? , QUANTITY=? where ITEMNUMBER=?
AND ORDERID=? AND QUANTITY=? AND KEY=? number of execution: 3 total
execution time:91>

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo - end
clientsumbitted ds: ld:DataServices/Customer.ds Overall execution time:
381>

Default Optimistic Locking Policy: What it Means, How to
Change

Locking mechanisms are used in numerous types of multi-user systems for concurrency control.
Concurrency control ensures that data is consistent across transactions and regardless of the number
of users acting on the system at the same time. Optimistic locking mechanisms are so-called because
they typically only lock data at the time it is being updated (written to), rather than having the default
state of the data be locked. (See also “Enable/Disable Optimistic Locking” on page 4-28.)

AquaLogic Data Services Platform employs an optimistic locking concurrency control policy, locking
data only when updates are being attempted.

When the WebLogic Server instance of AquaLogic Data Services Platform receives a submitted data
graph, it compares the values of the data used to instantiate the original data objects with the original

Data Services Developer's Guide

Invoking JPDs from Aqualogic Data Services Platform

values in the data graph to ensure that the data was not changed by another user process during the
time the data objects were being modified by a client application.

The Mediator compares fields from the original and the source; by default, Projected is used as the
point of comparison (see Table 9-7).

You can specify the fields to be compared at the time of the update for each table. Note that primary
key column must match, and BLOB and floating types might not be compared. Table 9-7 describes the
optimistic update policy options.

Tahle 9-7 Optimistic Locking Update Policy Options

Optimistic Locking Effect
Update Policy

Projected Projected is the default setting. It uses a 1-to-1 mapping of elements in the SDO data
graph to the data source to verify the “updateability” of the data source.

This is the most complete means of verifying that an update can be completed,
however if many elements are involved updates will take longer due to the greater
number of fields to be verified.

Update Only fields that have changed in your SDO data graph are used to verify the changed
status of the data source.

Selected Fields Selected fields are used to validate the changed status of the data source.

Note: If AquaLogic Data Services Platform cannot read data from a database table because another
application has a lock on the table, queries issued by AquaLogic Data Services Platform are
queued until the application releases the lock. You can prevent this by setting transaction
isolation (on your WebLogic Server’s JDBC connection pool) to read uncommitted. See the
topic "Setting the Transaction Isolation Level" in the "Configuring Aqualogic Data Service
Platform Applications" chapter of the Administration Guide.

Invoking JPDs from Aqualogic Data Services Platform

Java custom update classes can be used to create JPD workflows to handle updates to different data
services. You can then create server-side Java code that initiates synchronous or asynchronous JPDs
using the JpdService interface.

As with other types of AquaLogic Data Services Platform server-side custom functionality, the update
override interface facilitates the implementation.

Data Services Developer's Guide 9-217

../admin/server.html
../admin/server.html

Handling Updates Through Data Services

9-28

The JPD and the data service containing the Java update override can be running in the same
WebLogic Server domain or in different WebLogic Server domains.

Invoking a JPD from an Update Override

The JpdService is invoked with the name of the JPD, the start method of the JPD, the service URI, and
the server location and credentials for the JPD, as shown in this example:

JpdService jpd = JpdService.getInstance ("CustOrdervl",
"clientRequestwithReturn", env);

JPD provides a public interface (as a JAR file containing the compiled class file for the JPD public
contract or interface). Transparently to developers, the JpdService object uses the standard Java
reflection API to find the JPD class that implements the JPD public contract.

The server-side update overrides Java code and then passes the DataGraph as an argument to the
invoke method:
Object jpd.invoke(DataGraph sdoDataGraph);

The returned object is dependent on the JPD being invoked and may be null. Typically, if any top-level
SDO is being inserted and its primary key is autogenerated, then this should be returned from the JPD
(see Listing 9-9).

Any keys for the top-level DataObject in the serialized UpdatePlan are returned to the calling function
as a Properties object (comprising a byte array). Thus, the return value from the workflow must be a
serialized byte array, as in:

Properties [] jpd.invoke(byte[] serializedUpdatePlan);

The array returned is a Properties object array representing any keys for the top-level DataObject in
the UpdatePlan that was serialized and sent to the workflow.

Data Services Developer's Guide

Invoking JPDs from Aqualogic Data Services Platform

Invoking a JPD by Using the JpdService APl in an Update Override

Support for JPDs from AquaLogic Data Services Platform is provided through two server-side APIs
that can be invoked from within an UpdateOverride implementation (see Table 9-8).

Table 9-8 The JpdService API

Data Type Signature

JpdService JpdServicegetInstance (String jpdClass, String
jpdStartMethod, Environment context)

JpdService.getInstance (String jpdClass, String
jpdStartMethod, String serviceUri, Environment context);

Listing 9-9 shows how to invoke a JPD from an UpdateOverride. The code sample assumes that a JPD
exists comprising a series of data services configured as part of a workflow.

Listing 9-9 Sample Code Listing—Invoking a JPD from an UpdateOverride

public boolean performChange (DataGraph) {
ChangeSummary changeSum = dataGraph.getChangeSummary () ;
//Size of 0 means no changes so there’s nothing to do
if (changeSum.getChangedDataObjects () .size()==0) {
return true;
}
Environment env = new Environment () ;
env.setProviderUrl("t3://localhost:7001");
env.setSecurityPrincipal ("weblogic");
env.setSecurityCredentials("weblogic");
try {
JpdService jpd = JpdService.getInstance (
"CustOrdervli",
"clientRequestwithReturn",
env) ;
UpdatePlan updatePlan = DataServiceMediatorContext.
currentContext () .getCurrentUpdatePlan(dataGraph);
byte[] bytePlan = UpdatePlan.getSerializedBytes(updatePlan);

Properties (Properties) returnProps = jpd.invoke(bytePlan);

Data Services Developer's Guide 9-29

Handling Updates Through Data Services

9-30

}

catch(Exception e)

{
e.printStackTrace () ;
throw e;

}

return false;

Synchronous and Asynchronous Behavior

AquaLogic Data Services Platform supports JPD invocations both synchronously and asynchronously;
both styles of invocation are handled the same way in the update override code. Invoke the JPD and
get the response back as a byte array, as illustrated in Listing 9-9.

Error Handling and Use of Callbacks

You must write your own error-handling code with the JPD. Calling a non-existent JPD raises the
standard Java exception, ClassNotFoundException.

Using callbacks in your JPD is not supported. Business processes that include client callbacks will fail
at runtime since the callback is sent to the JPD Proxy, rather than the originating client that started
the JPD.

Data Services Developer's Guide

CHAPTERm

Best Practices and Advanced Topics

This section contains general guidelines and patterns for creating a BEA Aqualogic Data Services
Platform services layer. The following topics are covered:

e Using a Layered Data Integration and Transformation Approach
e Using Inverse Functions to Improve Query Performance
o Leveraging Data Service Reusability

e Modeling Relationships

Using a Layered Data Integration and Transformation
Approach

When planning a data service deployment, it is helpful to think of the data service layer in terms of an
assembly line. In an assembly line, a product is built incrementally as it passes through a series of
machines or assemblers that specialize in an aspect of the fabrication of the product.

Similarly, a well-designed data services layer transforms input (source data) into output (structured
information) incrementally, through a series of small transformations. Such a design eases
development and maintenance of the data services and increases the opportunity for reuse.

Note: Keep in mind that a multi-level data service implementation model described here is
flattened when the data services are compiled for deployment. That is, adding a conceptual
layers does not add overhead to the data integration work performed by the DSP deployment,
and therefore does not affect performance.

Data Services Developer’s Guide 10-1

Best Practices and Advanced Topics

10-2

By this design, distinct subsets of data services comprise sub-layers in the overall transformation
layer. As data passes from layer to layer data is transformed from a more generalized state to a more
application-specific state.

To further illustrate this design, consider a deployment with the following sublayers:

e Raw data layer. The first sublayer (that is, the first one to touch the raw data) is the physical

data services layer. This layer exists in any AquaLogic Data Services Platform deployment,
whether or not data is further transformed. The data services in this layer are generated when
you import metadata for a data source. A physical data service and its XML type should not be
modified other than to synchronize with the source data. See “Updating Data Source Metadata”
on page 3-69 for details on data synchronization.)

Data normalization. The second sublayer of data services should normalize the data while
retaining the data shape as imported. For example, it can change element names (that is, tag
names) to make them consistent with other sources and make minor modifications to data
values, for example, concatenating names or adjusting time values for a time zone or other
cast-like operation.

Data integration. Data services in the next sublayer can then use the normalized data to
represent integrated business entities in the data domain, such as an a unified view of a
customer. The data services can unify data sources, for example, or change the shape of the
data in any way desired. Another way to look at this operation is as the creation of a virtual
database from disparate data sources and other business logic.

This sublayer does most of what might be called the integration work of the overall data
services layer; it is where the integration logic and predicates and primary relationships are
specified. (In small projects, this layer may be combined with the second sublayer. That is, it
would contain data services that both normalize the data and define data shapes for the
integration layer.)

Data specialization. A final sublayer customizes information specifically for applications. This
layer, which can be thought of as the extended services layer, tailors information in a way that
makes sense to particular applications or types of applications, such as executive dashboards,
sales portals, or HR applications. For example, it might specify nesting in its data shape a way
that is useful for particular applications, such as having order items as a child of a customer
item or, on the other hand, customers as a child of orders (as shown in Figure 10-1).

For very large database sources, instead of creating a single master data service, it is best to decide
what a client application needs and build corresponding, minimal data services. The concept is to
build client-specific data services from a manageable number of views that query a reasonable number
of data sources, providing an abstraction from the lowest level and most common relationships while
keeping the overall view reasonably simple. AquaLogic Data Services Platform also provides a

Data Services Developer's Guide

Using Inverse Functions to Improve Query Performance

metadata API that allows client applications to discover relationships between data services at
runtime, allowing applications to navigate the data services without the need for a master data
service.

Figure 10-1 Layered Data Services Design Strategy

data shape
specialization

data
integration

R
o

data/element name
normalization

physical layer @

@@
10;0!

S
5
¢

The most significant benefit of this approach is that it increases the opportunity for reuse within the
overall data services layer. As shown in Figure 10-1, once you have defined a single form of a business
entity (such as a customer) in a data service dedicated to the task, you can have multiple
application-specific data services use the information without having to repeat data normalization
and integration tasks. An additional benefit is that it aids maintenance because there is a clear
separation of concerns between the data service layers.

Using Inverse Functions to Improve Query Performance

When dealing with disparate data sources it is often necessary to normalize data during updates.
Typical normalization includes simple type casting, currency, weights and measures, handling of
composite keys, and text and numeric formatting.

While transformational functions are easy to create in XQuery, such functions do not automatically
take advantage of the processing power of underlying sources. This becomes especially noticeable
when large amounts of relational data are being manipulated.

You can often use inverse functions to retain the benefits of high-performance data processing for your
logical data. In addition, inverse functions make automated updates possible without the need to

Data Services Developer's Guide 10-3

Best Practices and Advanced Topics

create Java update overrides. (See Chapter 9, “Handling Updates Through Data Services” for a more
detailed discussion of update overrides.)

Sample Invertible Data

Inverse functions are very useful in several types of commonly encountered situations, described in
this section. For this topic you can assume underlying data sources with the following characteristics:

e A US_EMPLOYEE table containing information on U.S. employees including employee ID, first

name, last name, social security number, hire date (in milliseconds post 1/1/1970), and salary in
U.S. dollars.

Table 10-2 Elements of US_EMPLOYEE Table
D LNAME (string) FNAME (string) HIRED (long) SALARY (int)

1 Smith Victor 99500000000 120000

2 Davis Michael 11000000000 95000

o A UK_EMPLOYEE table containing employee ID, full name, hired date, and salary in British
sterling.

Tahle 10-3 Elements of UK_EMPLOYEE Tahle

ID (int) FULLNAME (string) HIRED (long) SALARY (int)
3 Jones, Paul 99000000000 60000
4 Williams, John 99100000000 55000

o Employee IDs are unique and normalized across the enterprise.

The US_EMPLOYEE and UK_EMPLOYEE tables are accessible through two functions in a logical data
service: US_EMPLOYEE() and UK_EMPLOYEE().

Considerations When Running Queries Against Logical Data

Here are several examples where running queries against logical data can result in noticeably
degraded performance when compared with operations against the physical data itself:

10-4 Data Services Developer's Guide

Using Inverse Functions to Improve Query Performance

e Alogical data service has a fullname() function that concatenates first_name and last_name
elements. Any attempts to sort by fullname would be penalized by the required retrieval of
information on all customers, followed by local processing of the returned results.

o A CUSTOMER table contains a customer_since column of type long. You have built a
CustomerProfile logical data service and created a Java transformational function that converts
a simple (atomic) datatype from long to xs:date.

While a function collecting the names of customers entered after a particular date would
succeed, the results would not be optimized. In other words, the processing required by the
function would not take advantage of the underlying database’s inherent processing power. If a
large number of records were involved, the performance impact could be considerable.

Situations Where Inverse Functions Can Improve Performance

The thing to keep in mind when creating inverse functions is that the functions you create need to be
truly invertible.

For example, in the following case date is converted to a string value:

public static String dateToString(Calendar cal) {

SimpleDateFormat formatter;

formatter = new SimpleDateFormat ("MM/dd/yyyy hh:mm:ss a");

return formatter.format (cal.getTime()) ;

}

However, notice that the millisecond value is not in the return string value. You get data back but you
have lost an element of precision. By default, all values projected are used for optimistic lock
checking, so a loss of precision can lead to a mismatch with the database’s original value and thus an

update failure.

Instead the above code should have retained millisecond values in its return string value, thus
ensuring that the data you return exactly the same as the original value.

Additional Inverse Function Scenarios

Here are some additional scenarios where inverse functions can improve performance, especially
when large amounts of data are involved:

o Type mismatches. A UK employees database stores date of hire as an integer number; the U.S.
employees database stores hire dates in a datetime() format. You can convert the integer values
to datetime, but then searching on hire date would require fetching every record in the
database and sorting at the middleware layer. So, in addition, you could use inverse functions.

Data Services Developer's Guide 10-5

Best Practices and Advanced Topics

e Data Normalization. In order to avoid confusion of UK and U.S. employees, a data service
function prepends a country code to the employee IDs of both groups. Again, sorting based on
these values will be time consuming since the processing cannot be achieved on the backend
without modifying the underlying data.

e Data Conversion. There are many cases where values need to be converted to their inverse
based on established formulas. For example it could be requirement the application retrieve
customers by date using the xs:dataTime rather than as a numeric. In this way users could
supply date information in a variety of formats.

The data architect creates the following XQuery function:

declare function tns:getEmpWithFixedHireDate () as element (nsO:usemp) *{
for $e in nsl:USEMPLOYEES ()

return
<emp>
<eid>{fn:data ($el/ID) }</eid>
<name>{mkName ($el/LNAME, S$el/FNAME) }</name>
<hiredate>{int2date ($el/HIRED) }</hiredate>
<salary>) fn:data ($el/SAL) }</salary>
</emp>

Given such a function, issuing a filter query on hiredate, on top of this function, results in
inefficient execution since every record from the back-end must be retrieved and then
processed in the middle tier.

Improving Performance Using Inverse Functions: an
Example

Taking the first example in “Considerations When Running Queries Against Logical Data” on
page 10-4, it is clear that performance would be adversely affected when running the fullname()
function against large data sets.

The ideal would be to have a function or functions which decomposed fullname into its indexed
components, passes the components to the underlying database, gets the results and reconstitutes the
returned results to match the requirements of fullname(). In fact, that is the basis of inverse
functions.

Of course there are no XQuery functions to magically deconstruct a concatenated string. Instead you
need to define, as part of your data service development process, custom functions that inverse
engineer fullname().

10-6 Data Services Developer's Guide

Using Inverse Functions to Improve Query Performance

Often complimentary inverse functions are needed. For example, FahrenheitToCentigrade() and
centigradeToFahenheit() would be inverses of each other. Complimentary inverse functions are also
needed to support fullname().

In addition to creating inverse functions, you also need to identify inverse functions as part of the
metadata import process. The import process is described in Chapter 3, “Obtaining Enterprise
Metadata.” The specific application of this process for inverse functions is described in “Step 4:
Configure Inverse Functions” on page 10-9.

Deconstructing Composite Keys

The RTLApp contains several examples of inverse functions. In the case of the fullname() function,
custom Java code provides the underlying inverse function logic. The following actions were involved
in creating this example:

e Make sure underlying data sources are available.
e Create the underlying Java functions.
o Import metadata based on those functions.

o Create additional XFL functions required to deconstruct the function written against the virtual
data service database.

o Build your data service, including identifying inverse functions.

The following describes the detailed steps involved:

Step 1: Create the necessary programming logic

The string manipulation logic needed by the inverse function is in the following Java file in the
RTLApp:

DataServices/Demo/InverseFunction/functions/LastNameFirstName.java

This file defines several straightforward string manipulation functions.

Listing 10-1 String Manipulation Functions in RTLApp’s LastNameFirstName.java

package Demo.InverseFunction.functions;

public class LastNameFirstName

public static String mkname (String 1ln, String fn) { return 1In + ", " + fn; }

Data Services Developer's Guide 10-7

Best Practices and Advanced Topics

public static String fname (String name) {
return name.substring(name.indexOf (',"') + 2);

}

public static String lname (String name) {
int k = name.indexOf(','");
return name.substring(0, k);

In Listing 10-1 the function mkname() simply concatenates first and last name. The fname() and
Iname() functions deconstruct the resulting full name using the required comma in the mkname
string as the marker identifying the separation between first and last names.

Step 2: Importing Java Function Metadata

After you have compiled your Java function you can import metadata from its class file, in this case
LastNameFirstName.class. The resulting functions will be imported into an XML file library
(XFL) named concatLibrary.xf£1. Figure 10-4 shows the resulting XFL as well as the right-click
options available for the mkname() function.

Figure 10-4 Imported Metadata from the LastNameFirstName.class

concatLibrary, xfl - {DataServices}DemoiInverseFunctiontlibraryy

| [~ concatLibrary Library

4—@-— eqhlame
4—@-— frame
4—@-— Iname
4—@-— I amme:
4—@— mkname

Edit in Source Yiew
+—bH

Configure Inverse Function

Disassociate Inverse Function

Find Usages

Refactor

10-8 Data Services Developer's Guide

Using Inverse Functions to Improve Query Performance

Step 3: Add Functionality to Your XFL File

As is often the case, some additional programming logic is necessary. In this case two functions need
to be added to the concatLibrary XFL file:

e A function — precedesName() — returns a Boolean based on a comparison of two names.
First a determination is made as to whether the first Iname (x1) precedes ("is less than") or is
the same as ("is equal to") the second Iname (x2). If the names are identical then a similar
comparison is made between fname. The function returns True if conditions are fulfilled.

declare function fl:precedesName ($x1 as xsd:string?, $x2 as xsd:string?) as
xsd:boolean? {
fl:1lname ($x1) 1t fl:1lname($x2) or ((fl:lname($x1) eqg fl:lname ($x2))
and (fl:fname($x1) 1t fl:fname($x2)))
}i

This function is necessary in order to retrieve an ordered list of names from an inverse function.
e A function — eqName() — comparing names and reporting through a Boolean whether the
names are identical.

declare function fl:egName ($x1 as xsd:string?, $x2 as xsd:string?) as
xsd:boolean? {
(fl:1name ($x1) eqg fl:lname($x2) and fl:fname ($x1l) eqg fl:fname ($x2))
}i
Inverse functions can only be defined when the input and output function parameters are atomic
types.
To improve code readability by making a change to the mkname() function. Replace the $x1 and $x2

variables with $lastName and $firstName, respectively. When you are done the function appears as:

declare function fl:mkname ($lastName as xsd:string?, $firstName as
xsd:string?) as xsd:string? external;

The benefits for doing this become apparent in the next step.

Step 4: Configure Inverse Functions

Since all the functions in concatLibrary.xf1 have simple parameter types, you could create
inverses for each. In this example you only need inverse functions to enable the XQuery engine to
deconstruct the mkname() function into its component operations.

For each parameter in the mkname() function an inverse function is identified. A simplified view of
the operation and relevant code can be seen in Figure 10-5.

Data Services Developer's Guide 10-9

Best Practices and Advanced Topics

10-10

Figure 10-5 Inverse Functions Associated With mkname Concatenation Function

declare function fl:mkname ($firstName as xsd:string), $lastName as

mkname (fname Iname)

fname (name) Iname (name)

public static String fname (String name) {
return name.substring(name.indexOf (’,’) + 2);

}

public static String
lname (String name) {

In XFL Design View you can association the parameters of functions whose input and output types are
atomic with inverse functions. To do this right-click on a function. The option Configure Inverse
Function (shown in Figure 10-4) is available for functions that qualify.

Figure 10-6 illustrations the association of parameters with inverse functions.

Data Services Developer's Guide

Using Inverse Functions to Improve Query Performance

Figure 10-6 Configuring Inverse Functions for mkname

& Associate Inverse Functions...
Associake an inverse function for each parameter
Parameters Inverse Functions

firstMamne f1:fname

lastMame -
f1:fname
f1:lname

| Mext | | Finish | | Cancel |

Step 5: Configuring Conditions for Transformational Functions

After you have associated inverse functions with the correct parameters you may want to associate
custom conditional logic with the functions. You do this by substituting a custom function for such
generic conditions as eq (is equal to) and gt (is greater than). Table 10-7 lists conditional operations
available for such transformations.

Table 10-7 Conditional Operators That Can he Used for Equivalent Transforms

string-greater-than (gt) string-not-equal (ne)
string-less-than (1t) string-greater-than-or-equal (ge)
string-equal (eq) string-less-than-or-equal (le)

Associating a particular conditional (such as "is greater-than") with a transformational function
allows the XQuery engine to substitute such custom logic for a simple conditional.

Data Services Developer's Guide 10-11

Best Practices and Advanced Topics

You can associate comparison operators with transformational functions. As is always the case with
AquaLogic Data Services Platform, the original basis of the function does not matter. It could be
created in your data service, in an XFL, or externally in a Java or other routine. In this example the
transformational function, eqName(), is in an XFL file.

The next step is to match comparison operators with an equivalent transform functions. Custom logic
is needed to support pushdown operations in conjunction with comparison operations. In the current
exercise the string-less-than (It) operation is associated with the XFL precedesName() function; the
string-equal (eq) operation is associated with the eqName() functions. When your query function
encounters these operators, the corresponding custom logic is substituted.

Figure 10-8 Associating an Equivalent Transform With an Operator

& Associate Equivalent Transforms...
Associate equivalent transform functions For comparison operators (optional)
Comparison Cperator Equivalent Transform
string-greater-than
string-less-than f1:precedeshame
string-equal -
string-not-equal f1:precedeshame
string-greater-than-or-equal f1:eqhlame %
string-less-than-or-equal <MNONE =
| Previous | | | | Finish | | Cancel |

Two equivalent transform functions were created in the concatLibrary.xf1. The first,
precedesName(), tests names to make sure they are in ascending order. The second, eqName()
simply compares two first names and two last names and makes sure they are identical.

Step 6: Create Your Data Service

Now you are ready to create a data service that will contain functions such as getCustomerByName()
and getCustomerByNameLessThan(). In reviewing available facilities, you have:

10-12 Data Services Developer's Guide

Using Inverse Functions to Improve Query Performance

e Several custom Java functions which you added in the concatLibrary XFL file.

e XFL routines that you associated with conditional operators.

The data service, called Concatenation, uses a XML type associated with the
LastNameFirstName.xsd schema.

Figure 10-9 Concatenation Data Service

Zoncatenation.ds - {DataServicesHDemotInverseFunction|servicesy b4
|]2 Concatenation Data Service | L
[@ LastMameFirsthame
- - CustomerDB/CUST...
- Jm et Customer @ S5M xsilang .iii
O FULLMAME xs:skri
4 p— et CustamerBytiame 8 DEFT? xsislri e
! xsang DemojInverseFunc...
<—B—— getCustomerByiNamel essThen
4 Il
|| Design View [WQuery Editor View | Source View | Test Yiew | Query Plan View

This schema could have been created through the XQuery Editor, through the AquaLogic Data
Services Platform schema editor, or through a third-party editing tool. (Notice also that one of the
building blocks of your data service is the concatLibrary XFL.)

The familiar getCustomer() function operates somewhat differently in this example.

declare function tns:getCustomer () as element (nsO:LastNameFirstName) * {
for $CUSTOMER in nsl:CUSTOMER ()
return
<ns0:LastNameFirstName>
<SSN>{fn:data ($SCUSTOMER/SSN) }</SSN>

<FULLNAME>{ns2:mkname (fn:data ($CUSTOMER/LAST NAME), fn:data (SCUSTOMER/FIRST
_NAME))}</FULLNAME>
<DEPT?></DEPT>
</ns0:LastNameFirstName>

Data Services Developer's Guide 10-13

Best Practices and Advanced Topics

10-14

Using a U.S. social security number as the primary key, the routine relies on the Java-based mkName()
function to retrieve first and last name from the data source and concatenate the results into a
"fullname".

The getCustomerByName() routine takes fullname as input and returns $LastNameFullName and the
associated social security number.
declare function tns:getCustomerByName ($Name as xs:string) as
element (ns0:LastNameFirstName) * {
for $LastNameFirstName in tns:getCustomer ()
where $LastNameFirstName/FULLNAME eq $Name
return S$LastNameFirstName
}i
In the above code the equality (eq) test is evaluated by substituting the logic of the concatLibrary
eqName() function.

The getCustomerByNameLessThan() routine uses the substitute condition logic available for the 1t
operator. First the routine.

declare function tns:getCustomerByNameLessThen ($Name as xs:string) as
element (ns0:LastNameFirstName) * {

for $LastNameFirstName in tns:getCustomer ()

where $Name 1t $LastNameFirstName/FULLNAME

return $LastNameFirstName

}i

The logic of the less-than substitution can be derived from examining LastNameFirstName.java
and the concatLibrary. The raw processing is containing in the Java file:

public static boolean ltName (String namel, String name2) {

String 1nl = lname (namel);
String 1n2 = lname (name?2);
return (1lnl.compareTo(ln2)<0) || (lnl.equals(ln2) &&

fname (namel) .compareTo (fname (name?2)) <0) ;

}
The XFL function, precedesName() is:

declare function fl:precedesName ($x1 as xsd:string?, $x2 as xsd:string?)
as xsd:boolean? {
fl:lname ($x1) 1t fl:lname ($x2) or ((fl:lname($x1) eq fl:lname ($x2))
and (fl:fname($x1) 1t fl:fname($x2)))
}i

Data Services Developer's Guide

Leveraging Data Service Reusability

Leveraging Data Service Reusability

A typical design pattern within a logical data service is to have a single read function that defines the
data shape without filtering conditions. The function may be declared private so that it can only be
called by other functions within the same data service. Also, it is the only function containing
integration logic. This is known as the decomposition function. By default the decomposition function
is the first function listed in Design View of your logical data service. However you can, through the
Properties Editor, set the decomposition function to be any public or private function in your data
service. Additional functions, either in the same data service or in other data services, can use the
private function to specify filtering criteria. Figure 10-10 shows the design view of a data service
exhibiting this pattern.

Figure 10-10 Customer Data Service functions

"@?E Customer Data ?ervice
N

N\

Al getillcustomers X

read functions

getCustomerByhlame

getCustomerByID

4—— et CustomerEvRegion /“
.
\ 3%

PAYMENTSL,
€
4 gefPavmentList
A qeflatePaymentList

R

The following XQuery sample demonstrates the mechanics behind data service reuse. This function,
getCustomerByName(), filters instances based on the customer name:

declare function ll:getCustomerByName ($Sc_name as xs:string)
as element (t1l:CUSTOMER) *
{

for $c in ll:getAllCustomers ()

where $c/CUSTOMERNAME eq $c_name

return $c

}i
The getAllCustomers() function, in turn, would assemble the data shape for the returned data and
provide join logic and transformation, as shown its return clause:

return

Data Services Developer's Guide 10-15

Best Practices and Advanced Topics

<tl:CUSTOMER>
<CUSTOMERID>{fn:data ($c/CUSTOMERID) }</CUSTOMERID>
<CUSTOMERNAME>{ fn:data (Sc/CUSTOMERNAME) }</CUSTOMERNAME >
{
for $a in f2:ADDRESS ()
where $c/CUSTOMERID eq S$a/CUSTOMERID
return
<ADDRESS>
<STREET>{fn:data ($a/RTL_STREET) }</STREET>
<CITY>{fn:data($a/RTL_CITY) }</CITY>
<STATE>{fn:data ($a/RTL_STATE) }</STATE>
</ADDRESS>
}
</t1:CUSTOMER>

Keep in mind that client application themselves can specify filtering conditions on a data service
function call. Therefore, you as the data service designer can choose whether to have broadly defined
data access functions (that is, without filter conditions), and let the client to apply filtering as desired,
or narrowly by defining the criteria in the API.

Note: All functions whose bodies are some variation of a flwor (for-let-where-order-return)
statement should be declared to return a plural rather than a singular result; for example:

element (purchase order) *
rather than:
element (purchase order)
applies to both read and navigation functions.

The reason for declaring returns to be plural is that the XQuery compiler wants to be sure that
you indeed deliver the declared result at runtime. If it cannot determine that something is
singular it inserts a runtime fypemaich operator in the query evaluation plan. You won't get
the wrong result, but that operator will cause important pushdown-related optimizations
(function unfolding) to be defeated.

Modeling Relationships

There are several ways to implement a logical relationship between distinct units of information with
data services:

e Data shape containment

10-16 Data Services Developer's Guide

Modeling Relationships

e Navigation functions

When containment is implemented in the data shape, it means that the XML data type of the data
service is nested; that is, one element is the parent of another element. For example, in the following
sample a customer element contains orders:

<customer>
<customerId>...</customerId>
<customerName>...</customerName>
<orders>
<order>...</order>
<orderId>...</orderId>
</orders>

</customer>

A diagram of this XML structure would be:

Customer

L Order

In this type of containment, the parent-child hierarchy between the customer and order is locked into
the data shape. This nesting might make sense for most applications, particularly those oriented by
customer. However, other applications may benefit from an orders-oriented view of the data. For
example, an inventory application may prefer to work with the data in an orders-first fashion, with the
customer as a child element of each order.

Order

L Customer

Conceptually, in this case it could also be said that an Order is not existence-dependent on a
Customer. If a Customer record is deleted, it may not necessarily follow that the customer’s order
should be deleted as well.

Alternatively, other relationships do not require this type of hierarchical flexibility. In most cases, this
also implies that the business entity’s existence does depend on the existence of the parent. For
example, consider an order that contains items.

Data Services Developer's Guide 10-17

Best Practices and Advanced Topics

10-18

Order

L ltem

In most logical data models, it would not make sense to have an item outside of the context of the order
that contains it. When deleting an order, it is safe to say that composing order items would need to be
deleted as well.

The choice when modeling such containment either through a relationship or through data shape
nesting is informed by these considerations. When choosing whether to model containment either
through data shape nesting or using relationships, it is recommended that:

e Existence-dependent entities are modeled as nested elements.

e Existence-independent entities are modeled as relationships.

By modeling independent entities with bi-directional relationships, data service users and designers
can easily specialize the logical hierarchy between business entities as best suited for their
applications.

Data Services Developer's Guide

	Introduction to Data Services
	Data Services and the Enterprise
	Data Access Integration Architecture
	AquaLogic Data Services Platform Applications and Projects
	Services Available to a AquaLogic Data Services Platform-Based Project

	AquaLogic Data Services Platform: Roles and Responsibilities
	AquaLogic Data Services Platform: Typical Development Process
	Examples, Samples, and Tutorials

	AquaLogic Data Services Platform Projects and Project Components
	AquaLogic Data Services Platform-Based BEA WebLogic Applications
	Verifying Your AquaLogic Data Services Platform Version Number
	Creating a AquaLogic Data Services Platform-based Application
	Adding a AquaLogic Data Services Platform Project to an Existing BEA WebLogic Application
	Major Components of a AquaLogic Data Services Platform Project
	Data Service Project Right-click Menu Options

	Data Service Right-click Menu Options
	Using the WebLogic Workshop IDE
	Property Editor
	Finding Text in Files

	Survey of AquaLogic Data Services Platform Additions to WebLogic Workshop
	Metadata Import
	Data Models
	Data Services
	Usages of Data Services Artifacts
	Updating Application or Project Data Service Libraries

	Building and Deploying Applications, JARs, and SDO Mediator Clients
	Building, Deploying, and Updating Applications
	When to Rebuild Your AquaLogic Data Services Platform Project
	Deploying Your Application

	Creating the SDO Mediator API
	Generating the SDO Mediator JAR in Workshop
	Command-line Generation of the SDO Mediator API

	Refactoring AquaLogic Data Services Platform Artifacts
	Artifacts Supporting Refactoring
	Setting Refactor Options
	Impacts of Various Refactoring Operations

	Creating and Working with XQuery Function Libraries
	XQuery Function Library Views
	Creating an XFL Function

	XFL Database Function Views
	Support for Built-in and User-Defined SQL Functions
	Creating a Database XFL and Registering Database Functions
	Understanding XFL Database Function Calls Through Source View

	Obtaining Enterprise Metadata
	Creating Data Source Metadata
	Identifying AquaLogic Data Services Platform Procedures

	Obtaining Metadata from Relational Sources
	Importing Relational Table and View Metadata
	Data Object Selection Options
	Creating a New Data Source
	Selecting an Existing Data Source
	Creating Table- and View-Based Metadata

	Importing Stored Procedure-Based Metadata
	Importing Stored Procedures Using the Metadata Import Wizard
	Stored Procedure Support for Commonly Used Databases

	Using SQL to Import Metadata
	Relational Data Types to XQuery Data Types

	Providing Role-based Access to AquaLogic Data Services Platform Relational Sources

	Importing Web Services Metadata
	Testing Metadata Import With an Internet Web Service URI
	Setting Up Handlers for Web Services Accessed by AquaLogic Data Services Platform

	Importing Java Function Metadata
	Supported Java Function Types
	Adding Java Function Metadata Using Import Wizard
	Creating XMLBean Support for Java Functions
	Inspecting the Java Source
	How Metadata for Java Functions Is Created
	Technical Details, with Additional Example Code

	Importing Delimited File Metadata
	Providing a Document Name, a Schema Name, or Both
	Using the Metadata Import Wizard on Delimited Files

	Importing XML File Metadata
	XML File Import Sample
	Testing the Metadata Import Wizard with an XML Data Source

	Updating Data Source Metadata
	Considerations When Updating Source Metadata
	Direct and Indirect Effects

	Using the Update Source Metadata Wizard
	Metadata Update Analysis
	Synchronization Mismatches

	Archival of Source Metadata

	Designing Data Services
	Data Services in the Enterprise
	Physical and Logical Data Services
	Data Service Functions

	Data Service Design View Components
	XML Types and Return Types
	Where XML Types are Used
	Where Return Types are Used

	Creating a Data Service
	Adding a Function to Your Data Service
	Adding a Procedure to Your Data Service
	Adding a Private Function to Your Data Service
	Adding a Relationship to Your Data Service
	Understanding Navigation Functions
	Effect of Using a Navigation Function to Return Data
	Creating a Relationship Between Data Services
	Using the Relationship Wizard to Create Navigation Functions
	Example of Creating a Navigation Function
	Navigation Functions in Source View

	Working with Logical Data Service XML Types
	Associating an XML Type
	Editing an XML Type

	Creating an XML Type

	Managing Your Data Service
	Refactoring Data Service Functions
	Finding Usages of AquaLogic Data Services Platform artifacts
	Setting Update Options
	Allowing Updates
	Setting the Override Class
	Enable/Disable Optimistic Locking

	Adding Security Resources
	Create Necessary Security Resources
	Structure Your Query To Support Security Resource Validation
	Assign Security Resources Through the AquaLogic Data Services Platform Console
	Validating Security Policies Through Test View

	Caching Functions
	Notable Design View Properties

	Publishing Data Service Functions for SQL Use
	Making Data Service Objects Available for SQL Use
	Publishing Data Service Functions Example
	Publish Data Service Functions Alert Dialog

	Constraints on Publishing Data Service Objects to SQL

	Modeling Data Services
	Model-Driven Data Services
	Logical and Physical Data Models
	Physical Data Models
	Logical Data Models

	Rules Governing Model Diagrams

	Building a Simple Model Diagram
	Displaying Relationships Automatically
	Generated Relationship Declarations in Source View
	Modeling Logical Data

	Building Data Service Relationships in Models
	Direction, Role, and Relationships
	Role Names
	Relationships

	Working with Model Diagrams
	Model Right-click Menu Options
	Creating Relationships in Model Diagrams
	Locating Data Services in Large Model Diagrams
	Generating Reports on Your Models
	Creating a Model Report
	Model Report Format

	Zoom Mode
	Editing XML Types in Model Diagrams
	Model Diagram Properties

	How Changes to Data Services and Data Sources Can Impact Models
	How Metadata Update Can Affect Models

	Working with the XQuery Editor
	Role of the XQuery Editor
	Data Source Representations
	XQuery Editor Options

	Creating a Simple Data Service Function
	Importing Metadata from Physical Data Sources
	Creating Your Logical Data Service

	Key Concepts of Query Function Building
	Data Sources
	Source Schemas and Return Types
	XQuery Editor Components
	Return Type Node
	For Clause Nodes
	Converting Between For and Let Clauses
	Let Statement Nodes
	Parameter Nodes
	Adding Relationship Functions to an Existing Data Service
	Group By Statement Nodes
	Distinct By Statement Nodes

	Setting Conditions
	The Where Clause
	The Order By Clause
	Creating Join Conditions

	Using XQuery Functions
	Using XQuery Functions in Where Clauses
	Transforming Data Using XQuery Functions

	Setting Expressions

	Managing Query Components
	Working With Data Representations and Return Type Elements
	Mapping to Return Types
	Mapping Elements and Attributes to the Type
	Complex Element Mappings to a Return Type
	Removing Mappings

	Modifying a Return Type
	Editing a Return Type
	Adding a Complex Child Element
	Setting Zones in Your Return Type
	Validating and Saving Your Return Type

	Testing Query Functions and Viewing Query Plans
	Running Queries Using Test View
	Using Test View
	Running a Query That Needs No Parameters
	Running a Query Function With Simple Parameters
	Testing a Query Function With Complex Parameters
	Testing AquaLogic Data Services Platform Procedures
	Limiting Array Results
	Starting Client Transaction Option
	Validating Results
	Disregarding a Running Query
	Auditing Query Performance
	Running Ad Hoc Queries Under Test View

	Using Query Plan View
	Using Query Plan View
	Query Plan Information and Warnings
	Printing Your Query Plan

	Analyzing a Sample Query
	Working With Your Query Plan
	Identifying Problematic Conditions Through the Query Plan

	Obtaining an Ad Hoc Query Plan
	XQuery Ad Hoc Query Example
	SQL Ad Hoc Queries

	Working with XQuery Source
	What is Source View?
	XQuery Support

	Using Source View
	Finding Text
	Function Navigation
	Code Editing Features
	Color Coding
	Code Completion
	Error Identification

	Handling Updates Through Data Services
	Updating Source Data
	Update Overrides and Physical Data Services

	What is an Update Override?
	An Update Override is a Java Class
	How an Update Override Affects Update Processing

	When Update Override Classes Are Needed
	Registering an Update Override Class
	Developing an UpdateOverride Class
	Creating Update Overrides for Relational Data Sources
	Primary-Foreign Key Relationships Mapped Using a KeyPair

	Invoking Data Service Procedures from an UpdateOverride
	Testing Submit Results

	Common Update Override Programming Patterns
	Overriding the Decomposition and Update Process
	Using the performChange() Method

	Augmenting Data Object Content
	Accessing the Data Service Mediator Context
	Accessing the Decomposition Map

	Customizing an Update Plan
	Executing an Update Plan

	Retrieving the Container of the Current Data Object
	Invoking Other Data Service Functions and Procedures
	Capturing Runtime Data About Overrides in the Server Log
	Default Optimistic Locking Policy: What it Means, How to Change

	Invoking JPDs from AquaLogic Data Services Platform
	Invoking a JPD from an Update Override
	Invoking a JPD by Using the JpdService API in an Update Override
	Synchronous and Asynchronous Behavior
	Error Handling and Use of Callbacks

	Best Practices and Advanced Topics
	Using a Layered Data Integration and Transformation Approach
	Using Inverse Functions to Improve Query Performance
	Sample Invertible Data
	Considerations When Running Queries Against Logical Data
	Situations Where Inverse Functions Can Improve Performance

	Improving Performance Using Inverse Functions: an Example
	Deconstructing Composite Keys

	Leveraging Data Service Reusability
	Modeling Relationships

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

