0?7,

P /
2 bea
L/

ay

BEAAqualogic
Data Services
Platform=

Client Application
Developer’s Guide

Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site:

http://e-docs.bea.com/aldsp/docs25/index.html

Version: 2.5
Document Date: June 2005
Revised: November 2006

http://e-docs.bea.com/aldsp/docs25/index.html

Copyright

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA Aqualogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

1. Introducing Data Services for Client Applications

Simplifying Application Data Programming.ot 1-1
What is a Data Services Client?. 1-2
Data Your Way e 1-3

The Role of WebLogic Server and WebLogic Workshop.............................. 14
What Is a Data Service?o 1-4

What is a AquaLogic Data Services Platform Client Application?................. 1-5

Security Considerations in Client Applications.................... ...ttt 1-6
Choosing a Data Services Programming Model............ ...ttt 1-6
Introducing Service Data Objects (SDO)c.vviriiii e 1-8
Update Frameworks and the Data Service Mediator 19
Typical Client Application Development Processcoovviiiiiiiiiinean, 1-10
Development Resources. e e 1-11
Runtime Client JARFiles.ooiii e 1-11
AquaLogic Data Services Platform Mediator API Javadoc...................... 1-13
Performance Considerations......... ..., 1-13

2. Data Programming Model and Update Framework
Data Services Platform and Service Data Objects (SDOS)coovvvviiiinivinennennn. 2-1
Static and Dynamic Data APIs. e 2-4

Client Application Developer's Guide iii

Static Data AP 2-5

XML Schema-to-Java Type Mapping Referencecooiiiia, 2-9
Dynamic Data AP i e e 2-10
Role of the Mediator and SDOSvvirrtin i 2-16

3. Accessing Data Services from Java Clients

Overview of the AquaLogic Data Services Platform Mediator API......................... 3-1
Setting the Classpath i e e 3-3
Mediator API Summary and Reference.o 34

Generating a Static Mediator APIJARFile 3-b
Building the Client JAR . ..o 3-6
Using the Data Service Mediator APT it 3-7
Obtaining a WebLogic JNDI Context for AquaLogic Data Services Platform 3-8
Invoking Functions and AquaLogic Data Services Platform Procedures 3-9
Static and Dynamic Mediator APIS 3-10

Using a Static Data Service Mediator AP, 3-10
Using a Dynamic Mediator APT, 3-13
Static and Dynamic SDOAPISo oniii e e 3-14
Using the Static SDOAPLot e 3-15
Using the Dynamic SDOAPL.o i e 3-18
Bypassing the Data Cache When Using the Mediator APT 3-21
Client Management of the Data Cache...............o i, 3-22

Accessing Data Services Via WebLogic Server 9.2 Clientscoovnn. 3-22
Interoperability Steps.ot 3-23

Step-by-Step: A Java Client Programming Exampleo o. 3-24
Step 1. Instantiating and Populating Data Objectsc.ooivit. 3-24
Step 2: Accessing Data Object Properties........... ..o, 3-26

Quantifying Return Types.o vii e 3-27

iv Client Application Developer's Guide

Step 3: Modifying, Inserting, and Deleting Data Objects and Properties.............. 3-28

Modifying Data Object Properties. ...ttt 3-28
Inserting New Data Objects.vvvrreeeii e 3-28

Deleting Data ObJectSvvuvet it e e e 3-30

Step 4: Submitting Changes to the Data Service.....................ciiiiiin... 3-30
Examining a Java Client Applicationcoiiiiiiiiiiiii i, 3-32

Enabling Aqualogic Data Services Applications for Web
Service Clients

Overview of Web Services and AquaLogic Data Services Platform 4-1

Different Styles of Web Services Integration for AquaLogic Data Services Platform 4-2

Server-Side AquaLogic Data Services Platform-Enabled Web Service Development 44
Developing AquaLogic Data Services Platform-Enabled Read-Only Web Services 44
Adding a Data Service Control toa Web Service.................oooiiiiiiiin, 44
Generating a Web Service from a Data Service Control......................... 4-7
Developing AquaLogic Data Services Platform-Enabled Read-Write Web Services 4-9
Testing a Web Service in WebLogic Workshop 4-9
Client-Side AquaLogic Data Services Platform-Enabled Web Service Development 4-10
Static Web Service Clients. ..o 4-10

Dynamic Web Service CIientsooiteettie i 4-11
Developing Static Web Service Clients. ..., 4-11
Generating SDO Classes for the Web Service Proxycoovv... 4-11
Generating the SDO Web Service Client Proxyccovviiiiinnen.... 4-17

Sample Script for Creating Static Web Service Client 4-18

Using Java to Generate the Client Proxycoiiiiiiinn, 4-21

Using the SDO Web Service Client Gen Utilitycooiiiiiit. 4-22
Developing Static Web Service Clients. ..., 4-24

Client Application Developer's Guide

How To Set Up a Web Service Client Environment for AquaLogic Data Services Platform

4-24
Sample Java Static Web Service Client............. ..., 4-25
Developing Dynamic Web Service Clients. ..., 4-26
Setting Up a Dynamic Web Service Environment. 4-26
Developing the Dynamic Web Service Clientcooiiiiiiiiinn, 4-26
Sample Java Dynamic Web Service Client, 4-27

5. Using SQL to Access Data Services

Publishing Data Service Functions ASSQL.oiit e e 5-2
Using Custom Database Functions through AquaLogic Data Services Platform 5-2
SQL Support in AquaLogic Data Services Platform.................... 5-2
Supported Features.ttt e 5-3
Additional Detailsooouii 5-3
Table Parameter SUPPOrtttt e b-4

Use Case for Table Parameters ..., b-b

Setting Table Parameters Using JDBCccoiiiiiiiiiiinn... 5-b

XML and SQL Type Mappings. . ..ottt ittt 5-8
Accessing Data Services Functions Through JDBC. ..., 5-10
About the AquaLogic Data Services Platform JDBC Driver 5-11
Data Service Functions and Corresponding JDBC Artifacts. 5-12
Supported FUNCEIONSot e 5-12
Numeric Functions ... 5-13

String FUNCEIONS e e 5-13
Datetime Functions. ... 5-14
Aggregate FUNCHIONSo e e 5-15

JDBC Metadata Search Patterns...................coooiiiiiiiiiiin, 5-16
Configuring the AquaLogic Data Services Platform JDBC Driver 5-17

vi Client Application Developer's Guide

Accessing AquaLogic Data Services Platform JDBC Driver Using a Java Application . . . 5-19

Obtaining a Connection.ottt e, 5-19
Using the preparedStatement Interfaceo i, 5-20
Using the CallableStatement Interfaceo, 5-20
Accessing Data Service Functions from DbVisualizer 5-21

Connecting to AquaLogic Data Services Platform Client Using ODBC-JDBC Bridge from

Non-Java Applicationsouuviite e e e 5-2b
Using OpenLink ODBC-JDBC Bridgecooviiiiiiiiii .., 5-26
Using the EasySoft ODBC-JDBC Bridge..............c.covvviiiiiiiiinn.. 5-30
Accessing Data Services Data from Reporting Tools. 5-33
Crystal Reports XI. oo e e 5-34
Business Objects XI-Release 2 (ODBC)ovvvivviiii i 5-45
Hyperion-ODBC.o e e e 5-52
Microsoft Access 2003-ODBC ... 5-bb
Microsoft Excel 2003-ODBC. 5-61
Using the Query Plan Viewer Utilitycoovniiiii et 5-63
Installing Query Plan Utility Components...............c.ooovvviieeinnn... 5-63

6. Using Excel to Access Data Services

Installing the Excel Add-invvvtiiiir i e e i 6-1
System Requirements.ouuiii i e e 6-2
Installation Instructionso 6-2
Accessing Excel Add-in Documentation. i, 6-4

Generating WSDL Files for the Excel Add-in.......... ... i i i, 6-b

Creating a WSDL File from a Data Serviceccoiiiiieiiiiiiiinnn... 6-b
Obtaining a Valid WSDL URL for Use with the Excel Add-in......................... 6-7
Using the Excel Add-in with a Remote or Deployed Server.......................... 6-9
Example Showing Data Service-Generated Web Service UseinExcel 6-9

Client Application Developer's Guide vii

Accessing Your Data Service Through Excel.................coo ... 6-12

/. Accessing Data Services from WebLogic Workshop
Applications

Introduction to Data Service Controls. ... 7-1
Data Service Controls Defined. ..o 7-2
Page Flow, Web Services, Portals, Business Processescoovv. 72
Description of the Data Service Control (JCX) Fileccoiiiiiiniinns. 7-3
DI g VI OW L .t 7-3

SOUTCE VIEW . . oot 7-3

Using Data Service Controls for Ad Hoc Queriesccoiiiiieeieiiniiinnn, 7-6
Creating Data Service CONtrOLSvvitiiiii i e iiiiee e T-7
Step 1: Create a Project in an Application.................cooiiiiiiiii i, 7-7

Step 2: Start WebLogic Serverot e 7-8

Step 3: Create a Folder ina Project.cov i, 7-8

Step 4: Create the Data Service Control............... ..., 7-8

Step 5: Enter Connection Information for WebLogic Server...................... 7-9

Step 6: Select Data Service Functions to Add to Your Control................... 7-10
Modifying Existing Data Service Controls.ot 7-12
Changing a Method Used by a Controlccoviiiiiiiieeiiiinnnn.. 7-12
Adding a New Method toa Controlcouueiiiiiiiiiiiiii i, 7-13
Updating an Existing Control When Schemas Change 7-13
Caching Considerations When Using Data Service Controls....................covvvn... 7-14
Bypassing the Cache When Using a Data Service Control 7-14
Cache Bypass Example When Using a Data Service Control 7-14

Security Considerations When Using Data Service Controlsccovvun... 7-15
Security Credentials Used to Create Data Service Controls......................... 7-15
Testing Controls With the Run-As Property in the JWSFile......................... 7-16

viii Client Application Developer's Guide

Trusted Domains. e 7-16

Configuring Trusted Domainsttt e e 7-16

Using Data Services Platform with NetUIo i, 7-17
Generating a Page Flow From a Control, 7-18

To Generate a Page Flow From a Data Service Control 7-18

Adding a Data Service Control to an Existing Page Flow........................... 7-19
Adding Service Data Objects (SDO) Variables to the Page Flow..................... 7-20
Adding a VariabletoaPage Flowo i, 7-22
Initializing a Variable inthe Page Flow, 7-22

Working with Data Objects ... i i e 7-23
Displaying Array Values ina Table or Listc i, 7-24
Adding a RepeatertoaJSPFile..............oiiiiiiii i 7-24

Adding a Nested Level to an Existing Repeater 7-26

Adding Code to Handle Null Valueso, 7-27

Using Data Service Control 9.2ttt i i e e 7-28
Differences Between the 9.2 and 8.1 Data Service Control 729
Installing the Data Service Control 9.2 Plug-In. ..., 7-30
Setting Up WebLogic Server 8.1 to Use Data Service Control 9.2 7-31

Using Data Service Control 9.2 from Workshop for WebLogic Platform 7-31
Creating and Using the Data Service Controlccovvvve.... 7-31
Modifying and Uninstalling the Control.............. ... iiiiiiinn, 7-45

8. Accessing Data Services Through AquaLogic Service Bus

Accessing AquaLogic Data Services Platform from AquaLogic Service Bus 8-2
Step 1: Start Your Serversoviuieiii e 8-2
Step 2: Generate the WSDL for the Data Servicecoviiiiin.., 8-3

Generate the WSDL Through WebLogic Workshop 8.1.......................... 8-3
Export the WSDL with the AquaLogic Data Service Console..................... 8-3

Client Application Developer's Guide ix

Step 3: Deploy the Data Services Transportovviiiieiiiiiiinneee... 84

Step 4: Import the WSDL for the Data Service.............covveiii ... 8-b
Step 5: Create the Business Service ..., 8-6
Step 6: Create the Proxy Serviceot e 8-7
Step 7:Test YOUr Setupttt e e 8-7
Additional Information. ... 8-7
9. Supporting ADO.NET Clients

Overview of ADO.NET Integration in Data Services Platform 9-2
Understanding ADO.NET o e i 9-2
ADO.NET Client Application Development Tools.cvvu... 9-3
Understanding How AquaLogic Data Services Platform Supports ADO.NET Clients. 9-4
Supporting Java CLHENtSouutei e e 9-6
Enabling AquaLogic Data Services Platform Support for ADO.NET Clients................. 9-7
Creating a New Web Service Projectt 9-8
Creating an ADO.NET-Enabled Data Service Control 9-8
Generating a Web Service for ADO.NET Clients.covvviiiien... 9-10
Generating an ADONET-Enabled WSDL, 9-11
Adapting AquaLogic Data Services Platform XML Types (Schemas) for ADO.NET Clients . . .9-12
Approaches to Adapting XML Types for ADO.NET. ... 9-12
XML Type Requirements for Working With ADO.NET DataSets.................. 9-13
References 9-15
Generated Artifacts Reference. i 9-15
XML Schema Definition for ADO.NET Typed DataSet.............................. 9-15
Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients 9-17

X Client Application Developer's Guide

10.Using Workflow with Aqualogic Data Services Platform-Based
Applications

Brief Overview of WebLogic Integration JPDs. ..., 10-1
How SDO’s Handling of XMLObjects Differs from JPD..................ccoviinn, 10-3
Adding a Data Service Control to a Process.cooiiiiiiiiiiiiiiiieeeninns 10-3
Creating a Data Service Controlciiiiiiiiiiiiii e, 104
Adding a Data Service Controltoa JPDFile..............coiiiiiiiiii i, 104
Setting Up the Data Service Control in the Business Process....................... 10-5
Submitting Changes from a Business Process................cciviiiveee.... 10-7
Updating Multiple Data Services Using Workflowsccoiiiiin... 10-7

11.Advanced Topics

Accessing Metadata Using Catalog Servicesovviiiiieeieeniiiiiinnneeennn. 11-1
Installing Catalog Serviceso e e 11-2
Using Catalog ServiCes . ..ottt 11-3

Application (application.ds)c.ouiiii i 11-3
DataService (DataService.ds)ovviiiiit i 114
DataServiceRef (DataServiceRef.ds) ... 11-5
Folder (folder.ds)ovurrt et e e et 11-7
Function (Function.ds)ttt e 11-8
Relationship (Relationship.ds). ... 11-10
Schema (Schema.ds)ovrti i i i e 11-14
SchemaRef (SchemaRef.ds)cco i 11-14

Filtering, Sorting, and Fine-tuning Query Results oot 11-15

USINg FIl OIS ..o e e 11-17
Specifying Filter Effects. e e 11-18
Ordering and Truncating Data Service Results. ..., 11-20
Using Ad Hoc Queries to Fine-tune Results from the Client 11-21

Client Application Developer's Guide Xi

Xii

Handling Large Result Sets with Streaming APIs,
Using the Streaming Interface. ...

Writing Data Service Function ResultstoaFile oiia

Client Application Developer's Guide

CHAPTERa

Introducing Data Services for Client
Applications

BEA AquaLogic Data Services Platform brings a service-oriented architecture (SOA) approach to data
access. AquaLogic Data Services Platform enables organizations to consolidate, integrate, and
transform as needed disparate data sources scattered throughout their enterprise, making enterprise
data available as an easy-to-access, reusable commodity: a data service.

For client application developers, AquaLogic Data Services Platform provides a uniform, consolidated
interface for accessing and updating the heterogeneous back-end data sources that comprise data
services. This chapter provides an overview of AquaLogic Data Services Platform for client application
developers. It includes the following topics:

o Simplifying Application Data Programming
e The Role of WebLogic Server and WebLogic Workshop
e Introducing Service Data Objects (SDO)

e Typical Client Application Development Process

Note: AquaLogic Data Services Platform was initially named Liquid Data. Some artifacts of the
original name remain in the product, installation path, and components.

Simplifying Application Data Programming

The AquaLogic Data Services Platform (AquaLogic Data Services Platform) significantly simplifies
how client applications access and use data. In a typical organization, data comes from a variety of
sources, including distributed databases, files, applications from partners or e-commerce exchange
markets. With AquaLogic Data Services Platform, client applications can use heterogeneous data

Client Application Developer’s Guide 1-1

Introducing Data Services for Client Applications

1-2

through a unified service layer without having to contend with the complexity of working with
distributed data sources using various connection mechanisms and data formats.

AquaLogic Data Services Platform provides a uniform, consolidated interface for accessing and
updating heterogeneous back-end data. It enables a services-oriented approach to information access
using data services.

From the perspective of a client application, a data service typically represents a distinct business
entity, such as a customer or order. Behind the scenes, the data service may aggregate the data that
comprises a single view of the data, for example, from multiple sources and transform it in a number
of ways. A data service may be related to other data services, and it is easy to follow these relationships
in AquaLogic Data Services Platform. Data services insulate the client application from the details of
the composition of each business entity. The client application only has to know the public interface
of the data service.

This document describes how to create AquaLogic Data Services Platform-aware client applications.
It explains the various client access mechanisms that AquaLogic Data Services Platform supports and
its main client-side data programming model, including Service Data Objects (SDO). It also describes
how to create update-capable data services using the AquaLogic Data Services Platform update
framework.

This guide provides information about how to leverage data services in your applications.

o For information about server-side aspects of creating and managing data services see the Data
Services Developer’s Guide.

e For information on administering data services, including metadata, cache, and security
management see the AquaLogic Data Services Platform Administration Guide.

What is a Data Services Client?

In the typical organization, data flows in a bidirectional manner from a wide variety of sources,
including distributed databases, various files, applications from partners, or e-commerce exchange
markets.

Creating an application that can access and update distributed, disparate data sources can be
complex, challenging, and expensive: you must know how to use a wide variety of connection
mechanisms and data formats, and how to use the variety of APIs required to access and update each
back-end data source, for example.

Using AquaLogic Data Services Platform, data architects create data services that:

e Insulates applications from having to access and update multiple disparate data sources.

Client Application Developer's Guide

../datasrvc/index.html
../datasrvc/index.html
../admin/index.html

Simplifying Application Data Programming

e Provides the ability to create data services that combine elements of multiple, disparate data
sources into, essentially, virtual databases.

Data Your Way

An AquaLogic Data Services Platform client is any process that consumes data services. A client
application may be, for example, a Java program, non-Java programs such as .NET applications, BEA
WebLogic Workshop applications, or JDBC/ODBC clients. These can all be thought of as client APIs.

For client application developers needing to leverage such data assets, AquaLogic Data Services
Platform supports multiple access methods (see Figure 1-1):

e Java clients can use data service functions through the AquaL.ogic Data Services Platform
Mediator API.

o Workshop applications (such as portals, business processes, and web applications) can use a
Data Service control.

e Web services enable you to make AquaLogic Data Services Platform services available to a wide
array of WebLogic and non-WebLogic applications and integration channels.

e The AquaLogic Data Services Platform JDBC driver provides JDBC and ODBC clients, such as
reporting tools, with SQL-based access to AquaLogic Data Services Platform information.

Figure 1-1 Accessing AquaLogic Data Services Platform Services

client
applications

Mediator Data service Web service JDBC
API control

ALDSP Services Layer (SDO)

data sources

Client Application Developer's Guide 1-3

Introducing Data Services for Client Applications

1-4

Whatever the client type, AquaLogic Data Services Platform gives application developers a uniform,

services-oriented mechanism for accessing and modifying heterogeneous data from external sources.
Developers can focus on the business logic of the application rather than details of various data source
connections and formats.

The Role of WebLogic Server and WebLogic Workshop

Data services are created server-side, in WebLogic Workshop. Workshop is BEA’s integrated
development environment for building and deploying many types of applications: portals, Web
services, and integration applications, for example.

What Is a Data Service?

From a high-level perspective, a data service defines a distinct business entity such as a report that
describes a customer and customer orders. The data service defines a unified view by aggregating data
from any number of sources — relational database management systems (RDBMS), Web services,
enterprise applications, flat files, and XML files, for example. Data services can also transform data
from the original sources as needed.

In order to use data services, you need know only a few details, such as:
o The name of the data service.

o The functions and procedures exposed by the data service. (See What is a AquaLogic Data
Services Platform Client Application?)

e The data types available.

Data service client applications can use data services in the same way that a Web service’s client
application invokes the operations of a Web service. Rather than invoking operations from a Java
client application, the data service client application invokes a data service routine.

Client Application Developer's Guide

Simplifying Application Data Programming

Figure 1-2 Data Services Layer Exposes Functions and Procedures to Client Application Developers

CUSTOMER

ﬁ

DSP Functions and Procedures

Relational
Data

MNAME

DATATYRE

MULLABLE?

CUSTOMER_ID

WARCHAR

NO

FIRST_NAME

VARCHAR

NO

LAST_NAME

VARCHAR

NO

BIRTH_DAY

TIMESTAMP

NO

ADDRESS

WARCHAR

HO

ADDRESS2

WARCHAR

VES

Primary key CUST_ORDER
NAME DATATYPE NULLABLE?
— | ORDER D VARCHAR N
CUSTOMER_ID [YARCHAR NO
ORDER_AMOUNT| DECIMAL NO
Foreign key

STATE

VARCHAR

NO

ZIP_CODE

INTEGER

NO

Data Services Platform Services Layer

Web
Services

CreditRating
getCreditRating(
String in
customer_id)

What is a Aqualogic Data Services Platform Client Application?

A AquaLogic Data Services Platform client application is any application that invokes data service
routines. Client applications can include Java programs, non-Java programs such as Microsoft
ADO.NET applications, BEA WebLogic Workshop applications, or JDBC/ODBC clients:

e Java client applications can use data service functions and procedures through the Data
Services Mediator API (also known simply as the Mediator APT).

e WebLogic Workshop applications (such as portals, business processes, and Web applications)
can leverage data services by means of Data Service controls. (Controls are reusable Java
components that can be used in WebLogic Workshop applications.) Data Service controls can be
used as the basis of many AquaLogic Data Services Platform-enabled application scenarios. For

example:

— Data Service controls can be added to Web services, portal projects, and Web projects.

— Data Service controls can be used to generate Web services that can make AquaLogic Data
Services Platform services available to a wide variety of WebLogic and non-WebLogic
applications and integration channels.

Client Application Developer's Guide 1-5

Introducing Data Services for Client Applications

— Data Service controls can be used within a JPD (Java process definition, a workflow
component).

e The AquaLogic Data Services Platform JDBC driver provides JDBC and ODBC clients, such as
reporting tools, with SQL-based access to AquaLogic Data Services Platform data.

Regardless of the client type, AquaL.ogic Data Services Platform provides a uniform, services-oriented
mechanism for accessing and modifying distributed, heterogeneous data. Developers can focus on
business logic, rather than on the details of various data source connections and formats.

In your client application code, simply invoke the data service routine: the AquaLogic Data Services
Platform engine:
o Gathers data from the appropriate sources (via XQuery)

o Instantiating results as data objects, and

e Returns to your client application the materialized data objects.

These data objects conform to the Service Data Object (SDO) specification, a Java-based architecture
and API for data programming that is the result of joint effort by BEA and IBM.

Security Considerations in Client Applications

AquaLogic Data Services Platform administrators can control access to deployed AquaLogic Data
Services Platform resources through role-based security policies. AquaLogic Data Services Platform
leverages and extends the security features of the underlying WebLogic platform. Roles can be set up
in the WebLogic Administration Console. (See the Administration Guide for detailed information
about the AquaLogic Data Services Platform Console.)

Access policies for resources can be defined at any level — on all data services in a deployment,
individual data services, individual data service functions, or even on individual elements returned by
the functions of a data service.

For complete information on WebLogic security, see:

http://e-docs.bea.com/wls/docs81/security/index.html

Choosing a Data Services Programming Model

Application developers can choose from several client API models for accessing AquaLogic Data
Services Platform services. The model chosen will depend on the access mechanism you decide to
used. The access methods are:

e Data Mediator API

Client Application Developer's Guide

../admin/index.html
http://e-docs.bea.com/wls/docs81/security/index.html

e Data Service control

o Web Services

e JDBC/ODBC

Each access method has its own advantages and use. Table 1-3 provides a description of each of these
access methods and summarizes the advantages of the various models for accessing AquaLogic Data
Services Platform services.

Table 1-3 Aqualogic Data Services Platform Access Models

Choosing a Data Services Programming Model

Access
mechanism

Description

Advantages / When to use...

Data Service
Mediator API

A Java interface for using data services.
Returns data as data objects, providing
full support for Service Data Objects
(SDO) programming,

For more information, see Chapter 2,
“Data Programming Model and Update
Framework.”

Can be developed with standard Java IDEs such
as BEA WebLogic Workshop, Eclipse, Intellid,
JBuilder, and others.

Easy-to-use approach to developing Java
programs that use external data.

Provides several access modes, including a
dynamic (untyped) interface through generic
SDO, a static (typed) interface, and an ad hoc
query interface.

Seamless ability to submit data changes.

Data Service
Control

A Java control extension (JCX) file for
accessing AquaLogic Data Services
Platform resources.

For more information, see Chapter 7,
“Accessing Data Services from WebLogic
Workshop Applications.”

Best suited for BEA WebLogic Workshop
applications, including portals, business process
workflows, and pageflows.

Leverages BEA WebLogic Workshop features for
working with controls, such as drag-and-drop
method and variable generation.

Provides an ad hoc query interface for a highly
dynamic approach to querying information.

Seamless ability to submit data changes.

Client Application Developer's Guide 1-1

Introducing

Tahle 1-3 AquaLogic Data Services Platform Access Models

Data Services for Client Applications

Access Description Advantages / When to use...
mechanism
Web Service A data service can be wrapped as a Web Makes standard Web service features available to
service, providing the data service with data services, such as WS-Security, WSDL
the benefits of web service features. descriptors, and more.
For more information, see Chapter 4, Makes data services usable from .NET
“Enabling AquaLogic Data Services applications, or other non-Java programs.
Applications for Web Service Clients.” Ideal for XML-based SOA architectures
JDBC/0DBC Client applications can use JDBC or Works with applications designed for JDBC

ODBC to access AquaLogic Data Services
Platform services using SQL queries. The
AquaLogic Data Services Platform JDBC
driver supports SQL-92.

For more information, see Chapter 5,
“Using SQL to Access Data Services.”

access, such as Cognos business intelligence
software and Crystal Reports.

Enables users to leverage existing SQL skills and
resources.

Limited to flat views of data.

Introducing Service Data Objects (SD0)

Service Data Objects (SDO), a specification proposed jointly by BEA and IBM, is a Java-based

1-8

architecture and API for data programming. SDO unifies data programming against heterogeneous
data sources. It simplifies data access, giving data consumers a consistent, uniform approach to using
data whether it comes from a database, web service, application, or any other system.

SDO uses the concept of disconnected data graphs. Under this architecture, a client gets a copy of
externally persisted data in a data graph, which is a structure for holding data objects. The client
operates on the data remotely; that is, disconnected from the data source. If data changes need to be
saved to the data source, a connection to the source is re-acquired. Keeping connections active for the
minimum time possible maximizes scalability and performance of applications.

To SDO clients, the data has a uniform appearance no matter where it came from or what its source
format is. Enabling this unified view of data in the SDO model is the Data Service Mediator. The
mediator is the intermediary between data clients and back-end systems. It allows clients to access
data services and invoke their functions to acquire data or submit data changes. AquaLogic Data
Services Platform serves as such a SDO mediator.

Client Application Developer's Guide

Introducing Service Data Objects (SDO)

On the client side, information takes the form of data objects. Data objects are the basic unit of
information prescribed by the SDO architecture. SDO has both static (typed) and dynamic (untyped)
interfaces for working with data objects.

Static interfaces provide a programmer-friendly model for getting and setting properties in a data
object. Accessors are generated for each property in the data type of a data service, for example
getCustomerName() and setCustomerName() for a Customer data object. Static interfaces depend
on a schema for type information.

The dynamic interface, on the other hand, is useful when a type is unknown or undefined at runtime.
Dynamic interface calls are in such forms as:

get (“CustomerName”)

set (“CustomerName”, “J. Dough”).
In keeping with the goals of a service-oriented architecture (SOA), data graphs are self-describing.
The metadata API enables applications, tools, and frameworks to inspect information on the data
contained in a data graph. The data is described by an XML schema, which describes the names of
properties, their types, and more.

For details on using SDO, see Chapter 2, “Data Programming Model and Update Framework.”

Update Frameworks and the Data Service Mediator

The SDO specification does not specify an update framework, but it does discuss the need for mediator
services, in general, to handle updates to data objects; the SDO specification leaves the details up to
implementors.

The SDO specification allows for many types of mediators, each intended for a particular type of query
language or back-end system. AquaLogic Data Services Platform provides a Data Service Mediator, a
server-side component of AquaLogic Data Services Platform’s XQuery processing engine that serves
as the intermediary between data services and client applications or processes.

The Data Service Mediator (the Mediator) facilitates updates to the various data sources that
comprise any data service. The Mediator’s service is the core mechanism for the data service update
framework. The Mediator handles updates to relational and non-relational data sources as follows:

o Relational data sources. Database management systems (RDBMS) such as IBM, Oracle,
Microsoft SQL Server, and any other SQL-92 compliant RDBMS are handled automatically.

Note: There are times when it may be convenient or necessary to override the default update
processing for a relational source. This is done through an update override class
associated with a data service. See the topic "Creating Update Overrides for Relational

Client Application Developer's Guide 1-9

Introducing Data Services for Client Applications

Data Sources" in the chapter Handling Updates Through Data Services in the Data
Services Developer’s Guide.

e Non-relational data sources. This includes such non-relational sources as Web services, XML

files, and flat files. Updates to non-relational data sources always require custom server-side
coding; specifically, an update override class. See the topic "Developing an UpdateOverride
Class" in the chapter Handling Updates Through Data Services in the Data Services Developer’s
Guide.

Typical Client Application Development Process

Developing a AquaLogic Data Services Platform-enabled client applications encompasses these steps:

1-10

1.

Identify the data services you want to use in your application. The Data Services Platform Console
can be used to find all services available on your WebLogic Server. The AquaLogic Data Services
Platform Console serves as a data service registry within the AquaLogic Data Services Platform
architecture; it shows available data services, including the specific functions and procedures that
each data service provides.

Choose the data access approach that best suits your needs. (Table 1-3, “AquaLogic Data Services
Platform Access Models,” on page 1-7 describes the advantages of the different access
mechanisms.) The approach you choose also depends on precisely how the data service has been
deployed.

For example, if the data service is hosted as a Web service, you can develop a Web service client
application using Java in conjunction with the service’s WSDL file.

Similarly, if the data service is incorporated in a portal, business process, or Web application,
your client application development process may take place entirely in the context of the
server, as a set of pageflows or other server-side artifacts.

Obtain the required JAR files (see Table 1-5, “AquaLogic Data Services Platform Java Archive
(JAR) Files,” on page 1-12). To use the typed data service and SDO interfaces, obtain the
AquaLogic Data Services Platform application’s generated Mediator client JAR file from your
AquaLogic Data Services Platform administrator or data architect. Or generate the file yourself by
following the steps outlined in “Generating a Static Mediator API JAR File” on page 3-5.

Note: The order of JAR files listed in the classpath is significant. The order listed in Table 1-5
should be followed.

Figure 1-4 provides a conceptual overview of the various approaches, highlighting some of the
relationships among various sub-systems and components. See the Data Services Developer’s Guide
for complete information about such server-side data service development.

Client Application Developer's Guide

..//datasrvc/server_side_update.html
../datasrvc/index.html
..//datasrvc/server_side_update.html

Typical Client Application Development Process

Figure 1-4 Types of AquaLogic Data Services Platform Client Applications

&

J

Client Applications Data Services Layer

SDO

ADO.NET /
/_\ Application

DataSet

Java
Application =
Data Service 1
Mediator APl p—— UpdateOverride

performChange()
invoke()
invokeProcedure()

Browser- invoke.jpd()
based (JSP, ¢———» Web server
Portal) DSP
" XQuery
Java Web Data Service 2 Engine

services
client
Web service

™ Data Service control

TJRQeEm O

End-user
JDBC/ODBC
query tool

Can be invoked from JSPs, Portal,

SCECH JPDs running on WebLogic Server.
Used as the basis to generate:
-ADO.NET-enabled web service
-Java-based web service

Development Resources

Client application developers typically work with a small set of APIs, contained in JAR files. The APIs
are primarily described through Javadocs (see “AquaLogic Data Services Platform Mediator API

Javadoc” on page 1-13).

Runtime Client JAR Files

AquaLogic Data Services Platform APIs are contained in the packages listed in Table 1-5. These files
need to be referenced by the local classpath. The order of files is significant and should be followed.

Client Application Developer's Guide 1-1

Introducing Data Services for Client Applications

Table 1-5 Aqualogic Data Services Platform Java Archive (JAR) Files

Name Description Location

[App]-1d-client.jar Contains generated typed (Provided by your AquaLogic Data Services
interfaces for data services ~ Platform administrator.)
and their data types (static
data APIs). The name of the
file is prefixed by the name of
the AquaLogic Data Services
Platform application from
which the static interfaces
are generated.

Such an application-specific
JAR file is not required if the
only interface to AquaLogic
Data Services Platform
routines is through an
untyped interface using
generic SDO.

ld-client.jar The dynamic, or untyped, <bea_home>\weblogic8l\liquiddata
data service APIs, including ~ \1ib\
generic data service
interfaces and ad hoc query
interfaces.

wlsdo.jar The interfaces definedinthe <bea_home>\weblogic81l\liquiddata
SDO specification, including \1ib\
untyped data interfaces and
data graph interfaces.

weblogic.jar The common WebLogic APIs. <bea_home>\weblogic8l\server\lib
\
xbean.jar XMLBean classes and <bea_home>\weblogic8l\server\lib
xqrl.jar interfaces on which the \
wlxbean.jar AquaLogic Data Services
Platform SDO

implementation relies. Also

enables XPath expressionsin

untyped data accessors. 1

1-12 Client Application Developer's Guide

Typical Client Application Development Process

1. A “query too complex” exception is raised if the xqrl.jar and wlxbean. jar files are not in
the JVM’s classpath when an XPath expression is executed.

Aqualogic Data Services Platform Mediator API Javadoc

The AquaLogic Data Services Platform Mediator API describes the routines needed by AquaLogic
Data Services Platform client applications to invoke various AquaLogic Data Services Platform
routines.

Client application developers will find Javadoc helpful for creating client applications that invoke
data service routines. Data services developers and architects will find the Javadoc useful for
understanding how to customize update behavior.

You can find javadoc for the AquaLogic Data Services Platform 2.5 and 2.1 Mediator API at:

http://edocs.bea.com/aldsp/docs25/javadoc/index.html

Client applications built on earlier versions of AquaLogic Data Services Platform can continue to use
the 2.0.1 mediator API routines. These are described in a Javadoc named javadoc-dsp201 and is
available at:

http://edocs.bea.com/aldsp/docs25/javadoc-dsp201/index.html

Javadoc is also provided in ZIP file format; it is available for download from the AquaLogic Data
Services Platform e-docs Web site:

http://edocs.bea.com/aldsp/docs25/index.html

Performance Considerations

Data service performance is the result of the end-to-end components that make up the entire system,
including:

e Data service design. The number of data sources, complexity of logical data source
consolidation, and other data service design considerations can affect performance.

o Number of clients accessing the data service. Number of simultaneous clients can affect
performance.

o Performance of the underlying data sources. When data services access underlying data the
availability and availability and performance of those systems can affect performance.

e Network topology. Overall available bandwidth must be measured against the number of
applications running on the WebLogic Server, number of other applications in general
consuming network bandwidth (can affect client response times).

Client Application Developer's Guide 1-13

../javadoc/index.html
../javadoc-dsp201/index.html
../index.html

Introducing Data Services for Client Applications

1-14

o Hardware resources. The number of CPUs, processing power, memory allocation, and other
factors for each and every platform throughout the system, client and server alike, can affect
performance.

Before creating a client application for a data service, it is recommended that you benchmark
performance of each underlying data source, and then benchmark the performance of the data service
as you develop it. Use load-testing tools to determine the maximum number of clients that your data
service can support.

In addition, you can use AquaLogic Data Services Platform’s auditing capabilities to instrument your
code, thereby gaining performance profile information that you can use to identify and resolve
performance problems if they occur. For detailed information on AquaLogic Data Services Platform
audit capabilities see AquaLogic Data Services Platform Administration Guide.

Client Application Developer's Guide

../admin/index.html

CHAPTERa

Data Programming Model and Update
Framework

BEA AquaLogic Data Services Platform implements the Service Data Objects (SDOs) as its data
client-application programming model. SDO is an architecture and set of APIs for working with data
objects while disconnected from their source. In AquaLogic Data Services Platform, SDOs — whether
typed or untyped data objects — are obtained from data services through Mediator APIs or through
Data Service controls. (See “Introducing Service Data Objects (SDO)” on page 1-8.)

Client applications manipulate the data objects as required for the business process at hand, and then
submit changed objects to the data service, for propagation to the underlying data sources. Although
the SDO specification does not define one, it does discuss the need for mediator services, in general,
that can send and receive SDOs; the specification also discusses the need for handling updates to data
sources, again, without specifying an implementation: The SDO specification leaves the details up to
implementors as to how mediator services are implemented, and how they should handle updates to
data objects.

As discussed in “Update Frameworks and the Data Service Mediator” on page 1-9, AquaLogic Data
Services Platform’s Mediator is the process that not only handles the back-and-forth communication
between client applications and data services, it also facilitates updates to the various data sources
that comprise any data service.

This chapter includes information about AquaLogic Data Services Platform’s implementation of the
SDO data programming model, as well as its update framework.

Data Services Platform and Service Data Objects (SDO0s)

When you invoke a data service’s read or navigation function (through the Data Service Mediator API
or from a Data Service control), the data service returns a data graph comprising one or more data

Client Application Developer's Guide 2-1

Data Programming Model and Update Framework

2-2

objects. Data objects and data graphs are two fundamental artifacts of the SDO data programming
model. As shown in Figure 2-1, a data graph comprises:

— Aroot object that typically corresponds to the root data type of a data service’s return type.
— One or more data objects.
— A change summary.

— Metadata about the data objects; for example, the XML structure of a "CUSTOMER,"
comprising a LAST_NAME and an EMAIL,_ADDRESS.

Each of these can be described in more detail, as follows:

e Data Graph. A data graph is a data type, the primary construct for SDO-based data

programming,. It is a data structure that serves as something of a container for related data
objects. Data graphs encompass the data objects as instantiated from the data service, and
track all changes made to those data objects.

Change Summary. An object that tracks changes to data objects. A change summary exists only
in the context of an associated data graph. As changes are made to the data objects that
comprise the data graph — adds, deletes, or changes to the data objects or any of their
properties — the changes are captured in the change summary.

The change summary is used by the Mediator (in conjunction with a logical data service’s
decomposition map) to derive the update plan and ultimately, to update data sources. The
change summary submitted with each changed SDO remains intact, regardless of whether or
not the submit() succeeds, so it can support rollbacks when necessary.

Data Object. A data object is a structure for containing property values. Properties can be
simple types or complex types.

— Simple types. Simple types comprise primitive data types, such as string or int, and
correspond to leaf nodes in XML document trees.

— Complex types. Complex types correspond to branch nodes in an XML document tree and
may contain other data objects.

Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

Figure 2-1 Client Applications and Data Service Mediator Send and Receive Data Graphs

CUSTOMERDataGraph

CUSTOMERDoCument

CUSTOMERID = '"CUSTOMERO"

clientApp.java
PP LAST_NAME = "smith"”

r
ORDERS*

[—ORDERID = 2251

" [ITEMs*
H <=changeSummary=

<CUSTOMER com ref="{CUSTOMER[1]">
CHANGESUMMARY <FIRST_NAME>J. B </IFIRST_NAME>
<LAST_NAME=Nimble</LAST_NAME=

</CUSTOMER=

CUSTOMER
<fchangeSummany=

[~ LAST_NAME

[EMAIL_ADDRESS
A

Data Service Mediator

Data Services Layer

Data Sources é

Table 2-2 summarizes the various SDO data programming artifacts and lists an example of each (as

shown in Figure 2-1).

Table 2-2 Data Graph Artifacts and Examples

Data Graph and Related Artifacts Example

DataGraph CUSTOMERDataGraph
DataObject CUSTOMERO, ORDERS

Root Object CUSTOMERDocument
ChangeSummary CHANGESUMMARY

Property CUSTOMERID, LAST NAME
Simple Type CUSTOMERID

Client Application Developer's Guide

Data Programming Model and Update Framework

2-4

Tahle 2-2 Data Graph Artifacts and Examples

Data Graph and Related Artifacts Example

Complex Type ORDERS

Metadata <CUSTOMER>
<LAST NAME></LAST NAME>
<EMAIL ADDRESS/>
</CUSTOMER>

Static and Dynamic Data APIs

SDO specifies both static (typed) and dynamic (untyped) interfaces for data objects:

o Static. The static data API is an XML-to-Java API binding that contains methods that
correspond to each element of the data object returned by the data service. These generated
interfaces provide both getters and setters: getCustomer() and setCustomer(). For examples
see Table 2-5, “Static (Typed) Data API Getters and Setters,” on page 2-7.

e Dynamic. The dynamic data API provides generic getters and setters for working with data
objects. Elements are passed as arguments to the generic methods. For example,
get("Customer") or set("Customer").

The dynamic data API can be used with data types that have not yet been deployed at development
time.

Table 2-3 summarizes the advantages of each approach.

Tahle 2-3 Static and Dynamic Data APIs

Data Model Advantages...

Static Data API e EKasy-to-implement interface; code is easy to read and maintain.
e Compile-time type checking,
e Enables code-completion in BEA WebLogic Workshop Source View.

Dynamic data API e Dynamic; allows discovery.
¢ Runtime type checking.
e Allows for a general-purpose coding style.

Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

Static Data API

SDO’s static data API is a typed Java interface generated from a data service’s XML schema definition.
It is similar to JAXB or XMLBean static interfaces. The interface files, packaged in a JAR, are typically
generated by the data service developer using WebLogic Workshop, or by using one of the provided
tools (see “Developing Static Web Service Clients” on page 4-11 for more information).

The generated interfaces extend both the dynamic data API (specifically, the DataObject interface)
and the XmlObject interface. Thus, the generated interfaces provide typed getters and setters for all
properties of the XML datatype.

An interface is also generated for each complex property (such as CREDIT and ORDER shown in
Figure 2-4), with getters and setters for each of the properties that comprise the complex type.

In addition, for properties that may have multiple occurrences, getters and setters are also generated
for manipulating arrays and array elements. A multiple-occurring property is an XML schema element
that has its maxOccurs attribute set to either unbounded or greater than one. In the DSP Console
Metadata Browser, such elements are flagged with an asterisk—for example, ORDER* and POITEM*
(see Figure 2-4) indicate that an array or order data objects (ORDERS]]) will be returned. For results
involving repeating objects, you can cast the root element to an array of returned objects
(datatypename(])

Note: In prior releases of Data Services Platform, an "ArrayOf..." schema element was created to
serve as a container for array types returned as part of a Data Graph. Some references to the
ArrayOf mechanism may remain in code samples and documentation.

As an example of how static data APIs get generated, given the CUSTOMER data type shown in
Figure 2-4, generating typed client interfaces results in:

e CUSTOMER, CUSTOMERDocument, CREDIT, ORDER, and POITEM interfaces, each of which
includes getters, setters, and factory classes (for instantiating static data objects and their
Properties).

o An interface for the CUSTOMERNAME string attribute.

o Getters and setters for working with members of arrays of CREDIT, ORDER, and POITEM
elements.

Client Application Developer's Guide 2-5

Data Programming Model and Update Framework

Figure 2-4 CUSTOMER Return Type Displayed in DSP Console’s Metadata Browser

General ‘ Dependencies | Where Used | Properties | Return Type

This shows the retumn type of D3 function

CUSTOMER

#-@ CUSTOMERID xs:int

@ CUSTOMERNAME xa-string

o CREDIT*

@ CREDITSCORE xs:int
@ CREDITRATING xs:string

&) ORDERID xs: it
© CUSTOMERID xs:int
@ POITEM *
ORDERID xs:int
) KEY xsint
@ ITEMNUMBER ? xstint
@ QUANTITY 2 xscint

When you develop Java client applications that use SDO’s static data APIs, you will import these
XMLBeans-generated typed interfaces into your Java client code. For example:

import appDataServices.AddressDocument;

The SDO API interfaces use XMLBeans for object serialization and deserialization. As a client
application developer, you rarely need to know such details. However, developers who are integrating
AquaLogic Data Services Platform with WebLogic Integration workflow components (JPDs, or Java
process definitions) will need to modify the default serialization-deserialization in their JPD code that

uses data objects. For more information, see Chapter 10, “Using Workflow with AquaLogic Data
Services Platform-Based Applications.”

Since AquaLogic Data Services Platform uses XMLBeans, many features of the underlying XMLBeans

technology are available in SDO as well. For example, DataObjects can be cast to Strings using the
XmlObjects toString() method, for printing to output.

2-6 Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

Table 2-5 lists static data API getters and setters.
Table 2-5 Static (Typed) Data API Getters and Setters

Static Data API (Generated)

Description

Examples

Type getpropertyName ()

Returns the value of the
property. A static
getPropertyName() method is

getCUSTOMER () ,
getCUSTOMERNAME () ,
getCREDITRATING (),

generated for each attribute or getCREDITSCORE ()
element that has a single
occurrence.

Type[] For multiple occurrence getCREDITArray ()

getpPropertyNameArray ()

elements, returns all
PropertyName elements.

Type
getpropertyNameArray (
int PropertylIndex)

Returns the PropertyName
child element at the specified
index.

getCREDITArray (int),
setCREDITSCORE (int)

void setpropertyName (Type
newValue)

Sets the value of the property to
the newValue. Generated when
PropertyName is an attribute or
an element with single

setCUSTOMER (CUSTOMER) ,
setCUSTOMERNAME (String),
setCREDITRATING (String)

occurrence.
void Sets all PropertyName setCREDITArray (CREDIT[])
setpPropertyNameArray (elements.

Type[] newValue)

void Sets the PropertyName child setCREDITArray (int,

setpPropertyNameArray (
Type newValue, int

element at the specified index.

CREDIT)

PropertyIndex)
boolean Determines whether the isSetCustomerStreetAddre
isSetprropertyName () PropertyName element or ss2()

attribute exists in the
document. Generated for
optional elements and
attributes. (An optional
element has a minOccurs
attribute set to 0; an optional
attribute has a use attribute set
to optional.)

Client Application Developer's Guide

2-1

Data Programming Model and Update Framework

Table 2-5 Static (Typed) Data API Getters and Setters

Static Data API (Generated)

Description

Examples

void Inserts the specified insertNewCREDIT (int)
insertpropertyName (int PropertyName child element at

index, PropertyNameType the specified index.

newValue)

int Returns the current number of sizeOfCREDITArray ()

sizeOfPropertyNameArray (

)

property child elements.

void unSetpPropertyName ()

Removes the element or
attribute of PropertyName from
the document. Generated for
elements and attributes that are
optional. In schema, and
optional element has an
minOccurs attribute set to 0; an
optional attribute has a use
attribute set to optional.

unSetCustomerStreetAddre

ss2 ()

void
removePropertyName (int
PropertyIndex)

Removes the PropertyName
child element at the specified
index.

removeCREDIT (int)

void addpropertyName (Adds the specified addNewCREDIT(),
PropertyNameType PropertyName tothe end ofthe addNewCUSTOMER()
newvalue) list of PropertyName child

elements.
boolean Determines whether the isSetCustomerArray (3)

isSetprropertyNameArray (i
nt PropertyIndex)

PropertyName element at the
specified index is null.

void
unsetPropertyNameArray (
int PropertyIndex)

Sets the value of PropertyName
element at the specified index
to null.

Note: After you call unset
and then call set, the

return value is false.

unSetCustomerArray (3)

Client Application Developer's Guide

XML Schema-to-Java Type Mapping Reference

AquaLogic Data Services Platform client application developers can use the Data Services Platform
Console to view the XML schema types associated with data services (see Figure 2-4, “CUSTOMER
Return Type Displayed in DSP Console’s Metadata Browser,” on page 2-6). The Return Type tab
indicates the data type of each element—string, int, or complex type, for example. The XML schema
data types are mapped to data objects in Java using the data type mappings shown in Table 2-6.

Table 2-6 XML Schema to Java Data Type Mapping

Data Services Platform and Service Data Objects (SDOs)

XML Schema SDO Java Type XML Schema Type SDO Java Type

Type

xs:anyType commonj.sdo.DataO xs:integer java.math.BigInteger
bject

xs:anySimp String xs:language String

leType

xs:anyURI String xs:long long

xs:base64B bytel] xs :Name String

inary

xs:boolean boolean xs :NCName String

xs:byte byte xs:negativelIntege java.math.BigInteger

r

xs:date java.util.Calenda x5 :NMTOKEN String
r (Date)

xs:dateTim java.util.Calenda xs :NMTOKENS String

e r

xs:decimal Jjava.math.BigDeci xs:nonNegativeInt java.math.BigInteger
mal eger

xs:double double xs:nonPositiveInt Jjava.math.BigInteger

eger

xs:duratio String xs:normalizedStri String

n ng

xs:ENTITIE String xs :NOTATION String

S

Client Application Developer's Guide

2-9

Data Programming Model and Update Framework

2-10

Tahle 2-6 XML Schema to Java Data Type Mapping

XML Schema SDO Java Type XML Schema Type SDO Java Type

Type

xs:ENTITY String xs:positiveIntege Jjava.math.BigInteger

r
xs:float float xs:QName javax.xml.namespace.
OName

xs:gDay java.util.Calenda xs:short short
r

xs:gMonth java.util.Calenda xs:string String
r

xs:gMonthD java.util.Calenda xs:time java.util.Calendar

ay r

xs:gYear java.util.Calenda xs:token String
r

xs:gYearMo java.util.Calenda xs:unsignedByte short

nth r

xs:hexBina Dbytel] xs:unsignedInt long

ry

xs:1ID String xs:unsignedLong java.math.BigInteger

xs:IDREF String xs:unsignedShort Int

xs:IDREFS String xs:keyref String

xs:int int

Dynamic Data API

The dynamic data API has generic property getters and setters, such as set() and get(), as well as
getters and setters for specific Java data types (String, Date, List, BigInteger, and BigDecimal, for
example). Table 2-7 lists representative APIs from SDO’s dynamic data API. The propertyName
argument indicates the name of the property whose value you want to get or set; propertyValue is the
new value. The dynamic data API also includes methods for setting and getting a DataObject’s
property by indexValue. This includes methods for getting and setting properties as primitive types,
which include setInt(), setDate(), getString(), and so on.

Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

Unlike the static data API, which eliminates underscores in method names generated from types that
might include such characters ("LAST _NAME" results in a getLASTNAME() method, for example),
the dynamic data API requires that field names be referenced precisely, as in get("LAST_NAME"). As
an example, assuming that you have a reference to a CUSTOMER data object, you can use the dynamic
data API to get the LAST_NAME property as follows:

String lastName = (String) customer.get ("LAST NAME");

For a complete reference of the dynamic data API, see the AquaL.ogic Data Services Platform Javadoc
(“AquaLogic Data Services Platform Mediator API Javadoc” on page 1-13). For documentation on the

SDO 1.0 API see the DataObject interface in the commonj.sdo package. It is available at:

http://dev2dev.bea.com/technologies/commonij/sdo/index.jsp

Table 2-7 lists dynamic data API getters and setters.

Table 2-7 Dynamic (Untyped) Data AP Getters and Setters

Dynamic Data API Description Example
get (int PropertyIndex) Returnsthe PropertyName get (5)
child element at the
specified index.
set (int PropertyIndex, Setsthe value of the set (5, CUSTOMER3)
Object newValue) property to the newValue.
set (String Sets the value of the set ("LAST NAME", "Nimble")
PropertyName, Object PropertyName to the
newValue) newValue.
set (commonj.sdo.Prope Sets the value of set (LASTNAME, "Nimble")

rty PropertyName,
Object newValue)

PropertyName to the
NewValue

getType (String
PropertyName)

Returns the value of the
PropertyName. Type
indicates the specific data
type to obtain.

getBigDecimal ("CreditScore")

unset (int
PropertyIndex)

Sets the value of
PropertyName element at
the specified index to null.

unset (5)

Client Application Developer's Guide 2-11

http://dev2dev.bea.com/technologies/commonj/sdo/index.jsp

Data Programming Model and Update Framework

Table 2-7 Dynamic (Untyped) Data AP Getters and Setters

Dynamic Data API

Description

Example

unset (commonj.sdo.Pro
perty PropertyName)

Sets the value of the
specified PropertyName to
null.

unset (LASTNAME)

unset (String
PropertyName)

Sets the value of the
specified PropertyName to
null.

unset ("LAST NAME")

createDataObject (comm
onj.sdo.Property
PropertyName)

Returns a new DataObject
for the specified
containment property.

createDataObject (LASTNAME)

createDataObject (Stri
ng PropertyName)

Returns a new DataObject
for the specified
containment property.

createDataObject("LAST_NAME"
)

createDataObject (int
PropertyIndex)

Returns a new DataObject
for the specified
containment property.

createDataObject (5)

createDataObject (Stri
ng PropertyName,
String namespaceURI,
String typeName)

Returns a new DataObject
for the specified
containment property.

createDataObject ("LAST NAME"
,"http://namespaceURI here",
"String")

delete ()

Removes the object from its
container and unsets all
writeable properties.

delete (CUSTOMER)

XPath Support in the Dynamic Data API

One of the benefits of AquaLogic Data Services Platform’s use of XMLBeans technology is support for
XPath in the dynamic data API. XPath expressions give you a great deal of flexibility in how you locate
data objects and attributes in the dynamic data API’s accessors. For example, you can filter the results
of a get() method invocation based on data elements and values:

company.get ("CUSTOMER [1] /POITEMS/ORDER [ORDERID=3546353]")

The SDO implementation goes beyond basic XPath 1.0 support by adding zero-based array index
notation (".index_from_0") to XPath’s standard bracketed notation ([n]). As an example, Table 2-8

2-12 Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

compares the XPath standard and SDO augmented notations to refer to the same element, the first
ORDER child node under CUSTOMER (Table 2-8).

Table 2-8 XPath Standard and SDO Augmented Notation
XPath Standard Notation SDO Augmented Notation

get ("CUSTOMER/ORDER[1]") ; get ("CUSTOMER/ORDER. 0") ;

Zero-based indexing is convenient for Java programmers who are accustomed to zero-based counters,
and may want to use counter values as index values without adding 1.

AquaLogic Data Services Platform fully supports both the traditional index notation and the
augmented notation. However, note that the SDO pre-processor transparently replaces the zero-based
form with one-based forms, to avoid conflicts with elements whose names include dot numbers, such
as <myAcct.12>.

Keep in mind these other points regarding AquaLogic Data Services Platform’s XPath support:
e Expressions with double adjacent slashes ("//") are not supported. As specified by XPath 1.0,
you can use an empty step in a path to effect a wildcard. For example:
("CUSTOMER//POITEM")

In this example, the wildcard matches all purchase order arrays below the CUSTOMER root,
which includes either of the following:

CUSTOMER/ORDERS/POITEM

CUSTOMER/RETURNS/POITEM
Because this notation introduces type ambiguity (types can be either ORDERS or RETURNS), it
is not supported by the AquaLogic Data Services Platform SDO implementation.

o Attribute notation ("@") cannot be used to identify elements. According to the SDO
specification, the notation for denoting an attribute "@" can be used anywhere in the path
because attributes and elements are used interchangeably as properties. However, because
AquaLogic Data Services Platform implements SDO to XML data binding, the distinction
between attributes and elements must be preserved. Attribute notation can be used to identify
only the attributes that are in the AquaLogic Data Services Platform data type. For example,
the ID attribute of the following element:

<ORDER ID="3434">
is accessed with the following path:

ORDER/QID

Client Application Developer's Guide 2-13

Data Programming Model and Update Framework

2-14

Note: For more examples of using XPath expressions with SDOs, see “Step 2: Accessing Data Object
Properties” on page 3-26.

Obtaining Type Information about Data Objects

The dynamic data API returns generic data objects. To obtain information about the properties of a
data object, you can use methods available in SDO’s Type interface. The Type interface (located in the
commonj . sdo package) provides several methods for obtaining information, at runtime, about data
objects, including a data object’s type, its properties, and their respective types.

According to the SDO specification, the Type interface (see Table 2-9) and the Property interface (see
Table 2-10) comprise a minimal metadata API that can be used for introspecting the model of data
objects. For example, the following obtains a data object’s type and prints a property’s value:
DataObject o = ...;
Type type = o.getType() ;

if (type.getName () .equals ("CUSTOMER") {
System.out.println (o.getString ("CUSTOMERNAME")) ; }

Once you have an object’s data type, you can obtain all its properties (as a list) and access their values
using the Type interface’s get Properties() method, as shown in Listing 2-1.

Listing 2-1 Using SDO’s Type Interface to Obtain Data Object Properties

public void printDataObject (DataObject dataObject, int indent) {
Type type = dataObject.getType();
List properties = type.getProperties();
for (int p=0, size=properties.size(); p < size; p++) {
if (dataObject.isSet(p)) {
Property property = (Property) properties.get(p):;
// For many-valued properties, process a list of values
if (property.isMany()) {
List values = dataObject.getList (p);
for (int v=0; count=values.size(); v < count; v++) {
printValue (values.get (v), property, indent);
}
else { // Forsingle-valued properties, print out the value
printValue (dataObject.get (p), property, indent);
}

Client Application Developer's Guide

Data Services Platform and Service Data Objects (SDOs)

Table 2-9 lists other useful methods in the Type interface.
Table 2-9 Type Interface Methods

Method

Description

java.lang.Class getInstanceClass ()

Returns the Java class that this type represents.

java.lang.String getName ()

Returns the name of the type.

java.lang.List getProperties

Returns a list of the properties of this type.

Property getProperty (
java.lang.String propertyName)

Returns from among all Property objects of the
specified type the one with the specified name.
For example, dataObject.get("name") or
dataObject.get(dataObject.getType().getProperty
("name"))

java.lang.String getURI ()

Returns the namespace URI of the type.

boolean isInstance (
java.lang.Object object)

Returns True if the specified object is an instance
of this type; otherwise, returns false.

Table 2-10 lists the methods of the Property interface.

Table 2-10 Property Interface Methods

Method

Description

Type getContainingType ()

Returns the containing type of this property.

java.lang.Object getDefault ()

Returns the default value this property will have in
a data object where the property hasn't been set

java.lang.String getName ()

Returns the name of the property.

Type getType ()

Returns the type of the property.

Client Application Developer's Guide 2-15

Data Programming Model and Update Framework

2-16

Tahle 2-10 Property Interface Methods

Method Description

boolean isContainment () Returns True if the property represents by-value
composition.

boolean isMany () Returns True if the property is many-valued.

Role of the Mediator and SDOs

In AquaLogic Data Services Platform, data graphs are passed between data services and client
applications: when a client application invokes a read function on a data service, for example, a data
graph is sent to the client application. The client application modifies the content as appropriate—
adds an order to a customer order, for example—and then submits the changed data graph to the data
service. The Data Service Mediator is the process that receives the updated data objects and
propagates changes to the underlying data sources.

The Data Service Mediator is the linchpin of the update process. It uses information from submitted
SDOs (change summary, for example) in conjunction with other artifacts to derive an update plan for
changing underlying data sources. For relational data sources, updates are automatic. The artifacts
that comprise AquaLogic Data Services Platform’s update framework, including the Mediator, and
how the default update process works, are described in more detail in the Building Queries and Data
Views Handling Updates Through Data Services chapter.

Client Application Developer's Guide

../datasrvc/server_side_update.html

CHAPTERa

Accessing Data Services from Java
Clients

This chapter describes how your Java client applications can access data services. It covers the
following topics:

o Overview of the AquaLogic Data Services Platform Mediator API
e Generating a Static Mediator API JAR File

e Accessing Data Services Via WebLogic Server 9.2 Clients

e Step-by-Step: A Java Client Programming Example

e Examining a Java Client Application

Overview of the Aqualogic Data Services Platform
Mediator API

The BEA AquaLogic Data Services Platform Mediator API gives Java client application developers
eagy-to-use interfaces for using data service routines. To use the Mediator API, simply instantiate a
remote data service interface and invoke public methods on the interface. Public methods can include
read functions, navigation functions, and procedures.

The return type for the invocations depends on the type of method and whether the static or dynamic
interfaces are used, as follows:

e Read and navigation functions. When a read function or navigation function is invoked
through the Mediator API, the client application gets back information as a data graph that
comprises the data objects constructed by the data service.

Client Application Developer's Guide 3-1

Accessing Data Services from Java Clients

3-2

e Procedures. When a procedure is invoked through the Mediator API, the client application may

or may not get back an SDO, depending on the implementation details of the procedure as
configured for the data service.

The Mediator API provides both static and dynamic interfaces for working with data services.

e Static Mediator APIs. You can use the static mediator APIs to invoke functions on multiple

data services, then cast the acquired objects to the appropriate data types. Static Mediator APIs
are generated from a specific data service.

o Dynamic Mediator APIs. Use the dynamic mediator APIs to instantiate and invoke data service

functions and procedures by name.

The Mediator API also supports several advanced features, including:

o Ability to filter, sort, and truncate return values. Your client applications can organize or

limit returned results in several different ways using the Mediator API’s Filter and FilterXQuery
classes. For more information, see “Filtering, Sorting, and Fine-tuning Query Results” on
page 11-15.

o Ability to stream data service function results. The static and dynamic interfaces data

service materialize data service function call results as XML, in memory. However, in-memory
materialization is not always practical. The Mediator API offers several different
stream-oriented interfaces. For more information, see “Handling Large Result Sets with
Streaming APIs” on page 11-26.

o Ad hoc query interface. The Mediator API's PreparedExpression interface enables client

applications to invoke ad hoc XQuery expressions against data service results. Ad hoc queries
can return anything, including simple data. Simple data is not represented as DataObjects
(XmlObjects); however, in AquaLogic Data Services Platform ad hoc queries can return
DataObjects if the returned XML is structured correctly and the appropriate static SDO classes
are on the classpath. For more information, see “Using Ad Hoc Queries to Fine-tune Results
from the Client” on page 11-21.

The Mediator APIs are used to instantiate interfaces to data services and invoke data service functions
and procedures. Functions and procedures defined for a data service are available as methods in the
Mediator API.

The dynamic Mediator API classes and interfaces are in the following JAR file:

ld-client.jar

The Data Service Mediator package is named as follows:

com.bea.dsp.dsmediator.client

Client Application Developer's Guide

Overview of the Aqualogic Data Services Platform Mediator API

The API consists of the classes and interfaces listed in Table 3-1

Table 3-1 Aqualogic Data Services Platform Mediator API

Interface or Class Name Description

DataService Interface for data services that returns data as Data Objects. The
interface includes invoke() method for invoking read and navigation
functions; invokeProcedure() for invoking procedures; and submit()
method for submitting data object changes.

PreparedExpression Interface for preparing and executing ad hoc queries. An ad hoc query
is one that is defined in the client program, not in the data service.

DataServiceFactory Factory class for creating local interfaces to data services. Can be used
for dynamic data service instantiation and ad hoc queries.

StreamingDataService Interface for data services that returns data as a token stream.

StreamingPreparedExpression Interface for preparing and executing ad hoc query functions that
return information as a stream. An ad hoc query is an XQuery that is
passed as a string from within a client program (rather than in the data
service).

The static mediator API interface extends the static Mediator interface, as shown in this example of
a class declaration for a typed data service:

public class dataservices.Customer extends
com.bea.dsp.dsmediator.client.DataService { .. }

The static data service interface is in the SDO Mediator Client JAR files generated from an AquaLogic
Data Services Platform project.

The exception class for Mediator errors (SDOMediatorException) is in the following package:
com.bea.ld.dsmediator.client.exception

Exceptions that are generated by the data source (such as SQLException) are wrapped in an SDO
Exception, and can be accessed by calling getCause() on the SDOMediatorException.

Setting the Classpath

To develop Java-based client programs using the Mediator API, your development environment’s
classpath must include in the following order the JAR files listed in Table 1-5, “AquaLogic Data
Services Platform Java Archive (JAR) Files,” on page 1-12.

Client Application Developer's Guide 3-3

Accessing Data Services from Java Clients

3-4

In addition, to use static data APIs, you must include the <app-name>-1d-client.jar file (obtain
from your data service architect or administrator).

Note: The listed order is significant and must be followed. The <app-name>-1d-client.jar file
is not needed for dynamic SDO.

As an example, for a data service named Demo using static APIs, your classpath on a Microsoft
Windows operating system would include:

set CLASSPATH=%CLASSPATH%;Demo-ld-client.jar;
C:\bea\weblogic8l\server\lib\weblogic.jar;
:\bea\weblogic8l\liquiddata\lib\wlsdo.jar;
:\bea\weblogic8l\server\lib\xbean.jar;
:\bea\weblogic8l\server\lib\xqgrl.jar;
:\bea\weblogic8l\server\lib\wlxbean.jar;
:\bea\weblogic8l\liquiddata\lib\ld-client.jar;

Q QO QO o Q

This classpath assumes that the first item, Demo-1d-client.jar, is in the current directory and
that the BEA WebLogic home directory is: C: \bea\weblogic81. Modify the path to the locations
appropriate for your system, and change the name of bemo-1d-client.jar to the actual name of
the JAR file generated from your AquaLogic Data Services Platform-enabled application.

Mediator APl Summary and Reference

Client application developers can take two alternative approaches to working with SDOs:

e Use Mediator APIs, which encompass the SDO Update and SDO Meditator API listed in
Table 3-2.

e Use Data Service controls, a server-side Java class file that adheres to the Java Control
Extension (JCX) standard.

This chapter discusses the Mediator APIs and how to use in Java client applications. Data Service
controls are discussed in Chapter 7, “Accessing Data Services from WebLogic Workshop Applications.”

Client Application Developer's Guide

Generating a Static Mediator APl JAR File

Client application developers will use some combination of the APIs shown in Table 3-2, depending on
your application design and specific goals. Data service developers will also use the SDO Update API
(specifically, the UpdateOverride interface) to customize data service functionality.

Tahle 3-2 Data Service Mediator APls Package Reference

SDO Mediator APIs SDO Update APIs
Package com.bea.dsp.dsmediator.client com.bea.ld.dsmediator.update
Description DataServiceFactory and other classes. DataService, DataServiceMediatorContext,
StreamingDataService, and PreparedExpression DataServiceToUpdate, KeyPair,
interfaces. DataServiceMediator, and UpdatePlan
classes. UpdateOverride interface.
Usage note Instantiate remote interface to a data service. Submit changed data objects to data
service. Override default update processing
for a particular data service.
Location <bea_home>\weblogic81l\liquiddata\lib\ld-clie Same as for SDO Mediator APISs.
nt.jar
Javadoc e Mediator API Javadoc for AquaLogic Data Services ~ Same as for SDO Mediator APIs.

Platform versions 2.5 and 2.1
e Mediator API Javadoc for AquaLogic Data Services
Platform version 2.0.1

Both these documents can be accessed from the
AquaLogic Data Services Platform edocs home page:
http://edocs.bea.com/aldsp/docs25/index.html

Generating a Static Mediator APl JAR File

Client applications can access the classes representing a static data service interface using the JAR
(Java Archive) file generated from the AquaLogic Data Services Platform project. Client application
developers must obtain this JAR file (typically, from the data services architect or the AquaLogic Data
Services Platform administrator) and add the JAR file in the classpath of their development

environment.

The naming convention for the generated, static Mediator client JAR file is:

<AppName>-1ld-client.jar

Client Application Developer's Guide 3-5

http://edocs.bea.com/aldsp/docs25/javadoc/index.html
http://edocs.bea.com/aldsp/docs25/javadoc-dsp201/index.html
http://edocs.bea.com/aldsp/docs25/index.html

Accessing Data Services from Java Clients

Building the Client JAR

Once the data service application has been built into an EAR file, the client version of the data service
— the <AppName>-1d-client.jar file — can be generated from the EAR. The client version
includes wrapper classes that allow the client to call the data service functions through a dynamic or
a static APL.

The necessary JAR file can be generated in either of two ways:

e From WebLogic Workshop, with the top folder of the application selected, right-click and select
Build SDO Mediator Client from the pop-up menu. (This menu option is available from the root
folder of the application only.)

e From the command prompt of the data service development machine by using the Ant script, as
follows:

a. At a command prompt, navigate to the directory.

b. Execute the shell or command file script to set the environment for your machine. For
Windows use setWLSEnv . cmd; for UNIX use setWLSEnv. sh.

These scripts can be found in the following location:

<beahome>/weblogic81l/server/bin

¢. Run the Ant script, passing in the name of a temporary directory as a parameters, as shown
below:

ant -Doutdir=<output-directory> -Darchive=<archive>
-Dtmpdir=\tmp\clientbld -fld clientapi.xml

For example:

ant -Doutdir="c:\myApp"
=Darchive=C:\bea\user projects\applications\myApp.ear -Dtmpdir=c:\temp
-fld clientapi.xml

Executing the command as shown in this example produces the client JAR file, as follows:

C:\myApp-ld-client.jar

3-6 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

Table 3-3 describes the available arguments that can be used to generate a static client JAR mediator.

Table 3-3 Generating a Static Client JAR Mediator from a Data Services EAR

Argument Description

<archive> Fully qualified name of the generated EAR file. The generated name is

derived from the name of the application.

<outdir> Directory in which to generate the client JAR file. Optional parameter;

if unspecified, the current directory is used.

<tmpdir> Directory in which to produce the temporary, expanded EAR file

contents. Although this parameter is optional, BEA recommends that

you always create and specify a temporary directory, since all contents
will be deleted at the end of the process. If <tmpdir> is not specified,
the current directory will be used.

Using the Data Service Mediator API

To use the Data Service Mediator API to invoke data service functions and procedures, create a Java
class as follows:

1.
2.

Import the com.bea.dsp.dsmediator.client package.

Create a JNDI context for the WebLogic Server that hosts the AquaLogic Data Services Platform
application.

Note: For more information, see “Obtaining a WebLogic JNDI Context for AquaLogic Data
Services Platform” on page 3-8. For complete information about WebLogic Server
contexts, see:

http://e-docs.bea.com/wls/docs81l/javadocs/weblogic/jndi/WLInitialContextFactory.html

Instantiate remote interfaces for the data service. You can use either a static or dynamic mediator
API interface. The dynamic interface in that the data service name is passed as an argument. For
example:

DataService ds = DataServiceFactory.newDataService (
JndiCntxt, "RTLApp", "ld:DataServices/RTLServices/Customer") ;

Here is the same operation using a static interface:

CUSTOMER ds = CUSTOMER.getInstance (JndiCntxt, "RTLApp"):;

Invoke a function or procedure on the data service.

Client Application Developer's Guide 3-7

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContextFactory.html

Accessing Data Services from Java Clients

3-8

The following is the operation using the dynamic interface to invoke a read function on a data
service:

Object[] params = new Object { "CUSTOMER1" };
DataObject[] myCustomer =
(DataObject[]) ds.invoke ("getCustomerByCustID", params);

Here is the same operation using a static interface:

CUSTOMERDocument myCust = ds.getCustomerByCustID ("CUSTOMERL") ;

Obtaining a WebLogic JNDI Context for AquaLogic Data
Services Platform

Java client applications use JNDI to access named objects, such as data services, on a WebLogic
Server. A single JNDI call is made to obtain an initial context, which is then passed to the data services
factory class. Once you have the server context, you can invoke functions and acquire information from
data services.

To get the WebLogic Server context, set up the JNDI initial context by specifying the
INITIAL_CONTEXT_FACTORY and PROVIDER_URL environment properties:

o The value of INITIAL_CONTEXT FACTORY should be set to:

weblogic.jndi.WLInitialContextFactory

o The value of PROVIDER_URL should reflect the location (URI) of the WebLogic Server hosting
AqualLogic Data Services Platform (for example, t3://localhost:7001).

Alocal client (that is, a client that resides on the same computer as the WebLogic Server) may bypass
these steps by using the settings in the default context obtained by invoking the empty initial context
constructor; that is, by calling new InitialContext().

At this stage, the client may also authenticate itself by passing its security context to the
corresponding JNDI environment properties SECURITY_PRINCIPAL and
SECURITY_CREDENTIALS.

The code excerpt below is an example of a remote client obtaining a JNDI initial context using a
hashtable.

Hashtable h = new Hashtable():;

h.put (Context.INITIAL CONTEXT FACTORY,
"weblogic.jndi.WLInitialContextFactory");

h.put (Context.PROVIDER URL,"t3://machinename:7001") ;
h.put (Context.SECURITY PRINCIPAL, <username>);

Client Application Developer's Guide

Generating a Static Mediator APl JAR File

h.put (Context.SECURITY CREDENTIALS, <password>) ;

InitialContext jndiCtxt =

new InitialContext (h);

Be sure to replace the machine name and username/password with values appropriate for your

environment.

Invoking Functions and AquaLogic Data Services Platform

Procedures

The Dynamic Mediator API provides two different methods (see Table 3-4) for invoking functions and

procedures, respectively:

e invoke(). Dynamically invokes read and navigate functions on a data service. When a read or
navigate function is invoked (getCustomerByCustID(), for example), the function returns an

array of data objects.

o invokeProcedure(). Use invokeProcedure() to invoke procedures that have been registered
with a data service. You can use the dynamic Mediator API to invoke a AquaLogic Data Services
Platform procedure as in the following example, passing in the name of the procedure:

ds.invokeProcedure ("updateCustomerAddress", params);

In your code, you must use the appropriate method call — invoke() or invokeProcedure() — for the
functions and procedures, respectively, to avoid raising exceptions, as noted in Table 3-4.

Tahle 3-4 Method Signature of the Data Service Mediator API (Client Mediator API)

Method Signature

Description

invoke (String method, Object][]

args)

Method to invoke a data service’s read and
navigate functions. Using invoke() with a
AquaLogic Data Services Platform procedure
raises an exception.

invokeProcedure (String method,

Object[] args)

Method to invoke a data service’s procedures
(stored procedures, Web services, and Java,
code that have side effects). Using
invokeProcedure() with a read or navigation
function raises an exception.

submit (DataObject sdo)

Method to submit changes to the Mediator
service. Assumes that a change summary exists
as part of the DataObject.

Client Application Developer's Guide 3-9

Accessing Data Services from Java Clients

3-10

For more information, see information on Data Services API Javadocs at “AquaLogic Data Services
Platform Mediator API Javadoc” on page 1-13.

When using static mediator APIs, the distinction between invoking AquaLogic Data Services Platform
functions and procedures is hidden. Read and navigate functions, as well as procedures, are named
based on the function name, with no indication as to whether (or not) they are side-effecting
procedures.

Static and Dynamic Mediator APIs

Once you have obtained an initial context to the server containing AquaLogic Data Services Platform
artifacts, you can instantiate a remote interface for a data service. If you know the data service type
at development time, you can use the static data service interface, which uses static data objects.

Alternatively, the dynamic interface lets you use data services specified at runtime. The static
interface gives you a number of advantages, including type validation and code completion when using
development tools, such as Eclipse or your favorite development tool.

Using a Static Data Service Mediator API

To use the static data service interface, you must have the SDO Mediator Client JAR file that was
generated from the specific AquaLogic Data Services Platform-enabled application. (If you do not
have the JAR file, contact your administrator to acquire it.)

Add the JAR file to your client application’s build path and import the data service package into your
Java class file that will be the basis for your client application.

For example, to use a data service named Customer in a AquaLogic Data Services Platform project
named customerApp, use the following import statement:

import customerapp.Customer;

With the imported factory classes and interfaces available in your Java application, you can instantiate
the interface to the specific data service by invoking the getInstance() method with the following
arguments:

o The server context object

o The name of the AquaLogic Data Services Platform application that is deployed on the server

Once you have a remote data service instance, you can invoke functions and procedures on the data
service. For example, consider the data service shown in Figure 3-5.

Client Application Developer's Guide

Figure 3-5 Customer Data Service

Generating a Static Mediator APl JAR File

[J{F~ Customer Data Service
B @ CUSTOMER_PROFILE retaierType:CUSTOMER_PROFIE_TYFE
4P aetCustomer @ CustomerD xsdistring
@ Firsthame xsdistring
ey o et CUstoMErBYCUSED _
@ Lasthiame xsdistring
D © Customersince xsdidate
e @ Emsiliaddress xsdistring
e cetCustomerpyZi @ Telephonehiumber ? xsdistring

@ 55N 7 wsdrstring
@ EirthDay xsd:date
@ DefaulshipprentMethiod xsd:string
@ EmailNatfication xsd:short
@ OrnlineStatement xsd:short
@ LognID xsd:string
Bl ADDRESS * retailerType:ADDRESS_TYPE
@ AddvessID xsdistring
getApolOrder @ CustomerlD xsdistring
@ FirstMame: xsd:string
D Lasthame xsdistring
@ Stresthddress_1 xsdistring
D Strestiddress_2 7 xsdistring

Iz
il
I
i

@ City xsdistring

@ state xsdistring

® ZipCods xsdistring
getCreditCard @ Country xsdistring

1 DayPhone ? xsd:string

@ EveningPhone ? xsd:string

@ Aliss 7 xsdistring
getElecOrder @ Status? xsdistring
® IsDefault xsd:short

ElecOrder E

Based on the data service shown in Figure 3-5, the generated artifacts for a typed client interface
would include static methods for both dynamic data APIs and the static Mediator APIs (see

Listing 3-1). As shown in Listing 3-1, each read and navigate function from the data service results in
a static data API method, such as getCustomer() and getApplOrder().

Listing 3-1 Generated Static Methods of the Customer DataService Class

getCustomer ()

getCustomerByCustID (String)
getCustomerByCustIDToFile (String, String)
getCustomerByZip (String)
getCustomerByZipToFile (String, String)
getCase (CUSTOMERPROFILEDocument)
getCreditCard (CUSTOMERPROFILEDocument)
getApplOrder (CUSTOMERPROFILEDocument)
getElecOrder (CUSTOMERPROFILEDocument)
getCustomerByLoginID (String)

Client Application Developer's Guide 3-11

Accessing Data Services from Java Clients

See “Static Data API” on page 2-5 for more information about generated SDO data API methods, such
as those listed above (getCustomer() and get CustomerByLoginID(), for example).

There are several DataService methods that are part of the dynamic API which are inherited by all
static DataService classes. These include:

o Submit() method. The submit() method takes a DataObject as its parameter. (The static
submit () would take Customer.) In either style, though, a submit() method is used to save
changes to the data objects served by the data service.

o The prepareExpression() method. The prepareExpression() method lets you create ad hoc
queries against the data service.

Listing 3-2 shows a small but complete example of using the static interface.

Listing 3-2 Mediator Client Sample Using the Static Interface to a Data Service

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import dataservices.rtlservices.Customer; //
import retailerType.CUSTOMERPROFILEDocument;

public class MyTypedCust
{
public static void main(String[] args) throws Exception {
//Get access to Aqualogic Data Services Platform data service
Hashtable h = new Hashtable();
h.put (Context.INITIAL CONTEXT FACTORY,
"weblogic.jndi.WLInitialContextFactory");

h.put (Context.PROVIDER URL,"t3://localhost:7001");
h.put (Context.SECURITY PRINCIPAL, "weblogic");
Context context = new InitialContext (h);

// Use the typed Mediator API

Customer customerDS = Customer.getlInstance (context, "RTLApp");

CUSTOMERPROFILEDocument [] myCust =
customerDS.getCustomerByCustID ("CUSTOMER2") ;

System.out.println (" CUST" + myCustomer);

3-12 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

Using a Dynamic Mediator API

The dynamic data service interface is useful for programming with data services that are unknown or
do not exist at development time. It is useful, for example, for developing tools and user interfaces that
work across data services.

With the dynamic interface, names of specific data services are passed as parameters in the generic
get() and set() method calls. For example:

DataService ds = DataServiceFactory.newDataService (
context, "RTLApp", "ld:DataServices/RTLServices/Customer") ;

Object[] params = {"CUSTOMER2"};
DataObject myCustomer = (DataObject)ds.invoke ("getCustomerByCustomerID",

params) ;
System.out.println (myCustomer.get ("Customer/LastName")) ;

A data object returned by the dynamic interface can be downcast to a static object, as follows:
DataService ds =
DataServiceFactory.newDataService (
context, "RTLApp", "ld:DataServices/Customer");
Object[] params = {"CUSTOMER2"};
CUSTOMERDocument myCustomer =
(CUSTOMERDocument) ds.invoke ("getCustomer", params);

System.out.println (myCustomer.getCUSTOMER () .getCUSTOMERNAME ()) ;

Note: This code example only works if the generated static SDO mediator JAR is on the
classpath at compile time and at runtime.

For a dynamic data service, use the newDataService() method of the DataServiceFactory class. In the
method call, pass the following arguments:

o The server context object.
o The name of the AquaLogic Data Services Platform application that is deployed on the server.

o The AquaLogic Data Services Platform URI pointing to the location of the data service inside
the AquaLogic Data Services Platform application.

Listing 3-3 shows a full example.

Listing 3-3 Mediator Client Sample Using the Dynamic Mediator API Data Service Interface

import com.bea.ld.dsmediator.client.DataService;
import com.bea.ld.dsmediator.client.DataServiceFactory;

Client Application Developer's Guide 3-13

Accessing Data Services from Java Clients

import commonj.sdo.DataObject;
import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

public class MyUntypedCust
{

public static void main(String[] args) throws Exception {

//Get access to Liquid Data

Hashtable h = new Hashtable () ;

h.put (Context. INITIAL7CONTEXT7FACTORY,
"weblogic.jndi.WLInitialContextFactory");

h.put (Context.PROVIDER URL,"t3://localhost:7001");

h.put (Context.SECURITY PRINCIPAL, "weblogic");

h.put (Context.SECURITY CREDENTIALS, "weblogic");

Context context = new InitialContext (h);

// Use the dynamic (untyped) Mediator API
DataService ds =
DataServiceFactory.newDataService (context, "RTLApp",
"ld:DataServices/RTLServices/Customer") ;
DataObject myCustomer = (DataObject) ds.invoke ("getCustomer", null);
System.out.println (" Customer Information: \n" + myCustomer) ;

Static and Dynamic SDO APIs

You can invoke data service functions using either static or dynamic SDO APIs. The dynamic API is
often called generic SDO, since you do not need to materialize the SDO object on the client side
through a JAR file. Instead, you simply invoke the appropriate set() or get() method based on your
knowledge of underlying schema of the data service.

3-14 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

Each approach has its advantages and disadvantages, as described in the Table 3-6, below:

Table 3-6 Static vs. Dynamic Mediator APls

Method Advantages Disadvantages
Static (typed) e Runtime type validation e Requires generation of

¢ Code completion in most IDEs [App]-1d-client JAR file
Dynamic (untyped), e Easily adapt to schema ¢ No runtime type checking
using generic SDO changes

e Unnecessary to compile Java
classes from their schema

e Less overhead

The static and dynamic Mediator API options are described in detail in:
Using a Static Data Service Mediator API
Using a Dynamic Mediator API

Using the Static SDO API

Once you have obtained an initial context to the server containing AquaLogic Data Services Platform
artifacts, you can instantiate a remote interface for a data service. If you know the data service type
at development time, you can use the static data service interface, which uses static data objects.
(Alternatively, the dynamic SDO interface lets you use data services specified at runtime. It is
described under the topic “Using a Dynamic Mediator API” on page 3-13.)

A static interface gives you a number of advantages, including type validation and code completion
when using development tools, such as Eclipse or your favorite development tool.

To use the static data service interface, you must have the SDO Mediator Client JAR file that was
generated from the specific AquaLogic Data Services Platform-enabled application that contains the
query functions you want to use with your client application. (If you do not have the JAR file, contact
your administrator to acquire it.)

Add the JAR file to your client application’s build path and import the data service package into your
Java class file that will be the basis for your client application.

For example, to use a data service named Customer in a AquaLogic Data Services Platform project
named customerApp, use the following import statement:

import customerapp.Customer;

Client Application Developer's Guide 3-15

Accessing Data Services from Java Clients

3-16

With the imported factory classes and interfaces available in your Java application, you can instantiate
the interface to the specific data service by invoking the getInstance() method with the following
arguments:

e The server context object

e The name of the AquaLogic Data Services Platform application that is deployed on the server

Once you have a remote data service instance, you can invoke functions and procedures on the data
service. For example, consider the data service shown in Figure 3-5.

Figure 3-7 Sample Customer Data Service

[Customer Data Service

B @ CUSTOMER_PROFILE retaierType:CUSTOMER_PROFIE_TYFE
4P getCustomer @ CustomerD xsdistring
@ Firsthame xsdistring
4 aetCustomertyCustiD @ Lasthame xsdistring
ERET S © Customersince xsdidate
D ey @ Emsiliaddress xsdistring
UL o © Telephanehumber ? xsdistring
@ 550> xsdistring
@ BirthDay ? xsdidate
@ DefaulShippmentMethod xsdistring
@ Emailiatification xsdishort
@ oOrlinestatement xsdishort
@ LoghniD xsdistring
£ ADDRESS* retsierTypeiADDRESS_TYPE
@ AddressID xsdistring
getApolOrder @ CustomerlD xsdistring

@ Firsthame xsdistring

ApplOrder

Case E

CreditCard

ElecOrder E

D Lasthame xsd:stiing
@ strestaddress_1 xsdhstiing

getCase B Strestiddress_2? xsdistring

@ City xsdistring

@ state xsdistring

® ZipCods xsdistring
getCreditCard @ Country xsdistring

1 DayPhone ? xsd:string

@ EveningPhone ? xsd:string
D Aliss 7 xsthstring
getElecorder @ status? xsdistring

@ IsDefault xsdishort

The generated artifacts for a static client interface would include typed methods for both dynamic
data APIs and the static Mediator APIs. As shown in Listing 3-1, each read and navigate function from
the data service results in a static data API method, such as getCustomer() and getApplOrder().

Listing 3-4 Generated Static Methods for the Customer DataService Class

getCustomer ()

getCustomerByCustID (String)
getCustomerByCustIDToFile (String, String)
getCustomerByZip (String)

Client Application Developer's Guide

Generating a Static Mediator APl JAR File

getCustomerByZipToFile (String, String)
getCase (CUSTOMERPROFILEDocument)
getCreditCard (CUSTOMERPROFILEDocument)
getApplOrder (CUSTOMERPROFILEDocument)
getElecOrder (CUSTOMERPROFILEDocument)
getCustomerByLoginID (String)

See “Static Data API” on page 2-5 for more information about generated SDO data API methods, such
as those listed above.

There are several DataService methods that are part of the dynamic API which are inherited by all
static DataService classes including the following methods:

o Submit(). The submit() method takes a DataObject as its parameter. (The static submit()

would take Customer.) In either style, though, a submit() method is used to save changes to the
data objects served by the data service.

o prepareExpression(). The prepareExpression() method lets you create ad hoc queries

against the data service.

Listing 3-2 shows a small but complete example using a static interface.

Listing 3-5 Mediator Client Sample Using a Static Interface to a Data Service

import
import
import
import
import

public
{

java.util.Hashtable;
javax.naming.Context;
javax.naming.InitialContext;
dataservices.rtlservices.Customer; //
retailerType.CUSTOMERPROFILEDocument;

class MyTypedCust

public static void main(String[] args) throws Exception ({
//Get access to Aqualogic Data Services Platform data service
Hashtable h = new Hashtable () ;
h.put (Context.INITIAL CONTEXT FACTORY,

"weblogic.jndi.WLInitialContextFactory");

h.put(Context.PROVIDER_URL,"t3://localhost:7001");
h.put (Context.SECURITY PRINCIPAL,"weblogic");
Context context = new InitialContext (h);

/7

Use the typed Mediator API

Customer customerDS = Customer.getlInstance (context, "RTLApp");

Client Application Developer's Guide 3-17

Accessing Data Services from Java Clients

CUSTOMERPROFILEDocument [] myCust =
customerDS.getCustomerByCustID ("CUSTOMER2") ;
System.out.println (" CUST" + myCustomer);
}
}

Using the Dynamic SDO API

The dynamic data service interface — or generic SDO — is ideal for programming with data services
that are unknown or do not exist at development time.

With dynamic SDO, DataObjects depend on the XML schema to determine:
e Data types
o Default values

e Data structure of input XML data
The dynamic SDO correctly supports SDO APIs through get() and setType() on DataObject.
Such a SDO definition consists of a single generic DataGraph and a number of DataObject classes.
Dynamic SDOs are created using a createRootDataObject() method:

DataObject /* root SDO document */ createRootDataObject ()

The code fragment in Listing 3-6 illustrates these familiar operations using dynamic SDO:
e Creating the root data object
o Using navigation functions
e Updating data on the back end
e Submitting a changed SDO to the server
e Deleting a data object

e (reating a data object on the client side

Listing 3-6 Common Dynamic SDO Operations

DataService custDS =
DataServiceFactory.newDataService (context, "RTLApp", "1ld:DataServices/CustomerDB

3-18 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

/CUSTOMER") ;

DataObject root =(DataObject)custDS.invoke ("getCustomerByCustID", new
Object[] {"CUSTOMER1"}) [0];

DataObject myCustomer = root.getDataObject (0);

String name = myCustomer.getString("name");

//use navigation function
DataObject order = (DataObject)custDS.invoke ("getApplOrder", new
Object[]{root}) [0];

// update

myCustomer.setString ("Street", "Lake Drive");
((DataObject)myCustomer.getList ("ADDRESS") .get (0)) .setString ("City",
"Hayward") ;

// submit the changed SDO to server
custDS.submit (root);

// Delete a DataObject
((DataObject)myCustomer.getList ("ADDRESS") .get (0)) .delete();
custDS.submit (root);

// create new SDO object on client side

DataService custDS =
DataServiceFactory.newDataService (context, "RTLApp", "1d:DataServices/CustomerDB
/CUSTOMER") ;

DataObject root = custDS.createRootDataObject ();
root.createDataObject ("CUSTOMER PROFILE") .setString ("FirstName", "helloW");
custDS.submit (root);

How XML Schemas Are Made Available to Dynamic SDO Operations

XML schemas are not available at client side, the dynamic mediator must download schemas from the
server. The internal mean of downloading schemas varies depending on whether you have an EJB
client or a Web service client.

e Downloading schemas through an EJB metadata API. As in the first code fragment in
Listing 3-6, the client-side query contains a Qname and arity as an identifier for the function. A
dynamic SDO-capable mediator uses the identifier to locate the primary schema from the
metadata EJB, then recursively resolves its dependent schemas, loading them from server to
client upon request. Once all schemas are prepared on the client side, the schemas are
processed (compiled) and made available to the calling routine.

Client Application Developer's Guide 3-19

Accessing Data Services from Java Clients

e Downloading schemas through a Web service client. A WSDL file generated from WebLogic
Workshop contains all the schema definitions in the specified data service. In this case they are
simply processed and made available to provide typing services to the calling routine.

Schema Type Caching

Generating the SchemaTypeSystem can be a costly operation. For this reason schema caching
functionality is provided that allows for schema reuse and lifecycle management through flush and
clear APIs.

If no cache is passed in to get a data service instance on the client side, then an internal cache is
created. The default lifetime of the internal schema cache is the same as the lifetime of the data
service instance.

You can create a cache object per data service or for multiple data services. All caches are thread-safe.
(As there is no differentiator across multiple AquaLogic Data Services Platform applications, caches
should not be shared across multiple applications.)

The following schema caching APIs are available:

e SchemaTypeObject cache. The SchemaTypeObject is composed of a key:value pair.

key: Qname composed of root element name and target namespace
value: compiled schema type object

o Cache debugging APIs. The following APIs are more fully described in Javadoc:

SchemaTypeCache.dump (String dsName) //dump contents for specified DS
SchemaTypeCache.dump () ; //dump entire contents

o Flush schema cache APIs. The following APIs are more fully described in Javadoc:

public void flush()
public void clear(String dsName)

Schema Cache Management Scenarios

The following represents several schema cache management scenarios:

o Using multiple caches. In this case each data service has its own schema type.

// Note: each DS will have its own schema type cache.

SchemaTypeCache custSchemaTypes = new SchemaTypeCache();
SchemaTypeCache addrSchemaTypes = new SchemaTypeCache () ;
DataService custDS = DataServiceFactory.newDataService(context, " RTLApp",

ld:DataServices/Customer", custSchemaTypes);

3-20 Client Application Developer's Guide

Generating a Static Mediator APl JAR File

DataService addrDS = DataServiceFactory.newDataService (context, "RTLApp",
"ld:DataServices/Address", addrSchemaTypes);

o Using a single cache for multiple data services. In this case a single cache is used across
multiple data services.

// Note: User manages cache across multiple DS's.

SchemaTypeCache schemaTypes = new SchemaTypeCache();
DataService custDS = DataServiceFactory.newDataService(context, "RTLApp",
"ld:DataServices/Customer", schemaTypes);
DataServiceaddrDS=DataServiceFactory.newDataService (context,
"RTLApp", "ld:DataServices/Address", schemaTypes);

o No schema cache specified. In such a case a cache is created implicitly and stored on the data
service object automatically. There is no API available to inspect, flush, or edit cache entries.

DataService custDS = DataServiceFactory.newDataService(context, "RTLApp",
"ld:DataServices/Customer");
DataService addrDS = DataServiceFactory.newDataService(context, "RTLApp",
"ld:DataServices/Address");

Bypassing the Data Cache When Using the Mediator API

Data retrieved by data service functions can be cached for quick access. This is known as a data
caching. (See "Configuring the Query Results Cache", in the AquaLogic Data Services Platform
Administration Guide for details.) Assuming the data changes infrequently, it’s likely that you’ll want
to use the cache capability.

You can bypass the data cache by passing the GET_CURRENT_DATA attribute within a function call,
as shown in Listing 3-7. GET_CURRENT_DATA returns a Boolean value. As a by-product, the cache is
also refreshed.

Listing 3-7 Cache Bypass Example When Using Mediator API

dataServices.customermanagement.CustomerProfile customerProfileDS =
customerDS=dataServices.customermanagement.CustomerProfile.getInstance (ctx, appName) ;

RequestConfig config = new RequestConfig();
attr.enableFeature (RequestConfig.GET_ CURRENT_DATA) ;

CustomerProfileDocument customerProfileDoc customerProfileDS.CustomerProfile (params,config);

Client Application Developer's Guide 3-21

../admin/cache.html

Accessing Data Services from Java Clients

Client Management of the Data Cache

When invoking a AquaLogic Data Services Platform query you can more precisely control the behavior
of the data cache by using the REFRESH_CACHE_EARLY attribute in conjunction with
GET_CURRENT_DATA attribute.

Setting the GET_CURRENT_DATA Attribute
When the GET_CURRENT_DATA attribute is set to True:

o All data cache access is bypassed in favor of the physical data source. Function values are
recalculated based on the underlying data and the cache is refreshed. If a call involves access
to several cacheable functions, all will be refreshed with current data.

e The audit property:
evaluation/cache/data/forcedrefresh

indicates that a GET_CURRENT_DATA operation has been invoked.
o The REFRESH_CACHE_EARLY attribute property setting is ignored.

SETTING the REFRESH_CACHE_EARLY Attribute

If the GET_CURRENT_DATA property is set to False or is not invoked, you can use the
REFRESH_CACHE_EARLY to control whether cached data is used based on the remaining TTL
(time-to-live) available for the function’s data cache.

The REFRESH_CACHE_EARLY attribute is of type integer. It is set by invoking the
setIntegerAttribute() method. The setting of REFRESH_CACHE_EARLY to a particular value
requires that a cached record must have at least » seconds of remaining TTL before it can be used. If
the record is set to expire in less than n seconds, it will not be retrieved. Instead its value is
recalculated based on the underlying data and the data cache associated with that function is
refreshed. The same REFRESH_CACHE_EARLY value applies to all cache operations during a query
evaluation.

Note: The supplied integer value of REFRESH_CACHE_EARLY should always be positive. Negative
values are ignored.

Accessing Data Services Via WebLogic Server 9.2 Clients

This section describes how to make AquaLogic Data Services Platform 2.x and WebLogic Server 9.2
interoperable. Once interoperability is set up, a WebLogic Server 9.2 client can access AquaLogic Data
Services Platform 2.x data services.

3-22 Client Application Developer's Guide

Accessing Data Services Via WebLogic Server 9.2 Clients

WebLogic Server 8.x

WebLogic Server 9.x

Notes: AquaLogic Data Services Platform 2.x runs under WebLogic Server 8.x.

Follow these steps to enable interoperability between a WebLogic Server 9.2 client and AquaLogic
Data Services Platform 2.:

Interoperability Steps

1. Put ${WLS HOME}/liquiddata/lib/wls90interop.jar in PRE_CLASSPATH on the
AquaLogic Data Services Platform 2.x server by editing setDomainEnv. {cmd|sh}

Note: After this change, all the non JDK 1.5 based clients of the AquaLogic Data Services
Platform 2.x server will need to have wl1s90interop.jar in their classpath ahead of all
other classes.

2. Put ${wL HOME}/liquiddata/lib/wls90interop.jar first in the classpath of WebLogic
Workshop by modifying the value for the -cp key in Wworkshop.cfg

3. Build the application inside Workshop.

4. Build the client-side JAR using $ (WL, HOME} /liquiddata/bin/1d_clientapi.xml With
the following arguments on the command line:

-Dapproot=<application directory>

-Dxbeanjarpath=${WEBLOGIC9x}/server/lib/xbean. jar

5. Copy ${WL_HOME}/liquiddata/lib/wlsdo90interop.jar, ld-client.jar and
<appName>-ld-client.jar into WEB-INF/1ib or classpath on the 9.2 server side.

Client Application Developer's Guide 3-23

Accessing Data Services from Java Clients

Note: If you are using the WebLogic 9.0 release, you will need to upgrade the XMLBeans V2
shipped with WLS 9.0. You will need to use XMLBeans from WLS 9.1 or above.

Step-hy-Step: A Java Client Programming Example

This section describes common Java client application programming tasks:
e Step 1. Instantiating and Populating Data Objects
e Step 2: Accessing Data Object Properties
e Step 3: Modifying, Inserting, and Deleting Data Objects and Properties
o Step 4: Submitting Changes to the Data Service

Client application development encompasses the SDO data APIs; client Mediator APIs (which are
used to instantiate a local proxy to the remote server); and possibly the Update SDO API (to submit
changed data objects to the data service). Thus, the steps in this section include calls using the
Mediator APIs—getInstance() and submit(), for example, as well as SDOs.

Step 1. Instantiating and Populating Data Objects

Working with SDO data objects from a client application starts by obtaining an interface (either static
or dynamic) to the data service. Depending upon the approach you take, you must import the
generated static data type interfaces or dynamic data interfaces, as well as the data service interfaces.

o Static data service imports. To instantiate a data object using a static data service instance,
you must import the packages that contain the generated typed interfaces. These are contained
in the <appname>-1d-client.jar file generated from WebLogic Workshop (or by using
AquaLogic Data Services Platform’s Ant or Java generation tools). Using the static SDO API is a
two-step process:

— Place the JAR file (<appname>-1d-client.jar) in the classpath of your development
environment.

— Import the data types that you will be using in your code into your Java class file. For
example:

import dataservices.myservice.MyCustomer;

Note: Static data services packages are always lowercase.

e Dynamic data service imports. To instantiate a data object using a dynamic API, you must
import the DataServiceFactory class and invoke the newDataService method (see also
Table 3-10).

3-24 Client Application Developer's Guide

Step-by-Step: A Java Client Programming Example

import com.bea.dsp.dsmediator.client.DataServiceFactory;

Table 3-8 lists static and dynamic mediator API interfaces.

Table 3-8 Static and Dynamic Mediator API Interfaces
Static Mediator API Dynamic Mediator API

Customer cust = DataService ds =
Customer.getInstance (
context, "MyApp"); DataServiceFactory.newDataService (
context, "MyApp",
"ld:DataServices/CustomerDB/CUST
OMER") ;

Instantiating a local interface for an static mediator API is done by passing the context, the
application name, and the data service name to the DataServiceFactory class. For the static mediator
API, the local interface is instantiated using the getInstance() method (after establishing a JNDI
context).

Once the local interface is constructed, you can invoke data service functions to obtain a data object.

As discussed in “Data Services Platform and Service Data Objects (SDOs)” on page 2-1, the returned
data object is associated with a data graph. The data graph also provides a handle to the root data
object of the data graph.

Table 3-11 shows both a static and dynamic approach to populating data objects. The static data API
example shows how to instantiate the root node of the data graph, in this case, using the data that
comprises a logical data service function (getCustomerView()). The example is selecting information
about Customers3.

In the dynamic example, the root node of a data graph is being populated with an array of all
customers available through the data service.

Table 3-9 shows the static and dynamic mediator APIs available to instantiate SDOs.

Table 3-9 Static and Dynamic Mediator APIs

Static Mediator API Dynamic Mediator API
CUSTOMERDocument [] custDoc = DataObject[] custDoc =
ds.getCustomerView ("CUSTOMER3") ; ds.invoke ("CUSTOMER", null);

Client Application Developer's Guide 3-25

Accessing Data Services from Java Clients

3-26

Step 2: Accessing Data Object Properties

After obtaining a data object, you can access its properties using either its generated static data API
or the dynamic data API. Table 3-10 shows side-by-side comparisons of using the static and dynamic
methods to access properties. The static interface returns a single CUSTOMER object, while the
dynamic interface returns a generic data object.

Table 3-10 Static and Dynamic Mediator API Property Acquisition Examples

Static Mediator API Dynamic Mediator API

CUSTOMERDocument .CUSTOMER cust = DataObject cust = custDoc[0].get ("CUSTOMER") ;
custDoc[0] .getCUSTOMER () ; String lastName = (String)

String lastName = cust.getLASTNAME () ; cust.get ("LAST_NAME") ;

With the static interface, the type name (as a string) is passed as a parameter to the dynamic get()
method. The returned object can be then cast to the necessary type.

If the return type is unbounded, you need to cast the returned object to a List. To traverse all objects
in an unbounded type you must use an iterator, as shown in Listing 3-8.

Listing 3-8 Using an Iterator to Traverse a List of Returned Data Objects

List addressList = (List) cust.get ("ADDRESS");
Iterator iterator = addressList.iterator();
while (iterator.hasNext ()) {

CUSTOMERDocument . CUSTOMER.ADDRESS address =
(CUSTOMERDOcument . CUSTOMER.ADDRESS) iterator.next();

You can identify properties in SDO accessor arguments by element name. Accessor methods can take
property identifiers specified as XPath expressions, as follows:

customer.get ("CUSTOMER PROFILE[1]/ADDRESS [AddressID="ADDR 10 1"]")

The example gets the ADDRESS at the specified path with the specified addressID. If element
identifiers have identical values, all elements are returned.

Client Application Developer's Guide

Step-by-Step: A Java Client Programming Example

For example, the ADDRESS also has a CustomerID (a customer can have more than one address), so
all addresses would be returned. (Note that the get() method returns a DataObject, so you will need
to cast the returned object to the appropriate type. For unbounded objects, you must use a List.)

Note: For specifying index position, note that SDO supports regular XPath notation (one-based)
and Java-style (zero-based). See “XPath Support in the Dynamic Data API” on page 2-12 for
more information.

You can get a data object’s containing parent data object by using the get() method with XPath
notation:
myCustomer.get ("..")
You can get the root containing the data object by using the get() method with XPath notation:
myCustomer.get ("/")

This is similar to executing myCustomer.getDataGraph().getRootObject().

Quantifying Return Types

Return types from data service functions can be quantified based on the semantics shown in
Table 3-11.

Table 3-11 Quantifying Return Type Symbols and Their Definition

Quantifier Definition Comments
Symbol
+ Same semantics as star (*) Returns all.
? Same semantics as unqualified except that ~ "Best value" is the same as is returned when
there is additional built-in logic to handle RequestConfig prevents results from being
the possibility of empty results. sent, for instance in the OUTPUT_FILENAME

When the results are empty, the return case.

value of the static mediator method willbe For integer numeric types, best value is the
either: corresponding MIN_VALUE; for floating point

e Null. Null is returned if the Java numeric types, best value is NaN (not a

return type is non-primitive (such as number); for Boolean, best value is False.

typed subclasses of DataObject,
BigDecimal, String, and so forth).

e Best value. Best value is returned if
the Java return value is a primitive
(such as int, float, and so forth).

Client Application Developer's Guide 3-21

Accessing Data Services from Java Clients

3-28

Step 3: Modifying, Inserting, and Deleting Data Objects and
Properties

By default, change tracking on the data graph is enabled so that any changes made to object values
are recorded in the change summary.

Modifying Data Object Properties

Table 3-12 provides examples showing how you can modify data object property values using either
dynamic or static set() methods.

Tahle 3-12 Examples of Static and Dynamic Mediator API Setting of Properties
Static Mediator API Dynamic Mediator API

cust.setLASTNAME ("Smith") ; cust.set ("LAST NAME", "Smith");

Both approaches take string arguments for the new property values; both approaches result in
changing the customer object’s last name to Smith. The static mediator API example assumes that you
have instantiated the static interface on the data service.

Inserting New Data Objects

You can create new a data object by using an addNew() method (a static data API). A new data object
can be added to a root data object or, more commonly, as a new element in a data object array. (New
arrays can also be added to data objects.) When inserting an object to an array, you must be sure to
set any and all required fields for the new object, as specified by its XML schema, before calling
submit().

Listing 3-9 shows how to insert a data object into an array of objects.

Listing 3-9 Inserting a New Data Object into an Array

CUSTOMERDocument . CUSTOMER newCust = custDoc[0].addNewCUSTOMER () ;
int idNo = custDoc.length;
newCust.setCUSTOMERID ("CUSTOMER" + String.valueOf (idNo));
newCust.setFIRSTNAME ("Clark") ;
newCust.setLASTNAME ("Kent") ;
newCust.setCUSTOMERSINCE (java.util.Calendar.getInstance());

Client Application Developer's Guide

Step-by-Step: A Java Client Programming Example

newCust.setEMAILADDRESS ("kent@dailyplanet.com") ;
newCust.setTELEPHONENUMBER ("555-555-5555") ;
newCust.setSSN("509-00-3683") ;
newCust.setDEFAULTSHIPMETHOD ("Air") ;

Inserting a New Data Object

A variation on the theme is to create a completely new data object. In RDBMS terms this would be
considered creating a new record.

Listing 3-10 illustrates creation of a data object called customer "from scratch":

Listing 3-10 Creating a New Data Object

queryPlansDataServices.customer.CUSTOMERDocument customerDocument=
queryPlansDataServices.customer.CUSTOMERDocument.Factory.newInstance () ;

queryPlansDataServices.customer.CUSTOMERDocument.CUSTOMER

customer=customerDocument .addNewCUSTOMER () ;
customer.setLASTNAME ("KAY 99");

customer.setFIRSTNAME ("JOHN 99") ;

customer.setCUSTOMERID ("CUSTOMER 99") ;

customer.setCITY ("SAN JOSE") ;

customer.setCUSTOMERSINCE (Calendar.getInstance());
customer.setEMAILADDRESS ("m@a.com") ;

customer.setTELEPHONENUMBER (new BigInteger ("4085708612"));
customer.setZIPCODE (new BigInteger ("95131")); customer.setSTATE ("CA");

RDBMS Considerations

If the data source associated with the object being added is an RDBMS, note these additional
considerations:

e Foreign key fields in the data object are automatically populated by AquaLogic Data Services
Platform, based on the value of the corresponding foreign key in the container object.

Client Application Developer's Guide 3-29

Accessing Data Services from Java Clients

3-30

e In a database schema, tables often use auto-generated values as their primary key. When
adding an object to such a database, the primary key is generated and returned to the client
through the submit() call.

If added objects correspond to relational records in back-end data sources, and if the records
have auto-generated primary key fields, the fields are generated in the database source and
returned to the client in a property array. The properties include name-value items
corresponding to the column name and new auto-generated key value. (See the topic
"Primary-Foreign Key Relationships Mapped Using a KeyPair" in the Handling Updates Through
Data Services chapter of the Building Queries and Data Views.)

Deleting Data Objects

To delete a data object, you must delete it from the data graph that contains it. For example,
Listing 3-11 searches a CUSTOMER array for a specific customer’s name and deletes that customer.

Listing 3-11 Deleting a Data Object

dataServices.customer.CUSTOMERDocument [] customers=customerDS.CUSTOMER () ;
for (int i=0; 1 < customers.length; i++) {
if (customers[i].getCUSTOMER () .getFIRSTNAME () .equals ("JOHN_99") &&
customers[i].getCUSTOMER () .getLASTNAME () .equals ("KAY 99")) {
customers[i] .getCUSTOMER () .delete () ;
customerDS.submit (customers([i]);

When you remove an object from its container, only the reference to the object is deleted, not the
values; values are deleted later, during Java garbage collection.

The data object interface (DataObject in the common . sdo package) provides the delete() method
for deleting objects.

Deleting an object is a cascade-style operation; that is, children of the deleted object are deleted as
well. However, note that the deleted object only—not its children—is tracked in the change summary
as having been deleted.

Step 4: Submitting Changes to the Data Service

To submit data changes, call the submit() method on the data service bound to an object, passing the
root changed object as in:

Client Application Developer's Guide

../datasrvc/server_side_update.html
../datasrvc/server_side_update.html

Step-by-Step: A Java Client Programming Example

custDS.submit (myCustomer) ;

A basic example of a submit operation is shown in Listing 3-12.

Listing 3-12 Static Interface

CUSTOMER custDS = CUSTOMER.getInstance (ctx, "RTLApp");
CUSTOMERDocument [] custDoc = (

CUSTOMERDocument []) custDS.CUSTOMER() ;
custDoc[0] .getCUSTOMER () . setLASTNAME ("Nimble") ;
custDS.submit (CustDoc) ;

Listing 3-13 demonstrates making changes to a data object using the dynamic interface.

Listing 3-13 Dynamic Interface

import com.bea.dsp.dsmediator.client.DataService;
import com.bea.dsp.dsmediator.client.DataServiceFactory;

import commonj.sdo.DataObject;

DataService custDS =
DataServiceFactory.newDataService (getInitialContext (), "MyDSPApp",
"1d:MyDSPAppDataServices/CUSTOMER") ;

DataObject[] custDocs = (DataObject[])custDS.invoke ("CUSTOMER",
null);

DataObject custDoc=custDocs[0];

DataObject customer=(DataObject)custDoc.get ("CUSTOMER") ;

customer.set ("LAST NAME","Nimble");

custDS.submit (custDoc) ;

Client Application Developer's Guide 3-31

Accessing Data Services from Java Clients

Examining a Java Client Application

Listing 3-14 shows a complete example that recaps many of the steps described above. The example
SDO client application shows how the static mediator API is used to create a handle to the CUSTOMER
data service.

The client application extracts information about a customer, modifies the information, and then
submits the changes. In addition to demonstrating some of the basics of SDO client programming,
Listing 3-14 also shows how the Mediator API is used to obtain a handle to the data service, and how
the Update Mediator API is used to submit the changes to the data service.

Listing 3-14 Sample Client Application

import java.util.Hashtable;
import javax.naming.InitialContext;
import dataservices.customerdb.CUSTOMER;

public class ClientApp {

3-32

public static void main(String[] args) throws Exception {

Hashtable h = new Hashtable();

h.put (Context.INITIAL CONTEXT FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context.PROVIDER URL,"t3://localhost:7001");

h.put (Context.SECURITY PRINCIPAL, "weblogic");

h.put (Context.SECURITY CREDENTIALS, "weblogic");

Context context = new InitialContext (h);

// create a handle to the Customer data service
CUSTOMER custDS = CUSTOMER.getInstance (context, "RTLApp");
// use dynamic data API to instantiate an SDO (shaped as a "Customer")
CUSTOMERDocument [] myCustomer =
(CUSTOMERDocument []) custDS.invoke ("CUSTOMER", null);

// get and show customer name
String existingFName =
myCustomer [0] .getCUSTOMER () .getFIRSTNAME () ;
String existingLName =
myCustomer [0] .getCUSTOMER () .getLASTNAME () ;

System.out.println(" \n-—--—-—-—-—--——--———- \n Before Change: \n");
System.out.println (existingFName + existingLName) ;

// change the customer name
myCustomer [0] .getCUSTOMER () .setFIRSTNAME ("J.B.") ;

Client Application Developer's Guide

Examining a Java Client Application

myCustomer [0] .getCUSTOMER () .setLASTNAME ("Kwik") ;
custDS.submit (myCustomer,"1d:DataServices/CustomerDB/CUSTOMER") ;

// re-query and print new name

myCustomer = (CUSTOMERDocument[]) custDS.invoke ("CUSTOMER",null) ;
String newFName =

myCustomer [0] .getCUSTOMER () .getFIRSTNAME () ;

String newLName =

myCustomer [0] .getCUSTOMER () .getLASTNAME () ;

System.out.println(" \n-—----—-—-—-—-—-—--———- \n After Change: \n");
System.out.println (newFName + newLName) ; }

Listing 3-14 highlights how to use the SDO data APIs and the Mediator API, as follows:

1.

The application instantiates the remote interface to the Customer data service, passing a JNDI
context that identifies the WebLogic Server where AquaLogic Data Services Platform is deployed.
The static Mediator API is used in this call to instantiate the actual Customer data service
interface (rather than the dynamic DataService interface):

CUSTOMER custDS = CUSTOMER.getInstance (context, "RTLApp")

The custDS serves as a handle for the CUSTOMER data service that is executing on the RTLApp
WebLogic Server application.

The program uses the Mediator API to invoke a read function on the Customer data service,
pouring the results into an array of CUSTOMERDocument objects:

CustomerDocument [] myCustomer =
(CustomerDocument[]) ds.invoke ("CUSTOMER", null);

Once the data object is created, its properties can be accessed using SDO’s static data API (the
static interface), which returns the actual type of that node:

myCustomer[0] .getCUSTOMER () .getFIRSTNAME () ;

New values for the FIRSTNAME and LASTNAME property of the CUSTOMER are set using the
static data API:

myCustomer[0] .getCUSTOMER () .setFIRSTNAME ("J.B.") ;
myCustomer [0] .getCUSTOMER () .setLASTNAME ("Kwik") ;

The change is submitted to the data service (by using the Client Mediator API's submit() method)
for propagation to the back-end data sources:

Client Application Developer's Guide 3-33

Accessing Data Services from Java Clients

3-34

custDS.submit (myCustomer) ;

6. The Mediator API’s invoke() method is executed once more, and the results (now showing the
changed data) are printed to output.

Note: The invoke() method is for read and navigation functions only. For data service procedures,
use the invokeProcedure() method available in the DataService interface. For details on the
Mediator API see AquaLogic Data Services Platform Javadoc, described under “AquaLogic
Data Services Platform Mediator API Javadoc” on page 1-13.

See “Invoking Functions and AquaLogic Data Services Platform Procedures” on page 3-9 for
more information about procedures.

Although code for handling exceptions is not shown in the example, an SDO runtime error throws an
SDOMediatorException. The SDOMediatorException class is also used to wrap data source
exceptions.

Client Application Developer's Guide

CHAPTERa

Enabling Aqualogic Data Services
Applications for Web Service Clients

Web services provide an industry-standard way to develop SOA (service-oriented architecture)
applications. Such services can be thought of as loosely coupled, distributed units of programming
logic that can be re-configured easily to deliver new application functionality, both intra- and
extra-enterprise.

Using Web services and BEA AquaLogic Data Services Platform allow your applications to better
leverage enterprise data assets.

This chapter explains you how to expose data services as standard Web services, and how to create
client applications that can obtain the benefits of both Web services and SDOs. It covers these topics:

o Overview of Web Services and AquaLogic Data Services Platform
o Server-Side AquaLogic Data Services Platform-Enabled Web Service Development

o (lient-Side AquaLogic Data Services Platform-Enabled Web Service Development
For more information about Web services, see:

http://e-docs.bea.com/wls/docs81/webservices.html

Overview of Webh Services and AquaLogic Data Services
Platform

Exposing data services as Web services makes your information assets accessible to a wide variety of
client types, including other Java Web service clients, Microsoft ADO.NET and other non-Java

Client Application Developer's Guide 4-1

http://e-docs.bea.com/wls/docs81/webservices.html

Enabling Aqualogic Data Services Applications for Web Service Clients

applications, and other Web services. Figure 4-1 illustrates the various approaches that client
application developers can take to integrating data services and Web services.

Figure 4-1 Web Services Enable Access to AquaLogic Data Services Platform-Enabled Applications from a
Variety of Clients

Microsoft . NET Web
Services Client
Applications

Data Service Platform
WebLogic Server

Java Web T “Customer” Data Service
Services Client

Applications = Read functions

= Navigate functions
= Procedures

% %

Web
service

Other)
) Remote Client ...+ ’
‘Applications

Other
Web Services
Applications

Note: For information about ADO.NET-enabled Web services and client applications, see
“Supporting ADO.NET Clients.”.

JOoO®EmQ

Qi

.

W=t

Different Styles of Web Services Integration for Aqualogic
Data Services Platform

Data services can be integrated with Web services in one of two general ways:

o As a read-only Web service. A standard Web service can be invoked from other Web services, or
by .NET clients or any other type of client, Java and non-Java alike. On the server side, at
runtime, the Web service simply passes the results obtained from the data service function back

4-2 Client Application Developer's Guide

Overview of Web Services and Aqualogic Data Services Platform

to the client as a standard SOAP message. This approach is best for simple, query-only
applications that do not need to modify or insert data into back-end data sources behind the

Web service facade.

e As a read-write Web service. An SDO-enabled Web service can support updates to back-end
data sources. You can use either static SDOs client-side proxy code (see “Developing Static Web
Service Clients” on page 4-11), or dynamic SDOs (also known as generic SDOs). See
“Developing Dynamic Web Service Clients” on page 4-26.

Note:
on page 2-4.

For details on working with static and dynamic SDOs see “Static and Dynamic Data APIs”

Figure 4-2 shows the end-to-end process — both the server-side and client-side tasks — that expose
a AquaLogic Data Services Platform-enabled application as a Web service and implement a client

application that invokes operations on that service.

Figure 4-2 Data Service Java Clients Supported Through Web Services

Java Web services client application

5. Generate SDO types using either
WSDL or XML Schema (XSD) files.

1. Create data service control

Data Service Platform
WebLogic Server

"Customer” Data Service

!
instantiates

... 4 Use WSDL to generate client proxy
"*“(stub) code and include stub in client
application development .

import

public class xxxx

Web service | «-----

2. Generate Web service file (JWS)
from data service control

3. Generate WSDL from
the-JWS

A
(a)
T O0Oem O

W= 17

<xs:schema
xmlns:mstns="http:
//
temp.openuri.org/
schemas/
Customer.xsd"

Client Application Developer's Guide 4-3

Enabling Aqualogic Data Services Applications for Web Service Clients

Server-Side Aqualogic Data Services Platform-Enabled
Web Service Development

44

AquaLogic Data Services Platform-enabled Web service development depends on whether you are
working with read-only Web services or Web services which support read-write functionality.

Developing AquaLogic Data Services Platform-Enabled
Read-0nly Web Services

There are two ways to create Web services from data services. By:
e Adding a Data Service Control to a Web Service

e Generating a Web Service from a Data Service Control

Both approaches rely on Data Service controls as the component-based integration mechanism.

Adding a Data Service Control to a Web Service

You can easily add one or more Data Service controls to a Web service using WebLogic Workshop.
Firstcreate a folder for the controls inside the Web service’s project folder, and then create the Data
Service controls.

You can also create controls during the process of adding them to the Web service but, for simplicity’s
sake, the instructions in this section assume that you have created the Data Service controls in
advance. (See “Creating Data Service Controls” on page 7-7 for more information on creating Data
Service controls.)

Here are the steps involved:

1. In WebLogic Workshop, open an existing Web service file (JWS) by double-clicking on its name in
the Application pane.

2. Click the Design View tab on the Web service to open the graphical representation of the Web
service (as shown in Figure 4-3).

Client Application Developer's Guide

Server-Side Aqualogic Data Services Platform-Enabled Web Service Development

Figure 4-3 Adding a Data Service Control to a Web Service

CreditRatingDBTest, jws - {CreditRatingaHcontrolsy *
_’@\ CreditRatingDBTest ‘Web Service E
—<5>—b getCreditRating creditRatingDB
e[} st CreditRating acceptChangss
getCreditRating
setCreditRating
Membe =
Add Method Web Service
&dd Callback EJB Contral
Add Variable £FH IMS
Edit in source view @ sy
)
Tuxedo by
L, Inkegration Conkrols [
F:_-‘ Mainfrare Inteqgration
“2- Elue Titan
B8] Conflusnt Instrumentation Contral
:g Documentum Business Cbjects
7| RobaSuite Caontral
L, Local Controls [
Cuskorize, .. E

| Design Yiew [Source Yiew |

3. Right-click and select Add Control ~ Data Service from the popup menu. The Insert Control —

4.

Data Service wizard launches (Figure 4-4).

In the STEP 1 field of the dialog, enter a variable name for the Data Service control which is unique

in the context of the Web service.

Client Application Developer's Guide

4-5

Enabling Aqualogic Data Services Applications for Web Service Clients

46

Figure 4-4 Insert Control — Data Services Wizard

5.

Insert Control - Data Service (x|

STEP 1 yariahle name for this contral: | creditDsvar |

STEP 2 T would fike to :

(® Use a Data Service control already defined by a JCX file

I file: controls/CreditDS4Ws. jox | [Browse...

() Create a new Data Service control ko use,

[Make this a contral Factary that can create multiple instances at runtime

In the STEP 2 field, click Browse... to navigate to the controls folder, then select the Data Service
control you want to add to the Web service. (Alternatively, click Create a New Data Service Control
button to launch the Data Service control wizard to create and configure a new control.)

Leave the checkbox labeled Make This a Control Factory unselected. (This checkbox would
cause the Data Service control to be instantiated at runtime using the factory pattern, rather
than as a singleton. To use the control in a Web service, it must be a singleton.)

STEP 3 is active only if your Data Service control is associated with a remote AquaLogic Data
Services Platform instance; that is, a AquaLogic Data Services Platform instance running on a
separate domain from WebLogic Workshop. The dialog provides for entry of a user name, password,
server URL, and domain information associated with the remote Data Service control. This
information is needed to complete the link between the Web service and the control.

Click the Create button on the Insert Control — Data Service dialog. The
LiquidDataControl.jar file is copied into the Libraries directory of the application. The
variable you created in STEP 1 of the dialog displays as a node in the Data Palette, with its
functions and procedures listed under the node.

It is these functions and procedures that you can now expose to client applications, by adding
them to the Web service’s callable interface (shown as the left-hand portion of the Web
service’s Design View in WebLogic Workshop — see Figure 4-5), as described in the next step.

Client Application Developer's Guide

Server-Side Aqualogic Data Services Platform-Enabled Web Service Development

Figure 4-5 Adding Data Service Control Functions to a Web Service

CreditRatingDBTest, jws* - {CreditRatingaHcontrolsy

Y

_’@\\ CreditRatingDBTest ‘“Web Service

—<5>—b getCreditRating

|:|;'>—b setCreditRating acceptChanges

getCreditRating
% setCreditR ating

Daka Paletke ™ *

Controls Add v
= D creditDSvar
=+ acceptChanges
=+ getCreditRating setCreditRating
=+ sehCreditRating
B [creditratingDe
=+ acceptChanges
=+ getCreditRating
=+ sehCreditRating

acceptChanges

getCreditRating

[=

|| Design View [Source Wiew |

8. Select the variable’s function or procedure listed in the Data Palette by clicking on the node, and
then dragging the function onto the left side of the Web service in Design View.

You can test your Web service as described in “Testing a Web Service in WebLogic Workshop” on
page 4-9. After testing, you can deploy your Web service to a production WebLogic server and use it as
you would any other Web service. For information about developing Java-based Web service clients,
see “Client-Side AquaLogic Data Services Platform-Enabled Web Service Development” on page 4-10.

Generating a Web Service from a Data Service Control

Another way to create a AquaLogic Data Services Platform-enabled Web service is by generating
stateless Web services from Data Service controls. The generated Web services automatically include

Client Application Developer's Guide 4-7

Enabling Aqualogic Data Services Applications for Web Service Clients

operations (method calls) for each of the functions and procedures that the Data Service control
comprises.

Follow the instructions in this section to generate and test a stateless Web service. (These instructions
assume that you have already created the Data Service control and that WebLogic Workshop is open.)

Figure 4-6 Stateless Web Services Are Generated from Data Service Controls

Data service control

public interface CustDSCtrl extends LDControl,
com.bea.control.ControlExtension {
CustomerDS.cust.CustomerDocument]]
getCustomer(myCustomerDS.cust.CustomerDocument p0);

“Customer” Data Service

Read and navigate functions:
xquery version “1.0" encoding...
...(::;pragma xsd...)

declare function getCustomer as schema-
element (Customer)* 0

declare function getCustomerOrder as ré—ﬂ
element(Customer) as element (Order)*

for $pk in Customer()

where $pk/Cust_ID eq $fk/Cust_ID
return $pk

%

Web service
Procedures: public class CustomerWS implements com.bea.jws.WebService
updateCustomerAddress(custAdd in) {

Cust.customer.CustomerDocument[]
getCustomer(myCustomer.customer.CustomerDocument p0)

return customerDSCtrl.getCustomer(p0);
}

Here are the steps involved:

1. From WebLogic Workshop’s Application pane, select the Data Service control that you want to use
as the basis for your Web service by clicking on its name. While the control is selected,
right-mouse-click to display the pop-up menu; select Generate Test JWS File (Stateless) from the
menu. WebLogic Workshop generates the JWS Java Web service file for your Data Service control.

Note: Although WebLogic Workshop by default generates Web services that have the word
"Test" embedded in the file names, these are deployable Web services. You can rename
the generated Web service to eliminate the word "Test".

2. Click on your Web service project to select it, then right-click, and select Build Project. WebLogic
Workshop builds a Web service project.

Client Application Developer's Guide

Server-Side Aqualogic Data Services Platform-Enabled Web Service Development

3. When the build process completes, double-click on the JWS file. If necessary, click the Design View
tab to display the generated Web service in the Design View.

You will see methods (operations) for each of the functions and procedures contained in the
Data Service control.

Developing AquaLogic Data Services Platform-Enabled
Read-Write Web Services

If your Web service must support submits from Java Web service clients, you first need to modify the
JWS file before generating the WSDL, as follows:

1. Modify submit operations in your Java Web service (JWS) implementation control file to accept a
DatagraphDocument object as a parameter.

For instance, if the original signature of the submit() method of the generated JWS looks
appears as:

java.util.Properties[] submitCustomerProfile (CustomerProfileDocument doc) ;

It should be modified to the following:
java.util.Properties[] submitCustomerProfile (DatagraphDocument rootDataObject)

2. Modify the body of the submit operation to instantiate and initialize the document from a
DatagraphDocument object being passed as a parameter; for example:

CustomerProfileDocument doc = (CustomerProfileDocument) new

DataGraphImpl (rootDataObject) .getRootObject () ;
return customerData.submitCustomerProfile (doc); //customerData is the AqualLogic
Data Services Platform control

3. Generate a Web Service Definition Language (WSDL) file from the JWS file by right-clicking on the
file name and selecting the Generate WSDL file option.

After you have created the WSDL file, provide it to your client application developers, so they can
generate the Web services client interfaces and proxy code necessary (as discussed in “Client-Side
AquaLogic Data Services Platform-Enabled Web Service Development” on page 4-10).

Testing a Web Service in WebLogic Workshop

By default, WebLogic Workshop creates two operations in its generated Web services that can be used
for testing purposes.

Client Application Developer's Guide 4-9

Enabling Aqualogic Data Services Applications for Web Service Clients

1. Click the Start icon (or select Debug — Start from the WebLogic Workshop menu) to deploy and
run the Web service using the local runtime. An informational message briefly appears, notifying
you that the Web service is running. Shortly, the WebLogic Workshop Test Browser launches,
displaying the Test Form.

2. Click the Test button to run the Web service and obtain your result.

Continue developing the functionality of the Web service as required, testing as you go along. Once the
Web service is complete, you can create the artifacts necessary for client application development, as
described in the next section, “Client-Side AquaLogic Data Services Platform-Enabled Web Service
Development.”

Note: For more information about Web service client applications and WebLogic server in general,
see "Invoking Web Services" in Programmaing WebLogic Web Services in WebLogic server
documentation.

Client-Side Aqualogic Data Services Platform-Enabled
Web Service Development

4-10

Your client application uses either a static or a dynamic approach to Web services. Both approaches
are discussed in this section. The following topics provide brief summaries of the appropriate client
requirements.

Static Web Service Clients
A static Web service client requires:
o A Web service client proxy that invokes Web service operations.

o A static SDO API (such as customer.getName()), to read or modify data returned by the Web
service.

AquaLogic Data Services Platform includes the necessary utilities (Java classes and Ant tasks) to
generate the following classes for a static Web service client:

e SDO classes (example: CustomerDocument)

o A Web service client proxy

A typical static Web service client can use the following to retrieve a customer’s record:

CUSTOMERDocument doc = wssoap.getCustomer (“987654") ;

Client Application Developer's Guide

http://edocs.bea.com/wls/docs81/webserv/client.html

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

Note: The wssoap class is an instance of the generated Web service client proxy class; the doc
object is an instance of the generated Static SDO class named CUSTOMERDocument.

Dynamic Web Service Clients

A dynamic Web service client requires:
o JAX-RPC API. This API dynamically invokes Web service operations.
e Dynamic SDO APL. This API reads or modifies data returned by the Web service.

Note: Neither the generated SDO classes, nor the Web service client proxy classes are needed for
the Dynamic Web service client.

A typical dynamic Web service client can retrieve a customer’s record with the following:

XmlObject param = XmlObject.Factory.parse("<msg:getCustomer
xmlns:msg="http://www.openuri.org/'><CustomerID>987654</CustomerID></msg:getCu
stomer>") ;

DataObject doc = (DataObject)call.invoke (new Object|[]{param});

Note: The call class is an instance of the call interface of the JAX-RPC API. The doc object is an
instance of the DataObject interface of the Dynamic SDO API.

Developing Static Web Service Clients

The following general steps are involved in developing a static Web service client for AquaLogic Data
Services Platform:

e Generate the SDO classes required by the AquaLogic Data Services Platform Web services
Proxy.

e Generate the Web service proxy.
e Set up the Web service client environment.

e Develop the client.

As a prequisite to creating the AquaLogic Data Services Platform proxy, you first generate the
necessary SDO classes.

Generating SDO Classes for the Web Service Proxy

You can generate SDO classes for your Web service client using an Ant task (sdogen) or through a Java
class. Each method is described in this section.

Client Application Developer's Guide 4-1

Enabling Aqualogic Data Services Applications for Web Service Clients

Generating SDO Classes Using Ant

The sdogen Ant task creates an SDO client JAR file that contains the typed classes needed for working
with SDOs. The task either can use:

e an XSD (schema) file created as part of the data service or

e a WSDL file (assuming the AquaLogic Data Services Platform-enabled application has been
exposed as a Web service)

to extracted the needed typed classes.

Environmental Settings

In order to successfully run the sdogen task, make sure your classpath includes:
® wlsdo.jar
® xbean.jar

Example

To create a JAR comprising the necessary client (SDO) classes, add the sdogen tas-kdef to your build
script. For example:

<taskdef name="sdogen" classname="com.bea.sdo.impl.SDOGenTask"
classpath="path/to/wlsdo.jar:path/to/xbean.jar"/>

4-12

where path/to is replaced with the physical location of your JAR files.

Client Application Developer's Guide

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

This task implicitly defines an Ant FileSet, and supports all FileSet attributes (for example, dir
becomes basedir) as well as the nested attributes and elements. Table 4-7 summarizes the attributes

used by the sdogen Ant task.

Tahle 4-7 Attributes Available for the sdogen Ant Task

Attribute

Description

Required?

Default Value

schema

Afile that points to either an individual
schema file or a directory of files.

Note: Thisis not a path reference. If
multiple schema files need to
be built together, use a nested
fileset instead of setting a
schema.

Yes

None

destfile

Creates a non-default name for the JAR
file. For instance, myXML.Bean.jar
will output the results of this task into a
JAR named myXMLBean.

No

xmltypes.jar

classgendir

Directory in which to generate
.class files.

No

Current directory

classpath

Specify the classpath if Java files are in
the schema fileset, or if the fileset
imports include compiled XMLBeans
JAR files. Also supports a nested
classpath.

No

classpathref

Adds a classpath, given as reference to
a path defined elsewhere.

No

debug

Indicates whether source should be
compiled with debug information.

If set to False (off), —g : none will be
passed on the command line for
compilers that support it.

If set to True, the value of the
debuglevel attribute determines the
command line argument.

No

False (off)

Client Application Developer's Guide 4-13

Enabling Aqualogic Data Services Applications for Web Service Clients

4-14

Tahle 4-7 Attributes Available for the sdogen Ant Task

Attribute Description Required? Default Value
fork Flag that indicates whether the JDK No Yes
compiler (javac) should be executed
externally.
memoryInitialSize The initial size of the memory for the No Configured VM
underlying VM, if javac is run memory setting
externally; ignored otherwise. Defaults for the machine.
to the standard VM memory setting. For example:
83886080, 81920k,
or 80m.
memoryMaximumSize The maximum size of the memory for No Configured VM
the underlying VM, if javac is run memory setting
externally; ignored otherwise. Defaults for the machine.
to the standard VM memory setting. For example:
83886080, 81920k,
or 80m.
verbose Controls the amount of build message No True
output.
Building a JAR File

To build a WSDL or XML schema definition (XSD) files in the schemas directory and create a JAR
named Schemas. jar, your Ant script would need to include the following;

<sdogen schema="MyTestWS.WSDL" destfile="Schemas.jar"
classpath="path/to/wlsdo.jar:path/to/xbean.jar"/>

where path/to represents the physical location of your JAR files.

Generating SDO Classes Using Java

You can use the SDOGen Java class at the command-line to generate SDO client classes from XML
schema definition (XSD) files or WSDL files based on data services.

Client Application Developer's Guide

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

SDOGen is a Java class that extends the XMLBean schema compiler class. See Table 4-8 for

command-line options for the SDOGen utility.

Table 4-8 Command-line Options for the Java SDO Class Generation Utility

Option

Description

Default Value

-cp [arb;c]

Classpath.

-d [dir] Target directory for binary . class and
. xsb files.

-src [dir] Target directory for generated Java source
files.

-srconly Flag to prevent compiling Java source files

and archiving into JAR file.

-out [result.jar]

Name of the output JAR file.

xmltype.jar

-dl Enables network downloads for imports and Off (not enabled).
includes.
-noupa Do not enforce the unique particle
attribution rule.
-nopvr Do not enforce the particle valid
(restriction) rule.
-compiler Path to external Java compiler.
-jar Path to JAR (Java Archive) utility.
-ms Initial memory for external Java compiler. 8 Megabyte
-mx Maximum memory for external Java 256 Megabyte
compiler.
-debug Compile with debug symbols.
-quiet Print minimal informational messages to
Java console.
-verbose Print maximum amount of informational

messages to Java console.

Client Application Developer's Guide

4-15

Enabling Aqualogic Data Services Applications for Web Service Clients

Tahle 4-8 Command-line Options for the Java SDO Class Generation Utility

Option Description Default Value
-license Prints license information.

-allowmdef "[ns] Ignores multiple defs in given namespaces.

[ns] [ns]"

Environmental Settings
To execute the utility, make sure your classpath includes:
® wlsdo.jar
® xbean.jar
Syntax
To create a JAR comprising the client classes, execute SDOGen at the command prompt as follows:
java com.bea.sdo.impl.SDOGen [options] XMLSchema
The XMLSchema can be:
e the URL of a WSDL
e an XSD or WSDL file
e adirectory containing XSD or WSDL files
SDOGen Usage Examples

The following are examples of using SDOGen with various options (Table 4-8) to obtain different
results:
o To create a file named xm1type.jar (the default) based on the WSDL associated with Web
service named MyApp running locally you can use:

java com.bea.sdo.impl.SDOGen
http://localhost:7001/WebApp/DSCtrls/MyApp.jws?WSDL

o To create a file named xm1type.jar (the default) based on the WSDL associated with a
publicly available Web service, use:

java com.bea.sdo.impl.SDOGen -dl
http://198.68.125.17:7001/WebApp/DSCtrls/MyApp.Jjws?WSDL

The -dl option permits downloading.

4-16 Client Application Developer's Guide

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

e To create a file named xm1type.jar using an XML schema definition (a XSD file) located in
the following directory on your local machine:

\myApps\xsd_dir
You can use:
java com.bea.sdo.impl.SDOGen C:\myApps\xsd dir
e To create the MySDoClasses.jar file in the c: \test\xsd_ dir directory you can use:

java com.bea.sdo.impl.SDOGen -out MySDOClasses.jar C:\test\xsd dir

Generating the SDO Web Service Client Proxy

You can generate an SDO Web client proxy using an Ant task (sdoclientgen) or invoke a Java class
(WSClientGen) to perform the same task. Each approach is described in this section.

Using Ant to Generate Your Client Proxy

The sdoclientgen Ant task generates an SDO-enabled Web services client JAR file that your client
applications can use to consume JWS files generated from a Data Service control.

Typically, you can generate a client JAR file from an existing WSDL file of the JWS.
The generated client JAR file includes:

e (Client interface and stub files (conforming to the JAX-RPC specification) used to invoke a Web
service in static mode.

e An optional serialization class for converting SDO classes between its XML and Java
representation.

e An optional client-side copy of the Web service WSDL file.

Although you could use the sdoclientgen task to generate a client JAR file from the WSDL file of any
existing Web service (not necessarily running on WebLogic server), the task typically is used to
generate the JAR file from an existing WSDL file of an SDO-enabled JWS.

Here is an example:
<taskdef name="sdoclientgen" classname="com.bea.sdo.impl.WSClientGenTask"

classpath="path/to/SDOclasses:path/to/wlsdo.jar:path/to/xbean.jar:path/to/wlxb
ean.jar:path/to/xqrl.jar:path/to/webservices.jar"/>

where path/to is replaced with the physical location of your JAR files.
Note: See also “Sample Script for Creating a Static Web Service Client” on page 4-19.

Client Application Developer's Guide 4-11

Enabling Aqualogic Data Services Applications for Web Service Clients

4-18

The WebLogic server distribution includes a client runtime JAR file (webserviceclient.jar) that
contains the client-side classes needed to support the WebLogic Web services runtime component.

Ant Script Attributes

Table 4-9 describes sdoclientgen attributes.

Table 4-9 sdoclientgen Ant Task Attributes

Attribute

Description

Required?

packageName

Package name for the generated JAX-RPC client interfaces
and stub files.

Yes

wsdl

Full path name or URL of the WSDL that describes a Web ser-

vice (either WebLogic or non-WebLogic) for which a client
JAR file should be generated. The generated stub factory
classes in the client JAR file use the value of this attribute in
the default constructor.

Yes

clientJar

Name of a JAR file or exploded directory into which the cli-
entgen task puts the generated client interface classes, stub
classes, optional serialization class, and so on. To create or

update a JAR file, specfy the fullname, including the JAR ex-

tension (myclient.jar); otherwise, the clientgen task

interprets the name as a directory. If the specified JAR or di-

rectory does not exist, the clientgen task creates a new JAR
file or directory.

No

classpath

Must include the path to the SDO classes generated from the
XSD or WSDL by the SDOGen Ant task.

No

classpathref

Adds a classpath, given as reference to a path defined else-
where.

No

Sample Script for Creating Static Web Service Client

The following Ant script provides a working sample illustrating the creation of a static Web service
client. It generates all SDO and Web service client classes into a single JAR file, demonstrating the

following:

e Setting the classpath with the required JAR files and classes directory

o (alling the sdogen task to generate SDO classes in the "build" dir

Client Application Developer's Guide

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

o (alling the sdoclientgen task to generate SDO Web service client classes. This task depends on
the SDO classes in the "build" dir generated by sdogen task.

e Add all SDO and Web service client class files to a JAR file to be used by the SDO Web service
client Java program.

Listing 4-1 Sample Script for Creating a Static Web Service Client

- <project name="samplesdogen" default="build" basedir=".">

<property name="output.jar" value="MyTestClient.jar" />

<property name="wsdl.file" value="../DanubeCtrlTest.wsdl" />

<property name="local.build.dir" value="build" />

<property name="external.resource.dir" value="../../../../path to
external resource" />

<mkdir dir="${local.build.dir}" />
- <path id="compile.classpath">

<pathelement path="${java.class.path}" />

<pathelement path="${local.build.dir}" />

<pathelement location="${external.resource.dir}/weblogic.jar" />

<pathelement location="${external.resource.dir}/xbean.jar" />

<pathelement location="${external.resource.dir}/wlxbean.jar" />

<pathelement location="${external.resource.dir}/xqgrl.jar" />

<pathelement location="${external.resource.dir}/webservices.jar" />

<pathelement
location="${external.resource.dir}/../src/ld-core/sdoUpdate/dist/wlsdo.jar
"o/

</path>

<taskdef name="sdogen" classname="com.bea.sdo.impl.SDOGenTask"
classpathref="compile.classpath" />

<taskdef name="sdoclientgen" classname="com.bea.sdo.impl.WSClientGenTask"
classpathref="compile.classpath" />
- <target name="sdo" depends="clean">

<sdogen classgendir="${local.build.dir}" schema="${wsdl.file}"
classpath="${external.resource.dir}/../src/ld-core/sdoUpdate/dist/wlsdo.ja
r:${external.resource.dir}/xbean.jar" memoryInitialSize="8m"
memoryMaximumSize="256m" fork="true" failonerror="true" />

</target>

- <target name="build" depends="sdo">

Client Application Developer's Guide 4-19

Enabling Aqualogic Data Services Applications for Web Service Clients

<sdoclientgen wsdl="${wsdl.file}" packageName="sdoclient"
clientJar="${local.build.dir}/${output.jar}"
classpathref="compile.classpath" />
- <Jjar jarfile="${local.build.dir}/${output.jar}" update="yes">
- <fileset dir="${local.build.dir}">

<exclude name="${output.jar}" />

</fileset>

</jar>

</target>
- <target name="clean">

<delete dir="${local.build.dir}" />

<mkdir dir="${local.build.dir}" />

</target>

</project>

Environmental Settings

In order to execute the sdoclientgen task, your classpath must include the following JAR files in the
following order:

1. wlsdo.jar

2. webservices.jar
3. xbean.jar

4. wlxbean.jar

5. xgrl.jar

6. the generated SDO JAR file (for example: xmltype.jar)
The wlsdo. jar file can be found at:
<bea_ home>/weblogic8l/liquiddata/lib

The other non-generated JAR files can be found at:

<bea home>/weblogic8l/server/lib

Syntax

Define your Ant task for SDOClientGen as shown in this example:

4-20 Client Application Developer's Guide

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

<taskdef name="sdoclientgen" classname="com.bea.sdo.impl.WSClientGenTask"
classpath="path/to/SDOclasses:path/to/wlsdo.jar:path/to/xbean.jar:path/to/

wlxbean.jar:path/to/xgrl.jar:path/to/webservices.jar"/>

Usage Examples

<sdoclientgen wsdl="http://example.com/myapp/myservice.wsdl"
packageName="sdoclient" clientJar="myapps/mySDO_WSclient.jar"
classpathref="all the JAR files listed in the task"/>

Using Java to Generate the Client Proxy

The Web Services Client Generation utility is a Java class (WSClientGen) that you can use to generate
Web services client interfaces and stub classes from a WSDL that uses typed SDO classes for argument
and return types.

The utility should be used to generate Web service clients that allow a client to consume a Web service
(that is, a JWS file) from a Data Service control that invokes a AquaLogic Data Services Platform query
or submit.

Here are the steps involved:

1. Ifyou want to obtain the WSDL by using the Web service’s URL make sure the Web service is
running,.

2. Use the sdogen ant task to generate the JAR file (of typed SDO classes) from the AquaLogic
Data Services Platform-enabled Web service’s WSDL. (For details on sdogen see “Generating
SDO Classes for the Web Service Proxy” on page 4-11.)

3. Execute the Java utility as follows:

java com.bea.sdo.impl.WSClientGen [options] wsdl

The WSDL can be the URL of the WSDL (available over the network), or the actual, physical
WSDL file located on your machine. Command-line options that you can pass to the utility are
shown in Table 4-10.

Table 4-10 WSClientGen Utility Options

Option Purpose Comment
-version Print version information to the Java console.
-verbose Print the maximum amount of informational messages to

the Java console.

Client Application Developer's Guide 41

Enabling Aqualogic Data Services Applications for Web Service Clients

4-22

Tahle 4-10 WSClientGen Utility Options

-clientJar Specify the name for the generated JAR file. SDOClient.jar

-packageName Package name of the generated JAX-RPC client interfaces sdoclient
and stub.

-overwrite Boolean that specifies if existing files should be overwritten True
by newly generated code.

Usage Examples
Here are some examples of using the utility:

o To generate an SDO client JAR file from a publicly available WSDL, pass the URL to the Web
service as an argument on the command line:

java com.bea.sdo.impl.WSClientGen
http://localhost:7001/WebApp/DSCtrls/MyApp.jws?WSDL

e To create a JAR file named Myclient.jar (rather than the default), pass the file name with
the -clientJar parameter at the command line:

java com.bea.sdo.impl.WSClientGen -clientJar MyClient.jar
http://localhost:7001/WebApp/DSCtrls/MyApp.Jjws?WSDL

Using the SDO Web Service Client Gen Utility

The SDO Web Service Client Gen utility is an Ant build script that you can invoked from a command
line to build SDO objects for the client. The script (including its pathname) is:

<bea_home>\weblogic8l\liquiddata\bin\sdo_wsclientgen.xml

The WSDL file you created in the procedure described in “Developing AquaLogic Data Services
Platform-Enabled Read-Write Web Services” on page 4-9 is passed to the utility as a parameter, and
the SDO objects generated by sdo_wsclientgen.xml are based on that file.

The configuration parameters for the Ant build script sdo_wsclientgen.xml are:
e clientJar — the name of the JAR file that will be created.
e wsdl — the full path to the WSDL file needed to create the SDO objects.

o classgendir — the path to location of the generated JAR file.

Before using the Ant script to build SDO classes, make sure you set your environment by calling the
setWLSEnv.cmd in the command prompt window. This command file is located in the directory:

Client Application Developer's Guide

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

Sbea home\weblogic8l\server\bin

You must include the following packages in your client's CLASSPATH to work with SDO objects:

wlsdo.jar
webserviceclient.jar
xbean.jar
wlxbean.jar

xgrl.jar

Generated the SDO Web service client JAR file. This is the file you produced in step 3 of the
procedure described in “Using Java to Generate the Client Proxy” on page 4-21.

The specific steps you need to perform with the Ant utility in order to build SDO classes are:

1.

Clear the CLASSPATH variable

set CLASSPATH=

Set the WebLogic environment. For example:
\bea\weblogic8l\server\bin\setWLSEnv.cmd

Set the domain environment. For example:
\bea\weblogic8l\samples\domains\ldplatform\setDomainEnv.cmd

Note: This will change your current path; navigate back to the path for your application.

Create the sdotemp directory and add it to the classpath:
mkdir sdotemp

set CLASSPATH=%CLASSPATHS;sdotemp

Call Ant from the command line:

ant -buildfile <bea_home>\weblogic8l\liquiddata\bin\sdo_wsclientgen.xml
-Dwsdl path/to/nameOfWSDL.wsdl

where sdo_wsclientgen.xml is a build file packaged with your weblogic installation and
path/to represents the physical location of your wsdl file. For example:

ant -buildfile
D:\bea\weblogic8l\samples\liquiddata\bin\sdo wsclientgen.xml -Dwsdl
D:\bea\weblogic8l\samples\liquiddata\RTLApp\StaticWebService\controls\C
ustomerProfiledJWSContract.wsdl

Client Application Developer's Guide 4-23

Enabling Aqualogic Data Services Applications for Web Service Clients

After using the Ant utility (that is by issuing the command, ant sdo_wsclientget.xml),aJAR file
is created; among other generated artifacts, the JAR file contains the typed SDO classes. You can
distribute the JAR files to all clients that will consume operations from this Web service.

After running the Ant utility, you can call the modified submit operation that you created in step 2 of
the procedure described in “Developing AquaLogic Data Services Platform-Enabled Read-Write Web
Services” on page 4-9. For example, your client code would be as follows, based on the
submitCustomerProfile method shown in step 2, above:

Listing 4-2 Example of Invoking the Submit Method

CustomerDataTestSoap wssoap = new
CustomerDataTest_Impl () .getCustomerDataTestSoap () ;
CustomerProfileDocument doc = wssoap.getCustomerProfile(customer_id) ;
doc.getCustomerProfile() .getCustomerArray (0) .setLastName ("Test") ;
DataGraphImpl dg = (DataGraphImpl) doc.getDataGraph() ;

wssoap.submitCustomerProfile(dg.getSerializedDocument()) ;

Developing Static Web Service Clients

How To Set Up a Weh Service Client Environment for AquaLogic Data Services
Platform

The following instructions enable you to set up your Web service client environment for AquaLogic
Data Services Platform.
After generating the SDO Web service client classes in a JAR file (spoclient.jar), set up the
classpath for the Web service client using the following JAR files in the following order:

- wlsdo.jar

- webserviceclient.jar

- xbean.jar

- wlxbean.jar

- xgrl.jar

— spoClient.jar (the generated SDO Web service client JAR file)

Caution: The order of files shown above must be maintained.

4-24 Client Application Developer's Guide

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

Steps Involved in Developing Your Web Service Client

If you are not already familiar with the concept of using a Web service client proxy or JAX-RPC API to
invoke Web services, see Developing AquaLogic Data Services Platform-Enabled Read-Write Web
Services.

Then, in developing your Web service client, follow these steps:

1. Invoke the Web service method (e.g. getCustomer) to get the strongly typed root SDO data object
(e.g. CUSTOMERDocument). At this point, a SDO datagraph has already been created and
attached to the root data object (i.e. CUSTOMERDocument). Change tracking is also turned on by
default.

2. Use the Static SDO API to read the data (e.g. getCustomerName). Alternative you can use the
static API to modify the data (e.g. setCustomerName("J D")).

Alternatively, you can also use the dynamic SDO API to read or modify the data.

See Chapter 2, “Data Programming Model and Update Framework” for details on handling
insertions and deletions using the static and dynamic SDO APIs.

3. Invoke the Web service proxy method to submit the changed SDO datagraph to your server to
update your data sources. Here is an example of such an invocation:

wssoap.submitCustomer (((DataGraphImpl)doc.getDataGraph()) .getSerializedDocumen
t0));s

Sample Java Static Web Service Client

The following code shows a sample Java static Web services client for AquaLogic Data Services

Platform:
public class test read write static {
public static void main(String[] args) throws Exception ({
try {

CustomerProfileJWS ws = new CustomerProfileJWS Impl();
CustomerProfiledJWSSoap wssoap = ws.getCustomerProfiledWSSoap () ;
CUSTOMERPROFILEDocument cpdoc = wssoap.getCustomerByCustID ("CUSTOMER1") ;
System.out.println (cpdoc) ;
cpdoc.getCUSTOMERPROFILE () .setFirstName ("Jack") ;

wssoap.submitCustomer (((com.bea.sdo.impl.DataGraphImpl)cpdoc.getDataGraph()) .g
etSerializedDocument ());
} catch (Exception e) {
e.printStackTrace();
} finally {
}

Client Application Developer's Guide 4-25

Enabling Aqualogic Data Services Applications for Web Service Clients

4-26

Developing Dynamic Web Service Clients

Developing your dynamic Web services involves the following:
e Setting Up a Dynamic Web Service Environment

e "Developing the Dynamic Web Service Client

Setting Up a Dynamic Web Service Environment

Set up the classpath for your Web service client using the following JAR files in the following order:
e wlsdo.jar
® webserviceclient.jar
® xbean.jar

® wlxbean.jar
® xgrl.jar

Note: The order of files shown above must be maintained.

Developing the Dynamic Web Service Client

There are three aspects to developing a dynamic Web service client. First the client must be created
using standard development procedures. Then there are several AquaLogic Data Services Platform
specific steps.

Initiating Dynamic Web Service Client Development

Follow the JAX-RPC instructions in JAX-RPC documentation
(http://java.sun.com/webservices/jaxrpc/docs.html) to create the framework for a
dynamic Web services client. Essentially this work involves:

e (reating your service factory instance.

e (Creating your service using the URL to WSDL and service name.

Steps Specific to AquaLogic Data Services Platform
To enable the dynamic Web service for AquaLogic Data Services Platform you then need to:

Client Application Developer's Guide

http://java.sun.com/webservices/jaxrpc/docs.html

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

1. Create a DataGraphCodec instance using the URL to WSDL.
2. Create a TypeMappingRegistry.

3. Create a TypeMapping and register the DataGraphCodec instance to be used to
serialize/de-serialize the SOAPElement for both the request and response message.

Completing Dynamic Web Service Client Development
Finally complete development by:

1. Creating an instance of the JAX-RPC call interface for your read method (such as
getCustomer()).

2. Invoke your Web service.

Read or modify the response data using the SDO “Dynamic Data API” on page 2-10.

> oo

Create a call instance for the submit() method (such as submitArrayOfCustomer()).

ot

Wrap the serialized SDO datagraph with the SOAP message for the submit() method.

6. Invoke the submit() method to update your data sources.

Sample Java Dynamic Web Service Client

The following code (with comments emphasized) shows a complete Java dynamic Web services client
for AquaLogic Data Services Platform, including import statements.

Listing 4-3 Sample Java Dynamic Weh Service Client

import com.bea.sdo.impl.DataGraphCodec;
import com.bea.xml.XmlObject;

import commonij.sdo.DataObject;

import java.io.File;

import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.encoding.TypeMapping;

import javax.xml.rpc.encoding.TypeMappingRegistry;

Client Application Developer's Guide 4-21

Enabling Aqualogic Data Services Applications for Web Service Clients

import javax.xml.soap.SOAPConstants;

import javax.xml.soap.SOAPElement;
public class TestCodecArray
{

public static void main(String args[]) throws Exception ({

System.setProperty ("javax.xml.soap.MessageFactory",

"weblogic.webservice.core.soap.MessageFactoryImpl") ;
// Setup the global JAX-RPC service factory
System.setProperty("javax.xml.rpc.ServiceFactory",

"weblogic.webservice.core.rpc.ServiceFactoryImpl");

// create service factory

ServiceFactory factory = ServiceFactory.newlInstance();

// define gnames

String targetNamespace = "http://www.openuri.org/";
QName serviceName = new QName (targetNamespace, "org3Test");
QOName portName = new QName (targetNamespace, "org3TestSoap"):;

URL wsdlLocation = new
URL ("http://localhost:7001/ElecWS/controls/org3Test.jws?WSDL") ;

// create service

Service service = factory.createService (wsdlLocation, serviceName) ;

// create Codec
DataGraphCodec dgCodec = new DataGraphCodec (wsdlLocation) ;

TypeMappingRegistry registry = service.getTypeMappingRegistry () ;
TypeMapping mapping = registry.getTypeMapping (

SOAPConstants.URI_NS_SOAP_ENCODING) ;

4-28 Client Application Developer's Guide

Client-Side Aqualogic Data Services Platform-Enabled Web Service Development

mapping.register (SOAPElement.class,
new QName (targetNamespace, "getCustomer"),
dgCodec,
dgCodec) ;
mapping.register (SOAPElement.class,
new QName (targetNamespace, "getCustomerResponse"),
dgCodec,
dgCodec) ;
mapping.register (SOAPElement.class,
new QName (targetNamespace, "submitArrayOfCustomer"),
dgCodec,
dgCodec) ;
mapping.register (SOAPElement.class,
new QName (targetNamespace,
"submitArrayOfCustomerResponse"),
dgCodec,
dgCodec) ;

// create call for read
Call call = service.createCall (portName, new QName (targetNamespace,

"getCustomer")) ;

XmlObject regdoc = XmlObject.Factory.parse("<getCustomer

xmlns="http://www.openuri.org/"'/>");
DataObject[] customerdocs = (DataObject[]) call.invoke (new

Object[]{regdoc});

// user can modify the DataObject here
DataObject customer = customerdocs[0].getDataObject (0);
customer.setString ("EmailAddress", "BEAarray@BEA.com");

String dgstring = customer.getDataGraph() .toString();
System.out.println (dgstring);

// create call for submit

call = service.createCall (portName, new QName (targetNamespace,

Client Application Developer's Guide 4-29

Enabling Aqualogic Data Services Applications for Web Service Clients

"submitArrayOfCustomer")) ;

XmlObject submitdoc = XmlObject.Factory.parse (
"<sub:submitArrayOfCustomer
xmlns:sub="http://www.openuri.org/'><sub:docs>" +

dgstring + "</sub:docs></sub:submitArrayOfCustomer>") ;

Object obj = call.invoke (new Object[]{submitdoc});

System.out.println (obj) ;

4-30 Client Application Developer's Guide

CHAPTERa

Using SQL to Access Data Services

Applications can access data services through SQL. This is necessary in the case of many reporting
tools such as Crystal Reports, Hyperion, and Business Objects. But the ability to handle SQL is also
useful in other contexts.

For example, it is useful to be able to run ad hoc SQL queries against data services using tools such as
DbVisualizer. Application developers also can use a standalone Query Plan Viewer utility which
supports both XQuery and SQL.

BEA AquaLogic Data Services Platform supports table parameters, an extension to SQL-92.

SQL access is provided through the AquaLogic Data Services Platform JDBC driver. The driver
implements the java.sql.* interface in JDK 1.4x to provide access to an AquaLogic Data Services
Platform server through the JDBC interface. You can use the JDBC driver to execute SQLI2 SELECT
queries, or stored procedures over AquaLogic Data Services Platform applications.

This chapter explains how to use SQL to access data services as well as how to set up and use the
AquaLogic Data Services Platform JDBC driver. It covers the following topics:

e Publishing Data Service Functions As SQL
e SQL Support in AquaLogic Data Services Platform
e Accessing Data Services Functions Through JDBC

o Using the Query Plan Viewer Utility

Note: For data source and configuration pool information, refer to the WebLogic Administration
Guide:

Client Application Developer's Guide 5-1

http://edocs.bea.com/platform/docs81/admin/index.html
http://edocs.bea.com/platform/docs81/admin/index.html

Using SQL to Access Data Services

http://edocs.bea.com/platform/docs8l/admin/index.html

Publishing Data Service Functions As SQL

To access data services through SQL, data service functions first need to be published as SQL objects
through a JDBC interface. These SQL objects include tables, stored procedures, and functions.

Note: SQL objects published through AquaLogic Data Services Platform need to be enclosed in
double quotes when used in an SQL query, if the object name contains a hyphen.

To publish data service functions as SQL Objects, the following tasks need to be performed:
1. Publish data service functions to a special schema that models them as SQL objects.

2. Build and deploy your AquaLogic Data Services Platform application.

Once deployed, the newly created SQL objects are available to your application through standard
JDBC.

Techniques for publishing data services as SQL are described in "Publishing Data Services Functions
for SQL Use" in the Data Services Developer’s Guide.

Note: For details on accessing the AquaLogic Data Services Platform JDBC driver, and information
on the relationship between data services artifacts and JDBC, see “About the AquaLogic Data
Services Platform JDBC Driver” on page 5-11.

Using Custom Database Functions through AquaLogic Data
Services Platform

Built-in or custom functions in your database can be made available through data services once the
function has been registered with AquaL.ogic Data Services Platform through a library. For more
information about using database functions with AquaLogic Data Services Platform, refer to Creating
and Working with XQuery Function Libraries in Data Services Developer’s Guide.

SQL Support in AquaLogic Data Services Platform

This section outlines the SQL-92 support in the AquaLogic Data Services Platform JDBC driver.

5-2 Client Application Developer’s Guide

../datasrvc/xds.html#wp1111244
../datasrvc/xds.html#wp1111244
../datasrvc/gui.html#wp1147536
../datasrvc/gui.html#wp1147536
http://edocs.bea.com/platform/docs81/admin/index.html

Supported Features

The AquaLogic Data Services Platform JDBC driver provides SQL-92 support for the SELECT
statement. INSERT, UPDATE, and DELETE statements are not supported. DDL (Data Definition
Language) statements are also not supported.

The AquaLogic Data Services Platform JDBC driver implements the following interfaces from
java.sql package specified in JDK 1.4x:

java.
java.
java.
java.
java.
java.

java.
java.

java.

sgl

sqgl

sgl.
sgl.
sgl.

sgl.

sql

sgl.

sgl.

.Connection
.CallableStatement
DatabaseMetaData
ParameterMetaData
PreparedStatement
ResultSet

.ResultSetMetaData
Statement

Blob

Additional Details

The following limitations are known to exist in the AquaLogic Data Services Platform JDBC driver:

SQL Support in Aqualogic Data Services Platform

e Each connection points to only one AquaLogic Data Services Platform application.

Client Application Developer’s Guide

9-3

Using SQL to Access Data Services

The following table (Table 5-1) notes additional limitations that apply to SQL language features.
Table 5-1 Additional AquaLogic Data Services Platform JDBC Limitations Applying to SQL Language Features

Unsupported Feature = Comments Example

Assignment in select Not supported. SELECT MYCOL = 2
FROM VTABLE
WHERE COL4 IS NULL

The CORRESPONDING The SQL-92 specified default (SELECT NAME, CITY FROM
BY construct with the column ordering in the set CUSTOMER1) UNION CORRESPONDING
set-Operations operations is supported. BY (CITY, NAME) (SELECT CITY,
(UNION, INTERSECT Both the table-expressions (the NAME FROM CUSTOMERZ)
and EXCEPT) operands of the set-operator) The supported query is:
must'conform to the same (SELECT NAME, CITY FROM
relational schema. CUSTOMER1) UNION (SELECT NAME,

CITY FROM CUSTOMERZ2)

Table Parameter Support

Table parameters extend SQL-92 by providing the ability to add parameters to SQL FROM clauses. For
example, in SQL you can encounter a situation where it is necessary to code an exact number of
parameters (highlighted) into a query.

In the following query test.rtlall. CUSTOMER is the entire customer table.

SELECT cust.CUSTOMER ID, cust.FIRST NAME, cust.LAST NAME
FROM test.rtlall.CUSTOMER cust
where cust.CUSTOMER ID in (?, 2, 2, ...)
and cust.LAST NAME in (2, 2, 2, ...)
If alarge number of parameters are involved, data entry can be slow and setting up the SQL statement
tedious.

Table parameters provide an alternative. The following query uses table parameters (highlighted):

SELECT cust.CUSTOMER ID, cust.FIRST NAME, cust.LAST NAME

FROM ? as id cust(id cust num), test.rtlall.CUSTOMER as cust ,
? as id cust(last name)

WHERE id cust.id cust num = cust.CUSTOMER ID

and cust.LAST NAME = id cust.last name

The table parameter is specified through the same mechanism as a a parameter; a question mark ("?")
is used in place of the appropriate table name.

5-4 Client Application Developer’s Guide

SQL Support in Aqualogic Data Services Platform

Note: Inthe current implementation only a single table column can be passed as a table parameter.
If more than one column is specified, an exception is thrown.

Use Case for Table Parameters

A scenario: a data service contains consolidated information on all recent customer orders. A sales
manager has a consolidated list of all government customers in European countries. The goal is to use
a data service to obtain order information for that specific set of customers.

Stepping back from the example it is easy to see the that the scenario is a common one: a join between
the manager’s customer list and order information. However, if the manager’s customer list is long and
not already available through a database, it would be convenient to be able to pass in a list of values
as if it were a column in a table.

In the SQL cited above a list of customers is passed in as a table with a single column. The clause:
? as id cust(id cust num)
provides a virtual table value (id_cust) and a virtual column name (id_cust_num).

Although aliasing is not mandatory, it is generally recommended since default parameter column
names follow numerical sequence (0, 1, and so forth) and as such are subject to unexpected name
conflicts.

The one case where defaults are appropriate is when wildcards are employed such as:

select * from ?

and other simple cases involving wildcards.

Setting Table Parameters Using JDBC

Table parameters are passed to data services through the AquaLogic Data Services Platform JDBC
driver, specifically through its TableParameter class. The class (shown in its entirety in Listing 5-1)
represents an entire table parameter as well as the rows it represents.

Listing 5-1 Table Parameter Interface

public class TableParameter implements Serializable {
/**
* Constructor

*

* @schema the schema for the table
*/

Client Application Developer’s Guide 5-5

Using SQL to Access Data Services

5-6

public TableParameter (ValueType[] schema);

/**
* Creates a new a row and adds it to the list of rows in this table
*/

public Row createRow();

/**
* Gets the rows of this table
*/
public List/*Row*/ getRows () ;
/**
* Gets the schema of this table
*/
public ValueType[] getSchema/();
/**
* Represents a row in the table
*/
public class Row implements Serializable {
/**
* Sets a value to a particular column
* @param colIdx the index of the column to set
* @param val the value for the column
* @exception if index is out of bounds
*/

public void setObject (int colIdx,Object val) throws SQLException;
Object getObject (int colIdx);

Creating Table Parameters
The following steps show how to create a TableParameter class:

1.

Instantiate TableParameter with the schema of your table.

Note: At present only one column is supported.

Call the createRow() method on TableParameter to create a new Row object representing a tuple
in the table.

Client Application Developer’s Guide

SQL Support in Aqualogic Data Services Platform

3. Fill in the row object using the setObject(colldx,val) call until all columns are set.

4. C(Call createRow() again to create as many rows as the table requires.

JDBC Usage
TableParameters are passed through JDBC just like any other parameter, through a
PreparedStatement.

For example, you would first create a PreparedStatement with the query:

SELECT cust.CUSTOMER ID, cust.FIRST NAME, cust.LAST NAME

FROM ? as id cust(id cust num), test.rtlall.CUSTOMER as cust ,
? as id cust(last name)

WHERE id cust.id cust num = cust.CUSTOMER ID

and cust.LAST NAME = id cust.last name

and cust.ORDER AMT > ?

e Set the property on the PreparedStatement using the following call:

Float orderAmt = new Float (75f)
setObject (3, orderAmt)

This sets the value for the third parameter (the parameter in the WHERE clause).
e Set the properties on the PreparedStatement for the two table parameters using the following
calls:

setObject (2,v)
setObject (1, z)

to set the value for the table parameter. The "y" and “z” values should be of the type
TableParameter.

Table Parameter Example
The following simplified example illustrates the use of a table parameter. An in-memory list contains
three customers: CUST_1, CUST_2, and CUST_3.

SELECT cust.cust num, order.item, order.price
FROM ? as cust(cust num), Order as order
WHERE cust.cust num = order.cust id

The supporting JDBC code is shown in listing Listing 5-2:

Client Application Developer’s Guide 5-7

Using SQL to Access Data Services

5-8

Listing 5-2 JDBC Code Supporting Table Parameter Example

//first create the table parameter

ValueType[] schemalist = new ValueTypel[l];

schemaList [0] = ValueType.REPEATING VARCHAR TYPE;
TableParameter tableParam = new TableParameter (schemalist);
// then create the rows in your virtual table

// (in practice you would read data in from a file

// or some other data stream)

TableParameter.Row rowl = tableParam.createRow();
rowl.setObject (1," CUSTOMER 1");
TableParameter.Row row2 = tableParam.createRow () ;
Row2.setObject (1," CUSTOMER 2");

// repeat for second table parameter

// (...)

// execute the query

PreparedStatement objPreparedStatement = objConnection.prepareStatement (
“SELECT cust.CUSTOMER ID, cust.FIRST NAME, cust.LAST NAME

FROM ? as id cust(id cust num), test.rtlall.CUSTOMER as cust , ? as

id cust(last name)

WHERE id cust.id cust num = cust.CUSTOMER ID

and cust.LAST NAME = id cust.last name

and cust.ORDER AMT > ? ”);

// and set table parameters
objPreparedStatement.setObject (1, tableParam) ;
objPreparedStatement.setObject (2, tableParam?) ;
objResultSet = objPreparedStatement.executeQuery();

XML and SQL Type Mappings

When data service information is accessed from a JDBC client, the data is mapped from its XML
schema format to SQL types.

The XML types are defined by:

Client Application Developer’s Guide

SQL Support in Aqualogic Data Services Platform

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

The Java types are defined by:

java.sqgl.Types
XML types that can be mapped to SQL Type Mappings are shown in Table 5-2.

Table 5-2 XML and SQL Type Mapping

XML Type SQL Types
xdt:dayTimeDuration Types.OTHER
xdt:yearMonthDuration Types.OTHER
xs:boolean Types.BOOLEAN.
xs:byte Types.SMALLINT
xs:dateTime Types.TIMESTAMP
xs:date Types.DATE
xs:decimal Types.DECIMAL
xs:double Types.DOUBLE
xs:duration Types.OTHER
xs:float Types.REAL
xs:hexBinary Types.BLOB
xs:int Types.INTEGER
xs.integer Types.DECIMAL
xs:long Types .BIGINT
xs:negativelnteger Types.DECIMAL
xs:nonNegativelnteger Types.DECIMAL
xs:nonPositiveInteger Types.DECIMAL
xs:positiveInteger Types.DECIMAL
xs:short Types.SMALLINT

Client Application Developer’s Guide 5-9

Using SQL to Access Data Services

Table 5-2 XML and SQL Type Mapping

XML Type SQL Types
xs:string Types.VARCHAR
xs:time Types.TIME
xs:unsignedByte Types.SMALLINT
xs:unsignedInt Types.BIGINT
xs:unsignedLong Types.DECIMAL
xs:unsignedShort Types.INTEGER

Accessing Data Services Functions Through JDBC

5-10

The AquaLogic Data Services Platform JDBC driver enables JDBC and ODBC clients to access
information available from data services using SQL. The JDBC driver increases the flexibility of the
AquaLogic Data Services Platform integration layer by enabling access from database visualization
and reporting tools, such as DbVisualizer, Crystal Reports, Hyperion, and Business Objects. For the
client, the AquaLogic Data Services Platform integration layer appears as a relational database, with
each data service function comprising a table. Internally, AquaLogic Data Services Platform
translates SQL queries into XQuery.

Some constraints associated with the AquaLogic Data Services Platform JDBC driver include the
following:

e The AquaLogic Data Services Platform JDBC driver can only be used to access data through
data services that have a flat data shape, which means that the data service type cannot have
nesting. This is because SQL provides a traditional, two-dimensional approach to data access as
opposed to the multi-level, hierarchical approach defined by XML.

o The AquaLogic Data Services Platform JDBC driver only exposes non-parameterized flat data
service functions as tables because SQL tables do not have parameters. Parameterized flat data
services are exposed as SQL stored procedures.

You can create flat views to be used from the JDBC driver to expose non-flat data services,.

This section discusses the SQL Name Mapping technique used to map SQL functions to AquaLogic
Data Services Platform functions, along with the steps to configure the JDBC Driver connection using
Java and non-Java applications. It includes the following topics:

Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

e About the AquaLogic Data Services Platform JDBC Driver

e Supported Functions

o Configuring the AquaLogic Data Services Platform JDBC Driver

o Accessing AquaLogic Data Services Platform JDBC Driver Using a Java Application
e Accessing Data Service Functions from DbVisualizer

e Connecting to AquaLogic Data Services Platform Client Using ODBC-JDBC Bridge from
Non-Java Applications

e Accessing Data Services Data from Reporting Tools

About the AquaLogic Data Services Platform JDBC Driver

The AquaLogic Data Services Platform JDBC driver has the following features:
e Supports SQL-92 SELECT statements
o Implements JDBC 3.0 API
o Supports AquaLogic Data Services Platform with JDK 1.4
o Usable from both Java and ODBC clients

o Allows metadata access control at the JDBC driver level

Using AquaLogic Data Services Platform JDBC Driver, you can control the metadata accessed through
SQL based on the access rights set at the JDBC driver level. This ensures that authorized users can
view only those tables and procedures, which they are authorized to access. However, to be able to use
this feature, the AquaLogic Data Services Platform console configuration should be set to check
access control. For more information, refer to the "Securing Data Services Platform Resources"
section in the Administration Guide.

Note:

e The AquaLogic Data Services Platform JDBC driver contains the following third party libraries:
Xerces Java - 2.6.2 : xercesImpl.jar,xmlParserAPIs.jar,and ANTLR 2.7.4

: antlr.jar.

o The driver also contains the following AquaLogic Data Services Platform product libraries:
wlclient.jar, ld-client.jar, Schemas UNIFIED Annotation.jar,
jsrl73 api.jar,and xbean.jar.s

Client Application Developer's Guide 5-11

../admin/security.html#wp1094964

Using SQL to Access Data Services

Data Service Functions and Corresponding JDBC Artifacts

AquaLogic Data Services Platform views data retrieved from a database in the form of data sources
and functions. The following table (Table 5-3) shows the equivalent terminology.

Table 5-3 Aqualogic Data Services Platform and JDBC Driver Artifacts

Aqualogic Data Services Platform JDBC
AquaLogic Data Services Platform Project Database Catalog Name
Folder under the DSP project Virtual name to maintain consistency between the

database structure (Catalog.Schema.Table)and
AquaLogic Data Services Platform

Function with parameters Stored procedure

Function without parameters Table

For example, if you have a project TestDataServices and CUSTOMERS . ds with a function
getCustomers () under the schema MySchema, then you can map getCustomers as an SQL object
as follows:

TestDataServices.MySchema.getCustomer

where TestDataServices is the catalog and MySchema is the name of the schema folder. This
mapping is based on mapping the AquaLogic Data Services Platform functions to SQL objects. For
more information about mapping AquaLogic Data Services Platform functions as SQL objects, refer to
Publishing Data Services Functions for SQL Use in the Data Services Developer’s Guide.

Supported Functions

AquaLogic Data Services Platform supports many functions that can be used to access data services
through various reporting tools. In the following tables functions are divided into the following types:

e Numeric Functions
e String Functions

e Datetime Functions
e Aggregate Functions

o JDBC Metadata Search Patterns

5-12 Client Application Developer’s Guide

../datasrvc/xds.html#wp1111244

Numeric Functions

The following numeric operation functions are provided:

Table 5-4 Numeric Functions

Accessing Data Services Functions Through JDBC

Function Signature Comment
ABS numeric ABS (numeric n) ABS returns the absolute value of n. If n is
NULL, the return value is NULL.

CEIL numeric CEIL (numeric n) CEILreturns the smallest integer greater
than or equal to n. If » is NULL, the
return value is NULL.

FLOOR numeric FLOOR (numeric n) FLOOR returns largest integer equal to or

less than %. If » is NULL, the return value is
NULL.
ROUND numeric ROUND (numeric n) ROUND returns 7 rounded to 0 decimal

places. If n is NULL, the return value is
NULL.

String Functions

The following string management functions are provided:

Table 5-5 String Functions

Function Signature Comment
CONCAT varchar CONCAT (varchar si, CONCAT returns s concatenated
varchar s2) with s2. If any argument is NULL, it

is considered to be equivalent to
the empty string.

LENGTH numeric LENGTH (varchar s) LENGTH returns the length of s. The
function returns 0 if s is NULL.

LOWER varchar LOWER (varchar s) LOWER returns s, with all letters
lowercase. If s is NULL, the function
returns an empty string.

LTRIM varchar LTRIM (varchar s) LTRIM trims leading blanks from s. If

s is NULL, the function returns NULL.

Client Application Developer’s Guide 5-13

Using SQL to Access Data Services

Table 5-5 String Functions

Function Signature Comment

RTRIM varchar RTRIM(varchar s) RTRIM trims trailing blanks from s. If
s is NULL, the function returns NULL.

SUBSTR varchar SUBSTR (varchar s, SUBSTR with two arguments

numeric start) returns substring of s starting at
start, inclusive. The first character
ins is located at index 1. If s is
NULL, the function returns an
empty string.

TRIM varchar TRIM(varchar s) TRIM trims leading and trailing
blanks from s. If s is NULL, TRIM
returns NULL.

UPPER varchar UPPER (varchar s) UPPER returns s, with all letters

uppercase. If s is NULL, UPPER
returns the empty string.

Datetime Functions

The following datetime functions are provided:

Table 5-6 Datetime Functions

Function

Signature

Comment

DAYS

numeric

DAYS (T wvalue)

DAYS returns the days component from
value. T can be a date, timestamp, or
duration. If value is NULL, the result is
NULL.

HOUR

numeric

HOUR (T wvalue)

HOUR returns the hour component from
value. T can be one of time, timestamp,
or duration. If value is NULL, the result
is NULL.

MINUTE

numeric

MINUTE (T value)

MINUTE returns the minute component
from value. T can be a time, timestamp,
or duration. If value is NULL, the result
is NULL.

5-14

Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

Tahle 5-6 Datetime Functions

Function Signature Comment

MONTH numeric MONTH (T value) MONTH returns the month component
from value. T can be one of date,
timestamp, or duration. If value is
NULL, the result is NULL.

SECOND numeric SECOND(T value) SECOND returns the seconds
component from value. T' can be a time,
timestamp, or duration. If value is
NULL, the result is NULL.

YEAR numeric YEAR(T value) YEAR returns the year component from
value. T can be one of date, timestamp,
or duration. If value is NULL, the result

is NULL.
Aggregate Functions
The following aggregation functions are provided:
Table 5-7 Aggregate Functions
Function Signature Comment
COUNT numeric COUNT (ROWS r) COUNT returns the number of rows in 7.
AVG T AVG(T r) AVG returns the average values of all values

inr. T can be a numeric or duration type.

SUM T SUM(T r) SUM returns the sum of all values inr. T'can
be a numeric or duration type.

MAX T MAX (T 1) MAX returns a value from r that is
greater than or equal to every other
value inr. T can be a numeric, varchar,
date, timestamp, or duration type.

MIN T MIN(T 1) MIN returns a value from 7 that is less
than or equal to every other value inr. T
can be a numeric, varchar, date,
timestamp, or duration type.

Client Application Developer’s Guide 5-15

Using SQL to Access Data Services

JDBC Metadata Search Patterns

The AquaLogic Data Services Platform JDBC driver supports standard JDBC API search patterns, as
shown in Table 5-8.

Tahle 5-8 JDBC Driver Metadata Search Patterns

Pattern Purpose

“string” Matches the identified string.

Uses the default catalog/schema.

“%” Wildcard; equivalent to * in regular expressions.

Matches a single character; equivalent to . (period) in regular expressions.

null Wildcard; same as “%”

Assuming that the default_catalog is catalogl and default_schema is schemal, Table 5-9 shows some
common matching patterns.

Table 5-9 JDBC Driver Metadata Search Patterns

Pattern Matching Example

“Agualogic” Matches the identified string, AquaLogic.

“abc%d” Matches:
¢ abclOd
e abcd
* abc practically anything d
But not:
¢ abclOe
¢ abclOdef

5-16 Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

Tahle 5-9 JDBC Driver Metadata Search Patterns

Pattern Matching Example
ahc%d_ Matches:
* abclOd
« abcd
* abc practically anything d
¢ abclOdg
But not:
¢ abclOdgh

¢ abclOdgPattern

e A call to:

and DBDatabaseMetadata.getTables (““,null, “abc%”)

nul would return all tables starting with abc under catalog 1.

Configuring the AquaLogic Data Services Platform JDBC
Driver

AquaLogic Data Services Platform JDBC driver is located in an archive file named 1djdbc. jar,
which is available in the following directory after you install BEA AquaLogic Data Services Platform:

<bea_home>\weblogic8l\liquiddata\lib\

To use the AquaLogic Data Services Platform JDBC driver on a client computer, you need to configure
the classpath, class name, and the URL for the JDBC driver. To configure the driver on a client
computer, perform the following steps:

1. Copy the 1djdbc.jar and weblogic.jar to the client computer.

2. Add 1djdbc.jar and weblogic.jar to the computer’s classpath.

3. Set the appropriate supporting path by adding $JAvA HOME%\jre\bin to your path.
4. To configure the JDBC driver:

a. Set the driver class name to:

com.bea.dsp.jdbc.driver.DSPJDBCDriver

b. Set the driver URL to:

jdbc:dsp@<DSPServerName>:<DSPServerPortNumber>/<DSPApplicationName>]

Client Application Developer’s Guide 5-11

Using SQL to Access Data Services

For example the driver URL would be:

jdbc:dsp@localhost:7001/RTLAppP

¢. You can also set the default catalog name and schema name in the URL while connecting to
the JDBC driver with the following syntax:

jdbc:dsp@<DSPServerName>:<DSPServerPortNumber>/<DSPApplicationName>/<catalogna
me>/<schemaname>

Note: If you do not specify the CatalogName and SchemaName in the JDBC driver URL, then
you need to specify the three-part name for all queries. For example:

select * from <catalogname>.<schemaname>.CUSTOMER

d. Debugging can be enabled by using the 10gFi 1e property. To log debugging information, use
the following JDBC driver URL syntax:

jdbc:dsp@localhost:7001/test;logFile=c:\output.txt

In this case, the log file will be created in c: \output . txt. You can also specify the debug
property separately instead of specifying it with the URL.

Note: If you build a SQL query using a reporting tool, the unqualified JDBC function name is
used in the generated SQL. Consequently, when an application developer invokes an XFL
database function, the default catalog and schema name must be defined in the JDBC
connection URL. It is also a requirement that any JDBC connection utilize those
functions available from a single SQL catalog:schema pair location.

The following is an example URL defining a default catalog and schema for a JDBC connection:

jdbc:dsp@localhost:7001/myApplication/myCatalog/mySchema

. To configure the connection object for the AquaLogic Data Services Platform application, you can

specify configuration parameters as a Properties object or as a part of the JDBC URL.

Note: Ifapplication,default catalog,0rdefault schema appearsinboththe connection

properties and the URL, the one in the URL takes precedence.

Configuring the Connection Using the Properties Object:

You can configure the JDBC driver connection using the properties object as follows:

props.put ("user", "weblogic");

props.put ("password", " weblogic ");

props.put ("application", "RTLApp"):;

Connection objConnection =

DriverManager.getConnection ("jdbc:dsp@localhost:7001", props):;

5-18

Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

Note: You can specify the default schema and catalog name using the default catalog and
default schema property fields in case you do not specify it in the properties.

Alternatively, you can specify the AquaLogic Data Services Platform application name, RTLApp, in the
connection object itself, as shown in the following snippet:

props.put ("user", " weblogic");

props.put ("password", " weblogic ");

Connection objConnection =

DriverManager.getConnection ("jdbc:dsp@localhost:7001/RTLApp", props) ;

Configuring the Connection in the JDBC URL:

You can also configure the JDBC driver connection without creating a properties object, as shown in
the following code:

Connection objConnection =
DriverManager.getConnection ("Jjdbc:dsp@localhost:7001/RTLApp; logFile=c:\output.
txt; ", <username>, <password>);

Accessing Aqualogic Data Services Platform JDBC Driver
Using a Java Application

The steps to connect an application to AquaLogic Data Services Platform as a JDBC/SQL data source
are substantially the same as connecting to any JDBC/SQL data source directly. In the database URL,
use the AquaLogic Data Services Platform application name as the database identifier with "dsp" as
the sub-protocol, in the form:

Jjdbc:dspR<WLServerAddress>:<WLServerPort>/<DSPApplicationName>

For example:

jdbc:dsp@localhost:7001/RTLApP

The name of the AquaLogic Data Services Platform JDBC driver class is:

com.bea.dsp.jdbc.driver.DSPJDBCDriver

Obtaining a Connection

This section describes how to connect using the driver class in a client application.

A JDBC client application can connect to a deployed AquaLogic Data Services Platform application in
the same way as it can connect to any database. It loads the AquaLogic Data Services Platform JDBC
driver and then establishes a connection to AquaLogic Data Services Platform.

For example:

Client Application Developer’s Guide 5-19

Using SQL to Access Data Services

Properties props = new Properties();
props.put ("user", "weblogic");
props.put ("password", "weblogic");
props.put ("application", "RTLApp"):;

// Load the driver
Class.forName ("com.bea.dsp.jdbc.driver.DSPJDBCDriver") ;

//get the connection
Connection con = DriverManager.getConnection ("jdbc:dsp@localhost/7001", props);

5-20

Using the preparedStatement Interface

The storedQueryWithParameters method explained in this section, demonstrates how to use the
preparedStatement interface using a connection object (con). It is a valid connection obtained
through the java.sqgl.Connection interface to the WebLogic Server, which hosts AquaLogic Data
Services Platform.

Note: You can create a preparedStatement for a non-parametrized query as well. The statement can
also be used in the same manner.

In the method, CUSTOMER refers to CUSTOMER. ds.

public ResultSet storedQueryWithParameters () throws java.sqgl.SQLException

{

PreparedStatement preStmt =

con.prepareStatement (
"SELECT * FROM DataServices.MySchema.CUSTOMER WHERE

CUSTOMER.LAST NAME=?");

preStmt.setString (1, "SMITH") ;

ResultSet res = preStmt.executeQuery();

return res;

}

In the SELECT query, bataServices is the catalog name and MySchema is the name of the schema
folder.

Note: To use the CUSTOMER table in the SELECT query, you must first map it as an SQL Object. For
details, refer to “Publishing Data Service Functions As SQL” on page 5-2.

Using the CallableStatement Interface

Once a connection is established to a server where AquaLogic Data Services Platform is deployed, you
can call a data service function to obtain data by using a parameterized data service function call.

Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

The following method demonstrates calling a stored query with a parameter (where con is a
connection to the AquaLogic Data Services Platform server obtained through the
java.sqgl.Connection interface). In the snippet, a stored query named dtaQuery is executed
where custid is the parameter name and CusTOMER? is the parameter value.

public ResultSet storedQueryWithParameters (String paramName)

throws java.sqgl.SQLException {

//prepare a stored query to execute

con.prepareCall ("call DataServices.MySchema.getCustomerById(?) ");
call.setString (1, "CUSTOMER2");

ResultSet resultSet = call.executeQuery();

return resultSet;

Note: You can also use the prepareCall method as follows:

con.prepareCall (" { call DataServices.MySchema.getCustomerById(?)}");

Accessing Data Service Functions from DhVisualizer

You can also use the AquaLogic Data Services Platform JDBC driver from client Java applications. This
is a good way to learn how AquaLogic Data Services Platform exposes its artifacts through its
JDBC/SQL driver.

Note: For details on supported reporting applications and connectivity software see "Configuring
the AquaLogic Data Services Platform JDBC Driver for Reporting Applications" in the
Preparing to Install AquaLogic Data Services Platform chapter of the AquaLogic Data
Services Platform Installation Guide.

This section describes how to connect to the driver from DBVisualizer. Figure 5-1 shows a sample
application as viewed from DbVisualizer.

Client Application Developer’s Guide 5-21

../install/index.html

Using SQL to Access Data Services

5-22

Figure 5-1 DbVisualizer View of DSP

[, DbVisualizer Free 4.0.2 for WebLogic Workshop - C:\Documents and Settings\pshukla\dbyis.xml

File Edit View Database Bookmarks Window Help

£ oo 2 Y 9 ; w5
Bl HE +BE $5 BF SO <> PO ss
d Database Objects | [» SaL Commander | 5 Monitor
< @8 B ADDRESS
@ Connections | [E columns Data | ' #Rows | . PrimaryKey | G Indexes |) Priviieges | » Rowld | [Versioned | =a References
Egﬂt‘iﬂ” & 7 TABLE_CAT | TABLE SCHEM | TABLE NAME | COLUMN_NAME TYFE_NAME | COLUMN_SIZE BUFFER_LENGTH | DE
H Da(ahaSE C”"””“”" Evaluation WySchema ADDRESS ADDR_ID 12 VARCHAR 255 (null)
H Dotae Commertion Evaluation ySchema ADDRESS CUSTOMER_ID 12 VARCHAR 255 (null)
B Dtoaos Canmectian Evaluation WyStherma ADDRESS FIRST_NAME 12 VARCHAR 255 (nul)
E Rj a afe annection Evaluation WySchema ADDRESS LAST_NAME 12 VARCHAR 255 (null)
B8 RTft:n Evaluation MySchema ADDRESS STREET_ADDRESSH 12 VARCHAR 255 (null)
e» 3 EDF‘ " Evaluation MySchema ADDRESS STREET_ADDRESSZ 12 VARCHAR 255 (nully
33";':‘": Evaluation ySchema ADDRESS cmy 12 VARCHAR 255 (null)
e \TVI I‘“;L”Ea 3 Evaluation WySchema ADDRESS STATE 12 VARCHAR 255 (null)
L2 un‘n’[ss o0 Evaluation WySchema ADDRESS ZIPCODE 12 VARCHAR 255 (nul)
e oy | | |Evalustion WySchema ADDRESS COUNTRY 12 VARCHAR 255 (null)
E CUSTOMER 10() Evaluation MySchema ADDRESS DAY_PHONE 12 VARCHAR 255 (nully
o Evaluation IySchema ADDRESS EVE_PHONE 12 VARCHAR 255 (nul)
Evaluation WyStherma ADDRESS ALIAS 12 VARCHAR 255 (nul)
Evaluation WySchema ADDRESS STATUS 12 VARCHAR 255 (nul)
Evaluation MySchema ADDRESS 15_DEFAULT 5 SMALLINT 255 (null)
Table Name » ?;ﬂz%;ﬂ:; o
» Schema Name
A] v
[Show Table Row Count 0010 secio 000 se: 154 8 [115

To use DBVisualizer, perform the following steps:

1.

Click Start—All Programs—BEA WebLogic Platform 8.1—>Other Development
Tools—DbVisualizer.

Configure DBVisualizer.

a. Ensure that 1djdbc. jar exists in your CLASSPATH.

b. To establish a connection with AquaLogic Data Services Platform select Driver Manager from
the Database menu.

c. Select Add CLASSPATH from the File menu of the driver manager dialog. You should see the
1djdbc. jar listed.

d. Select 1djdbc. jar fromthe list and then select Find Drivers from the Edit menu of the driver
manager. The Driver Manager will detect the
com.bea.dsp.jdbc.driver.DSPJDBCDriver JDBC driver and display it in the list box.

Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

%, Dbvisualizer Free 4.0.2 for WebLogic Workshop - £:\Documents and Settin L] il
File Edit View Database Bookmarks Window Help
o Ep JHR +BER 25 QF O <> PO 89
|0, Database Objects | [SaL Commander | 3 Monitor
I =
A | { * Root: Connections Overview
@ ci i 10 2] 3] & 5] Alas Userid URL | Driver.
|
[E. pbvisualizer Free - Driver Manager ‘ il
File | Edit View
dd Location... . @
| Add CLASSPATH
@ stop [Add Incations in the CLASSPATH to the list
Close Cirl- landtheDrwerManagerwwll
avtomatically locate and list all valid classes thet are found
Non-existent paths are displayed with red color.
mta Source
perties
4) gﬁ Database Connection could not be established
4 5& Database Connection is about to be established
[0 show Tahle Row Count 5y [Database Connection will be established when "Connect All" is executed

e. Close the driver manager.
3. Add connection parameters by performing the following steps:

a. On the right pane, select the JDBC Driver as
com.bea.dsp.jdbc.driver.DSPJDBCDriver, from drop down list.

b. For the Database URL, enter jdbc:dsp@<machine name>:<port>/<app name>. For
example "jdbc:dspRlocalhost:7001/RTLApP"

¢. Provide the user name and password for connecting to the AquaLogic Data Services Platform
application.

4, Click Connect. On completion of a successful connection, you should see the following:

Client Application Developer’s Guide 5-23

Using SQL to Access Data Services

5-24

5 Db¥isualizer Free 4.0.2 for WebLogic Workshop - C:\Documents and Settings\pshuklatdbyis.xml
File Edit View Database Bookmarks Window Help

|_ERCATR el S BN
[Datahase Objects [sQL Commander | 9 Manitar

< @ |\ - Database Connection: RTLApp

ogiﬂnnec‘liﬂns Connection | Database Info | Data Types | Table Types | Tables | References
& RTLApD
i Datahage Connection
g gaiazase SU”HECEU” Connect Methﬂd'| ¥ JOEC Driver | | & DI Lookup ‘
atabase Connection
ﬂ Database Connection Connection Alias: |RTLApp
g Efffp”; JDBC Driver: (M com.bea.dsp jdbc. driver DSPJDECDriver
¢— |3 Evaluation Database URL: |Jdbc:dsp@|0ca|hust?001IDataServices
& MySchema
&[] TABLE (3
EEI ADDRESS 20) Passward: [

Connection Data

Userid:|web|ogic

] CREDIT_CARD (20

£ cUSTOMER (10) | Reconnect]| Disconnect

Impartant note about the URL

The URL hox containg sotne cotmmon URL templates. Replace
everything between "=" and "=" with appropriate values
and then make sure the "=" and "=" characters are removed.

Connection Message

Aogualogic Data Services Platform

2.2

class com.bea.dsp jdbc.driver. DSPJDBC Driver
2.2

Connection Time: 00:01:45

[# Show Table Row Count Connection | Properies

5. On the right pane of the window (see preceding figure), you can see various tabs. The Tables tab
helps you view the information about the tables, including their metadata. The References tab lets
you view the field information and primary key of each table.

6. Execute ad hoc queries by activating the SQL Commander tab as shown in the following figure.
Enter the SQL query and click the execute icon.

Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

., DbY¥isualizer Free -U:LZf nd Setti 3 _I— _ID il
File Edit View Database Bookmarks Window Help
m e J,'HI" ePBE &5 BF SH <> (PO ;e
d Database Objects saL Cummaﬂder‘h & Monitor_|
Database Connection - Sticky Liguid Data Application \
|.§a‘; Datahase Connection \ E” | \ E“
— b LY

=
CT *FROM CUSTOMERS

1. This tab let's you type in 3. Bxecute SQL
your Ad hoc SQL query

2. Type your query here

4. You see the result of
[x[cution here

1:24
Auto ClearLog: [

Output View

[1. SELECT* FHOM/UG(MERB \

| CUSTOMERS.CUSTOMERID | CUSTOMERS.CUSTOMERNAME
987654 Acrme VWidget Storas
987655 Supermart
987656 Ajax Distributars
987EST | Tenith Parts and Service
937648 Bit and Pieces
QRTRAA e and Wanda's Junk

\ / | 3.079 seesn.000 sec 612 |1-6

: Wigw: ‘ Log J [lj] Tabs] | B Windows | Max Rows: Max Chars Qutput Yiew:
i

Once you have configured your ODBC-JDBC Bridge, you can use your application to access the data
source presented by AquaLogic Data Services Platform. The usual reason for doing so is to connect
AquaLogic Data Services Platform to the reporting tool that you need to use.

Note: For details on supported reporting applications and connectivity software see "Configuring
the AquaLogic Data Services Platform JDBC Driver for Reporting Applications" in the
Preparing to Install AquaLogic Data Services Platform chapter of the AquaLogic Data
Services Platform Installation Guide.

Connecting to Aqualogic Data Services Platform Client
Using 0DBC-JDBC Bridge from Non-Java Applications

You can use an ODBC-JDBC bridge to connect to AquaLogic Data Services Platform JDBC driver from
non-Java applications. This section describes how to configure the OpenLink and EasySoft
ODBC-JDBC bridges to connect non-Java applications to the AquaLogic Data Services Platform JDBC
driver.

Client Application Developer’s Guide 5-25

../install/index.html

Using SQL to Access Data Services

5-26

Note: For details on supported reporting applications and connectivity software see "Configuring

the AquaLogic Data Services Platform JDBC Driver for Reporting Applications" in the
Preparing to Install AquaLogic Data Services Platform chapter of the AquaLogic Data
Services Platform Installation Guide.

Using OpenLink ODBC-JDBC Bridge

The Openlink ODBC-JDBC driver can be used to interface with the AquaLogic Data Services Platform
JDBC driver to query AquaLogic Data Services Platform applications with client applications, such as
Crystal Reports 10, Business Objects 6.1, and MS Access 2003.

To use the OpenLink bridge, you will need to install the bridge and create a system DSN using the
bridge. The following are the steps for these two tasks:

1.

Install the OpenLink ODBC-JDBC bridge (called ODBC-JDBC-Lite). For information on installing

OpenLink ODBC-JDBC-Lite, refer to the OpenLink Software download page for its Single-Tier

(Lite Edition) ODBC to JDBC Bridge Driver (Release 6.0) for use on Windows systems. As of this

writing the page can be accessed from:
http://download.openlinksw.com/download/login.vsp?pform=2&pfam=1&pca
t=1&prod=odbc-jdbc-bridge-st&os=1686-generic-win-32&0s2=1686-generic
-win-32&release-dbms=6.0-jdbc

WARNING: For Windows platforms, be sure to save the value of your CLASSPATH before

installation.

Create a system DSN and configure it for your AquaLogic Data Services Platform application by
performing the following steps:

a. Ensure that the CLASSPATH contains the following jars required by ODBC-JDBC-Lite,
as well as 1djdbc.jar and weblogic.jar. A typical CLASSPATH might look like:

D:\lddriver\ldjdbc.jar; D:\bea\weblogic8l\server\lib\weblogic.jar;
D:\odbc-odbc\openlink\jdkl.4\opljdbc3.jar;
D:\odbc-jdbc\openlink\jdkl.4\megathin3.jar;

b. Update your system path to point to the §vm.d11, which should be under your
%javaroot3\jre\bin\server directory.

¢. Open Administrative tools Data Sources (ODBC). You should see the following:

Client Application Developer’s Guide

../install/index.html
http://download.openlinksw.com/download/login.vsp?pform=2&pfam=1&pcat=1&prod=odbc-jdbc-bridge-st&os=i686-generic-win-32&os2=i686-generic-win-32&release-dbms=6.0-jdbc

Accessing Data Services Functions Through JDBC

User SN System DSHN] File DSH] Drivers] Tracing] Connection F‘ooling] About]

System Data Sources:

| Ciriver | Add...
: Easyzoft ODBCWDBC Gateway
ireme Sample Databaze 11 Microzoft Access Driver [*.mdb) Remave

i

Configure.

An ODEC System data source stores information about how to connect to
the indicated data provider. & System data sournce is visible to all users
on this machine, including NT services.

oK | Cancel | Help

d. Click System DSN tab and then click Add.
e. Select JDBC Lite for JDK 1.4 (32 bit) and click Finish.

3

MName | WA
Microsaft VWisual FoxPro-Treiber 1
OpenLink JOBC Lite for JDK. 1.2 [32 Bit)

OpenLink JOBC Lite for JDK. 1.2 [32 Bit) [Unicode)
OpenLink JOBEC Lite for JDK. 1.3 [32 Bit)
DpenLlnk JDBC the for JDK 1.3 [32 Blt] [Unicode]

Ef K 1.
DpenLlnk JDBC the forJDK 1.4 [32 Blt] [Unicode]
OpenLink JOBC Lite for JOK. 1.5 [32 Bit)
OpenLink JOBC Lite for JOK 1.5 [32 Bit) [Unicode]

SOl T

< *

b

| Finizh | Cancel |

f. Specify the DSN name. For example, openlink-aldsp, as shown in the following figure:

Client Application Developer’s Guide 5-27

Using SQL to Access Data Services

Thig wizard will help you create an ODBC data source that you can use to
connect to a remote D atabaze.

‘what name do you want to use to refer to the data source?

Wame: |openlink-aldsp

How dao you want ta describe the data source?

Descrption: |Openlink-aL05P

g. Click Next. Then on the next screen, enter the following in the JDBC driver field:
com.bea.dsp.jdbc.driver.DSPJDBCDriver.
Enter the following in the URL string field:

jdbc:dsp@<machine name>:<port>/<app name>/<catalogname>/<schemaname>

‘whhich server do pou want to connect to?

JDBC diiver. |combea.dsp.idbc diver DSPUDECDIver v |

URL string: [jdbe:dsp@lacalhost P00 /R TLApR/E valuation/ = |

I iConnect now to venfy that all settings are comect

Login D |weblogic:

[!’ INK Passward: |
SOFTWARE

< Back | Mext > | Cancel |

h. Select the Connect now to verify that all settings are correct checkbox. Provide the login and
password to connect to the AquaLogic Data Services Platform WebLogic Server.

5-28 Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

i. Click Next. The screen shown below will display:

Additional JOBC specific parameters:

I Drop Catalog name from Databasetetalata calls

[™ Drop Schema name from Databasetetalata calls
™ Retum an empty ResultSet for SOLStatistics

I Disable support of quated identifier

I™ Dizable suppoart of zearch patten escape

I” Enable logging of JOBC calls ta the lag file

Fatch null size of SALChar on: |0 i‘

& OPEN LINK'

SOFTWARE

< Back | Mext > |

Cancel

j. Click Next. The following screen is displayed.

I Disable interactive login

Fow buffer size: |50 ﬂ
M rovws overide: [0 ﬂ
Inital SOL: |
Dynamic cursor sensitivity: |L0w j
(@ OPENLINK
SOFTWARE [™ Enable logging ta the log file: |
< Back | Mest > | Cancel |

k. Click Next and specify the connection compatibility parameters as displayed in the following

figure.

Client Application Developer’s Guide

5-29

Using SQL to Access Data Services

nk Single Tier, DSN Configuration

Additional connect compatibility parameters:
-
[Disable Autacommit

I Disable rawset size limit

SOL_DBMS_NAME:

< Back Cancel |

1. Click Next and then click Test Data Source. This screen will verify that the setup is successful.

A new ODBEC Datazource will be created with the
fallowing configuration:

OpenLink Lite for JDK 1.4 [32 Bit] [32 Bit] Version: 5.20.0076
File: C:\Program FileshopenlinkiteZ24ntl5i1 4z dil

Running connectivity tests...

Aftempting connection

Connection establizhed

Werifying option gettings

Actual databaze iz [Aqualogic Data Services Platfarm]
Dizconnecting from server

TESTS COMPLETED SUCCESSFULLY!

[!‘ OPENLINK

SOFTWARE

< Back Finizh Cancel

m. Click Finish.

Using the EasySoft 0DBC-JDBC Bridge

Applications can also communicate with the AquaLogic Data Services Platform JDBC Driver using
EasySoft's ODBC-JDBC Gateway. The installation and use of the EasySoft Bridge is similar to the
OpenLink bridge discussed in the previous section.

5-30 Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

To use the EasySoft bridge, perform the following steps:
1. Install the EasySoft ODBC-JDBC bridge. Go to the EasySoft site for information about installation:
http://www.easysoft.com

2. Create a system DSN and configure it for AquaLogic Data Services Platform by performing the
following steps:

a. Open Administrative tools—Data Sources (ODBC).

System Data Sources:

Mame | Diriver Add...

openlink-aldsp OpenLink JOBLC Lite for JOK 1.4

heme Sample Databagze 11 Microgoft Access Driver [*. mdb) Bemove
LConfigure...

< >

An ODEC System data source stores information about how to connect to
the indicated data provider. & System data sournce is visible to all users
on this machine, including NT services.

oK | Cancel Help

b. Go to the System DSN tab and click Add.

c. Select EasySoft ODBC-JDBC Gateway as shown in the following figure and click Finish.

Client Application Developer’s Guide 5-31

http://www.easysoft.com

Using SQL to Access Data Services

Create New Data Source fgl

Select a driver for which you want to set up a data source.

MName | WA
Drriver da Microsoft para arquivos texto [“t=t; ".csv] 4
Drriver do Microsoft Access [* mndb)
Diriver do Microzoft dBase [*.dbf]
Drriver do Micrazoft Excel[” «lz)

Ciriver do Microsoft Paradox [*.db)
Diriver para o Microzoft Visual FosPro
E: ft ODBC-IDEBC I =
Microzoft Access Driver [* mdb)

Microzoft Access-Treiber [*.mdb)
A imrmnml Pt AD —rm Dieime 1% ARR

<

B S S Y

| Finish | Cancel

d. On the next screen, fill in the fields as follows:
For classpath, enter the absolute path to the 1djdbc.jar

For the URL enter:
jdbc:dsp@<machine name>:<port>/<app name>/<catalogname>/<schemaname>
For example:

jdbc:dsp@localhost:7001/DataServices/Evaluation/NewSchema;logFile=c:
\jdbc.log

For the Driver class, enter:

com.bea.dsp.jdbc.driver.DSPJDBCDriver

5-32 Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

Bl Fasysoft ODBC-JDBC Gateway DSN Setup

DSM: |EazyDema

Dezcription: |
Uzer Hame: | wieblogic
Passward: [==

Dirivver Clazs: | com.bea dzp.jdbe. driver DSPJDBCDriver

Class Path: |C:'\bea\web|0gi081 weerverilibbweblogic.jar ﬂ
URL: | jdbe: dzp@localhost 7000 /R T LAPPAE valuation. M ew
Strip Quate: I Single Statement: le—m
With Schema: i~ todify Metadata: »
Feuse CL Object: v Stiip E scape: N
Bigint Default: I Azync Cancel: [

Teat ak. Carcel Help

e. Click Test. The following screen will display, indicating the connection has completed
successfully.

I ODBC-JDBC Gateway Test

& Conneckion to Aqualogic Daka Services Platform, class com.bea,dsp.jdbc.driver, DSPIDBCDriver (2.2 - OK

f. Click OK to complete the set-up sequence.

Accessing Data Services Data from Reporting Tools

This section describes how to configure the following reporting tools to use the AquaLogic Data
Services Platform ODBC-JDBC driver:

o (Crystal Reports XI

Client Application Developer's Guide 5-33

Using SQL to Access Data Services

5-34

e Business Objects XI-Release 2 (ODBC)
e Hyperion-ODBC

o Microsoft Access 2003-ODBC

o Microsoft Excel 2003-ODBC

Note: Some reporting tools issue multiple SQL statement executions to emulate a scrollable cursor
if the ODBC-JDBC bridge does not implement one. Some drivers do not implement a
scrollable cursor, so the reporting tool issues multiple SQL statements. This can affect
performance.

Crystal Reports XI

This section describes the steps to connect Crystal Reports to the AquaLogic Data Services Platform
JDBC driver along with information about standard configuration files that are available with
AquaLogic Data Services Platform installation. It also describes the limitations of using Crystal
Reports with AquaLogic Data Services Platform. It includes the following topics:

e Crystal Reports Configuration File Support
e Limitations

e Connecting to Crystal Reports Using JDBC

Crystal Reports Configuration File Support

Before you start using Crystal Reports with AquaLogic Data Services Platform, you must modify the
default Crystal Reports configuration file, CRConfig.xm1, to verify that Crystal Reports is able to
access data services through JDBC.

The sample AquaLogic Data Services Platform cRconfig.xm1 file is provided with the standard
installation of AquaLogic Data Services Platform. The sections of the configuration file that need to
be modified contain the string “ALDSP”. This file is located at:

<weblogic81l>/LiquidData/resources/ReportingToolConfigs/CrystalReports

You cannot use the sample CRConfig.xml directly unless Crystal Reports is installed in the same
directory as the path specified in the sample CRConfig.xml and AquaLogic Data Services Platform
is installed in the same directory as the path specified in the sample CRConfig. xm1. Therefore, you
need to modify the default CRCconfig.xm1 file available with Crystal Reports according to the sample
CRConfig.xml file available with AquaLogic Data Services Platform.

Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

Note: Although you can modify the sample CRconfig.xml file available with AquaLogic Data
Services Platform, it is recommended that you modify the default Crystal Reports
CRConfig.xml file based on the sample file available with AquaLogic Data Services
Platform.

Table 5-10 identifies some restrictions and specifies configuration changes you need to make to your
Crystal Reports configuration file when accessing data using the AquaLogic Data Services Platform
JDBC driver.

Table 5-10 Crystal Reports Configuration File Support for AquaLogic Data Services Platform

Configuration File Discussion

CRConfig.xml e Add the pathto weblogic.jar and 1djdbc. jar to the beginning of
CLASSPATH environment variable.
e Replace the entire <JDBC> element with the sample <JDBC> element.
e Modify the <JDBCURL> and <JDBCUserName> elements based on the

JDBC driver URL and JDBC user name that you want to use to establish
the connection with AquaLogic Data Services Platform JDBC driver.

The following code snippet is a sample of the <JpBC> element with the JDBC driver URL and user
name configuration settings:

<!-- ALDSP2.5 : The following <JDBC configuration is specific to ALDSP. -->
<JDBC>
<CacheRowSetSize>100</CacheRowSetSize>
<!-- ALDSP: Please replace <JDBCURL> with your URL. -->
<JDBCURL>jdbc:dsp@localhost:7001/YOUR APP</JDBCURL>
<JDBCClassName>com.bea.dsp.jdbc.driver.DSPJDBCDriver</JDBCClassName>
<!-- ALDSP: Please replace <JDBCUserName> with your user name. -->
<JDBCUSerName>ENTER_USER_NZ—\ME_HERE</JDBCUserName>
<JNDIURL></JNDIURL>
<JNDIConnectionFactory></JNDIConnectionFactory>
<JNDIInitContext>/</JNDIInitContext>
<JNDIUserName></JNDIUserName>
<GenericJDBCDriver>

<Option>Yes</Option>
<DatabaseStructure>catalogs, schemas, tables</DatabaseStructure>

<StoredProcType>Standard</StoredProcType>

Client Application Developer’s Guide 5-35

Using SQL to Access Data Services

<LogonStyle>Standard</LogonStyle>

</GenericJDBCDriver>

</JDBC>

Limitations
Before you use Crystal Reports to access data services, ensure that you consider the following facts:

o Crystal Reports is not able to invoke the stored procedure with parameters for any AquaLogic
Data Services Platform XQuery function, which has the parameters defined using the built-in
data type keyword such as $integer. To resolve this issue, change the parameter name in the
XQuery function.

e (Crystal Reports supports all XML types that are supported by AquaLogic Data Services Platform
JDBC driver except the following:
- yearMonthDuration
- dayTimeDuration
e Some of the JDBC functions that are used by Crystal Reports are not supported by AquaLogic

Data Services Platform. Refer to the “Supported Functions” on page 5-12 for a list of supported
functions.

Connecting to Crystal Reports Using JDBC

To connect Crystal Reports to the JDBC driver and access data services to generate reports, perform
the following steps:

1. Crystal Reports 11.0 comes with a direct JDBC interface that can be used to interact directly with
the AquaLogic Data Services Platform JDBC driver. You need to create a new connection for JDBC
by selecting JDBC (JNDI) connection from the Standard Report Creation Wizard. This displays the
JDBC (JNDI) Connection dialog box, as shown in Figure 5-2.

5-36 Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

Figure 5-2 Connection Dialog Box

JDBC (JNDI)

X

Connection
Pleasze enter connection infarmation ...

JDBC Connection: ®
Connection URL: |idbc:dsp@localhost:?DD1 /RTLApp |
Database Classname: |corn.bea.dsp.idbc.driver.DSF‘JDBCDriver |

JMD] Cotinection Mame | |
[Optional]:

JMDI Cannection: @)

| Mest > | [Finizh][Cancel] ’ Help]

2. Specify the connection parameters for the JDBC interface of Crystal Reports as shown in
Figure 5-3.

Client Application Developer's Guide 5-317

Using SQL to Access Data Services

Figure 5-3 Connection Information Dialog Box

X

JDBC (JNDI)

Connection Information
Provide neceszary information ta log on to the chosen data source.

Service: | |
User ID: |weblogic |
Pazzward: |ouooou |
05 Authentication: [P

[Finsh | [Cancel | [Hebp |

Note: The Database drop down box is populated with the available catalogs (AquaLogic Data
Services Platform applications) once you have specified the correct parameters for User
ID and Password as shown in Figure 5-3.

3. Click Finish to go back to the Standard Report Creation Wizard.

4. Drag the tables for which you want to generate the report to the right side as shown in Figure 5-4.

5-38 Client Application Developer's Guide

Figure 5-4 Metadata Browser Window
& Standard|Report Creation Wizard
Data

Chooze the data you want ta report on.

Available Data Sources:

Cuirres
[Favorites
[Histary
=[] Create New Connection
[CdAccess/Excel [DAO)
[Database Files
[Exchange 5.5 Message Tracking Log
[Exchange Message Tracking Log
=-C3JDBC [INDI
3 Make Mew Connection
= a,;l {userid}passwordh@localhost: 7001 /D ataService
#4 Add Command
(=[]l Evaluation
=HE] NewSchema
ADDRESS
CREDIT_CARD
CUSTOMER
[CJLegacy Exchange
[CMailbow Adrin
[CA0DEC RODO)
(- (] Olap
[CA0LE DE [200)
(Z Outlook/E wchange
[ZPublic Folder ACL
[ZPublic Folder Admin

|~
v

Accessing Data Services Functions Through JDBC

Selected Tables:

X
A

= -8 {usenidpasswordi@localhost 7001 /D ataS ervices
ADDRESS
CREDIT_CARD
CUSTOMER

[Mest »] [Finizh][Cancel] [

Help

]

5. Alternatively, you can choose the Add Command option to type an SQL query directly, which
displays a window as shown in Figure 5-5.

Client Application Developer's Guide

5-39

Using SQL to Access Data Services

Figure 5-5 Add Command

B Add Command To Report PS_<|

Enter SQL query in the box below, iy

select * from CUSTOMER LEFT OUTER JOIM ADDRESS OM
CUSTOMER. CUSTOMER,_ID=ADDRESS. CUSTOMER,_ID

[Create... |

6. Click OK and the Command is added to the right side of the window.

7. Clicking Next in the wizard shows you all the available views for generating the report, as shown
in Figure 5-6.

5-40 Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

Figure 5-6 Link Screen
E Standard Report Creation Wizard [5_(|

Link ml
Link together the tables vou added to the report.

|*

Auto-Arange

ADDRESS -
CREDIT_CARD Auto-Link
COUNTRY AL -
DAY_PHONE 7 LAST_DIGITS A ® By Mame
EVE_PHONE Exp_DATE OBy Key
ALIAS STATUS :
STATUS 15_DEFALLT E

ALTAS

Order Links...
Clear Links

CUSTOMER
CUSTOMER _ID
FIRST_MAME

Index Legend...

DAY _PHOME LAST_MAME
EVE_PHOME CUSTOMER _SINCE
ALTAS -
STATUS o
4 | v
o0]| >
[< Back H Mest >] [Finizh][Cancel] [Help]

8. Click Next to go back to the Column chooser window as shown in Figure 5-7. This window allows
you to select the columns you want to see in the final report.

Client Application Developer’s Guide 5-41

Using SQL to Access Data Services

5-42

Figure 5-7 Column Chooser

& sStandardReport Creation Wizard

Fields

Chooze the information to dizplay on the report,

Available Fields:

= ADDRESS

= ADDR_ID

= CUSTOMER_ID
FIRST_MAME
LAST_MNAME
STREET_&DDRESS1
STREET_ADDRESS2

= EIil

fifAA

COUNTRY
Day_PHOME

=
=
=
m= EVE_PHONE
=
=
=

ALlAS
STATUS
IS_DEFALLT

[-F

o=

= CUSTOMER_SINCE
= EMAIL_ADDRESS
o=

TELEPHOME_MUMEER
= GO

Find Field...

kX

o~

Fields to Display: >

= ADDRESS.CITY

= ADDRESS.COUNTRY

= CUSTOMER.FIRST_MAME
= CUSTOMER.LAST_MAME

[< Back ” Mest »] [Finizh][Cancel] [Help

Note: This example chooses columns from the user-generated Command and the view

CUSTOMER.

Click Next and the Grouping screen is displayed (as shown in Figure 5-8), which allows you to
choose a column to group by. (This grouping is performed by Crystal Reports. The Group-by

information is not passed on to the JDBC driver.)

Client Application Developer's Guide

Figure 5-8 Group-hy Screen

& standard/Report Creation Wizard

Grouping

Available Fiel

[Optional] Group the information on the report.

ds:

=
=

=

i

=
=
=
=
=
=
=
=
=
=
=
=
=
=

=& Report Figlds

CUSTOMER.FIRST_MAME
CUSTOMER.LAST_MAME

= ADDRESS

ADDR_ID
CUSTOMER_ID
FIRST_MAME
LAST_MNAME
STREET_&DDRESS1
STREET_ADDRESS2
CITY

STATE

ZIPCODE

COUNTRY
Day_PHOME
EVE_PHOME

ALlAS

STATUS
IS_DEFALLT

CREDIT_CARD
CUSTOMER
Command

Find Field...

Accessing Data Services Functions Through JDBC

—
{—
Group By
[< Back ” Mest »] [Finizh][Cancel] [Help]

10. Skip the next few screens for now. Click Next till you reach the Template Chooser Screen
Figure 5-9. Choose any appropriate Template. In this example, the user has chosen the Block
(Blue) Template.

Client Application Developer's Guide

5-43

Using SQL to Access Data Services

Figure 5-9 Template Chooser Screen

Template
[Optional) Select a template for the repart.

Avalable Templates Preview

Mo Template

Underlay

Corporate - Page Sections Ony
Corporate [Blue)

Corporate (Green)

Dovble-Sided Page Headers Footers
Evecutive Summary or Tille Page
Form [Maroon)

Giray Seale

High Conrast

Contrast Index

Table Grid Template

\iave

Browse.

[Finsh] [cancel | [Heln

11. Click Finish. A report similar to that shown in Figure 5-10 is displayed.

Figure 5-10 Generated Report

B Crystal Reports - [Report1]

B Dot vew Duet Foma Datsbwe Eeport wndow b
EAM 2 = MR Al - RN - [Elm 2 um sl e -
AA B r o)== =S 5
iab 8 X BN @CE| B @ O l |
Startpage,) Reportl x | b
Design Preview X | el Tof 1
Repot! [. . . 2 . 3 . a . s . o . 7
PHa
= BUSINESS OBJECTS'
Report Description:
PHo
b Doles Ush Sack Bk
b - Anacortes USA Serry Greenbers
3 Tucson USA eritt feree
b Rere USA Steve ing
CR— Son FrancisUsa ichee! Snom -
3 Austin USA Don sahnson
b Seate US Tim Flord
o Fhoenix USA i Supta
D N SanJose USA Kevin Smith
3 Austin USA Kevin smith
< | >
For o, press L e I fecordsi 0|

5-44 Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

Business Objects XI-Release 2 (0DBC)

Business Objects allows you to create a Universe and generate reports based on the specified Universe.
In addition, you can execute pass-through SQL queries against Business Objects that do not need the
creation of a Universe.

Note: If you need to specify a four part name in a SELECT list (such as,
<catalogname>.<schemaname>.<tablename>.<columnname>),deﬁneatabkiaﬁas
using the FroM clause, and then use only two parts <tablealias>.<columnname> in the
SELECT list. AquaLogic Data Services Platform JDBC driver extracts only the last two parts
from the seLECT list item, and ignores the rest.

For example:

SELECT C.Name FROM DataServices.MySchema.CUSTOMER C
where

DataServices is the catalog name

MySchema is the schema name

CUSTOMER 1is the table name

Name is the column name

C is the table alias for CUSTOMER

This section provides information on configuring Business Objects to access the AquaLogic Data
Services Platform JDBC driver. It includes the following topics:

e Business Objects Configuration File Support
e Prerequisites and Limitations

e Generating a Business Objects Report

Business Objects Configuration File Support

There are two BusinessObjects configuration files, odbc . prm and odbc. sbo, available with the
standard BusinessObjects installation, which need to be replaced with the odbc . prmand odbc . sbo
configuration files available with AquaLogic Data Services Platform, to access data services using
BusinessObjects.

When you install BusinessObjects, these files are copied to the following location:

<Business Objects Home >\BusinessObjects Enterprise 11.5\

win32_x86\dataAccess\connectionServer\odbc

With the AquaLogic Data Services Platform installation, these configuration files are available at the
following location:

<weblogic81>/LiquidData/resources/ReportingToolConfigs/BusinessObjects

Client Application Developer’s Guide 5-45

Using SQL to Access Data Services

After installing AquaLogic Data Services Platform, save the original configuration files available with
BusinessObjects at a different location and then replace them with the files packaged with AquaLogic
Data Services Platform.

The BusinessObjects configuration files provided with AquaLogic Data Services Platform should be
reviewed for comments. (Relevant comments contain the string “ALDSP”).

Tip: When first getting started using BusinessObjects with AquaLogic Data Services Platform, it is
recommended that the included configuration file be used to verify your ability to access data
services through JDBC.

Table 5-11 identifies some restrictions and specifies configuration changes you may want to make to
your BusinessObjects configuration files when accessing data using the AquaLogic Data Services
Platform JDBC driver.

Table 5-11 Business Objects Configuration File Support for AquaLogic Data Services Platform

5-46

Configuration File Discussion

ODBC.PRM Specifically supported:
® EXT JOIN (outer join)
® QUALIFIER (table prefix)
e DISTINCT
e ANSI 92
Not supported:
e INTERSECT
e INTERSECT IN SUBQUERY
e MINUS
e MINUS IN SUBQUERY

ODBC. SBO Set Transactional Available option to YES

Prerequisites and Limitations
Before you start using Business Objects to access data services, ensure that you consider the following
facts:

o To generate a report using Business Objects, all the data sources need to be from the same
catalog. This implies that in WebLogic Workshop the same project should be used to publish the
data services for SQL use. This catalog needs to be defined as the default catalog while

Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

connecting to AquaLogic Data Services Platform. However, the catalog can contain arbitrary
number of schemas.

e When you connect Business Objects to AquaLogic Data Services Platform using OpenLink, then
you need to specify the default catalog name in the AquaLogic Data Services Platform JDBC
driver URL, while configuring OpenLink. If you do not specify the default catalog name, then an
error similar to the following will be generated:

com.bea.ld.sgl.compiler.ast.SQLTypeCheckingException: Invalid table
reference. No such table null.Xtreme.CUSTOMER found.

at

com.bea.ld.sgl.compiler.ast.TableRSN.inferSchemaAndCheck (Lcom/bea/1ld
/

sgl/context/SQLContext;Lcom/bea/1ld/sqgl/types/Schemalndex;)V (TableRSN
.java:149)

For details about configuring OpenLink, refer to “Using OpenLink ODBC-JDBC Bridge” on page 5-26.

o BusinessObjects supports all XML types that are supported by AquaLogic Data Services
Platform JDBC driver except the following:

yearMonthDuration
dayTimeDuration
xs:boolean

xs:hexBinary

Generating a Business Objects Report
To generate a report, perform the following steps:

1. Create a Universe:

a.

b.

Run the Business Objects Designer application and click New to create a new universe.

Fill in a name for your Universe and select the appropriate DSN connection from the
drop-down list.

If the DSN you want to use does not appear in the list (this happens if you are using the
application for the first time), then click New to create a new connection.

In the Define a New Connection wizard, select Generic ODBC3 Datasource as the middleware.

Client Application Developer’s Guide 5-47

Using SQL to Access Data Services

5-48

Specify the user name and password to connect to WebLogic Server and select openlink-aldsp
as the DSN. For details about configuring the OpenLink ODBC-JDBC bridge, refer to “Using
OpenLink ODBC-JDBC Bridge” on page 5-26.

Click Next and test if the connection with the server is successful. Follow the instructions in
the wizard to complete creating the connection.

After creating the connection, specify this connection in the Universe and click OK. A new
blank panel is displayed.

From the Insert menu select Table. Once the list of tables is shown in the Table Browser,
double click the tables you wish to put in the Universe. You should see a screen similar to that
shown in Figure 5-11.

Figure 5-11 Table Browser

%% Designer - CustomerUniverse

=101 x|

J'la File Edit view Insert Tools window Help =121 x|

Dl SR y2Eas o R B/ EWE e -

E e e i e |

X o A |

Bl =
g2 Ritlapp Dataservicss~customerdb Addresstaddiess -
- @ Addrid RTLApp DataServices*CustomerDB ADDRESS#ADDRESS
Customer Id [ADDF_ID
First N CUSTOMER_ID
st g FIRST_MAME
Last Name LAST_NAME
[STREET_ADDRESS!
Srostitdiess] [STREET_ADDRESSZ
Street Address? CiTy
City STATE
ZIPCODE

L ER]

State

@ Zipcode
- @ Country
~ @ DayPhone CUSTOMER_ID a
--@ Eve Phone FIRST_MAME

@ Alias CUSTOMER_SINCE
L@ Stalus ErsIL_ADORESS

S @ |3 Defaulk [
SR=SER tlanp Dt nerdh C ome BRTH DAY

- @ Customer Id DEFAULT_SHIP_METHOD
- @ First Name

- @ LastMame

- @ Customer Since =l

o, w ETN

A4

-

»
- 0,0 [T) P e

i

Save the Universe and exit.

2. To create a new report:

a. Run the Desktop Intelligence application. Click New to open the New Report Wizard. Choose

Specify to access data and click Begin.

Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

b. Choose a Universe and click Next. On the left pane, you should see the tables and their fields
(columns) on expansion, as shown in Figure 5-12.

Figure 5-12 Query Panel

=10f x|

<n Query Panel - CustomerUniverse Universe

IEQSI ?l%ll IScope of Analysis: None ;I @l%‘llsﬁéf-lﬁﬂlwl gl

Classes and Objects Result Ohjects

=l Rtlapp Dataservices~oi ﬂ To insert an object in the query, open a class folder then double-click the ohject.
- @ Addr Id

First Mame

Last Mame
Street Address1
Street Addressz
City

Skate

Zipcode
Country Conditions

Day Phone To apply a condition, drag an object to this pane.
Eve Phone

Alias

Status

Is Default

(=142 Rtlapp Dataservices~c
‘@ Customer Id

@ First Mame =
ErEE _>l_I
c@8 O Hl

Optiong... | Save and Cloze | e, | Fun Cancel |

¢. Select the Universe of your choice and click Finish. Double-click a column (table-field) in the
left pane to select it in the result.

d. Click Run to execute the query. The result is displayed as shown in Figure 5-13.

Client Application Developer's Guide 5-49

Using SQL to Access Data Services

5-50

Figure 5-13 Business Objects Panel

B BusinessObjects - Document2 4 5 B ;Iglil
@ File Edit Yew Insert Format Tools Data Analysis Window Help =17 x|
gl 2 g |

DHgR|i2Bx8 | as -~ (B[Exds |t =]

2| e B

| -
o |E oo | Report Title E]
F—]@ Yariables
) g E:’mw Customer Id City Country First Name Last Hame
@ Customer Id CUSTOMERD Austin UsA, Britt Fierce
@ First Name CUSTOMERD Austin USA Don Lohnson
: @ LastName CUSTOMERD Austin USA Hommer Simpson
(88 Fomulas CUSTOMERD _[Austin USA Jack Black
CUSTOMERD Austin USA Jerry Greenbery
CUSTOMERD Austin usA Ievin Smith
CUSTOMERD Aunstin USA Michael Snowy
CUSTOMERD Austin USA Mitin Gupta
CUSTOMERD Austin usA Steve Ling
CUSTOMERD |Austin USA Tim Floyd
CUSTOMERD San Jose USA Eritt Pierce
CUSTOMERD San Jose usA Dan lJohnson
ClISTORAEDN Sam lamn e Hearmennr Cirne ne it
el o
ﬁ‘ﬂ PE Hepolll I

|Last Exec: 6/10j2005 11:48 AM LM A

3. You can execute the pass-through queries as follows:

a.

b.

In the Desktop Intelligence application, click New to create a new report.
In the New Report Wizard choose Others instead of Universe.

Choose Free-hand SQL and click Finish.

Select the connection you made using Designer.

Type in your SQL query and click Run to generate the report, as shown in Figure 5-14.

Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

Figure 5-14 Specifying the SQL Query

I i BusinessObjects - Document4

@ l§=] Free-hand SQL

selected database connection.

Ir the free-hand SAL editor, you create or open a SOL script, and run it on the

EIEI L e I] EustomerUniverseEonneclj &I&IEI

SELECT *FROM CUSTOMER NATURAL JOIN ADDRESS

Kf|

™ Build Hisrarchies and Start in Drill Mods

Wi, | Fun Cancel |

=

o
Help | _'ILI

.

M

f. Click Run. You should see the report shown in Figure 5-15.

Client Application Developer’s Guide

5-51

Using SQL to Access Data Services

Figure 5-15 Business Objects Report

fiBusinesthiects - Document4 i |EI|5]
@ File Edit Wiew Insert Format Tools Data Analysis Window Help 18] x|
ARARUN
DEE SR 2R X8| A% o~ | RERE® | £Q i |
A] % v] |
il ﬂ
& 0ata | Man | Report Title
-4 Variables -
B el CUSTOMER_ID FIRST NAME LAST_NAME CUSTOMER.CUS CUSTOMER.
@ ADDHESSZEITY CUSTOMEROD Kewin Snith 114172001 Kevin@aol.co
@ ADDRESS.COUNTRY CUSTOMERD Kewin Sith 11472001 Kevini@aol.co
@ sDDRESS.DAY_PHO CUSTOMER1 Jack Black 114172001 Jacki@hotrnai
- @ ADDRESS.EVE_PHO
8@ ADDRESS STATE CUSTOMERZ2 Je.rry G.reenherg 11472001 JOHM_2Ehyat
@ ADDRESS.STATUS CUSTOMERS Britt Pierce 114172001 JOHM_3iGhatt.
@ ADDRESS.STREET ;| CUSTOMERS Steve Ling 114272001 JOHM_4iGhatt.
@ ADDRESS.STREET . CUSTOMERS Michael Show 114172001 JOHM_5SiGaol
- @ ADDRESSZIPCODE
@ CLSTOMEREIRTH I CUSTOMERE D.on Johnson 114172001 JOHM_Bighat
@ CUSTOMER.CUSTOM CUSTOMERY [Tim Flayd 114172001 JOHM_7ig@yat
@ CUSTOMER.DEFALL CUSTOMERS Mitin Gupta 114172001 JOHM_Bidhatt.
- @ CUSTOMER.EMaIL_¢
- @ CUSTOMER.LOGIM_|
- @ CUSTOMER.S5M
..... & r||czTnI,u:n TFI Fﬂﬂ =
- - el | _>l_I
“48 T [Z] Report1 I
[| Last Exec: 6/10/2005 12:38 PM (T g

Hyperion-0DBC

Hyperion allows you to generate interactive and production reports using its Interactive Reporting
Studio and Production Reporting Studio. This section describes the steps to access AquaLogic Data
Services Platform data sources using an ODBC-JDBC bridge and generate interactive and production
reports.

It includes the following topics:
e Limitations
o Using Hyperion Production Reporting Studio
e Using Hyperion Interactive Reporting Studio

Limitations

Before you start using Hyperion to access data services, ensure that you consider the following facts:

5-52 Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

e Hyperion supports all XML types that are supported by AquaLogic Data Services Platform JDBC
driver except the following:

XML Type Behavior

xs:hexBinary Hyperion displays the metadata information, however, you cannot
include this binary type in the seLECT list.

xs:yearMonthDuration e Hyperion displays the metadata information but Item Type property in
the metadata is empty.

e The SELECT query using this XML type throws the “Program type
out of range” exception.

xs:dayTimeduration e The metadata information for the Item Type property is not retrieved.

e SELECT list using this XML type throws the “Program type out
of range” exception.

e Hyperion Interactive Reporting Studio does not support boolean datatype with OpenLink. The
Item Type property in the metadata information for the boolean type shows the type as byte for
boolean datatype, and any query issued with the datatype generates the “Program type out
of range” error.

Using Hyperion Production Reporting Studio

To establish the connection and view results using the Hyperion Production Reporting Studio, perform
the following steps:

1. Open Production Reporting Studio and select the tabular report from the Create New Report
wizard.

2. Select the bridge you want to use to connect to AquaLogic Data Services Platform from the Data
Connection box and click OK.

Note: To create reports using Hyperion Production Reporting Suite, you need to use lower case
names for tables published in AquaLogic Data Services Platform. See "Publishing Data
Services Functions for SQL Use" in Data Services Developer’s Guide for further details on
how tables are published in AquaLogic Data Services Platform.

3. Ifyou want to create a new connection, click New and follow the instructions in the Create Data
Connection wizard. Select the provider as ODBC. For more information about configuring
OpenLink or EasySoft as your preferred ODBC-JDBC bridge, refer to “Using OpenLink
ODBC-JDBC Bridge” on page 5-26 or “Using the EasySoft ODBC-JDBC Bridge” on page 5-30.

Client Application Developer’s Guide 5-53

../datasrvc/xds.html#wp1111244
../datasrvc/xds.html#wp1111244

Using SQL to Access Data Services

4. TFollow the instructions to create the new data connection and select ODBC and the SQR database.
Specify the user name and password for authentication.

5. From the Query Builder - Tables dialog box, select the tables that you want to use to generate the
report and click Next.

6. Select the query fields, which you want to use to generate the report and follow the instructions
in the Query Builder configuration.

7. Click Finish and a layout of the report is displayed. Now, run the report by clicking Process and
save the report. The report is displayed as shown in Figure 5-16.

Figure 5-16 Report in Hyperion Production Reporting Studio

£=)Hyperion System 9 BI + Production Reporting Studio - [cust-city.spf]
2| File Edt View Page ‘window Help =
PEEFET T LT |
|| Faaria o =l B U |A-E-O-|na
| w
07/16/2006 1
Addressl Address2 City C Id Ci Name OrderId Product Id
7464 South K Suite 2006 Sterling Hei 1 City Cyclist 1 2z
7464 South K Suite 2006 Sterling Hei 1 City Cyclist 1 2z
7464 South K Suite 2006 Sterling Hei 1 City Cyclist 1 2z
7464 South K Suite 2006 Sterling Hei 1 City Cyclist 1 2z
7464 South K Suite 2006 Sterling Hei 1 City Cyclist 1 2z
B073 Cambie Suite 1274 DeKalb 41 Deals on'Whe 1oz 5205
B073 Cambie Suite 1274 DeKalb 41 Deals on'Whe 1oz 5205 -
B073 Cambie Suite 1274 DeKalb 41 Deals on'Whe 1oz 5205
B073 Cambie Suite 1274 DeKalb 41 Deals on'Whe 1oz 520s
B073 Cambie Suite 1274 DeKalb 41 Deals on'Whe 1oz 10218
B073 Cambie Suite 1274 DeKalb 41 Deals on'Whe 1oz 10218
B073 Cambie Suite 1274 DeKalb 41 Deals on'Whe 1oz 10218
B073 Cambie Suite 1274 DeKalb 41 Deals on'Whe 1oz 10218
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 2213
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 2213
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 2213
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 2213
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 2213
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 540z
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 540z
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 540z
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 540z
ul. Nowagrod Warsaw 77 Warsaw Spart 1003 540z 5
g warsaw - e J SR) _>l_|
Wiewing report in SPF Farmat Master_Query -
Ready [[[| [[irzse 4

Using Hyperion Interactive Reporting Studio

To generate reports using Interactive Reporting Studio, perform the following steps:

1. Open Interactive Reporting Studio and select to create a new database connection. Specify ODBC
as the type of connection and the database.

5-54 Client Application Developer’s Guide

Accessing Data Services Functions Through JDBC

2. Select Easysoft or Openlink as the bridge and specify the credentials to connect to the data source
using the Database Connection Wizard. The rest of the steps to create a new connection are the

same as followed in production reports. After you create the connection, a blank layout is

displayed.

3. Addthe tables to the query area and then drag and drop the columns for which you want to retrieve

the data in the Requests field. You can also set the filter for the query using the Filter field.

4, Run the report by clicking Process Current as shown in Figure 5-17, and then save the report.

Figure 5-17 Report in Hyperion Interactive Reporting Studio

BB Hyperion System 9 BL+ Interactive Reporting Studio - Untitled

S Fils Edit View Insert Format Results Tools Window Help

|ozd|as|a @ a-a e

il | Erreces "ﬂ|\.—ag/‘®|

| [~I[F =] 4a| B

Sections

1

|°°|°°|‘l|°’|m|#|w|N|

=

I U

0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM
0101104 12:00 AM

S| a | Edrw wa

01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM
01401/04 12:00 AM

o

Employee 19 Supervisor 19 Last Name First Mame Pasition Bith Date Hie Date Home Phane Extension ‘

|12
|12
|14 |
FaDuery B ||
> EHEmployes 1d [16
> [l Supervisor 1d | 17
b B Last Mame | 18
[First Name: [18
- ElPosition | 20
+[HBith Date [21
[l Hie Date | 22 |
3 ElHome Phone %
[E stension | 24

E

B

Feady

‘ [4928 of 4325 Rows [07A11/06 11:09.18 —

Microsoft Access 2003-0DBC

This section describes the procedure to connect Microsoft Access 2003 to AquaLogic Data Services
Platform through an ODBC-JDBC bridge. It includes the following topics:

e Limitations and Usage Notes

e Generating Reports Using MS Access

Client Application Developer’s Guide

5-39

Using SQL to Access Data Services

5-56

Limitations and Usage Notes

e Microsoft Jet database engine, shipped with MS-Access, maps so1._DECIMAL and

soL_NUMERIC fields to the closest Jet numeric data type depending upon the precision and
scale of the ODBC field. In certain cases this results in mapping to a non-exact (floating point)
numeric Jet data type, such as Double or a Text field. For details, refer to the following
Microsoft article:

http://support.microsoft.com/kb/214854/en-us

This implicit type conversion by MS Access causes some errors when retrieving data from
AquaLogic Data Services Platform using MS Access.

In MS Access, to sort data retrieved from AquaLogic Data Services Platform, you need to select
a Unique Record Identifier when you link tables imported from AquaLogic Data Services
Platform with MS Access. If you do not select the Unique Record Identifier then an exception
will occur when you try to sort data.

Generating Reports Using MS Access
To connect MS Access to the bridge, perform the following steps.

1. Run MS Access, click File—0Open, then select ODBC Databases as the file type as shown in the

Figure 5-18.

Client Application Developer’s Guide

http://support.microsoft.com/kb/214854/en-us

Accessing Data Services Functions Through JDBC

Figure 5-18 Selecting the ODBC Database in Access

o NN 20l
J BT S e Look in: ID Iy Documents ;I - | @ b ﬁ ~ Tools -

1 Histary 18]0DBC13.mdb
My Business Objects Documents ODBCH.mdb
(_1My B2ZFlag Files 18] 0DBC15.mdb
My eBooks 1] oDBC16.mdb
My Games 18 0DBC17.mdb
23 My Music 18 0DBC18.mdb
(Z5]My Pictures 1] oDECz.mdb
(£ 5ecurity 18] 0DBC3.mdb
(3 sujeet_iitd 18] 0DEC4.mdb
21 0DBC. mdb 1] oDBCS. mdb
(2] 00BC1 . mdb 18] oDBCs mdb
[#21]0DEC10.mdb 18] 0DBC7 mdb
(2] 0DEC11.mdb [opECa.mdb
[0DBEC12.mdb 18] 0DBCa.mdb

File name: I - |

Files of type: IData Files (*.mdb;*, adp;* mdw;* mda;*.mde; *.ade;*.n:‘ZI
Microsoft Excel (*,xls)

G Open |t

Cancel |

Ready NS o o 7

2. Once the dialog Select Data Source pops up, click Cancel to close it. You should see the window
shown in Figure 5-19.

Client Application Developer’s Guide 5-57

Using SQL to Access Data Services

Figure 5-19 0BDC23: Database Screen

RETET

)

Macros

lodules

3. Click Queries, then Design as indicated in Figure 5-19. You should see a screen as shown in
Figure 5-20.

Figure 5-20 Select Query and Show Table Screens
—lofx|
|

JE\|B Edit View Insert Query Tools ‘Window Help

ID=d|&h Y

b ER| o[-

e e e

.

127 Queryl : select Query

Show Table

Tables IQLIEI’IES' Bath |

Ready] /o

5-58 Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

4. Close the Show Table dialog box. You should now be able to see the Select Query window.

5. Right-click in the window and select SQL Specific—Pass-Through as shown in Figure 5-21.

Figure 5-21 Selecting SQL Specific and Pass Through

’a Microsoft Access

JE\'E Edit Yiew Insert Cuery Tools ‘Window Help

- HERE iRy a|@- | %e]s rErEa-|a.

=¥ Queryl : Select Query E

SOL SQL Yiew
Datashest View

c’a Shaw Table. ..
ﬁ[?] Parameters. ..

Query Type [»

Field: L. | F=-Tho
Pass-Through
Table: EKS Relationships. .. oot =
Sort: St R his Data Definition

Show! Eroperties, .. []
Criteria e ——
ot

Ready [e o

6. Type in your SQL query and click Run, as shown in the Figure 5-22.

Client Application Developer’s Guide

5-59

Using SQL to Access Data Services

Figure 5-22 Running the SQL Query
'3 Microsoft Access ;IEILI

JE\IE Edit Yiew Insert Query Tools ‘Window Help ‘

== e e = =l =l EaN B A,

EE8/DDBC26 : Database
#3E Queiyi TSYL Pass Through Query

ELECT * FROM CUSTOMERS

2. Click to run the query

1. Type your query here

Ready s

7. Inthe dialog box that is displayed (as shown in Figure 5-23), move to the Machine Data Source tab
and select openlink-aldsp to connect to AquaLogic Data Services Platform JDBC driver and
generate the report.

5-60 Client Application Developer's Guide

Accessing Data Services Functions Through JDBC

Figure 5-23 Selecting the DSN for the Database
—Ioix

JEiIe Edit View Insert Tools Window Help |

Dwissy) T T— 2]
; File Diata Source #Maching Data Source

n Diata Source Name pe | Description
L o 8] =
f onen BA Design “tier club System
B .

al asyllemo System |
] I=EE
“ Excel Files User b Select the DSN
FoPro Files - word User
MOIS o User S0OL Server

i

LD

A Machine Data Source is specific to this machine, and cannot be shared.
"User" data sources are specific to a user on this maching. "System" data
Groups sources can be used by all users on this machine, or by a system-wide service.

o |

Cancel | Help |

|Verify\ng syskem objects ,—,—,—,—,—’—,—,_ A

Microsoft Excel 2003-0DBC

This section describes the procedure for connecting Microsoft Excel 2003 to AquaLogic Data Services
Platform through an ODJB-JDBC bridge using EasySoft.

To connect MS Excel to AquaLogic Data Services Platform, perform the following steps:
1. Start Workshop for WebLogic and then start WebLogic Server.

2. Build and deploy the AquaLogic Data Services Platform application.

3. Start Microsoft Excel and open a new worksheet.

4, Click Data — Import External Data — New Database Query. The Choose Data Source dialog box
is displayed.

5. Select EasyDemo from the list of data sources and then click OK. The Query Wizard - Choose
Columns dialog box is displayed. For details on configuring the JDBC driver using EasySoft, refer
to “Using the EasySoft ODBC-JDBC Bridge” on page 5-30.

6. Select the tables for which you want to generate the report and click Next.

7. Follow the Query Wizard instructions and in the Query Wizard - Finish dialog box, select Return
Data to Microsoft Office Excel.

Client Application Developer’s Guide 5-61

Using SQL to Access Data Services

5-62

8. Click Finish and import the data in a new MS Excel spreadsheet. The query results will be
displayed in the spreadsheet as shown in Figure 5-24.

Figure 5-24 Query Results Displayed in MS Excel

B3 Microsoft Excel - Book1 | g
(5] Fle Edit Wiew Insert Format Tools Data Window Help Adobe PDF Type aquestion for help = o 8 X
NEEHRAIAVE| S LRS- E P HM=EA- B
(T
Al - A CUSTOMER_ID
A [B [©] D | E | F 8
1 |CUSTOMER ID!FIRST_NAME LAST_NAME CUSTOMER_SINCE EMAIL_ADDRESS TELEPHONE_NUMBER
| 2 |CUSTOMER? Tim Floyd 104172001 JOHN_7@yahoo.com 2062616409
| 3 |CUSTOMER1 |Jack Black 104172001 Jack@hotmail. com 2145134119
| 4 |CUSTOMERZ Jerry Greenbery 10/1/2001 JOHM_2@yahoo.com 3607467964
| & |CUSTOMERD | Kevin Smith 104172001 Kevin@raol.com 4085320283
| B |CUSTOMERS ~ Michael Show 10172001 JOHN_5@E a0l com 4150460017
| 7 |CUSTOMERE Don Johnson 10172001 JOHN_G@Ehatmail. com 5128937204
| 8 |CUSTOMERS Nitin Gupta 10172001 JOHN_BiEatt. com 5028483787
| 9 |CUSTOMERZ Hommer Simpson 10/1/2001 JOHM_9@yahoo.com 7023719179
| 10 |CUSTOMER4 | Steve Lirg 10272001 JOHN_4iEatt. com 8660152496
| 11 |[CUSTOMERS Britt Pierce 10172001 JOHN_3@Eatt.com 9287731259
2 e —
KEl
14
15
16|
17| &
W « » w]Sheetl / Sheet2 { Sheeta / < >
Ready MM
Limitations

When passing a generated SQL string to Excel, there are situations where Excel inserts single quotes
around an alias, resulting in an exception from the AquaLogic Data Services Platform JDBC driver.
Here is an example:

SELECT Sum (CREDIT.AMOUNT) AS 'Sum of AMOUNT' FROM Xtreme.CREDIT CREDIT

Although you can edit your query post-generation, another option is to install a patch from Microsoft
which is designed to address the problem. The current URL for accessing information on this problem
and patch is:

http://support.microsoft.com/kb/298955/en-us

Client Application Developer’s Guide

http://support.microsoft.com/kb/298955/en-us

Using the Query Plan Viewer Utility

Using the Query Plan Viewer Utility

Java

You can review the plan for the execution of a SQL query or XQuery using a standalone Query Plan
Viewer utility. The functionality is similar to that described in "Using Query Plan View" in the Testing
Query Plan Functions and Viewing Query Plans chapter of Data Services Developer’s Guide.

Note: Inorder to use this utility some components must be installed and an authorized log-in to an
AquaLogic Data Services Platform-enabled application provided.

Installing Query Plan Utility Components

In the absence of a full installation of AquaLogic Data Services Platform, a specific set of component
files must be installed to run the Query Plan Viewer utility. Default locations for these are assumed,
but these default can be easily modified.

Table 5-12 Default Location of Query Plan Utility Component Files

File Default location

® aldspgpv.cmd (windows) /liquiddata/bin
® aldspgpv.sh (unix/linux)

e aldspgpv.jar <weblogic_home>/1liquiddata/lib
e 1ldjdbc.jar

e wlclient.jar <weblogic_home>/server/1lib

You can adjust the default location settings by editing the a1dspgpv.cmd (Windows) or
aldspgpv.sh (unix/linux) files.

Command Line Syntax

The command line syntax for the Query Plan Viewer utility is:
-classpath [pathl/]Jwlclient.jar; [path2/]1djdbc.jar; [path3/]aldspgpv.jar
com.bea.dsp.client.ui.shell.Shell

[Server host name] [Server port number] [Application name]
[User 1id] [Password]

Here is an example using default settings:

Java -classpath
../../server/lib/wlclient.jar;../1lib/1djdbc.jar;../lib/aldspgpv.jar

Client Application Developer’s Guide 5-63

../datasrvc/run.html
../datasrvc/run.html

Using SQL to Access Data Services

com.bea.dsp.client.ui.shell.Shell

localhost 7001 RTLApp weblogic weblogic

Invoking the Query Plan Viewer Utility

Once your classpath is properly set you can invoke the Query Plan Viewer utility from the
command-line using either:

® aldspgpv.cmd (windows)

® aldspgpv.sh (unix/linux)

On Windows systems you can easily associate the invocation command by associating a start menu
option with a1dspgpv. cmd.

Query Plan Viewer Login Dialog

Before you can view query plans, you need to log in to an AquaLogic Data Services Platform-enabled
server (Figure 5-25).

Figure 5-25 Query Plan Viewer Login Dialog

Host: | localhost

Port: | 7001
Application: | RTLApR
U=zer Mame: | wehlogic

Pasavyeord: **Hﬂﬁﬂ
I Ok L\\SJ[Cancel

e Host. This is the server host name. Localhost is only appropriate if the Query Plan Viewer is
running on your local server. Otherwise enter your server’s URI.

In the dialog enter the following information:

o Port. This is the server port number. For localhost the default port number is 7001.

e Application name. This is the case-sensitive name of your AquaLogic Data Services
Platform-enabled application.

5-64 Client Application Developer’s Guide

Using the Query Plan Viewer Utility

o User name. This is the name of the authorized user.

e Password. This is the password of the authorized user.

Once you have logged into the Query Plan Viewer, all information but the password is saved on your
system.

Entering an SAL Query or XQuery

Once you login to your server successfully, you are ready to enter a query by selecting whether to enter
either an SQL query or an XQuery.

Figure 5-26 Selecting a Query Type

g Query Plan ¥Yiewer |Z”E|E|
File

Chosze GQuety Language

(&) ¥Query () S0L Query
[,

.‘J(Gll.;erylm"E

Note: Functionally choosing XQuery or SQL Query is equivalent to selecting Ad hoc XQuery or Ad
hoc SQL Query in Query Plan View in the data service development environment.

For details on entering an XQuery or SQL Query and working with the resulting query plan, see
Creating Ad Hoc Queries in the Data Services Developer’s Guide.

Client Application Developer's Guide 5-65

../datasrvc/run.html#wp1075842

Using SQL to Access Data Services

Additional Query Plan Viewer Utility Options

The utility offers several options, available from its File menu. The options are described in Table 5-13.

Table 5-13 Query Plan Viewer Utility Options

Option Usage

Open Query This option opens a dialog where you can enter the name of a query plan that has been
Plan from File previously saved.

Connect Opens or reopens the Query Plan Viewer connection dialog box.

Disconnect Disconnect the current server session.

Print Opens a standard dialog box that allows you to print the current query plan.

Save to File Opens a standard dialog box that allows you to save the current query to an XML format
file.

Exit Quits the Query Plan Viewer utility.

5-66 Client Application Developer’s Guide

CHAPTERa

Using Excel to Access Data Services

Using the AquaLogic Data Services Platform™ Excel Add-in you can invoke data service operations
from Microsoft® Excel®. This has many uses:

o Data service integration of real-time data can be quickly rendered in the familiar Microsoft
Excel format.

e Inclusion of Web service results in worksheets without programming; just drag-and-drop.
o Flexibility and scalability through the BEA AquaLogic Service Registry.

e Extensible development platform, with access to the Excel Add-in API.

This chapter provides a brief overview of the AquaLogic Data Services Platform Excel Add-in, focusing
on:

o Installing the Excel Add-in
o Accessing Excel Add-in Documentation
o Generating WSDL Files for the Excel Add-in

e Example Showing Data Service-Generated Web Service Use in Excel

Installing the Excel Add-in

This section describes installation of the Excel Add-in.

Client Application Developer's Guide 6-1

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/aqualogic/service_registry/

Using Excel to Access Data Services

System Requirements

The following system requirements have been identified:
e Microsoft Excel 2002 (SP2) or Excel 2003 (SP1).
o Windows XP (tested under Service Pack 2).
o Disk space: 43MB (only 6 MB if Microsoft .NET Framework with SP1 is already installed).
o RAM: 256K MB or more recommended.

Installation Instructions

The AquaLogic Data Services Platform Excel Add-in is provided with AquaLogic Data Services
Platform installation as a separate installation executable. You can directly install the executable or
save the executable and install it from your desktop. The Excel Add-in installs on your local machine
and also is accessible from Excel as a menu item.

Preparing To Install

Prior to installing the Excel Add-in, please be sure to uninstall any previous versions of the program.
Refer to the Uninstalling ALDSP Excel Add-in section for instructions on how to complete this task.

Note: Microsoft NET with SP1 is required for the ALDSP Excel Add-in installation. If Microsoft’s
.NET Framework is not installed on your system, or you have .NET 1.1 or earlier without SP1,
the Excel Add-in prompts you to confirm its installation from the Microsoft Web site. Once
the correct .NET install is complete, the system proceeds with the ALDSP Excel Add-in
installation. (The installation of .NET could take up to 10 minutes for download and
configuration.)

To install AquaLogic Data Services Platform Excel Add-in:

1. Locate the Excel plug-in installation file. In can be found in following directory:
<bea home>/weblogic8l/liquiddata/add-in

where <bea_home> is the BEA installation on your system.

2. Double-click on the installation file:

aldsp_excel _addin_250_win32.exe

6-2 Client Application Developer’s Guide

Installing the Excel Add-in

Figure 6-1 Excel Add-in Installation

i Aqualogic Data Services Platform Excel Add-in - InstallShield Wizard

a®®%

L F
L]
%,hea

BEA Agual ogic
Data Services Platform Excel Add-in
Version 2.5

SH006 BEA Systems Inc. All righls reserved

< Back I Mext = %J l Cancel

3. Progress through the installation program using standard Next buttons.

4, Ifyou do not already have Microsoft NET Framework 1.1 installed on your system, you will need
to install it. This can be done through the Excel Add-in installation dialog.

5. Determine the user of the application. (Typically anyone with access to your system would be able
to use the Add-in.)

6. Determine the location of the Add-in. By default the Add-in is installed in the following directory:

C:\Program Files\BEA\Aqualogic Data Services Platform Excel Add-in

7. Complete the installation, optionally launching Excel at the end of the process.

Client Application Developer’s Guide 6-3

Using Excel to Access Data Services

Figure 6-2 Excel Menu Post-Installation of the Excel Add-in

@ Microsoft Excel - DataService ToExcel xls DD E]@
El] File Edit Yiew Insert Format Tools Data Window Help Adobe PDF | My Data Type s questionforhelp » o & X
N EH oSBT E N R @ 3 B web Services Senup.. EEI&'A' :
& Snaglt [| window -} Esvorites '
ﬁ = = _3 Example Workbooks, .,
A2 - 3 a Configure Inkernet Connection
A [8 [¢ [b [E [T F [6 Strikelron Marketplace [K L Mo
_I Eﬁ'ﬂ 4 | @) Product Help
— "
About Agqualogic Data Services
16 [
4 » n)\Sheetl Shest2 / Sheets / [<] I | 211
Ready MUM

Accessing Excel Add-in Documentation
Once you have completed the installation, you will be able to obtain the Excel Add-in documentation:

Aqualogic Data Excel User Guide v2.pdf
This file is by default located in the following directory:
C:\Program Files\BEA\Aqualogic Data Services Platform Excel Add-in\Documentation

The documentation includes the following major topics:

Installation and uninstallation of the Excel add-in

Using the Add-in

Managing Web Services

Refreshing Web Service Data in Excel

Troubleshooting

Tip: Information on using the Add-in is also available post-installation from the Excel MyData
menu option (Figure 6-2).

6-4 Client Application Developer’s Guide

Generating WSDL Files for the Excel Add-in

Generating WSDL Files for the Excel Add-in

Before you access data services through the Excel Add-in, you need to generate a Web service WSDL
file. The basic steps are:

o (Create a Data Service control containing the functions you want to access from Excel.
o (reate a stateless Java Web service (. jws) from the control.

o Generate a WSDL file. This file contains the necessary URL address to allow access to your data
service.

Creating a WSDL File from a Data Service

Information on generating Web services, including WSDL files, from data services can be found in
several locations:

e Chapter 4, “Enabling AquaLogic Data Services Applications for Web Service Clients.”

e Atutorial entitled “Accessing Data in Web Services” can be found in the Samples Tutorial,
available from the AquaLogic Data Services Platform edocs home page:

http://edocs.bea.com/aldsp/docs25/index.html

Tip: Be sure and review the material referenced above so that you can properly generate a data
service-compatible Data service control, Java Web service, and WSDL file for the Excel
Add-in.

The RTLApp contains a Web service called RTLWebServices that you can use to verify the steps
involved. Once your control is created — as explained in “Enabling AquaLogic Data Services
Applications for Web Service Clients” on page 4-1 — you can quickly generate a compliant WSDL file
by following these steps:

1. Right-click on the RTLWebServices JCX (. jcx) file, selecting the Generate Test JWS File
(Stateless) option, as shown in Figure 6-3.

Client Application Developer’s Guide 6-5

../index.html

Using Excel to Access Data Services

Figure 6-3 Generating a JWS File in the RTLApp
{IRTLApp - BEA WebLogic Workshop U)o

File Edit Wew Buld Debug Tools Window Help
DEE@ o |3
Application [Files ™.

Y RTLAPP
@ DataServices
[E1 Elecws
23 RTLSelfService
=29 Controls
(C) WLSUserManagement
é:' RTLContral.jox
é:' RTLWebServices, jc:
¢1§ RTLWebServices Oz
RTLWebServic Lock
[C crystalreportviswers10 -
£ 1d_canceptual_files
[C1 Pages
[T resources
(1 5QLReport_files Generate Page Flow. ..
(360 WEB-INF
Controller . jpf
error.jsp
index. jsp
=~

|« =&

QY EHBE B

*

Duplicate
Delete

Rename

Server Running INS

2. Right-click on your newly generated JWS file, selecting the Generate WSDL File option
(Figure 6-4).

6-6 Client Application Developer's Guide

Generating WSDL Files for the Excel Add-in

Figure 6-4 Generating a WSDL File
{JRTLApp - BEA WebLogic Workshop U)o

File Edit Wew Buld Debug Tools Window Help

CEE@| v ol 2B« =09 HNB HEs

Application \@\ * *
S RTLADD 1=
@ DataServices
[E1 Elecws
23 RTLSelfService
=29 Controls
(C) WLSUserManagement
Q RTLContral.jox
Q RTLWebServices, jox
& RTLWebServicesTest, j
‘L’JE RTLWebServicesTest Gpen
[C crystalreportviswers10 Lock
£ 1d_canceptual_files Duplicate
0 Pages Delete
[T resources -
(C1 5QLReport _files BN
(15 WEB-INF Generate Service Control ¥
Controller . jpf -
error.jsp
index. jsp Generate §erwcle_l"::roker Contral,. |
Server Running INS

Tip: Test and verify your JWS file before attempting to use the WSDL address in the Excel Add-in.

Obtaining a Valid WSDL URL for Use with the Excel Add-in

The URL used to access your data service must:
e be based on a stateless JWS file.
e be generated using the Generate WSDL File menu option, as previously described.

e point directly to the generated WSDL file.

An easy way to obtain the first portion address of your generated Web service is to run your JWS file
in the WebLogic Workshop Test Browser. Simply open the Web service (JWS file) in WebLogic
Workshop and click the Run icon or choose Start from the Debug menu.

Client Application Developer’s Guide 6-7

Using Excel to Access Data Services

Figure 6-5 RTLApp ElecDBTest Web Service in Test Browser
=/ Workshop Test Browser DD Q@1

= 8 % || http:flocalhost: 7001 /RTLSelFService/Controls/RTLWebServicesTest jws? EXPLORE= TEST | ﬂ;’a_

RTLWebServicesTest.jws Web Service * Rt il

Overview | [Console | [Test Form | [Test XML]| http://localhost: 7001/RTLSelfService/Controls/RTLWebServicesTest. jws
Test operations

getCustomer

Message Log &l Refresh

getCustomerView

string cust_id:

getCustomerByCustID hdl |

In the above case, the URL is composed of the following elements:

e Hostname. In the case of the RTLApp sample, the host name is:
localhost
e Port. In the case of the RTLApp, the port is:
7001
e Path to the location of the WSDL file. In the case of the ElecWS Web service, the path is:

RTLSelfService/Controls/RTLWebServicesTest

Then, you need to substitute the full name of your WSDL file for the rest of the address. In this example
you would substitute:

RTLWebServicesTestContract.wsdl

for:

RTLWebServicesTest.jws?.EXPLORE=.TEST

Thus the full path to the WSDL in your sample that you can use in the Excel Add-in would be:

6-8 Client Application Developer's Guide

Example Showing Data Service-Generated Web Service Use in Excel

http://localhost:7001/RTLSelfService/Controls/RTLWebServicesTestContract.wsdl

Using the Excel Add-in with a Remote or Deployed Server

If you plan to access your data through the Excel Add-in using a server other than your local
development machine you also need to do the following;:

1.
2.

Take note of the current hostname and port settings.

Set the hostname and port in the Weblogic Workshop Tools — WebLogic Server — Properties to
reflect the address of the server you intend to use.

Regenerate your WSDL file as described in Chapter 4, “Enabling AquaLogic Data Services
Applications for Web Service Clients.”

Create an EAR file for deployment. This will establish the address of your WSDL to the currently
set hostname and port settings. For additional information on creating EAR files for deployment
see Deploying AquaLogic Data Service Platform Applications in the Administration Guide.

Example Showing Data Service-Generated Webh Service
Use in Excel

Assuming that the Excel Add-in has already been installed in a local copy of Excel, the next task is to
make the URL address of your WSDL available to the Excel Add in. There are several straightforward
steps involved.

1.

Access the Web services Setup option from the Excel Add-in MyData menu, as shown in Figure 6-6.

Client Application Developer’s Guide 6-9

../admin/deploy.html

Using Excel to Access Data Services

Figure 6-6 Setting Up a Web Service for the Excel Add-in

Microsoft Excel - myDataServicesInExcel. xls [:IE] E]@
E;] File Edit Miew Insert Format Tools Data Window Help Adobe PDF | My Data | - F X
Jﬁﬂﬁjld&l?ﬁl*'—ﬁﬂ'\fw p .|%EJ% webServicesSetup...[: é. o
: & snaglt |2 | window | s .
:@ @ ﬁ O Configure Internet Connection
Ao T
Al - % StrikeIron Marketplace 3
A B | ¢ | o | E | F | & Help v
1
2
3
4
)
B
7
: v
4« » M]\Sheetl /Shestz / Shestz / I« i | (>
Ready MM

2. When the Web Service Definitions dialog appears click the New button.

3. Enter the WSDL location URL and an alias name for the WSDL (Figure 6-7). RTLWebServicesTest
is used in this example. Then click OK.

6-10 Client Application Developer's Guide

Example Showing Data Service-Generated Web Service Use in Excel

Figure 6-7 Entering a WSDL Location and an Alias Name for the New Web Service

chia Select a new Web service for use with Aqualogic Data Services Platform Excel Add-in D E]

Enter a WaDL:

Enter a Mame, and the WSDL location of the YWeb service you would like to use:

RTLWebServicesTest http: fflocalhost: 7001 fRTLSelfService) Controls/RTLWebServices TestContract . wsd|

N

OR.

Search Aqualogic Service Registry

OR Show Strikelron Marketplace
Web services

Marme Provider Service Location Description

[[o]4][Cancel]

<enter search term here= URL of Registry: v Optic

A

4. In the Web Service Definitions dialog, simply double-click on the alias name of your new service
(RTLWebServicesTest) to activate the getCustomer operation wizard, as shown in (Figure 6-8).

Client Application Developer’s Guide

6-11

Using Excel to Access Data Services

6-12

Figure 6-8 Web Service Operation Editor in Excel Add-in

¢i Edit - getCustomerByCustiD of WEBSERVICES U &l

Operation | Options | Set lnput | Set Output

Service location:
http: fflocalhost: 7001 R TLSelfService/ Controls/RTLWebServicesTestContract w

Service EndPoint:
http: fflocalhost: 7001 /RTLSelf Service/Controls/RTLWebServices Test, jws

Digital Certificate Issuer:

Mote: Only one operation can be used per service definition.
Service: Operation:

RTLWebServicesTest | | getCustomerByCustID b

getCustamer
getCustameriew
getCaseByCustID

Then: getCreditCardByCustlD
getCustomerByCustID

13 Set the desired behavior options | 98tCasetiew o
getapplorderDetailview
23 Select the input Figlds using the "5{getElecOrderDetailview
getApparelProductiew
37 Select the output fields using the {getElectronicProductview

Close

Accessing Your Data Service Through Excel

The next steps illustrate accessing a data service operation through Excel. A number of options are
available; these are described in documentation referenced in “Accessing Excel Add-in
Documentation” on page 6-4. In this section, only a basic example is provided.

1. Select an operation. In the example shown in Figure 6-8, the parameterized
getCustomerByCustID() operation (also the name of the underlying data service function) is
selected.

2. Click on the Set Input tab.
3. Click the + symbol to the left of getCustomerByCustID.

4, Click the cust_id input parameter (Figure 6-9).

Client Application Developer’s Guide

Example Showing Data Service-Generated Web Service Use in Excel

Figure 6-9 Selecting an Input Parameter

. . (=]
‘& Edit - getCustomerByCustlD of WEBSERVICES W klo
Operation | Options | Set Input | Set Output
The input: Fields for the operation you have selected are shown below, Drag the Input
group ko the desired location in your spreadsheet, ou may then move individual
fields around the workbook as desired using the standard Excel dragfdrop actions or
cuk/paste commands.,
= r.l‘,- Input
Fields right, data bel
= LI_| qgetCustomerByCustID © Fields right, data below
cusk ﬁ
) Fields down, data to right
Name:
WEBSERVICES
Service:
RTLWebServicesTest
Operation:
getCustomerByCustID
< | i

5. Dragthe cust_id icon to your spreadsheet. A label and input field will appear on your spreadsheet.
If you mouse over the input field, the full parameter path will be displayed (Figure 6-10).

Client Application Developer's Guide 6-13

Using Excel to Access Data Services

Figure 6-10 Input Parameter Field in Excel

@ Microsoft Excel - myDataServicesInExcel. xls [:IE] E]@]1

E_] File Edit Wiew Insert Format Tools Data Window Help Adobe PDF My Data -F X
PN oS TE %L F D8 =g e H5-E

: & snaglt |2 | window -

]
il A
OnDermandG3... + f cust_id:
A 8 [¢ [o [E T F T &6 [H [13

1

2 cust id: RTLWel vicesTest:Input:getCustomerByCu

3 gh stID:cust_id pete Y 3
4

&

5]

7

8

9

10 B
11 - (i
4 4 v o WRRENES, Sheetl / Sheet2 / Sheet3 / [< I >

Cell B3 commented by Administrator MM

6. Move your cursor to another field in the spreadsheet.
7. Inthe Excel Add-in Web service wizard click the Set Output tab.

8. Using the + symbol, open the various layers of the getCustomerbyCustID operation to see the
various data elements that the operation will retrieve (Figure 6-11).

6-14 Client Application Developer's Guide

Example Showing Data Service-Generated Web Service Use in Excel

Figure 6-11 Selecting a Field for Display in Excel

¢i Edit - getCustomerByCustiD of WEBSERVICES U &l

Operation | Options | Set lnput | Set Output

The output fields for the operation you have selected are shown below, Drag individual
or group fields to the desired location in your spreadshest, You may then move the
individual fields around the workbook as desired using the standard Excel dragfdrop
actions or cuk/paste commands,

- ‘@ Output
= Fields right, data bel
=-{"*| getCustomerByCustIDResponse O AL UL (1 EE

= |_"—_ gekCustomerByCustIDResult
= |_"—_ CUSTOMER _PROFILE[]
= |_"—_ CUSTOMER._PROFILE
+ L?i CustomerID
+-13] FirstMame
- d|
+ L?i Cus%‘uersince
+ L?i Emailaddress
£ L?i TelephoneMumber

(%) Fields down, data to right

- 18] 55m
— Name:
+ 5 BirthDay
= . WEBSERVICES
+ L.?i DefaultShiprmentieth
+- &) EmailNotification Service:
+ L.?i Onlinestatement RTLWebServicesTest
£ L‘E LoginID Operation:
#-{*] ADDRESS [] getCustomerByCustID

Close

9. Drag the CustomerID, FirstName, and LastName elements to the spreadsheet.
10. In the custID field input a valid customer ID number such as CUSTOMER2.
11. Press Enter.

12. Select the My Data -> Refresh Web Service Data -> WEBSERVICES option (Figure 6-12) from the
menu (or right-click on any field in the spreadsheet to access the same option).

Client Application Developer’s Guide 6-15

Using Excel to Access Data Services

Figure 6-12 Refreshing Data Using the Excel Add-in

@ Microsoft Excel - myDataServicesInExcel.xls

IEoE

@_] File Edit Wiew Insert Format Tools Data Window

NEER G ERITHILD A Fo- o8 s smse Bio:

Help Adobe PDF My Data

- F X

& snaglt |2 | window - H
il A
B3 - A CUSTOMER3
A B8 T ¢ [o [E [T F [& [H [T [&
1 =
2 cust id:
3 CUSTOMERS, "_
4 Cut
& CustomerlD: | 25| copy
B FirstMame: ' .
7 LastMame: |~ =
g Paste Special. ..
3 Insert...
10
1 Delete, ..
12 Clear Contents
1 3 =4 Edit Comment
15 E‘_] Delete Comment
1? Show/Hide Comments E
18 | Format Cells. .
19 Pick Fram Drop-down List. ..
g? Add Watch
22 Create List, .,
23 % Hyperlink. ..
24
a5 ﬁ Look Up...
25 | Refresh ‘Web Service Data » | %2 Refresh al
g; 'éb RTLWebServicesTest <Refreshed 6:00 PM:
59 [% weBSERVICES <Refreshed 6:00 PM> %
30
3 L
32
33 i
v
W 4 v v USRENRES, Sheet1 Sheet2 £ Sheets / 1«1 I | [>]

UM

13. View and optionally reformat or rearrange the resulting information (Figure 6-13).

6-16 Client Application Developer's Guide

Example Showing Data Service-Generated Web Service Use in Excel

Figure 6-13 Formatted Results

[=
2] Microsoft Excel - myDataServicesInExcel.xls DD g@
El;] File Edit ‘ew Insert Format Tools Data wWindow Help
i Adobe PDF - My Data -8 X
N EHR S BB 9-) s 2l e Bio-B
{5 snaglt [| Windaw 5
el 5
OnDemands3... = £ CUSTOMER3

A B | C | b [E 7
1 —_
2 |cust id:
3 [lCUSTOMERT |
4
5 CustomerlD: |CUSTOMERS 7
B FirstName: Biritt
7 LastName: Fierce
; o L
g
10
11
12
13 w
o« v n "USRETEGEE. Sheetl / Sheet2 | < | m [l
Ready TR

Client Application Developer’s Guide 6-17

Using Excel to Access Data Services

6-18 Client Application Developer’s Guide

CHAPTERa

Accessing Data Services from
WebLogic Workshop Applications

This chapter describes how you can use Data Service controls in WebLogic Workshop to develop client
applications for Data Services Platform. The following topics are included:

o Introduction to Data Service Controls

Creating Data Service Controls

Modifying Existing Data Service Controls

Caching Considerations When Using Data Service Controls
e Security Considerations When Using Data Service Controls
o Using Data Services Platform with NetUI

o Using Data Service Control 9.2

Introduction to Data Service Controls

Data Service controls provide WebLogic Workshop applications with an easy way to access data
services. When you use a Data Service control to invoke data service functions, you get information
back as a data object. A data object is a unit of information as defined by the Service Data Objects
(SDO) specification. For more information on SDO, see Chapter 2, “Data Programming Model and
Update Framework.”

In addition to the functionality discussed in this chapter, Data Service controls also provide many of
the same features available through the SDO Mediator API, including:

Client Application Developer's Guide 1-1

Accessing Data Services from WebLogic Workshop Applications

1-2

e Function result filtering
e Ad hoc query capability

o APIs for result ordering, sorting, and truncating

For more information on these features, see Chapter 11, “Advanced Topics.”

Data Service Controls Defined

A Data Service control is a wizard-generated Java file that can be used to add data service functions
and procedures to WebLogic Workshop applications. Functions and procedures can be added to Data
Service controls from data services deployed on any accessible WebLogic Server, both local or remote.
The Data Service control wizard retrieves all available data service functions and procedures on the
server that you specify. It then lets you choose the ones to include in your control.

If accessing data services on a remote server, metadata describing information that the service
functions return (in the form of XML schema files) is first downloaded from the remote server into the
current application. These schema files are placed in a schema project named after the remote
application. The directory structure within the project mirrors the directory structure of the remote
server. AquaLogic Data Services Platform generates interface files for the target schemas associated
with the queries and the Data Service control (. jcx) file.

For AquaLogic Data Services Platform 2.5 release, the Data Service control is available with both
WebLogic Workshop 8.2 and Workshop for WebLogic Platform 9.2. The Workshop for WebLogic
Platform 9.2 Data Service control allows you to access data services from the WebLogic Server 8.1
environment. For more information about installing and using the Data Service control 9.2, refer to
“Using Data Service Control 9.2” on page 7-28.

Note: All client APIs, including the Data Service control, support calling data service functions
without optional parameters. Data service functions with optional parameters can be called
within other data service functions or from an ad hoc query, but such functions cannot be
invoked from through a Data Service control itself.

Page Flow, Web Services, Portals, Business Processes

Like Java controls, you can use a Data Service control in applications such as Web services, page flows,
and WebLogic integration business processes. After applying the control to a client application, you
can use the data returned from query functions in the control in your application.

This chapter describes how to use a Data Service control in a page flow-based web application. The
steps for using it in Portals and other WebLogic Workshop Projects are similar.

Client Application Developer's Guide

Introduction to Data Service Controls

Description of the Data Service Control (JCX) File

When you create a Data Service control, WebLogic Workshop generates a Java Control Extension
(.jcx) file that contains methods based on the data service’s functions, and a commented method
that can be uncommented and used to pass any XQuery statements (called ad koc queries) to the
server.

Design View

The Design View tab of a Data Service control displays a graphical view of the data service methods
that were selected for inclusion in the control.

Figure 7-1 Design View of a JCX File

RTLControl jox - 4RTLSelFServiceyControlsh,

ol

NG <o - RTLControl

¥ CLUSTOMER

¥ CUSTOMERMWithFilker

b execubeQuery

¥ getApparelProduct, ..
¥ getApparelProduct. .,
¥ getApplOrderDetail. .
¥ getApplOrderDetail. .
¥ getApplProducts

¥ getApplProductsivi...
¥ getCaseview []

[« | []

|| Design Yiew [Source View |

Using the right-click menu, you can add or edit a control method (for example, by changing the data
service function or procedure associated with the method). The right-click menu is context sensitive
— it displays different items if the mouse cursor is over a method or elsewhere in the control portion
of the design pane.

Source View

The Source View tab shows the source code of the Data Service control. It includes annotations
defining the data service function names associated with each method. For update functions, the data
service bound to the update is the data service specified by the locator attribute. For example:

Client Application Developer's Guide 1-3

Accessing Data Services from WebLogic Workshop Applications

locator="c:/DSP/DataServices/RTLServices/ApplOrderDetailView.ds"

The signature for the method shows its return type. The return type for a read method is an SDO object
corresponding to the schema type of the data service that contains the referenced function. The SDO
classes corresponding to the data services used in a Data Service control reside in the Libraries folder
of the project. An interface is generated for each data service. The folder also contains a copy of the
schema files associated with the functions in the JCX file.

The Java Control Extension instance is a generated file. The only time you should need to edit the
source code is if you want to add a method to run an ad hoc query, as described in “Using Data Service
Controls for Ad Hoc Queries” on page 7-6.

Listing 7-1 shows portions of a generated Data Service control (. jcx) file. It shows the package
declaration, import statements, and data service URI used with the queries.

Listing 7-1 Java Control Extension Sample

package Controls;

import weblogic.jws.control.*;

import com.bea.ld.control.LDControl;
import com.bea.ld.filter.FilterXQuery;
import com.bea.ld.QueryAttributes;

/**

* @jc:LiquidData application="RTLApp"
urlKey="RTLApp.RTLSelfService.Controls.RTLControl"

*/
public interface RTLControl extends LDControl, com.bea.control.ControlExtension

{

/* Generated methods corresponding to stored queries.

*/

/**
*
* @jc:XDS locator="ld:DataServices/RTLServices/ApplOrderDetailView.ds"
functionName="submitApplOrderDetailView"
*/
java.util.Properties]|]
submitApplOrderDetailView (retailer.ORDERDETAILDocument rootDataObject) throws
Exception;

/‘k'k

*

14 Client Application Developer's Guide

Introduction to Data Service Controls

* @jc:XDS locator="1ld:DataServices/RTLServices/ProfileView.ds"
functionName="submitArrayOfProfileView"
*/
java.util.Properties[] submitArrayOfProfileView(retailer.PROFILEDocument/|]
rootDataObject) throws Exception;

/**
*
* @jc:XDS locator="1ld:DataServices/RTLServices/ElecOrderDetailView.ds"
functionName="submitElecOrderDetailView"
*/
java.util.Properties]|]
submitElecOrderDetailView (retailer.ORDERDETAILDocument rootDataObject) throws
Exception;

/**

*

* @jc:XDS functionURI="1ld:DataServices/CustomerDB/CUSTOMER"
functionName="CUSTOMER" schemaURI="1d:DataServices/CustomerDB/CUSTOMER"
schemaRootElement="CUSTOMER"

*/

dataServices.customerDB.customer.CUSTOMERDocument [] CUSTOMER() ;

/**
< section of code removed >
*/

/**

*

* @jc:XDS functionURI="1d:DataServices/RTLServices/ProfileView"
functionName="getProfileView" schemaURI="urn:retailer"
schemaRootElement="PROFILE"

*/

retailer.PROFILEDocument[] getProfileViewWithFilter (java.lang.String pO0,
FilterXQuery filter);

/**
* Default method to execute an ad hoc query.
* This method can be customized to have a differnt method name (e.g.
runMyQuery), or to return an SDO generated class (e.g. Customer),
* or to return the DataObject class, or to have one or both of the following
two extra parameters:
* com.bea.ld.ExternalVariables and com.bea.ld.QueryAttributes
* e.g. commonj.sdo.DataObject executeQuery (String xquery, ExternalVariables
params) ;
* e.g. commonj.sdo.DataObject executeQuery (String xquery, QueryAttributes
attrs);

Client Application Developer's Guide 1-5

Accessing Data Services from WebLogic Workshop Applications

* e.g. commonj.sdo.DataObject executeQuery (String xquery, ExternalVariables

params, QueryAttributes attrs);

*/
com.bea.xml.XmlObject executeQuery (String query);

void newMethodl () ;

1-6

Using Data Service Controls for Ad Hoc Queries

Client applications can issue ad hoc queries against data service functions. You can use ad hoc queries
when you need to change the way a data service function returns data. Ad hoc queries are most often
used to process data returned by data services deployed on a WebLogic Server. Ad hoc queries are
especially useful when it is not convenient or feasible to add functions to an existing data service.

A Data Service control generated from a wizard has a commented ad hoc query method that can serve
as a starting point for creating an ad hoc query. To create the ad hoc query, follow these steps:

1. Ifyou do not already have a Data Service control (JCX) file, generate one using the Data Service
control wizard.

2. Add the following lines of code in the JCX file:

com.bea.xml.XmlObject executeQuery(String query);

(Replace the function name with one that is meaningful for your application. Be default, the ad
hoc query returns an XMLObject, but you can return a typed SDO or typed XMLBean class that
matches the return type XML for the ad hoc query. You can also optionally supply
ExternalVariables or QueryAttributes (or both) to an ad hoc query.)

When invoking this ad hoc query function from a Data Service control, the caller needs to pass
the query string (and the optional ExternalVariables binding and QueryAttributes if desired).
For example, an ad hoc query signature in a Data Service control will look like the following:

public interface MyLDControl extends LDControl,
com.bea.control.ControlExtension

{
ldcProduucerDataServices.address.ArrayOfADDRESSDocument
adHocAddressQuery (String xquery) ;

}

The code to call this Data Service control (from a WebService JWS file, for example) would be:

Client Application Developer's Guide

Creating Data Service Controls

/** @common:control */
public ldcontrol.MyLDControl myldcontrol;

/** @common:operation */
public ldcProduucerDataServices.address.ArrayOfADDRESSDocument
adHocAddressQuery ()

{

String adhocQuery =

"declare namespace fl = \"ld:ldc produucerDataServices/ADDRESS\";\n" +
"declare namespace ns0=\"ld:ldc produucerDataServices/ADDRESS\";\n"+
"<ns0:ArrayOfADDRESS>\n"+"{for $i in f1:ADDRESS()\n" +

"where $i/STATE = \"TX\"\n"+" return $i}\n" +
"</ns0:ArrayOfADDRESS>\n";

return myldcontrol.adHocAddressQuery (adhocQuery) ;

}

Creating Data Service Controls

This section describes the steps involved in creating a Data Service control and using it in a Web
project. The general steps to create a Data Service control are:

e Step 1: Create a Project in an Application

e Step 2: Start WebLogic Server

e Step 3: Create a Folder in a Project

o Step 4: Create the Data Service Control

e Step 5: Enter Connection Information for WebLogic Server

o Step 6: Select Data Service Functions to Add to Your Control

The following sections describe each of these steps in detail.

Step 1: Create a Project in an Application

Before you can create a Data Service control in WebLogic Workshop, you must create an application
and a project in the application. You can create a Data Service control in most types of WebLogic
Workshop projects; most commonly, you will create them in:

e Web Projects
e Web Service Projects

e Portal Web Projects

Client Application Developer's Guide 1-1

Accessing Data Services from WebLogic Workshop Applications

1-8

e Process Web Projects

Step 2: Start WebLogic Server

Make sure that the WebLogic Server that hosts the AquaLogic Data Services Platform-enabled
application is running. WebLogic Server can be running locally (on the same domain as WebLogic
Workshop) or remotely (on a different domain from WebLogic Workshop).

Step 3: Create a Folder in a Project

Create and name a folder in the project to hold the Data Service control by selecting a folder and
right-clicking on that folder. You can also create other controls (database controls, for example) in
the same folder, as needed. (WebLogic Workshop controls cannot be created at the top-level of a
project directory structure. Instead, they must be created in a folder.)

Step 4: Create the Data Service Control

To create a Data Service control, start the Java Control Wizard by right-clicking on the new folder in
your project and choosing New — Java Control as shown in Figure 7-2. (You can also create a control
using the File — New — Java Control menu item.)

Figure 7-2 Create a New Data Service Control

£} {24 RTLIelfServic I @ic:¥Ds funct
523 Controls 2l Find in Files...
4 5 1 Tr-
ECAWLSE pew) 35P File
Qe Install | 4§ Web Service
Sk | U2 =
Page Flow
&)U Build RTLSelfService 2
&3 =] Portlet
s Clean RTLSelfServics ~
JARTLC Porkal
=2 crystalrep Import.... A Java Contral
() Active Delate =] Java Class
s & ;
= Rernove Fram Application \jgt, Process File
(1 bl 5 S
L i, Rename G Transformation File
[4] Other File T
| Properties AHAERC
Palette
4 | | 1 Folder. ..
Operations I

Next, select Data Services Platform from the New Java Control dialog as shown in Figure 7-3. Enter a
filename for the control (. jcx) file and click Next.

Client Application Developer's Guide

Creating Data Service Controls

Figure 7-3 New Java Control Dialog

Mew Java Control

Select & contral ko extend or select Custom to create & new cuskom contral:

@ Custom

[j Database
‘Web Service
EJB Cortral
&R M3

< Daka Service
Tuzedo

(2 Applicationtiew =]

LI

File: name: Tntitled |

4myDSPConkrolHnewControly
| Mesxck *l || Cancel |

Step 5: Enter Connection Information for WebLogic Server

The New Java Control - AquaLogic Data Services Platform dialog (Figure 7-4) allows you to enter
connection information for the WebLogic Server that hosts your Data Services Platform application or
project. If the server is local, a Data Service control uses the connection information stored in the
application properties. (To view these settings, access the Tools — Application Properties menu
item in WebLogic Workshop.)

If the server is remote, choose the Remote option and fill in the appropriate server URL, user name,
and password.

Note: You can specify a different username and password with which to connect to a local machine
in the Data Service control Wizard as well. To do this, click the Remote button and enter the
connection information (with a different username and password) for your local machine.
The security credentials specified through the Application Properties or through the Data
Service control wizard are used for creating the JCX file only, not for testing queries through
the control. For more details, see “Security Considerations When Using Data Service
Controls” on page 7-15.

When the information is correct, click Create to go to the next step.

Client Application Developer's Guide 1-9

Accessing Data Services from WebLogic Workshop Applications

Figure 7-4 Data Service Control Wizard: Connection Information

Mew Java Control - Data Service

STEP 1

SiEPE Data Services Application @ Current () Other

[eronse |
Previous | Crﬂjte | Cancel

Step 6: Select Data Service Functions to Add to Your Control

In the Select Data Service functions... page, select the data service functions you want to use in your
application from the left pane and click Add (Figure 7-5). When done, click Finish. At that point, your
Data Service control JCX file is generated, containing a call for each selected function.

1-10 Client Application Developer's Guide

Figure 7-5 Control Wizard: Select Data Service Functions Dialog Box

The control appears with the functions you chose.

Creating Data Service Controls

B

Select one or mare functions ko add ko the contral,

I__] DataServices
1 ApparelDB
(] BilingDE
=2 CustomerDE
CI ADDRESS.ds
= D CUSTOMER.ds
£ CUSTOMER()%
&) getADDRESS()
[] submitarrayOf CUSTOMER()
£ Demo
() ElectronicsWs
CA RTLServices
(C] ServiceDE

Remove

Remawve &l

Each method in the file returns an SDO type corresponding to the appropriate (or corresponding) data
service schema. The SDO classes are stored in the Libraries directory of the WebLogic Workshop
Application.

If not already present, the LiquidbataControl.jar file is copied into the Libraries directory of
your application when you create your Data Service control.

Note:

<beahome>/weblogic8l/workshop/workshop.cfg

Client Application Developer's Guide

If you get a timeout error when attempting to create a Data Service control, you may see a
message related to the compiler being unable to find the XMLBean class for a particular
schema element.

You can change the timeout value — by default that value is set at 5000 (5 seconds) — by
adding a directive in the WebLogic Workshop configuration file:

For example to change the setting to 10000 add the following directive to the file:

-Dcom.bea.ld.control.notification.timeout=10000

-1

Accessing Data Services from WebLogic Workshop Applications

Modifying Existing Data Service Controls

1-12

This section describes the ways you can modify an existing Data Service control. When you edit a
control, the SDO classes that are available to the control are recompiled, which means that any
changes to data service are incorporated to the controls at that point as well.

This section contains the following procedures:
e Changing a Method Used by a Control
e Adding a New Method to a Control

o Updating an Existing Control When Schemas Change

Changing a Method Used by a Control

To change a data service function in a Data Service control, perform the following steps:
1. In WebLogic Workshop, open the Design View for a Data Service control (. jcx) file.

2. Select the method you want to change, right-click, and select Edit in source view to bring up the
source editor (Figure 7-6.).

Figure 7-6 Changing a Function in a Data Service Control

RTLContral jex - 4R TLSelfServicel Contralsy
I | <o RTLControl

¥ CUSTOMER

¥ CUSTOMERMWithFilker

$ execubeQuery
—— et A pparelProduckiew

ker

Rename

Delete ter

3. In Source View, change the comment for the function in the following ways:
— Change the functionName value to the new function you want to use.

— If necessary, change the functionURI value as well. This should be the path to the data
service that contains the function.

— Change the return type, parameters, and name of the function, as needed.

Client Application Developer's Guide

Modifying Existing Data Service Controls

When you save your changes, the SDO classes based on the control are automatically recompiled.

Adding a New Method to a Control

To add a new method to an existing Data Service control, perform the following steps:
1. In WebLogic Workshop, open an existing control in Design View.

2. In the control Design View, move your mouse inside the box showing the control methods,
right-click, then select Add Method as shown in Figure 7-7.

Figure 7-7 Adding a Method to a Control

RTLConkrol. jox - §RTLSelFService HControls!,

g |¢e» . RTLControl

———] |5 TOMER
e — (_| |5 T OMERWiERFilber

——eeeee} eveCUbE QU Edit in source view

3. Enter a name for the new method.
4, Right-click the new method, and select Edit in source view to bring up the source editor.

5. Inthe Source View, add a comment for the function. Change the functionName value to the new
function you want to use. If necessary, change the functionURI value as well. This should be the
path to the data service that contains the function.

6. Change the return type, parameters, and name of the function.

Updating an Existing Control When Schemas Change

If any of the schemas corresponding to any methods in a Data Service control change, you must clean
and re-build the AquaLogic Data Services Platform data service folders to regenerate the SDO classes.
If the changes result in a different return type for any of the functions, you must also modify the
function in the control.

Note: If you developed a client application using a static client API (mediator API or control) and
you modify any schemas, you must recompile and redeploy the application, using the
re-generated classes.

When you edit the control, its SDO classes are automatically regenerated.

Client Application Developer's Guide 1-13

Accessing Data Services from WebLogic Workshop Applications

Note: For details on working with static and dynamic SDO see “Static and Dynamic SDO APIs” on
page 3-14.

Caching Considerations When Using Data Service
Controls

1-14

The following scenario is very common: most of the time you can use cached data because it changes
infrequently; however, on occasion, your application must fetch data directly the data source. At the
same time, you want to update your cache with the most up-to-date information. A typical example
would be to refresh the cache at the beginning of every week or month.

You can accomplish this by passing the attribute GET _CURRENT_DATA with your function call.

Bypassing the Cache When Using a Data Service Control

To bypass the data in a cached query function result, your application will need to signal Liquid Data
to retrieve results directly from the data source, rather than from its cache. The steps required to
accomplish this include:

e Adding an additional function to the set already defined in your Data Service control (. jcx)
file. This function will take a QueryAttribute object as a parameter.

o Instantiate a QueryAttribute object in your application and call the enableFeature() method,
passing the GET_CURRENT_DATA attribute.

e (all the function you defined in your Data Service control, passing the QueryAttribute object.

Cache Bypass Example When Using a Data Service Control

Listing 7-2 shows example Java Page Flow (JPF) code that tests whether the user has requested a
bypass of any cached data. If refreshCache is set to False then cached data (if any is available) is used.
Otherwise the function will be invoked with the GET_CURRENT_DATA attribute and data will be
retrieved from the data source. As a by-product, any cache is automatically refreshed.

Listing 7-2 Cache Bypass Example When Using Data Services Platform Control

if (refreshCache == false) {
customerDocument = LDControl.getCustomerProfile (CustomerID);
} else {

QueryAttributes attr = new QueryAttributes();

Client Application Developer's Guide

Security Considerations When Using Data Service Controls

attr.enableFeature (QueryAttributes.GET CURRENT DATA) ;
customerDocument =

LDControl.getCustomerProfileWithAttr (CustomerID, attr);

As mentioned above, an additional function is also needed in the your Liquid Data control JCX file.
For the code shown in Listing 7-2, you would add the following definition to your Liquid Data control:
/ * K

* @jc:XDS functionURI="1ld:DataServices/CustomerProfile"
functionName="getCustomerProfile"

*/

CUSTOMERPROFILEDocument getCustomerProfileWithAttr (java.lang.String pO,
QueryAttributes attr);

Security Gonsiderations When Using Data Service
Controls

This section describes security considerations for applications using a Data Service control. The
following sections are included:

e Security Credentials Used to Create Data Service Controls
o Testing Controls With the Run-As Property in the JWS File

e Trusted Domains

Security Credentials Used to Create Data Service Controls

The WebLogic Workshop Application Properties (Tools — Application Properties) allow you to set
connection information to connect to the domain in which you are running. You can either use the
connection information specified in the domain boot . properties file or override that information
with a specified username and password.

When you create a Data Services Platform control JCX file and are connecting to a local Data Services
Platform server (Data Services Platform on the same domain as WebLogic Workshop), the user
specified in the Application Properties is used to connect to the Data Services Platform server. When
you create a Data Service control and are connecting to a remote Data Services Platform server (a

Client Application Developer's Guide 1-15

Accessing Data Services from WebLogic Workshop Applications

1-16

WebLogic Server on a different domain from WebLogic Workshop), you specify the connection
information in the Data Service control wizard connection information dialog (see Figure 7-4).

When you create a Data Service control, the Control Wizard displays all queries to which the specified
user has access privileges. The access privileges are defined by security policies set on the queries,
either directly or indirectly.

Note: The security credentials specified through the Application Properties or through the Data
Service control wizard are only used for creating the Data Service control JCX file, not for
testing queries through the control. To test a query through the control, you must get the user
credentials either through the application (from a login page, for example) or by using the
run-as property in the Web service file.

Testing Controls With the Run-As Property in the JWS File

You can use the run-as property to test a control running as a specified user. To set the run-as property
in a Web service, open the Web service and enter a user for the run-as property in the WebLogic
Workshop property editor.

When a query is run from an application, the application must have a mechanism for getting the
security credential. The credential can come from a login screen, it can be hard-coded in the
application, or it can be imbedded in a J2EE component (for example, using the run-as property in a
JWS Web service file).

Trusted Domains

If the WebLogic Server that hosts the AquaLogic Data Services Platform project is on a different
domain than WebLogic Workshop, then both domains must be set up as trusted domains.

Domains are considered trusted domains if they share the same security credentials. With trusted
domains, a user known to one domain need not be authenticated on another domain, if the user is
already known on that domain.

Note: After configuring domains as trusted, you must restart the domains before the trusted
configuration takes effect.

Configuring Trusted Domains
To configure domains as a trusted user, perform the following steps:

1. Log into the WebLogic Administration Console as an administrator.

2. Inthe left-frame navigation tree, click the node corresponding to your domain.

Client Application Developer's Guide

Using Data Services Platform with NetUI

3. At the bottom of the General tab for the domain configuration, click the link labeled View
Domain-wide Security Settings Links.

4, Click the Advanced tab. (See Figure 7-8.)

Figure 7-8 Setting up Trusted Domains

Logout

T Compatibility

General || Advanced || Filter || Embedded LDAP

This page allows you to define the advanced security settings for this Weblogic Server dormain.
& 7 Enable Generated Credential
Specifies whether a credential (usually a password) should be generated for this WebLogic Server domain. (This

credential is used 1o enable a trust relationship between two domains. For the two domains to establish trust, they
must have the same credential.)

Credential: rMMM

Confirm
Credential:

The credential for this WeblLogic Server dormain.

Apply

5. Uncheck the Enable Generated Credential box, enter and confirm a credential (usually a
password), and click Apply.

6. Repeat this procedure for all of the domains you want to set up as trusted. The credential must be
the same on each domain.

For more details on WebLogic security, see:

e “Configuring Security for a WebLogic Domain” in the WebLogic Server documentation.

For information on security, see:

e "Securing AquaLogic Data Services Platform Resources" in the Administration Guide.

Using Data Services Platform with NetUI

The WebLogic NetUI tag library allows you to rapidly assemble JSP-based applications that display
data returned by Data Services Platform. The following sections list the basic steps for using NetUI to
display results from a Data Service control:

o Generating a Page Flow From a Control

Client Application Developer's Guide 1-11

http://e-docs.bea.com/wls/docs81/secmanage/domain.html
../admin/security.html

Accessing Data Services from WebLogic Workshop Applications

e Adding a Data Service Control to an Existing Page Flow

e Adding Service Data Objects (SDO) Variables to the Page Flow

o Displaying Array Values in a Table or List

Generating a Page Flow From a Control

When you use WebLogic Workshop to generate a page flow, WebLogic Workshop creates the page flow,
a start page (index.jsp), and a JSP file and action for each method you specify in the Page Flow

wizard.

To Generate a Page Flow From a Data Service Control

Perform the following steps to generate a page flow from a Data Services Platform control.

1. Select a Data Services Platform control JCX file from the application file browser, right-click, and

select Generate Page Flow.

2. Inthe Page Flow Wizard (see Figure 7-9), enter a name for your Page Flow and click Next.

Figure 7-9 Enter a Name for the Page Flow

Page Flow Wizard - Page Flow Name

Mame And Location

Page Flow Name: | P ageFlow

Location; {myTestweb}/myPagaFlow]

Browse. ..

Controller Mame: | myPageFlowController, jpf

Page Flow Mesting

Mested page Flows are used to gather and return information
to a caling page Flow,

[Make this a nested page Flow

| Mext | |

|| Cancel |

7-18 Client Application Developer's Guide

Using Data Services Platform with NetUlI

3. Onthe Page Flow Wizard - Select Actions dialog, check the methods for which you want a new page
created. The wizard has a check box for each method in the control. (See Figure 7-10.)

Figure 7-10 Choose Data Services Platform Methods for the Page Flow

Page Flow Wizard - Select Actions x|

Patential Actions:

Return Type Method Mame
retailer, OrderDetailviewDooument ApplCrderDetailview(java.lang.. ..
[retailer CustomeriewDocument Customeryiswiava, lang.String ...
[retailer, OrderDetailviewDocument ElecOrderDetailview(iava.lang,...
retailer . OrderSummaryYiewDoc.., OrderSummaryView(java.sal.Ti...
[retailer, OrderSummaryViewDoc. .. OrderSummaryViewswithPaginat, .,
O retailer, ProfileViewDocument ProfileViewjava.lang. String cus. ..

| Select all | | Deselect Al |

Previous Create Cancel

4. Click Create.

WebLogic Workshop generates the Java Page Flow (JPF file), a start page (index.3sp), and a
JSP file for each method you specify in the Page Flow wizard.

5. Add and initialize variables to the JPF file based on the SDO classes. For details, see “Adding
Service Data Objects (SDO) Variables to the Page Flow” on page 7-20.

6. Drag and drop the SDO variables to your JSPs to bind the data from Data Services Platform to your
page layout. For details, see “Displaying Array Values in a Table or List” on page 7-24.

7. Build and test the application in WebLogic Workshop.

Adding a Data Service Control to an Existing Page Flow

You can add a Data Service control to an existing Page Flow JPF file. The procedure is the same as
adding a Data Service control to a Web service as described in the section “Adding a Data Service
Control to a Web Service” in Chapter 4, “Enabling AquaLogic Data Services Applications for Web

Client Application Developer's Guide 1-19

Accessing Data Services from WebLogic Workshop Applications

1-20

Service Clients.” However, instead of opening the Web service in Design View as described in that
chapter, you open the Page Flow JPF file in Action View.

You can also add a control to an existing page flow from the Page Flow Data Palette (available in Flow
View and Action View of a Page Flow) as shown in Figure 7-11.

Figure 7-11 Adding a Control to a Page Flow from the Data Palette

|| Data Palette %
Controls Add »
B 4 myControl [patabase
=+ gekCustomer % weh Service
=+| gekPaymentLisk EJB Contral
=+ submitCustomer o
Form Beans ﬂ;ﬂ e
[E] @etCustomerForm {5 Timer
&) ItemForm 50
[E] submitCustamerFarm = I~
Tuxedo Wy
[E, Inteqration Cantrals »

Adding Service Data Objects (SD0) Variables to the Page
Flow

To use the NetUI features to drag and drop data into a JSP, you must first create one or more variables
in the page flow JPF file. The variables must be of the data object type corresponding to the schema
associated with the query.

Note: A data object is the fundamental component of the SDO architecture. For more information,
see Chapter 2, “Data Programming Model and Update Framework.”

Defining a variable in the page flow JPF file of the top-level class of the SDO function return type
provides you access to all the data from the query through the NetUI repeater wizard. The top-level
class, which corresponds to the global element of the data service type, has “Document” appended to
its name, such as CUSTOMERDocument.

When you create a Data Service control and the SDO variables are generated, an array is created for
each element in the schema that is repeatable. You may want to add other variables corresponding to
other arrays in the classes to make it more convenient to drag and drop data onto a JSP, but it is not
required. For example. when an array of CUSTOMER objects can contain an array of ORDER objects,
you can define two variables: one for the CUSTOMER array and one for the ORDER array. You can then
drag the variables to different JSP pages.

Client Application Developer's Guide

Using Data Services Platform with NetUlI

Define each variable with a type corresponding to an SDO object. Define the variables in the source
view of the page flow controller class. The variables should be declared public. In the following
example, the bold-typed variable declarations show an example of user variable declarations:

public class CustomerPFController extends PageFlowController
{

/**

* This is the control used to generate this pageflow

* @common:control

*/

private DanubeCtrl myControl;

public CUSTOMERDocument var;
public POITEM currentItem;
public PAYMENTListDocument payments;

Once defined in the page flow controller, the variables appear on the Data Palette tab. From there,
you can drag-and-drop them onto JSP files. When you drag-and-drop an array onto a JSP file, the NetUI
Repeater Wizard appears and guides you through selecting the data you want to display. (See

Figure 7-12.)

Figure 7-12 Page Flow Variables for XMLBean Objects

*

|| Property Editor ™ Document Struckure

submitCustomer

Description

submitCustomer
|| Data Palette

Page Flow
Properties

ﬂ currenkItem
—

| {H =

variables added

ﬂpayments
to the Page Flow

ﬂ war
ﬂ customerLink

Public Controls
Actions

2 applyItem
& back
£ begin

Client Application Developer's Guide 1-21

Accessing Data Services from WebLogic Workshop Applications

1-22

To populate the variable with data, initialize the variable in the page flow method corresponding to
the page flow action that calls the query. For details, see “Initializing a Variable in the Page Flow” on
page 7-22.

Adding a Variable to a Page Flow

Perform the following steps to add a variable to the page flow:
1. Open your Page Flow JPF file in WebLogic Workshop.
2. Open the Source View tab.

3. Inthe variable declarations section of your Page Flow class, enter a variable with the SDO type
corresponding to the schema elements you want to display. Depending on your schema, what you
want to display, and how many queries you are using, you might need to add several variables.

4. To determine the SDO type for the variables, examine the method signature for each method that
corresponds to a query in the Data Service control. The return type is the root level of the SDO
class. Create a variable of that type. For example, if the signature for a control method is:

org.openuri.temp.schemas.customer.CUSTOMERDocument getCustomer (int pl);
Create a variable as follows:

public org.openuri.temp.schemas.customer.CUSTOMERDocument var;

b. After you create the variables, initialize them as described in the following section.

Initializing a Variable in the Page Flow

You can initialize a variable by calling a function in a Data Service control, which will populate the
variable with the returned data. Initializing the variables ensures that the data bindings to the
variables work correctly and that there are no tag exceptions when the JSP displays the results the
first time.

Perform the following steps to initialize the variables in Page Flow:
1. Open your Page Flow JPF file in WebLogic Workshop.
2. Open the Source View.

3. Inthe page flow action that corresponds to the Data Services Platform query for which you are
going to display the data, add the code to initialize the variable.

Client Application Developer's Guide

Using Data Services Platform with NetUlI

The following example shows how to initialize an object on the Page Flow. The code (and comments)
in bold has been added. The rest of the code was generated when the Page Flow was created from the
Data Service control (see “Generating a Page Flow From a Control” on page 7-18).

public class CustomerPFController extends PageFlowController
{
/**
* This is the control used to generate this pageflow
* @common:control
*/
private DanubeCtrl myControl;

public CUSTOMERDocument var;

/**
* Action encapsulating the control method :getCustomer
* @jpf:action
* @jpf:forward name="success" path="viewCustomer.jsp"
* @jpf:catch method="exceptionHandler" type="Exception"
*/

public Forward getCustomer (GetCustomerForm aForm)

throws Exception
var = myControl.getCustomer (aForm.pl) ;

return new Forward("success");

Working with Data Objects

After creating and initializing a data objects as a public variable in the Page Flow, you can drag and
drop elements of the object onto your application pages (such as JSPs) from the Data Palette.

The elements appear in dot-delimited chain format, such as:

pageFlow.var.CUSTOMER.CUSTOMERNAME

Notice that the function that actually returns the element value is get CUSTOMERNAME () , Which
returns a java.lang.String value, the name of a customer.

Client Application Developer's Guide 1-23

Accessing Data Services from WebLogic Workshop Applications

1-24

As you edit code in the source view, WebLogic Workshop offers code completion for method and
member names as you type. A selection box of available elements appears in the data object variable
as shown in Figure 7-13.

Figure 7-13 DataObject Method Name Completion

editCustomer . jsp* - {DanubeWeb}HCustomerPFYy

<% taglib uri="netui-tags-htnl.tld” prefix="netui”i>
<%[taglib uri="netui-tags-template.tld” prefix="netui-tenplatei>
<netui-template: template templatePage="/resources/Jjsp/tenmplate.jsp’ s
<netui-template:setdttribute walue="subnitCustoner”™ name="title™/>
<netui-template:section nawe="hodyiection™s

<netui:form action="submicCustomer >
<table clasa="tahlebody >
<tr class="tablehead">
<td alim="1eft” colspan="2">
Results Area <hr/»
<bCUSTID: <netui:label wvalue="{pageFlow.var.CUSTOMER, CUSTOMERID ! "< /netui: labels< /b

mX

<hr /=< b=-NAME : <netui:textBox dataSource="{pacgeFlow.var, CUITOMER. | "=</metui: textBox>
<hr f=<h=CREDIT SCORE: <netui:textBox dataSource="[pageFlow.var. | container
<netui:button type="subnit” walue="3Submit A1l Changes" action="containmentProperty
</ b CREDITArray
<netui-datairepeater datafource="{pageFlow.var.CUSTOMER. ORDERArray | CUSTOMERID
<netui-data: repeaterHeaders CUSTOMERNANE
<table class="tablebody™ border="1"> dataGraph
<tr clags="tablehead” wvalign="top"> immutahle
< th>0RDERID< / th= nil zl
Ol Sk ORDERArray
L¥pe =

Design View | Source Yiew |

Note: For more information on programming with AquaLogic Data Services Platform data objects,
see Chapter 2, “Data Programming Model and Update Framework.”

Displaying Array Values in a Table or List

AquaLogic Data Services Platform maps to an array any data element specified to have unbounded
maximum cardinality in its XML schema definition. Unbounded cardinality means that there can be
zero to many (unlimited) occurrences of the element (indicated by an asterisk in the return type view
of the DSP Console).

When you drag and drop an array value onto a JSP File, BEA WebLogic Workshop displays the
Repeater wizard to guide you through the process of selecting the data you want to display. The
Repeater wizard provides choices for displaying the results in an HTML table or in a list.

Adding a Repeater to a JSP File

To add a NetUI repeater tag (used to display the data from a Data Services Platform query) to a JSP
file, perform the following steps:

1. Open a JSP file in your Page Flow project where you want to display data. This should be the page
corresponding to the action in which the variable is initialized.

Client Application Developer's Guide

Using Data Services Platform with NetUlI

2. Inthe Data Palette — Page Flow Properties, locate the variable containing the data you want to

display.

3. Expand the nodes of the variable to expose the node that contains the data you want to display. If

the variable does not traverse deep enough into your schema, you will have to create another

variable to expose the part of your schema you require. For details, see “Initializing a Variable in
the Page Flow” on page 7-22.

4, Select the node you want, then drag and drop it onto the location of the JSP file in which you want

to display the data. You can do this either in Design View or Source View. WebLogic Workshop

displays the repeater wizard as shown in Figure 7-14.

Figure 7-14 Repeater Wizard

Repeater Wizard - Select Properties

If the data source, or any of its properties, stores a generic tyvpe it will
appear as a link, Click the link to specify the strong tvpe.

Select Properties

El dataServices. schemas. paymentList.PAYMENTListDocument] =
[#] &7 COMMENT {java.lang. String} B
[#] B cuSTID dinkr =

= containet {commoni.sdo,DataObject} il
aéﬂ container {commonj.sdo. DataObject}:
= conkainmentProperty fcommonj.sdo.Property}
E containingType {commonj,.sdo, Type}
E%H instancelass {java.lang. Classk
E%H name {java.lang. String}
a%iﬂ properties {java.util Listh <7 B
5| 1 URI {java.lang.String}

1] | []

| Mext | | Create || Cancel |

5. Inthe repeater wizard, navigate to the data you want to display and uncheck any fields that you

do not want to display. There might be multiple levels in the repeater tag, depending on your

schema.

6. Click Next. The Select Format screen appears as shown in Figure 7-15.

Client Application Developer's Guide

1-25

Accessing Data Services from WebLogic Workshop Applications

1-26

Figure 7-15 Repeater Wizard Select Format Screen

7.
8.

Repeater Wizard - Select Format : =l

Data Format

@ [Table
O [E5] st
O [=] Text

Example:

[Fietld1 || Field2 || Field3 | Fieldd |

Yaluel Yaluel Waluel Waluel

YalueZ || Walue2 || Walue2 || Yalue2
Yalued || Walue3 || Waluel || Yalued

Title Field {Optional)

Title Field does nat apply to the Table data Format

Previous Create Cancel

Choose the display format for your data and click Create.

Right-click on the JSP page and choose Run Page to see the results.

Adding a Nested Level to an Existing Repeater

You can create repeater tags inside other repeater tags. You can display nested repeaters on the same
page (in nested tables, for example) or you can set up Page Flow actions to display the nested level on
another page (with a link, for example).

To create a nested repeater tag, perform the following steps:

1.
2.

Add a repeater tag as described in “Adding a Repeater to a JSP File” on page 7-24.
Add a column to the table where you want to add the nested level.

Drag and drop the array from your variable corresponding to your nested level into the data cell
you created in the table.

In the repeater wizard, select the items you want to display.

Click the Create button in the repeater wizard to create the repeater tags.

Client Application Developer's Guide

Using Data Services Platform with NetUlI

6. Right-click on the JSP page and choose Run Page to see the results.

Adding Code to Handle Null Values

It is a common JSP design pattern to add conditional code to handle null checks. If you do not check
for null values returned by function invocations, your page will display tag errors if it is rendered
before the functions on it are executed.

To add code to handle null values, perform the following steps:

1. Add a repeater tag as described in “Adding a Repeater to a JSP File” on page 7-24.
2. Open the JSP file in source view.

3. Find the netui-data:repeater tag in the JSP file.

4, Ifthe dataSource attribute of the netui-data:repeater tag directly accesses an array variable from
the page flow, then you can set the defaultText attribute of the netui-data:repeater tag. For
example:

<netui-data:repeater dataSource="{pageFlow.promo}" defaultText="no data">

If the dataSource attribute of the netui-data:repeater tag accesses a child of the variable from
the page flow, you must add if/else logic in the JSP file as described below.

5. Ifthe defaultText attribute can have a null value for your netui-data:repeater tag, add code before
and after the tag to test for null values. The following is sample code. The code in bold is added,
the rest is generated by the repeater wizard. This code uses the profile variable initialized in
“Initializing a Variable in the Page Flow” on page 7-22.

<%

PageFlowController pageFlow = PageFlowUtils.getCurrentPageFlow (request) ;

if (((pF2Controller)pageFlow) .profile == null

Il
((pF2Controller)pageFlow) .profile.getPROFILEVIEW () .getCUSTOMERPROFILEArray
() == null

I
((pF2Controller)pageFlow) .profile.getPROFILEVIEW () .getCUSTOMERPROFILEArray
() .1length == 0) {

%>

<p>No data</p>

<% } else {%>
<netui-data:repeater dataSource=

"{pageFlow.profile.PROFILEVIEW.CUSTOMERPROFILEArray}">

Client Application Developer's Guide 1-21

Accessing Data Services from WebLogic Workshop Applications

<netui-data:repeaterHeader>
<table cellpadding="2" border="1" class="tablebody" >
<tr>
<!- the rest of the table and NetUI code goes here -->
<td><netui:label value
="{container.item.PROFILE.DEFAULTSHIPMETHOD}"></netui:label></td>
</tr>
</netui-data:repeaterItem>
<netui-data:repeaterFooter></table></netui-data:repeaterFooter>
</netui-data:repeater>
<% }%>

6. Test your application.

Using Data Service Control 9.2

1-28

Data Service control 9.2 is a custom Java control accessible through BEA Workshop for WebLogic
Platform 9.2, which allows easy access to data services deployed on WebLogic Server 8.1, from other
components of Workshop for WebLogic Platform 9.2 application, such as Java Web Service (JWS).

For AquaLogic Data Services Platform 2.5 release, the control acts as a bridge between the 9.2 based
Workshop for WebLogic Platform client and 8.2 AquaLogic Data Services Platform server.

Note: With the 9.2 release, WebLogic Workshop has been renamed to Workshop for WebLogic
Platform. In this section, the term Workshop for WebLogic Platform is used to refer to the 9.2
environment.

The Data Service control is based on the open source beehive control architecture. Beehive control is
an Apache Software Foundation project that provides a programming model for designing business

functionality that makes it easy to use lightweight JavaBeans and declarative configuration through
JDK 1.5 annotations. For more information about beehive controls, refer to:

http://beehive.apache.org/docs/1.0/controls/programming.html

Figure 7-16 illustrates the Data Service control 9.2 architecture, which is based on the beehive control
architecture. The Data Service control implementation files in 9.2 use the beehive runtime
environment to interface with WebLogic Server 8.1.

Client Application Developer's Guide

http://beehive.apache.org/docs/1.0/controls/programming.html

Using Data Service Control 9.2

Figure 7-16 AquaLogic Data Services Platform 9.2 Control Architecture

Whieb Logic
ALDSP ALDSP Contral

Javaeh ¥ Ccontrol Implementation ALDSP
Service l EJB

Beehive Runtime Environment

WeblLogic Server 8.x |

WablLogic Server 8x |

Data Service control 9.2 consists of the core control infrastructure classes and the Wizard classes,
which are used to create the Data Service control. This section describes the features of Data Service
control 9.2 and provides steps to use it for accessing data services deployed on WebLogic Server 8.1.
It includes the following topics:

e Differences Between the 9.2 and 8.1 Data Service Control
o Installing the Data Service Control 9.2 Plug-In

e Using Data Service Control 9.2 from Workshop for WebLogic Platform

Differences Between the 9.2 and 8.1 Data Service Control

The data service control is created in Workshop for WebLogic Platform and is similar to the control
available with the AquaLogic Data Services Platform 8.1 environment. However, there are some
differences in functionality, which include:

e The Workshop for WebLogic Platform control does not support the .NET type controls.

e The 9.2 control does not create a new schema project for the application, instead it creates a
new schema directory in the default directory path, which is set using the XMLBeans Builder
preferences. The schemas for the method return types are downloaded from WebLogic Server
8.1 into this directory.

e The control in 9.2 uses the . java extension whereas the 8.1 control has the . jcx extension.
o The Design View feature is not available with the 9.2 control.

e Local control is not supported.

Client Application Developer's Guide 1-29

Accessing Data Services from WebLogic Workshop Applications

1-30

o The method signature of the general and ad hoc queries in the 9.2 environment is different
from the 8.2 method signature. In the 9.2 environment, the JDK 1.5 annotations are used for
general and ad hoc queries. In addition, the return type for ad hoc queries is different in the 9.2
environment.

Listing 7-3 and Listing 7-4 show sample method signatures used in general and ad hoc queries
in the 9.2 environment, respectively.

Listing 7-3 Annotations Used in a General Query in 9.2

@DSPControlMethodAnnotation (functionURI =
"ld:DataServices/Demo/Java/Physical/ShipSourcel", functionName
="getShipSourcel", schemaURI = "http://customJava/ShipSourcel",
schemaRootElement = "ShipSourcel", locator =
"ld:DataServices/Demo/Java/Physical/ShipSourcel.ds", hasSideEffect =

false)

public customJava.shipSourcel.ShipSourcelDocument getShipSourcel() ;

Listing 7-4 Annotations Used in an Ad Hoc Query in 9.2

@DSPControlAdhocQueryAnnotation (body=<Your Xquery>)

java.lang.Object[] executeQuery(String xquery, ExternalVariables params,

RequestConfig config);

Installing the Data Service Control 9.2 Plug-In

Data Service control 9.2 is available as a plug-in with Workshop for WebLogic Platform 9.2. The control
is packaged in the com.bea.dsp.control.wizard.zip file, which you need to unzip into the
following location:

<BEA HOME>/workshop92/workshop4WP/eclipse

After you unzip the file, the com.bea.dsp.control.wizard 1.0.0 directory is created in the
following location:

Client Application Developer's Guide

Using Data Service Control 9.2

<BEA HOME>/workshop92/workshop4WP/eclipse/plugins/

Setting Up WebLogic Server 8.1 to Use Data Service Control 9.2

For using the Data Service control 9.2, both the 8.1 and 9.2 WebLogic Servers should be running. In
addition, you need to configure the classpath of WebLogic Server 8.1 to include wls90interop.jar,
as follows:

1. Goto <BEA HOME>\weblogic8l\samples\domains\ldplatform.
2. Open the setDomainEnv.cmd file for editing and search for the PRE_CLASSPATH variable.

3. Addthe pathtothe wls90interop.jar filetothe PRE CLASSPATH variable and save the file.
This file is located in the <BEA HOME>\1liquiddata\lib directory.

Note: WebLogic Server8.1 is the server where the AquaLogic Data Services Platform application is
deployed.

Using Data Service Control 9.2 from Workshop for
WebLogic Platform

After installing the control plug-in, you can create the control in Workshop for WebLogic Platform and
use it to access data from AquaLogic Data Services Platform. This section provides the steps to create,
edit, consume, delete, and uninstall the control. It includes the following topics:

o (Creating and Using the Data Service Control

o Modifying and Uninstalling the Control

Creating and Using the Data Service Control

After the control plug-in is installed in the 9.2 environment, it is accessible through Workshop for
WebLogic Platform 9.2 environment.

To use the Data Service control, you need to:
1. Create a Web service project.
2. Include a Java package in the project, which in turn contains the Data Service control file.

3. Create a JWS, which will use the Data Service control 9.2 to access data services from WebLogic
Server 8.1.

This section describes in more detail the steps needed to create the Web service project and then use
the control through JWS.

Client Application Developer's Guide 1-31

Accessing Data Services from WebLogic Workshop Applications

1-32

Creating a Web Service Project
The Web service project requires some facets installed for the Data Service control to work, which are:

o XMLBeans
e Beehive Control

o XMLBeans Builder
If these facets are not installed with the Web Service project, then an error message is displayed as
shown in Figure 7-17:
Figure 7-17 Error Message

' Error

The Project does not support required Facets,
Please make sure that Beehive and XmlBean Facets are installed,

To create the Web Service project, perform the following steps:
1. Click Start—All Programs—BEA Products (BEA HOME)—Workshop for WebLogic Platform.

2. In Workshop for WebLogic Platform, click File — New— Project and select Web Service Project
as shown in Figure 7-18.

Client Application Developer's Guide

Using Data Service Control 9.2

Figure 7-18 New Project: Select a Wizard Dialog Box

W New Project
Select a wizard

Create a Web Service Project.

Wizards:
= ovs

M- EB

-2 J2EE

(= Java

--B Simple

[+ Web

= WebLogic Portal
E‘B W

[#-(Z2 Examples

™ show All Wizards.

< Back I Mext = I FEinish I Cancel I

3. Click Next and specify the project name in the Project Name box of the New Web Service Project
dialog box as shown in Figure 7-19.

4. Select the Add Project to an EAR check box to create the EAR for the Web service project. The EAR

represents the AquaLogic Data Services Platform application, which is deployed on the WebLogic
Server 8.1.

Figure 7-19 New Web Service Project Dialog Box

¥ New web Service Project

Web Service Project
Create a Web Service project in the workspace or at an external lacation. @
Project Mame: | DSPCE_Test
Project contents
¥ Use default
Diteckar I Ciibeat?_gaiuser_projectsidomainsidomain_wso2iewaliDSPCtr_Test Erowse...
Target runtime: IEEA ‘WebLogic v9,2 j MNew. ..

[V Add project to an EAR

EAR Praject Name: | DSPCtrl_TestEAR

< Back. ext = Finish Cancel

Client Application Developer's Guide 1-33

Accessing Data Services from WebLogic Workshop Applications

5. Click Next and in the Select Project Facets dialog box, the Beehive Controls option is selected by
default. You also need to select XMLBeans Builder as shown in Figure 7-20.

Figure 7-20 New Web Service Project: Select Project Facets

¥ New Web Service Project

Select Project Facets

Provides support for JZEE JavaServer Faces,

Presets: |<cust0m> j Save | Delete |

| Project Facet | \ersion |
----- [¥] s Dynamic Web Module 24 ..

: 5.0..
| 1.0
5| Beehive MetUI 1.0
=| Java Annokation Processing 515.0

O = 3=F 1.1

O = =1L 1.1
5| Struks 1.2..
=) wWeb Services
= WebDoclet (¥Dadet) 1.23 ..,

----- ;| weblogic Control Extensions 9.2.0
----- \=| Weblogic Integrated Common 9.2.0
-] = WebLogic Partal

- = Weblogic Portal (Optional)

= WeblLogic Portal Collaboration

;| “Weblogic Web fApp Extension:9.2.0
MLEeans

\=| ¥MLBeans Builder 2.0
\=| ®MLBeans Library 2.0

<= Show Runtimes |

I Mext = | Finish I Cancel |

6. Click Next and specify the name of the Web module as shown in Figure 7-21. This module is created
in the default WebContent folder that is created with the Web Service project.

Note: If a folder with the same name exists, you are prompted to provide a different name.

1-34 Client Application Developer's Guide

Using Data Service Control 9.2

Figure 7-21 New Web Service Project: Web Module Dialog Box

' New Web Service Project [<]
wWeb Module

Configure web module settings.

Context Roat:

[DSPCtr_Test

Content Directory:

[webCantent

Java Source Directory:

B

< Back |

e (|

concel |

In the Web Module dialog box, retain the default selection in this dialog box, then click Next.
In the XMLBeans Builder dialog box, click the XMLBeans Option tab and select the "Include

project classpath entries in classpath for XMLBeans compilation" check box, as shown in

Figure 7-22. Click Finish.

Figure 7-22 New Web Service Project: XMLBeans Builder Dialog Box

¥ New Web Service Project [x]

XMLBeans Builder

Enables XMLBsans compilation of schema filss in the project. See "Project- =Propsrtiss- »#MLBsans” For Full customization.

Generated File Locations #MLBeans Options |

Schema bype system name:
IV Validate Schemas
LRI resalution:
" Default XMLBeans resolution

" Default XMLBzans resolution with network URL downloading

WP resolution (%ML Catalog and Internet cache)

Java version For generated source:
14
15

™ Enforce unique particle attribution rule

™ Enforce particle valid restriction rule
™ Skip annokations

demo2TypesSystem

¥ Include project classpath entries in classpath For ¥MLEeans compilation:

Namespaces in which duplicate schema types will be ignared:

New...
Remenve:
|
Doy

= Back

Text > | Frish |

Cancel

Client Application Developer's Guide 1-35

Accessing Data Services from WebLogic Workshop Applications

1-36

The new Web service project (Dspctrl Test)and EAR (Dspctrl EAR) are created in
Workshop for WebLogic Platform 9.2, as displayed in Figure 7-23. The EAR is the same as the
application in AquaLogic Data Services Platform 8.1 environment.

Figure 7-23 New Web Service Project and EAR

' workshop - Welcome - BEA Workshop for WebLogic Platform =]
Eile Edit Source Refactor MNavigate Search Project Bun Window Help
If5- 0 $-0-%- |86 -|o7 |05 |~ e - 1| Gworksron
E:] bt Mavigator ‘ = B[B welcome S8|fEaz 2 =0
= =
+ | 5% ¥ welcome
Web Service Project - N
SPC g BEA Workshop For WebLogic Platform (Workshop For WebLogic) is an = E ¢
IDE built on the Eclipse platform that simplifies the process of developing e
B, JRE System Library [BEA Weblogic 9.2 JRE] web-based, service-oriented (SOA) and JZEE applications For deplayment on DSPCE DSPControlFle - 1
=, BEA Weblogic 2.2 [BEA Products (BEAHOME BEA WebLogic Server, tl_L onkrolFile - In
=, Web App Libraries Propett: all &
B, Enterprise application Libraries [DSPCE_Test warkshap far WehLogl_c is part of a Family of products that provide ControlExte
=i, Apache ¥MLEsans dewvelopment tools For industry-standard Frameworks and standards B Beanlnfo
" " ") like Struts, 15F, Hibernate and Tiles. The BEA Warkshop product line = Customize
B, Weblogic JZEE Library [wls-commonsiogging-| also includes BEA Workshop for Struts, BEA Warkshop for 15F, oo
B, WeblLagic J2EE Library [beshive-cantrals-1.0] BEA Workshop for J5P and BEA Workshop Studie, = | |
=, Weblogic JZEE Library [weblogic-controls-1,00 applicatio Da
(== build 5 Overview readTran No
(= schemas Read an overview of the Workshop For \WebLogic development enviranmer url 3
-(22 WebContent urlkey Da
=15 D5PCH]_TestEAR] usernam: we
= EarContent 5 Tutorials = Feature.mfo
~ (et starked step-by-step with a butorial, hd sttributes ¥
] il | o |4l | ’
Project EAR

[2 Problems 23 Sarvers|]avadﬂc|Tasks‘ =¥ =0
0 errors, 10 warnings, 0 infos
| Descripkion | Resource | In Falder | Location | |
‘. | | _,I % The seria!\za?:!s :!ass ADDRESSDoCu,., ADDRESS... DSPCtr!_Test,i‘xbsan_smf..‘ !\ne 15 z

[l DSPCHrl_Test |

9. After creating the Web service project, create the package in which the Data Service control will
be wrapped, as follows:

a. Right-click the src folder in the Web service project and select New—Package to display the
New Java Package dialog box.

b. Enter the name of the Java package, such as com.bea.dspctrltest, inthe Name field and
click Finish.

The package is created under the <webServiceProject>/src/ directory in Workshop for
WebLogic Platform.

Creating Data Service Control
To create the Data Service control in Workshop for WebLogic Platform:

1. Right-click the package com.bea.dspctrltest you created and select New— Others—
Controls.

Client Application Developer's Guide

Using Data Service Control 9.2

2. Select AquaLogic Data Services Platform Controls from the Select a wizard dialog box and click

Next, as shown in Figure 7-24.

Figure 7-24 Select a Wizard Dialog Box

Select a wizard

Wizards:
== Contrals | @

/47 Extensible Custom Control
| JDBC Contral

-7 M3 Cartral

[C¥5

-z Data

- EB

[H-E J2ZEE

- Java pu=

[+ Server

[+ Simple

- Web =

TP NP i |

™ show all Wizards,

< Baclk I Mext > I Einish I Cancel I

3. Inthe New DSP Control Creation dialog box displayed in Figure 7-25
a. Enter the location where you want to create the control in the Container field.
b. Enter the name of the control in the File name field.

Figure 7-25 New DSP Control Creation Dialog Box

¥ New D5P Control Creation

New DSP Control.

Step 1: Select File name and Control Container

Corkainer: I \D3P_Control_TestisrciDSPCTRL Browse, .. |

Eile name: I DSPCTRL_DSPControlFile

Mext = Finishr Cancel

Client Application Developer's Guide

Accessing Data Services from WebLogic Workshop Applications

1-38

5.

Note: A Data Service control can be created only in a Web service project.

In the Select Control Attributes dialog box (Figure 7-26), specify the URL of the WebLogic Server
where the AquaLogic Data Services Platform application is deployed, along with the user name
and password for connecting to the server. The URL should be in the following format:

t3://<ALDSPServerName>:<PortNum>
where,

<ALDSPServerName> is the WebLogic Server 8.1 where the AquaLogic Data Services Platform
application is deployed.

<PortNum> is the port number of the WebLogic Server 8.1.

Click Get Application List for a list of data services deployed on the server and click Next.

Figure 7-26 Select Control Attribute

6.

¥ New DSP Control Creation

Select Control Attributes

Enter Contol attributes

StepZ: Enter Contol attributes
Server URL: (t3:/localhost:7001) |t3:,|',|’1?2.22.56.110:?001

User Mame: (installadministrator) |weblogic

Password: I skttt

I DataServices » l

Application Narme

= Back | et = | Fimishy | Cancel |

In the Method Selection Page dialog box (Figure 7-27), select the data services, which you want to
access and click Add. These data services will now be accessible through the WebLogic 9.2
environment.

Client Application Developer's Guide

Figure 7-27 Method Selection Page Dialog Box

Using Data Service Control 9.2

% New DSP Control Creation
Method selection Page
Select Contol Methods
Step 3: Select Cantol Methods
El- Evaluation ADDRESS()
CustarmerDE CREDIT_CARD()
CUSTOMER()
0etADDRESS()
et CLISTOMER()
Addz> submitArrayOFADDRESS()
submitArrayOFCREDIT_CARDE)
<<Remave submitArrayOFCLISTOMER)
<<<Remove All
Read Transaction Attribute
@ Mot Supported ¢ Redquired
<gack | weis |[Esh | cond |

7. Now, click Finish. This completes the task of creating the Data Service control in Workshop for

WebLogic Platform.

After you create the Data Service control 9.2, several operations automatically occur:

e The DSP_Control.jar file is copied to the webcontent/WEB_INF/1ib directory

e The schemas are copied to the default directory, which is configured for use by XMLBeans
Builder (Figure 7-28). The hierarchy of the schemas is the same as the hierarchy in the 8.«

environment.

Figure 7-28 Downloaded Schemas

i

22 . Navigatar =8
2lBs

[

[
[
[
[
[
[
[
[
[
E

& schemas

EE) DSPCHl_Test

g
-2 JRE System Library [BEA WebLogic v9.2 JRE]

-2 BEA Weblogic v8.2 [BEA Products (BEAHOME 3)]
-2 Web App Libraries

+-=) Enterprise Application Libraries [DSPCtr]_TestEAR]
-2 Apache KMLBeans

-2, WebLogic J2EE Library [wis-commonslogging-bridge]
+|-2) WebLogic J2EE Library [beehive-controls-1.0]

-2 WebLogic J2EE Library [weblogic-controls-1.0]
H-= build

)& Dataservices
B2 Evaluation
)& CustomerDE
B schemas
¥) ADDRESS.xsd
X CUSTOMER. xsd
£ £ CustomerManagement
B schemas
%) Address xsd
¥ CustomerProfile.xsd

|} sdo.xsdeonfig

[

[DSPCtrl_TestEAR

+-{=- WebCantent Downloaded
Schemas

Client Application Developer's Guide

1-39

Accessing Data Services from WebLogic Workshop Applications

e The sdo.xsdconfig file is copied to the following location:
<XML_BEAN BUILDER SRC_DIR>/<ApplicationName>

Note: When creating or working with any non-data service project, you should add a copy of the
sdo.xsdconf1ig file to the root directory of your project. This file can be found in the root
directory of any data service-based project.

For example, if you have a schemas project, you should add the sdo . xsdconfig file to its
root directory to avoid name collisions between the XMLBean generated by an SDO-based
project and an XMLBean-based project.

Creating the JWS and Using the Data Service Control
You can use the 9.2-level data service control through a JWS. To create the JWS:
1. Right-clickthe com.bea.dspctrltest Java package that you created earlier and select New —

WebLogic Web Service. Specify the name of the JWS project in the File Name field as displayed in
Figure 7-29.

Figure 7-29 New Java Web Service

' New Web Service [%]
web Service

Create 3 new web service,

Enter or select the parent folder:

| DSPCEl_Test/src/comibea/dspetr!

u
[E-§# DSPClrl_Test
=k st
=g com
g bea
Lotz dspetrl

File name: | Dspctrl s

bk G Cancel

2. Click Finish. This creates the Java Web service as shown in Figure 7-30, which will use Data
Service control to access data services.

1-40 Client Application Developer's Guide

Figure 7-30 Java Web Service

Using Data Service Control 9.2

[welcome 0 b5

package com.bea.dspetrl;
import Jjavax.jws.®:

SRebService
public class dspetrllUs f

= BTebMethod
public void hellof{) {

H
i

L]

o

3. Right-click in the JWS file tab (dspctr1JWs . java) and select Insert—Control (Figure 7-31) to
display the Select Control dialog box.

Figure 7-31 Adding Data Service Control to JWS

' Workshop - dspctrlIW! va - BEA Workshop for WebLogic Platform [_[olx]
Ele Edit Source Refactor Mavigate Search Project Run Window Help
I#-0-a-|d8a-|ii-Calelos 4@ & [-4~ c- - = [@iworkchen
[£ Package Explorer 32 Nawgatnr| = 8|[[E) welcome (m 23 1] DSPCH_DSPCantra. . ! S0z~ =0
= | = <3==(‘> = g package com.bea.dspotrl; :I =
= i Dspcr_Test als R
- src " Y @ undo iz PYRS
B} com.bea,dspctrl ;
; Reyert Fils
1 [DSPCtl_DSPControlFile. java e dspctrl IS - Class De
. =-§& DIPCel_DSPCantrolFile SR Pro.. | Value =
-~ @ ADDRESS() ™ Open Declaration F3 Pl
® CLISTOMER() o)
pen Type Higrarchy F4
2 ge:::l‘l(l:JR:ZSS(C(L;STOMERDoct Open Call Hierarchy Chrl+Al+H O Aur
- etallCustomer
e gettustnmar() Open Super Implementation F— i
. = trl_testl;
@ submitArrayOFCUSTOMER(CL Show in Package Explorer -
[dspebrlIws java 5 i i B 50
[#-m8, JRE System Library [BEA WebLogic v9.2 JRE] CD- e 11001 ¢
[+ i}, BEA WebLogic v9.2 [BEA Products (BEAHOME =0 .
-2, Web App Libraries s G [OMER () 2
-l Enter:rise Application Libraries [DSPCE|_Test Source Ab4Shift+s » B 52
-2, Apache AMLB2ans [} Context Reference
-), Weblogic J2EE Library [wls-commonsiogging-| e ST 5| e B i
[m), Weblagic 12EE Library [beehive-cortrols-1.0] ClfEEET AP catbart
[+, WebLogic J2EE Library [weblogic-contrals-1,01 i Local History 4
63 build Control Event Handler. .. B Wi
oty u'; References
= schemas
=1~ DataServices (et o)
1= Evaluation Oecurrences in File Ckrl+Shift+U ¥
: [F=2 CustomerDE {4 Add to Srippets... Bl Wi
= CustomeriManagement -
o5 sdo.xsdeonfig Run As 3
[#- (= WebContent Debug fis v =
=B DSPChrl_TestEAR .
E-@ EarContent Upgrade Source File(s). .. -
= APP-INE Team i’
G2 META-INF Compare With 4 =
4 Replace With 4 4] | »
Weh Services 4
o = = Eq
4 | @ Edit Control ’ B0 & |
I H l Preferences. .. %01

Client Application Developer's Guide

1-41

Accessing Data Services from WebLogic Workshop Applications

4, The DSPCtrl_Test control that you created earlier is displayed in the Existing Project Controls list.
Select this control and click OK. This creates the Control annotation (@Control) in the
WebServices annotation and declares the control variable, as shown in Figure 7-32.

Figure 7-32 Control Annotation

Welcome [bcs =0

package com.bea.dspoctrl; =l L

“import javax.jws.*:
import org.apache.beehive.controls.api.bean.Control;

SEWebService
public class dspotrlJus

AControl
| private D3PCtrl D3PControlFile D3SPCtrl testl:

S AebMethod
public void hello()

H —
a i
5. You can now invoke any method for the data services that you selected for the control. In this case,
the CUSTOMER() has been invoked, as shown in Figure 7-33.

Figure 7-33 Invoking a Method through Data Service Control
[Welcome n| 52 M) DSPClr_DSPCantralFil, | @ Test Client =08

package com.bea.dspetrl; =1

“import javax.jws.?*;
import org.apache.beehive.controls.api.bean.Control;

import svaluation.customerDB.customer . CUSTOMERDoCcument ;

Sl@lUebService
public class dspotrldWs {

@contral
private D3PCrrl DEPControlFile DEPCurl restl;

= @WehMerhod
public CUSTOMERDocument[] hello() {
return D3PCtrl testl.CUSTOMER();

g o
6. To run the method on the server, right-click in the window and select Run As — Run on Server to
display the Run on Server dialog box (Figure 7-34).

1-42 Client Application Developer's Guide

Figure 7-34 Run on Server Dialog Box

' Run On Server

Define a New Server

Choose the bype of server to create

Using Data Service Control 9.2

Hows do vou want ko select the server?
% Choose an existing server
" Manually define a new server

Select the server that vou want to use:

El+E> localhost
[ESAEC ebLogic

rver [workshop]

Description: BEA Weblogic +9.2 Runtime

[T Set server as project default fdo not ask againd

View By IHost nanne 'l

= Back I Mext = | Finish I Cancel |

Select the 9.2 WebLogic Server and click Next. In the Add and Remove Projects dialog box, the
project EAR contains the control. If there are any other EARs, which you do not want to run on the
server, you should remove them from the list, and then click Finish.

The WebLogic Server 9.2 is started and the application opens up in the Workshop Test Browser,
as shown in Figure 7-35.

Client Application Developer's Guide 1-43

Accessing Data Services from WebLogic Workshop Applications

Figure 7-35 Workshop Test Browser

[J] dspetridws.java |@ DSPCL_DSPContro. . |DWelcume f@ b 8|z~ =0
m .~§° Ihttp:,if\ucalhust:7001,iwls_ut:f?ws\:I\UrI=http%3A%2F°/a2FIUca\hust°fo3A?UU1%2FDSPCtrj =3 ¥
[2 @
=
ch dspetrl WS - Class Declarat
Show hitp:/ /localhost:7001/DSPCHr Test/dspctrIws? | Lnoose | ==)
Operations wsDL S ra
wsDL B soar
Message Log p:
Operations st
Clear Log P ol
B soaF
hello v
:
|| B Trans
tir
Ve
B Wit
cC
pC
SE
B Wit
cc
pc
SE
B Wiim 2
S | | »
4 e =0

Problems | #i% Servers 53 Javadﬂc|Tasks‘ SF A0

SEFVEr I Stabus | State |
fhey BEA WebLagic v9.2 Server [wurks?, Started Synchronized

8. Now, you can execute the he11o () method, by clicking hello in the test browser. The server
response is displayed, as shown in Figure 7-36.

1-44 Client Application Developer's Guide

Using Data Service Control 9.2

Figure 7-36 Response for the Hello Method

Choose

q " » Lhoose

Show Operations http://localhost: 7001 /DSPCLrl Test/dspctrlIwWs? | another
SDL WsDL

Message Log

=+ hello
Clear Log

hello Request Summary

Arguments:

[void]
Returned:

[complex type]
Submitted:

Fri Sep 01 18:02:27 IST
2006
Duration:

10234 ms

hello Request Detail
Service Request

<soapeny:Envelope
wmins: soapenv="http://schemas. mlsoap.org/soaplenvelopes"=
=Header xmins="http: //schemas.umlsoap. org/soapsenvelope™ /=
<soapeny:Bodys
<hello gmins="http: /fcom/bea/dspotr” />
</soapeny:Bodys
=/soapenv:Envelopes

Service Response

<soapeny:Envelope
wmins: soapenv="http://schemas. mlsoap.org/soaplenvelopes"=
=soapenviHeader />
<soapeny:Bodys
=m:helloResponse xmins:m="http: //com/bea/dspotrs>
«<soapeny:Body>
«m:helloResponse xmins:m="http://com/bea/dspctrl">
<mireturnz
«ns0: CUSTOMER
=mins:ns0="ld: Evaluation/CustomerDB/CUSTOMER">
«CUSTOMER_ID>CUSTOMER1</CUSTOMER_ID>
<FIRST_NAME=Jack</FIRST_MAME>
<LAST_MAME=Black</LAST_NAME:
<CUSTOMER_SINCE>2001-10-01</CUSTOMER_SINCE=>
<EMAIL_ADDRESS>Jack@hotmail.com</EMAIL_ADDRESS>
< TELEPHONE_MUMBER>2145134119</TELEPHONE_MUMBER>
<55N>295-13-4119</S5N>
<BIRTH_DAV>1970-01-01</BIRTH_DAY>
<DEFAULT_SHIP_METHOD>AIR</DEFAULT_SHIP_METHOD>
<EMAIL_MOTIFICATION>1</EMAIL_NOTIFICATION
<MEWS_LETTTER=0</NEWS_LETTTER>
<OMLINE_STATEMENT>1</ONLINE_STATEMENT>
«LOGIN_ID>Jack</LOGIMN_ID>
«/ns0: CUSTOMER>
«ns0: CUSTOMER

Modifying and Uninstalling the Control

This section provides the steps to edit, delete, and uninstall the Data Service control.

Editing and Deleting the Data Service Control

To edit the Data Service control, right-click the data service control file
(pspctrl DSPControlFile.java), and select Edit Control—>Edit DSP Control, as shown in

Figure 7-37.

Client Application Developer's Guide 1-45

Accessing Data Services from WebLogic Workshop Applications

Figure 7-37 Editing the Data Service Control

¥ workshop - DSPCErl_DSPControlFile.java - BEA Workshop for WebLogic Platform [_ O]
File Edit Source Refactor Mavigste Search Project Run Window Help
[-0-@-|&E&6-[05- |& & | 2o @ | & [Vl 9| (@workshop
B 23 Nawgator| = O|[B welcome | [3] dspetriws.java [’m DSPChrl_DSPCortro... &3 > =8|z~ =08
Fy | =] <3===> = § package com.bea.dspcotrl; =0 =
EE DSPChrl_Test & =import org.apache.beehive.controls.api.bean.ControlExten ’E - ® .
B src Pe
B} com.bea.dspetrl ¢
E@ 1 ANt o] Pyt ensinn DSPCHl_DSPCantrolF
B New P bnnotation(application = "DataServic Pro... | Yalue
o ; Col
ADDRESS() open F3 trl DSPControlFile extends DEPContr |
CUSTOMER() R N El &e:
getADORESS(CUST! OD T Hiarench » Annotation (functionURI = "ld:Evalua
en Type Higratd
getalcustamer) Ren Type Rigrardhy vpe . CUSTONERFROF ILEDocument [] getil B oS
getCustomer() -
o || Copy Chrl+C
i submitdrrayQRCUST — = Annotation (funetionlURI = "1ld:Evalua
8 dspetrows.java g Paste et Type . CUSTOMERPROF ILEDocument [] getCu
F-B), JRE System Library [BEA Weblogic §§ Delete Delete
g "B SfAhﬁEbLLDS‘E \’_'9'2 [BEA Products { Euild Path b Hirnmoration [funccionlRT = "ld:Evalua o Fea
e ibraties
o Ertermioe momlcaton Lbrares [0 3902 Alt+shit+s b bn. customerDE . customer . CUSTOMERD omum—
-, Apache ¥MLBaans Refactor Alt+Shift+T ¥
5, WebLogic J2EE Library [wls-commor Annotation (functianfRT = "ld:Evalua
-, WebLogic J2EE Library [beehive-cor o) ITPOrE: br. customerDE. address. APDRESSDocumen
[, Weblogic J2EE Library [weblogic-ce £ Export. .
-z build Arnmoration (funetionlRI = "7, functi
H-E= schemas References ' L.Properties[] swomitArrayOfCUSTOMER
EHE Datadervices Declarations L3 =l Mai
= (z= Evaluation innotation (functionlRI = "1d:Evalua
T o Refresh F5
- CustomerDB pn.custonerDB. address. ADDRESZDocumen
-z CustomerManagement Fun As > Bl Ma
\=f sdo.xsdconfig E — b
- WebContent Liebug A= Bl Ve
BB} DSPClrl_TestEAR Upgrads Source Filefs)... L.
Team .
- EarContent - FequestConfig parameter with functio
Compare With .
it methods -
Replace With 4 5
Restore from Local History. ..
=
q | # 0. mE=0
1
[1 com.bea, dspetrl, DSPCEl_DSPContr Ptoperties Alt-+Enter I |

To delete the Data Service control 9.2, right-click the control file and select Delete.

Uninstalling the Control

To uninstall the control:

1. Go to the directory where you installed the control, which is set to:

<BEA HOME>/workshop92/workshop4WP/eclipse/plugins/

2. Delete the control plug-in directory, com.bea.dsp.control.wizard 1.0.0,from this
location.

1-46 Client Application Developer's Guide

CHAPTERa

Accessing Data Services Through
Aqualogic Service Bus

AquaLogic Data Services Platform can be accessed from AquaLogic Service Bus. Thus an AquaLogic
Service Bus client make full use of data services (Figure 8-1). This allows a more efficient and flexible
approach to accessing data services than exposing them as web services via WebLogic Workshop and
Java Web Services (JWS).

To make an AquaLogic Data Service Platform data service available to an AquaLogic Service Bus
client, you need to do the following;

e Deploy the AquaLogic Data Service Platform transport in the AquaLogic Service Bus as an
application;

o Generate the WSDL file for the data service of interest and import it into the AquaLogic Service
Bus;

e Generate a business service based on the WSDL and generate a proxy service based on the
business service.

Your client is then able to access the data service as an AquaLogic Service Bus client.

Accessing Data Services Through Aqualogic Service Bus 8-1

Accessing Data Services Through AquaLogic Service Bus

Figure 8-1 Aqualogic Data Service Platform and Aqualogic Service Bus Interoperability Architecture

Aqualogic Service Bus n‘:&“saéﬂ?é‘és

Platform

The following section provides the details.

Accessing Aqualogic Data Services Platform from
AqualLogic Service Bus

8-2

Note: The following assumes that you are running AquaLogic Service Bus 2.5 under WebLogic
Server 9.2 and AquaLogic Data Service Platform under WebLogic Server 8.1.

Perform the following steps to access AquaLogic Data Services Platform from AquaLogic Service Bus:

Step 1: Start Your Servers

1. Start the WebLogic Server 9.2 for the AquaLogic Service Bus application needing access to your
WebLogic Server 8.1 data service.

2. Start the WebLogic Server 8.1 for the data service.

For example, suppose that the MortgageBroker application sample in AquaLogic Service Bus needs
access to a RTLApp data service that comes with AquaLogic Data Service Platform.

You then need to start the server for the AquaLogic Service Bus Mortgage Broker examples (on
Windows you can do this by selecting:

Start — All Programs — BEA Products — Examples — AquaLogic Service Bus — Start Examples
Server

You also need to start the server for the RTL demo (on Window you can do this by selecting:

Accessing Data Services Through Aqualogic Service Bus

Accessing Data Services Through Aqualogic Service Bus

Start — All Programs — BEA WebLogic Platform 8.1 — BEA AquaLogic Data ServicesPlatform2.5
— Examples — RTL Demo — Launch RTL Demo Server

Step 2: Generate the WSDL for the Data Service

You can obtain the WSDL for the Data Service in two different ways. Each is described below.

Generate the WSDL Through WebLogic Workshop 8.1
1. Launch WebLogic Workshop 8.1.

2. Navigate in the Application panel (on the left) to your data service (. ds file) that you want to be
available from AquaLogic Service Bus and select it.

3. Right-click to select Generate WSDL File for Service Bus (Figure 8-2). A WSDL file for the data
service will be generated in the same directory where the data service is located.

Figure 8-2 Generate WSDL for Service Bus Dialog

p </
1B case.ds /wad:e
QIB Caseview.ds < /xad: schen
18 CredivCard.ds <xsd: schena
P n <xad:im
L Open <xad:el
f <xE
| Find Usages
b Refactor »
1 /%
| Lock </uadie
e Duplicate <xadiel
| Delete <3
:{ Rename
i it
:{ L
</uadie
i Update Source Metadata < /xsd: schen
(£ Services <x3:schena
[63) sdo.xsdconfia <xsiele
<xE
|<—j xquery-types, xsd
1 (& Elecws
130 RTLSelf Service

For example, if you had navigated to the customer . ds file in the RTLApp, Customer.wsd1 will be
generated.

Export the WSDL with the AquaLogic Data Service Console

1. Launch the AquaLogic Data Services Console.

On Windows you can do this by selecting:

Accessing Data Services Through Aqualogic Service Bus 8-3

Accessing Data Services Through Aqualogic Service Bus

8-4

Start — All Programs — BEA WebLogic Platform 8.1 — BEA AquaLogic Data Services Platform 2.5

— Examples — RTL Demo — AquaLogic Data Services Console
You can also do this by typing http://localhost:7001/1dconsole in your web browser.
2. In the project navigator on the left, select 1dplat form, then your application underneath it.

3. Next navigate to Data Services and to the data service for your application.

For instance, if your application were the RTLApp example application, then you would
navigate from 1dplatformto RTLApp t0 Data Services to RTLServices.

4. Pick the particular service that you want to export.

If you were exporting a service from the RTLApp example, you might pick Customer.

5. Click Export WSDL in the far right column of the data service you want to export. You will be given

the opportunity to save it to any location.

Step 3: Deploy the Data Services Transport

1. Launch the AquaLogic Service Bus console, then select the WebLogic Server Console.

The WebLogic Server Console will appear in a new window. Click on Deployments under Your
Deployed Resources.

2. When the Summary of Deployments panel appears, click Lock & Edit under Change Center on the

left.

3. The Install button then becomes active. Click it.

4. Inthe Install Assistant, navigate to the deployment EAR file, dsp transport.ear, in WebLogic

Server 8.1.

In Windows, this is located at:

<bea home>\weblogic8l\liquiddatal\application\

5. Thenselect dsp transport.ear and click Next.

dsp_transport will appear under Deployments.

Accessing Data Services Through Aqualogic Service Bus

Accessing Data Services Through Aqualogic Service Bus

Figure 8-3 Install Application Assistant Dialog

Install Application Assistant

| |

Locate deployment to install and prepare for deployment
Select the file path that represents the application root directory, archive

Note: Only valid file paths are displayed below, If you cannot find your de
deployment descriptars,

Location: localhost by C: Y bea-4 Y weblogicg1 Y, liquiddata b, application

ORI dsp_transpaort.ear

O | #8 dconsole.ear

| |

6. Click Activate, then check the box in front of dsp_transport.ear and select Servicing All
Requests from the Start drop-down menu. This will complete activation.

Step 4: Import the WSDL for the Data Service

1. Return to the service bus console and select Project Explorer.

2. Navigate to your project folder and click either Create or Edit.

Note: There will be either a Create or an Edit button in the Change Center, depending on
whether you are creating a new session or editing an existing one.

3. Select the project folder or an existing subfolder, or create a new one. For the latter, type a name
in Enter New Folder Name under Folders and click Add. The new folder will be added to the tree
structure.

4. Next import the WSDL file that you generated in Step 2. Do this by selecting WSDL under Interface
in the Create Resource drop-down menu.

5. Onthe panel that appears next, give the resource a name and a description (optional), then click
Browse to locate the WSDL file that you generated in Step 2. Select it and click Save. It will then
appear as a resource in the Resources table.

For more information, see Adding a WSDL in “Using the AquaLogic Service Bus Console.”

Accessing Data Services Through Aqualogic Service Bus 8-5

http://edocs.bea.com/alsb/docs25/consolehelp/wsdls.html#wp1073680

Accessing Data Services Through Aqualogic Service Bus

Step 5: Create the Business Service

1. Next, in Create Resources under Resources, select Business Service under Service. In the panel
that appears, enter a name for the service in Service Name. For instance, if you had created
Customer.wsdl for the sample RTLApp, then you might want to name your business service
CustomerBS. Enter an optional description of the service.

2. Below in the same panel, select WSDL Web Service and click Browse to locate the WSDL file that
you imported in Step 4. Click on it. A Select WSDL Definitions panel will appear. Select a binding
under Bindings.

If you were running the sample application and had imported customer.wsdl as described
above, you would select CustomerSoapBinding (Figure 8-4).

Figure 8-4 Setting SOAP Binding for WSDL

Customer MortgageBrokermy_stuff
Description:

> Select WSDL definitions

3. Click Submit. Then click Next in the main panel.

4, Under Protocol, select dsp from the drop-down menu. Then enter the Endpoint URL For Endpoint
URI, enter:

t3://<host:port>/<application name>.
If you were running the RTLApp as described above in the default setup, you would enter:

t3://localhost:7001/RTLApp
5. Click Add to add the Endpoint URI, then click Next.

6. Click Next again to accept the defaults. Then on the Create a Business Service - Summary screen
that appears, click Save.

The business service should then appear under the table of Resources. If you were creating
CustomerBsS, it will appear in the table.

For more information, see Adding a Business Service in “Using the AquaLogic Service Bus Console.”

8-6 Accessing Data Services Through Aqualogic Service Bus

http://edocs.bea.com/alsb/docs25/consolehelp/businessServices.html#wp1120238

Accessing Data Services Through Aqualogic Service Bus

Step 6: Create the Proxy Service

The procedure for creating the proxy service is similar to that for creating the business service.

1.
2.

6.

Under Create Resources, select Proxy Service under Service in the drop-down menu.

In the next panel that appears, give your proxy service a name. If you were working with the
example, you might want to name it CustomerPS. Provide a description (optional) for the service
in Description. Then select Business Service under Create from Existing Service and click Browse.
In the screen that appears, select the name of the business service that you created in the previous
step. If you had created customerBs, as in the example, select CustomerBS. Click Submit, then
click Next.

In the next panel, select http in the drop-down menu for Protocol and type in a name for the
Endpoint URI. For Endpoint URI you can give it any name you want. Click Next.

In the next two screens click Next to accept defaults, or fill in other values or select other choices.

You will then see a summary screen allowing you to edit your entries. When you are satisfied with
your entries, click Save. The proxy service should then appear in the table of resources. If you were
working with the example, you should see CustomerPS in the table.

Click Activate, then click Submit.

For more information, see Adding a Proxy Service in “Using the AquaLogic Service Bus Console.”

Step 7: Test Your Setup

1.

Reselect the folder where your resources are located, then, under Resources, locate the proxy
service you created.

Select Launch Test Console under Actions. The test console should appear. Pick a method under
Available Options in the drop-down menu and click Execute. For the RTLApp example, you might
select the getCustomer method. In Response Document, you should see a list of customers.

For more information, see Test Console in “Using the AquaLogic Service Bus Console.”

Additional Information

For more information, see the following:

o BEA WebLogic Workshop 8.1 documentation

http://edocs.bea.com/workshop/docs81/index.html

Accessing Data Services Through Aqualogic Service Bus 8-7

http://edocs.bea.com/workshop/docs81/index.html
http://edocs.bea.com/alsb/docs25/consolehelp/proxyservices.html#wp1178607
http://edocs.bea.com/alsb/docs25/consolehelp/testing.html

Accessing Data Services Through Aqualogic Service Bus

o Using the AquaLogic Service Bus Console

http://edocs.bea.com/alsb/docs25/consolehelp/index.html

o Using the AquaLogic Data Services Platform Console

http://edocs.bea.com/aldsp/docs25/admin/ldconsole.html

8-8 Accessing Data Services Through Aqualogic Service Bus

http://docs-stage.bea.com/aldsp/docs25/admin/ldconsole.html
../admin/ldconsole.html
http://edocs.bea.com/alsb/docs25/consolehelp/index.html

Supporting ADO.NET Clients

This chapter describes how to enable interoperability between BEA AquaLogic Data Services Platform
data services and ADO.NET client applications. With support for ADO.NET client applications,

Microsoft Visual Basic and C# developers who are familiar with Microsoft’s disconnected data model
can leverage AquaLogic Data Services Platform data services as if they were ADO.NET Web services.

From the Microsoft ADO.NET developers’ perspective, support is transparent: you need do nothing
extraordinary to invoke functions on a AquaLogic Data Services Platform data service—all the work
is done on the server-side. ADO.NET-client-application developers need only incorporate the
AquaLogic Data Services Platform-generated WSDL into their programming environments, as you
would when creating any Web service client application.

General information about how AquaLogic Data Services Platform achieves ADO.NET integration is
provided in this chapter, as are the server-side operations required to enable it. The chapter includes
the following sections:

o Overview of ADO.NET Integration in Data Services Platform
e Enabling AquaLogic Data Services Platform Support for ADO.NET Clients
e Adapting AquaLogic Data Services Platform XML Types (Schemas) for ADO.NET Clients

o Generated Artifacts Reference

Note: The details of ADO.NET development are described on Microsoft’s MSDN Web site
(http://msdn.microsoft.com). See that site for information about developing
ADO.NET-enabled applications.

Client Application Developer's Guide 9-1

Supporting ADO.NET Clients

Overview of ADO.NET Integration in Data Services
Platform

9-2

Functionally similar to service data objects (SDO), ADO.NET is data object technology for Microsoft
ADO.NET client applications. ADO.NET provides a robust, hierarchical, data access component that
enables client applications to work with data while disconnected from the data source. Developers
creating data-centric client applications use C#, Visual Basic.NET, or other Microsoft .NET
programming languages to instantiate local objects based on schema definitions.

These local objects, called DataSets, are used by the client application to add, change, or delete data
before submitting to the server. Thus, ADO.NET client applications sort, search, filter, store pending
changes, and navigate through hierarchical data using DataSets, in much the same way that SDOs are
used by AquaLogic Data Services Platform client applications.

See “Role of the Mediator and SDOs” on page 2-16 for more information about working with SDOs in
a Java client application. Developing client applications to use ADO.NET DataSets is roughly
analogous to the process of working with SDOs.

Although functionally similar on the surface, as you might expect with two dissimilar platforms (Java
and .NET), the ADO.NET and SDO data models are not inherently interoperable. To meet this need,
Data Services Platform provides ADO.NET-compliant DataSets so that ADO.NET client developers can
leverage data services provided by Data Services Platform, just as they would any ADO.NET-specific
data sources.

Enabling a Data Services Platform data service to support ADO.NET involves three key steps:

e (reating an ADO.NET-Enabled Data Service Control (Note that ADO.NET-Enabled Data Service
controls are intended exclusively to provide support to ADO.NET clients via a Web service
interface, as described in this chapter: such controls cannot be used in Page Flows, Portals, or
other development scenarios.)

o Generating a Web Service for ADO.NET Clients
o Generating an ADO.NET-Enabled WSDL

Understanding ADO.NET

ADO.NET is a set of libraries included in the Microsoft .NET Framework that help developers
communicate from ADO.NET client applications to various data stores. The Microsoft ADO.NET
libraries include classes for connecting to a data source, submitting queries, and processing results.
The DataSet also includes several features that bridge the gap between traditional data access and

Client Application Developer's Guide

Overview of ADO.NET Integration in Data Services Platform

XML development. Developers can work with XML data through traditional data access interfaces,
and vice-versa.

Note: See Microsoft's MSDN site (http://msdn.microsoft.com/) for more information about
ADO.NET and client application development.

Although ADO.NET supports both connected (direct) and disconnected models, in Data Services
Platform only the disconnected model is supported.

ADO.NET Client Application Development Tools

ADO.NET client applications are typically created using Microsoft Windows Forms, Web Forms, C#, or
Visual Basic. Microsoft Windows Forms is a collection of classes used by client application developers
to create graphical user interfaces for the Windows .NET managed environment. Web Forms provides
similar client application infrastructure for creating Web based client applications. Any of these client
tools can be used by developers to create applications that leverage ADO.NET for data sources.

Figure 9-1 ADO.NET Clients Supported via Web Services

Data Service Platform
WebLogic Server

ADO.NET client application

1. Create ADO.NET-Enabled
5. Incorporate WSDL in ADO.NET client Data Service Control
application development environment

“Customer” Data Service

| » Web service a4 ADO.NET-Enabled <
efantates g Data Service control

2. Generate Stateless JWS

3. Generate ADO.NET-

DataSet Enabled WSDL
DataSet
DataSet .

\{

Joem O

<xs:schema
4. Use WSDL to generate client proxy xmlns:mstns="http:
R (stub) code and include stub inclient” """~ . //
application development temp.openuri.org/
schemas/
Customer.xsd"

<xs:element
msdata:IsDataSet="
true”
name="CustomerData
Set'>

Client Application Developer's Guide 9-3

Supporting ADO.NET Clients

9-4

Support for ADO.NET clients is provided via Web services, so before you can use your Microsoft tools
of choice, you must perform the two basic tasks required for web-service client development, just as
you normally would for any Microsoft Web services client application (see Figure 9-1):

o Obtain the WSDL for the AquaLogic Data Services Platform Web service application.

e (Generate the client side artifacts from the WSDL as required for the client application
development tool you are using.

Once the client-side artifacts have been incorporated into your development environment, you can
invoke functions on the data service and manipulate the DataSet objects in your code as you normally
would.

Note: The process of generating the WSDL and server-side artifacts is described in “Generating a
Web Service for ADO.NET Clients” on page 9-10.

Understanding How AquaLogic Data Services Platform
Supports ADO.NET Clients

BEA AquaLogic Data Services Platform supports ADO.NET at the data object level. That is, Data
Services Platform maps inbound ADO.NET DataSet objects to SDO DataObjects, and maps outbound
SDOs to DataSets. The mapping is performed transparently on the server, and is bidirectional.

Tahle 9-2 ADO.NET and SDO Data Objects Compared
ADO.NET SDo Description

DataSet DataObject Disconnected data models. Queries return
results conforming to this data model.

DiffGram ChangeSummary Mechanisms for tracking changes made to
data objects by a client application.

As shown in Figure 9-3, the ADO.NET typed DataSet is submitted to and returned by AquaLogic Data
Services Platform. At runtime, when a Microsoft- NET client application makes a SOAP invocation to
the ADO.NET-enabled Web service, the Web service intercepts the object and passes it to the Data
Service control.

The ADO.NET-enabled Data Service control is the linchpin of the interoperability between the two
platforms. It comprises several wrapper classes—one for each typed DataSet—that are used to
provide bidirectional mapping,.

Client Application Developer's Guide

Overview of ADO.NET Integration in Data Services Platform

Figure 9-3 Data Services Platform and .NET Integration

‘ Java Web
ADO.NET * Service

Strongly Typed
DataSet

DataSet

ADO.NET-
Enabled Data
Setrvice Control

Data Service
Data Services Platform
@ Engine g

C#, VB, or other
CLR Client
Application

Web Form,
Windows Form

\NET Client WebLogic Platform
e I
@ @
O pr4

Web Services Database Other Data Sources

The required wrapper classes are created automatically, during the process of creating the
ADO.NET-enabled Data Service control, as described later in this chapter. The wrapper classes are
based on the XML schema file that gets generated during Data Service control creation.

At runtime, the ADO.NET-enabled Data Service control uses the wrapper classes to provide the
ADO.NET client with the appropriate objects. The specifics vary, depending on the type of function or
procedure:

o Functions. The Data Service control wraps a query result using the typed DataSet schema, adds
the DataSet schema type to the result, and returns to the client.

e Procedures. A AquaLogic Data Services Platform procedure can return an SDO; another data
type; or nothing (void). The Data Service control uses the wrapper classes as required, but only
if required.

o Submitting changes. The Data Service control transforms an ADO.NET DataSet DiffGram to an
SDO ChangeSummary, and then submits it to SDO Mediator. All submit methods take the
corresponding wrapper classes as arguments.

Client Application Developer's Guide 9-5

Supporting ADO.NET Clients

9-6

As mentioned previously, mapping, transformation, and packaging processes are transparent to client
application developers and data services developers. Only the items listed in Table 9-4 are exposed to

data service developers.

Table 9-4 Data Services Platform—Java and ADO.NET-Enabled Artifacts

Name Example Description

Data Service Customer.ds An XQuery file that instantiates read
functions, navigation functions, procedures,
and update functionality at runtime.

Data Service Schema Customer.xsd The schema associated with the return type
of the original data service.

DataSet Schema CustomerDataSet.xsd The typed DataSet schema that conforms to
Microsoft requirements for ADO.NET data
objects.

Data Service Control Customer.jcx An ADO.NET-enabled data service control.

Web Service Source Customer.jws A Java Web service that can intercept

ADO.NET data objects and pass them to an
ADO.NET-enabled Data Service control.

<DSControlName>_schema Customer_schema

An automatically created folder for
containing generated typed DataSet XSDs.

Web Service Definition CustomerNET.wsdl

Generated WSDL that conforms to the
ADO.NET typed DataSet schema.

Supporting Java Clients

The WSDL generated by the WebLogic Server from an ADO.NET-enabled Data Service control is
specific for use by Microsoft ADO.NET clients. Exposing data services as Web services that are usable

Client Application Developer's Guide

Enabling Aqualogic Data Services Platform Support for ADO.NET Clients

by Java clients is generally the same, although the actual steps (and the generated artifacts) are
specific to Java. The steps are summarized in Table 9-5.

Table 9-5 Summary of Steps for Supporting Regular Clients

Task For more information...

Generate Data Service Control (regular, not “Creating Data Service Controls” on page 7-7

ADO.NET-enabled)

Generate Web service file (JWS) “Server-Side AquaLogic Data Services
Platform-Enabled Web Service Development” on
page 4-4

Generate WSDL “Server-Side AquaLogic Data Services
Platform-Enabled Web Service Development” on
page 4-4

Enabling Aqualogic Data Services Platform Support for
ADO.NET Clients

The process of providing ADO.NET clients with access to data services is a server-side operation that
takes place in the context of an application and WebLogic Workshop.

The instructions in this section assume that you have created a data service application and that you
want to provide access to the functions of the service to ADO.NET client applications. (For
information about designing and developing data services, see the Data Services Developer’s Guide.)

Enabling a AquaLogic Data Services Platform application to support ADO.NET clients is generally a
three-step process:

o (Creating an ADO.NET-Enabled Data Service Control
o Generating a Web Service for ADO.NET Clients
o Generating an ADO.NET-Enabled WSDL

The tasks described in the remaining sections assume that a data services application is open in
WebLogic Workshop.

Client Application Developer's Guide 9-7

Supporting ADO.NET Clients

9-8

Creating a New Web Service Project

Since the ADO.NET support is accomplished through the use of Data Service controls, and since the
Data Service controls require being exposed as Web services in order to make them network
accessible, the first step is to create a Web service project and the folder structure necessary to hold
generated components.

In the data service application that you want to ADO.NET-enable, create a new Web service project
specifically for the ADO.NET-enabling components of the application (see Figure 9-6).

Note: Be sure to give the Web service project a meaningful name; the name will be used during the
generation of several artifacts, including the name of the Data Service control.

Figure 9-6 Folder Structure for ADO.NET-Enabled Project Components

23 RTLSelfService
=23 Controls
[}-Z9 SelfServeCustomer_schema
|<—j CUSTOMER _PROFILEDataSet, xsd
Q SelfServeCustomer.jcx
¢1§ SelfServeCustomer.jws
E SelfServeCustomerNET wsdl

Creating an ADU.NET—EnahIed Data Service Control

Data Service controls can be ADO.NET-enabled simply by selecting the appropriate checkbox during
the creation process. The ADO.NET-Enabled Data Service controls created (as described in this
section) are designed exclusively to support ADO.NET clients through a Web services interface: such
controls cannot be used in Page Flows, Portals, or other development scenarios.

Starting from the Web service project folder, here are the general steps:

1. Create a folder in your project for the Data Service control by selecting a folder and right-clicking
on that folder. (Java controls must be contained inside a folder within a project—they cannot
reside at the top level of the project.)

2. Right-click on the folder in the project to display the popup menu, and then select New — Java
Control. The New Java Control dialog displays.

3. Select Data Services Platform from the New Java Control dialog. Enter a filename for the control
(JCX) file and click Next. The New Java Control - Data Service dialog displays.

4. Enter the connection information for the WebLogic Server that hosts the Data Services Platform
application.

Client Application Developer's Guide

Enabling Aqualogic Data Services Platform Support for ADO.NET Clients

— For a local server, the Data Service control uses the connection information stored in the
application properties.

— For a remote server, you must select Remote and then provide the server URL, user name,
and password.

5. (Click Create to continue. The Select Data Service Functions dialog displays. Note the
ADO.NET-Enable checkbox in the upper-left-hand corner of the dialog, shown in Figure 9-7.

Figure 9-7 Select Data Service Functions Dialog

¥ Select Data Service Functions %]

.Met Enabled

Select one or more functions to add ta the contral,
[ApplPraduct.ds =] getCustomer
) Case.ds
[T Caseview.ds
(C) CreditCard.ds
(C Customer ds
[Z1) Customerview.ds
=) ElecCrder.ds
getCustomeri)
% getElecOrderByOrdID)
-B getElecOrdersByCustIDl) -
J submitArrayOFElecOrderd)
[C) ElecCrderDetailview.ds
[C) ElecProduct.ds
[C1) ©rderDetailview.ds
[C1) ©rderSummaryview.ds =

[| b

6. Click the ADO.NET-enabled box and then select one or more functions or procedures to use in the
ADO.NET-enabled data service control.

Note: Due to a Microsoft limitation, the functions and procedures that you add to your Data
Service control must belong to the same namespace.

7. Click Next to continue. A Control generation detailed configuration page displays, showing the
functions select on the previous page. On this page, you can select the functions (if any) that
should include a filter or an attribute.

— Add afilter to the JCX method (For more information about filters, see “Filtering, Sorting,
and Fine-tuning Query Results” on page 11-15.)

— Add an attribute to the method.

8. Click Finish to complete the process.

Client Application Developer's Guide 9-9

Supporting ADO.NET Clients

9-10

As the ADO.NET-enabled Data Service control file is being generated, a folder is also created inside
the controls folder, and a Microsoft-style XML schema definition file (XSD) is generated and placed
inside the folder. The generated folder follows this simple naming convention:

<Data Service control name> schema

The schema file created in the <Data Service control name>_schema folder is a combination of the
Data Service control name and "DataSet;" for example, CustomerDataSet.xsd. (See Table 9-4 for other
relevant naming conventions.) The XML schema file contains method calls for all selected functions
and procedures.

As the XSD is created, you may see a Message box display briefly in WebLogic Workshop, notifying you
that you have added one or more XSD files to a non-Schema project. Such a message can be
disregarded; it is raised because the Microsoft ADO.NET style XSD is not the same as other data
service XSD files.

Note: For more information about Data Service controls, see “Creating Data Service Controls” on
page 7-7.

Java controls are not network-addressable unless wrapped as Web services. Invoking a Java Control
of any kind, including a Data Service control from outside the application, requires that it be exposed
as a Web service or as another Web-based application, such as a JSP (JavaServer Page).

Note: Deleting a JCX does not cause the deletion of any associated schema (XSD) files. Instead if
you need to remove these files from your system, do so manually.

Generating a Web Service for ADO.NET Clients

After the ADO.NET-enabled Data Service control has been generated, it is used as the basis for
generating a Java Web service file (JWS), as follows:

1. Right-click on the Data Service control.

2. Select Generate Test JWS File (Stateless) from the pop-up menu. (ADO.NET client support is
limited to stateless Web services.)

Shortly, the JWS is generated; you will see it displayed as a node under the Data Service control. From
this JWS you can now generate the companion WSDL (Web Services Description Language) file that
will be used by Web service client-application developers.

Note: After the Java Web service (JWS) file has been generated, it can be deployed in the usual
manner. See the Web services page on BEA’s documentation site for more information:

http://e-docs.bea.com/wls/docs81l/webservices.html

Client Application Developer's Guide

Enabling Aqualogic Data Services Platform Support for ADO.NET Clients

Generating an ADO.NET-Enabled WSDL

To generate the companion WSDL (Web Services Description Language) file from the JWS that can
be used by Web service clients to invoke operations on the ADO.NET-enabled Web service:

1. Right-click on the JWS file created in “Generating a Web Service for ADO.NET Clients.”
2. Select Generate ADO.NET Enabled WSDL File from the pop-up menu.

In a moment, the WSDL is generated; you will see it displayed as a node under the JWS file.

Figure 9-8 Generated WSDL in WebLogic Workshop

SelfServeCustomerhET . wsdl - {RTLSelfServiceHControls)

<7xnl version="1.0" encoding="UTF-5"2> -
al-- -
<definitions targetNamespace="htep://wim. opemuri.org/” fulns="htop://schenas.xulsoap. org/msdl /" xnlns: conv="hrr
<import namespace="urn:retailerType” location="SelfServeCustomer_schena/CUSTOMER_FROFILEDataSet.xsd”/>
<rypes:
<s:schema elementFormDefault="qualified” targetNamespace="http://mnr.openuri.org/™ xmlns:s="http: /.
<s:element name="starcTestDrive™>
<s:complexTyper
<5:semuence/>
< /a1 compLexTypes
</srelements
<s:element name="starcTestDriveResponse”>
<s:complexTyper
<5:semuence/>
< /a1 compLexTypes
</srelements
«<s:element name="finishTesthrive">
<s:complexTyper
<5:semuence/>
< /a1 compLexTypes
</srelements
«<s:element name="finishTesthriveResponse
<s:complexTyper
<5:semuence/>
< /a1 compLexTypes
</srelements
<s:element name="getustomer'>
<s:complexTyper
<5:semuence/>
< /a1 compLexTypes
</srelements
<s:element name="getCustomerResponse™>
<s:complexTyper
EERELE S

<s:element nane="getfustomerResult” type="ope:CUSTOMER_PROFILEDataSetirapper” mindccurs
</81sequence>
< /a1 compLexTypes
</srelements
«<s:element name="CUSTOMER_PROFILEDataSetWrapper” nillahle="true” type="ope:CUSTOMER_PROFILEDataSetl]
<s:complexType name="CUSTOMER_PROFILEDataSetirapper™>
<5:semueEnce>
<5:any namespace="urn:retailerType” />
</81sequence>
< /a1 compLexTypes
</&8:schemas
<s:schema elementFormDefault="qualified” targetNamespace="http://wmnr.openuri.orgs2002/04/s0ap/conversar
«<s:element name="StartHeader” type="conv:StartHeader"” />

] b

o See “Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients” on
page 9-17 for information about the format of the WSDL.

Note: The building of RPC-style Web services on top of AquaLogic Data Services Platform controls
is not supported. For this reason RPC-style Web services built on cannot be created from
ADO.NET clients utilizing AquaLogic Data Services Platform.

Client Application Developer's Guide 9-11

Supporting ADO.NET Clients

The WSDL should be made available to ADO.NET developers directly (for example, by sending the
physical file to them). Developers can also obtain the WSDL from the BEA WebLogic Server’s home

page.

Adapting Aqualogic Data Services Platform XML Types
(Schemas) for ADO.NET Clients

9-12

Fundamentally, Microsoft’s ADO.NET DataSet is designed to provide data access to a data source that
is — or appears very much like — a database table (columns and rows). Although, later adapted for
consumption of Web services, ADO.NET imposes many design restrictions on the Web service data
source schemas.

Due to these restrictions, Data Services Platform XML types (also called schemas or XSD files) that
work fine with data services may not be acceptable to ADO.NET's DataSet.

This section explains how you can prepare XML types for consumption by ADO.NET clients. It covers
both read and update from the ADO.NET client side to the AquaLogic Data Services Platform server,
specifically explaining how to:

e Read a AquaLogic Data Services Platform query result as a ADO.NET DataSet via SDO (since
query results are presented as SDO DataObjects within AquaLogic Data Services Platform).

o Update AquaLogic Data Services Platform data sources using an ADO.NET DataSet's diffgram
that is mapped to a SDO ChangeSummary.

Note: See the Data Services Developer’s Guide for detailed information related to creating and
working with XML types.

Approaches to Adapting XML Types for ADO.NET

There are several approaches to adapting XML types for use with an ADO.NET DataSet:

o Develop ADO.NET-compatible data services above the physical data service layer. You can
develop data services on top of physical data sources that are specifically intended to be
consumed by ADO.NET clients. (Details are described in “XML Type Requirements for Working
With ADO.NET DataSets” on page 9-13)

Note: Any ADO.NET-compatible data service XML types can be consumed by non-ADO.NET
clients.

Client Application Developer's Guide

../datasrvc/index.html

Adapting Aqualogic Data Services Platform XML Types (Schemas) for ADO.NET Clients

o Develop ADO.NET-compatible data services above a logical data service layer. If existing
logical data services that are not ADO.NET-compatible must be reused, you can build an
additional layer of ADO.NET-compatible data services on top of the logical data services.

Note: This approach may increase the likelihood of having to work with inverse functions and
custom updates. (The usage of inverse functions is described in the Best Practices and
Advanced Topics chapter of the Building Queries and Data Views.)

XML Type Requirements for Working With ADO.NET DataSets

The following guidelines are provided to help you develop ADO.NET DataSet-compatible XML types
(schemas) by providing pattern requirements for various data service artifacts.

Requirements for Complex Types
Requirements for supporting a complex type in an ADO.NET DataSet include:

e Defining the entire XML type in a single schema definition file. This means not using include,
import, or redefine statements.

e Define one global element in the XML type and all other complex types as anonymous complex
types within that element. Define one global element in the schema and define all other
complex types as anonymous complex types within the element. Do not define any of the
following:

— global attribute
— global attributeGroup
— global simple type

o Be sure that the name of an element in the anonymous complex type is unique within the
entire schema definition.

Note: The name of an element of simple type need not be unique, unless the occurrence of the
element is unbounded.

Requirements for Recurring References

Since ADO.NET does not support true recurring references among complex types, the requirements
noted in Requirements for Complex Types should be followed when simulating schema definitions
utilizing such constructs as:

e Nested complex types

e Recurring references among complex types

Client Application Developer's Guide 9-13

../datasrvc/bestpractices.html
../datasrvc/bestpractices.html

Supporting ADO.NET Clients

e Multiple references from different complex type to a single complex type

As an example, if an address complex type has been referenced by both Company and Department,
there should be two element definitions, CompanyAddress and DepartmentAddress, each with an
anonymous complex type. The following code illustrates this:

<xsd:schema targetNamespace="urn:company.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="Company">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="CompanyAddress">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Department">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="DepartmentAddress">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Requirements for Simple Types
Requirements for supporting simple types in an ADO.NET DataSet include:
e Use xs:dateTime type in the XML type rather than xs:date, or xs:time, or any gXXX type, such as
gMonth, etc. (If a physical date source uses gXXX type, you should rely on the use of an inverse

function to handle the type for update. For gXXX types, you should rely on the use of a
AquaLogic Data Services Platform update override function to handle the update.)

9-14 Client Application Developer's Guide

Generated Artifacts Reference

Note: The usage of inverse functions is described in the Best Practices and Advanced Topics
chapter of the Building Queries and Data Views.

e Base64Binary type should be used, rather than hexBinary type.

o Avoid using List or Union type.

o Avoid using xs:token type.

o Avoid defining default values in your XML type.

o The length constraining facet for 'String' should not be used.
Requirements for Target Namespace and Namespace Qualification
Requirements for using target namespaces and namespace qualification include:

o Your XML type must have a target namespace defined. Everything in the type should be under a
single namespace.

o Set the elementFormDefault and attributeFormDefault to unqualified for the entire XML type.
(As these are the default setting of a schema document, you can generally leave these two
attributes of xs:schema unspecified.)

References

Further information regarding XML schemas can be found at:

http://www.w3.0rg/TR/xmlschema-0

Generated Artifacts Reference

The process of creating a ADO.NET-enabled Data Service control and Web service generates two
ADO.NET-specific artifacts:

o XML Schema Definition for ADO.NET Typed DataSet
o Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients

Technical specifications for these artifacts are included in this section.

XML Schema Definition for ADO.NET Typed DataSet

During the process of creating a ADO.NET-enabled data service control, WebLogic Workshop
generates a special schema file that conforms to Microsoft’s specifications for typed DataSet objects.

Client Application Developer's Guide 9-15

../datasrvc/bestpractices.html
http://www.w3.org/TR/xmlschema-0

Supporting ADO.NET Clients

9-16

A schema is generated for each data service query that has been selected for inclusion in the
ADO.NET-enabled data service control. These schema files take the name of the source schema’s root
element.

In the generated schema, the root element has the IsDataSet attribute (qualified with the Microsoft
namespace alias, msdata) set to True, as in:
msdata:IsDataSet="true"

In keeping with Microsoft’s requirements for ADO.NET artifacts, the generated target schema of the
data service and all schemas on which it depends are contained in the same file as the schema of the
typed DataSet. As you select functions to add to the control, WebLogic Workshop obtains the
associated schemas and copies the content into the schema file.

In addition, the generated schema includes:

o A reference to the Microsoft-specific namespace definition, as follows:
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

e Namespace declaration for the original target schema (the schema associated with the
AquaLogic Data Services Platform data service)

Listing 9-1 shows an excerpt of a schema—customerDs . xsd—for a typed DataSet generated from
a AquaLogic Data Services Platform Customer schema.

Listing 9-1 Example of a Typed DataSet (ADO.NET) Schema

<xs:schema xmlns:mstns="http://temp.openuri.org/schemas/Customer.xsd"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns="http://temp.openuri.org/schemas/Customer.xsd"
targetNamespace="http://temp.openuri.org/schemas/Customer.xsd"
id="CustomerDS" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element msdata:IsDataSet="true" name="CustomerDS">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element ref="CUSTOMER"/>
</xs:choice>
</xs:complexType>

</xs:element>

Client Application Developer's Guide

Generated Artifacts Reference

<xs:element name="CUSTOMER">

</xs:element>

</xs:schema>

Web Services Description Language (WSDL) File for
Microsoft ADO.NET Clients

The process of generating the Java Web service produces a WSDL for the client-side application
development. The WSDL file contains import statements that correspond to each typed DataSet. Each
of the import statements is qualified with the namespace of its associated DataSet schema, as in this
example:

<import namespace="http://temp.openuri.org/schemas/Customer.xsd"
location="LDTestl1NET/CustomerDataSet.xsd"/>

In addition, the WSDL includes the ADO.NET compliant wrapper type definitions. The wrappers’ type
definitions comprise complex types that contain sequences of any type element from the same
namespace as the typed DataSet, as in:

<s:complexType name="CustomerDataSetWrapper">
<s:sequence>
<s:any namespace="http://temp.openuri.org/schemas/Customer.xsd"/>
</s:sequence>
</s:complexType>

Client Application Developer's Guide 9-17

Supporting ADO.NET Clients

9-18 Client Application Developer's Guide

CHAPTERm

Using Worktlow with AquaLogic Data
Services Platform-Based Applications

BEA’s WebLogic Integration server provides WebLogic Platform components with business-process
management (BPM) capabilities. A business process coordinates interaction among various resources
to perform a complete set of specific tasks. WebLogic Integration business processes are designed
using visual components available, such as Process controls, in WebLogic Workshop.

By bringing WebLogic Integration and BEA AquaLogic Data Services Platform together, developers
can achieve sophisticated programming scenarios that might otherwise be difficult, at best.

For example, a WebLogic Integration process (JPD) can be defined that encompasses multiple
AquaLogic Data Services Platform data services, and that uses the JPD to enforce distributed
transactional semantics without using XA and to reduce the number of locks held on disparate data
sources (such as Web services or other non-XA-compliant data sources) that might not otherwise be
able to participate in the same transaction. In other words JPD is used to achieve atomicity over
disparate data sources (see Figure 10-1).

Note: The invocation of JPDs from Data Services Platform is described in the Handling Updates
Through Data Services chapter of the Building Queries and Data Views.

Brief Overview of WebLogic Integration JPDs

Much of the underlying Java code for the Process (defined in a Java class, as a Java Process Definition,
or JPD) is generated or created automatically. Processes coordinate interactions among resources by
means of Java controls (Java Control Extensions, or JCX) that are specific to these process definitions.
Using WebLogic Workshop, developers can add various components, including Data Service controls,
and customize behavior in the business process, as needed, to accomplish the specifics of the
workflow.

Client Application Developer’s Guide 10-1

../datasrvc/server_side_update.html
../datasrvc/server_side_update.html

Using Workflow with Aqualogic Data Services Platform-Based Applications

10-2

Figure 10-1 Using WLI JPD with AquaLogic Data Services Platform to Provide Distributed, Two-Phase
Commit Capability to Data Service

updateCustomer

Address.jpd

(.
Modify customer Modify customer
address in address in CREDIT
CUSTOM_ER data CARD data service
service

CREDIT
CARD Data
Service

CUSTOMER
Data Service

submit() myCustomProcessingLogic
implements UpdateOverride {

public void
performChange(DataGragh dg) {
Relational do stuff
Data submit()
}
CUSTOMER
CreditRating
NAME DATATYPE NULLABLE? updateAddress(
CUSTOMER_ID | WARCHAR NO intin cust_id)
FIRST _NAME WARCHAR NO
LAST NAME WVARCHAR NO
BIRTH_DAY TIMESTAMP KO
ADDRESS VARCHAR NO
ADDRESS2 WARCHAR YES
STATE WARCHAR NO
ZIP_CODE INTEGER NO

WebLogic Workshop leverages the Java Extension Control (or simply, controls) mechanism to simplify
working with J2EE resources.

A Java Control is an abstraction layer that simplifies working with J2EE resources in WebLogic
Workshop.

Controls provide a runtime behavior for accessing functionality and resources using Java classes.
WebLogic Workshop provides Controls for numerous WebLogic and AquaLogic components, including
Data Service controls for AquaLogic Data Services Platform and Process controls for WebLogic
Integration.

WLI Process controls enable Web services, business processes, or pageflows to send requests to, and
receive callbacks from, a business process (JPD).

Client Application Developer's Guide

Adding a Data Service Control to a Process

See “Accessing Data Services from WebLogic Workshop Applications” on page 7-1 for more
information about Data Service controls.

For more information about WebLogic Integration, process controls, and business-process
management in general, see the WebLogic Integration documentation page at:

http://e-docs.bea.com/wli/docs85/index.html

AquaLogic Data Services Platform and JPD can be integrated in two different ways:

e By adding Data Service controls to JPD projects you can leverage AquaLogic Data Services
Platform-enabled application information as part of a workflow.

e By invoking JPDs from AquaLogic Data Services Platform-enabled applications. (See the
Handling Updates Through Data Services chapter of the Building Queries and Data Views for
details.)

Once the JPD is created, it can be called from a data service instance using the JpdService API, a
server-side Mediator API that can be invoked in an update override.

How SDO’s Handling of XMLObjects Differs from JPD

By default, a JPD converts XML objects to an XML proxy class; the class implements the ProcessXML
interface. The ProcessXML interface does not know how to handle SDO objects, such as change
summaries.

You must override the default behavior in the JPD by editing the source code.

Adding a Data Service Control to a Process

You can use Data Services Platform in WebLogic Integration (WLI) business process applications
through a Data Service control. For example, you might add AquaLogic Data Services Platform-based
information to decision-making logic in the business process.

There are three basic steps to adding Data Services Platform queries to WebLogic Integration
business processes:

o (Creating a Data Service Control
e Adding a Data Service Control to a JPD File

o Setting Up the Data Service Control in the Business Process

Client Application Developer's Guide 10-3

http://e-docs.bea.com/wli/docs85/index.html
../datasrvc/server_side_update.html

Using Workflow with Aqualogic Data Services Platform-Based Applications

10-4

Creating a Data Service Control

Before you can execute a Data Services Platform query from a WLI business process, you must create
a Data Service control that accesses the query or queries you want to run in your business process.

See “Accessing Data Services from WebLogic Workshop Applications” on page 7-1 for more
information about creating Data Service controls.

In WebLogic Workshop:
1. Create a Process application.

2. Create a Data Services project in the Process application. In the Data Services project, import the
existing Data Service projects that you want to incorporate into the JPD.

3. Create a Data Service control, adding the functions you want to use from the data services to the
control.

4, When the process is defined, you can then generate a Process control from the JPD, from within
WebLogic Workshop (right-mouse click on the Design view of the JPD and select Generate Process
control from the popup menu).

5. The control is generated.

For complete details, see “Data Service Controls Defined” on page 7-2.

Adding a Data Service Control to a JPD File

Once you have created a Data Service control, you can add it to a business process the same way you
add any other control to a business process. For example, you can drag and drop the control into the
WebLogic Integration business process in the place where you want to run your Data Services Platform
query or you can add the Data Service control to the WebLogic Workshop Data Palette.

The Data Service controls must be created in the same project as the JPD.

Client Application Developer's Guide

Adding a Data Service Control to a Process

Figure 10-2 Creating a Data Service Control

Ingert Control - Data Service %]

STEP 1 Yariable name For this contral: | custAddressDb |

STEP 2 Iwould ke to

(#) Use a Data Service control already defined by a 13 file

I file: dscontrolsfCustomerDemographicsDSCEl, jox | | Browse, ..

() Create a new Data Service control to use,

[] Make this a contral Factary that can create multiple instances at runtime

Setting Up the Data Service Control in the Business Process

Once the Data Service control has been added to the business process, its functions are available. As
shown in Figure 10-3, you must select the query in the General Settings section of the Data Service
control portion of the business process, specify input parameters for the query in the Send Data
section, and specify the output of the query in the Receive Data section.

Client Application Developer's Guide 10-5

Using Workflow with Aqualogic Data Services Platform-Based Applications

Figure 10-3 Specifying in the Business Process Input and Output Parameters for a Data Service Control

changeaddress

Select a control instance and a target method,

. r Controlt | cystaddressiws | - |

(4 General Settings pzthod; 2 ChangeaddressResponseDocument changedddress(Ch

Send Data 2 ChangeaddressResponseDocument changedddressiwit

Receive Data

-

Help.
Yiew Code [«] lI‘
\.

Figure 10-4 shows the WebLogic Workshop rendering of a business process accessing a Data Service

Control.
Figure 10-4 WebLogic Integration Business Process Accessing a Data Service Control

®®

Transy_UpdateCustaddress

B-e®

Client Request

|

CUSTOMER_DEMOGRAPHICS

sl

changeAddress

Finish

10-6 Client Application Developer's Guide

Adding a Data Service Control to a Process

Submitting Changes from a Business Process

By default, a business process (Java process definition, or JPD) converts XML objects to an XML proxy
class by implementing the ProcessXML interface. However, ProcessXML is not completely compatible
with SDO. In particular, it does not accommodate SDO specific features such as change summaries.
As a result, the default XML processing performed in a business process must be overridden.

You can override the business process by performing the following steps in the workflow:

1. Inthe JPD you need to turn off default ProcessXML deserialization and enable XMLBean
serialization on the XML object factory by calling the XmlObjectVariableFactory.setXBean().

2. Inthe JPD you need to disable the XMLBean serialization and turn on the default ProcessXML
deserialization on the XML object by calling XmlObjectVariableFactory.unset().

3. Invoke the Data Service control.

Updating Multiple Data Services Using Workflows

Once created, custom update classes can be used to create workflows that manage updates to multiple
data services. For information on invoking a JPD from an update override class see "Invoking JPDs
from Data Services Platform" in the Handling Updates Through Data Services chapter of Data
Services Developer’s Guide.

Client Application Developer's Guide 10-7

../datasrvc/server_side_update.html

Using Workflow with Aqualogic Data Services Platform-Based Applications

10-8 Client Application Developer's Guide

Advanced Topics

This chapter describes miscellaneous features related to client programming with BEA AquaLogic
Data Services Platform. It covers the following topics:

o Accessing Metadata Using Catalog Services
e Filtering, Sorting, and Fine-tuning Query Results

e Handling Large Result Sets with Streaming APIs

Accessing Metadata Using Catalog Services

BEA AquaLogic Data Services Platform maintains metadata about data services, application,
functions, schemas through Catalog Services, which is a system catalog-type data service. Catalog
services provide a convenient way for client-application developers to programmatically obtain
information about any AquaLogic Data Services Platform application, data services, schemas,
functions, and relationships. Catalog Services are also data services, therefore, you can view them
using the AquaLogic Data Services Console, AquaLogic Data Services Platform Palette, and Data
Service controls.

Some advantages of using Catalog Services are as follows:

e (lient application developers can use the Catalog Services in the same way as they use any
other data service in AquaLogic Data Services Platform.

e Application developers can create dynamic applications based on the metadata underlying the
data service applications that have been deployed.

Client Application Developer’s Guide 111

Advanced Topics

11-2

o For enterprise, third-party, and other developers, Catalog Services leverage the development of
dynamic, metadata driven query-by-form (QBF) applications.

e (atalog Services enable interoperability with other metadata repositories.

This section provides details about installing and using Catalog Services to access metadata for any
AquaLogic Data Services Platform application. It includes the following topics:

o Installing Catalog Services

e Using Catalog Services

Installing Catalog Services

You can install Catalog Services as a project for an AquaLogic Data Services Platform application or
as a JAR file that is added to the Library folder in WebLogic Workshop. The Catalog Services project
(_catalogservices) contains data services that provide information about the application, folders, data
services, functions, schemas, and relationships available with the application.

DataServiceRef and SchemaRef are additional data services, which consist of functions that retrieve
the paths to the data services and schemas available with the AquaLogic Data Services Platform
application. For more information about the data services and functions available with Catalog
Services, refer to “Using Catalog Services” on page 11-3.

To install Catalog Services as a project:
1. Right-click the AquaLogic Data Services Platform application in WebLogic Workshop.

2. Select the Install Catalog Services (Expanded) option if you want to use the catalog services for
development, as shown in Figure 11-1. Ifyou need catalog services only during runtime then select
Install Catalog Services (Jar) option.

Figure 11-1 Installing Catalog Services

|| Application x|

3 AnotherSampl ‘ |
ﬁj anothersa @ Find in Files. .
£ Modules

[13
[C) Libraries
[Security Ry
Build Application
Clean Application Install Catalog Services (Jar)
Deployment » Update Portal Libraries
Portal
Import Project. .. .
Commerce Services
Build SDO Mediator Clisnt Pipeline Services
Broperties Controls »

Client Application Developer's Guide

Accessing Metadata Using Catalog Services

Using Catalog Services

After installing Catalog Services, the catalog services project, _catalogservices, is created for the
AquaLogic Data Services Platform application. All the data services associated with catalog services
are available under this project. You can invoke the data service functions to access metadata. The
client Mediator API is used to invoke the Catalog Service methods.

The data services available under _catalogservices include:
e Application (application.ds)
e DataServiceRef (DataServiceRef.ds)
o DataServiceRef (DataServiceRef.ds)
e Folder (folder.ds)
e Function (Function.ds)
o Relationship (Relationship.ds)
e Schema (Schema.ds)

e SchemaRef (SchemaRef.ds)

Note: To use data service functions available with Catalog services, refer to the code samples
available at:

http://dev2dev.bea.com/wiki/pub/CodeShare/Samplel/catalogsrv_output
.zip

Application (application.ds)

The following table provides the declaration and description for the getApplication () function in
Application.ds.

Table 11-2 Functions in Application.ds

Function Declaration Description

getApplication() as This function returns the name of the AquaLogic Data

schema-element (tl:Application) external; Services Platform application. It does not take any
parameters.

Client Application Developer's Guide 1-3

http://dev2dev.bea.com/wiki/pub/CodeShare/Sample1/catalogsrv_output.zip

Advanced Topics

DataService (DataService.ds)

Table 11-3 provides declaration and description information for the functions available in

DataService.ds.

Table 11-3 Functions in DataService.ds

Function Description Sample Input
Declaration
getDataService This function returns the <urn:DataService kind="javaFunction"

Ref ($Sarg as
element (md:Dat
aService)) as
element (md:Dat
aServiceRef)
{$arg/md:DataSsS
erviceRef}

path of the data service
associated with the
function.

For this function, you need
to specify the following:

e Path of the data service

e Path of the schema for
the data service

e Function ID of the
function for which you
need the data service
reference

xmlns:acc="1d:RTLAppDataServices/Custome
rDB/Customer"
xmlns:urn="urn:metadata.ld.bea.com">

<urn:DataServiceRef>
<id>1ld:RTLAppDataServices/CustomerDB/Cus
tomer.ds</id>

</urn:DataServiceRef>

<returnType name="CUSTOMER" kind="read"
quantifier="*"
schemaId="1d:RTLAppDataServices/Customer
DB/schemas/CUSTOMER. xsd" />
<!--Zero or more repetitions:-->

<key>
<!--1 or more repetitions:-->
<path>1d:RTLAppDataServices/CustomerDB/C
ustomer.ds</path>
</key>

<!--Zero or more repetitions:-->

<urn:FunctionId name="CUSTOMER"
arity="0"/>
</urn:DataService>

getDataService
(S$x1 as
element (tl:Dat
aServiceRef))
as
schema-element
(tl:DataServic
e)? external

This function returns the
attributes of the specified
data service such as the
schema path, functions, and
relational data source.

Specify the path of the data
service to retrieve the
required result.

<DataServiceRef
xmlns="urn:metadata.ld.bea.com">
<id

xmlns="">1ld:DataServices/CustomerDB/CUST
OMER.ds</id>

</DataServiceRef>

11-4

Client Application Developer's Guide

Accessing Metadata Using Catalog Services

DataServiceRef (DataServiceRef.ds)

The following table provides the declaration and description for the functions available in

DataServiceRef.ds.

Table 11-4 Functions in DataService

Function Declaration

Description

Sample Input

getDataServiceRefsByFold
er ($x1 as xsd:string, $x2
as xsd:boolean) as
schema-element (tl:DataSe
rviceRef) * external

This function returns the data
services that exist within a folder
in the project. You need to specify
the path of the project folder and
set the boolean value to true for
this function.

String parameter =
1d:RTLAppDataServices/Cust
omerDB/

Boolean = true

getDataServiceRefs () as
schema-element (tl:DataSe
rviceRef) * external

This function returns the path to
all the data services in the project.
It does not require any
parameters.

No input required.

getDependents ($x1 as
element (tl:DataServiceRe
f), $x2 as xsd:boolean)
as

schema-element (tl:DataSe
rvicRef) * external

This function returns the path of
the data services on which the
specified data service depends.

For this function, you need to
specify the path of the data service
whose dependents you need to
determine. For example, if you
need to find out the dependents
for CUSTOMER.ds then specify the
path of the data service as:

ld:DataServices/Custom
erDB/CUSTOMER.ds

<urn:DataServiceRefdat
xmlns:urn="urn:metadata.ld
.bea.com">
<id>ld:DataServices/Custom
erDB/CUSTOMER.ds</id>

</urn:DataServiceRef>

getDependencies ($x1 as
element (tl:DataServiceRe
f), $x2 as xsd:boolean)
as

schema-element (tl:DataSe
rviceRef) * external

This function returns the
dependencies for the specified
data service.

For this function, you need to
specify the path of the data service
whose dependencies you need to
determine.

<urn:DataServiceRef
xmlns:urn="urn:metadata.ld
.bea.com">
<id>ld:DataServices/Demo/C
ustomerProfile.ds</id>

</urn:DataServiceRef>

Client Application Developer's Guide

11-5

Advanced Topics

Tahle 11-4 Functions in DataService

Function Declaration

Description

Sample Input

getFunctions ($x1 as
element (tl:DataServiceRe
f)) as

schema-element (tl:Functi
on)* external

This function returns the list of

data service functions and their
attributes such as function kind,
arity, and schema path.

For this function, specify the path
of the data service as input.

<DataServiceRef
xmlns="urn:metadata.ld.bea
.com">

<id
xmlns="">1d:RTLAppDataServ
ices/CustomerDB/CUSTOMER.d
s</id>

</DataServiceRef>

getRelationships ($x1 as

element (tl:DataServiceRe
f)) as

schema-element (tl:Relati
onship) * external

This function retrieves the path of
data services which have any
relationship with the specified
data service. You need to specify
the path of the data service, such
as
1d:RTLAppDataServices/
CustomerDB/CUSTOMER. ds

DataServiceRef
xmlns="urn:metadata.ld.bea
.com">

<id
xmlns="">1d:RTLAppDataServ
ices/CustomerDB/CUSTOMER.d
s</id>

</DataServiceRef>

getSchemaRefs ($arg as
element (tl:DataServiceRe
f), Stransitive as
xs:boolean) as

element (tl:SchemaRef) *
external

For this function, enter the path of
the data service and set the
boolean value to true for retrieving
the list of associated schemas. This
function also lists the paths of
schemas for data services, which
have a relationship with the
specified data service.

<urn:DataServiceRef
xmlns:urn="urn:metadata.ld
.bea.com">
<id>1ld:RTLAppDataServices/
CustomerDB/CUSTOMER.ds</id
>

</urn:DataServiceRef>

Enter true as the boolean
parameter.

getDataService ($x1 as
element (tl:DataServiceRe
f)) as

schema-element (tl:DataSe
rvice)? external

This function returns the
attributes of the specified data
service such as the schema path,
functions, and relational data
source.

Specify the path of the data service
to retrieve the required result.

<urn:DataServiceRef
xmlns:urn="urn:metadata.ld
.bea.com">

<id
xmlns="">1d:RTLAppDataServ
ices/CustomerDB/CUSTOMER.d
s</id>
</urn:DataServiceRef>

11-6

Client Application Developer's Guide

Folder (folder.ds)

Accessing Metadata Using Catalog Services

The following table provides the declaration and description for the functions available in Folder.ds.

Table 11-5 Functions in Folder.ds

Function Declaration

Description

Sample Input

getFolder () as
schema-element (tl:Fol
der)* external

This function provides a list of
paths of folders and data
services that exist within the
AquaLogic Data Services
Platform project. It does not
require any parameters.

No input required.

getFolder ($x1 as
xsd:string, $x2 as
xsd:boolean) as
schema-element (tl:Fol
der)* external

This folder returns the paths of
all the data services that exists
within a specified folder. You

need to specify two parameters

for this function, which include:

e Path of the folder such as
1d:RTLAppDataServi
ces/CustomerDB

e Boolean value (usually set
to true)

e Parameter 1 (string) =
1d:RTLAppDataServices/Custo
merDB

e Parameter 2 (boolean) = true

getDataServiceRefs ($x
1 as

element (tl:Folder))
as

schema-element (tl:Dat
aServiceRef) *
external

This function also provides the
paths of the data services that
exist within a folder. To retrieve
this information, specify the
path of the folder as input.

<Folder
xmlns="urn:metadata.ld.bea.com
">

<id
xmlns="">1d:RTLAppDataServices
/CustomerDB</id>

</Folder>

Client Application Developer's Guide 1-1

Advanced Topics

Function (Function.ds)

The following table provides the declaration and description for the functions in Function.ds.

Table 11-6 Functions in Function.ds

Function Declaration

Description

Sample Input

getFunctionById ($x1
as

element (tl:Function
Id)) as
schema-element (tl1:F
unction) external

This function returns the
path of the data service and
schema along with function
arity, function kind and
return type information

about the specified function.

For this function, specify the
function ID and arity as
input.

<FunctionId name=" cus:CUSTOMER "
arity="0"
xmlns:cus="1ld:RTLAppDataServices/Cu
stomerDB/CUSTOMER"
xmlns="urn:metadata.ld.bea.com"/>

getDataService ($arg
as

element (md:Function
)) as

element (md:DataServ
ice)

This function returns the
function arity and physical
data source information for
the specified function.

For this function, you need
to specify the function ID,
path of the data service and
schema.

<?xml version="1.0"
encoding="UTF-8" ?>
<urn:Function kind="read"
xmlns:acc="1ld:RTLAppDataServices/Cu
stomerDB/CUSTOMER"
xmlns:urn="urn:metadata.ld.bea.com"
>

<urn:FunctionId arity="0"
name="acc:getAll"></urn:FunctionId>

<returnType kind="element"
name="urn:Account" quantifier="1"
schemald="1d:RTLAppDataServices/Cus
tomerDB/schemas/CUSTOMER. xsd" >
</returnType>

<urn:DataServiceRef>
<id>1d:RTLAppDataServices/CustomerD
B/CUSTOMER.ds</id>
</urn:DataServiceRef>

</urn:Function>

11-8

Client Application Developer's Guide

Table 11-6 Functions in Function.ds

Accessing Metadata Using Catalog Services

Function Declaration

Description

Sample Input

getRelationship ($ar

g as

element (md:Function

)) as

element (md:Relation

ship)

external

This function returns the
relationship target and path
of the data services with
which the navigation
function has a relationship.

Specify the function ID, path
of the data service and
schema as input.

Note: This function is
applicable to
navigation
functions only.

<?xml version="1.0"
encoding="UTF-8" ?>

<urn:Function kind="navigate"
xmlns:acc="1d:RTLAppDataServices/Cu
stomerDB/Customer"
xmlns:urn="urn:metadata.ld.bea.com"
>

<urn:FunctionId arity="1"
name="acc:getDISCOUNT" >
</urn:FunctionId>

<returnType kind="element"
name="urn:getDISCOUNT"
quantifier="1"
schemalId="1d:RTLAppDataServices/Cus
tomerDB/schemas/CUSTOMER.xsd">

</returnType>
<parameter name="arg">

<type kind="navigate"
name="urn:DISCOUNT" quantifier="*"
schemald="1d:RTLAppDataServices/Cus
tomerDB/CUSTOMER. xsd">

</type>
</parameter>
<urn:DataServiceRef>

<id>ld:RTLAppDataServices/CustomerD
B/CUSTOMER.ds</id>

</urn:DataServiceRef>
<roleName>DISCOUNT</roleName>

</urn:Function>

Client Application Developer's Guide 11-9

Advanced Topics

Tahle 11-6 Functions in Function.ds

Function Declaration

Description

Sample Input

getSchemaRefs ($x1
as

element (tl:Function
), $x2 as
xsd:boolean) as
schema-element (tl:S
chemaRef) * external

For this function, specify the
function ID and path of the
data service to retrieve the
path of the schemas
associated with the data
service.

<urn:Function kind="navigate"
xmlns:acc="1d:RTLAppDataServices/Cu
stomerDB/CUSTOMER"
xmlns:urn="urn:metadata.ld.bea.com"
>

<urn:FunctionId
name="acc:getDISCOUNT" arity="1"/>

<returnType name="DISCOUNT"
kind="element" quantifier="*"
schemalId="1d:RTLAppDataServices/Cus
tomerDB/schemas/CUSTOMER. xsd" />

<!--Zero or more repetitions:-->
<parameter name="arg">

<type name="DISCOUNT"
kind="element" quantifier="*"
schemald="1d:RTLAppDataServices/Cus
tomerDB/schemas/CUSTOMER.xsd" />

</parameter>
<urn:DataServiceRef>

<id>1d:RTLAppDataServices/CustomerD
B/Customer.ds</id>

</urn:DataServiceRef>
<!--Optional:-->
<roleName>DISCOUNT</roleName>

</urn:Function>

Relationship (Relationship.ds)

The following table provides the declaration and description for the functions available in

Relationship.ds.

Note:
functions.

11-10

Client Application Developer's Guide

The functions in Relationship.ds can be used to access metadata only for navigation

Table 11-7 Functions in Relationship.ds

Accessing Metadata Using Catalog Services

Function Description Sample Input
Declaration
getFunctions This function returns <urn:Relationship
(Sarg as the attributes of the xmlns:acc="1d:RTLAppDataServices/CustomerDB/C
element (md:R function that you USTOMER" xmlns:urn="urn:metadata.ld.bea.com">
elationship) specify as input. You <!--1 to 2 repetitions:-->
) as need to specify the <relationshipTarget roleName="DISCOUNT"
elemént(md:F following parameters minoccurs="1" maxOccurs="1" description="">
unction) for this function: <urn:DataServiceRef>
* Stringparameter= <;4>1d:RTLAppDataServices/CustomerDB/CUSTOMER
Path of the data .ds</id>
service

e Function ID

e Values for
minOccurs and
maxQOccurs

</urn:DataServiceRef>
<!--Zero or more repetitions:-->
<urn:FunctionId name="acc:getDISCOUNT"
arity="1"/>
</relationshipTarget>
</urn:Relationship>

Client Application Developer's Guide 1-1

Advanced Topics

Table 11-7 Functions in Relationship.ds

Function Description Sample Input

Declaration

getDataServi Youneedtospecifythe <urn:Relationship

ceRefs ($x1 following parameters xmlns:acc="1d:RTLAppDataServices/CustomerDB/C
as for this function: USTOMER" xmlns:urn="urn:metadata.ld.bea.com">
elemgnt(t}:R e Stringparameter = <!--1 to 2 repetitions:-->

elationship) Path of the data <relationshipTarget roleName="DISCOUNT"

) as service minOccurs="1" maxOccurs="1" description="">

schema-eleme
nt (tl:DataSe
rviceRef)

Function ID

Values for
minOccurs and
maxQOccurs

<urn:DataServiceRef>

<id>1d:RTLAppDataServices/CustomerDB/CUSTOMER
.ds</id>
</urn:DataServiceRef>
<!--Zero or more repetitions:-->
<urn:FunctionId name="acc:getDISCOUNT"
arity="1"/>
</relationshipTarget>
</urn:Relationship>

11-12

Client Application Developer's Guide

Table 11-7 Functions in Relationship.ds

Accessing Metadata Using Catalog Services

Function Description Sample Input
Declaration
getDataServi This function returns <?xml version="1.0" encoding="UTF-8" 2>

ces ($arg as

element (md:R
elationship)
) as

element (md:D
ataService)

the attributes, such as
relational datasource
and function arity, of
the navigation function
of the data service. For
this function, you need
to specify the following
parameters:

e Stringparameter=
Path of the data
service

e Stringparameter=
Path of the schema

e Values for
maxOccurs and
minOccurs

e FunctionID

<urn:Relationship
xmlns:acc="1d:RTLAppDataServices/CustomerDB/C
USTOMER" xmlns:urn="urn:metadata.ld.bea.com">

<relationshipTarget description=""
maxOccurs="1" minOccurs="1"
roleName="DISCOUNT">

<urn:DataServiceRef>
<id>1ld:RTLAppDataServices/CustomerDB/CUSTOMER
.ds</id>

</urn:DataServiceRef>

<urn:FunctionId arity="1"
name="acc:getDISCOUNT" >

</urn:FunctionId>
</relationshipTarget>

<relationshipTarget description=""
maxOccurs="1" minOccurs="1"
roleName="DISCOUNT"
xmlns:acc="1d:RTLAppDataServices/CustomerDB/C
USTOMER" >

<urn:DataServiceRef>

<id>1d:RTLAppDataServices/CustomerDB/CUSTOMER
.ds</id>

</urn:DataServiceRef>

<urn:FunctionId arity="1"
name="acc:getDISCOUNT" >

</urn:FunctionId>
</relationshipTarget>
</urn:Relationship>

Client Application Developer's Guide 11-13

Advanced Topics

Schema (Schema.ds)

The following table provides the declaration and description for the functions available in Schema.ds.

Table 11-8 Functions in Schema.ds

Function Declaration

Description

Sample Input

getSchema ($x1 as

element (tl:SchemaRef))
as

schema-element (tl:Schema
) * external

This functions returns the schema
attributes of the schema
associated with the data service.
You need to specify the path of the
schema which you need to access
as string parameter. For example:

1d:RTLAppDataServices/
CustomerDB/schemas/CUS
TOMER. xsd

<urn:SchemaRef
xmlns:urn="urn:metadata.ld
.bea.com">
<id>1ld:RTLAppDataServices/
CustomerDB/schemas/CUSTOME
R.xsd</id>
</urn:SchemaRef>

getSchemaRef ($x1 as
element (tl:Schema)) as
schema-element (tl:Schema
Ref)

This function returns the path of
the schema of the data service.

Specify the schema path to get the
reference to the schema. For
example:
1d:RTLAppDataServices/
CustomerDB/schemas/CUS
TOMER TABLE.xsd

<urn:Schema
xmlns:urn="urn:metadata.ld
.bea.com">

<urn:SchemaRef>
<id>1d:RTLAppDataServices/
CustomerDB/schemas/CUSTOME
R_TABLE.xsd</id>

</urn:SchemaRef>

</urn:Schema>

SchemaRef (SchemaRef.ds)

The following table provides the declaration and description for the functions available in

SchemaRef.ds.

11-14

Client Application Developer's Guide

Table 11-9 Functions in SchemaRef.ds

Filtering, Sorting, and Fine-tuning Query Results

Function Declaration

Description

Sample Input

getDependencies ($x1 as
element (tl:SchemaRef),
S$x2 as xs:boolean) as
schema-element (tl:Schema
Ref) * external

This function returns the
dependencies of the specified data
service.

You need to specify the path of the
schema for the data service as a
string parameter. For example:
ld:DataServices/Demo/s

chemas/CustomerProfile
.xsd

<urn:SchemaRef
xmlns:urn="urn:metadata.ld
.bea.com">

<id
xmlns="">ld:DataServices/D
emo/schemas/CustomerProfil
e.xsd</id>
</urn:SchemaRef>

The second parameter is boolean and

the value can be either t rue or
false.

getSchema ($x1 as

element (md:SchemaRef))
as

schema-element (md:Schema
) * external

This functions returns the
schemas associated with the data
service.

You need to specify the path of the
schema for the data service as a
string parameter. For example:

1d:RTLAppDataServices/

CustomerDB/schemas/CUS
TOMER. xsd

<urn:SchemaRef
xmlns:urn="urn:metadata.ld
.bea.com">
<id>1d:RTLAppDataServices/
CustomerDB/schemas/CUSTOME
R.xsd</id>

</urn:SchemaRef>

Filtering, Sorting, and Fine-tuning Query Results

The Filter API enables client applications to apply filtering conditions to the information returned by
data service functions. In a sense, filtering allows client applications to extend a data service interface
by allowing them to specify more about how data objects are to be instantiated and returned by

functions.

The Filter API alleviates data service designers from having to anticipate every possible data view that
their clients may require and to implement a data service function for each view. Instead, the designer
may choose to specify a broader, more generic interface for accessing a business entity and allow

client applications to control views as desired through filters.

Only objects in the function return set that meet the condition are returned to the client. (The
evaluation occurs at the server, so objects that are filtered are not passed over the network. Often,

Client Application Developer's Guide

11-15

Advanced Topics

objects that are filtered out are not even retrieved from the underlying sources.) A filter is similar to
a WHERE clause in an XQuery or SQL statement—it applies conditions to a possible result set. You
can apply multiple filter conditions using AND and oOr operators. Other operators that be applied to
filter conditions are listed in Table 11-10.

Table 11-10 Filter Operators

Operator

Usage Note or Example

LESS_THAN

Can also use "<". For example:
myFilter.addFilter("CUST/CUST_ORDER/ORDER',
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT", ">",
"1000");

myFilter.addFilter("CUST/CUST_ORDER/ORDER",
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT",
FilterXQuery. GREATER_THAN, "1000");

GREATER_THAN

Can also use ">".

LESS_THAN_EQUAL

Can also use "<=".

GREATER_THAN_EQUAL

Can also use ">=",

EQUAL Can also use "=".

NOT_EQUAL Can also use "!=".

matches Tests for string equality.

sql-like Tests whether a string contains a specified pattern.

OR Compound operator that can apply to more than one filter.
NOT Compound operator that can apply to more than one filter.
AND Compound operator that can apply to more than one filter.

Note: Filter API Javadoc, as well as other AquaLogic Data Services Platform APIs, is described at
“AquaLogic Data Services Platform Mediator API Javadoc” on page 1-13.

Client Application Developer's Guide

Using Filters

Using Filters

Filtering capabilities are available to Mediator and Data Service control client applications. You use
filter conditions to specify the data you want returned, sort the data, or limit the number of records
returned. To use filters in a mediator client application, import the appropriate package and use the
supplied interfaces for creating and applying filter conditions. Data service control clients get the
interface automatically. When a function is added to a control, a corresponding "WithFilter" function
is added as well.

The filter package is named as follows:

com.bea.ld.filter.FilterXQuery;

To use a filter, perform the following steps:

1. Create an FilterXQuery object, such as:

FilterXQuery myFilter = new FilterXQuery();

2. Add a condition to the filter object using the addFilter() method. With this method you can specify
what node your filter condition will apply to and specify the number of records to be returned
based on a limit; for example, you can specify the filter will apply to customer orders where only
orders with an amount over a specified value will be returned.

The addFilter() method has several signatures with different parameters, including the
following:
public void addFilter (java.lang.String appliesTo,
java.lang.String field,
java.lang.String operator,

java.lang.String value,
java.lang.Boolean everyChild)

This version of the method takes the following arguments:

— appliesTo indicates the node that filtering affects. That is, if a node specified by the field
argument does not meet the condition, app1iesTo nodes are filtered out.

— fieldisthe node against which the filtering condition is tested.

— operator and value together compose the condition statement. The operator
parameter specifies the type of comparison to be made against the specified value. See
Table 11-10, “Filter Operators,” on page 11-16 for information about available operators.

— everyChild is an optional parameter. It is set to false by default. Specifying true for this
parameter indicates that only those child elements that meet the filter criteria will be
returned. For example, by specifying an operator of GREATER_THAN (or ">") and a value of

Client Application Developer's Guide 1-17

Advanced Topics

11-18

1000, only records for customers where all orders are over 1000 will be returned. A
customer that has an order amount less than 1000 will not be returned, although other
order amounts might be greater than 1000.

The following is an example of an add filter method where those orders with an order
amount greater than 1000 will be returned (note that everyChild is not specified, so order
amounts below 1000 will be returned):

myFilter.addFilter ("CUSTOMERS/CUSTOMER/ORDER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER AMOUNT",
ll>ll’ -
"1000") ;

3. Use the Mediator API call setFilterCondition() to add the filter to a data service, passing the
FilterXQuery instance as an argument. For example,

CUSTOMER custDS = CUSTOMER.getInstance (ctx, "RTLApp");
custDS.setFilterCondition (myFilter);

4. Invoke the data service function. (For more information on invoking data service functions, see
Chapter 3, “Accessing Data Services from Java Clients.”)

Specifying Filter Effects

If a filter condition applied to a specified element value resolves to false, an element is not included
in the result set. The element that is filtered out is specified as the first argument to the addFilter()
function.

The effects of a filter can vary, depending on the desired results. For example, consider the
CUSTOMERS data object shown in Figure 11-1. It contains several complex elements (CUSTOMER
and ORDERS) and several simple elements, including ORDER_AMOUNT. You can apply a filter to any
elements in this hierarchy.

Figure 11-11 Nested Value Filtering

CUSTOMERS CUSTOMER *

ORDERS *

ORDER_AMOUNT
In general, with nested XML data, a condition such as “CUSTOMER/ORDER/ORDER_AMOUNT >
1000” can affect what objects are returned in several ways. For example, it can cause all CUSTOMER
objects to be returned, but filter ORDERS that have an amount less than 1000.

Client Application Developer's Guide

Using Filters

Alternatively, it can cause only CUSTOMER objects to be returned that have at least one large order,
and all ORDER objects are returned for every CUSTOMER. Further, it can cause only CUSTOMER
objects to be returned for which every ORDER is greater than 1000. For example,

FilterXQuery myFilter = new FilterXQuery/();

myFilter.addFilter("CUSTOMERS/CUSTOMER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER THAN,"1000",true);

Note that in the optional fourth parameter everyChild = true, by default this attribute is false.
By setting this parameter to true, only those CUSTOMER objects for which every ORDER is greater
than 1000 will be returned.

The following examples show how filters can be applied in several different ways:

e Returns all CUSTOMER objects but only their large ORDER objects:

FilterXQuery myFilter = new FilterXQuery();

Filter fl1 = myFilter.createFilter (
"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER THAN,"1000");

myFilter.addFilter("CUSTOMERS/CUSTOMER/ORDER", f1);

e Returns only CUSTOMER objects that have at least one large order but view all ORDER objects
for such CUSTOMER:

FilterXQuery myFilter = new FilterXQuery/();
myFilter.addFilter ("CUSTOMERS/CUSTOMER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER AMOUNT",
FilterXQuery.GREATER THAN,"1000");

e Returns only CUSTOMER objects that have at least one large order and return only large
ORDER objects:

FilterXQuery myFilter = new FilterXQuery();
myFilter.addFilter ("CUSTOMERS/CUSTOMER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER AMOUNT",
FilterXQuery.GREATER THAN, "1000");
myFilter.addFilter ("CUSTOMERS/CUSTOMER/ORDER",
"CUSTOMERS/CUSTOMER/ORDER/ORDER AMOUNT",
FilterXQuery.GREATER THAN, "1000");

The last example is a compound filter; that is, a filter with two conditions. Listing 11-1 uses the AND
operator to apply a combination of filters to a result set, given a data service instance customerDS.

Client Application Developer's Guide 11-19

Advanced Topics

11-20

Listing 11-1 Example of Combining Filters by Using Logical Operators

FilterXQuery myFilter = new FilterXQuery () ;

Filter fl1 = myFilter.createFilter("CUSTOMER_PROFILE/ADDRESS/ISDEFAULT",
FilterXQuery.NOT EQUAL,"0");

Filter f2 = myFilter.createFilter ("CUSTOMER/ADDRESS/STATUS",
FilterXQuery.EQUAL,
"\"ACTIVE\"") ;

Filter £3 = myFilter.createFilter(fl,£f2, FilterXQuery.AND);

Customer customerDS = Customer.getlInstance(ctx, "RTLApp");

CustomerDS.setFilterCondition (myFilter);

Ordering and Truncating Data Service Results

Another type of filter you can use in client application code is an ordering condition—you specify the
order (descending, ascending) in which results should be returned from the data service. The method
(addOrderBy(), in the FilterXQuery class), takes a property name as the criterion upon which the

ascending or descending decision is based. Listing 11-2 provides an example of creating a filter that
will return customer profiles in ascending order, based on the date each person became a customer.

Listing 11-2 Example of Applying an Ordering Filter

FilterXQuery myFilter = new FilterXQuery/();
myFilter.addOrderBy ("CUSTOMER PROFILE",
"CustomerSince" ,FilterXQuery.ASCENDING) ;
ds.setFilterCondition (myFilter);
DataObject objArrayOfCust = (DataObject) ds.invoke ("getCustomer", null);

Similarly, you can set the maximum number of results that can be returned from a function. The
setLimit() function limits the number of elements in an array element to the specified number. And
on a repeating node, it makes sense to specify a limit on the results to be returned. (Setting the limits
on non-repeating nodes does not truncate the results.)

Listing 11-3 shows how to use the setLimit() method. It limits the number of active address in the
result set (filtering out active addresses) to 10 given a data service instance ds.

Client Application Developer's Guide

Using Filters

Listing 11-3 Example of Applying a Filter that Truncates (Limits) Results

FilterXQuery myFilter = new FilterXQuery();

Filter f2 = myFilter.createFilter("CUSTOMER_PROFILE/ADDRESS",
FilterXQuery.EQUAL, "\"INACTIVE\"");

myFilter.addFilter ("CUSTOMER PROFILE", £2);

myFilter.setLimit ("CUSTOMERiPROFILE" , "10M);

ds.setFilterCondition (myFilter);

Using Ad Hoc Queries to Fine-tune Results from the Client

An ad hoc query is an XQuery function that is not defined as part of a data service, but is instead
defined in the context of a client application. Ad hoc queries are typically used in client applications
to invoke data service functions and refine the results in some way. You can use an ad hoc query to
execute any valid XQuery expression against a data service. The expression can target the actual data
sources that underlie the data service, or can use the functions and procedures hosted by the data
service.

To execute an XQuery expression, use the PreparedExpression interface, available in the Mediator
API. Similar to JDBC’s PreparedStatement interface, the PreparedExpression interface takes the
XQuery expression as a string in its constructor, along with the JNDI server context and application
name. After constructing the prepared expression object in this way, you can call the executeQuery()
method on it. If the ad hoc query invokes data service functions or procedures, the data service’s
namespace must be imported into query string before you can reference the methods in your ad hoc
query.

Listing 11-4 shows a complete example; the code returns the results of a data service function named
getCustomers(), which is in the namespace:

ld:DataServices/RTLServices/Customer

Listing 11-4 Invoking Data Service Functions using an Ad Hoc Query

import com.bea.ld.dsmediator.client.PreparedExpression;

String queryStr =
"declare namespace nsO=\"ld:DataServices/RTLServices/Customer\";" +

"<Results>" +

Client Application Developer's Guide 1-21

Advanced Topics

11-22

" { for Scustomer profile in nsO:getCustomer ()" +
" return Scustomer profile }" +
"</Results>";
PreparedExpression adHocQuery =
DataServiceFactory.prepareExpression (context, "RTLApp", queryStr);

XmlObject objResult = (XmlObject) adHocQuery.executeQuery();

AquaLogic Data Services Platform passes information back to the ad hoc query caller as an XMLObject
data type. Once you have the XMLObject, you can downcast to the data type of the deployed XML
schema. Since XMLObject has only a single root type, if the data service function returns an array, your
ad hoc query should include a root element as a container for the array.

For example, the ad hoc query shown in Listing 11-4 specifies a <Results> container object to hold
the array of CUSTOMER_PROFILE elements that will be returned by the getCustomer() data service
function.

Security policies defined for a data service apply to the data service calls in an ad hoc query as well.
If an ad hoc query uses secured resources, the appropriate credentials must be passed when creating
the JNDI initial context. (For more information, see “Obtaining a WebLogic JNDI Context for
AquaLogic Data Services Platform” on page 3-8.)

As with the PreparedStatement interface of JDBC, the PreparedExpression interface supports
dynamically binding variables in ad hoc query expressions. PreparedExpression provides several
methods (bindType() methods; see Table 11-12), for binding values of various data types.

Table 11-12 PreparedExpression Methods for Bind Variables

To bind data type of... Use bind method...

Binary bindBinary (javax.xml.namespace.QName gname,
byte[] abyteO)

BinaryXML bindBinaryXML (javax.xml.namespace.QName gname,
byte[] abytel)

Boolean bindBoolean (javax.xml.namespace.QName gname,
boolean flag)

Byte bindByte (javax.xml.namespace.QName gname, byte
bytel)

Client Application Developer's Guide

Using Filters

Tahle 11-12 PreparedExpression Methods for Bind Variables

To hind data type of... Use bind method...

Date bindDate (javax.xml.namespace.QName gname,
java.sqgl.Date date)

Calendar bindDateTime (javax.xml.namespace.QName gname,
java.util.Calendar calendar)

DateTime bindDateTime (javax.xml.namespace.QName gname,
java.util.Date date)

DateTime bindDateTime (javax.xml.namespace.QName gname,
java.sqgl.Timestamp timestamp)

BigDecimal bindDecimal (javax.xml.namespace.QName gname,
java.math.BigDecimal bigdecimal)

double bindDouble (javax.xml.namespace.QName gname,
double d)

Element bindElement (javax.xml.namespace.QName gname,
org.w3c.dom.Element element)

Object bindElement (javax.xml.namespace.QName gname,
java.lang.String s)

float bindFloat (javax.xml.namespace.QName gname,
float f)

int bindInt (javax.xml.namespace.QName gname, int i)

long bindLong (javax.xml.namespace.QName gname, long
1)

Object bindObject (javax.xml.namespace.QName gname,
java.lang.Object obj)

short bindShort (javax.xml.namespace.QName gname,
short wordO0)

String bindString (javax.xml.namespace.QName gname,

java.lang.String s)

Client Application Developer's Guide 11-23

Advanced Topics

Tahle 11-12 PreparedExpression Methods for Bind Variables

To hind data type of... Use hind method...

Time bindTime (javax.xml.namespace.QName gname,
java.sqgl.Time time)

URI bindURI (javax.xml.namespace.QName gname,
java.net.URI uri)

To use the bindType methods, pass the variable name as an XML qualified name (QName) along with
its value; for example:

adHocQuery.bindInt (new QName ("i"),94133);

Listing 11-5 shows an example of using a bindInt() method in the context of an ad hoc query.

Listing 11-5 Binding a Variable to a QName (Qualified Name) for use in an Ad Hoc Query

PreparedExpression adHocQuery = DataServiceFactory.preparedExpression (
context, "RTLApp",
"declare variable $i as xs:int external;
<result><zip>{fn:data ($1) }</zip></result>");

adHocQuery.bindInt (new QName ("i"), 94133);

XmlObject adHocResult = adHocQuery.executeQuery();

Note: For more information on QNames, see:

http://www.w3.o0rg/TR/xmlschema-2/#QName

Listing 11-6 shows a complete ad hoc query example, using the PreparedExpression interface and
QNames to pass values in bind methods.

Listing 11-6 Sample Ad Hoc Query

import com.bea.ld.dsmediator.client.DataServiceFactory;
import com.bea.ld.dsmediator.client.PreparedExpression;
import com.bea.xml.XmlObject;

import javax.naming.InitialContext;

import javax.naming.NamingException;

11-24

Client Application Developer's Guide

http://www.w3.org/TR/xmlschema-2/#QName

Using Filters

import javax.xml.namespace.QName;
import weblogic.jndi.Environment;

public class AdHocQuery
{

public static InitialContext getInitialContext () throws NamingException {

Environment env = new Environment();
env.setProviderUrl ("t3://localhost:7001") ;

env.setInitialContextFactory ("weblogic.jndi.WLInitialContextFactory");

env.setSecurityPrincipal ("weblogic") ;
env.setSecurityCredentials ("weblogic");

return new InitialContext (env.getInitialContext ().getEnvironment ());
}
public static void main (String argsl[]) {

System.out.println ("========== Ad Hoc Client ==========");

try {

StringBuffer xquery = new StringBuffer();

xquery.append("declare variable $p firstname as xs:string external; \n");

xquery.append("declare variable $p lastname as xs:string external;

xquery.append (

"declare namespace nsl=\"ld:DataServices/MyQueries/XQueries\"; \n");

xquery.append (

\n") ;

"declare namespace ns0=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n");

xquery.append ("<nsl:RESULTS> \n")
xquery.append (" { \n")
xquery.append (" for Scustomer in ns0:CUSTOMER () \n")
xquery.append (" where ($customer/FIRST NAME eq $p firstname \n")
xquery.append (" and Scustomer/LAST NAME eq $p lastname) \n") ;
xquery.append (" return \n")
xquery.append (" Scustomer \n")
xquery.append (" } \n")
xquery.append ("</nsl:RESULTS> \n")

PreparedExpression pe = DataServiceFactory.prepareExpression (

getInitialContext (), "RTLApp", xgquery.toString()):;

pe.bindString (new QName ("p firstname"), "Jack");
pe.bindString (new OName ("p lastname"), "Black") ;
XmlObject results = pe.executeQuery();
System.out.println(results);

} catch (Exception e) {
e.printStackTrace() ;

Client Application Developer's Guide

11-25

Advanced Topics

Handling Large Result Sets with Streaming APIs

This section discusses further programming topics related to client programming with the Data
Service Mediator API. It includes the following topics:

o Using the Streaming Interface

e Writing Data Service Function Results to a File

Using the Streaming Interface

When a function in the standard data service interface is called, the requested data is first

materialized in the system memory of the server machine. If the function is intended to return a large
amount of data, in-memory materialization of the data may be impractical. This may be the case, for

example, for administrative functions that generate "inventory reports" of the data exposed by
AquaLogic Data Services Platform. For such cases, AquaLogic Data Services Platform can serve
information as an output stream.

AquaLogic Data Services Platform leverages the WebLogic XML Streaming API for its streaming
interface. The WebLogic Streaming API is similar to the standard SAX (Streaming API for XML)

interface. However, instead of contending with the complexity of the event handlers used by SAX| the
WebLogic Streaming API lets you use stream-based (or pull-based) handling of XML documents in
which you step through the data object elements. As such, the WebLogic Streaming API affords more
control than the SAX interface, in that the consuming application initiates events, such as iterating

over attributes or skipping ahead to the next element, instead of reacting to them.

Note: The streaming API is intended to be used when large result sets are needed and cannot be

easily materialized in memory. It may be advisable to run your data service queries on
different servers in order to simultaneously support both real-time queries and large,
batch-oriented queries.

However, if two servers are not possible, then consider running the streaming API queries

during off-peak times.

In AquaLogic Data Services Platform only server-side steaming is supported. Thus a JSP, which is

hosted on the server, can leverage the streaming API. However, an external Java application could not.

You can get AquaLogic Data Services Platform information as a stream by using either an ad hoc or an

untyped data service interface.

Note: Streaming is not supported through static interfaces. For more information on the WebLogic

Streaming API, see "Using the WebLogic XML Streaming API" at:

11-26 Client Application Developer's Guide

Handling Large Result Sets with Streaming APls

http://e-docs.bea.com/wls/docs81/xml/xml_stream.html.

The streaming interface can be found in the following classes in the com.bea.ld.dsmediator.client
package:

® StreamingDataService

® StreamingPreparedExpression

Using these interfaces is very similar to using their SDO mediator client API equivalents. However,
instead of a document object, they return data as an XMLInputStream. For functions that take
complex elements (possibly with a large amount of data) as input parameters, XMLInputStream is
supported as an input argument as well. The following is a example:

StreamingDataService ds = DataServiceFactory.newStreamingDataService (
context,
"ld:DataServices/RTLServices/Customer") ;

XMLInputStream stream = ds.invoke ("getCustomerByCustID", "CUSTOMERO") ;

The previous example shows the dynamic streaming interface. The following example uses an ad hoc
query:
String adhocQuery =
"declare namespace ns0=\"ld:DataServices/RTLServices/Customer\";\n" +
"declare variable $cust id as xs:string external;\n" +
"for Scustomer in nsO:getCustomerByCustID($cust id)\n" +
"return\n" +
" Scustomer\n";
StreamingPreparedExression expr =

DataServiceFactory.prepareExpression (context, adhocQuery);

If you have external variables in the query string (adhocQuery in the above example), you will also
need to do the following:

expr.bindString ("Scust_id", "CUSOMERO") ;

XMLInputStream xml = expr.executeQuery();

Note: For more information on using the dynamic and ad hoc interfaces, see “Using a Dynamic
Mediator API” in Chapter 3, “Accessing Data Services from Java Clients.”

Javadoc for the StreamingDataService interface and other AquaLogic Data Services Platform
APIs is described at: “AquaLogic Data Services Platform Mediator API Javadoc” on page 1-13.

Client Application Developer's Guide 11-27

http://e-docs.bea.com/wls/docs81/xml/xml_stream.html

Advanced Topics

Listing 11-7 shows an example of a method that reads the XML input stream. This method uses an
attribute iterator to print out attributes and namespaces in an XML event and throws an XMLStream
exception if an error occurs.

Listing 11-7 Sample Streaming Application

import weblogic.xml.stream.Attribute;

import weblogic.xml.stream.Attributelterator;
import weblogic.xml.stream.ChangePrefixMapping;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.XMLEvent;

import weblogic.xml.stream.EndDocument;

import weblogic.xml.stream.EndElement;

import weblogic.xml.stream.EntityReference;
import weblogic.xml.stream.Space;

import weblogic.xml.stream.StartDocument;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;

import weblogic.xml.stream.XMLStreamException;
import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class ComplexParse {

public void parse (XMLEvent event)throws XMLStreamException
{
switch (event.getType()) {
case XMLEvent.START ELEMENT:
StartElement startElement = (StartElement) event;
System.out.print ("<" + startElement.getName () .getQualifiedName ());
Attributelterator attributes = startElement.getAttributesAndNamespaces() ;
while (attributes.hasNext ()) {
Attribute attribute = attributes.next();
System.out.print (" " + attribute.getName ().getQualifiedName () +
"='" + attribute.getValue() + "'");
}
System.out.print (">");

11-28 Client Application Developer's Guide

Handling Large Result Sets with Streaming APIs

break;
case XMLEvent.END ELEMENT:

System.out.print ("</" + event.getName () .getQualifiedName () +">");

break;

case XMLEvent.SPACE:

case XMLEvent.CHARACTER DATA:
CharacterData characterData = (CharacterData) event;
System.out.print (characterData.getContent ());
break;

case XMLEvent.COMMENT:
// Print comment
break;

case XMLEvent.PROCESSING INSTRUCTION:
// Print ProcessingInstruction
break;

case XMLEvent.START DOCUMENT:
// Print StartDocument
break;

case XMLEvent.END DOCUMENT:
// Print EndDocument
break;

case XMLEvent.START PREFIX MAPPING:
// Print StartPrefixMapping
break;

case XMLEvent.END PREFIX MAPPING:
// Print EndPrefixMapping
break;

case XMLEvent.CHANGE PREFIX MAPPING:
// Print ChangePrefixMapping
break;

case XMLEvent.ENTITY REFERENCE:
// Print EntityReference
break;

case XMLEvent.NULL ELEMENT:

throw new XMLStreamException ("Attempt to write a null event.");

default:
throw new XMLStreamException ("Attempt to write unknown event["

+event.getType ()+"]1") ;

Client Application Developer's Guide

11-29

Advanced Topics

11-30

Writing Data Service Function Results to a File

You can write serialized results of a data service function to a file using a WriteOutputToFile method.
Such a function is generated automatically for each function defined in the data service. For security
reasons it writes only to a file on the server’s file system.

These functions provide services that are similar to streaming APIs. They are intended for creating
reports or an inventory of data service information. However, the writeOutputToFile method can be
invoked from a remote mediator API (in contrast with the streaming API described in “Using the
Streaming Interface” on page 11-26).

The following example shows how to write to a file from the untyped interface.

StreamingDataService sds =
DataServiceFactory.newStreamingDataService (
context, "RTLApp", "1d:DataServices/RTLServices/Customer"") ;
sds.writeOutputToFile ("getCustomer", null, "streamContent.txt");

sds.closeStream() ;

Note: No attempt to create folders is made. In the above example, if you want to write data inside a
folder named myData that folder should be present in the server domain root prior to the
write operation.

Client Application Developer's Guide

	Introducing Data Services for Client Applications
	Simplifying Application Data Programming
	What is a Data Services Client?
	Data Your Way

	The Role of WebLogic Server and WebLogic Workshop
	What Is a Data Service?
	What is a AquaLogic Data Services Platform Client Application?
	Security Considerations in Client Applications

	Choosing a Data Services Programming Model
	Introducing Service Data Objects (SDO)
	Update Frameworks and the Data Service Mediator

	Typical Client Application Development Process
	Development Resources
	Runtime Client JAR Files
	AquaLogic Data Services Platform Mediator API Javadoc

	Performance Considerations

	Data Programming Model and Update Framework
	Data Services Platform and Service Data Objects (SDOs)
	Static and Dynamic Data APIs
	Static Data API
	XML Schema-to-Java Type Mapping Reference
	Dynamic Data API

	Role of the Mediator and SDOs

	Accessing Data Services from Java Clients
	Overview of the AquaLogic Data Services Platform Mediator API
	Setting the Classpath
	Mediator API Summary and Reference

	Generating a Static Mediator API JAR File
	Building the Client JAR
	Using the Data Service Mediator API
	Obtaining a WebLogic JNDI Context for AquaLogic Data Services Platform
	Invoking Functions and AquaLogic Data Services Platform Procedures
	Static and Dynamic Mediator APIs
	Using a Static Data Service Mediator API
	Using a Dynamic Mediator API

	Static and Dynamic SDO APIs
	Using the Static SDO API
	Using the Dynamic SDO API

	Bypassing the Data Cache When Using the Mediator API
	Client Management of the Data Cache

	Accessing Data Services Via WebLogic Server 9.2 Clients
	Interoperability Steps

	Step-by-Step: A Java Client Programming Example
	Step 1. Instantiating and Populating Data Objects
	Step 2: Accessing Data Object Properties
	Quantifying Return Types

	Step 3: Modifying, Inserting, and Deleting Data Objects and Properties
	Modifying Data Object Properties
	Inserting New Data Objects
	Deleting Data Objects

	Step 4: Submitting Changes to the Data Service

	Examining a Java Client Application

	Enabling AquaLogic Data Services Applications for Web Service Clients
	Overview of Web Services and AquaLogic Data Services Platform
	Different Styles of Web Services Integration for AquaLogic Data Services Platform

	Server-Side AquaLogic Data Services Platform-Enabled Web Service Development
	Developing AquaLogic Data Services Platform-Enabled Read-Only Web Services
	Adding a Data Service Control to a Web Service
	Generating a Web Service from a Data Service Control

	Developing AquaLogic Data Services Platform-Enabled Read-Write Web Services
	Testing a Web Service in WebLogic Workshop

	Client-Side AquaLogic Data Services Platform-Enabled Web Service Development
	Static Web Service Clients
	Dynamic Web Service Clients
	Developing Static Web Service Clients
	Generating SDO Classes for the Web Service Proxy
	Generating the SDO Web Service Client Proxy
	Sample Script for Creating Static Web Service Client
	Using Java to Generate the Client Proxy
	Using the SDO Web Service Client Gen Utility

	Developing Static Web Service Clients
	How To Set Up a Web Service Client Environment for AquaLogic Data Services Platform
	Sample Java Static Web Service Client

	Developing Dynamic Web Service Clients
	Setting Up a Dynamic Web Service Environment
	Developing the Dynamic Web Service Client
	Sample Java Dynamic Web Service Client

	Using SQL to Access Data Services
	Publishing Data Service Functions As SQL
	1. Publish data service functions to a special schema that models them as SQL objects.
	2. Build and deploy your AquaLogic Data Services Platform application.
	Using Custom Database Functions through AquaLogic Data Services Platform

	SQL Support in AquaLogic Data Services Platform
	Supported Features
	Additional Details
	Table Parameter Support
	Use Case for Table Parameters
	Setting Table Parameters Using JDBC

	1. Instantiate TableParameter with the schema of your table.
	2. Call the createRow() method on TableParameter to create a new Row object representing a tuple in the table.
	3. Fill in the row object using the setObject(colIdx,val) call until all columns are set.
	4. Call createRow() again to create as many rows as the table requires.
	XML and SQL Type Mappings

	Accessing Data Services Functions Through JDBC
	About the AquaLogic Data Services Platform JDBC Driver
	Data Service Functions and Corresponding JDBC Artifacts

	Supported Functions
	Numeric Functions
	String Functions
	Datetime Functions
	Aggregate Functions
	JDBC Metadata Search Patterns

	Configuring the AquaLogic Data Services Platform JDBC Driver

	1. Copy the ldjdbc.jar and weblogic.jar to the client computer.
	2. Add ldjdbc.jar and weblogic.jar to the computer’s classpath.
	3. Set the appropriate supporting path by adding %JAVA_HOME%\jre\bin to your path.
	4. To configure the JDBC driver:
	5. To configure the connection object for the AquaLogic Data Services Platform application, you can specify configuration parameters as a Properties object or as a part of the JDBC URL.
	Accessing AquaLogic Data Services Platform JDBC Driver Using a Java Application
	Obtaining a Connection
	Using the preparedStatement Interface
	Using the CallableStatement Interface

	Accessing Data Service Functions from DbVisualizer

	1. Click StartÆAll ProgramsÆBEA WebLogic Platform 8.1ÆOther Development ToolsÆDbVisualizer.
	2. Configure DBVisualizer.
	3. Add connection parameters by performing the following steps:
	4. Click Connect. On completion of a successful connection, you should see the following:
	5. On the right pane of the window (see preceding figure), you can see various tabs. The Tables tab helps you view the informati...
	6. Execute ad hoc queries by activating the SQL Commander tab as shown in the following figure. Enter the SQL query and click the execute icon.
	Connecting to AquaLogic Data Services Platform Client Using ODBC-JDBC Bridge from Non-Java Applications
	Using OpenLink ODBC-JDBC Bridge

	1. Install the OpenLink ODBC-JDBC bridge (called ODBC-JDBC-Lite). For information on installing OpenLink ODBC-JDBC-Lite, refer t...
	2. Create a system DSN and configure it for your AquaLogic Data Services Platform application by performing the following steps:
	Using the EasySoft ODBC-JDBC Bridge

	1. Install the EasySoft ODBC-JDBC bridge. Go to the EasySoft site for information about installation:
	2. Create a system DSN and configure it for AquaLogic Data Services Platform by performing the following steps:
	Accessing Data Services Data from Reporting Tools
	Crystal Reports XI

	1. Crystal Reports 11.0 comes with a direct JDBC interface that can be used to interact directly with the AquaLogic Data Service...
	2. Specify the connection parameters for the JDBC interface of Crystal Reports as shown in Figure 5-3.
	3. Click Finish to go back to the Standard Report Creation Wizard.
	4. Drag the tables for which you want to generate the report to the right side as shown in Figure 5-4.
	5. Alternatively, you can choose the Add Command option to type an SQL query directly, which displays a window as shown in Figure 5-5.
	6. Click OK and the Command is added to the right side of the window.
	7. Clicking Next in the wizard shows you all the available views for generating the report, as shown in Figure 5-6.
	8. Click Next to go back to the Column chooser window as shown in Figure 5-7. This window allows you to select the columns you want to see in the final report.
	9. Click Next and the Grouping screen is displayed (as shown in Figure 5-8), which allows you to choose a column to group by. (This grouping is performed by Crystal Reports. The Group-by information is not passed on to the JDBC driver.)
	10. Skip the next few screens for now. Click Next till you reach the Template Chooser Screen Figure 5-9. Choose any appropriate Template. In this example, the user has chosen the Block (Blue) Template.
	11. Click Finish. A report similar to that shown in Figure 5-10 is displayed.
	Business Objects XI-Release 2 (ODBC)

	1. Create a Universe:
	2. To create a new report:
	3. You can execute the pass-through queries as follows:
	Hyperion-ODBC

	1. Open Production Reporting Studio and select the tabular report from the Create New Report wizard.
	2. Select the bridge you want to use to connect to AquaLogic Data Services Platform from the Data Connection box and click OK.
	3. If you want to create a new connection, click New and follow the instructions in the Create Data Connection wizard. Select th...
	4. Follow the instructions to create the new data connection and select ODBC and the SQR database. Specify the user name and password for authentication.
	5. From the Query Builder - Tables dialog box, select the tables that you want to use to generate the report and click Next.
	6. Select the query fields, which you want to use to generate the report and follow the instructions in the Query Builder configuration.
	7. Click Finish and a layout of the report is displayed. Now, run the report by clicking Process and save the report. The report is displayed as shown in Figure 5-16.
	1. Open Interactive Reporting Studio and select to create a new database connection. Specify ODBC as the type of connection and the database.
	2. Select Easysoft or Openlink as the bridge and specify the credentials to connect to the data source using the Database Connec...
	3. Add the tables to the query area and then drag and drop the columns for which you want to retrieve the data in the Requests field. You can also set the filter for the query using the Filter field.
	4. Run the report by clicking Process Current as shown in Figure 5-17, and then save the report.
	Microsoft Access 2003-ODBC

	1. Run MS Access, click FileÆOpen, then select ODBC Databases as the file type as shown in the Figure 5-18.
	2. Once the dialog Select Data Source pops up, click Cancel to close it. You should see the window shown in Figure 5-19.
	3. Click Queries, then Design as indicated in Figure 5-19. You should see a screen as shown in Figure 5-20.
	4. Close the Show Table dialog box. You should now be able to see the Select Query window.
	5. Right-click in the window and select SQL SpecificÆPass-Through as shown in Figure 5-21.
	6. Type in your SQL query and click Run, as shown in the Figure 5-22.
	7. In the dialog box that is displayed (as shown in Figure 5-23), move to the Machine Data Source tab and select openlink-aldsp to connect to AquaLogic Data Services Platform JDBC driver and generate the report.
	Microsoft Excel 2003-ODBC

	1. Start Workshop for WebLogic and then start WebLogic Server.
	2. Build and deploy the AquaLogic Data Services Platform application.
	3. Start Microsoft Excel and open a new worksheet.
	4. Click Data Æ Import External Data Æ New Database Query. The Choose Data Source dialog box is displayed.
	5. Select EasyDemo from the list of data sources and then click OK. The Query Wizard - Choose Columns dialog box is displayed. For details on configuring the JDBC driver using EasySoft, refer to “Using the EasySoft ODBC-JDBC Bridge” on page 5-30.
	6. Select the tables for which you want to generate the report and click Next.
	7. Follow the Query Wizard instructions and in the Query Wizard - Finish dialog box, select Return Data to Microsoft Office Excel.
	8. Click Finish and import the data in a new MS Excel spreadsheet. The query results will be displayed in the spreadsheet as shown in Figure 5-24.
	Using the Query Plan Viewer Utility
	Installing Query Plan Utility Components

	Using Excel to Access Data Services
	Installing the Excel Add-in
	System Requirements
	Installation Instructions

	1. Locate the Excel plug-in installation file. In can be found in following directory:
	2. Double-click on the installation file:
	3. Progress through the installation program using standard Next buttons.
	4. If you do not already have Microsoft .NET Framework 1.1 installed on your system, you will need to install it. This can be done through the Excel Add-in installation dialog.
	5. Determine the user of the application. (Typically anyone with access to your system would be able to use the Add-in.)
	6. Determine the location of the Add-in. By default the Add-in is installed in the following directory:
	7. Complete the installation, optionally launching Excel at the end of the process.
	Accessing Excel Add-in Documentation

	Generating WSDL Files for the Excel Add-in
	Creating a WSDL File from a Data Service

	1. Right-click on the RTLWebServices JCX (.jcx) file, selecting the Generate Test JWS File (Stateless) option, as shown in Figure 6-3.
	2. Right-click on your newly generated JWS file, selecting the Generate WSDL File option (Figure 6-4).
	Obtaining a Valid WSDL URL for Use with the Excel Add-in
	Using the Excel Add-in with a Remote or Deployed Server

	1. Take note of the current hostname and port settings.
	2. Set the hostname and port in the Weblogic Workshop Tools Æ WebLogic Server Æ Properties to reflect the address of the server you intend to use.
	3. Regenerate your WSDL file as described in Chapter 4, “Enabling AquaLogic Data Services Applications for Web Service Clients.”
	4. Create an EAR file for deployment. This will establish the address of your WSDL to the currently set hostname and port settin...
	Example Showing Data Service-Generated Web Service Use in Excel
	1. Access the Web services Setup option from the Excel Add-in MyData menu, as shown in Figure 6-6.
	2. When the Web Service Definitions dialog appears click the New button.
	3. Enter the WSDL location URL and an alias name for the WSDL (Figure 6-7). RTLWebServicesTest is used in this example. Then click OK.
	4. In the Web Service Definitions dialog, simply double-click on the alias name of your new service (RTLWebServicesTest) to activate the getCustomer operation wizard, as shown in (Figure 6-8).
	Accessing Your Data Service Through Excel

	1. Select an operation. In the example shown in Figure 6-8, the parameterized getCustomerByCustID() operation (also the name of the underlying data service function) is selected.
	2. Click on the Set Input tab.
	3. Click the + symbol to the left of getCustomerByCustID.
	4. Click the cust_id input parameter (Figure 6-9).
	5. Drag the cust_id icon to your spreadsheet. A label and input field will appear on your spreadsheet. If you mouse over the input field, the full parameter path will be displayed (Figure 6-10).
	6. Move your cursor to another field in the spreadsheet.
	7. In the Excel Add-in Web service wizard click the Set Output tab.
	8. Using the + symbol, open the various layers of the getCustomerbyCustID operation to see the various data elements that the operation will retrieve (Figure 6-11).
	9. Drag the CustomerID, FirstName, and LastName elements to the spreadsheet.
	10. In the custID field input a valid customer ID number such as CUSTOMER2.
	11. Press Enter.
	12. Select the My Data -> Refresh Web Service Data -> WEBSERVICES option (Figure 6-12) from the menu (or right-click on any field in the spreadsheet to access the same option).
	13. View and optionally reformat or rearrange the resulting information (Figure 6-13).

	Accessing Data Services from WebLogic Workshop Applications
	Introduction to Data Service Controls
	Data Service Controls Defined
	Page Flow, Web Services, Portals, Business Processes

	Description of the Data Service Control (JCX) File
	Design View
	Source View

	Using Data Service Controls for Ad Hoc Queries

	Creating Data Service Controls
	Step 1: Create a Project in an Application
	Step 2: Start WebLogic Server
	Step 3: Create a Folder in a Project
	Step 4: Create the Data Service Control
	Step 5: Enter Connection Information for WebLogic Server
	Step 6: Select Data Service Functions to Add to Your Control

	Modifying Existing Data Service Controls
	Changing a Method Used by a Control
	Adding a New Method to a Control
	Updating an Existing Control When Schemas Change

	Caching Considerations When Using Data Service Controls
	Bypassing the Cache When Using a Data Service Control
	Cache Bypass Example When Using a Data Service Control

	Security Considerations When Using Data Service Controls
	Security Credentials Used to Create Data Service Controls
	Testing Controls With the Run-As Property in the JWS File
	Trusted Domains
	Configuring Trusted Domains

	Using Data Services Platform with NetUI
	Generating a Page Flow From a Control
	To Generate a Page Flow From a Data Service Control

	Adding a Data Service Control to an Existing Page Flow
	Adding Service Data Objects (SDO) Variables to the Page Flow
	Adding a Variable to a Page Flow
	Initializing a Variable in the Page Flow
	Working with Data Objects

	Displaying Array Values in a Table or List
	Adding a Repeater to a JSP File
	Adding a Nested Level to an Existing Repeater
	Adding Code to Handle Null Values

	Using Data Service Control 9.2
	Differences Between the 9.2 and 8.1 Data Service Control
	Installing the Data Service Control 9.2 Plug-In
	Setting Up WebLogic Server 8.1 to Use Data Service Control 9.2

	Using Data Service Control 9.2 from Workshop for WebLogic Platform
	Creating and Using the Data Service Control
	Modifying and Uninstalling the Control

	Accessing Data Services Through AquaLogic Service Bus
	Accessing AquaLogic Data Services Platform from AquaLogic Service Bus
	Step 1: Start Your Servers

	1. Start the WebLogic Server 9.2 for the AquaLogic Service Bus application needing access to your WebLogic Server 8.1 data service.
	2. Start the WebLogic Server 8.1 for the data service.
	Step 2: Generate the WSDL for the Data Service
	Generate the WSDL Through WebLogic Workshop 8.1

	1. Launch WebLogic Workshop 8.1.
	2. Navigate in the Application panel (on the left) to your data service (.ds file) that you want to be available from AquaLogic Service Bus and select it.
	3. Right-click to select Generate WSDL File for Service Bus (Figure 8-2). A WSDL file for the data service will be generated in the same directory where the data service is located.
	Export the WSDL with the AquaLogic Data Service Console

	1. Launch the AquaLogic Data Services Console.
	2. In the project navigator on the left, select ldplatform, then your application underneath it.
	3. Next navigate to Data Services and to the data service for your application.
	4. Pick the particular service that you want to export.
	5. Click Export WSDL in the far right column of the data service you want to export. You will be given the opportunity to save it to any location.
	Step 3: Deploy the Data Services Transport

	1. Launch the AquaLogic Service Bus console, then select the WebLogic Server Console.
	2. When the Summary of Deployments panel appears, click Lock & Edit under Change Center on the left.
	3. The Install button then becomes active. Click it.
	4. In the Install Assistant, navigate to the deployment EAR file, dsp_transport.ear, in WebLogic Server 8.1.
	5. Then select dsp_transport.ear and click Next.
	6. Click Activate, then check the box in front of dsp_transport.ear and select Servicing All Requests from the Start drop-down menu. This will complete activation.
	Step 4: Import the WSDL for the Data Service

	1. Return to the service bus console and select Project Explorer.
	2. Navigate to your project folder and click either Create or Edit.
	3. Select the project folder or an existing subfolder, or create a new one. For the latter, type a name in Enter New Folder Name under Folders and click Add. The new folder will be added to the tree structure.
	4. Next import the WSDL file that you generated in Step 2. Do this by selecting WSDL under Interface in the Create Resource drop-down menu.
	5. On the panel that appears next, give the resource a name and a description (optional), then click Browse to locate the WSDL file that you generated in Step 2. Select it and click Save. It will then appear as a resource in the Resources table.
	Step 5: Create the Business Service

	1. Next, in Create Resources under Resources, select Business Service under Service. In the panel that appears, enter a name for...
	2. Below in the same panel, select WSDL Web Service and click Browse to locate the WSDL file that you imported in Step 4. Click on it. A Select WSDL Definitions panel will appear. Select a binding under Bindings.
	3. Click Submit. Then click Next in the main panel.
	4. Under Protocol, select dsp from the drop-down menu. Then enter the Endpoint URI. For Endpoint URI, enter:
	5. Click Add to add the Endpoint URI, then click Next.
	6. Click Next again to accept the defaults. Then on the Create a Business Service - Summary screen that appears, click Save.
	Step 6: Create the Proxy Service

	1. Under Create Resources, select Proxy Service under Service in the drop-down menu.
	2. In the next panel that appears, give your proxy service a name. If you were working with the example, you might want to name ...
	3. In the next panel, select http in the drop-down menu for Protocol and type in a name for the Endpoint URI. For Endpoint URI you can give it any name you want. Click Next.
	4. In the next two screens click Next to accept defaults, or fill in other values or select other choices.
	5. You will then see a summary screen allowing you to edit your entries. When you are satisfied with your entries, click Save. T...
	6. Click Activate, then click Submit.
	Step 7: Test Your Setup

	1. Reselect the folder where your resources are located, then, under Resources, locate the proxy service you created.
	2. Select Launch Test Console under Actions. The test console should appear. Pick a method under Available Options in the drop-d...
	Additional Information

	Supporting ADO.NET Clients
	Overview of ADO.NET Integration in Data Services Platform
	Understanding ADO.NET
	ADO.NET Client Application Development Tools

	Understanding How AquaLogic Data Services Platform Supports ADO.NET Clients
	Supporting Java Clients

	Enabling AquaLogic Data Services Platform Support for ADO.NET Clients
	Creating a New Web Service Project
	Creating an ADO.NET-Enabled Data Service Control
	Generating a Web Service for ADO.NET Clients
	Generating an ADO.NET-Enabled WSDL

	Adapting AquaLogic Data Services Platform XML Types (Schemas) for ADO.NET Clients
	Approaches to Adapting XML Types for ADO.NET
	XML Type Requirements for Working With ADO.NET DataSets

	References

	Generated Artifacts Reference
	XML Schema Definition for ADO.NET Typed DataSet
	Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients

	Using Workflow with AquaLogic Data Services Platform-Based Applications
	Brief Overview of WebLogic Integration JPDs
	How SDO’s Handling of XMLObjects Differs from JPD

	Adding a Data Service Control to a Process
	Creating a Data Service Control
	Adding a Data Service Control to a JPD File
	Setting Up the Data Service Control in the Business Process
	Submitting Changes from a Business Process

	Updating Multiple Data Services Using Workflows

	Advanced Topics
	Accessing Metadata Using Catalog Services
	Installing Catalog Services
	Using Catalog Services
	Application (application.ds)
	DataService (DataService.ds)
	DataServiceRef (DataServiceRef.ds)
	Folder (folder.ds)
	Function (Function.ds)
	Relationship (Relationship.ds)
	Schema (Schema.ds)
	SchemaRef (SchemaRef.ds)

	Filtering, Sorting, and Fine-tuning Query Results
	Using Filters
	Specifying Filter Effects
	Ordering and Truncating Data Service Results
	Using Ad Hoc Queries to Fine-tune Results from the Client

	Handling Large Result Sets with Streaming APIs
	Using the Streaming Interface
	Writing Data Service Function Results to a File

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

