
BEAAquaLogic
Data Services
Platform™

Client Application
Developer’s Guide
Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site:

http://e-docs.bea.com/aldsp/docs21/index.html

Version: 2.1
Document Date: June 2005
Revised: June 2006

http://e-docs.bea.com/aldsp/docs21/index.html

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Client Application Developer’s Guide v

Contents
1. Introducing Data Services Platform for Client Application

Developers
Simplifying Application Data Programming. 1-1

What is a Data Services Platform Client?. 1-2

Data Your Way . 1-3

The Role of WebLogic Server and WebLogic Workshop. 1-4

What is a Data Service? . 1-4

What is a Data Services Platform Client Application? . 1-5

Security Considerations in Client Applications. 1-6

Choosing a Data Services Programming Model . 1-6

Introducing Service Data Objects (SDO) . 1-8

Update Frameworks and the Data Service Mediator . 1-9

Typical Client Application Development Process . 1-10

Development Resources . 1-11

Runtime Client JAR Files. 1-11

DSP Mediator API Javadoc . 1-13

Performance Considerations . 1-13

Additional Technical and Product Information. 1-14

vi Client Application Developer’s Guide

2. DSP’s Data Programming Model and Update Framework
Data Services Platform and Service Data Objects (SDOs) .2-2

Static and Dynamic Data APIs .2-4

Static Data API .2-5

XML Schema-to-Java Type Mapping Reference .2-9

Dynamic Data API .2-10

Role of the Mediator and SDOs .2-16

The Data Services Platform Update Framework .2-16

How It Works: The Decomposition Process. .2-18

Physical Data Service Update Process .2-18

Logical Data Service Update Process .2-19

Primary-Foreign Key Relationships Mapped Using a KeyPair 2-21

Managing Key Dependencies .2-23

Transaction Management .2-24

3. Accessing Data Services from Java Clients
Overview of the Data Services Platform Mediator API .3-1

Setting the Classpath .3-3

Mediator API Summary and Reference. .3-4

Generating a Static Mediator API JAR File .3-5

Building the Client JAR .3-5

Using the Data Service Mediator API .3-7

Obtaining a WebLogic JNDI Context for Data Services Platform. .3-8

Invoking Functions and DSP Procedures .3-9

Static and Dynamic Mediator APIs .3-10

Using a Static Data Service Mediator API .3-10

Using a Dynamic Mediator API .3-13

Static and Dynamic SDO APIs .3-14

Client Application Developer’s Guide vii

Using the Static SDO API. 3-15

Using the Dynamic SDO API . 3-18

Bypassing the Data Cache When Using the Mediator API . 3-21

Client Management of the Data Cache . 3-22

Step-by-Step: A Java Client Programming Example . 3-23

Step 1. Instantiating and Populating Data Objects. 3-23

Step 2: Accessing Data Object Properties . 3-25

Quantifying Return Types . 3-27

Step 3: Modifying, Adding, and Deleting Data Objects and Properties. 3-27

Modifying Data Object Properties. 3-27

Adding New Data Objects . 3-28

Deleting Data Objects . 3-29

Step 4: Submitting Changes to the Data Service . 3-29

Examining a Java Client Application . 3-30

4. Enabling DSP Applications for Web Service Clients
Overview of Web Services and DSP. 4-1

Different Styles of Web Services Integration for DSP . 4-2

Server-Side DSP-Enabled Web Service Development . 4-3

Developing DSP-Enabled Read-Only Web Services . 4-4

Adding a Data Service Control to a Web Service . 4-4

Generating a Web Service from a Data Service Control . 4-7

Developing DSP-Enabled Read-Write Web Services . 4-9

Testing a Web Service in WebLogic Workshop . 4-9

Client-Side DSP-Enabled Web Service Development . 4-10

Static Web Service Clients . 4-10

Dynamic Web Service Clients . 4-10

Developing Static Web Service Clients . 4-11

viii Client Application Developer’s Guide

Generating the DSP Web Service Proxy .4-11

How To Set Up a Web Service Client Environment for DSP .4-16

Sample Java Static Web Service Client .4-17

Developing Dynamic Web Service Clients .4-17

Setting Up a Dynamic Web Service Environment. .4-17

Developing the Dynamic Web Service Client .4-18

Sample Java Dynamic Web Service Client .4-19

5. Accessing Data Services from WebLogic Workshop
Applications

WebLogic Workshop and Data Services Platform .5-1

Data Service Controls .5-2

Use With Page Flow, Web Services, Portals, Business Processes5-2

Data Service Control (JCX) File .5-2

Design View .5-3

Source View .5-4

Using Data Service Controls for Ad Hoc Queries .5-6

Creating Data Service Controls .5-7

Step 1: Create a Project in an Application .5-8

Step 2: Start WebLogic Server, If Not Already Running. .5-8

Step 3: Create a Folder in a Project. .5-8

Step 4: Create the Data Service Control .5-8

Step 5: Enter Connection Information for WebLogic Server. .5-10

Step 6: Select Data Service Functions to Add to Your Control5-11

Modifying Existing Data Service Controls. .5-12

Changing a Method Used by a Control .5-12

Adding a New Method to a Control .5-13

Updating an Existing Control When Schemas Change .5-14

Client Application Developer’s Guide ix

Using Data Services Platform with NetUI . 5-14

Generating a Page Flow From a Control . 5-14

To Generate a Page Flow From a Data Service Control . 5-15

Adding a Data Service Control to an Existing Page Flow . 5-16

Adding Service Data Objects (SDO) Variables to the Page Flow. 5-17

To Add a Variable to a Page Flow . 5-19

To Initialize the Variable in the Page Flow . 5-19

Working with Data Objects . 5-20

Displaying Array Values in a Table or List . 5-21

Adding a Repeater to a JSP File . 5-21

Adding a Nested Level to an Existing Repeater . 5-23

Adding Code to Handle Null Values . 5-24

Caching Considerations When Using Data Service Controls . 5-25

Bypassing the Cache When Using a Data Service Control . 5-25

Cache Bypass Example When Using a Data Service Control . 5-26

Security Considerations When Using Data Service Controls . 5-26

Security Credentials Used to Create Data Service Controls . 5-27

Testing Controls With the Run-As Property in the JWS File . 5-27

Trusted Domains . 5-27

Configuring Trusted Domains . 5-28

6. Supporting ADO.NET Clients
Overview of ADO.NET Integration in Data Services Platform . 6-2

Understanding ADO.NET . 6-2

ADO.NET Client Application Development Tools . 6-3

Understanding How DSP Supports ADO.NET Clients . 6-4

Supporting Java Clients . 6-6

Enabling DSP Support for ADO.NET Clients . 6-7

x Client Application Developer’s Guide

Creating a New Web Service Project .6-7

Creating an ADO.NET-Enabled Data Service Control .6-8

Generating a Web Service for ADO.NET Clients. .6-10

Generating an ADO.NET-Enabled WSDL .6-10

Adapting DSP XML Types (Schemas) for ADO.NET Clients .6-11

Approaches to Adapting XML Types for ADO.NET. .6-12

XML Type Requirements for Working With ADO.NET DataSets6-12

References .6-15

Generated Artifacts Reference. .6-15

XML Schema Definition for ADO.NET Typed DataSet .6-15

Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients6-17

7. Using Workflow with DSP-Enabled Applications
Brief Overview of WebLogic Integration JPDs .7-1

How SDO’s Handling of XMLObjects Differs from JPD .7-3

Adding a Data Service Control to a Process .7-3

Creating a Data Service Control. .7-4

Adding a Data Service Control to a JPD File .7-4

Setting Up the Data Service Control in the Business Process .7-5

Submitting Changes from a Business Process .7-7

Invoking JPDs from Data Services Platform. .7-7

Invoking a JPD from an Update Override .7-7

Invoking a JPD by Using the JpdService API in an Update Override.7-8

Synchronous and Asynchronous Behavior .7-9

Error Handling .7-10

8. Using the Data Services Platform JDBC Driver
About the Data Services Platform JDBC Driver .8-2

Client Application Developer’s Guide xi

Features of the Data Services Platform JDBC Driver . 8-2

Data Services Platform and JDBC Driver Terminology. 8-3

Installing the Data Services Platform JDBC Driver with JDK 1.4x . 8-3

Using the JDBC Driver . 8-5

Obtaining a Connection . 8-5

Using the preparedStatement Interface . 8-6

Getting Data Using JDBC. 8-6

Connecting to the JDBC Driver from a Java Application . 8-7

Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from

Non-Java Applications . 8-11

Using the EasySoft ODBC-JDBC Bridge . 8-11

Using OpenLink ODBC-JDBC Bridge . 8-14

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver 8-19

Crystal Reports 10 - ODBC . 8-19

Crystal Reports 10 - JDBC . 8-28

Business Objects 6.1 - ODBC . 8-31

Microsoft Access 2000 - ODBC. 8-44

DSP and SQL Type Mappings. 8-49

SQL-92 Support . 8-50

Supported Features . 8-50

Limitations . 8-53

9. Customizing Data Service Update Behavior
What is an Update Override? . 9-1

An Update Override is a Java Class. 9-2

How an Update Override Affects Update Processing . 9-3

When Are Update Overrides Required? . 9-3

When Are Update Overrides Required for Relational Data Sources? . 9-4

xii Client Application Developer’s Guide

Developing the UpdateOverride Class .9-6

Invoking Data Service Procedures from an UpdateOverride .9-8

Testing Submit Results .9-11

Update Override Context .9-11

Update Overrides and Physical Data Services .9-12

Update Override Programming Patterns. .9-14

Overriding the Entire Decomposition and Update Process .9-14

Augmenting Data Object Content .9-15

Accessing the Data Service Mediator Context .9-15

Accessing the Decomposition Map .9-15

Customizing an Update Plan .9-17

Executing an Update Plan .9-19

Retrieving the Container of the Current Data Object .9-19

Invoking Other Data Service Functions and Procedures .9-20

Capturing Runtime Data about Overrides in the Server Log .9-20

Default Optimistic Locking Policy: What it Means, How to Change.9-22

10.Advanced Topics
Using Catalog Services to Obtain Data Services’ Metadata. .10-1

Installing Catalog Services .10-3

Creating a Query-by-Form (QBF) Application Using Catalog Services10-5

Filtering, Sorting, and Fine-tuning Query Results .10-5

Using Filters .10-6

Specifying Filter Effects .10-8

Ordering and Truncating Data Service Results .10-10

Using Ad Hoc Queries to Fine-tune Results from the Client. .10-11

Handling Large Result Sets with Streaming APIs .10-15

Using the Streaming Interface .10-16

Client Application Developer’s Guide xiii

Writing Data Service Function Results to a File . 10-19

Providing Role-based Access to DSP Relational Sources . 10-20

Setting Up Handlers for Web Services Accessed by DSP . 10-22

xiv Client Application Developer’s Guide

Client Application Developer’s Guide 1-1

C H A P T E R 1

Introducing Data Services Platform for
Client Application Developers

BEA AquaLogic Data Services Platform (DSP) brings a service-oriented architecture (SOA) approach
to data access. Data Services Platform enables organizations to consolidate, integrate, and transform
as needed disparate data sources scattered throughout their enterprise, making enterprise data
available as an easy-to-access, reusable commodity: a data service.

For client application developers, DSP provides a uniform, consolidated interface for accessing and
updating the heterogeneous back-end data sources that comprise data services. This chapter provides
an overview of Data Services Platform for client application developers. It includes the following
topics:

Simplifying Application Data Programming

The Role of WebLogic Server and WebLogic Workshop

Introducing Service Data Objects (SDO)

Typical Client Application Development Process

Additional Technical and Product Information

Note: Data Services Platform was initially named Liquid Data. Some artifacts of the original name
remain in the product, installation path, and components.

Simplifying Application Data Programming
The Data Services Platform (DSP) significantly simplifies how client applications access and use data.
In a typical organization, data comes from a variety of sources, including distributed databases, files,

In t roduc ing Data Se rv i ces P la t fo rm fo r C l i en t App l i cat ion Deve lopers

1-2 Client Application Developer’s Guide

applications from partners or e-commerce exchange markets. With DSP, client applications can use
heterogeneous data through a unified service layer without having to contend with the complexity of
working with distributed data sources using various connection mechanisms and data formats.

DSP provides a uniform, consolidated interface for accessing and updating heterogeneous back-end
data. It enables a services-oriented approach to information access using data services.

From the perspective of a client application, a data service typically represents a distinct business
entity, such as a customer or order. Behind the scenes, the data service may aggregate the data that
comprises a single view of the data, for example, from multiple sources and transform it in a number
of ways. A data service may be related to other data services, and it is easy to follow these relationships
in DSP. Data services insulate the client application from the details of the composition of each
business entity. The client application only has to know the public interface of the data service.

This document describes how to create DSP-aware client applications. It explains the various client
access mechanisms that DSP supports and its main client-side data programming model, including
Service Data Objects (SDO). It also describes how to create update-capable data services using the
DSP update framework.

This guide provides information about how to leverage data services in your applications. For
information about creating data services in WebLogic Workshop, see the Data Services Developer’s
Guide.

What is a Data Services Platform Client?
In the typical organization, data flows in a bidirectional manner from a wide variety of sources,
including distributed databases, various files, applications from partners, or e-commerce exchange
markets.

Creating an application that can access and update distributed, disparate data sources can be
complex, challenging, and expensive: you must know how to use a wide variety of connection
mechanisms and data formats, and how to use the variety of APIs required to access and update each
back-end data source, for example.

Using DSP, data architects create data services that:

Insulates applications from having to access and update multiple disparate data sources.

Provides the ability to create data services that combine elements of multiple, disparate data
sources into, essentially, virtual databases.

../datasrvc/index.html
../datasrvc/index.html

Simpl i f y ing App l icat i on Data Programming

Client Application Developer’s Guide 1-3

Data Your Way
A DSP client is any process that consumes data services. A client application may be, for example, a
Java program, non-Java programs such as .NET applications, BEA WebLogic Workshop applications,
or JDBC/ODBC clients.

For client application developers needing to leverage such data assets, DSP supports multiple access
methods (see Figure 1-1):

Java clients can use data service functions through the DSP Mediator API.

Workshop applications (such as portals, business processes, and web applications) can use a
Data Service control.

Web services enable you to make DSP services available to a wide array of WebLogic and
non-WebLogic applications and integration channels.

The DSP JDBC driver provides JDBC and ODBC clients, such as reporting tools, with SQL-based
access to DSP information.

Figure 1-1 Accessing DSP Services

Whatever the client type, DSP gives application developers a uniform, services-oriented mechanism
for accessing and modifying heterogeneous data from external sources. Developers can focus on the
business logic of the application rather than details of various data source connections and formats.

client

Mediator

applications

data sources

 API JDBCWeb service

DSP Services Layer (SDO)

Data service
control

In t roduc ing Data Se rv i ces P la t fo rm fo r C l i en t App l i cat ion Deve lopers

1-4 Client Application Developer’s Guide

The Role of WebLogic Server and WebLogic Workshop
Data services are created in WebLogic Workshop, BEA’s integrated development environment for
building and deploying many types of applications: portals, Web services, and integration applications,
for example. The Data Services Platform application running under Workshop supports all aspects of
Data Services Platform creation.

What is a Data Service?
From a high-level perspective, a data service defines a distinct business entity such as a report that
describes a customer and customer orders. The data service defines a unified view by aggregating data
from any number of sources — relational database management systems (RDBMS), Web services,
enterprise applications, flat files, and XML files, for example. Data services can also transform data
from the original sources as needed.

In order to use data services, you need know only a few details, such as:

The name of the data service.

The functions and procedures exposed by the data service. (See What is a Data Services
Platform Client Application?)

The data types available.

Data service client applications can use data services in the same way that a Web service’s client
application invokes the operations of a Web service. Rather than invoking operations from a Java
client application, the data service client application invokes a data service routine.

Simpl i f y ing App l icat i on Data Programming

Client Application Developer’s Guide 1-5

Figure 1-2 Data Services Layer Exposes Functions and Procedures to Client Application Developers

Note: For complete information on creating data services see the DSP Data Services Developer’s
Guide.

What is a Data Services Platform Client Application?
A DSP client application is any application that invokes data service routines. Client applications can
include Java programs, non-Java programs such as Microsoft ADO.NET applications, BEA WebLogic
Workshop applications, or JDBC/ODBC clients:

Java client applications can use data service functions and procedures through the Data
Services Mediator API (also known simply as the Mediator API).

WebLogic Workshop applications (such as portals, business processes, and Web applications)
can leverage data services by means of Data Service controls. (Controls are reusable Java
components that can be used in WebLogic Workshop applications.) Data Service controls can be
used as the basis of many DSP-enabled application scenarios. For example:

– Data Service controls can be added to Web services, portal projects, and Web projects.

– Data Service controls can be used to generate Web services that can make DSP services
available to a wide variety of WebLogic and non-WebLogic applications and integration
channels.

– Data Service controls can be used within a JPD (Java process definition, a workflow
component).

../datasrvc/index.html
../datasrvc/index.html

In t roduc ing Data Se rv i ces P la t fo rm fo r C l i en t App l i cat ion Deve lopers

1-6 Client Application Developer’s Guide

The DSP JDBC driver provides JDBC and ODBC clients, such as reporting tools, with SQL-based
access to DSP data.

Regardless of the client type, DSP provides a uniform, services-oriented mechanism for accessing and
modifying distributed, heterogeneous data. Developers can focus on business logic, rather than on the
details of various data source connections and formats.

In your client application code, simply invoke the data service routine: the DSP engine:

Gathers data from the appropriate sources (via XQuery)

Instantiating results as data objects, and

Returns to your client application the materialized data objects.

These data objects conform to the Service Data Object (SDO) specification, a Java-based architecture
and API for data programming that is the result of joint effort by BEA and IBM.

Security Considerations in Client Applications
Data Services Platform administrators can control access to deployed DSP resources through
role-based security policies. DSP leverages and extends the security features of the underlying
WebLogic platform. Roles can be set up in the WebLogic Administration Console. (Refer to the DSP
Administration Guide for information about the DSP Console.)

Access policies for DSP resources can be defined at any level — on all data services in a deployment,
individual data services, individual data service functions, or even on individual elements returned by
the functions of a data service.

For complete information on WebLogic security, see:

 http://e-docs.bea.com/wls/docs81/security/index.html

Choosing a Data Services Programming Model
Application developers can choose from several models for accessing DSP services. The model chosen
will depend on the access mechanism you decide to used. The possible access methods are:

Data Mediator API

Data service control

Web Services

JDBC/ODBC

../admin/index.html
http://e-docs.bea.com/wls/docs81/security/index.html

Choos ing a Data Se rv i ces P rogramming Mode l

Client Application Developer’s Guide 1-7

Each access method has its own advantages and use. Table 1-3 provides a description of each of these
access methods and summarizes the advantages of the various models for accessing DSP services.

Table 1-3 Data Services Platform Access Models

Access
mechanism

Description Advantages/When to use...

Data Service
Mediator API

A Java interface for using data services.
Returns data as data objects, providing
full support for Service Data Objects
(SDO) programming.

For more information, see Chapter 2,
“DSP’s Data Programming Model and
Update Framework.”

• Can be developed with standard Java IDEs such
as BEA WebLogic Workshop, Eclipse, IntelliJ,
JBuilder, and others.

• Easy-to-use approach to developing Java
programs that use external data.

• Provides several access modes, including a
dynamic (untyped) interface through generic
SDO, a static (typed) interface, and an ad hoc
query interface.

• Seamless ability to submit data changes.

Data Service
Control

A Java control extension (JCX) file for
accessing DSP resources.

For more information, see Chapter 5,
“Accessing Data Services from WebLogic
Workshop Applications.”

• Best suited for BEA WebLogic Workshop
applications, including portals, business process
workflows, and pageflows.

• Leverages BEA WebLogic Workshop features for
working with controls, such as drag-and-drop
method and variable generation.

• Provides an ad hoc query interface for a highly
dynamic approach to querying information.

• Seamless ability to submit data changes.

In t roduc ing Data Se rv i ces P la t fo rm fo r C l i en t App l i cat ion Deve lopers

1-8 Client Application Developer’s Guide

Introducing Service Data Objects (SDO)
Service Data Objects (SDO), a specification proposed jointly by BEA and IBM, is a Java-based
architecture and API for data programming. SDO unifies data programming against heterogeneous
data sources. It simplifies data access, giving data consumers a consistent, uniform approach to using
data whether it comes from a database, web service, application, or any other system.

SDO uses the concept of disconnected data graphs. Under this architecture, a client gets a copy of
externally persisted data in a data graph, which is a structure for holding data objects. The client
operates on the data remotely; that is, disconnected from the data source. If data changes need to be
saved to the data source, a connection to the source is re-acquired. Keeping connections active for the
minimum time possible maximizes scalability and performance of applications.

To SDO clients, the data has a uniform appearance no matter where it came from or what its source
format is. Enabling this unified view of data in the SDO model is the Data Service Mediator. The
mediator is the intermediary between data clients and back-end systems. It allows clients to access
data services and invoke their functions to acquire data or submit data changes. DSP serves as such a
SDO mediator.

Web Service A data service can be wrapped as a Web
service, providing the data service with
the benefits of web service features.

For more information, see Chapter 4,
“Enabling DSP Applications for Web
Service Clients.”

• Makes standard Web service features available to
data services, such as WS-Security, WSDL
descriptors, and more.

• Makes data services usable from .NET
applications, or other non-Java programs.

• Ideal for XML-based SOA architectures

JDBC/ODBC Client applications can use JDBC or
ODBC to access DSP services using SQL
queries. The DSP JDBC driver supports
SQL-92.

For more information, see Chapter 8,
“Using the Data Services Platform JDBC
Driver.”

• Works with applications designed for JDBC
access, such as Cognos business intelligence
software and Crystal Reports.

• Enables users to leverage existing SQL skills and
resources.

• Limited to flat views of data.

Table 1-3 Data Services Platform Access Models

Access
mechanism

Description Advantages/When to use...

I n t roduc ing Serv i ce Data Ob jec ts (SDO)

Client Application Developer’s Guide 1-9

On the client side, information takes the form of data objects. Data objects are the basic unit of
information prescribed by the SDO architecture. SDO has both static (typed) and dynamic (untyped)
interfaces for working with data objects.

Static interfaces provide a programmer-friendly model for getting and setting properties in a data
object. Accessors are generated for each property in the data type of a data service, for example
getCustomerName() and setCustomerName() for a Customer data object. Static interfaces depend
on a schema for type information.

The dynamic interface, on the other hand, is useful when a type is unknown or undefined at runtime.
Dynamic interface calls are in such forms as:

get(“CustomerName”)

set(“CustomerName”, “J. Dough”).

In keeping with the goals of a service-oriented architecture (SOA), data graphs are self-describing.
The metadata API enables applications, tools, and frameworks to inspect information on the data
contained in a data graph. The data is described by an XML schema, which describes the names of
properties, their types, and more.

For details on using SDO, see Chapter 2, “DSP’s Data Programming Model and Update Framework.”

Update Frameworks and the Data Service Mediator
The SDO specification does not specify an update framework, but it does discuss the need for mediator
services, in general, to handle updates to data objects; the SDO specification leaves the details up to
implementors.

The SDO specification allows for many types of mediators, each intended for a particular type of query
language or back-end system. DSP provides a Data Service Mediator, a server-side component of DSP’s
XQuery processing engine that serves as the intermediary between data services and client
applications or processes.

The Data Service Mediator facilitates updates to the various data sources that comprise any data
service. DSP’s Mediator service is the core mechanism for the DSP update framework. The Mediator
handles updates to relational and non-relational data sources as follows:

Relational data sources. Relational database management systems (RDBMS), such as IBM,
Oracle, Microsoft SQL Server, and any other SQL-92 compliant RDBMS. For relational data
sources, DSP propagates changes to relational data sources automatically. See “The Data
Services Platform Update Framework” on page 2-16 for an overview of default behavior.
(However, note that you can override the default update processing for a relational source if you

In t roduc ing Data Se rv i ces P la t fo rm fo r C l i en t App l i cat ion Deve lopers

1-10 Client Application Developer’s Guide

like, or when necessary. See “When Are Update Overrides Required for Relational Data
Sources?” on page 9-4 for more information.)

Non-relational data sources. This included non-relational data sources, such as Web services,
XML files, and flat files. Updates to non-relational data sources always require custom
server-side coding; specifically, an update override class. See “Developing the UpdateOverride
Class” on page 9-6 for information about how to create a Java class to customize server-side
behavior.

Typical Client Application Development Process
Developing client applications that invoke Data Services Platform functions and procedures presumes
that a DSP project has been deployed or is being deployed. See the Data Services Developer’s Guide
for detailed information about developing data services.

Developing a DSP-enabled client applications encompasses these steps:

1. Identify the data services you want to use in your application. The Data Services Platform Console
can be used to find all services available on your WebLogic Server. The DSP Console serves as a
data service registry within the DSP architecture; it shows available data services, including the
specific functions and procedures that each data service provides.

2. Choose the data access approach that best suits your needs. (Table 1-3, “Data Services Platform
Access Models,” on page 1-7 describes the advantages of the different access mechanisms.) The
approach you choose also depends on precisely how the data service has been deployed.

For example, if the data service is hosted as a Web service, you can develop a Web service client
application using Java in conjunction with the service’s WSDL file.

Similarly, if the data service is incorporated in a portal, business process, or Web application,
your client application development process may take place entirely in the context of the
server, as a set of pageflows or other server-side artifacts.

3. Obtain the required JAR files (see Table 1-5, “Data Services Platform Java Archive Files,” on
page 1-12). To use the typed data service and SDO interfaces, obtain the DSP application’s
generated Mediator client JAR file from your DSP administrator or data architect. Or generate the
file yourself by following the steps outlined in “Generating a Static Mediator API JAR File” on
page 3-5.

Figure 1-4 provides a conceptual overview of the various approaches, highlighting some of the
relationships among various sub-systems and components.

../datasrvc/index.html

Typ ica l C l i ent App l i cat ion Deve lopment P rocess

Client Application Developer’s Guide 1-11

Figure 1-4 Types of Data Services Platform Client Applications

Development Resources
Client application developers typically work with a small set of APIs, contained in JAR files. The APIs
are primarily described through Javadocs (see “DSP Mediator API Javadoc” on page 1-13).

Runtime Client JAR Files
Data Services Platform APIs are contained the packages listed in Table 1-5.

In t roduc ing Data Se rv i ces P la t fo rm fo r C l i en t App l i cat ion Deve lopers

1-12 Client Application Developer’s Guide

Table 1-5 Data Services Platform Java Archive Files

Name Description Location

[App]-ld-client.jar Contains generated typed
interfaces for data services
and their data types (static
data APIs). The name of the
file is is prefixed by the
name of the DSP application
from which the static
interfaces are generated.

Such an application-specific
JAR file is not required if the
only interface to Data
Services Platform routines is
through an untyped interface
using generic SDO.

(Provided by your Data Services Platform
administrator.)

ld-client.jar The dynamic, or untyped,
data service APIs, including
generic data service
interfaces and ad hoc query
interfaces.

<bea_home>\weblogic81\liquiddata
\lib\

wlsdo.jar The interfaces defined in the
SDO specification, including
untyped data interfaces and
data graph interfaces.

<bea_home>\weblogic81\liquiddata
\lib\

weblogic.jar The common WebLogic APIs. <bea_home>\weblogic81\server\lib
\

xbean.jar
xqrl.jar
wlxbean.jar

XMLBean classes and
interfaces on which the Data
Services Platform SDO
implementation relies. Also
enables XPath expressions in

untyped data accessors. 1

1. A “query too complex” exception is raised if the xqrl.jar and wlxbean.jar files are not in
the JVM’s CLASSPATH when an XPath expression is executed. If you encounter this error, make sure
that these two JAR files are in the CLASSPATH.

<bea_home>\weblogic81\server\lib
\

Typ ica l C l i ent App l i cat ion Deve lopment P rocess

Client Application Developer’s Guide 1-13

DSP Mediator API Javadoc
The Data Services Platform Mediator API describes the routines needed by DSP client applications to
invoke various DSP routines.

Client application developers will find Javadoc helpful for creating client applications that invoke
data service routines. Data services developers and architects will find the Javadoc useful for
understanding how to customize update behavior.

You can find javadoc for the Data Services Platform 2.1 Mediator API at:

http://e-docs.bea.com/aldsp/docs21/javadoc/index.html

Client applications built on earlier versions of Data Services Platform can continue to use the 2.0.1
mediator API routines. These are described in a Javadoc named javadoc-dsp201 and is available at:

http://e-docs.bea.com/aldsp/docs21/javadoc-dsp201/index.html

Javadoc is also provided in ZIP file format; it is available for download from the DSP e-docs Web site:

http://e-docs.bea.com/aldsp/docs21/index.html

Performance Considerations
Data service performance is the result of the end-to-end components that make up the entire system,
including:

Data service design. The number of data sources, complexity of logical data source
consolidation, and other data service design considerations can affect performance.

Number of clients accessing the data service. Number of simultaneous clients can affect
performance.

Performance of the underlying data sources. When data services access underlying data the
availability and availability and performance of those systems can affect performance.

Network topology. Overall available bandwidth must be measured against the number of
applications running on the WebLogic Server, number of other applications in general
consuming network bandwidth (can affect client response times).

Hardware resources. The number of CPUs, processing power, memory allocation, and other
factors for each and every platform throughout the system, client and server alike, can affect
performance.

Before creating a client application for a data service, it is recommended that you benchmark
performance of each underlying data source, and then benchmark the performance of the data service

http://e-docs.bea.com/aldsp/docs21/javadoc/index.html
http://e-docs.bea.com/aldsp/docs21/javadoc-dsp201/index.html
http://e-docs.bea.com/aldsp/docs21/index.html

In t roduc ing Data Se rv i ces P la t fo rm fo r C l i en t App l i cat ion Deve lopers

1-14 Client Application Developer’s Guide

as you develop it. Use load-testing tools to determine the maximum number of clients that your data
service can support.

In addition, you can use DSP’s auditing capabilities to instrument your code, thereby gaining
performance profile information that you can use to identify and resolve performance problems if they
occur. For detailed information on DSP audit capabilities see DSP Administration Guide.

Additional Technical and Product Information
A compendium of technical and product information related to BEA AquaLogic Data Services
Platform can be found in the introductory chapter of the DSP Concepts Guide.

../admin/index.html
../concepts/index.html

Client Application Developer’s Guide 2-1

C H A P T E R 2

DSP’s Data Programming Model and
Update Framework

BEA AquaLogic Data Services Platform (DSP) implements the Service Data Objects (SDOs) as its data
client-application programming model. SDO is an architecture and set of APIs for working with data
objects while disconnected from their source. In DSP, SDOs—whether typed or untyped data
objects—are obtained from data services by using the Mediator APIs, or through Data Service
controls. (See “Introducing Service Data Objects (SDO)” on page 1-8.)

Client applications manipulate the data objects as required for the business process at hand, and then
submit changed objects to the data service, for propagation to the underlying data sources. Although
the SDO specification does not define one, it does discuss the need for mediator services, in general,
that can send and receive SDOs; the specification also discusses the need for handling updates to data
sources, again, without specifying an implementation: The SDO specification leaves the details up to
implementors as to how mediator services are implemented, and how they should handle updates to
data objects.

As discussed in “Update Frameworks and the Data Service Mediator” on page 1-9, DSP’s Mediator is
the process that not only handles the back-and-forth communication between client applications and
data services, it also facilitates updates to the various data sources that comprise any data service.

This chapter includes information about DSP’s implementation of the SDO data programming model,
as well as DSP’s update framework. It includes:

Data Services Platform and Service Data Objects (SDOs)

The Data Services Platform Update Framework

DSP ’s Data P rogramming Mode l and Update F ramework

2-2 Client Application Developer’s Guide

Data Services Platform and Service Data Objects (SDOs)
When you invoke a data service’s read or navigation function (through the Data Service Mediator API
or from a Data Service control), the data service returns a data graph comprising one or more data
objects. Data objects and data graphs are two fundamental artifacts of the SDO data programming
model. As shown in Figure 2-1, a data graph comprises:

– A root object that typically corresponds to the root data type of a data service’s return type.

– One or more data objects.

– A change summary.

– Metadata about the data objects; for example, the XML structure of a "CUSTOMER,"
comprising a LAST_NAME and an EMAIL_ADDRESS.

Each of these can be described in more detail, as follows:

Data Graph. A data graph is a data type, the primary construct for SDO-based data
programming. It is a data structure that serves as something of a container for related data
objects. Data graphs encompass the data objects as instantiated from the data service, and
track all changes made to those data objects.

Change Summary. An object that tracks changes to data objects. A change summary exists only
in the context of an associated data graph. As changes are made to the data objects that
comprise the data graph—adds, deletes, or changes to the data objects or any of their
properties—the changes are captured in the change summary.

The change summary is used by the Mediator (in conjunction with a logical data service’s
decomposition map) to derive the update plan and ultimately, to update data sources. The
change summary submitted with each changed SDO remains intact, regardless of whether or
not the submit() succeeds, so it can support rollbacks when necessary.

Data Object. A data object is a structure for containing property values. Properties can be
simple types or complex types.

– Simple types. Simple types comprise primitive data types, such as string or int, and
correspond to leaf nodes in XML document trees.

– Complex types. Complex types correspond to branch nodes in an XML document tree and
may contain other data objects.

Data Se rv ices P la t fo rm and Serv ice Data Ob jects (SDOs)

Client Application Developer’s Guide 2-3

Figure 2-1 Client Applications and Data Service Mediator Send and Receive Data Graphs

Table 2-2 summarizes the various SDO data programming artifacts and lists an example of each (as
shown in Figure 2-1).

Table 2-2 Data Graph Artifacts and Examples

Data Graph and Related Artifacts Example

DataGraph CUSTOMERDataGraph

DataObject CUSTOMER0, ORDERS

Root Object CUSTOMERDocument

ChangeSummary CHANGESUMMARY

Property CUSTOMERID, LAST_NAME

Simple Type CUSTOMERID

DSP ’s Data P rogramming Mode l and Update F ramework

2-4 Client Application Developer’s Guide

Static and Dynamic Data APIs
SDO specifies both static (typed) and dynamic (untyped) interfaces for data objects:

Static. The static data API is an XML-to-Java API binding that contains methods that
correspond to each element of the data object returned by the data service. These generated
interfaces provide both getters and setters; for example, getCustomer(), setCustomer(). For
examples see Table 2-5, “Static (Typed) Data API Getters and Setters,” on page 2-7.

Dynamic. The dynamic data API provides generic getters and setters for working with data
objects. Elements are passed as arguments to the generic methods. For example,
get("Customer") or set("Customer").

The dynamic data API can be used with data types that have not yet been deployed at development
time.

Table 2-3 summarizes the advantages of each approach.

Complex Type ORDERS

Metadata <CUSTOMER>
<LAST_NAME></LAST_NAME>
<EMAIL_ADDRESS/>
</CUSTOMER>

Table 2-3 Static and Dynamic Data APIs

Data Model Advantages...

Static Data API • Easy-to-implement interface; code is easy to read and maintain.

• Compile-time type checking.

• Enables code-completion in BEA WebLogic Workshop Source View.

Dynamic data API • Dynamic; allows discovery.

• Runtime type checking.

• Allows for a general-purpose coding style.

Table 2-2 Data Graph Artifacts and Examples

Data Graph and Related Artifacts Example

Data Se rv ices P la t fo rm and Serv ice Data Ob jects (SDOs)

Client Application Developer’s Guide 2-5

Static Data API
SDO’s static data API is a typed Java interface generated from a data service’s XML schema definition.
It is similar to JAXB or XMLBean static interfaces. The interface files, packaged in a JAR, are typically
generated by the DSP data services developer using WebLogic Workshop, or by using one of the
provided tools (see “Developing Static Web Service Clients” on page 4-11 for more information).

The generated interfaces extend both the dynamic data API (specifically, the DataObject interface)
and the XmlObject interface. Thus, the generated interfaces provide typed getters and setters for all
properties of the XML datatype.

An interface is also generated for each complex property (such as CREDIT and ORDER shown in
Figure 2-4), with getters and setters for each of the properties that comprise the complex type.

In addition, for properties that may have multiple occurrences, getters and setters are also generated
for manipulating arrays and array elements. A multiple-occurring property is an XML schema element
that has its maxOccurs attribute set to either unbounded or greater than one. In the DSP Console
Metadata Browser, such elements are flagged with an asterisk—for example, ORDER* and POITEM*
(see Figure 2-4) indicate that an array or order data objects (ORDERS[]) will be returned. For results
involving repeating objects, you can cast the root element to an array of returned objects
(datatypename[])

Note: In prior releases of Data Services Platform, an "ArrayOf..." schema element was created to
serve as a container for array types returned as part of a Data Graph. Some references to the
ArrayOf mechanism may remain in code samples and documentation.

As an example of how static data APIs get generated, given the CUSTOMER data type shown in
Figure 2-4, generating typed client interfaces results in:

CUSTOMER, CUSTOMERDocument, CREDIT, ORDER, and POITEM interfaces, each of which
includes getters, setters, and factory classes (for instantiating typed data objects and their
Properties).

An interface for the CUSTOMERNAME string attribute.

Getters and setters for working with members of arrays of CREDIT, ORDER, and POITEM
elements.

DSP ’s Data P rogramming Mode l and Update F ramework

2-6 Client Application Developer’s Guide

Figure 2-4 CUSTOMER Return Type Displayed in DSP Console’s Metadata Browser

When you develop Java client applications that use SDO’s static data APIs, you will import these
XMLBeans-generated typed interfaces into your Java client code. For example:

import appDataServices.AddressDocument;

The SDO API interfaces use XMLBeans for object serialization and deserialization. As a client
application developer, you rarely need to know such details. However, developers who are integrating
DSP with WebLogic Integration workflow components (JPDs, or Java process definitions) will need to
modify the default serialization-deserialization in their JPD code that uses data objects. For more
information, see Chapter 7, “Using Workflow with DSP-Enabled Applications.”

Since DSP uses XMLBeans, many features of the underlying XMLBeans technology are available in
SDO as well. For example, DataObjects can be cast to Strings using the XmlObjects toString()
method, for printing to output.

Data Se rv ices P la t fo rm and Serv ice Data Ob jects (SDOs)

Client Application Developer’s Guide 2-7

Table 2-5 lists static data API gettings and setters.

Table 2-5 Static (Typed) Data API Getters and Setters

Static Data API (Generated) Description Examples

Type getPropertyName() Returns the value of the
property. A static
getPropertyName() method is
generated for each attribute or
element that has a single
occurrence.

getCUSTOMER(),
getCUSTOMERNAME(),
getCREDITRATING(),
getCREDITSCORE()

Type[]
getPropertyNameArray()

For multiple occurrence
elements, returns all
PropertyName elements.

getCREDITArray()

Type
getPropertyNameArray(
int PropertyIndex)

Returns the PropertyName
child element at the specified
index.

getCREDITArray(int),
setCREDITSCORE(int)

void setPropertyName(Type
newValue)

Sets the value of the property to
the newValue. Generated when
PropertyName is an attribute or
an element with single
occurrence.

setCUSTOMER(CUSTOMER),
setCUSTOMERNAME(String),
setCREDITRATING(String)

void
setPropertyNameArray(
Type[] newValue)

Sets all PropertyName
elements.

setCREDITArray(CREDIT[])

void
setPropertyNameArray(
Type newValue, int
PropertyIndex)

Sets the PropertyName child
element at the specified index.

setCREDITArray(int,
CREDIT)

boolean
isSetPropertyName()

Determines whether the
PropertyName element or
attribute exists in the
document. Generated for
optional elements and
attributes. (An optional
element has a minOccurs
attribute set to 0; an optional
attribute has a use attribute set
to optional.)

isSetCustomerStreetAddre
ss2()

DSP ’s Data P rogramming Mode l and Update F ramework

2-8 Client Application Developer’s Guide

void
insertPropertyName(int
index, PropertyNameType
newValue)

Inserts the specified
PropertyName child element at
the specified index.

insertNewCREDIT(int)

int
sizeOfPropertyNameArray(
)

Returns the current number of
property child elements.

sizeOfCREDITArray()

void unSetPropertyName() Removes the element or
attribute of PropertyName from
the document. Generated for
elements and attributes that are
optional. In schema, and
optional element has an
minOccurs attribute set to 0; an
optional attribute has a use
attribute set to optional.

unSetCustomerStreetAddre
ss2()

void
removePropertyName(int
PropertyIndex)

Removes the PropertyName
child element at the specified
index.

removeCREDIT(int)

void addPropertyName(
PropertyNameType
newValue)

Adds the specified
PropertyName to the end of the
list of PropertyName child
elements.

addNewCREDIT(),
addNewCUSTOMER()

boolean
isSetPropertyNameArray(i
nt PropertyIndex)

Determines whether the
PropertyName element at the
specified index is null.

isSetCustomerArray(3)

void
unsetPropertyNameArray(
int PropertyIndex)

Sets the value of PropertyName
element at the specified index
to null.

Note: After you call unset
and then call set, the
return value is false.

unSetCustomerArray(3)

Table 2-5 Static (Typed) Data API Getters and Setters

Static Data API (Generated) Description Examples

Data Se rv ices P la t fo rm and Serv ice Data Ob jects (SDOs)

Client Application Developer’s Guide 2-9

XML Schema-to-Java Type Mapping Reference
DSP client application developers can use the Data Services Platform Console to view the XML
schema types associated with data services (see Figure 2-4, “CUSTOMER Return Type Displayed in
DSP Console’s Metadata Browser,” on page 2-6). The Return Type tab indicates the data type of each
element—string, int, or complex type, for example. The XML schema data types are mapped to data
objects in Java using the data type mappings shown in Table 2-6.

Table 2-6 XML Schema to Java Data Type Mapping

XML Schema
Type

SDO Java Type XML Schema Type SDO Java Type

xs:anyType commonj.sdo.DataO
bject

xs:integer java.math.BigInteger

xs:anySimp
leType

String xs:language String

xs:anyURI String xs:long long

xs:base64B
inary

byte[] xs:Name String

xs:boolean boolean xs:NCName String

xs:byte byte xs:negativeIntege
r

java.math.BigInteger

xs:date java.util.Calenda
r (Date)

xs:NMTOKEN String

xs:dateTim
e

java.util.Calenda
r

xs:NMTOKENS String

xs:decimal java.math.BigDeci
mal

xs:nonNegativeInt
eger

java.math.BigInteger

xs:double double xs:nonPositiveInt
eger

java.math.BigInteger

xs:duratio
n

String xs:normalizedStri
ng

String

xs:ENTITIE
S

String xs:NOTATION String

DSP ’s Data P rogramming Mode l and Update F ramework

2-10 Client Application Developer’s Guide

Dynamic Data API
The dynamic data API has generic property getters and setters, such as set() and get(), as well as
getters and setters for specific Java data types (String, Date, List, BigInteger, and BigDecimal, for
example). Table 2-7 lists representative APIs from SDO’s dynamic data API. The propertyName
argument indicates the name of the property whose value you want to get or set; propertyValue is the
new value. The dynamic data API also includes methods for setting and getting a DataObject’s
property by indexValue. This includes methods for getting and setting properties as primitive types,
which include setInt(), setDate(), getString(), and so on.

xs:ENTITY String xs:positiveIntege
r

java.math.BigInteger

xs:float float xs:QName javax.xml.namespace.
QName

xs:gDay java.util.Calenda
r

xs:short short

xs:gMonth java.util.Calenda
r

xs:string String

xs:gMonthD
ay

java.util.Calenda
r

xs:time java.util.Calendar

xs:gYear java.util.Calenda
r

xs:token String

xs:gYearMo
nth

java.util.Calenda
r

xs:unsignedByte short

xs:hexBina
ry

byte[] xs:unsignedInt long

xs:ID String xs:unsignedLong java.math.BigInteger

xs:IDREF String xs:unsignedShort Int

xs:IDREFS String xs:keyref String

xs:int int

Table 2-6 XML Schema to Java Data Type Mapping

XML Schema
Type

SDO Java Type XML Schema Type SDO Java Type

Data Se rv ices P la t fo rm and Serv ice Data Ob jects (SDOs)

Client Application Developer’s Guide 2-11

Unlike the static data API, which eliminates underscores in method names generated from types that
might include such characters ("LAST_NAME" results in a getLASTNAME() method, for example),
the dynamic data API requires that field names be referenced precisely, as in get("LAST_NAME"). As
an example, assuming that you have a reference to a CUSTOMER data object, you can use the dynamic
data API to get the LAST_NAME property as follows:

String lastName = (String) customer.get("LAST_NAME");

For a complete reference of the dynamic data API, see the DSP Javadoc (“DSP Mediator API Javadoc”
on page 1-13). For documentation on the SDO 1.0 API see the DataObject interface in the
commonj.sdo package. It is available at:

http://dev2dev.bea.com/technologies/commonj/sdo/index.jsp

Table 2-7 lists dynamic data API gettings and setters.

Table 2-7 Dynamic (Untyped) Data API Getters and Setters

Dynamic Data API Description Example

get(int PropertyIndex) Returns the PropertyName
child element at the
specified index.

get(5)

set(int PropertyIndex,
Object newValue)

Sets the value of the
property to the newValue.

set(5, CUSTOMER3)

set(String
PropertyName, Object
newValue)

Sets the value of the
PropertyName to the
newValue.

set("LAST_NAME", "Nimble")

set(commonj.sdo.Prope
rty PropertyName,
Object newValue)

Sets the value of
PropertyName to the
NewValue

set(LASTNAME, "Nimble")

getType(String
PropertyName)

Returns the value of the
PropertyName. Type
indicates the specific data
type to obtain.

getBigDecimal("CreditScore")

unset(int
PropertyIndex)

Sets the value of
PropertyName element at
the specified index to null.

unset(5)

http://dev2dev.bea.com/technologies/commonj/sdo/index.jsp

DSP ’s Data P rogramming Mode l and Update F ramework

2-12 Client Application Developer’s Guide

XPath Support in the Dynamic Data API
One of the benefits of DSP’s use of XMLBeans technology is support for XPath in the dynamic data API.
XPath expressions give you a great deal of flexibility in how you locate data objects and attributes in
the dynamic data API’s accessors. For example, you can filter the results of a get() method invocation
based on data elements and values:

company.get("CUSTOMER[1]/POITEMS/ORDER[ORDERID=3546353]")

The SDO implementation goes beyond basic XPath 1.0 support by adding zero-based array index
notation (".index_from_0") to XPath’s standard bracketed notation ([n]). As an example, Table 2-8

unset(commonj.sdo.Pro
perty PropertyName)

Sets the value of the
specified PropertyName to
null.

unset(LASTNAME)

unset(String
PropertyName)

Sets the value of the
specified PropertyName to
null.

unset("LAST_NAME")

createDataObject(comm
onj.sdo.Property
PropertyName)

Returns a new DataObject
for the specified
containment property.

createDataObject(LASTNAME)

createDataObject(Stri
ng PropertyName)

Returns a new DataObject
for the specified
containment property.

createDataObject("LAST_NAME"
)

createDataObject(int
PropertyIndex)

Returns a new DataObject
for the specified
containment property.

createDataObject(5)

createDataObject(Stri
ng PropertyName,
String namespaceURI,
String typeName)

Returns a new DataObject
for the specified
containment property.

createDataObject("LAST_NAME"
,"http://namespaceURI_here",
"String")

delete() Removes the object from its
container and unsets all
writeable properties.

delete(CUSTOMER)

Table 2-7 Dynamic (Untyped) Data API Getters and Setters

Dynamic Data API Description Example

Data Se rv ices P la t fo rm and Serv ice Data Ob jects (SDOs)

Client Application Developer’s Guide 2-13

compares the XPath standard and SDO augmented notations to refer to the same element, the first
ORDER child node under CUSTOMER (Table 2-8).

Zero-based indexing is convenient for Java programmers who are accustomed to zero-based counters,
and may want to use counter values as index values without adding 1.

DSP fully supports both the traditional index notation and the augmented notation. However, note
that the SDO pre-processor transparently replaces the zero-based form with one-based forms, to avoid
conflicts with elements whose names include dot numbers, such as <myAcct.12>.

Keep in mind these other points regarding DSP’s XPath support:

Expressions with double adjacent slashes ("//") are not supported. As specified by XPath 1.0,
you can use an empty step in a path to effect a wildcard. For example:

("CUSTOMER//POITEM")

In this example, the wildcard matches all purchase order arrays below the CUSTOMER root,
which includes either of the following:

CUSTOMER/ORDERS/POITEM

CUSTOMER/RETURNS/POITEM

Because this notation introduces type ambiguity (types can be either ORDERS or RETURNS), it
is not supported by the DSP SDO implementation.

Attribute notation ("@") cannot be used to identify elements. According to the SDO
specification, the notation for denoting an attribute "@" can be used anywhere in the path
because attributes and elements are used interchangeably as properties. However, because DSP
implements SDO to XML data binding, the distinction between attributes and elements must be
preserved. Attribute notation can be used to identify only the attributes that are in the DSP
data type. For example, the ID attribute of the following element:

<ORDER ID="3434">

is accessed with the following path:

ORDER/@ID

Table 2-8 XPath Standard and SDO Augmented Notation

XPath Standard Notation SDO Augmented Notation

get("CUSTOMER/ORDER[1]"); get("CUSTOMER/ORDER.0");

DSP ’s Data P rogramming Mode l and Update F ramework

2-14 Client Application Developer’s Guide

Note: For more examples of using XPath expressions with SDOs, see “Step 2: Accessing Data Object
Properties” on page 3-25.

Obtaining Type Information about Data Objects
The dynamic data API returns generic data objects. To obtain information about the properties of a
data object, you can use methods available in SDO’s Type interface. The Type interface (located in the
commonj.sdo package) provides several methods for obtaining information, at runtime, about data
objects, including a data object’s type, its properties, and their respective types.

According to the SDO specification, the Type interface (see Table 2-9) and the Property interface (see
Table 2-10) comprise a minimal metadata API that can be used for introspecting the model of data
objects. For example, the following obtains a data object’s type and prints a property’s value:

DataObject o = ...;
Type type = o.getType();
if (type.getName().equals("CUSTOMER") {
 System.out.println(o.getString("CUSTOMERNAME")); }

Once you have an object’s data type, you can obtain all its properties (as a list) and access their values
using the Type interface’s get Properties() method, as shown in Listing 2-1.

Listing 2-1 Using SDO’s Type Interface to Obtain Data Object Properties

public void printDataObject(DataObject dataObject, int indent) {

 Type type = dataObject.getType();

 List properties = type.getProperties();

 for (int p=0, size=properties.size(); p < size; p++) {

 if (dataObject.isSet(p)) {

 Property property = (Property) properties.get(p);

 // For many-valued properties, process a list of values

 if (property.isMany()) {

 List values = dataObject.getList(p);

 for (int v=0; count=values.size(); v < count; v++) {

 printValue(values.get(v), property, indent);

 }

 else { // Forsingle-valued properties, print out the value

 printValue(dataObject.get(p), property, indent);

 }

 }

Data Se rv ices P la t fo rm and Serv ice Data Ob jects (SDOs)

Client Application Developer’s Guide 2-15

 }

 }

Table 2-9 lists other useful methods in the Type interface.

Table 2-10 lists the methods of the Property interface.

Table 2-9 Type Interface Methods

Method Description

java.lang.Class getInstanceClass() Returns the Java class that this type represents.

java.lang.String getName() Returns the name of the type.

java.lang.List getProperties Returns a list of the properties of this type.

Property getProperty(
 java.lang.String propertyName)

Returns from among all Property objects of the
specified type the one with the specified name.
For example, dataObject.get("name") or
dataObject.get(dataObject.getType().getProperty
("name"))

java.lang.String getURI() Returns the namespace URI of the type.

boolean isInstance(
 java.lang.Object object)

Returns True if the specified object is an instance
of this type; otherwise, returns false.

Table 2-10 Property Interface Methods

Method Description

Type getContainingType() Returns the containing type of this property.

java.lang.Object getDefault() Returns the default value this property will have in
a data object where the property hasn't been set

java.lang.String getName() Returns the name of the property.

Type getType() Returns the type of the property.

DSP ’s Data P rogramming Mode l and Update F ramework

2-16 Client Application Developer’s Guide

Role of the Mediator and SDOs
In DSP, data graphs are passed between data services and client applications: when a client
application invokes a read function on a data service, for example, a data graph is sent to the client
application. The client application modifies the content as appropriate—adds an order to a customer
order, for example—and then submits the changed data graph to the data service. The Data Service
Mediator is the process that receives the updated data objects and propagates changes to the
underlying data sources.

The Data Service Mediator is the linchpin of the update process. It uses information from submitted
SDOs (change summary, for example) in conjunction with other artifacts to derive an update plan for
changing underlying data sources. For relational data sources, updates are automatic. The artifacts
that comprise DSP’s update framework, including the Mediator, and how the default update process
works, are described in more detail below.

The Data Services Platform Update Framework
As mentioned previously, the SDO specification does not define any specific mediators, but allows for
the variety needed to support any type of back-end data sources. DSP’s implementation of an SDO
mediator service is the Data Service Mediator (or DSP Mediator) shown in Figure 2-1. The DSP
Mediator plays an important role in facilitating updates to the various data sources that comprise any
data service. It is the core mechanism for the DSP update framework; the update framework also
encompasses several programming artifacts, as follows:

Decomposition function. The decomposition function is the first read function contained in a
data service, unless a different function has been specified by the data service architect
through the Property Editor. The decomposition function is used by the Mediator to create a
decomposition map (for logical data services only) that identifies the constituent data services.
From these constituent data services, the Mediator instantiates data objects corresponding to
the changed values in the updated data object.

boolean isContainment() Returns True if the property represents by-value
composition.

boolean isMany() Returns True if the property is many-valued.

Table 2-10 Property Interface Methods

Method Description

The Data Se rv i ces P lat fo rm Update F ramework

Client Application Developer’s Guide 2-17

Decomposition map. A decomposition map (associated with logical data services only) provides
information about how a data object based on that data service is constructed (from the
underlying data sources or other data services).

Update plan. The indicates the physical resources that should be modified, and how they
should be modified. An update plan is generated for any changed data objects bound to logical
data services (see Figure 2-11). The update plan does not include unchanged objects, nor does
it have access to any data services that are not included in the update plan: only changed
objects are included in the update plan.

KeyPair. A keypair is an object used by DSP to keep track of primary-foreign key relationships,
and the relationship of properties of data objects that have been populated from various layers
of a multi-layer data service. (A keypair is sometimes described as a property map.)

Figure 2-11 DSP’s Decomposition Process Populates an Update Plan with Constituent Data Objects

From a lower-level perspective, an update plan is a Java object that comprises a tree of
DataServiceToUpdate instances — the names of the data services that comprise the changed data
objects. DataServiceToUpdate, KeyPair, UpdatePlan, and DataServiceMediatorContext have been
implemented as classes in the SDO Mediator APIs, specifically in:

com.bea.ld.dsmediator.update package

customersDocument

decomposition process

 submit document

OrderSDO(0)

OrderSDO(1)

OrderSDO(2)

CustomerSDO
update plan

DSP ’s Data P rogramming Mode l and Update F ramework

2-18 Client Application Developer’s Guide

See “DSP Mediator API Javadoc” on page 1-13 for information on product Javadocs.

How It Works: The Decomposition Process
An important characteristic of the SDO model is that back-end data sources associated with modified
objects are not changed until the submit() method is called on the data service bound to the objects.

After receiving a data object (the changed SDO) from a calling client application, the Mediator always
looks for an update override class first (regardless of whether the data service is a physical or logical
data service). If an update override class is available, it is instantiated and executed.

Note: Update overrides are covered in detail in Chapter 9, “Customizing Data Service Update
Behavior.” This chapter covers the basics of the default update processing only.

The Mediator first determines the data lineage—the origins of the data—by using the data service’s
decomposition function to map each constituent in a data object to its underlying data source or data
service. In addition, any inverse functions specified for the data service are used by the Mediator to
define a complete decomposition map.

Note: The usage of inverse functions is described in "Best Practices and Advanced Topics", Data
Services Developer’s Guide.

As discussed above, for any logical data service, DSP’s Mediator uses the decomposition function to
create a decomposition map that identifies constituent data services and then instantiates data
objects that correspond to the data objects’ changed values. For example, as shown in Figure 2-11, a
customersDocument object that comprises updated customer information (from a Customer data
service) and three updated Orders (from an Orders data service) would be decomposed into four
objects.

An important distinction between logical and physical data service updates is as follows:

Physical Data Service Update Process. The data source is updated immediately. No
decomposition is required.

Logical Data Service Update Process. A logical data service must be decomposed into its
constituent data services.

Physical Data Service Update Process
For a physical data service, changes to the data sources are propagated immediately (unless an update
override class is associated with the data service).

Note: Neither a decomposition map nor an update plan is needed for a physical data service.

../datasrvc/index.html
../datasrvc/index.html

The Data Se rv i ces P lat fo rm Update F ramework

Client Application Developer’s Guide 2-19

Upon receiving an SDO (whether from a submit() method invocation, or as a projection from a
higher-level data service), the Mediator first checks for an UpdateOverride class associated with the
data service.

No update override. If there is no UpdateOverride the Mediator simply propagates the changes
to the underlying data sources.

With update override. If there is an UpdateOverride the Mediator executes the update override
class.

Note: For non-relational data sources, an update override is always required, since there is no
automatic update processing for non-relational data sources.

For relational data sources without an update override, updates are handled automatically. However,
non-relational data sources such as Web services, flat files, XML files, require an update override class
that contains the processing logic necessary to make changes to the data source.

Logical Data Service Update Process
A logical data service can comprise any number of logical or physical data services. When a top-level
data service function executes, the lower-level logical data services that it comprises are "folded in"
so that the function appears to be written directly against physical data services. Only information
that has been projected in the top-level data service is passed to the next lower-level data service.

Figure 2-12 provides an overview of the steps involved in updating a logical data service:

1. The client application invokes the submit() method, passing the changed data object and its
associated data graph to the Mediator. The data graph has a change summary detailing the
changes to the object.

2. The Mediator receives the submitted data object and begins the decomposition process by first
checking for an update override class. The two possible logic branches are described below:

– No update override. The Mediator decomposes the updated object into submit() calls
against the underlying physical data services.

– With update override. The Mediator instantiates mid-level data objects from the top-level
SDO, then calls update override routine. The submit() on the mid-level data service is then
processed as usual.

Note: An update override class can exist at each layer of a multi-layered data service. Thus,
a logical data service comprising several layers of other logical data services checks
for an update override at each constituent layer. If a mid-layer data service has no
update override, the update framework bypasses the instantiation of an SDO object,

DSP ’s Data P rogramming Mode l and Update F ramework

2-20 Client Application Developer’s Guide

instead directly creating the SDO objects for the underlying data service. This is true
in the case of a logical data service with an update override or a physical data service.

The performChange() method can access and modify the update plan and decomposition map,
or perform any other custom processing, including taking over complete processing.

The performChange() method returns a Boolean value that either continues or aborts
processing by the Mediator, as follows:

– True. After control returns from the method, the Mediator resumes its normal course of
processing. A new update plan is automatically generated so that any new changes against
the passed-in SDO made in the update override plan can be accounted for. The new plan
combines the previously indicated changes with any new change.

– False. The Mediator does not attempt to apply the changes. The method would return false,
for example, if all changes have already been made. (If you want to handle an error that
would require the update to be aborted, your method should throw an exception.)

Note: See Chapter 9, “Customizing Data Service Update Behavior,” for complete information
about customizing behavior.

3. The Mediator determines the origins of the data sources that must be changed and how to change
them. The Mediator calls the decomposition function associated with the data service and receives
a decomposition map for the data service. By default, the Mediator uses the data service’s first
read function to create its decomposition map (if no other decomposition function is specified).

a. The Mediator uses the information in the change summary and the data service’s
decomposition map to derive an update plan. The update plan comprises a tree of data service
objects ("SDO objects to update") for each instance of a changed data source.

b. For any lower-level data service, the Mediator also checks for an update override, and executes
the update override class if one is present.

4. The Mediator iterates (walks) through the update plan, submitting changes to each of the lower
level data services. The Mediator applies changes based on the order of objects in the tree and
their container-containment relationships, as follows:

a. Objects within the same level (sibling objects) are processed in the order in which they are
encountered in the data object.

b. Container objects are processed before contained objects—unless the container is being
deleted, in which case changes are applied to the contained object before the containing
object.

The Data Se rv i ces P lat fo rm Update F ramework

Client Application Developer’s Guide 2-21

c. If an object has a KeyPair specified, the values are mapped from its container before
submitting the change. (Changes made to an SDO container during its update, such as primary
key computations, are visible in the contained object.)

Figure 2-12 Logical Data Service Update Process

Primary-Foreign Key Relationships Mapped Using a KeyPair
Most RDBMSs can automatically generate primary keys, which means that if you are adding new data
objects to a data service that is backed by a relational database, you may want or need to handle a
primary key as a return value in your code. For example, if a submitted data graph of objects includes
a new data object, such as a new Customer, DSP generates the necessary primary key.

For data inserts of autonumber primary keys, the new primary key value is generated and returned to
the client. Only primary keys of top-level data objects (top-level of a multi-level data service) are
returned; nested data objects that have computed primary keys are not returned.

By returning the top-level primary key of an inserted tuple, DSP allows you to re-fetch tuples based on
their new primary keys, if necessary.

The Mediator saves logical primary-foreign keys as a KeyPair (see the KeyPair class in the Mediator
API). A KeyPair object is a property map that is used to populate foreign-key fields during the process
of creating a new data object:

customer.ds

Mediator

CUST

DSP

ITEMS.DS

custUpd.class

itemUpd.class

ORDERS.DS

1.

2.

3.

5.

4.

submit()
Client App

ORDERS

DSP ’s Data P rogramming Mode l and Update F ramework

2-22 Client Application Developer’s Guide

The value of the property will be propagated from the parent to the child, if the property is an
autonumber primary key in the container, which is a new record in the data source after the
autonumber has been generated.

The KeyPair object is used to identify corresponding data elements at adjacent levels of a
decomposition map; it ensures that a generated primary key value for a parent (container) object will
be mapped to the foreign key field of the child (contained) element.

As an example, Figure 2-13 shows property mapping for the decomposition of a Customers data
service.

Figure 2-13 Logical Data Services Use KeyPairs for Property Mapping (Primary-Foreign Key Mapping)

DSP manages the primary-foreign key relationships between data services; how the relationship is
managed depends on the layer (of a multi-layered data service), as follows:

Top-level data service. Inserts generate a new primary key, which is returned to the client.
Adding a data object at the top-level of a data service data objects have been added which have
primary keys that are automatically generated by the RDBMS, the values of the primary keys for
the inserted tuples will be returned as an array of Java properties (XPath name/value pairs)
after a successful update submit:

Properties[] keys = ds.submit(doc);

A tuble is basically a record; in the context of data services, a tuble may comprise data that
spans several layers of data services.

customerIDcustomerID

customerName

Customers Data Service

orderID

POItem

customerIDcustomerID

customerName

customer Data Service

Order Data Service

orderID

POItem

Property Mapping

customerID

The Data Se rv i ces P lat fo rm Update F ramework

Client Application Developer’s Guide 2-23

Nested data objects. Generates and inserts a new primary key, but does not return to the
client.

DSP propagates the effects of changes to a primary or foreign key.

For example, given an array of Customer objects with a primary key field CustID into which two
customers are inserted, the submit would return an array of two properties with the name being
CustID, relative to the Customer type, and the value being the new primary key value for each inserted
Customer.

Managing Key Dependencies
DSP manages primary key dependencies during the update process. It identifies primary keys and can
infer foreign keys in predicate statements. For example, in a query that joins data by comparing
values, as in:

where customer/id = order/id

The Mediator performs various services given the inferred key/foreign key relationship when updating
the data source.

If a predicate dependency exists between two SDOToUpdate instances (data objects in the update
plan) and the container SDOToUpdate instance is being inserted or modified and the contained
SDOToUpdate instance is being inserted or modified, then a key pair list is identified that indicates
which values from the container SDO should be moved to the contained SDO after the container SDO
has been submitted for update.

This Key Pair List is based on the set of fields in the container SDO and the contained SDO that were
required to be equal when the current SDO was constructed, and the key pair list will identify only
those primary key fields from the predicate fields.

The KeyPair maps a container primary key to container field only. If the KeyPair does not container’s
complete primary key is not identified by the map then no properties are specified to be mapped.

A Key Pair List contains one or more items, identifying the node names in the container and contained
objects that are mapped.

Foreign Keys
When computable by SDO submit decomposition, foreign key values are set to match the parent key
values.

Foreign keys are computed when an update plan is produced.

DSP ’s Data P rogramming Mode l and Update F ramework

2-24 Client Application Developer’s Guide

Transaction Management
Each submit() to the Mediator operates as a transaction. Depending upon whether the submit()
succeeds or fails, you should do one of two things:

Submit() succeeds. You can re-query the SDO to be sure it matches the current data because
side effects of the update may have changed the result of the query. (Re-querying the data
service to obtain a new data object also clears the change summary.)

Submit() fails. You can reinvoke submit() on the data object to execute the same updates
(since the original data objects and change summary still exist).

Nested Transactions
All submits perform immediate updates to data sources. If a data object submit occurs within the
context of a broader transaction, commits or rollbacks of the containing transaction have no effect on
the submitted data object or its change summary, but they will affect any data source updates that
participated in the transaction.

Client Application Developer’s Guide 3-1

C H A P T E R 3

Accessing Data Services from Java
Clients

This chapter describes how your Java client applications can access data services. It covers the
following topics:

Overview of the Data Services Platform Mediator API

Generating a Static Mediator API JAR File

Using the Data Service Mediator API

Obtaining a WebLogic JNDI Context for Data Services Platform

Using a Static Data Service Mediator API

Using a Dynamic Mediator API

Overview of the Data Services Platform Mediator API
The BEA AquaLogic Data Services Platform (DSP) Mediator API gives Java client application
developers easy-to-use interfaces for using data service routines. To use the Mediator API, simply
instantiate a remote data service interface and invoke public methods on the interface. Public
methods can include read functions, navigation functions, and procedures.

The return type for the invocations depends on the type of method and whether the static or dynamic
interfaces are used, as follows:

Read and navigation functions. When a read function or navigation function is invoked
through the Mediator API, the client application gets back information as a data graph that
comprises the data objects constructed by the data service.

Access ing Data Se rv ices f rom Java C l i ents

3-2 Client Application Developer’s Guide

Procedures. When a procedure is invoked through the Mediator API, the client application may
or may not get back an SDO, depending on the implementation details of the procedure as
configured for the data service.

The Mediator API provides both static and dynamic interfaces for working with data services.

Static Mediator APIs. You can use the static mediator APIs to invoke functions on multiple
data services, then cast the acquired objects to the appropriate data types. Static Mediator APIs
are generated from a specific data service.

Dynamic Mediator APIs. Use the dynamic mediator APIs to instantiate and invoke data service
functions and procedures by name.

The Mediator API also supports several advanced features, including:

Ability to filter, sort, and truncate return values. Your client applications can organize or
limit returned results in several different ways using the Mediator API’s Filter and FilterXQuery
classes. For more information, see “Filtering, Sorting, and Fine-tuning Query Results” on
page 10-5.

Ability to stream data service function results. The static and dynamic interfaces data
service materialize data service function call results as XML, in memory. However, in-memory
materialization is not always practical. The Mediator API offers several different
stream-oriented interfaces. For more information, see “Handling Large Result Sets with
Streaming APIs” on page 10-15.

Ad hoc query interface. The Mediator API’s PreparedExpression interface enables client
applications to invoke ad hoc XQuery expressions against data service results. Ad hoc queries
can return anything, including simple data. Simple data is not represented as DataObjects
(XmlObjects); however, in DSP ad hoc queries can return DataObjects if the returned XML is
structured correctly and the appropriate static SDO classes are on the classpath. For more
information, see “Using Ad Hoc Queries to Fine-tune Results from the Client” on page 10-11.

The Mediator APIs are used to instantiate interfaces to data services and invoke data service functions
and procedures. Functions and procedures defined for a data service are available as methods in the
Mediator API.

The dynamic Mediator API classes and interfaces are in the following JAR file:

ld-client.jar

The Data Service Mediator package is named as follows:

com.bea.dsp.dsmediator.client

Ove rv iew o f the Data Serv ices P la t fo rm Media to r AP I

Client Application Developer’s Guide 3-3

The API consists of the classes and interfaces listed in Table 3-1

The static mediator API interface extends the static Mediator interface, as shown in this example of
a class declaration for a typed data service:

public class dataservices.Customer extends
 com.bea.dsp.dsmediator.client.DataService { … }

The static data service interface is in the SDO Mediator Client JAR files generated from an DSP
project.

The exception class for Mediator errors (SDOMediatorException) is in the following package:

com.bea.ld.dsmediator.client.exception

Exceptions that are generated by the data source (such as SQLException) are wrapped in an SDO
Exception, and can be accessed by calling getCause() on the SDOMediatorException.

Setting the Classpath
To develop Java-based client programs using the Mediator APIs, your development environment’s
CLASSPATH must include the JAR files listed in Table 1-5, “Data Services Platform Java Archive
Files,” on page 1-12.

Table 3-1 Data Services Platform Mediator API

Interface or Class Name Description

DataService Interface for data services that returns data as Data Objects. The
interface includes invoke() method for invoking read and navigation
functions; invokeProcedure() for invoking procedures; and submit()
method for submitting data object changes.

PreparedExpression Interface for preparing and executing ad hoc queries. An ad hoc query
is one that is defined in the client program, not in the data service.

DataServiceFactory Factory class for creating local interfaces to data services. Can be used
for dynamic data service instantiation and ad hoc queries.

StreamingDataService Interface for data services that returns data as a token stream.

StreamingPreparedExpression Interface for preparing and executing ad hoc query functions that
return information as a stream. An ad hoc query is an XQuery that is
passed as a string from within a client program (rather than in the data
service).

Access ing Data Se rv ices f rom Java C l i ents

3-4 Client Application Developer’s Guide

In addition, to use static data APIs, you must include the <app-name>-ld-client.jar file (obtain
from your data service architect or administrator).

Note: The <app-name>-ld-client.jar file is not needed for generic SDO.

As an example, for a data service named Demo using static APIs, your classpath on a Microsoft
Windows operating system would include:

 set CLASSPATH=%CLASSPATH%;Demo-ld-client.jar;

 C:\bea\weblogic81\server\lib\weblogic.jar;

 C:\bea\weblogic81\liquiddata\lib\wlsdo.jar;

 C:\bea\weblogic81\server\lib\xbean.jar;

 C:\bea\weblogic81\server\lib\xqrl.jar;

 C:\bea\weblogic81\server\lib\wlxbean.jar;

 C:\bea\weblogic81\liquiddata\lib\ld-client.jar;

This classpath assumes that the first item, Demo-ld-client.jar, is in the current directory and
that the BEA WebLogic home directory is: C:\bea\weblogic81. Modify the path to the locations
appropriate for your system, and change the name of Demo-ld-client.jar to the actual name of
the JAR file generated from your DSP-enabled application.

Mediator API Summary and Reference
Client application developers can take two alternative approaches to working with SDOs:

Use Mediator APIs, which encompass the SDO Update and SDO Meditator API listed in
Table 3-2.

Use Data Service controls, a server-side Java class file that adheres to the Java Control
Extension (JCX) standard.

This chapter discusses the Mediator APIs and how to use in Java client applications. Data Service
controls are discussed in Chapter 5, “Accessing Data Services from WebLogic Workshop Applications.”

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-5

Client application developers will use some combination of the APIs shown in Table 3-2, depending on
your application design and specific goals. Data service developers will also use the SDO Update API
(specifically, the UpdateOverride interface) to customize data service functionality.

Generating a Static Mediator API JAR File
Client applications can access the classes representing a static data service interface using the JAR
(Java Archive) file generated from the DSP project. Client application developers must obtain this
JAR file (typically, from the data services architect or the Data Services Platform administrator) and
add the JAR file in the classpath of their development environment.

The naming convention for the generated, static Mediator client JAR file is:

<AppName>-ld-client.jar

Building the Client JAR
Once the data service application has been built into an EAR file, the client version of the data service
— the <AppName>-ld-client.jar file — can be generated from the EAR. The client version

Table 3-2 Data Service Mediator APIs Package Reference

SDO Mediator APIs SDO Update APIs

Package com.bea.dsp.dsmediator.client com.bea.ld.dsmediator.update

Description DataServiceFactory and other classes.
DataService, StreamingDataService, and
PreparedExpression interfaces.

DataServiceMediatorContext,
DataServiceToUpdate, KeyPair,
DataServiceMediator, and UpdatePlan
classes. UpdateOverride interface.

Usage note Instantiate remote interface to a data
service.

Submit changed data objects to data service.
Override default update processing for a
particular data service.

Location <bea_home>\weblogic81\liquidd
ata\lib\ld-client.jar

Same as for SDO Mediator APIs.

Javadoc Data Services API Javadoc. Same as for SDO Mediator APIs.

Javadoc
location

http://e-docs.bea.com/aldsp/d
ocs21/Javadoc/index.html

Same as for SDO Mediator APIs.

Access ing Data Se rv ices f rom Java C l i ents

3-6 Client Application Developer’s Guide

includes wrapper classes that allow the client to call the data service functions through a dynamic or
a static API.

The necessary JAR file can be generated in either of two ways:

From WebLogic Workshop, with the top folder of the application selected, right-click and select
Build SDO Mediator Client from the pop-up menu. (This menu option is available from the root
folder of the application only.)

From the command prompt of the data service development machine by using the Ant script, as
follows:

a. At a command prompt, navigate to the directory.

b. Execute the shell or command file script to set the environment for your machine. For
Windows use setWLSEnv.cmd; for UNIX use setWLSEnv.sh.

These scripts can be found in the following location:

<beahome>/weblogic81/server/bin

c. Run the Ant script, passing in the name of a temporary directory as a parameters, as shown
below:

ant -Doutdir=<output-directory> -Darchive=<archive>
-Dtmpdir=\tmp\clientbld -fld_clientapi.xml

For example:

ant -Doutdir="c:\myApp"
=Darchive=C:\bea\user_projects\applications\myApp.ear -Dtmpdir=c:\temp
-fld_clientapi.xml

Executing the command as shown in this example produces the client JAR file, as follows:

C:\myApp-ld-client.jar

Table 3-3 describes the available arguments that can be used to generate a static client JAR mediator.

Table 3-3 Generating a Static Client JAR Mediator from a Data Services EAR

Argument Description

<archive> Fully qualified name of the generated EAR file. The generated name is
derived from the name of the application.

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-7

Using the Data Service Mediator API
To use the Data Service Mediator API to invoke data service functions and procedures, create a Java
class as follows:

1. Import the com.bea.dsp.dsmediator.client package.

2. Create a JNDI context for the WebLogic Server that hosts the DSP application.

Note: For more information, see “Obtaining a WebLogic JNDI Context for Data Services
Platform” on page 3-8. For complete information about WebLogic Server contexts, see:

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContextFactory.html

3. Instantiate remote interfaces for the data service. You can use either a static or dynamic mediator
API interface. The dynamic interface is generic; the data service name is passed as an argument.
For example:

DataService ds = DataServiceFactory.newDataService(
 JndiCntxt, "RTLApp", "ld:DataServices/RTLServices/Customer");

Here is the same operation using a static interface:

CUSTOMER ds = CUSTOMER.getInstance(JndiCntxt, "RTLApp");

4. Invoke a function or procedure on the data service.

The following is the operation using the dynamic interface to invoke a read function on a data
service:

Object[] params = new Object { "CUSTOMER1" };
DataObject[] myCustomer =
 (DataObject[]) ds.invoke("getCustomerByCustID", params);

Here is the same operation using a static interface:

<outdir> Directory in which to generate the client JAR file. Optional parameter;
if unspecified, the current directory is used.

<tmpdir> Directory in which to produce the temporary, expanded EAR file
contents. Although this parameter is optional, BEA recommends that
you always create and specify a temporary directory, since all contents
will be deleted at the end of the process. If <tmpdir> is not specified,
the current directory will be used.

Table 3-3 Generating a Static Client JAR Mediator from a Data Services EAR

Argument Description

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContextFactory.html

Access ing Data Se rv ices f rom Java C l i ents

3-8 Client Application Developer’s Guide

CUSTOMERDocument myCust = ds.getCustomerByCustID("CUSTOMER1");

Obtaining a WebLogic JNDI Context for Data Services
Platform
Java client applications use JNDI to access named objects, such as data services, on a WebLogic
Server. A single JNDI call is made to obtain an initial context, which is then passed to the data services
factory class. Once you have the server context, you can invoke functions and acquire information from
data services.

To get the WebLogic Server context, set up the JNDI initial context by specifying the
INITIAL_CONTEXT_FACTORY and PROVIDER_URL environment properties:

The value of INITIAL_CONTEXT_FACTORY should be set to:

 weblogic.jndi.WLInitialContextFactory

The value of PROVIDER_URL should reflect the location (URI) of the WebLogic Server hosting
DSP (for example, t3://localhost:7001).

A local client (that is, a client that resides on the same computer as the WebLogic Server) may bypass
these steps by using the settings in the default context obtained by invoking the empty initial context
constructor; that is, by calling new InitialContext().

At this stage, the client may also authenticate itself by passing its security context to the
corresponding JNDI environment properties SECURITY_PRINCIPAL and
SECURITY_CREDENTIALS.

The code excerpt below is an example of a remote client obtaining a JNDI initial context using a
hashtable.

 Hashtable h = new Hashtable();

 h.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 h.put(Context.PROVIDER_URL,"t3://machinename:7001");

 h.put(Context.SECURITY_PRINCIPAL,<username>);

 h.put(Context.SECURITY_CREDENTIALS,<password>);

InitialContext jndiCtxt = new InitialContext(h);

Be sure to replace the machine name and username/password with values appropriate for your
environment.

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-9

Invoking Functions and DSP Procedures
The Dynamic Mediator API provides two different methods (see Table 3-4) for invoking functions and
procedures, respectively:

invoke(). Dynamically invokes read and navigate functions on a data service. When a read or
navigate function is invoked (getCustomerByCustID(), for example), the function returns an
array of data objects.

invokeProcedure(). Use invokeProcedure() to invoke procedures that have been registered
with a data service. You can use the dynamic Mediator API to invoke a DSP procedure as in the
following example, passing in the name of the procedure:

ds.invokeProcedure("updateCustomerAddress", params);

In your code, you must use the appropriate method call — invoke() or invokeProcedure() — for the
functions and procedures, respectively, to avoid raising exceptions, as noted in Table 3-4.

For more information, see information on Data Services API Javadocs at “DSP Mediator API Javadoc”
on page 1-13.

When using static mediator APIs, the distinction between invoking a DSP function and a DSP
procedure is hidden. Read and navigate functions, as well as procedures, are named based on the
function name, with no indication as to whether or not they are side-effecting procedures.

Table 3-4 Method Signature ofr the Data Service Mediator API (Client Mediator API)

Method Signature Description

invoke(String method, Object[] args) Method to invoke a data service’s read and
navigate functions. Using invoke() with a DSP
procedure raises an exception.

invokeProcedure(String method,

Object[] args)
Method to invoke a data service’s procedures
(stored procedures, Web services, and Java
code that have side effects). Using
invokeProcedure() with a read or navigation
function raises an exception.

submit(DataObject sdo) Method to submit changes to the Mediator
service. Assumes that a change summary exists
as part of the DataObject.

Access ing Data Se rv ices f rom Java C l i ents

3-10 Client Application Developer’s Guide

Static and Dynamic Mediator APIs
Once you have obtained an initial context to the server containing DSP artifacts, you can instantiate
a remote interface for a data service. If you know the data service type at development time, you can
use the static data service interface, which uses static data objects.

Alternatively, the dynamic interface lets you use data services specified at runtime. The static
interface gives you a number of advantages, including type validation and code completion when using
development tools, such as Eclipse or your favorite development tool.

Using a Static Data Service Mediator API
To use the static data service interface, you must have the SDO Mediator Client JAR file that was
generated from the specific DSP-enabled application. (If you do not have the JAR file, contact your
administrator to acquire it.)

Add the JAR file to your client application’s build path and import the data service package into your
Java class file that will be the basis for your client application.

For example, to use a data service named Customer in a DSP project named customerApp, use the
following import statement:

import customerapp.Customer;

With the imported factory classes and interfaces available in your Java application, you can instantiate
the interface to the specific data service by invoking the getInstance() method with the following
arguments:

The server context object

The name of the DSP application that is deployed on the server

Once you have a remote data service instance, you can invoke functions and procedures on the data
service. For example, consider the data service shown in Figure 3-5.

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-11

Figure 3-5 Customer Data Service

Based on the data service shown in Figure 3-5, the generated artifacts for a typed client interface
would include static methods for both dynamic data APIs and the static Mediator APIs (see
Listing 3-1). As shown in Listing 3-1, each read and navigate function from the data service results in
a static data API method, such as getCustomer() and getApplOrder().

Listing 3-1 Generated Dynamic Methods for the Customer DataService Class

getCustomer()
getCustomerByCustID(String)
getCustomerByCustIDToFile(String, String)
getCustomerByZip(String)
getCustomerByZipToFile(String, String)
getCase(CUSTOMERPROFILEDocument)
getCreditCard(CUSTOMERPROFILEDocument)
getApplOrder(CUSTOMERPROFILEDocument)
getElecOrder(CUSTOMERPROFILEDocument)
getCustomerByLoginID(String)

Access ing Data Se rv ices f rom Java C l i ents

3-12 Client Application Developer’s Guide

See “Static Data API” on page 2-5 for more information about generated SDO data API methods, such
as those listed above (getCustomer() and get CustomerByLoginID(), for example).

There are several DataService methods that are part of the dynamic API which are inherited by all
static DataService classes. These include:

Submit() method. The submit() method takes a DataObject as its parameter. (The static
submit () would take Customer.) In either style, though, a submit() method is used to save
changes to the data objects served by the data service.

The prepareExpression() method. The prepareExpression() method lets you create ad hoc
queries against the data service.

Listing 3-2 shows a small but complete example of using the static interface.

Listing 3-2 Mediator Client Sample Using the Static Interface to a Data Service

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import dataservices.rtlservices.Customer; //
import retailerType.CUSTOMERPROFILEDocument;

public class MyTypedCust
{
 public static void main(String[] args) throws Exception {
 //Get access to DSP data service
 Hashtable h = new Hashtable();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 h.put(Context.PROVIDER_URL,"t3://localhost:7001");
 h.put(Context.SECURITY_PRINCIPAL,"weblogic");
 Context context = new InitialContext(h);

 // Use the typed Mediator API
 Customer customerDS = Customer.getInstance(context, "RTLApp");
 CUSTOMERPROFILEDocument[] myCust =

 customerDS.getCustomerByCustID("CUSTOMER2");
 System.out.println(" CUST" + myCustomer);
 }
}

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-13

Using a Dynamic Mediator API
The dynamic data service interface is useful for programming with data services that are unknown or
do not exist at development time. It is useful, for example, for developing tools and user interfaces that
work across data services.

With the dynamic interface, names of specific data services are passed as parameters in the generic
get() and set() method calls. For example:

DataService ds = DataServiceFactory.newDataService(
 context, "RTLApp", "ld:DataServices/RTLServices/Customer");
Object[] params = {"CUSTOMER2"};
DataObject myCustomer = (DataObject)ds.invoke("getCustomerByCustomerID",
params);
System.out.println(myCustomer.get("Customer/LastName"));

A data object returned by the dynamic interface can be downcast to a static object, as follows:

 DataService ds =

 DataServiceFactory.newDataService(

 context, "RTLApp", "ld:DataServices/Customer");

 Object[] params = {"CUSTOMER2"};

 CUSTOMERDocument myCustomer =

 (CUSTOMERDocument) ds.invoke("getCustomer", params);

 System.out.println(myCustomer.getCUSTOMER().getCUSTOMERNAME());

Note: This code example only works if the generated static SDO mediator JAR is on the
classpath at compile time and at runtime.

For a dynamic data service, use the newDataService() method of the DataServiceFactory class. In the
method call, pass the following arguments:

The server context object.

The name of the DSP application that is deployed on the server.

The DSP URI pointing to the location of the data service inside the DSP application.

Listing 3-3 shows a full example.

Listing 3-3 Mediator Client Sample Using the Dynamic Mediator API Data Service Interface

import com.bea.ld.dsmediator.client.DataService;
import com.bea.ld.dsmediator.client.DataServiceFactory;
import commonj.sdo.DataObject;

Access ing Data Se rv ices f rom Java C l i ents

3-14 Client Application Developer’s Guide

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

public class MyUntypedCust
{
 public static void main(String[] args) throws Exception {

 //Get access to Liquid Data
 Hashtable h = new Hashtable();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 h.put(Context.PROVIDER_URL,"t3://localhost:7001");
 h.put(Context.SECURITY_PRINCIPAL,"weblogic");
 h.put(Context.SECURITY_CREDENTIALS,"weblogic");
 Context context = new InitialContext(h);

 // Use the dynamic (untyped) Mediator API
 DataService ds =
 DataServiceFactory.newDataService(context, "RTLApp",
 "ld:DataServices/RTLServices/Customer");
 DataObject myCustomer = (DataObject) ds.invoke("getCustomer", null);
 System.out.println(" Customer Information: \n" + myCustomer);
 }
}

Static and Dynamic SDO APIs
You can invoke data service functions using either static or dynamic SDO APIs. The dynamic API is
often called generic SDO, since you do not need to materialize the SDO object on the client side
through a JAR file. Instead, you simply invoke the appropriate set() or get() method based on your
knowledge of underlying schema of the data service.

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-15

Each approach has its advantages and disadvantages, as described in the Table 3-6, below:

The static and dynamic SDO API options are described in detail in:

Using a Static Data Service Mediator API

Using a Dynamic Mediator API

Using the Static SDO API
Once you have obtained an initial context to the server containing DSP artifacts, you can instantiate
a remote interface for a data service. If you know the data service type at development time, you can
use the static data service interface, which uses static data objects. (Alternatively, the generic SDO
dynamic interface lets you use data services specified at runtime. It is described under the topic
“Using a Dynamic Mediator API” on page 3-13.)

A static interface gives you a number of advantages, including type validation and code completion
when using development tools, such as Eclipse or your favorite development tool.

To use the static data service interface, you must have the SDO Mediator Client JAR file that was
generated from the specific DSP-enabled application that contains the query functions you want to
use with your client application. (If you do not have the JAR file, contact your administrator to acquire
it.)

Add the JAR file to your client application’s build path and import the data service package into your
Java class file that will be the basis for your client application.

For example, to use a data service named Customer in a DSP project named customerApp, use the
following import statement:

import customerapp.Customer;

Table 3-6 Static vs. Dynamic Mediator APIs

Method Advantages Disadvantages

Static (typed) • Runtime type validation

• Code completion in most IDEs

• Requires generation of
[App]-ld-client JAR file

Dynamic (untyped),
using generic SDO

• Easily adapt to schema
changes

• Unnecessary to compile Java
classes from their schema

• Less overhead

• No runtime type checking

Access ing Data Se rv ices f rom Java C l i ents

3-16 Client Application Developer’s Guide

With the imported factory classes and interfaces available in your Java application, you can instantiate
the interface to the specific data service by invoking the getInstance() method with the following
arguments:

The server context object

The name of the DSP application that is deployed on the server

Once you have a remote data service instance, you can invoke functions and procedures on the data
service. For example, consider the data service shown in Figure 3-5.

Figure 3-7 Sample Customer Data Service

The generated artifacts for a static client interface would include typed methods for both dynamic
data APIs and the static Mediator APIs. As shown in Listing 3-1, each read and navigate function from
the data service results in a static data API method, such as getCustomer() and getApplOrder().

Listing 3-4 Generated Dynamic Methods for the Customer DataService Class

getCustomer()
getCustomerByCustID(String)
getCustomerByCustIDToFile(String, String)
getCustomerByZip(String)

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-17

getCustomerByZipToFile(String, String)
getCase(CUSTOMERPROFILEDocument)
getCreditCard(CUSTOMERPROFILEDocument)
getApplOrder(CUSTOMERPROFILEDocument)
getElecOrder(CUSTOMERPROFILEDocument)
getCustomerByLoginID(String)

See “Static Data API” on page 2-5 for more information about generated SDO data API methods, such
as those listed above.

There are several DataService methods that are part of the dynamic API which are inherited by all
static DataService classes including the following methods:

Submit(). The submit() method takes a DataObject as its parameter. (The static submit()
would take Customer.) In either style, though, a submit() method is used to save changes to the
data objects served by the data service.

prepareExpression(). The prepareExpression() method lets you create ad hoc queries
against the data service.

Listing 3-2 shows a small but complete example using a static interface.

Listing 3-5 Mediator Client Sample Using a Static Interface to a Data Service

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import dataservices.rtlservices.Customer; //
import retailerType.CUSTOMERPROFILEDocument;

public class MyTypedCust
{
 public static void main(String[] args) throws Exception {
 //Get access to DSP data service
 Hashtable h = new Hashtable();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 h.put(Context.PROVIDER_URL,"t3://localhost:7001");
 h.put(Context.SECURITY_PRINCIPAL,"weblogic");
 Context context = new InitialContext(h);

 // Use the typed Mediator API
 Customer customerDS = Customer.getInstance(context, "RTLApp");

Access ing Data Se rv ices f rom Java C l i ents

3-18 Client Application Developer’s Guide

 CUSTOMERPROFILEDocument[] myCust =
 customerDS.getCustomerByCustID("CUSTOMER2");

 System.out.println(" CUST" + myCustomer);
 }
}

Using the Dynamic SDO API
The dynamic data service interface — or generic SDO — is ideal for programming with data services
that are unknown or do not exist at development time.

With generic SDO, DataObjects depend on the XML schema to determine:

Data types

Default values

Data structure of input XML data

The generic SDO correctly supports SDO APIs through get() and setType() on DataObject.

Such a SDO definition consists of a single generic DataGraph and a number of DataObject classes.

Generic SDOs are created using a createRootDataObject() method:

DataObject /* root SDO document */ createRootDataObject()

The code fragment in Listing 3-6 illustrates these familiar operations using generic SDO:

Creating the root data object

Using navigation functions

Updating data on the back end

Submitting a changed SDO to the server

Deleting a data object

Creating a data object on the client side

Listing 3-6 Common Generic SDO Operations

DataService custDS =
DataServiceFactory.newDataService(context,"RTLApp","ld:DataServices/CustomerDB

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-19

/CUSTOMER");
DataObject root =(DataObject)custDS.invoke("getCustomerByCustID", new
Object[]{"CUSTOMER1"})[0];
DataObject myCustomer = root.getDataObject(0);
String name = myCustomer.getString("name");

//use navigation function
DataObject order = (DataObject)custDS.invoke("getApplOrder", new
Object[]{root})[0];

// update
myCustomer.setString("Street","Lake Drive");
((DataObject)myCustomer.getList("ADDRESS").get(0)).setString("City",
"Hayward");

// submit the changed SDO to server
custDS.submit(root);

// Delete a DataObject
((DataObject)myCustomer.getList("ADDRESS").get(0)).delete();
custDS.submit(root);

// create new SDO object on client side
DataService custDS =
DataServiceFactory.newDataService(context,"RTLApp","ld:DataServices/CustomerDB
/CUSTOMER");

DataObject root = custDS.createRootDataObject ();
root.createDataObject("CUSTOMER_PROFILE").setString("FirstName","helloW");
custDS.submit(root);

How XML Schemas Are Made Available to Generic SDO Operations
XML schemas are not available at client side, the dynamic mediator must download schemas from the
server. The internal mean of downloading schemas varies depending on whether you have an EJB
client or a Web service client.

Downloading schemas through an EJB metadata API. As in the first code fragment in
Listing 3-6, the client-side query contains a Qname and arity as an identifier for the function. A
generic SDO-capable mediator uses the identifier to locate the primary schema from the
metadata EJB, then recursively resolves its dependent schemas, loading them from server to
client upon request. Once all schemas are prepared on the client side, the schemas are
processed (compiled) and made available to the calling routine.

Access ing Data Se rv ices f rom Java C l i ents

3-20 Client Application Developer’s Guide

Downloading schemas through a Web service client. A WSDL file generated from WebLogic
Workshop contains all the schema definitions in the specified data service. In this case they are
simply processed and made available to provide typing services to the calling routine.

Schema Type Caching
Generating the SchemaTypeSystem can be a costly operation. For this reason schema caching
functionality is provided that allows for schema reuse and lifecycle management through flush and
clear APIs.

If no cache is passed in to get a data service instance on the client side, then an internal cache is
created. The default lifetime of the internal schema cache is the same as the lifetime of the data
service instance.

You can create a cache object per data service or for multiple data services. All caches are thread-safe.
(As there is no differentiator across multiple DSP applications, caches should not be shared across
multiple applications.)

The following schema caching APIs are available:

SchemaTypeObject cache. The SchemaTypeObject is composed of a key:value pair.

key: Qname composed of root element name and target namespace
value: compiled schema type object

Cache debugging APIs. The following APIs are more fully described in Javadoc:

SchemaTypeCache.dump(String dsName) //dump contents for specified DS
SchemaTypeCache.dump(); //dump entire contents

Flush schema cache APIs. The following APIs are more fully described in Javadoc:

public void flush()
public void clear(String dsName)

Schema Cache Management Scenarios

The following represents several schema cache management scenarios:

Using multiple caches. In this case each data service has its own schema type.

 // Note: each DS will have its own schema type cache.

 SchemaTypeCache custSchemaTypes = new SchemaTypeCache();
 SchemaTypeCache addrSchemaTypes = new SchemaTypeCache();
 DataService custDS = DataServiceFactory.newDataService(context,
 "RTLApp",
"ld:DataServices/Customer",

Generat ing a S ta t i c Med iato r AP I JAR F i l e

Client Application Developer’s Guide 3-21

custSchemaTypes);
 DataService addrDS = DataServiceFactory.newDataService(context,

"RTLApp",
"ld:DataServices/Address",
addrSchemaTypes);

Using a single cache for multiple data services. In this case a single cache is used across
multiple data services.

// Note: User manages cache across multiple DS's.

 SchemaTypeCache schemaTypes = new SchemaTypeCache();
 DataService custDS = DataServiceFactory.newDataService(context,

"RTLApp",
"ld:DataServices/Customer",
schemaTypes);
 DataService addrDS = DataServiceFactory.newDataService(context,

"RTLApp",
"ld:DataServices/Address",
schemaTypes);

No schema cache specified. In such a case a cache is created implicitly and stored on the data
service object automatically. There is no API available to inspect, flush, or edit cache entries.

DataService custDS = DataServiceFactory.newDataService(context, "RTLApp",
"ld:DataServices/Customer");
DataService addrDS = DataServiceFactory.newDataService(context, "RTLApp",
"ld:DataServices/Address");

Bypassing the Data Cache When Using the Mediator API
Data retrieved by data service functions can be cached for quick access. This is known as a data
caching. (See "Configuring the Query Results Cache", in the DSP Administration Guide for details.)
Assuming the data changes infrequently, it’s likely that you’ll want to use the cache capability.
However, you can bypass the data cache by passing the GET_CURRENT_DATA attribute within a
function call, as shown in Listing 3-7. GET_CURRENT_DATA returns a Boolean value. As a by-product,
the cache is also refreshed.

Listing 3-7 Cache Bypass Example When Using Mediator API

DataService ds = DataServiceFactory.newDataService(
import com.bea.dsp.RequestConfig;
getInitialContext(), //
Initial Context
"Evaluation", //

../admin/cache.html

Access ing Data Se rv ices f rom Java C l i ents

3-22 Client Application Developer’s Guide

Application Name
"ld:DataServices/CustomerManagement/CustomerProfile" // Data Service URI
);
Object[] params = {“CUSTOMER3”};
RequestConfig config = new RequestConfig();
attr.enableFeature(RequestConfig.GET_CURRENT_DATA);

CustomerProfileDocument doc = (CustomerProfileDocument)
ds.invoke("getCustomerProfile",params,config);

Client Management of the Data Cache
When invoking a DSP query you can more precisely control the behavior of the data cache by using the
REFRESH_CACHE_EARLY attribute in conjunction with GET_CURRENT_DATA attribute.

Setting the GET_CURRENT_DATA Attribute
When the GET_CURRENT_DATA attribute is set to True:

All data cache access is bypassed in favor of the physical data source. Function values are
recalculated based on the underlying data and the cache is refreshed. If a call involves access
to several cacheable functions, all will be refreshed with current data.

The audit property:

evaluation/cache/data/forcedrefresh

indicates that a GET_CURRENT_DATA operation has been invoked.

The REFRESH_CACHE_EARLY attribute property setting is ignored.

SETTING the REFRESH_CACHE_EARLY Attribute
If the GET_CURRENT_DATA property is set to False or is not invoked, you can use the
REFRESH_CACHE_EARLY to control whether cached data is used based on the remaining TTL
(time-to-live) available for the function’s data cache.

The REFRESH_CACHE_EARLY attribute is of type integer. It is set by invoking the
setIntegerAttribute() method. The setting of REFRESH_CACHE_EARLY to a particular value
requires that a cached record must have at least n seconds of remaining TTL before it can be used. If
the record is set to expire in less than n seconds, it will not be retrieved. Instead its value is
recalculated based on the underlying data and the data cache associated with that function is
refreshed. The same REFRESH_CACHE_EARLY value applies to all cache operations duing a query
evaluation.

Step-by-Step : A Java C l i en t P rogramming Example

Client Application Developer’s Guide 3-23

Note: The supplied integer value of REFRESH_CACHE_EARLY should always be positive. Negative
values are ignored.

Step-by-Step: A Java Client Programming Example
This section describes common Java client application programming tasks:

Step 1. Instantiating and Populating Data Objects

Step 2: Accessing Data Object Properties

Step 3: Modifying, Adding, and Deleting Data Objects and Properties

Step 4: Submitting Changes to the Data Service

Client application development encompasses the SDO data APIs; client Mediator APIs (which are
used to instantiate a local proxy to the remote server); and possibly the Update SDO API (to submit
changed data objects to the data service). Thus, the steps in this section include calls using the
Mediator APIs—getInstance() and submit(), for example, as well as SDOs.

Step 1. Instantiating and Populating Data Objects
Working with SDO data objects from a client application starts by obtaining an interface (either static
or dynamic) to the data service. Depending upon the approach you take, you must import the
generated static data type interfaces or dynamic data interfaces, as well as the data service interfaces.

Static data service imports. To instantiate a data object using a static data service instance,
you must import the packages that contain the generated typed interfaces. These are contained
in the <appname>-ld-client.jar file generated from WebLogic Workshop (or by using
DSP’s Ant or Java generation tools). Using the static SDO API is a two-step process:

– Place the JAR file (<appname>-ld-client.jar) in the classpath of your development
environment.

– Import the data types that you will be using in your code into your Java class file. For
example:

import dataservices.myservice.MyCustomer;

Note: Static data services packages are always lowercase.

 Dynamic data service imports. To instantiate a data object using a dynamic API, you must
import the DataServiceFactory class and invoke the newDataService method (see also
Table 3-10).

Access ing Data Se rv ices f rom Java C l i ents

3-24 Client Application Developer’s Guide

import com.bea.dsp.dsmediator.client.DataServiceFactory;

Table 3-8 lists static and dynamic mediator API interfaces.

Instantiating a local interface for an static mediator API is done by passing the context, the
application name, and the data service name to the DataServiceFactory class. For the static mediator
API, the local interface is instantiated using the getInstance() method (after establishing a JNDI
context).

Once the local interface is constructed, you can invoke data service functions to obtain a data object.

As discussed in “Data Services Platform and Service Data Objects (SDOs)” on page 2-2, the returned
data object is associated with a data graph. The data graph also provides a handle to the root data
object of the data graph.

Table 3-11 shows both a static and dynamic approach to populating data objects. The static data API
example shows how to instantiate the root node of the data graph, in this case, using the data that
comprises a logical data service function (getCustomerView()). The example is selecting information
about Customer3.

In the dynamic example, the root node of a data graph is being populated with an array of all
customers available through the data service.

Table 3-9 shows the static and dynamic mediator APIs available to instantiate SDOs.

Table 3-8 Static and Dynamic Mediator API Interfaces

Static Mediator API Dynamic Mediator API

Customer cust =
Customer.getInstance(

context, "MyApp");

DataService ds =

DataServiceFactory.newDataService(

context, "MyApp",
"ld:DataServices/CustomerDB/CUST

OMER");

Table 3-9 Static and Dynamic Mediator APIs

Static Mediator API Dynamic Mediator API

CUSTOMERDocument[] custDoc =
ds.getCustomerView("CUSTOMER3");

CUSTOMERDocument [] custDoc =
(CUSTOMERDocument[])
ds.invoke("CUSTOMER", null);

Step-by-Step : A Java C l i en t P rogramming Example

Client Application Developer’s Guide 3-25

Step 2: Accessing Data Object Properties
After obtaining a data object, you can access its properties using either its generated static data API
or the dynamic data API. Table 3-10 shows side-by-side comparisons of using the static and dynamic
methods to access properties. The static interface returns a single CUSTOMER object, while the
dynamic interface returns a generic data object.

With the static interface, the type name (as a string) is passed as a parameter to the dynamic get()
method. The returned object can be then cast to the necessary type.

If the return type is unbounded, you need to cast the returned object to a List. To traverse all objects
in an unbounded type you must use an iterator, as shown in Listing 3-8.

Listing 3-8 Using an Iterator to Traverse a List of Returned Data Objects

List addressList = (List) cust.get("ADDRESS");

Iterator iterator = addressList.iterator();

while (iterator.hasNext()){

CUSTOMERDocument.CUSTOMER.ADDRESS address =

(CUSTOMERDOcument.CUSTOMER.ADDRESS) iterator.next();

}

}

You can identify properties in SDO accessor arguments by element name. Accessor methods can take
property identifiers specified as XPath expressions, as follows:

 customer.get("CUSTOMER_PROFILE[1]/ADDRESS[AddressID="ADDR_10_1"]")

Table 3-10 Static and Dynamic Mediator API Property Acquisition Examples

Static Mediator API Dynamic Mediator API

CUSTOMERDocument.CUSTOMER cust =
custDoc[0].getCUSTOMER();
String lastName =
cust.getLASTNAME();

CUSTOMERDocument.CUSTOMER cust =
(CUSTOMERDocument.CUSTOMER)custDoc[0]
.get("CUSTOMER");

String lastName = (String)
cust.get("LAST_NAME");

Access ing Data Se rv ices f rom Java C l i ents

3-26 Client Application Developer’s Guide

The example gets the ADDRESS at the specified path with the specified addressID. If element
identifiers have identical values, all elements are returned.

For example, the ADDRESS also has a CustomerID (a customer can have more than one address), so
all addresses would be returned. (Note that the get() method returns a DataObject, so you will need
to cast the returned object to the appropriate type. For unbounded objects, you must use a List.)

Note: For specifying index position, note that SDO supports regular XPath notation (one-based)
and Java-style (zero-based). See “XPath Support in the Dynamic Data API” on page 2-12 for
more information.

You can get a data object’s containing parent data object by using the get() method with XPath
notation:

myCustomer.get("..")

You can get the root containing the data object by using the get() method with XPath notation:

myCustomer.get("/")

This is similar to executing myCustomer.getDataGraph().getRootObject().

Step-by-Step : A Java C l i en t P rogramming Example

Client Application Developer’s Guide 3-27

Quantifying Return Types
Return types from data service functions can be quantified based on the semantics shown in
Table 3-11.

Step 3: Modifying, Adding, and Deleting Data Objects and
Properties
By default, change tracking on the data graph is enabled so that any changes made to object values
are recorded in the change summary.

Modifying Data Object Properties
You can modify data object property values using either dynamic or static set() methods, as shown in
Table 3-12

Table 3-11 Quantifying Return Type Symbols and Their Definition

Quantifier
Symbol

Definition Comments

+ Same semantics as star (*) Returns all.

? Same semantics as unqualified except that
there is additional built-in logic to handle
the possibility of empty results.

When the results are empty, the return
value of the static mediator method will be
either:

• Null. Null is returned if the Java
return type is non-primitive (such as
typed subclasses of DataObject,
BigDecimal, String, and so forth).

• Best value. Best value is returned if
the Java return value is a primitive
(such as int, float, and so forth).

"Best value" is the same as is returned when
RequestConfig prevents results from being
sent, for instance in the OUTPUT_FILENAME
case.

For integer numeric types, best value is the
corresponding MIN_VALUE; for floating point
numeric types, best value is NaN (not a
number); for Boolean, best value is False.

Table 3-12 Examples of Static and Dynamic Mediator API Setting of Properties

Static Mediator API Dynamic Mediator API

cust.setLASTNAME("Smith"); cust.set("LAST_NAME", "Smith");

Access ing Data Se rv ices f rom Java C l i ents

3-28 Client Application Developer’s Guide

Both approaches take string arguments for the new property values; both approaches result in
changing the customer object’s last name to Smith. The static mediator API example assumes that you
have instantiated the static interface on the data service.

Adding New Data Objects
You can create new a data object by using an addNew() method (a static data API). A new data object
can be added to a root data object or, more commonly, as a new element in a data object array. (New
arrays can also be added to data objects.) When adding an object to an array, you must be sure to set
any and all required fields for the new object, as specified by its XML schema, before calling submit().

Listing 3-9 shows how to add a data object to an array of objects.

Listing 3-9 Adding a New Data Object to an Array

CUSTOMERDocument.CUSTOMER newCust = custDoc[0].addNewCUSTOMER();

int idNo = custDoc.length;

newCust.setCUSTOMERID("CUSTOMER" + String.valueOf(idNo));

newCust.setFIRSTNAME("Clark");

newCust.setLASTNAME("Kent");

newCust.setCUSTOMERSINCE(java.util.Calendar.getInstance());

newCust.setEMAILADDRESS("kent@dailyplanet.com");

newCust.setTELEPHONENUMBER("555-555-5555");

newCust.setSSN("509-00-3683");

newCust.setDEFAULTSHIPMETHOD("Air");

If the data source associated with the object being added is an RDBMS, note these additional
considerations:

Foreign key fields in the data object are automatically populated by DSP, based on the value of
the corresponding foreign key in the container object.

In a database schema, tables often use auto-generated values as their primary key. When adding
an object to such a database, the primary key is generated and returned to the client through
the submit() call.

If added objects correspond to relational records in back-end data sources, and if the records
have auto-generated primary key fields, the fields are generated in the database source and

Step-by-Step : A Java C l i en t P rogramming Example

Client Application Developer’s Guide 3-29

returned to the client in a property array. The properties include name-value items
corresponding to the column name and new auto-generated key value.

See “Primary-Foreign Key Relationships Mapped Using a KeyPair” on page 2-21 for more
information.

Deleting Data Objects
To delete a data object, you must delete it from the data graph that contains it. For example,
Listing 3-10 searches a CUSTOMER array for a specific customer’s name and deletes that customer.

Listing 3-10 Deleting a Data Object

CUSTOMERDocument.CUSTOMER[] custs =

custDoc[0].getCUSTOMERArray();

 for (int i=0; i < custs.length; i++){

 if (custs[i].getFIRSTNAME().equals("Clark") &&

custs[i].getLASTNAME().equals("Kent"))

 {

 custs[i].delete();

 custDS.submit(custDoc);

 }

 }

When you remove an object from its container, only the reference to the object is deleted, not the
values; values are deleted later, during Java garbage collection.

The data object interface (DataObject in the commonj.sdo package) provides the delete() method
for deleting objects.

Deleting an object is a cascade-style operation; that is, children of the deleted object are deleted as
well. However, note that the deleted object only—not its children—is tracked in the change summary
as having been deleted.

Step 4: Submitting Changes to the Data Service
To submit data changes, call the submit() method on the data service bound to an object, passing the
root changed object as in:

Access ing Data Se rv ices f rom Java C l i ents

3-30 Client Application Developer’s Guide

custDS.submit(myCustomer);

A basic example of a submit operation is shown in Listing 3-11.

Listing 3-11 Static Interface

CUSTOMER custDS = CUSTOMER.getInstance(ctx, "RTLApp");

CUSTOMERDocument[] custDoc = (

 CUSTOMERDocument[]) custDS.CUSTOMER();

custDoc[0].getCUSTOMER().setLASTNAME("Nimble");

custDS.submit(CustDoc);

Listing 3-12 demonstrates making changes to a data object using the dynamic interface.

Listing 3-12 Dynamic Interface

DataService ds = DataServiceFactory.newDataService(new InitialContext(),

"RTLApp");

DataObject[] custDoc = (DataObject[])custDS.invoke("CUSTOMER", null);

custDoc[0].getCustomer().set("LastName", "Nimble");

custDS.submit(myCust,"ld:DataServices/CustomerDB/CUSTOMER");

Examining a Java Client Application
Listing 3-13 shows a complete example that recaps many of the steps described above. The example
SDO client application shows how the static mediator API is used to create a handle to the CUSTOMER
data service.

The client application extracts information about a customer, modifies the information, and then
submits the changes. In addition to demonstrating some of the basics of SDO client programming,
Listing 3-13 also shows how the Mediator API is used to obtain a handle to the data service, and how
the Update Mediator API is used to submit the changes to the data service.

Examin ing a Java C l ien t App l i cat ion

Client Application Developer’s Guide 3-31

Listing 3-13 Sample Client Application

import java.util.Hashtable;
import javax.naming.InitialContext;
import dataservices.customerdb.CUSTOMER;

public class ClientApp {

 public static void main(String[] args) throws Exception {

 Hashtable h = new Hashtable();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 h.put(Context.PROVIDER_URL,"t3://localhost:7001");
 h.put(Context.SECURITY_PRINCIPAL,"weblogic");
 h.put(Context.SECURITY_CREDENTIALS,"weblogic");
 Context context = new InitialContext(h);

 // create a handle to the Customer data service
 CUSTOMER custDS = CUSTOMER.getInstance(context, "RTLApp");
 // use dynamic data API to instantiate an SDO (shaped as a "Customer")
 CUSTOMERDocument[] myCustomer =
 (CUSTOMERDocument[]) custDS.invoke("CUSTOMER", null);

 // get and show customer name
 String existingFName =
 myCustomer[0].getCUSTOMER().getFIRSTNAME();
 String existingLName =
 myCustomer[0].getCUSTOMER().getLASTNAME();

 System.out.println(" \n---------------- \n Before Change: \n");
 System.out.println(existingFName + existingLName);

 // change the customer name
 myCustomer[0].getCUSTOMER().setFIRSTNAME("J.B.");
 myCustomer[0].getCUSTOMER().setLASTNAME("Kwik");
 custDS.submit(myCustomer,"ld:DataServices/CustomerDB/CUSTOMER");

 // re-query and print new name

 myCustomer = (CUSTOMERDocument[]) custDS.invoke("CUSTOMER",null);
 String newFName =
 myCustomer[0].getCUSTOMER().getFIRSTNAME();
 String newLName =
 myCustomer[0].getCUSTOMER().getLASTNAME();

 System.out.println(" \n---------------- \n After Change: \n");
 System.out.println(newFName + newLName); }
}

Access ing Data Se rv ices f rom Java C l i ents

3-32 Client Application Developer’s Guide

Listing 3-13 highlights how to use the SDO data APIs and the Mediator API, as follows:

1. The application instantiates the remote interface to the Customer data service, passing a JNDI
context that identifies the WebLogic Server where DSP is deployed. The static Mediator API is
used in this call to instantiate the actual Customer data service interface (rather than the generic
DataService interface):

CUSTOMER custDS = CUSTOMER.getInstance(context, "RTLApp");

The custDS serves as a handle for the CUSTOMER data service that is executing on the RTLApp
WebLogic Server application.

2. The program uses the Mediator API to invoke a read function on the Customer data service,
pouring the results into an array of CUSTOMERDocument objects:

CustomerDocument[] myCustomer =
 (CustomerDocument[]) ds.invoke("CUSTOMER", null);

3. Once the data object is created, its properties can be accessed using SDO’s static data API (the
static interface), which returns the actual type of that node:

myCustomer[0].getCUSTOMER().getFIRSTNAME();

4. New values for the FIRSTNAME and LASTNAME property of the CUSTOMER are set using the
static data API:

myCustomer[0].getCUSTOMER().setFIRSTNAME("J.B.");
myCustomer[0].getCUSTOMER().setLASTNAME("Kwik");

5. The change is submitted to the data service (by using the Client Mediator API’s submit() method)
for propagation to the back-end data sources:

custDS.submit(myCustomer);

6. The Mediator API’s invoke() method is executed once more, and the results (now showing the
changed data) are printed to output.

Note: The invoke() method is for read and navigation functions only. For data service procedures,
use the invokeProcedure() method available in the DataService interface. For details on the
Mediator API see DSP Javadoc, described under “DSP Mediator API Javadoc” on page 1-13.

See “Invoking Functions and DSP Procedures” on page 3-9 for more information about
procedures.

Examin ing a Java C l ien t App l i cat ion

Client Application Developer’s Guide 3-33

Although code for handling exceptions is not shown in the example, an SDO runtime error throws an
SDOMediatorException. The SDOMediatorException class is also used to wrap data source
exceptions.

Access ing Data Se rv ices f rom Java C l i ents

3-34 Client Application Developer’s Guide

Client Application Developer’s Guide 4-1

C H A P T E R 4

Enabling DSP Applications for Web
Service Clients

Web services provide an industry-standard way to develop SOA (service-oriented architecture)
applications. Such services can be thought of as loosely coupled, distributed units of programming
logic that can be re-configured easily to deliver new application functionality, both intra- and
extra-enterprise.

Using Web services and BEA AquaLogic Data Services Platform (DSP) allow your applications to
better leverage enterprise data assets.

This chapter explains you how to expose data services as standard Web services, and how to create
client applications that can obtain the benefits of both Web services and SDOs. It covers these topics:

Overview of Web Services and DSP

Server-Side DSP-Enabled Web Service Development

Client-Side DSP-Enabled Web Service Development

For more information about Web services, see:

http://e-docs.bea.com/wls/docs81/webservices.html

Overview of Web Services and DSP
Exposing data services as Web services makes your information assets accessible to a wide variety of
client types, including other Java Web service clients, Microsoft ADO.NET and other non-Java
applications, and other Web services. Figure 4-1 illustrates the various approaches that client
application developers can take to integrating data services and Web services.

http://e-docs.bea.com/wls/docs81/webservices.html

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-2 Client Application Developer’s Guide

Figure 4-1 Web Services Enables Access to DSP-Enabled Applications from a Variety of Clients

Note: For information about ADO.NET-enabled Web services and client applications, see
“Supporting ADO.NET Clients” on page 6-1.

Different Styles of Web Services Integration for DSP
Data services can be integrated with Web services in one of two general ways:

As a read-only Web service. A standard Web service can be invoked from other Web services, or
by .NET clients or any other type of client, Java and non-Java alike. On the server side, at
runtime, the Web service simply passes the results obtained from the data service function back
to the client as a standard SOAP message. This approach is best for simple, query-only
applications that do not need to modify or add data to back-end data sources behind the Web
service facade.

As a read-write Web service. An SDO-enabled Web service can support updates to back-end
data sources. You can use either static SDOs client-side proxy code (see “Developing Static Web

Serve r -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-3

Service Clients” on page 4-11), or use dynamic SDOs (also known as generic SDO). See
“Developing Dynamic Web Service Clients” on page 4-17.

Note: For details on working with static and dynamic SDO see “Static and Dynamic SDO APIs”
on page 3-14.

Figure 4-2 shows the end-to-end process — both the server-side and client-side tasks — that expose
a DSP-enabled application as a Web service and implement a client application that invokes
operations on that service.

Figure 4-2 Java Clients Supported via Web Services

Server-Side DSP-Enabled Web Service Development
DSP-enabled Web service development depends on whether you are working with read-only Web
services or Web services which support read-write functionality.

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-4 Client Application Developer’s Guide

Developing DSP-Enabled Read-Only Web Services
There are two ways to create Web services from data services. By:

Adding a Data Service Control to a Web Service

Generating a Web Service from a Data Service Control

Both approaches rely on Data Service controls as the component-based integration mechanism.

Adding a Data Service Control to a Web Service
You can easily add one or more Data Service controls to a Web service using WebLogic Workshop.
Firstcreate a folder for the controls inside the Web service’s project folder, and then create the Data
Service controls.

You can also create controls during the process of adding them to the Web service but, for simplicity’s
sake, the instructions in this section assume that you have created the Data Service controls in
advance. (See “Creating Data Service Controls” on page 5-7 for more information on creating Data
Service controls.)

Here are the steps involved:

1. In WebLogic Workshop, open an existing Web service file (JWS) by double-clicking on its name in
the Application pane.

2. Click the Design View tab on the Web service to open the graphical representation of the Web
service (as shown in Figure 4-3).

Serve r -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-5

Figure 4-3 Adding a Data Service Control to a Web Service

3. Right-click and select Add Control → Data Service from the popup menu. The Insert Control –
Data Service wizard launches (Figure 4-4).

4. In the STEP 1 field of the dialog, enter a variable name for the Data Service control which is unique
in the context of the Web service.

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-6 Client Application Developer’s Guide

Figure 4-4 Insert Control – Data Services Wizard

5. In the STEP 2 field, click Browse... to navigate to the controls folder, then select the Data Service
control you want to add to the Web service. (Alternatively, click Create a New Data Service Control
button to launch the Data Service control wizard to create and configure a new control.)

Leave the checkbox labeled Make This a Control Factory unselected. (This checkbox would
cause the Data Service control to be instantiated at runtime using the factory pattern, rather
than as a singleton. To use the control in a Web service, it must be a singleton.)

6. STEP 3 is active only if your Data Service control is associated with a remote DSP instance; that
is, a DSP instance running on a separate domain from WebLogic Workshop. The dialog provides for
entry of a user name, password, server URL, and domain information associated with the remote
Data Service control. This information is needed to complete the link between the Web service and
the control.

7. Click the Create button on the Insert Control – Data Service dialog. The
LiquidDataControl.jar file is copied into the Libraries directory of the application. The
variable you created in STEP 1 of the dialog displays as a node in the Data Palette, with its
functions and procedures listed under the node.

It is these functions and procedures that you can now expose to client applications, by adding
them to the Web service’s callable interface (shown as the left-hand portion of the Web service’s
Design View in WebLogic Workshop — see Figure 4-5), as described in the next step.

Serve r -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-7

Figure 4-5 Adding Data Service Control Functions to a Web Service

8. Select the variable’s function or procedure listed in the Data Palette by clicking on the node, and
then dragging the function onto the left side of the Web service in Design View.

You can test your Web service as described in “Testing a Web Service in WebLogic Workshop” on
page 4-9. After testing, you can deploy your Web service to a production WebLogic Server and use it as
you would any other Web service. For information about developing Java-based Web service clients,
see “Client-Side DSP-Enabled Web Service Development” on page 4-10.

Generating a Web Service from a Data Service Control
Another way to create a DSP-enabled Web service is by generating stateless Web services from Data
Service controls. The generated Web services automatically include operations (method calls) for
each of the functions and procedures that the Data Service control comprises.

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-8 Client Application Developer’s Guide

Follow the instructions in this section to generate and test a stateless Web service. (These instructions
assume that you have already created the Data Service control and that WebLogic Workshop is open.)

Figure 4-6 Stateless Web Services Are Generated from Data Service Controls

Here are the steps involved:

1. From WebLogic Workshop’s Application pane, select the Data Service control that you want to use
as the basis for your Web service by clicking on its name. While the control is selected,
right-mouse-click to display the pop-up menu; select Generate Test JWS File (Stateless) from the
menu. WebLogic Workshop generates the JWS Java Web service file for your Data Service control.

Note: Although WebLogic Workshop by default generates Web services that have the word
"Test" embedded in the file names, these are deployable Web services. You can rename
the generated Web service to eliminate the word "Test".

2. Click on your Web service project to select it, then right-click, and select Build Project. WebLogic
Workshop builds a Web service project.

3. When the build process completes, double-click on the JWS file. If necessary, click the Design View
tab to display the generated Web service in the Design View.

Serve r -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-9

You will see methods (operations) for each of the functions and procedures contained in the
Data Service control.

Developing DSP-Enabled Read-Write Web Services
If your Web service must support submits from Java Web service clients, you first need to modify the
JWS file before generating the WSDL, as follows:

1. Modify submit operations in your Java Web service (JWS) implementation control file to accept a
DatagraphDocument object as a parameter.

For instance, if the original signature of the submit() method of the generated JWS looks
appears as:

java.util.Properties[] submitCustomerProfile(CustomerProfileDocument doc);

It should be modified to the following:

java.util.Properties[] submitCustomerProfile(DatagraphDocument rootDataObject)

2. Modify the body of the submit operation to instantiate and initialize the document from a
DatagraphDocument object being passed as a parameter; for example:

CustomerProfileDocument doc = (CustomerProfileDocument) new
DataGraphImpl(rootDataObject).getRootObject();

return customerData.submitCustomerProfile(doc); //customerData is the DSP
control

3. Generate a Web Service Definition Language (WSDL) file from the JWS file by right-clicking on the
file name and selecting the Generate WSDL file option.

After you have created the WSDL file, provide it to your client application developers, so they can
generate the Web services client interfaces and proxy code necessary (as discussed in “Client-Side
DSP-Enabled Web Service Development” on page 4-10).

Testing a Web Service in WebLogic Workshop
By default, WebLogic Workshop creates two operations in its generated Web services that can be used
for testing purposes.

1. Click the Start icon (or select Debug → Start from the WebLogic Workshop menu) to deploy and
run the Web service using the local runtime. An informational message briefly appears, notifying
you that the Web service is running. Shortly, the WebLogic Workshop Test Browser launches,
displaying the Test Form.

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-10 Client Application Developer’s Guide

2. Click the Test button to run the Web service and obtain your result.

Continue developing the functionality of the Web service as required, testing as you go along. Once the
Web service is complete, you can create the artifacts necessary for client application development, as
described in the next section, “Client-Side DSP-Enabled Web Service Development.”

Note: For more information about Web service client applications and WebLogic Server in general,
see "Invoking Web Services" in Programming WebLogic Web Services in WebLogic Server
documentation.

Client-Side DSP-Enabled Web Service Development
Your client application uses either a static or a dynamic approach to Web services. Both approaches
are discussed in this section. The following topics provide brief summaries of the appropriate uses of
static and dynamic clients.

Static Web Service Clients
A static Web service client requires:

A Web service client proxy that invokes Web service operations.

The static SDO API (such as customer.getName()) to read or modify data returned by the Web
service.

DSP includes the necessary utilities (Java classes and Ant tasks) to generate the following classes for
your static Web service client:

SDO classes (such as CustomerDocument)

Web service client proxy

A typical static Web service client can use the following code to retrieve a customer’s record:

CUSTOMERDocument doc = wssoap.getCustomer(“987654”);

Note: The wssoap class is an instance of the generated Web service client proxy class; the doc
object is an instance of the generated Static SDO class CUSTOMERDocument.

Dynamic Web Service Clients
A dynamic Web service client requires:

JAX-RPC API to dynamically invoke Web service operations

Dynamic SDO API to read or modify data returned by the Web service

http://edocs.bea.com/wls/docs81/webserv/client.html

Cl ient -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-11

Neither the generated SDO classes, nor the Web service client proxy classes are needed for the
Dynamic Web service client.

A typical dynamic Web service client can retrieve a customer’s record with the following:

XmlObject param = XmlObject.Factory.parse("<msg:getCustomer
xmlns:msg='http://www.openuri.org/'><CustomerID>987654</CustomerID></msg:getCu
stomer>");

DataObject doc = (DataObject)call.invoke(new Object[]{param});

Note: The call class is an instance of the Call interface of the JAX-RPC API. The doc object is an
instance of the DataObject interface of the Dynamic SDO API.

Developing Static Web Service Clients
The following general steps are involved in developing a static Web service client for DSP:

Generate the DSP Web services proxy that includes the SDO classes

Set up the Web service client environment

Develop the client

Generating the DSP Web Service Proxy
You can generate an SDO Web service client using an Ant task (SDO Web Service Client Gen) or
through a Java class (WSClientGen). Each approach is described in this section.

Generating SDO Classes Using Ant
The SDOGen Ant task creates an SDO client JAR file that contains the typed classes for working with
SDOs. It can use either the XSD files from the data service or the WSDL (assuming the DSP-enabled
application has been exposed as a Web service) to generate the SDO classes and compile them into
the client JAR file.

The SDOGen Ant task lets you build the necessary SDO client JAR which you can then use in your
client application code.

Environmental Settings

To generate the necessary classes, make sure your classpath includes:

wlsdo.jar

xbean.jar

Syntax

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-12 Client Application Developer’s Guide

To create a JAR comprising the client classes, execute sdogen at the command prompt as follows:

1. Add the sdogen taskdef to the build script. For example:

<taskdef name="sdogen" classname="com.bea.sdo.impl.SDOGenTask"

classpath="path/to/wlsdo.jar:path/to/xbean.jar"/>

where path/to is replaced with the location of your JAR files.

This task implicitly defines an Ant FileSet, and supports all FileSet attributes (for example, dir
becomes basedir) as well as the nested attributes and elements. Table 4-7 summarizes the
attributes used by the sdogen Ant task.

Table 4-7 Attributes Available for DSP’s SDO Generation (sdogen) Ant Task

Attribute Description Required? Default Value

schema A file that points to either an individual
schema file or a directory of files. Not a
path reference. If multiple schema files
need to be built together, use a nested
fileset instead of setting schema.

Yes None

destfile Creates a non-default name for the JAR
file. For instance, myXMLBean.jar
will output the results of this task into a
JAR named myXMLBean.

No xmltypes.jar

classgendir Directory in which to generate
.class files.

No Current directory

classpath Specify the classpath if Java files are in
the schema fileset, or if the fileset
imports include compiled XMLBeans
JAR files. Also supports a nested
classpath.

No

classpathref Adds a classpath, given as reference to
a path defined elsewhere.

No

Cl ient -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-13

To build a WSDL or XML schema definition (XSD) files in the schemas directory and create a JAR
named Schemas.jar, your Ant script would need to include the following:

<sdogen schema="MyTestWS.WSDL" destfile="Schemas.jar"
classpath="path/to/wlsdo.jar:path/to/xbean.jar"/>

where path/to represents the actual location of your JAR files.

debug Indicates whether source should be
compiled with debug information.

If set to False (off), -g:none will be
passed on the command line for
compilers that support it.

If set to True, the value of the
debuglevel attribute determines the
command line argument.

No False (off)

fork Flag that indicates whether the JDK
compiler (javac) should be executed
externally.

No Yes

memoryInitialSize The initial size of the memory for the
underlying VM, if javac is run
externally; ignored otherwise. Defaults
to the standard VM memory setting.

No Configured VM
memory setting
for the machine.
For example:
83886080, 81920k,
or 80m.

memoryMaximumSize The maximum size of the memory for
the underlying VM, if javac is run
externally; ignored otherwise. Defaults
to the standard VM memory setting.

No Configured VM
memory setting
for the machine.
For example:
83886080, 81920k,
or 80m.

verbose Controls the amount of build message
output.

No True

Table 4-7 Attributes Available for DSP’s SDO Generation (sdogen) Ant Task

Attribute Description Required? Default Value

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-14 Client Application Developer’s Guide

Generating SDO Classes Using Java
Rather than using the SDOGen Ant task, you can use the SDOGen Java class at the command-line to
generate SDO client classes from XML schema definition (XSD) files or WSDL files based on data
services.

SDOGen is a Java class that extends the XMLBean schema compiler class. See Table 4-8 for other
command-line options for the SDOGen utility.

Table 4-8 Command-line Options for the Java SDO Class Generation Utility

Option Description Default Value

-cp [a;b;c] Classpath.

-d [dir] Target directory for binary .class and
.xsb files.

-src [dir] Target directory for generated Java source
files.

-srconly Flag to prevent compiling Java source files
and archiving into JAR file.

-out [result.jar] Name of the output JAR file. xmltype.jar

-dl Enables network downloads for imports and
includes.

Off (not enabled).

-noupa Do not enforce the unique particle
attribution rule.

-nopvr Do not enforce the particle valid
(restriction) rule.

-compiler Path to external Java compiler.

-jar Path to JAR (Java Archive) utility.

-ms Initial memory for external Java compiler. 8 Megabyte

-mx Maximum memory for external Java
compiler.

256 Megabyte

-debug Compile with debug symbols.

Cl ient -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-15

Environmental Settings

To execute the utility, make sure your classpath includes:

wlsdo.jar

xbean.jar

Syntax

To create a JAR comprising the client classes, execute SDOGen at the command prompt as follows:

java com.bea.sdo.impl.SDOGen [options] xmlschema

The XMLSchema can be:

the URL of a WSDL

an XSD or WSDL file

a directory containing XSD or WSDL files

SDOGen Usage Examples

Here are some examples showing use of the SDOGen Web service client generation utility:

The following are examples of using SDOGen with various options (Table 4-8) to obtain different
results:

To create a file named xmltype.jar (the default) based on the WSDL associated with Web
service named MyApp running locally you can use:

java com.bea.sdo.impl.SDOGen
http://localhost:7001/WebApp/DSCtrls/MyApp.jws?WSDL

-quiet Print minimal informational messages to
Java console.

-verbose Print maximum amount of informational
messages to Java console.

-license Prints license information.

-allowmdef "[ns]
[ns] [ns]"

Ignores multiple defs in given namespaces.

Table 4-8 Command-line Options for the Java SDO Class Generation Utility

Option Description Default Value

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-16 Client Application Developer’s Guide

To create a file named xmltype.jar (the default) based on the WSDL associated with a
publicly available Web service, use:

java com.bea.sdo.impl.SDOGen -dl
http://198.68.125.17:7001/WebApp/DSCtrls/MyApp.jws?WSDL

The -dl option permits downloading.

To create a file named xmltype.jar using an XML schema definition (a XSD file) located in
the following directory on your local machine:

\myApps\xsd_dir

You can use:

java com.bea.sdo.impl.SDOGen C:\myApps\xsd_dir

To create the MySDOClasses.jar file in the c:\test\xsd_dir directory you can use:

java com.bea.sdo.impl.SDOGen -out MySDOClasses.jar C:\test\xsd_dir

How To Set Up a Web Service Client Environment for DSP
The following instructions enable you to set up your Web service client environment for DSP.

After generating the SDO Web service client classes in a JAR file (SDOClient.jar), set up the
classpath for the Web service client using the following JAR files in the following order:

– wlsdo.jar

– webserviceclient.jar

– xbean.jar

– wlxbean.jar

– xqrl.jar

– SDOClient.jar (the generated SDO Web service client JAR file)

Caution: The order of files shown above must be maintained.

Steps Involved in Developing Your Web Service Client
If you are not already familiar with the concept of using a Web service client proxy or JAX-RPC API to
invoke Web services, see the following document:

http://edocs/wls/docs81/webserv/client.html#1069703

Then, in developing your Web service client, follow these steps:

http://edocs/wls/docs81/webserv/client.html#1069703

Cl ient -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-17

1. Invoke the Web service method (e.g. getCustomer) to get the strongly typed root SDO data object
(e.g. CUSTOMERDocument). At this point, a SDO datagraph has already been created and
attached to the root data object (i.e. CUSTOMERDocument). Change tracking is also turned on by
default.

2. Use the Static SDO API to read the data (e.g. getCustomerName). Alternative you can use the
static API to modify the data (e.g. setCustomerName("J D")).

Alternatively, you can also use the dynamic SDO API to read or modify the data.

See Chapter 2, “DSP’s Data Programming Model and Update Framework” for details on
handling insertions and deletions using the static and dynamic SDO APIs.

3. Invoke the Web service proxy method to submit the changed SDO datagraph to your server to
update your data sources. Here is an example of such an invocation:

wssoap.submitCustomer(((DataGraphImpl)doc.getDataGraph()).getSerializedDocumen
t());

Sample Java Static Web Service Client
The following code shows a sample Java static Web services client for DSP:

public class ClientTest {
 public static void main(String[] args) throws Exception {

SimpleCtrlTest wstest = new SimpleCtrlTest_Impl();
SimpleCtrlTestSoap wssoap = wstest.getSimpleCtrlTestSoap();
CUSTOMERDocument doc = wssoap.getCustomer(987654);

doc.getCUSTOMER().setCUSTOMERNAME("J D");

wssoap.submitCustomer(((DataGraphImpl)doc.getDataGraph()).getSerializedDocumen
t());
}

Developing Dynamic Web Service Clients
Developing your dynamic Web services involves the following:

Setting Up a Dynamic Web Service Environment

"Developing the Dynamic Web Service Client

Setting Up a Dynamic Web Service Environment
Set up the classpath for your Web service client using the following JAR files in the following order:

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-18 Client Application Developer’s Guide

wlsdo.jar

webserviceclient.jar

xbean.jar

wlxbean.jar

xqrl.jar

Note: The order of files shown above must be maintained.

Developing the Dynamic Web Service Client
There are three aspects to developing a dynamic Web service client. First the client must be created
using standard development procedures. Then there are several DSP-specific steps.

Initiating Dynamic Web Service Client Development
Follow the JAX-RPC instructions in JAX-RPC documentation
(http://java.sun.com/webservices/jaxrpc/docs.html) to create the framework for a dynamic Web
services client. Essentially this work involves:

Creating your service factory instance.

Creating your service using the URL to WSDL and service name.

Steps Specific to DSP
To enable the dynamic Web service for Data Services Platform you then need to:

1. Create a DataGraphCodec instance using the URL to WSDL.

2. Create a TypeMappingRegistry.

3. Create a TypeMapping and register the DataGraphCodec instance to be used to
serialize/de-serialize the SOAPElement for both the request and response message.

Completing Dynamic Web Service Client Development
Finally complete development by:

1. Creating an instance of the JAX-RPC call interface for your read method (such as
getCustomer()).

2. Invoke your Web service.

http://java.sun.com/webservices/jaxrpc/docs.html

Cl ient -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-19

3. Read or modify the response data using the SDO “Dynamic Data API” on page 2-10.

4. Create a call instance for the submit() method (such as submitArrayOfCustomer()).

5. Wrap the serialized SDO datagraph with the SOAP message for the submit() method.

6. Invoke the submit() method to update your data sources.

Sample Java Dynamic Web Service Client
The following code (with comments emphasized) shows a complete Java dynamic Web services client
for DSP, including import statements.

Listing 4-1 Sample Java Dynamic Web Service Client

import com.bea.sdo.impl.DataGraphCodec;

import com.bea.xml.XmlObject;

import commonj.sdo.DataObject;

import java.io.File;

import java.net.URL;

import javax.xml.namespace.QName;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.ServiceFactory;

import javax.xml.rpc.encoding.TypeMapping;

import javax.xml.rpc.encoding.TypeMappingRegistry;

import javax.xml.soap.SOAPConstants;

import javax.xml.soap.SOAPElement;

public class TestCodecArray

{

 public static void main(String args[]) throws Exception {

 System.setProperty("javax.xml.soap.MessageFactory",

"weblogic.webservice.core.soap.MessageFactoryImpl");

 // Setup the global JAX-RPC service factory

 System.setProperty("javax.xml.rpc.ServiceFactory",

"weblogic.webservice.core.rpc.ServiceFactoryImpl");

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-20 Client Application Developer’s Guide

 // create service factory

 ServiceFactory factory = ServiceFactory.newInstance();

 // define qnames

 String targetNamespace = "http://www.openuri.org/";

 QName serviceName = new QName(targetNamespace, "org3Test");

 QName portName = new QName(targetNamespace, "org3TestSoap");

 URL wsdlLocation = new

URL("http://localhost:7001/ElecWS/controls/org3Test.jws?WSDL");

 // create service

 Service service = factory.createService(wsdlLocation, serviceName);

 // create Codec

 DataGraphCodec dgCodec = new DataGraphCodec(wsdlLocation);

 TypeMappingRegistry registry = service.getTypeMappingRegistry();

 TypeMapping mapping = registry.getTypeMapping(

SOAPConstants.URI_NS_SOAP_ENCODING);

 mapping.register(SOAPElement.class,

 new QName(targetNamespace, "getCustomer"),

 dgCodec,

 dgCodec);

 mapping.register(SOAPElement.class,

 new QName(targetNamespace, "getCustomerResponse"),

 dgCodec,

 dgCodec);

 mapping.register(SOAPElement.class,

 new QName(targetNamespace, "submitArrayOfCustomer"),

 dgCodec,

 dgCodec);

 mapping.register(SOAPElement.class,

Cl ient -S ide DSP-Enabled Web Se rv ice Deve lopment

Client Application Developer’s Guide 4-21

 new QName(targetNamespace,

"submitArrayOfCustomerResponse"),

 dgCodec,

 dgCodec);

 // create call for read

 Call call = service.createCall(portName, new QName(targetNamespace,

"getCustomer"));

 XmlObject reqdoc = XmlObject.Factory.parse("<getCustomer

xmlns='http://www.openuri.org/'/>");

 DataObject[] customerdocs = (DataObject[]) call.invoke(new

Object[]{reqdoc});

 // user can modify the DataObject here

 DataObject customer = customerdocs[0].getDataObject(0);

 customer.setString("EmailAddress", "BEAarray@BEA.com");

 String dgstring = customer.getDataGraph().toString();

 System.out.println(dgstring);

 // create call for submit

 call = service.createCall(portName, new QName(targetNamespace,

"submitArrayOfCustomer"));

 XmlObject submitdoc = XmlObject.Factory.parse(

"<sub:submitArrayOfCustomer

xmlns:sub='http://www.openuri.org/'><sub:docs>" +

 dgstring +

"</sub:docs></sub:submitArrayOfCustomer>");

 Object obj = call.invoke(new Object[]{submitdoc});

 System.out.println(obj);

Enab l ing DSP Appl ica t ions fo r Web Serv ice C l ients

4-22 Client Application Developer’s Guide

 }

}

Client Application Developer’s Guide 5-1

C H A P T E R 5

Accessing Data Services from
WebLogic Workshop Applications

BEA AquaLogic Data Services Platform

This chapter describes how you can use Data Service controls in WebLogic Workshop to develop client
applications for Data Services Platform. The following topics are included:

WebLogic Workshop and Data Services Platform

Data Service Control (JCX) File

Creating Data Service Controls

Modifying Existing Data Service Controls

Using Data Services Platform with NetUI

 Caching Considerations When Using Data Service Controls

 Security Considerations When Using Data Service Controls

WebLogic Workshop and Data Services Platform
Data Service controls provide WebLogic Workshop applications an easy way to use data services. When
you use a Data Service control to invoke data services, you get information back as a data object. A
data object is a unit of information as defined by the Service Data Objects (SDO) specification. For
more information on SDO, see Chapter 2, “DSP’s Data Programming Model and Update Framework.”

In addition to the functionality discussed in this chapter, Data Service controls also provide many of
the same features available through the Mediator API, including:

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-2 Client Application Developer’s Guide

Function result filtering

Ad hoc XQueries

Result ordering, sorting, and truncating APIs

For more information on these features, see Chapter 10, “Advanced Topics.”

Data Service Controls
A Data Service control is a wizard-generated Java file that can be used to add data service functions
and procedures to WebLogic Workshop applications. Functions and procedures can be added to Data
Service controls from data services deployed on any accessible WebLogic Server, both local or remote.
The Data Service control wizard retrieves all available data service functions and procedures on the
server that you specify. It then lets you choose the ones to include in your control.

If accessing data services on a remote server, metadata describing information that the service
functions return (in the form of XML schema files) is first downloaded from the remote server into the
current application. These schema files are placed in a schema project named after the remote
application. The directory structure within the project mirrors the directory structure of the remote
server. DSP generates interface files for the target schemas associated with the queries and the Data
Service control (.jcx) file.

Use With Page Flow, Web Services, Portals, Business Processes
Like other Java controls available in WebLogic Workshop applications, you can use a Data Service
control in applications such as Web services, page flows, and WebLogic integration business
processes. After applying the control to a client application, you can use the data returned from
queries in the control in your application.

This chapter describes in detail how to use a Data Service control in a page flow-based web
application. The steps for using it in Portals and other WebLogic Workshop Projects are similar.

Data Service Control (JCX) File
When you create a Data Service control, WebLogic Workshop generates a Java Control Extension
(.jcx) file that contains methods based on the data service’s functions, and a commented method

Data Se rv ice Cont ro l (JCX) F i l e

Client Application Developer’s Guide 5-3

that can be uncommented and used to pass any XQuery statements (called ad hoc queries) to the
server. This section describes the Data Service control in detail and includes the following sections:

Design View

Source View

Using Data Service Controls for Ad Hoc Queries

Design View
The Design View tab of a Data Service control shows a graphical view of the data service methods that
were selected for inclusion in the control.

Figure 5-1 Design View of a JCX File

Using the right-click menu, you can add or modify a control method (for example, by changing the data
service function or procedure associated with the method). The right-click menu is context
sensitive—it displays different items if the mouse cursor is over a method or elsewhere in the control
portion of the design pane.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-4 Client Application Developer’s Guide

Source View
The Source View tab shows the source code of the Data Service control (a Java Control Extension, or
JCX file. It includes annotations defining the data service function names associated with each
method. For update functions, the data service bound to the update is the data service specified by
the locator attribute. For example:

locator="c:/DSP/DataServices/RTLServices/ApplOrderDetailView.ds"

The signature for the method shows its return type. The return type for a read method is an SDO object
corresponding to the schema type of the data service that contains the referenced function. The SDO
classes corresponding to the data services used in a Data Service control reside in the Libraries folder
of the project. An interface is generated for each data service. The folder also contains a copy of the
schema files associated with the functions in the JCX file.

The Java Control Extension instance is a generated file. The only time you should need to edit the
source code is if you want to add a method to run an ad hoc query, as described in “Using Data Service
Controls for Ad Hoc Queries” on page 5-6.

Listing 5-1 shows a generated Data Service control (.jcx) file. It shows the package declaration,
import statements, and data service URI used with the queries.

Listing 5-1 Java Control Extension Sample

package Controls;

import weblogic.jws.control.*;
import com.bea.ld.control.LDControl;
import com.bea.ld.filter.FilterXQuery;
import com.bea.ld.QueryAttributes;

/**
 * @jc:LiquidData application="RTLApp"
urlKey="RTLApp.RTLSelfService.Controls.RTLControl"
 */
public interface RTLControl extends LDControl, com.bea.control.ControlExtension
{

 /* Generated methods corresponding to stored queries. */
 /**

 *
 * @jc:XDS locator="ld:DataServices/RTLServices/ApplOrderDetailView.ds"
functionName="submitApplOrderDetailView"
 */

Data Se rv ice Cont ro l (JCX) F i l e

Client Application Developer’s Guide 5-5

 java.util.Properties[]
submitApplOrderDetailView(retailer.ORDERDETAILDocument rootDataObject)
throws Exception;

 /**
 *
 * @jc:XDS locator="ld:DataServices/RTLServices/ProfileView.ds"
functionName="submitArrayOfProfileView"
 */
 java.util.Properties[]
submitArrayOfProfileView(retailer.ArrayOfPROFILEDocument rootDataObject) throws
Exception;

 /**
 *
locator="ld:DataServices/RTLServices/ElecOrderDetailView.ds"
functionName="submitElecOrderDetailView"
 */
 java.util.Properties[]
submitElecOrderDetailView(retailer.ORDERDETAILDocument rootDataObject) throws
Exception;

 /**
 *
 * @jc:XDS functionURI="ld:DataServices/CustomerDB/CUSTOMER"
functionName="CUSTOMER" schemaURI="ld:DataServices/CustomerDB/CUSTOMER"
schemaRootElement="ArrayOfCUSTOMER"
 */
 dataServices.customerDB.customer.ArrayOfCUSTOMERDocument CUSTOMER();

 /**
 *
 * @jc:XDS functionURI="ld:DataServices/CustomerDB/CUSTOMER"
functionName="CUSTOMER" schemaURI="ld:DataServices/CustomerDB/CUSTOMER"
schemaRootElement="ArrayOfCUSTOMER"
 */
 dataServices.customerDB.customer.ArrayOfCUSTOMERDocument
CUSTOMERWithFilter(FilterXQuery filter);

 /**
 *
 * @jc:XDS functionURI="ld:DataServices/RTLServices/ApplOrderDetailView"
functionName="getApplOrderDetailView"
 */
 retailer.ORDERDETAILDocument getApplOrderDetailView(java.lang.String p0);
 .
 .
 .
 /**

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-6 Client Application Developer’s Guide

 *
 * @jc:XDS functionURI="ld:DataServices/RTLServices/ProfileView"
functionName="getProfileView" schemaURI="urn:retailer"
schemaRootElement="ArrayOfPROFILE"
 */
 retailer.ArrayOfPROFILEDocument getProfileViewWithFilter(java.lang.String
p0, FilterXQuery filter);

 /**
 * Default method to execute an ad hoc query.
 * This method can be customized to have a differnt method name (e.g.
 * runMyQuery), or to return an SDO generated class (e.g. Customer),
 * or to return the DataObject class, or to have one or both of the following
 * two extra parameters: com.bea.ld.ExternalVariables and
 * com.bea.ld.QueryAttributes
 * e.g. commonj.sdo.DataObject executeQuery(String xquery,
 * ExternalVariables params);
 * e.g. commonj.sdo.DataObject executeQuery(String xquery,
 * QueryAttributes attrs);
 * e.g. commonj.sdo.DataObject executeQuery(String xquery,
 * ExternalVariables params, QueryAttributes attrs);
 */
 com.bea.xml.XmlObject executeQuery(String query);

 }

Using Data Service Controls for Ad Hoc Queries
Client applications can issue ad hoc queries against data service functions. You can use ad hoc queries
when you need to change the way a data service function returns data. Ad hoc queries are most often
used to process data returned by data services deployed on a WebLogic Server. Ad hoc queries are
especially useful when it is not convenient or feasible to add functions to an existing data service.

A Data Service control generated from a wizard has a commented ad hoc query method that can serve
as a starting point for generating an ad hoc query. To generate the ad hoc query, follow these steps:

1. If you do not already have a Data Service control (JCX) file, generate one using the Data Service
control wizard.

2. Add the following lines of code in the JCX file:

com.bea.xml.XmlObject executeQuery(String query);

Creat ing Data Se rv ice Cont ro ls

Client Application Developer’s Guide 5-7

(Replace the function name with one that is meaningful for your application. Be default, the ad
hoc query returns an XMLObject, but you can return a typed SDO or typed XMLBean class that
matches the return type XML for the ad hoc query. You can also optionally supply
ExternalVariables or QueryAttributes (or both) to an ad hoc query.)

When invoking this ad hoc query function from a Data Service control, the caller needs to pass
the query string (and the optional ExternalVariables binding and QueryAttributes if desired).
For example, a ad hoc query signature in a Data Service control will look like the following:

public interface MyLDControl extends LDControl,
 com.bea.control.ControlExtension
{
 ldcProduucerDataServices.address.ArrayOfADDRESSDocument
 adHocAddressQuery(String xquery);
}

The code to call this Data Service control (from a WebService JWS file, for example) would be:

/** @common:control */
public ldcontrol.MyLDControl myldcontrol;

/** @common:operation */
public ldcProduucerDataServices.address.ArrayOfADDRESSDocument
 adHocAddressQuery()
{
 String adhocQuery =
 "declare namespace f1 = \"ld:ldc_produucerDataServices/ADDRESS\";\n" +
 "declare namespace ns0=\"ld:ldc_produucerDataServices/ADDRESS\";\n"+
 "<ns0:ArrayOfADDRESS>\n"+"{for $i in f1:ADDRESS()\n" +
 "where $i/STATE = \"TX\"\n"+" return $i}\n" +
 "</ns0:ArrayOfADDRESS>\n";
 return myldcontrol.adHocAddressQuery(adhocQuery);
}

Creating Data Service Controls
This section describes the steps for creating a Data Service control and using it in a web project. The
general steps to create a Data Service control are:

Step 1: Create a Project in an Application

Step 2: Start WebLogic Server, If Not Already Running

Step 3: Create a Folder in a Project

Step 4: Create the Data Service Control

Step 5: Enter Connection Information for WebLogic Server

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-8 Client Application Developer’s Guide

Step 6: Select Data Service Functions to Add to Your Control

The following sections describe each of these steps in detail.

Step 1: Create a Project in an Application
Before you can create a Data Service control in WebLogic Workshop, you must create an application
and a project in the application. You can create a Data Service control in most types of WebLogic
Workshop projects; most commonly, you will create them in:

Web Projects

Web Service Projects

Portal Web Projects

Process Web Projects

Step 2: Start WebLogic Server, If Not Already Running
Make sure that the WebLogic Server that hosts the DSP-enabled application is running. WebLogic
Server can be running locally (on the same domain as WebLogic Workshop) or remotely (on a different
domain from WebLogic Workshop).

Step 3: Create a Folder in a Project
Create a folder in the project to hold the Data Service control by selecting a folder and right-clicking
on that folder. You can also create other controls (database controls, for example) in the same folder
as needed. WebLogic Workshop controls cannot be created at the top level of a project directory
structure. Instead, they must be created in a folder. When you create the folder, enter a name that
makes sense for your application.

Step 4: Create the Data Service Control
To create a Data Service control, start the Java Control Wizard by right-clicking on the new folder in
your project and choosing New → Java Control as shown in Figure 5-2. (You can also create a control
using the File → New → Java Control menu item.)

Creat ing Data Se rv ice Cont ro ls

Client Application Developer’s Guide 5-9

Figure 5-2 Create a New Data Service Control

Next, select Data Services Platform from the New Java Control dialog as shown in Figure 5-3. Enter a
filename for the control (.jcx) file and click Next.

Figure 5-3 New Java Control Dialog

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-10 Client Application Developer’s Guide

Step 5: Enter Connection Information for WebLogic Server
The New Java Control - DSP dialog (Figure 5-4) allows you to enter connection information for the
WebLogic Server that hosts your Data Services Platform application or project. If the server is local, a
Data Service control uses the connection information stored in the application properties. (To view
these settings, access the Tools → Application Properties menu item in WebLogic Workshop.)

If the server is remote, choose the Remote option and fill in the appropriate server URL, user name,
and password.

Note: You can specify a different username and password with which to connect to a local machine
in the Data Service control Wizard as well. To do this, click the Remote button and enter the
connection information (with a different username and password) for your local machine.
The security credentials specified through the Application Properties or through the Data
Service control wizard are used for creating the JCX file only, not for testing queries through
the control. For more details, see “Security Considerations When Using Data Service
Controls” on page 5-26.

When the information is correct, click Create to go to the next step.

Figure 5-4 Data Service Control Wizard: Connection Information

Creat ing Data Se rv ice Cont ro ls

Client Application Developer’s Guide 5-11

Step 6: Select Data Service Functions to Add to Your Control
In the Select Data Service functions... page, select the data service functions you want to use in your
application from the left pane and click Add. When done, click Finish. At that point, the Data Service
control JCX file is generated, with a call for each selected function.

Figure 5-5 Control Wizard: Select Data Service Functions Dialog Box

The LiquidDataControl.jar file is copied into the Libraries directory of your application when
you create your Data Service control.

The control appears with the functions you chose. Also, WithFilter functions are added for each
function, such as getCustomerWithFilter(). A filter function lets you further filter the results normally
returned by a function. For more information, see “Filtering, Sorting, and Fine-tuning Query Results”
in Chapter 10, “Advanced Topics.”

After you have added all the queries you need in the wizard, click Finish. WebLogic Workshop
generates the JCX file for your Data Services Platform control. Each method in the file returns an SDO
type corresponding to the appropriate (or corresponding) data service schema. The SDO classes are
stored in the Libraries directory of the WebLogic Workshop Application.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-12 Client Application Developer’s Guide

Note: If you get a timeout error when attempting to create a Data Service control, you may see a
message related to the compiler being unable to find the XMLBean class for a particular
schema element.

You can change the timeout value—by default that value is set at 5000 (5 seconds)—by
adding a directive in the WebLogic Workshop configuration file:

<beahome>/weblogic81/workshop/workshop.cfg

For example to change the setting to 10000 add the following directive to the file:

-Dcom.bea.ld.control.notification.timeout=10000

Modifying Existing Data Service Controls
This section describes the ways you can modify an existing Data Service control. When you edit a
control, the SDO classes that are available to the control are recompiled, which means that any
changes to data service are incorporated to the controls at that point as well.

This section contains the following procedures:

Changing a Method Used by a Control

Adding a New Method to a Control

Updating an Existing Control When Schemas Change

Changing a Method Used by a Control
To change a data service function in a Data Service control, perform the following steps:

1. In WebLogic Workshop, open the Design View for a Data Service control (.jcx) file.

2. Select the method you want to change, right-click, and select Edit in source view to bring up the
source editor. (See Figure 5-6.)

Modi f y ing Ex is t ing Data Serv i ce Cont ro ls

Client Application Developer’s Guide 5-13

Figure 5-6 Changing a Function in a Data Service Control

3. In the source view, change the comment for the function. Change the functionName value to the
new function you want to use. If necessary, change the functionURI value as well. This should be
the path to the data service that contains the function.

4. Change the return type, parameters, and name of the function.

When you save your changes, the SDO classes based on the control are automatically recompiled.

Adding a New Method to a Control
To add a new method to an existing Data Service control, perform the following steps:

1. In WebLogic Workshop, open an existing control in Design View.

2. In the control Design View, move your mouse inside the box showing the control methods,
right-click, then select Add Method as shown in Figure 5-7.

Figure 5-7 Adding a Method to a Control

3. Enter a name for the new method.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-14 Client Application Developer’s Guide

4. Right-click the new method, and select Edit in Source View to bring up the source editor.

5. In the Source View, add a comment for the function. Change the functionName value to the new
function you want to use. If necessary, change the functionURI value as well. This should be the
path to the data service that contains the function.

6. Change the return type, parameters, and name of the function.

Updating an Existing Control When Schemas Change
If any of the schemas corresponding to any methods in a Data Service control change, you must clean
and re-build the DSP data service folders to regenerate the SDO classes for the changed schemas. If
the changes result in a different return type for any of the functions, you must also modify the function
in the control.

Note: If you developed a client application using a static client API and you modify any schemas,
you must also recompile and redeploy the application to your user community, using the
re-generated classes.

When you edit the control, its SDO classes are automatically regenerated.

Note: For details on working with static and dynamic SDO see “Static and Dynamic SDO APIs” on
page 3-14.

Using Data Services Platform with NetUI
The WebLogic NetUI tag library allows you to rapidly assemble JSP-based applications that display
data returned by Data Services Platform. The following sections list the basic steps for using NetUI to
display results from a Data Service control:

Generating a Page Flow From a Control

Adding a Data Service Control to an Existing Page Flow

Adding Service Data Objects (SDO) Variables to the Page Flow

Displaying Array Values in a Table or List

Generating a Page Flow From a Control
When you use WebLogic Workshop to generate a page flow, WebLogic Workshop creates the page flow,
a start page (index.jsp), and a JSP file and action for each method you specify in the Page Flow
wizard.

Us ing Data Serv ices P la t fo rm wi th NetU I

Client Application Developer’s Guide 5-15

To Generate a Page Flow From a Data Service Control
Perform the following steps to generate a page flow from a Data Services Platform control.

1. Select a Data Services Platform control JCX file from the application file browser, right-click, and
select Generate Page Flow.

2. In the Page Flow Wizard (see Figure 5-8), enter a name for your Page Flow and click Next.

Figure 5-8 Enter a Name for the Page Flow

3. On the Page Flow Wizard - Select Actions dialog, check the methods for which you want a new page
created. The wizard has a check box for each method in the control. (See Figure 5-9.)

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-16 Client Application Developer’s Guide

Figure 5-9 Choose Data Services Platform Methods for the Page Flow

4. Click Create.

WebLogic Workshop generates the Java Page Flow (JPF file), a start page (index.jsp), and a
JSP file for each method you specify in the Page Flow wizard.

5. Add and initialize variables to the JPF file based on the SDO classes. For details, see “Adding
Service Data Objects (SDO) Variables to the Page Flow” on page 5-17.

6. Drag and drop the SDO variables to your JSPs to bind the data from Data Services Platform to your
page layout. For details, see “Displaying Array Values in a Table or List” on page 5-21.

7. Build and test the application in WebLogic Workshop.

Adding a Data Service Control to an Existing Page Flow
You can add a Data Service control to an existing Page Flow JPF file. The procedure is the same as
adding a Data Service control to a Web service as described in the section “Adding a Data Service
Control to a Web Service” in Chapter 4, “Enabling DSP Applications for Web Service Clients.”
However, instead of opening the Web service in Design View as described in that chapter, you open
the Page Flow JPF file in Action View.

Us ing Data Serv ices P la t fo rm wi th NetU I

Client Application Developer’s Guide 5-17

You can also add a control to an existing page flow from the Page Flow Data Palette (available in Flow
View and Action View of a Page Flow) as shown in Figure 5-10.

Figure 5-10 Adding a Control to a Page Flow from the Data Palette

Adding Service Data Objects (SDO) Variables to the Page
Flow
To use the NetUI features to drag and drop data into a JSP, you must first create one or more variables
in the page flow JPF file. The variables must be of the data object type corresponding to the schema
associated with the query.

Note: A data object is the fundamental component of the SDO architecture. For more information,
see Chapter 2, “DSP’s Data Programming Model and Update Framework.”

Defining a variable in the page flow JPF file of the top-level class of the SDO function return type
provides you access to all the data from the query through the NetUI repeater wizard. The top-level
class, which corresponds to the global element of the data service type, has “Document” appended to
its name, such as CUSTOMERDocument.

When you create a Data Service control and the SDO variables are generated, an array is created for
each element in the schema that is repeatable. You may want to add other variables corresponding to
other arrays in the classes to make it more convenient to drag and drop data onto a JSP, but it is not
required. For example. when an array of CUSTOMER objects can contain an array of ORDER objects,
you can define two variables: one for the CUSTOMER array and one for the ORDER array. You can then
drag the variables to different JSP pages.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-18 Client Application Developer’s Guide

Define each variable with a type corresponding to an SDO object. Define the variables in the source
view of the page flow controller class. The variables should be declared public. In the following
example, the bold-typed variable declarations show an example of user variable declarations:

public class CustomerPFController extends PageFlowController

{

 /**

 * This is the control used to generate this pageflow

 * @common:control

 */

 private DanubeCtrl myControl;

 public CUSTOMERDocument var;

 public POITEM currentItem;

 public PAYMENTListDocument payments;

Once defined in the page flow controller, the variables appear on the Data Palette tab. From there,
you can drag-and-drop them onto JSP files. When you drag-and-drop an array onto a JSP file, the NetUI
Repeater Wizard appears and guides you through selecting the data you want to display. (See
Figure 5-11.)

Figure 5-11 Page Flow Variables for XMLBean Objects

variables added
to the Page Flow

Us ing Data Serv ices P la t fo rm wi th NetU I

Client Application Developer’s Guide 5-19

To populate the variable with data, initialize the variable in the page flow method corresponding to
the page flow action that calls the query. For details, see “To Initialize the Variable in the Page Flow”
on page 5-19.

To Add a Variable to a Page Flow
Perform the following steps to add a variable to the page flow:

1. Open your Page Flow JPF file in WebLogic Workshop.

2. Open the Source View tab.

3. In the variable declarations section of your Page Flow class, enter a variable with the SDO type
corresponding to the schema elements you want to display. Depending on your schema, what you
want to display, and how many queries you are using, you might need to add several variables.

4. To determine the SDO type for the variables, examine the method signature for each method that
corresponds to a query in the Data Service control. The return type is the root level of the SDO
class. Create a variable of that type. For example, if the signature for a control method is:

org.openuri.temp.schemas.customer.CUSTOMERDocument getCustomer(int p1);

Create a variable as follows:

public org.openuri.temp.schemas.customer.CUSTOMERDocument var;

5. After you create the variables, initialize them as described in the following section.

To Initialize the Variable in the Page Flow
You can initialize the variable by calling a function in a Data Service control, which will populate the
variable with the returned data. Initializing the variables ensures that the data bindings to the
variables work correctly and that there are no tag exceptions when the JSP displays the results the
first time.

Perform the following steps to initialize the variables in Page Flow:

1. Open your Page Flow JPF file in WebLogic Workshop.

2. Open the Source View.

3. In the page flow action that corresponds to the Data Services Platform query for which you are
going to display the data, add the code to initialize the variable.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-20 Client Application Developer’s Guide

The following example shows how to initialize an object on the Page Flow. The code (and comments)
in bold has been added. The rest of the code was generated when the Page Flow was created from the
Data Service control (see “Generating a Page Flow From a Control” on page 5-14).

public class CustomerPFController extends PageFlowController

{

 /**

 * This is the control used to generate this pageflow

 * @common:control

 */

 private DanubeCtrl myControl;

 public CUSTOMERDocument var;

 ...

 /**

 * Action encapsulating the control method :getCustomer

 * @jpf:action

 * @jpf:forward name="success" path="viewCustomer.jsp"

 * @jpf:catch method="exceptionHandler" type="Exception"

 */

 public Forward getCustomer(GetCustomerForm aForm)

 throws Exception

 {

 var = myControl.getCustomer(aForm.p1);

 ...

 return new Forward("success");

 }

}

Working with Data Objects
After creating and initializing a data objects as a public variable in the Page Flow, you can drag and
drop elements of the object onto your application pages (such as JSPs) from the Data Palette.

The elements appear in dot-delimited chain format, such as:

pageFlow.var.CUSTOMER.CUSTOMERNAME

Notice that the function that actually returns the element value is getCUSTOMERNAME(), which
returns a java.lang.String value, the name of a customer.

Us ing Data Serv ices P la t fo rm wi th NetU I

Client Application Developer’s Guide 5-21

As you edit code in the source view, WebLogic Workshop offers code completion for method and
member names as you type. A selection box of available elements appears in the data object variable
as shown in Figure 5-12.

Figure 5-12 DataObject Method Name Completion

Note: For more information on programming with DSP data objects, see Chapter 2, “DSP’s Data
Programming Model and Update Framework.”

Displaying Array Values in a Table or List
DSP maps to an array any data element specified to have unbounded maximum cardinality in its XML
schema definition. Unbounded cardinality means that there can be zero to many (unlimited)
occurrences of the element (indicated by an asterisk in the return type view of the DSP Console).

When you drag and drop an array value onto a JSP File, BEA WebLogic Workshop displays the
Repeater wizard to guide you through the process of selecting the data you want to display. The
Repeater wizard provides choices for displaying the results in an HTML table or in a list.

Adding a Repeater to a JSP File
To add a NetUI repeater tag (used to display the data from a Data Services Platform query) to a JSP
file, perform the following steps:

1. Open a JSP file in your Page Flow project where you want to display data. This should be the page
corresponding to the action in which the variable is initialized.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-22 Client Application Developer’s Guide

2. In the Data Palette → Page Flow Properties, locate the variable containing the data you want to
display.

3. Expand the nodes of the variable to expose the node that contains the data you want to display. If
the variable does not traverse deep enough into your schema, you will have to create another
variable to expose the part of your schema you require. For details, see “To Initialize the Variable
in the Page Flow” on page 5-19.

4. Select the node you want, then drag and drop it onto the location of the JSP file in which you want
to display the data. You can do this either in Design View or Source View. WebLogic Workshop
displays the repeater wizard as shown in Figure 5-13.

Figure 5-13 Repeater Wizard

5. In the repeater wizard, navigate to the data you want to display and uncheck any fields that you
do not want to display. There might be multiple levels in the repeater tag, depending on your
schema.

6. Click Next. The Select Format screen appears as shown in Figure 5-14.

Us ing Data Serv ices P la t fo rm wi th NetU I

Client Application Developer’s Guide 5-23

Figure 5-14 Repeater Wizard Select Format Screen

7. Choose the display format for your data and click Create.

8. Right-click on the JSP page and choose Run Page to see the results.

Adding a Nested Level to an Existing Repeater
You can create repeater tags inside other repeater tags. You can display nested repeaters on the same
page (in nested tables, for example) or you can set up Page Flow actions to display the nested level on
another page (with a link, for example).

To create a nested repeater tag, perform the following steps:

1. Add a repeater tag as described in “Adding a Repeater to a JSP File” on page 5-21.

2. Add a column to the table where you want to add the nested level.

3. Drag and drop the array from your variable corresponding to your nested level into the data cell
you created in the table.

4. In the repeater wizard, select the items you want to display.

5. Click the Create button in the repeater wizard to create the repeater tags.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-24 Client Application Developer’s Guide

6. Right-click on the JSP page and choose Run Page to see the results.

Adding Code to Handle Null Values
It is a common JSP design pattern to add conditional code to handle null checks. If you do not check
for null values returned by function invocations, your page will display tag errors if it is rendered
before the functions on it are executed.

To add code to handle null values, perform the following steps:

1. Add a repeater tag as described in “Adding a Repeater to a JSP File” on page 5-21.

2. Open the JSP file in source view.

3. Find the netui-data:repeater tag in the JSP file.

4. If the dataSource attribute of the netui-data:repeater tag directly accesses an array variable from
the page flow, then you can set the defaultText attribute of the netui-data:repeater tag. For
example:

<netui-data:repeater dataSource="{pageFlow.promo}" defaultText="no data">

If the dataSource attribute of the netui-data:repeater tag accesses a child of the variable from
the page flow, you must add if/else logic in the JSP file as described below.

5. If the defaultText attribute can have a null value for your netui-data:repeater tag, add code before
and after the tag to test for null values. The following is sample code. The code in bold is added,
the rest is generated by the repeater wizard. This code uses the profile variable initialized in “To
Initialize the Variable in the Page Flow” on page 5-19.

<%

PageFlowController pageFlow = PageFlowUtils.getCurrentPageFlow(request);

if (((pF2Controller)pageFlow).profile == null

 ||

((pF2Controller)pageFlow).profile.getPROFILEVIEW().getCUSTOMERPROFILEArray

() == null

 ||

((pF2Controller)pageFlow).profile.getPROFILEVIEW().getCUSTOMERPROFILEArray

().length == 0){

 %>

<p>No data</p>

<% } else {%>

<netui-data:repeater dataSource=

"{pageFlow.profile.PROFILEVIEW.CUSTOMERPROFILEArray}">

Caching Cons ide ra t i ons When Us ing Data Se rv ice Cont ro ls

Client Application Developer’s Guide 5-25

 <netui-data:repeaterHeader>

 <table cellpadding="2" border="1" class="tablebody" >

 <tr>

<!- the rest of the table and NetUI code goes here -->

<td><netui:label value

="{container.item.PROFILE.DEFAULTSHIPMETHOD}"></netui:label></td>

 </tr>

 </netui-data:repeaterItem>

 <netui-data:repeaterFooter></table></netui-data:repeaterFooter>

 </netui-data:repeater>

<% }%>

6. Test the application.

Caching Considerations When Using Data Service
Controls

The following scenario is very common: most of the time you can use cached data because it changes
infrequently; however, on occasion, your application must fetch data directly the data source. At the
same time, you want to update your cache with the most up-to-date information. A typical example
would be to refresh the cache at the beginning of every week or month.

You can accomplish this by passing the attribute GET_CURRENT_DATA with your function call.

Bypassing the Cache When Using a Data Service Control
To bypass the data in a cached query function result, your application will need to signal Liquid Data
to retrieve results directly from the data source, rather than from its cache. The steps required to
accomplish this include:

Adding an additional function to the set already defined in your Data Service control (.jcx)
file. This function will take a QueryAttribute object as a parameter.

Instantiate a QueryAttribute object in your application and call the enableFeature() method,
passing the GET_CURRENT_DATA attribute.

Call the function you defined in your Data Service control, passing the QueryAttribute object.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-26 Client Application Developer’s Guide

Cache Bypass Example When Using a Data Service Control
Listing 5-2 shows example Java Page Flow (JPF) code that tests whether the user has requested a
bypass of any cached data. If refreshCache is set to false then cached data (if any is available) is used.
Otherwise the function will be invoked with the GET_CURRENT_DATA attribute and data will be
retrieved from the data source. As a by-product, any cache is automatically refreshed.

Listing 5-2 Cache Bypass Example When Using Data Services Platform Control

 if (refreshCache == false) {

 customerDocument = LDControl.getCustomerProfile(CustomerID);

 } else {

 QueryAttributes attr = new QueryAttributes();

 attr.enableFeature(QueryAttributes.GET_CURRENT_DATA);

 customerDocument =

 LDControl.getCustomerProfileWithAttr(CustomerID, attr);

 }

As mentioned above, an additional function is also needed in the your Liquid Data control JCX file.
For the code shown in Listing 5-2, you would add the following definition to your Liquid Data control:

/**

* @jc:XDS functionURI="ld:DataServices/CustomerProfile"

functionName="getCustomerProfile"

*/

CUSTOMERPROFILEDocument getCustomerProfileWithAttr (java.lang.String p0,

QueryAttributes attr);

Security Considerations When Using Data Service
Controls

This section describes security considerations for applications using a Data Service control. The
following sections are included:

Security Credentials Used to Create Data Service Controls

Testing Controls With the Run-As Property in the JWS File

Secur i t y Cons ide ra t i ons When Us ing Data Serv ice Cont ro ls

Client Application Developer’s Guide 5-27

Trusted Domains

Security Credentials Used to Create Data Service Controls
The WebLogic Workshop Application Properties (Tools → Application Properties) allow you to set
the connection information to connect to the domain in which you are running. You can either use the
connection information specified in the domain boot.properties file or override that information
with a specified username and password.

When you create a Data Services Platform control JCX file and are connecting to a local Data Services
Platform server (Data Services Platform on the same domain as WebLogic Workshop), the user
specified in the Application Properties is used to connect to the Data Services Platform server. When
you create a Data Service control and are connecting to a remote Data Services Platform server (a
WebLogic Server on a different domain from WebLogic Workshop), you specify the connection
information in the Data Service control wizard connection information dialog (see Figure 5-4).

When you create a Data Service control, the Control Wizard displays all queries to which the specified
user has access privileges. The access privileges are defined by security policies set on the queries,
either directly or indirectly.

Note: The security credentials specified through the Application Properties or through the Data
Service control wizard are only used for creating the Data Service control JCX file, not for
testing queries through the control. To test a query through the control, you must get the user
credentials either through the application (from a login page, for example) or by using the
run-as property in the Web service file.

Testing Controls With the Run-As Property in the JWS File
You can use the run-as property to test a control running as a specified user. To set the run-as property
in a Web service, open the Web service and enter a user for the run-as property in the WebLogic
Workshop property editor.

When a query is run from an application, the application must have a mechanism for getting the
security credential. The credential can come from a login screen, it can be hard-coded in the
application, or it can be imbedded in a J2EE component (for example, using the run-as property in a
JWS Web service file).

Trusted Domains
If the WebLogic Server that hosts the DSP project is on a different domain than WebLogic Workshop,
then both domains must be set up as trusted domains.

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-28 Client Application Developer’s Guide

Domains are considered trusted domains if they share the same security credentials. With trusted
domains, a user known to one domain need not be authenticated on another domain, if the user is
already known on that domain.

Note: After configuring domains as trusted, you must restart the domains before the trusted
configuration takes effect.

Configuring Trusted Domains
To configure domains as a trusted user, perform the following steps:

1. Log into the WebLogic Administration Console as an administrator.

2. In the left-frame navigation tree, click the node corresponding to your domain.

3. At the bottom of the General tab for the domain configuration, click the link labeled View
Domain-wide Security Settings Links.

4. Click the Advanced tab. (See Figure 5-15.)

Figure 5-15 Setting up Trusted Domains

5. Uncheck the Enable Generated Credential box, enter and confirm a credential (usually a
password), and click Apply.

6. Repeat this procedure for all of the domains you want to set up as trusted. The credential must be
the same on each domain.

Secur i t y Cons ide ra t i ons When Us ing Data Serv ice Cont ro ls

Client Application Developer’s Guide 5-29

For more details on WebLogic security, see:

“Configuring Security for a WebLogic Domain” in the WebLogic Server documentation.

For information on Data Services Platform security, see:

"Securing DSP Resources" in the DSP Administration Guide.

http://e-docs.bea.com/wls/docs81/secmanage/domain.html
http://e-docs.bea.com/liquiddata/docs85/admin/security.html

Access ing Data Se rv ices f rom WebLogic Workshop App l icat ions

5-30 Client Application Developer’s Guide

Client Application Developer’s Guide 6-1

C H A P T E R 6

Supporting ADO.NET Clients

This chapter describes how to enable interoperability between BEA AquaLogic Data Services Platform
(DSP) data services and ADO.NET client applications. With support for ADO.NET client applications,
Microsoft Visual Basic and C# developers who are familiar with Microsoft’s disconnected data model
can leverage DSP data services as if they were ADO.NET Web services.

From the Microsoft ADO.NET developers’ perspective, support is transparent: you need do nothing
extraordinary to invoke functions on a DSP data service—all the work is done on the server-side.
ADO.NET-client-application developers need only incorporate the DSP-generated WSDL into their
programming environments, as you would when creating any Web service client application.

General information about how DSP achieves ADO.NET integration is provided in this chapter, as are
the server-side operations required to enable it. The chapter includes the following sections:

Overview of ADO.NET Integration in Data Services Platform

Enabling DSP Support for ADO.NET Clients

Adapting DSP XML Types (Schemas) for ADO.NET Clients

Generated Artifacts Reference

Note: The details of ADO.NET development are described on Microsoft’s MSDN Web site
(http://msdn.microsoft.com). See that site for information about developing
ADO.NET-enabled applications.

Suppor t ing ADO.NET C l ien ts

6-2 Client Application Developer’s Guide

Overview of ADO.NET Integration in Data Services
Platform

Functionally similar to service data objects (SDO), ADO.NET is data object technology for Microsoft
ADO.NET client applications. ADO.NET provides a robust, hierarchical, data access component that
enables client applications to work with data while disconnected from the data source. Developers
creating data-centric client applications use C#, Visual Basic.NET, or other Microsoft .NET
programming languages to instantiate local objects based on schema definitions.

These local objects, called DataSets, are used by the client application to add, change, or delete data
before submitting to the server. Thus, ADO.NET client applications sort, search, filter, store pending
changes, and navigate through hierarchical data using DataSets, in much the same way that SDOs are
used by DSP client applications.

See “Role of the Mediator and SDOs” on page 2-16 for more information about working with SDOs in
a Java client application. Developing client applications to use ADO.NET DataSets is roughly
analogous to the process of working with SDOs.

Although functionally similar on the surface, as you might expect with two dissimilar platforms (Java
and .NET), the ADO.NET and SDO data models are not inherently interoperable. To meet this need,
Data Services Platform provides ADO.NET-compliant DataSets so that ADO.NET client developers can
leverage data services provided by Data Services Platform, just as they would any ADO.NET-specific
data sources.

Enabling a Data Services Platform data service to support ADO.NET involves three key steps:

Creating an ADO.NET-Enabled Data Service Control (Note that ADO.NET-Enabled Data Service
controls are intended exclusively to provide support to ADO.NET clients via a Web service
interface, as described in this chapter: such controls cannot be used in Page Flows, Portals, or
other development scenarios.)

Generating a Web Service for ADO.NET Clients

Generating an ADO.NET-Enabled WSDL

These steps are described in “Enabling DSP Support for ADO.NET Clients” on page 6-7.

Understanding ADO.NET
ADO.NET is a set of libraries included in the Microsoft .NET Framework that help developers
communicate from ADO.NET client applications to various data stores. The Microsoft ADO.NET
libraries include classes for connecting to a data source, submitting queries, and processing results.

Overv iew o f ADO.NET In tegrat ion in Data Serv i ces P la t fo rm

Client Application Developer’s Guide 6-3

The DataSet also includes several features that bridge the gap between traditional data access and
XML development. Developers can work with XML data through traditional data access interfaces,
and vice-versa.

Note: See Microsoft’s MSDN site (http://msdn.microsoft.com/) for more information about
ADO.NET and client application development.

Although ADO.NET supports both connected (direct) and disconnected models, in Data Services
Platform only the disconnected model is supported.

ADO.NET Client Application Development Tools
ADO.NET client applications are typically created using Microsoft Windows Forms, Web Forms, C#, or
Visual Basic. Microsoft Windows Forms is a collection of classes used by client application developers
to create graphical user interfaces for the Windows .NET managed environment. Web Forms provides
similar client application infrastructure for creating Web based client applications. Any of these client
tools can be used by developers to create applications that leverage ADO.NET for data sources.

Figure 6-1 ADO.NET Clients Supported via Web Services

Suppor t ing ADO.NET C l ien ts

6-4 Client Application Developer’s Guide

Support for ADO.NET clients is provided via Web services, so before you can use your Microsoft tools
of choice, you must perform the two basic tasks required for web-service client development, just as
you normally would for any Microsoft Web services client application (see Figure 6-1):

Obtain the WSDL for the DSP Web service application.

Generate the client side artifacts from the WSDL as required for the client application
development tool you are using.

Once the client-side artifacts have been incorporated into your development environment, you can
invoke functions on the data service and manipulate the DataSet objects in your code as you normally
would.

Note: The process of generating the WSDL and server-side artifacts is described in “Generating a
Web Service for ADO.NET Clients” on page 6-10.

Understanding How DSP Supports ADO.NET Clients
BEA AquaLogic Data Services Platform supports ADO.NET at the data object level. That is, Data
Services Platform maps inbound ADO.NET DataSet objects to SDO DataObjects, and maps outbound
SDOs to DataSets. The mapping is performed transparently on the server, and is bidirectional.

As shown in Figure 6-3, the ADO.NET typed DataSet is submitted to and returned by DSP. At runtime,
when a Microsoft-.NET client application makes a SOAP invocation to the ADO.NET-enabled Web
service, the Web service intercepts the object and passes it to the Data Service control.

The ADO.NET-enabled Data Service control is the linchpin of the interoperability between the two
platforms. It comprises several wrapper classes—one for each typed DataSet—that are used to
provide bidirectional mapping.

Table 6-2 ADO.NET and SDO Data Objects Compared

ADO.NET SDO Description

DataSet DataObject Disconnected data models. Queries return
results conforming to this data model.

DiffGram ChangeSummary Mechanisms for tracking changes made to
data objects by a client application.

Overv iew o f ADO.NET In tegrat ion in Data Serv i ces P la t fo rm

Client Application Developer’s Guide 6-5

Figure 6-3 Data Services Platform and .NET Integration

The required wrapper classes are created automatically, during the process of creating the
ADO.NET-enabled Data Service control, as described later in this chapter. The wrapper classes are
based on the XML schema file that gets generated during Data Service control creation.

At runtime, the ADO.NET-enabled Data Service control uses the wrapper classes to provide the
ADO.NET client with the appropriate objects. The specifics vary, depending on the type of function or
procedure:

Functions. The Data Service control wraps a query result using the typed DataSet schema, adds
the DataSet schema type to the result, and returns to the client.

Procedures. A DSP procedure can return an SDO; another data type; or nothing (void). The
Data Service control uses the wrapper classes as required, but only if required.

Submitting changes. The Data Service control transforms an ADO.NET DataSet DiffGram to an
SDO ChangeSummary, and then submits it to SDO Mediator. All submit methods take the
corresponding wrapper classes as arguments.

Suppor t ing ADO.NET C l ien ts

6-6 Client Application Developer’s Guide

As mentioned previously, mapping, transformation, and packaging processes are transparent to client
application developers and data services developers. Only the items listed in Table 6-4 are exposed to
data service developers.

Supporting Java Clients
The WSDL generated by the WebLogic Server from an ADO.NET-enabled Data Service control is
specific for use by Microsoft ADO.NET clients. Exposing data services as Web services that are usable

Table 6-4 Data Services Platform—Java and ADO.NET-Enabled Artifacts

Name Example Description

Data Service Customer.ds An XQuery file that instantiates read
functions, navigation functions, procedures,
and update functionality at runtime.

Data Service Schema Customer.xsd The schema associated with the return type
of the original data service.

DataSet Schema CustomerDataSet.xsd The typed DataSet schema that conforms to
Microsoft requirements for ADO.NET data
objects.

Data Service Control Customer.jcx An ADO.NET-enabled data service control.

Web Service Source Customer.jws A Java Web service that can intercept
ADO.NET data objects and pass them to an
ADO.NET-enabled Data Service control.

<DSControlName>_schema Customer_schema An automatically created folder for
containing generated typed DataSet XSDs.

Web Service Definition CustomerNET.wsdl Generated WSDL that conforms to the
ADO.NET typed DataSet schema.

Enab l ing DSP Suppor t fo r ADO.NET C l ients

Client Application Developer’s Guide 6-7

by Java clients is generally the same, although the actual steps (and the generated artifacts) are
specific to Java. The steps are summarized in Table 6-5.

Enabling DSP Support for ADO.NET Clients
The process of providing ADO.NET clients with access to data services is a server-side operation that
takes place in the context of an application and WebLogic Workshop.

The instructions in this section assume that you have created a data service application and that you
want to provide access to the functions of the service to ADO.NET client applications. (For
information about designing and developing data services, see the Data Services Developer’s Guide.)

Enabling a DSP application to support ADO.NET clients is generally a three-step process:

Creating an ADO.NET-Enabled Data Service Control

Generating a Web Service for ADO.NET Clients

Generating an ADO.NET-Enabled WSDL

The tasks described in the remaining sections assume that a data services application is open in
WebLogic Workshop.

Creating a New Web Service Project
Since the ADO.NET support is accomplished through the use of Data Service controls, and since the
Data Service controls require being exposed as Web services in order to make them network
accessible, the first step is to create a Web service project and the folder structure necessary to hold
generated components.

Table 6-5 Summary of Steps for Supporting Regular Clients

Task For more information...

Generate Data Service Control (regular, not
ADO.NET-enabled)

“Creating Data Service Controls” on page 5-7

Generate Web service file (JWS) “Server-Side DSP-Enabled Web Service
Development” on page 4-3

Generate WSDL “Server-Side DSP-Enabled Web Service
Development” on page 4-3

Suppor t ing ADO.NET C l ien ts

6-8 Client Application Developer’s Guide

In the data service application that you want to ADO.NET-enable, create a new Web service project
specifically for the ADO.NET-enabling components of the application (see Figure 6-6).

Note: Be sure to give the Web service project a meaningful name; the name will be used during the
generation of several artifacts, including the name of the Data Service control.

Figure 6-6 Folder Structure for ADO.NET-Enabled Project Components

Creating an ADO.NET-Enabled Data Service Control
Data Service controls can be ADO.NET-enabled simply by selecting the appropriate checkbox during
the creation process. The ADO.NET-Enabled Data Service controls created (as described in this
section) are designed exclusively to support ADO.NET clients through a Web services interface: such
controls cannot be used in Page Flows, Portals, or other development scenarios.

Starting from the Web service project folder, here are the general steps:

1. Create a folder in your project for the Data Service control by selecting a folder and right-clicking
on that folder. (Java controls must be contained inside a folder within a project—they cannot
reside at the top level of the project.)

2. Right-click on the folder in the project to display the popup menu, and then select New → Java
Control. The New Java Control dialog displays.

3. Select Data Services Platform from the New Java Control dialog. Enter a filename for the control
(JCX) file and click Next. The New Java Control - Data Service dialog displays.

4. Enter the connection information for the WebLogic Server that hosts the Data Services Platform
application.

– For a local server, the Data Service control uses the connection information stored in the
application properties.

– For a remote server, you must select Remote and then provide the server URL, user name,
and password.

5. Click Create to continue. The Select Data Service Functions dialog displays. Note the
ADO.NET-Enable checkbox in the upper-left-hand corner of the dialog, shown in Figure 6-7.

Enab l ing DSP Suppor t fo r ADO.NET C l ients

Client Application Developer’s Guide 6-9

Figure 6-7 Select Data Service Functions Dialog

6. Click the ADO.NET-enabled box and then select one or more functions or procedures to use in the
ADO.NET-enabled data service control.

Note: Due to a Microsoft limitation, the functions and procedures that you add to your Data
Service control must belong to the same namespace.

7. Click Next to continue. A Control generation detailed configuration page displays, showing the
functions select on the previous page. On this page, you can select the functions (if any) that
should include a filter or an attribute.

– Add a filter to the JCX method (For more information about filters, see “Filtering, Sorting,
and Fine-tuning Query Results” on page 10-5.)

– Add an attribute to the method.

8. Click Finish to complete the process.

As the ADO.NET-enabled Data Service control file is being generated, a folder is also created inside
the controls folder, and a Microsoft-style XML schema definition file (XSD) is generated and placed
inside the folder. The generated folder follows this simple naming convention:

<Data Service control name>_schema

The schema file created in the <Data Service control name>_schema folder is a combination of the
Data Service control name and "DataSet;" for example, CustomerDataSet.xsd. (See Table 6-4 for other

Suppor t ing ADO.NET C l ien ts

6-10 Client Application Developer’s Guide

relevant naming conventions.) The XML schema file contains method calls for all selected functions
and procedures.

As the XSD is created, you may see a Message box display briefly in WebLogic Workshop, notifying you
that you have added one or more XSD files to a non-Schema project. Such a message can be
disregarded; it is raised because the Microsoft ADO.NET style XSD is not the same as other data
service XSD files.

Note: For more information about Data Service controls, see “Creating Data Service Controls” on
page 5-7.

Java controls are not network-addressable unless wrapped as Web services. Invoking a Java Control
of any kind, including a Data Service control from outside the application, requires that it be exposed
as a Web service or as another Web-based application, such as a JSP (JavaServer Page).

Note: Deleting a JCX does not cause the deletion of any associated schema (XSD) files. Instead if
you need to remove these files from your system, do so manually.

Generating a Web Service for ADO.NET Clients
After the ADO.NET-enabled Data Service control has been generated, it is used as the basis for
generating a Java Web service file (JWS), as follows:

1. Right-click on the Data Service control.

2. Select Generate Test JWS File (Stateless) from the pop-up menu. (ADO.NET client support is
limited to stateless Web services.)

Shortly, the JWS is generated; you will see it displayed as a node under the Data Service control. From
this JWS you can now generate the companion WSDL (Web Services Description Language) file that
will be used by Web service client-application developers.

Note: After the Java Web service (JWS) file has been generated, it can be deployed in the usual
manner. See the Web services page on BEA’s documentation site for more information:

http://e-docs.bea.com/wls/docs81/webservices.html

Generating an ADO.NET-Enabled WSDL
To generate the companion WSDL (Web Services Description Language) file from the JWS that can
be used by Web service clients to invoke operations on the ADO.NET-enabled Web service:

1. Right-click on the JWS file created in “Generating a Web Service for ADO.NET Clients.”

2. Select Generate ADO.NET Enabled WSDL File from the pop-up menu.

Adapt ing DSP XML Types (Schemas) fo r ADO.NET C l i ents

Client Application Developer’s Guide 6-11

In a moment, the WSDL is generated; you will see it displayed as a node under the JWS file.

Figure 6-8 Generated WSDL in WebLogic Workshop

See “Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients” on
page 6-17 for information about the format of the WSDL.

Note: The building of RPC-style Web services on top of DSP controls is not supported. For this
reason RPC-style Web services built on cannot be created from ADO.NET clients utilizing
DSP.

The WSDL should be made available to ADO.NET developers directly (for example, by sending the
physical file to them). Developers can also obtain the WSDL from the BEA WebLogic Server’s home
page.

Adapting DSP XML Types (Schemas) for ADO.NET Clients
Fundamentally, Microsoft’s ADO.NET DataSet is designed to provide data access to a data source that
is — or appears very much like — a database table (columns and rows). Although, later adapted for

Suppor t ing ADO.NET C l ien ts

6-12 Client Application Developer’s Guide

consumption of Web services, ADO.NET imposes many design restrictions on the Web service data
source schemas.

Due to these restrictions, Data Services Platform XML types (also called schemas or XSD files) that
work fine with data services may not be acceptable to ADO.NET's DataSet.

This section explains how you can prepare XML types for consumption by ADO.NET clients. It covers
both read and update from the ADO.NET client side to the DSP server, specifically explaining how to:

Read a DSP query result as a ADO.NET DataSet via SDO (since query results are presented as
SDO DataObjects within DSP).

Update DSP data sources using an ADO.NET DataSet's diffgram that is mapped to a SDO
ChangeSummary.

Note: See the Data Services Developer’s Guide for detailed information related to creating and
working with XML types.

Approaches to Adapting XML Types for ADO.NET
There are several approaches to adapting XML types for use with an ADO.NET DataSet:

Develop ADO.NET-compatible data services above the physical data service layer. You can
develop data services on top of physical data sources that are specifically intended to be
consumed by ADO.NET clients. (Details are described in “XML Type Requirements for Working
With ADO.NET DataSets.”)

Note: Any ADO.NET-compatible data service XML types can be consumed by non-ADO.NET
clients.

Develop ADO.NET-compatible data services above a logical data service layer. If existing
logical data services that are not ADO.NET-compatible must be reused, you can build an
additional layer of ADO.NET-compatible data services on top of the logical data services.

Note: This approach may increase the likelihood of having to work with inverse functions and
custom updates. (The usage of inverse functions is described in "Best Practices and
Advanced Topics", Data Services Developer’s Guide.)

XML Type Requirements for Working With ADO.NET DataSets
The following guidelines are provided to help you develop ADO.NET DataSet-compatible XML types
(schemas) by providing pattern requirements for various data service artifacts.

../datasrvc/index.html
../datasrvc/index.html

Adapt ing DSP XML Types (Schemas) fo r ADO.NET C l i ents

Client Application Developer’s Guide 6-13

Requirements for Complex Types
Requirements for supporting a complex type in an ADO.NET DataSet include:

Defining the entire XML type in a single schema definition file. This means not using include,
import, or redefine statements.

Define one global element in the XML type and all other complex types as anonymous complex
types within that element. Define one global element in the schema and define all other
complex types as anonymous complex types within the element. Do not define any of the
following:

– global attribute

– global attributeGroup

– global simple type

Be sure that the name of an element in the anonymous complex type is unique within the
entire schema definition.

Note: The name of an element of simple type need not be unique, unless the occurrence of the
element is unbounded.

Requirements for Recurring References
Since ADO.NET does not support true recurring references among complex types, the requirements
noted in Requirements for Complex Types should be followed when simulating schema definitions
utilizing such constructs as:

Nested complex types

Recurring references among complex types

Multiple references from different complex type to a single complex type

As an example, if an address complex type has been referenced by both Company and Department,
there should be two element definitions, CompanyAddress and DepartmentAddress, each with an
anonymous complex type. The following code illustrates this:

<xsd:schema targetNamespace="urn:company.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Company">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>

Suppor t ing ADO.NET C l ien ts

6-14 Client Application Developer’s Guide

<xsd:element name="CompanyAddress">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Department">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="DepartmentAddress">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="City" type="xsd:string"/>

</xsd:sequence>
 </xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Requirements for Simple Types
Requirements for supporting simple types in an ADO.NET DataSet include:

Use xs:dateTime type in the XML type rather than xs:date, or xs:time, or any gXXX type, such as
gMonth, etc. (If a physical date source uses gXXX type, you should rely on the use of an inverse
function to handle the type for update. For gXXX types, you should rely on the use of a DSP
update override function to handle the update.)

Note: The usage of inverse functions is described in "Best Practices and Advanced Topics", Data
Services Developer’s Guide.

Base64Binary type should be used, rather than hexBinary type.

Avoid using List or Union type.

Avoid using xs:token type.

Avoid defining default values in your XML type.

The length constraining facet for 'String' should not be used.

../datasrvc/index.html
../datasrvc/index.html

Gene ra ted A r t i facts Refe rence

Client Application Developer’s Guide 6-15

Requirements for Target Namespace and Namespace Qualification
Requirements for using target namespaces and namespace qualification include:

Your XML type must have a target namespace defined. Everything in the type should be under a
single namespace.

Set the elementFormDefault and attributeFormDefault to unqualified for the entire XML type.
(As these are the default setting of a schema document, you can generally leave these two
attributes of xs:schema unspecified.)

References
Further information regarding XML schemas can be found at:

http://www.w3.org/TR/xmlschema-0

Generated Artifacts Reference
The process of creating a ADO.NET-enabled Data Service control and Web service generates two
ADO.NET-specific artifacts:

XML Schema Definition for ADO.NET Typed DataSet

Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients

Technical specifications for these artifacts are included in this section.

XML Schema Definition for ADO.NET Typed DataSet
During the process of creating a ADO.NET-enabled data service control, WebLogic Workshop
generates a special schema file that conforms to Microsoft’s specifications for typed DataSet objects.
A schema is generated for each data service query that has been selected for inclusion in the
ADO.NET-enabled data service control. These schema files take the name of the source schema’s root
element.

In the generated schema, the root element has the IsDataSet attribute (qualified with the Microsoft
namespace alias, msdata) set to True, as in:

msdata:IsDataSet="true"

In keeping with Microsoft’s requirements for ADO.NET artifacts, the generated target schema of the
data service and all schemas on which it depends are contained in the same file as the schema of the

http://www.w3.org/TR/xmlschema-0

Suppor t ing ADO.NET C l ien ts

6-16 Client Application Developer’s Guide

typed DataSet. As you select functions to add to the control, WebLogic Workshop obtains the
associated schemas and copies the content into the schema file.

In addition, the generated schema includes:

A reference to the Microsoft-specific namespace definition, as follows:
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

Namespace declaration for the original target schema (the schema associated with the DSP
data service)

Listing 6-1 shows an excerpt of a schema—CustomerDS.xsd—for a typed DataSet generated from
a DSP Customer schema.

Listing 6-1 Example of a Typed DataSet (ADO.NET) Schema

<xs:schema xmlns:mstns="http://temp.openuri.org/schemas/Customer.xsd"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns="http://temp.openuri.org/schemas/Customer.xsd"

targetNamespace="http://temp.openuri.org/schemas/Customer.xsd"

id="CustomerDS" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element msdata:IsDataSet="true" name="CustomerDS">

 <xs:complexType>

 <xs:choice maxOccurs="unbounded">

 <xs:element ref="CUSTOMER"/>

 </xs:choice>

 </xs:complexType>

</xs:element>

<xs:element name="CUSTOMER">

. . .

</xs:element>

</xs:schema>

Gene ra ted A r t i facts Refe rence

Client Application Developer’s Guide 6-17

Web Services Description Language (WSDL) File for
Microsoft ADO.NET Clients
The process of generating the Java Web service produces a WSDL for the client-side application
development. The WSDL file contains import statements that correspond to each typed DataSet. Each
of the import statements is qualified with the namespace of its associated DataSet schema, as in this
example:

<import namespace="http://temp.openuri.org/schemas/Customer.xsd"

location="LDTest1NET/CustomerDataSet.xsd"/>

In addition, the WSDL includes the ADO.NET compliant wrapper type definitions. The wrappers’ type
definitions comprise complex types that contain sequences of any type element from the same
namespace as the typed DataSet, as in:

<s:complexType name="CustomerDataSetWrapper">

 <s:sequence>

 <s:any namespace="http://temp.openuri.org/schemas/Customer.xsd"/>

 </s:sequence>

 </s:complexType>

Suppor t ing ADO.NET C l ien ts

6-18 Client Application Developer’s Guide

Client Application Developer’s Guide 7-1

C H A P T E R 7

Using Workflow with DSP-Enabled
Applications

BEA’s WebLogic Integration server provides WebLogic Platform components with business-process
management (BPM) capabilities. A business process coordinates interaction among various resources
to perform a complete set of specific tasks. WebLogic Integration business processes are designed
using visual components available, such as Process controls, in WebLogic Workshop.

By bringing WebLogic Integration and BEA AquaLogic Data Services Platform together, developers
can achieve sophisticated programming scenarios that might otherwise be difficult, at best.

For example, a WebLogic Integration process (JPD) can be defined that encompasses multiple DSP
data services, and that uses the JPD to enforce distributed transactional semantics without using XA
and to reduce the number of locks held on disparate data sources (such as Web services or other
non-XA-compliant data sources) that might not otherwise be able to participate in the same
transaction. In other words JPD is used to achieve atomicity over disparate data sources (see
Figure 7-1).

This chapter provides information about such topics as these, and includes information about how to
develop server-side workflow-and-DSP-enabled applications. It includes these topics:

Adding a Data Service Control to a Process

Invoking JPDs from Data Services Platform

Brief Overview of WebLogic Integration JPDs
Much of the underlying Java code for the Process (defined in a Java class, as a Java Process Definition,
or JPD) is generated or created automatically. Processes coordinate interactions among resources by
means of Java controls (Java Control Extensions, or JCX) that are specific to these process definitions.

Using Work f low wi th DSP-Enab led Appl ica t i ons

7-2 Client Application Developer’s Guide

Using WebLogic Workshop, developers can add various components, including Data Service controls,
and customize behavior in the business process, as needed, to accomplish the specifics of the
workflow.

Figure 7-1 Using WLI JPD with DSP to Provide Distributed, Two-Phase Commit Capability to Data Service

WebLogic Workshop leverages the Java Extension Control (or simply, controls) mechanism to simplify
working with J2EE resources.

A Java Control is an abstraction layer that simplifies working with J2EE resources in WebLogic
Workshop.

Controls provide a runtime behavior for accessing functionality and resources using Java classes.
WebLogic Workshop provides Controls for numerous WebLogic and AquaLogic components, including
Data Service controls for DSP and Process controls for WebLogic Integration.

How SDO’s Hand l ing o f XMLObjec ts D i f fe rs f rom JPD

Client Application Developer’s Guide 7-3

WLI Process controls enable Web services, business processes, or pageflows to send requests to, and
receive callbacks from, a business process (JPD).

See “Accessing Data Services from WebLogic Workshop Applications” on page 5-1 for more
information about Data Service controls.

For more information about WebLogic Integration, process controls, and business-process
management in general, see the WebLogic Integration documentation page at:

http://e-docs.bea.com/wli/docs85/index.html

DSP and JPD can be integrated in two different ways:

By adding Data Service controls to JPD projects you can leverage DSP-enabled application
information as part of a workflow.

By invoking JPDs from DSP-enabled applications. (See “Invoking JPDs from Data Services
Platform” on page 7-7.)

Once the JPD is created, it can be called from a data service instance using the JpdService API, a
server-side Mediator API that can be invoked in an update override. See “Invoking JPDs from Data
Services Platform” on page 7-7 for details.

How SDO’s Handling of XMLObjects Differs from JPD
By default, a JPD converts XML objects to an XML proxy class; the class implements the ProcessXML
interface. The ProcessXML interface does not know how to handle SDO objects, such as change
summaries.

You must override the default behavior in the JPD by editing the source code.

Adding a Data Service Control to a Process
You can use Data Services Platform in WebLogic Integration (WLI) business process applications
through a Data Service control. For example, you might add DSP-based information to
decision-making logic in the business process.

There are three basic steps to adding Data Services Platform queries to WebLogic Integration
business processes:

Creating a Data Service Control

Adding a Data Service Control to a JPD File

Setting Up the Data Service Control in the Business Process

http://e-docs.bea.com/wli/docs85/index.html

Using Work f low wi th DSP-Enab led Appl ica t i ons

7-4 Client Application Developer’s Guide

Creating a Data Service Control
Before you can execute a Data Services Platform query from a WLI business process, you must create
a Data Service control that accesses the query or queries you want to run in your business process.

See “Accessing Data Services from WebLogic Workshop Applications” on page 5-1 for more
information about creating Data Service controls.

In WebLogic Workshop:

1. Create a Process application.

2. Create a Data Services project in the Process application. In the Data Services project, import the
existing Data Service projects that you want to incorporate into the JPD.

3. Create a Data Service control, adding the functions you want to use from the data services to the
control.

4. When the process is defined, you can then generate a Process control from the JPD, from within
WebLogic Workshop (right-mouse click on the Design view of the JPD and select Generate Process
control from the popup menu).

5. The control is generated.

For complete details, see “Data Service Controls” on page 5-2.

Adding a Data Service Control to a JPD File
Once you have created a Data Service control, you can add it to a business process the same way you
add any other control to a business process. For example, you can drag and drop the control into the
WebLogic Integration business process in the place where you want to run your Data Services Platform
query or you can add the Data Service control to the WebLogic Workshop Data Palette.

The Data Service controls must be created in the same project as the JPD.

Adding a Data Serv ice Cont ro l to a P rocess

Client Application Developer’s Guide 7-5

Figure 7-2 Creating a Data Service Control

Setting Up the Data Service Control in the Business Process
Once the Data Service control has been added to the business process, its functions are available. As
shown in Figure 7-3, you must select the query in the General Settings section of the Data Service
control portion of the business process, specify input parameters for the query in the Send Data
section, and specify the output of the query in the Receive Data section.

Using Work f low wi th DSP-Enab led Appl ica t i ons

7-6 Client Application Developer’s Guide

Figure 7-3 Specifying in the Business Process Input and Output Parameters for a Data Service Control

Figure 7-4 shows the WebLogic Workshop rendering of a business process accessing a Data Service
Control.

Figure 7-4 WebLogic Integration Business Process Accessing a Data Service Control

I nvok ing JPDs f rom Data Serv i ces P la t fo rm

Client Application Developer’s Guide 7-7

Submitting Changes from a Business Process
By default, a business process (Java process definition, or JPD) converts XML objects to an XML proxy
class by implementing the ProcessXML interface. However, ProcessXML is not completely compatible
with SDO. In particular, it does not accommodate SDO specific features such as change summaries.
As a result, the default XML processing performed in a business process must be overridden.

You can override the business process by performing the following steps in the workflow:

1. In the JPD you need to turn off default ProcessXML deserialization and enable XMLBean
serialization on the XML object factory by calling the XmlObjectVariableFactory.setXBean().

2. In the JPD you need to disable the XMLBean serialization and turn on the default ProcessXML
deserialization on the XML object by calling XmlObjectVariableFactory.unset().

3. Invoke the Data Service control.

Invoking JPDs from Data Services Platform
Data architects writing Java custom update classes can create a JPD workflow to handle the updates
to different data services. Data Services Platform developers can then write server-side Java code that
initiates synchronous or asynchronous JPDs using the JpdService interface.

As with other types of DSP server-side custom functionality, the update override interface facilitates
the implementation.

Update overrides are user-defined Java classes that implement DSP’s UpdateOverride interface (from
the sdoupdate package). Update overrides are registered in DSP and invoked by the Update Data
Mediator when an SDO is submitted for an update. As its name implies, an update override
implements custom processing on the server, for data updates. Update overrides are required to
update non-relational data sources. See Chapter 9, “Customizing Data Service Update Behavior,” for
more information.

The JPD and the data service containing the Java update override can be running in the same
WebLogic Server domain or in different WebLogic Server domains.

Invoking a JPD from an Update Override
An update override can use a JPD to process requests. The JpdService is invoked with the name of the
JPD, the start method of the JPD, the service URI, and the server location and credentials for the JPD,
as shown in this example:

Using Work f low wi th DSP-Enab led Appl ica t i ons

7-8 Client Application Developer’s Guide

JpdService jpd = JpdService.getInstance("CustOrderV1",
"clientRequestwithReturn", env);

JPD provides a public interface (as a JAR file containing the compiled class file for the JPD public
contract or interface). Transparently to developers, the JpdService object uses the standard Java
reflection API to find the JPD class that implements the JPD public contract.

The server-side update overrides Java code and then passes the DataGraph as an argument to the
invoke method:

Object jpd.invoke(DataGraph sdoDataGraph);

The returned object is dependent on the JPD being invoked and may be null. Typically, if any top level
SDO is being inserted and its primary key is autogenerated, then this should be returned from the JPD
(see Listing 7-1).

Any keys for the top-level DataObject in the serialized UpdatePlan are returned to the calling function
as a Properties object (comprising a byte array). Thus, the return value from the workflow must be a
serialized byte array, as in:

Properties [] jpd.invoke(byte[] serializedUpdatePlan);

The array returned is a Properties object array representing any keys for the top-level DataObject in
the UpdatePlan that was serialized and sent to the workflow.

Invoking a JPD by Using the JpdService API in an Update Override
Support for JPDs from DSP is provided through two server-side APIs that can be invoked from within
an UpdateOverride implementation (see Table 7-5).

Listing 7-1 shows how to invoke a JPD from an UpdateOverride. The code sample assumes that a JPD
exists comprising a series of data services configured as part of a workflow.

Table 7-5 The JpdService API

Data Type Signature

JpdService JpdServicegetInstance(String jpdClass, String
jpdStartMethod, Environment context)

JpdService.getInstance(String jpdClass, String
jpdStartMethod, String serviceUri, Environment
context);

I nvok ing JPDs f rom Data Serv i ces P la t fo rm

Client Application Developer’s Guide 7-9

Listing 7-1 Sample Code Listing—Invoking a JPD from a DSP UpdateOverride

public boolean performChange(DataGraph) {

 ChangeSummary changeSum = dataGraph.getChangeSummary();

 //Size of 0 means no changes so there’s nothing to do

 if (changeSum.getChangedDataObjects().size()==0) {

 return true;

 }

 Environment env = new Environment();

 env.setProviderUrl("t3://localhost:7001");

 env.setSecurityPrincipal("weblogic");

 env.setSecurityCredentials("weblogic");

 try {

 JpdService jpd = JpdService.getInstance(

 "CustOrderV1",

 "clientRequestwithReturn",

 env);

 UpdatePlan updatePlan = DataServiceMediatorContext.

 currentContext().getCurrentUpdatePlan(dataGraph);

 byte[] bytePlan = UpdatePlan.getSerializedBytes(updatePlan);

 Properties (Properties) returnProps = jpd.invoke(bytePlan);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 throw e;

 }

 return false;

 }

}

Synchronous and Asynchronous Behavior
Data Services Platform supports JPD invocations both synchronously and asynchronously; both styles
of invocation are handled the same way in the DSP update override code. Invoke the JPD and get the
response back as a byte array, as shown in Listing 7-1 above.

Using Work f low wi th DSP-Enab led Appl ica t i ons

7-10 Client Application Developer’s Guide

Error Handling
You must write your own error-handling code with the JPD. Calling a non-existent JPD raises the
standard Java "ClassNotFoundException."

Using callbacks in your JPD is not supported. Business processes that include client callbacks will fail
at runtime since the callback is sent to the JPD Proxy rather than the originating client that started
the JPD.

Client Application Developer’s Guide 8-1

C H A P T E R 8

Using the Data Services Platform JDBC
Driver

The BEA AquaLogic Data Services Platform (DSP) JDBC driver gives client applications a means to
obtain JDBC access to the information made available by data services. The driver implements the
java.sql.* interface in JDK 1.4x to provide access to an DSP server through the JDBC interface. You
can use the JDBC driver to execute SQL92 SELECT queries, or stored procedures over DSP
applications. This chapter explains how to install and use the Data Services Platform JDBC driver. It
covers the following topics:

About the Data Services Platform JDBC Driver

Installing the Data Services Platform JDBC Driver with JDK 1.4x

Using the JDBC Driver

Connecting to the JDBC Driver from a Java Application

Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from
Non-Java Applications

Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver

DSP and SQL Type Mappings

SQL-92 Support

Note: For data source and configuration pool information, refer to the WebLogic Administration
Guide. Your configuration settings may affect performance.

../admin/index.html
../admin/index.html

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-2 Client Application Developer’s Guide

About the Data Services Platform JDBC Driver
The JDBC driver is intended to enable SQL access to data services. The Data Services Platform JDBC
driver enables JDBC and ODBC clients to access information available from data services. The JDBC
driver increases the flexibility of the DSP integration layer by enabling access from database
visualization and reporting tools, such as Crystal Reports. From the point of view of the client, the DSP
integration layer appears as a relational database, with each data service function comprising a table.
Internally, DSP translates SQL queries into XQuery.

There are several constraints associated with the Data Services Platform JDBC driver. Because SQL
provides a traditional, two-dimensional approach to data access (as opposed to the multiple level,
hierarchical approach defined by XML), the Data Services Platform JDBC driver can only be used to
access data through data services that have a flat data shape; that is, the data service type cannot have
nesting.

Also, SQL tables do not have parameters; therefore, the Data Services Platform JDBC driver only
exposes non-parameterized flat data service functions as tables. (Parameterized flat data services are
exposed as SQL stored procedures.)

To expose non-flat data services, you can create flat views to be used from the JDBC driver.

Features of the Data Services Platform JDBC Driver
The Data Services Platform JDBC driver has the following features:

Supports SQL-92 SELECT statements

Implements JDBC 3.0 API

Supports Data Services Platform with JDK 1.4

Usable from both Java and ODBC clients

Notes:

The Data Services Platform JDBC driver contains the following third party libraries: Xerces
Java - 2.6.2 : xercesImpl.jar, xmlParserAPIs.jar, and ANTLR 2.7.4 :
antlr.jar.

The driver also contains the following DSP product libraries: wlclient.jar,
ld-client.jar, Schemas_UNIFIED_Annotation.jar, jsr173_api.jar, and
xbean.jar.

I ns ta l l ing the Data Serv ices P la t fo rm JDBC Dr ive r w i th JDK 1 .4x

Client Application Developer’s Guide 8-3

Data Services Platform and JDBC Driver Terminology
DSP views data retrieved from a database as comprised of data sources and functions. This means that
Data Services Platform terminology and the terminology used when accessing data through the Data
Services Platform JDBC driver, which provides access to a database, is different. The following table
(Table 8-1) shows the equivalent terminology between the two.

For example, if you have an application Test with a project TestDataServices, and CUSTOMERS.ds
with a function getCustomers() under a folder MyFolder, the table getCustomers can be describes as:

Test.TestDataServices~MyFolder.getCustomer

where Test is the catalog and TestDataServices~MyFolder is the schema.

Installing the Data Services Platform JDBC Driver with
JDK 1.4x

The Data Services Platform JDBC driver is located in an archive file named ldjdbc.jar. In a DSP
installation, the archive is in the following directory:

<WebLogicHome>/liquiddata/lib/

To use the driver on a client computer, perform the following steps:

1. Copy the ldjdbc.jar to the client computer.

Table 8-1 Data Services Platform and JDBC Driver Terminology

Data Services Platform Terminology JDBC Driver Terminology

DSP Application Name Database Catalog Name

Path from the DSP project folder up to the folder
name of the data source separated by a ~ (tilde)

Database Schema Name

Function with parameters Stored procedure

Function without parameters Table

Function without parameters return type schema's
elements

Table's Columns

Function with parameters return type schema's
elements

Stored Procedure's Columns

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-4 Client Application Developer’s Guide

2. Add ldjdbc.jar to the computer’s classpath.

3. Set the appropriate supporting path by adding %JAVA_HOME%\jre\bin to your path.

4. To configure the JDBC driver:

a. Set the driver class name to:

com.bea.ld.jdbc.LiquidDataJDBCDriver.

b. Set the driver URL to:

 jdbc:ld@<LDServerName>:<LDServerPortNumber>[:<LDCatalogAlias>]

For example, jdbc:ld@localhost:7001 or
jdbc:ld@localhost:7001:ldCatalogName.

If you want to enable logging for debugging use, you can append the following to the driver
URL

;debugStdOut=true;debugFile=ldjdbc.log;debugLog=true;

You can also specify configuration parameters as a Properties object or as a part of the JDBC
URL. The following is an example of how to specify the parameters as part of a Properties
object:

props = new Properties();
props.put(LiquidDataJDBCDriver.USERNAME_PROPERTY1,"weblogic");
props.put(LiquidDataJDBCDriver.PASSWORD_PROPERTY,"weblogic");
props.put(LiquidDataJDBCDriver.APPLICATION_NAME_PROPERTY, "RTLApp");
props.put(
 LiquidDataJDBCDriver.PROJECT_NAME_PROPERTY,"DataSErvices~CustomerDB");
props.put(LiquidDataJDBCDriver.WLS_URL_PROPERTY,"t3://localhost:7001");
props.put(LiquidDataJDBCDriver.DEBUG_STDOUT_PROPERTY,"true");
props.put(LiquidDataJDBCDriver.DEBUG_LOG_PROPERTY, new Boolean(true));
props.put(
 LiquidDataJDBCDriver.DEBUG_LOG_FILENAME_PROPERTY,"ldjdbc.log");
Class.forName(""com.bea.ld.jdbc.LiquidDataJDBCDriver"");
con = DriverManager.getConnection(
 "jdbc:ld@localhost:7001:Demo:DemoLdProject", props);

Alternatively, you can specify all the parameters in the JDBC URL itself as shown in the
following example:

Class.forName("com.bea.ld.jdbc.LiquidDataJDBCDriver");

con =
DriverManager.getConnection("jdbc:ld@localhost:7001:Demo:DemoLdProject;
;debugStdOut=true;debugFile=ldjdbc.log;debugLog=true;username=weblogic;
password=weblogic;", new Properties());

Using the JDBC Dr ive r

Client Application Developer’s Guide 8-5

Using the JDBC Driver
The steps for connecting an application to DSP as a JDBC/SQL data source are substantially the same
as for connecting to any JDBC/SQL data source. In the database URL, simply use the DSP application
name as the database identifier with "ld" as the sub-protocol, in the form:

jdbc:ld@<WLServerAddress>:<WLServerPort>:<LDApplicationName>

For example:

jdbc:ld@localhost:7001:RTLApp

The name of the Data Services Platform JDBC driver class is:

com.bea.ld.jdbc.LiquidDataJDBCDriver

Note: If you are using the WebLogic Administration Console to configure the JDBC connection pool,
set the initial connection capacity to 0. The Data Services Platform JDBC driver does not
support connection pooling.

The following section describes how to connect using the driver class in a client application.

Obtaining a Connection
A JDBC client application can connect to a deployed DSP application in the same way as it can to any
database. It loads the Data Services Platform JDBC driver and then establishes a connection to DSP.

For example:

Properties props = new Properties();

props.put("user", "weblogic");

props.put("password", "weblogic");

// Load the driver

Class.forName("com.bea.ld.jdbc.LiquidDataJDBCDriver");

//get the connection

Connection con =

 DriverManager.getConnection("jdbc:ld@localhost:7001", props);

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-6 Client Application Developer’s Guide

Using the preparedStatement Interface
The following method demonstrates how to use the preparedStatement interface given a connection
object (con) that is a valid connection obtained through the java.sql.Connection interface to a
WebLogic Server hosting DSP. (In the method, CUSTOMER refers to a CUSTOMER data service.)

public ResultSet storedQueryWithParameters() throws java.sql.SQLException {

PreparedStatement preStmt =

con.prepareStatement (

 "SELECT * FROM CUSTOMER WHERE CUSTOMER.LAST_NAME=?");

preStmt.setString(1,"SMITH");

ResultSet res = preStmt.executeQuery();

return res;

}

Note: You can create a preparedStatement for a non-parametrized query as well. The statement can
also be used in the same manner.

Getting Data Using JDBC
Once a connection is established to a server where DSP is deployed, you can call a data service
function to obtain data by using a parameterized data service function call.

The following method demonstrates calling a stored query with a parameter (where con is a
connection to the Data Services Platform server obtained through the java.sql.Connection
interface). In the snippet, a stored query named dtaQuery is executed where custid is the parameter
name and CUSTOMER2 is the parameter value.

public ResultSet storedQueryWithParameters(String paramName)

throws java.sql.SQLException {

//prepare a stored query to execute

CallableStatement call = con.prepareCall("dtaQuery");

call.setString(1, "CUSTOMER2");

ResultSet resultSet = call.executeQuery();

return resultSet;

}

Connect ing to the JDBC Dr ive r f rom a Java Appl i cat ion

Client Application Developer’s Guide 8-7

Connecting to the JDBC Driver from a Java Application
You can also use the Data Services Platform JDBC driver from client Java applications. This is a good
way to learn how Data Services Platform exposes its artifacts through its JDBC/SQL driver.

Note: For details on supported reporting applications and connectivity software see "Configuring
the Data Services Platform JDBC Driver for Reporting Applications" in the Preparing to
Install Data Services Platform chapter of the DSP Installation Guide.

This section describes how to connect to the driver from DBVisualizer. Figure 8-2 shows a sample
application as viewed from DbVisualizer for WebLogic Workshop.

Figure 8-2 DbVisualizer View of DSP

To use DBVisualizer, perform the following steps:

1. Configure DBVisualizer.

a. Ensure that ldjdbc.jar exists in your CLASSPATH. Start DBVisualiser from the Database
menu select Driver Manager.

../install/index.html

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-8 Client Application Developer’s Guide

b. Select Add CLASSPATH from the File menu of the driver manager dialog. You should see the
ldjdbc.jar listed.

c. Select ldjdbc.jar from the list shown then select Find Drivers from the Edit menu of the
driver manager. You should see the com.bea.ld.jdbc.LiquidDataJDBCDriver. This
means the JDBC driver has been located.

Connect ing to the JDBC Dr ive r f rom a Java Appl i cat ion

Client Application Developer’s Guide 8-9

d. Close the driver manager.

2. Add connection parameters by performing the following steps:

a. On the right pane select the JDBC Driver as com.bea.ld.jdbc.LiquidDataJDBCDriver,
dropping down the list.

b. For the Database URL, enter jdbc:ld@<machine_name>:<port>:<app_name>. For example
"jdbc:ld@localhost:7001:RTLApp"

c. Provide the username and password for connecting to the DSP application.

3. Click connect. On completion of a successful connection, you should see the following:

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-10 Client Application Developer’s Guide

4. On the right pane of the window (see figure in step 3), you can see various tabs. The Tables tab
helps you view the information about the tables, including their metadata. The References tab lets
you view the field information and primary key of each table.

5. Execute ad hoc queries by activating the SQL Commander tab as shown in the following figure.
Type in your SQL query and click the execute button.

Connect ing to Data Se rv ices P la t fo rm C l i ent App l i cat ions Us ing the ODBC-JDBC Br idge f rom Non- Java

Client Application Developer’s Guide 8-11

Connecting to Data Services Platform Client Applications
Using the ODBC-JDBC Bridge from Non-Java Applications

You can use an ODBC-JDBC bridge to connect to Data Services Platform JDBC driver from non-Java
applications. This section describes how to configure the OpenLink and EasySoft ODBC-JDBC bridges
to connect non-Java applications to the Data Services Platform JDBC driver.

Note: For details on supported reporting applications and connectivity software see "Configuring
the Data Services Platform JDBC Driver for Reporting Applications" in the Preparing to
Install Data Services Platform chapter of the DSP Installation Guide.

Using the EasySoft ODBC-JDBC Bridge
Applications can also communicate with the Data Services Platform JDBC Driver using EasySoft's
ODBC-JDBC Gateway. The installation and use of the EasySoft Bridge is similar to the OpenLink
bridge discussed in the previous section.

../install/index.html

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-12 Client Application Developer’s Guide

To use the EasySoft bridge, perform the following steps:

1. Install the EasySoft ODBC-JDBC bridge. Go to the EasySoft site for information about installation:

 http://www.easysoft.com

2. Creating a system DSN and configuring it with respect to DSP by performing the following steps:

a. Open Administrative tools → Data Sources (ODBC).

b. Go to the System DSN tab and click Add.

c. Select EasySoft ODBC-JDBC Gateway as shown in the figure below and click Finish.

http://www.easysoft.com

Connect ing to Data Se rv ices P la t fo rm C l i ent App l i cat ions Us ing the ODBC-JDBC Br idge f rom Non- Java

Client Application Developer’s Guide 8-13

d. On the next screen, fill in the fields as follows:

• For Class Path, enter the absolute path to the ldjdbc.jar

• For URL, enter:

jdbc:ld@<machine_name>:<port>:<app_name>

• For Driver class, enter:

com.bea.ld.jdbc.LiquidDataJDBCDriver

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-14 Client Application Developer’s Guide

e. Click Test. The following screen will display, indicating the connection has completed
successfully.

f. Click OK to complete the set-up sequence.

Using OpenLink ODBC-JDBC Bridge
The Openlink ODBC-JDBC driver can be used to interface with the Data Services Platform JDBC
driver to query DSP applications with client applications, such as Crystal Reports 10, Business Objects
6.1, and MS Access 2000.

Connect ing to Data Se rv ices P la t fo rm C l i ent App l i cat ions Us ing the ODBC-JDBC Br idge f rom Non- Java

Client Application Developer’s Guide 8-15

To use the OpenLink bridge, you will need to install the bridge and create a system DSN using the
bridge. The following are the steps for these two tasks:

1. Install the OpenLink ODBC-JDBC bridge (called ODBC-JDBC-Lite). For information on the
installation of OpenLink ODBC-JDBC-Lite, see:

http://www.openlinksw.com/info/docs/uda51/lite/installation.html

WARNING: For Windows platforms, be sure that you preserve your CLASSPATH before
installation. The installer might overwrite it.

2. Create a system DSN and configure it for your DSP application by performing the following steps:

a. Ensure that the CLASSPATH contains the following jars required by ODBC-JDBC-Lite, as well
as the ldjdbc.jar. A typical CLASSPATH might look like:

D:\lddriver\ldjdbc.jar; D:\odbc-odbc\openlink\jdk1.4\opljdbc3.jar;
D:\odbc-jdbc\openlink\jdk1.4\megathin3.jar;

b. Update your system path to point to the jvm.dll, which should be under your
%javaroot%/jre/bin/server directory.

c. Open Administrative tools Data Sources (ODBC). You should see the following:

d. Go to the System DSN tab and click Add.

http://www.openlinksw.com/info/docs/uda51/lite/installation.html

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-16 Client Application Developer’s Guide

e. Select JDBC Lite for JDK 1.4 (32 bit) and click Finish.

f. Write a name for the DSN. For example, ODBC_JDBC_LITE, as shown in the figure below:

g. Click Next. Then on the next screen, enter the following in the JDBC driver field:

Connect ing to Data Se rv ices P la t fo rm C l i ent App l i cat ions Us ing the ODBC-JDBC Br idge f rom Non- Java

Client Application Developer’s Guide 8-17

com.bea.ld.jdbc.LiquidDataJDBCDriver.

Enter the following in the URL string field:

jdbc:ld@<machine_name>:<port>:<app_name>

h. Check the Connect now to verify that all settings are correct checkbox. Provide the login and
password to connect to the Data Services Platform WebLogic Server.

i. Click Next. The screen shown below will display:

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-18 Client Application Developer’s Guide

j. Click Next. The following screen will display:

k. Click Test Data Source. This screen will verify the setup is successful.

l. Click Finish.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-19

Using Reporting Tools with the Data Services Platform
ODBC-JDBC Driver

Once you have configured your ODBC-JDBC Bridge, you can use your application to access the data
source presented by DSP. The usual reason for doing so is to connect Data Services Platform to your
favorite reporting tool.

Note: For details on supported reporting applications and connectivity software see "Configuring
the Data Services Platform JDBC Driver for Reporting Applications" in the Preparing to
Install Data Services Platform chapter of the DSP Installation Guide.

This section describes how to configure the following reporting tools to use the Data Services Platform
ODBC-JDBC driver:

Crystal Reports 10 - ODBC

Crystal Reports 10 - JDBC

Business Objects 6.1 - ODBC

Microsoft Access 2000 - ODBC

Note: Some reporting tools issue multiple SQL statement executions to emulate a scrollable cursor
if the ODBC-JDBC bridge does not implement one. Some drivers do not implement a
scrollable cursor, so the reporting tool issues multiple SQL statements. This can affect
performance.

Crystal Reports 10 - ODBC
This section describes how to connect Crystal Reports to the Data Services Platform ODBC-JDBC
driver. To connect Crystal Reports to the driver, perform the following steps:

1. In Crystal Reports 10, you need to create a new Connection on ODBC RDO. You can do this by
clicking on the New Report wizard button, which will prompt you immediately for a data source.
Select the ODBC (RDO) option in the left-hand window as shown in the Figure 8-3.

../install/index.html

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-20 Client Application Developer’s Guide

Figure 8-3 Data Source Selection

You can select the DSN you have created earlier (see the procedure in section “Using OpenLink
ODBC-JDBC Bridge” or “Using the EasySoft ODBC-JDBC Bridge”). In this example, it is
ODBC_JDBC_LITE.

Selecting ODBC_JDBC_LITE, prompts the following dialog:

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-21

2. Enter the domain login and password. Note that because the URL contains the Data Services
Platform RTLApp application, you should use the domain login and password that the domain of
the RTLApp application uses. (These will most likely be "weblogic".)

Once authenticated, Crystal Reports will show you a view of the DSP application on the server
as shown in Figure 8-4.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-22 Client Application Developer’s Guide

Figure 8-4 Available Data Sources

3. Generate a report using the Add command or by dragging the metadata to the right. In this
example we will be using both options. You can choose the tables you want to use in the report as
shown in Figure 8-5.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-23

Figure 8-5 Selecting the Table View

Alternatively, you can choose the Add Command option to type an SQL query directly, which
will show you a window like one in the Figure 8-6.

Figure 8-6 Add Command

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-24 Client Application Developer’s Guide

4. Click the Ok Button to see the Command added to the Right hand side of the window.

Clicking Next in the wizard shows you all the available views for this Report generation, as
shown in Figure 8-7.

Figure 8-7 Link Screen

Clicking Next again will take you to the Column chooser window, which allows you to select
which Columns you want to see in the final Report, which appears as shown in Figure 8-8.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-25

Figure 8-8 Column Chooser

Note: This example chooses columns from the user-generated Command and the view
CUSTOMER.

Clicking on Next again takes us to the Group by screen (as shown in Figure 8-9), which allows
you to choose a column to group by. (This is grouping is performed by Crystal Reports. The
Group-by information is not passed on to the JDBC driver.)

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-26 Client Application Developer’s Guide

Figure 8-9 Group-by Screen

5. Skip the next few screens for now, clicking Next till you reach the Template Chooser Screen
Figure 8-10. Choose any appropriate Template. In this example, the user has chosen the Block
(Blue) Template.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-27

Figure 8-10 Template Chooser Screen

6. Click Finish. A Report similar to that shown in Figure 8-11 is generated.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-28 Client Application Developer’s Guide

Figure 8-11 Generated Report

Crystal Reports 10 - JDBC
Crystal Reports 10.0 comes with a direct JDBC interface that can be used to interact directly with the
Data Services Platform JDBC driver. The only difference between the ODBC and JDBC approach is
that in JDBC, a new type of connection is used, as shown in Figure 8-12.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-29

Figure 8-12 Connection Dialog Box

Figure 8-13 shows screen that requests the connection parameters for the JDBC Interface of Crystal
Reports.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-30 Client Application Developer’s Guide

Figure 8-13 Connection Information Dialog Box

Note: The Database drop down box is populated with the available catalogs (DSP applications) once
you have specified the correct parameters for User ID and, Password, as shown in Figure 8-13.

Clicking the Finish button on the previous screen. This takes you the metadata browser shown in
Figure 8-14. The rest of the process is similar to the procedure described in the section “Crystal
Reports 10 - ODBC.”

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-31

Figure 8-14 Metadata Browser Window

Business Objects 6.1 - ODBC
Business Objects 6.1 allows you to create a Universe and also allows you to generate reports based on
the specified Universe. In addition, you can execute pass-through SQL queries against Business
Objects that do not need the creation of a Universe.

To generate a report, perform the following steps:

1. Creating a Universe by doing the following:

a. Run the Business Objects 6.1 Designer application and click New to create a new universe.

b. Fill in a name for your Universe and select the appropriate DSN connection from the
drop-down list, as shown in Figure 8-15.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-32 Client Application Developer’s Guide

Figure 8-15 Selecting the DSN Connection

c. If the DSN you wish doesn't appear in the list (this happens if you are using the application for
the first time), use New to create a new connection. Select ODBC Drivers, as shown in
Figure 8-16, and click OK.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-33

Figure 8-16 Selecting the ODBC Drivers

d. Now select the database engine as a Generic ODBC data source, as shown in Figure 8-17. Use
the ODBC Admin button to check if the DSN you wish is already created. For any help creating
a DSN using OpenLink or EasySoft please refer to the section ODBC-JDBC bridge of this
document.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-34 Client Application Developer’s Guide

Figure 8-17 Selecting the Database Engine

e. Now select the data source name as shown in Figure 8-18. This would be the name of DSN you
wish to connect to. Refer to the picture below. Click OK to get back to the Universe creation
window.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-35

Figure 8-18 Selecting the Data Source Name

f. Fill in the other details and click Test to see if the connection is successful. Click OK. You
should see a new blank panel, as shown in Figure 8-19.

Figure 8-19 Designer UI Screen

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-36 Client Application Developer’s Guide

g. From the Insert menu select Table, as shown in Figure 8-19. Once the list of tables is shown in
the Table Browser, double click on the tables you wish to put in the Universe you are creating.
You should see a screen similar to that shown in Figure 8-20.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-37

Figure 8-20 Table Browser

h. Save the Universe and exit.

2. Creating a report using the New Report wizard. To create a new report, follow these steps:

a. Run the Business Objects application. Click New to open the New Report Wizard. Choose
Specify to access data and click Begin. You should see the dialog-box shown in Figure 8-21.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-38 Client Application Developer’s Guide

Figure 8-21 Available Universe Dialog Box

b. Choose a Universe. Click Next. On the left pane, you should see the tables and their fields
(columns) on expansion, as shown in Figure 8-22.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-39

Figure 8-22 Query Panel

c. Select the Universe of your choice and click Finish. Double-click a column (table-field) in the
left pane to select it in the result, as shown in Figure 8-23.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-40 Client Application Developer’s Guide

Figure 8-23 Selecting the Object

d. Click Run to execute the query. The result is seen as shown in Figure 8-24.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-41

Figure 8-24 Business Objects Panel

3. You can execute the pass-through queries as follows:

a. In the Business Object application, click New to create a new report.

b. In the New Report Wizard choose Others instead of Universe as shown in Figure 8-25.

c. Choose Free-hand SQL and click Finish.

d. Select the connection you made using Designer 6.1, as shown in Figure 8-25.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-42 Client Application Developer’s Guide

Figure 8-25 Free Hand SQL Menu

e. Type in your SQL query and click Run to generate the report, as shown in Figure 8-26.

Figure 8-26 Specifying the SQL Query

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-43

f. Click Run. You should see the report shown in Figure 8-27.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-44 Client Application Developer’s Guide

Figure 8-27 Business Objects Report

Microsoft Access 2000 - ODBC
This section describes the procedure for connecting Microsoft Access 2000 to DSP through an
ODJB-JDBC bridge.

Note: If you are using Microsoft Access 2000 you should use OpenLink’s ODBC- JDBC bridge. The
EasySoft bridge does not support Microsoft Access 2000.

To connect Access 2000 to the bridge, perform the following steps.

1. Run MS Access, click File Open, then select ODBC Databases as the file type as shown in the
Figure 8-28.

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-45

Figure 8-28 Selecting the ODBC Database in Access

2. Once the dialog Select Data Source pops up, click Cancel to close it. You should see the window
shown in Figure 8-29.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-46 Client Application Developer’s Guide

Figure 8-29 OBDC23: Database Screen

3. Click Queries, then Design as indicated in Figure 8-29. You should see a screen shown similar to
that shown in Figure 8-30.

Figure 8-30 Select Query and Show Table Screens

Using Repor t ing Too ls w i th the Data Se rv ices P la t fo rm ODBC-JDBC Dr ive r

Client Application Developer’s Guide 8-47

4. Close the Show Table dialog box. You should now be able to see the Select Query dialog.

5. Right click in the upper pane and select SQL Specific → Pass-Through as indicated in
Figure 8-31. This will open an editor.

Figure 8-31 Selecting SQL Specific and Pass Through

6. Type in your SQL query and click Run, as shown in the Figure 8-32.

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-48 Client Application Developer’s Guide

Figure 8-32 Running the SQL Query

7. In the dialog that pops up (as shown in Figure 8-33), move to the tab Machine Data Source and
select the appropriate DSN for the database connectivity.

DSP and SQL T ype Mapp ings

Client Application Developer’s Guide 8-49

Figure 8-33 Selecting the DSN for the Database

DSP and SQL Type Mappings
When data service information is accessed from a JDBC client, the data is mapped from its XML
schema format to SQL types. The mapping between the types is shown in Table 8-34.

The XML types are defined by:

xmlns:xs="http://www.w3.org/2001/XMLSchema"

The Java types are defined by:

java.sql.Types

XML to SQL Type Mappings are shown in Table 8-34.

Table 8-34 XML to SQL Type Mapping

XML Type SQL Types

xs:Boolean Types.BOOLEAN.

xs:byte Types.TINYINT

xs:dateTime Types.TIMESTAMP

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-50 Client Application Developer’s Guide

SQL-92 Support
This section outlines the SQL-92 support in the Data Services Platform JDBC driver.

Supported Features
The Data Services Platform JDBC driver supports many standard SQL-92 features. In particular,
supported features include:

Only SELECT construct is supported. Inserts, updates, and deletes are not supported.

SELECT clause with:

– DISTINCT and ALL

– Scalar expressions and functions, CASE statements, CAST, string and date literals, column
wildcards.

Projections (sub-queries) within the select clause are not supported.

xs:date Types.DATE

xs:decimal Types.DECIMAL

xs:double Types.DOUBLE

xs:duration Types.TIMESTAMP

xs:float Types.FLOAT

xs:int Types.INTEGER

xs.integer Types.NUMERIC

xs:long Types.BIGINT

xs:short Types.SMALLINT

xs:string Types.VARCHAR

xs:time Types.TIME

Table 8-34 XML to SQL Type Mapping

XML Type SQL Types

SQL-92 Suppor t

Client Application Developer’s Guide 8-51

FROM clause with:

– Basic table names

– Sub-queries

– Joins

– Set operations

GROUP BY clause

HAVING clause

WHERE clause with:

– Predicate expressions (arithmetic operators, functions, CASE statements)

– Predicates involving non-correlated and correlated sub-queries

– EXISTS

– BETWEEN

– LIKE

– NULLIF

– COALESCE

– UNIQUE

– IS NULL, IS NOT NULL, IS TRUE, IS FALSE

– ALL, SOME, ANDY

Joins of the following type:

Cross joins, inner joins, and union joins

Natural joins and joins with ON and USING

Left, right, and full outer joins

Set operations:

– UNION

– INTERSECT

– MINUS

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-52 Client Application Developer’s Guide

Parameterized queries (with standard SQL-92 notation)

ORDER by clause

Functions:

– STR

– CONCAT

– CURRENT_TIME

– CURRENT_DATE

– CURRENT_TIMESTAMP

– ROUND

– FLOOR

– LOWER

– UPPER

– SUBSTRING

– CASTTODATE

– CASTTOTIME

– COUNT

– AVG

– SUM

– MIN

– MAX

– EXTRACT

– TRIM

The Data Services Platform JDBC driver implements the following interfaces from java.sql package
specified in JDK 1.4x:

java.sql.Connection

java.sql.CallableStatement

java.sql.DatabaseMetaData

java.sql.ParameterMetaData

SQL-92 Suppor t

Client Application Developer’s Guide 8-53

java.sql.PreparedStatement

java.sql.ResultSet

java.sql.ResultSetMetaData

java.sql.Statement

Limitations
The following limitations are known to exist in the Data Services Platform JDBC driver:

Each connection points to only one DSP application.

An XML schema name can contain special characters that are illegal for database schema
names (such as "/" and "."). The Data Services Platform JDBC driver translates the characters
to legal characters ("~" and "^", respectively).

The following table (Table 8-35) notes additional limitations that apply to SQL language features.

Table 8-35 Additional DSP JDBC Limitations Applying to SQL Languge Features

Unsupported Feature Comments Example

OVERLAPS Intervals not supported WHERE (, ,) OVERLAPS (, ,)

range-variable-
comma-list

The table_name can have an alias,
but you cannot specify the
colmn_name_alias_list
within it.

SELECT ID, NM, CT
FROM STAFF AS (ID, NM, GD, CT);

Assignment in select Not supported. SELECT MYCOL = 2
FROM VTABLE
WHERE COL4 IS NULL

The CORRESPONDING
BY construct with the
set-Operations(UNION,
INTERSECT and
EXCEPT)

The SQL-92 specified default column
ordering in the set operations is
supported.

Both the table-expressions (the
operands of the set-operator) must
conform to the same relational
schema.

(SELECT NAME, CITY FROM
CUSTOMER1) UNION CORRESPONDING
BY (CITY, NAME) (SELECT CITY,
NAME FROM CUSTOMER2)

The supported query is:
(SELECT NAME, CITY FROM
CUSTOMER1) UNION (SELECT NAME,
CITY FROM CUSTOMER2)

Using the Data Se rv ices P la t fo rm JDBC Dr ive r

8-54 Client Application Developer’s Guide

"...table1 UNION table2..." Not supported. Also not supported are
set operations between tables in a
FROM clause, except through a
sub-query.

The TABLE keyword is not supported.

SELECT * FROM TABLE CUSTOMER1
UNION TABLE CUSTOMER2

Where TABLE is a keyword not supported by
the LDJDBC SQL interface.

The supported version is:

SELECT * FROM (SELECT * FROM
CUSTOMER1 UNION SELECT * FROM
CUSTOMER2) T1

Other supported UNION constructs are:

SELECT * FROM CUSTOMER1 UNION
SELECT * FROM CUSTOMER2

SELECT * FROM CUSTOMER1 UNION
(SELECT * FROM CUSTOMER2 UNION
SELECT * FROM CUSTOMER3)

SELECT-query within the
SELECT clause

Not supported. SELECT A, (SELECT B FROM C)
FROM... WHERE...

Table 8-35 Additional DSP JDBC Limitations Applying to SQL Languge Features

Unsupported Feature Comments Example

Client Application Developer’s Guide 9-1

C H A P T E R 9

Customizing Data Service Update
Behavior

BEA AquaLogic Data Services Platform handles updates to relational data sources automatically.
However, for any non-relational data sources, including Web services, you must provide the update
logic by writing an update override class and associating it with the data service. In addition, there are
times when you may want (or need) to provide custom update logic for relational data sources as well.

Any data service, logical or physical, can have an associated update override class to perform a variety
of customizations.

This chapter explains how to create an update override class (the class comprising the update
behavior) and when you may want to do so for relational data sources. It includes the following topics:

What is an Update Override?

When Are Update Overrides Required?

When Are Update Overrides Required for Relational Data Sources?

Developing the UpdateOverride Class

Update Override Programming Patterns

What is an Update Override?
An update override provides you with a mechanism for customizing or completely replacing the
default update process (as discussed in “How It Works: The Decomposition Process” on page 2-18).
With an update override associated with your data service, you can:

Invoke data service functions or procedures.

Customiz ing Data Se rv i ce Update Behav io r

9-2 Client Application Developer’s Guide

Execute externally defined JPDs (Java process definition) to perform workflow operations from
a data service. For example, you can initiate a workflow that ties together numerous data
services to accomplish distributed transactional semantics across data services that comprise
non-XA-compliant data sources (such as Web services).

Validate changes before submitting them, checking or modifying the values in some way.

Invoke other resources, for example, by passing modified values to a workflow or Web service.

Execute SQL statements directly within the update plan.

Log changes to an external log file.

Perform virtually any other customization required.

An Update Override is a Java Class
In programming terms, an update override is a Java class; it is a compiled Java source code file that
implements the UpdateOverride interface (<UpdateOverride>, one of the DSP APIs located in the
com.bea.ld.dsmediator.update package). The UpdateOverride interface has as its sole method
an empty performChange() method (see Listing 9-1).

As shown in Listing 9-1, the performChange() method takes a DataGraph object (passed to it by the
Mediator). This object is the SDO on which your update override class will operate. The DataGraph
object contains the data object, the changes to the object, and other artifacts, such as metadata (as
discussed in “Data Services Platform and Service Data Objects (SDOs)” on page 2-2.)

Listing 9-1 UpdateOverride Interface

package com.bea.ld.dsmediator.update;

import commonj.sdo.DataGraph;

import commonj.sdo.Property;

public interface UpdateOverride

{

 public boolean performChange(DataGraph sdo)

 {

 }

}

When Are Update Over r ides Requ i red?

Client Application Developer’s Guide 9-3

As you can see from the performChange() method signature (Listing 9-1), it returns a Boolean value.
This value serves as something of a flag to the Mediator, as follows:

True signals the Mediator to continue with the automated update process.

False signals the Mediator to discontinue the automated update process.

How an Update Override Affects Update Processing
The performChange() method will be executed whenever a submit is issued for objects bound to the
overridden data service.

If the object being passed in the submit() is an array of DataService objects, the array is decomposed
into a list of singleton DataService objects. Some of these objects may have been added, deleted, or
modified; therefore, the update override might be executed more than once (that is, once per changed
object.)

In your code, you should verify that the root data object for the data graph being passed at runtime is
an instance of the singleton data object bound to the data service (configured with the update
override).

When Are Update Overrides Required?
You must create custom update classes to update any non-relational data sources—Web services,
XML files, flat-files, and DSP procedures, for example, and for these types of scenarios:

Initiate a workflow (business process or JPD) from a DSP application.

Compute your own primary key value when adding a data object as a new record to an RDBMS.

Handle circular dependencies that arise when modifying or adding objects with mutual
dependencies.

For example, your client application code is adding both a department and a manager; however,
manager is also a required field of department. How can you set the department’s manager field
before the manager exists? As follows:

– 1) Add department with manager set to a temporary value

– 2) Add the employee manager

– 3) Reset the department manager to the new employee.

Customiz ing Data Se rv i ce Update Behav io r

9-4 Client Application Developer’s Guide

Once you have written and compiled the Java code that comprises the update override class, you must
register the class with the data service. Update overrides can be registered on physical or logical data
services: Each data service has an Override Class property that can be associated with a specific Java
class file that comprises the implementation of the UpdateOverride.

At runtime, the data service executes the UpdateOverride class when it identifies it as available during
the decomposition process (see “Logical Data Service Update Process” on page 2-19).

For relational sources, you may also want to use custom update classes to apply custom logic to the
update process, or if an aspect of the data service design prevents automated updates, as discussed in
When Are Update Overrides Required for Relational Data Sources?

When Are Update Overrides Required for Relational Data
Sources?

DSP automatically updates relational data sources. However, in some cases, such as those listed
Table 9-1, DSP cannot automatically update relational data sources, and requires that you provide an
update override to handle update processing.

Table 9-1 Issues that Can Interfere with Automatic Relational Data Source Updates

Issue Description, example, or recommendation

Ambiguous data lineage The data service decomposition function cannot contain “if-then-else”
constructs that provide alternate composition from lower level data
services.

Transformation issue The lineage involves a transformation other than data() or rename. For
example, the following would not be supported by automatic updates:

<ACCOUNT> { sum(data($C/ACCOUNT)) }; </ACCOUNT>

Multiple lineage for a
composed property

An example of a property with more than one lineage, or data source,
for a property:

<customerName>{ cat(data($C/FNAME), " ",
data($WS/LAST_NAME)) }; </customerName>

When Are Update Over r ides Requ i r ed fo r Re la t iona l Data Sources?

Client Application Developer’s Guide 9-5

Nested matching logic issue Typically, nested containment is expressed in XQuery using a where
clause. If the query does not use a where clause to implement nesting,
DSP cannot determine the foreign key-primary key association. (Nested
matching logic should be expressed in a where predicate clause.)

For instance, if an element of a complex type has values from more than
one source (that is, a data object has fields from more than one source),
the where predicate does not indicate a 1-N cardinality between the two
source because the where predicate does not involve a primary key. For
example, any M:N join like Orders with Payments is not usually a
common join, and in this case neither Orders nor Payments would be
decomposed.

Ambiguous tuple identity Distinct-values or group-by would lead to an arbitrary tuple remaining
from a set of duplicate tuples.

Redundant instance values If the same source value instance gets projected in the SDO (or the
same physical data source value), and if it is updated in the SDO, it will
not be automatically decomposed.

Repeating complex type
values issue

In some complex types (such as Part and Item values), the Part values
may repeat and are therefore not decomposed. For example:

• You can determine whether a primary key is projected or derivable
by knowing the cardinality between two tuples that provide the
data object values. If the predicate between the tuples identifies a
primary key on one side (tuple1) but not on the other side (tuple2),
values from tuple1 may repeat. Tuple1 values would not be
decomposed, but tuple2 values would be decomposed. If the
predicate identifies that both tuples primary keys are equal, then
values for both tuples would be decomposed.

• If two Lists of Orders occur in a data object, the predicates used to
produce them may or may not make them disjointed. No attempt is
made to detect this case. Updates from each instance will be
decomposed as separate updates. Depending on the chosen
optimistic locking strategy for the data service, the second update
may or may not succeed and may overwrite changes made in the
first update.

Typematch issue If the query plan of the decomposition function has a “typematch” node,
the decomposition will stop at that point for the SDO.

Table 9-1 Issues that Can Interfere with Automatic Relational Data Source Updates

Issue Description, example, or recommendation

Customiz ing Data Se rv i ce Update Behav io r

9-6 Client Application Developer’s Guide

Developing the UpdateOverride Class
To create an update override class, perform the following steps:

1. Create a new Java class file in the DSP project. (If you do not add the Java class file to the project,
it must be in the classpath.) You can put the class anywhere in the application folder. For basic
projects, you can simply add the class to the same directory as your data services. For larger
projects, you might want to keep update classes in their own folder.

a. Import the appropriate DSP API and SDO DataGraph packages into the class in which you are
implementing the UpdateOverride interface:

import com.bea.ld.dsmediator.update.UpdateOverride;
import commonj.sdo.DataGraph;

b. Your Java class declaration must implement the UpdateOverride interface, as in:

public class SpecialOrders implements UpdateOverride

c. Add a performChange() method to the class. This public method takes a DataGraph object
(containing the modified data object) and returns a Boolean value. For example:

public boolean performChange(DataGraph graph)

d. In the body of the performChange() method, implement your processing logic. Your
processing logic can access the changed object; instantiate new data objects;modify and
submit them, or access the Mediator context’s update plan and decomposition map. You can
also invoke a data service procedure from within this method, or invoke a JPD.

2. Compile the Java source code to create the class file.

3. Associate the class file with a specific data service by embedding the appropriate text in the data
service source code (the .ds file) or by setting the Update Override property on the data service.
WebLogic Workshop is used for either approach, albeit from within two different view tabs, as
follows:

a. Add the name of the update override class (classname only, without the .class extension) as
an attribute of an empty javaUpdateExit element tag (in the pragma statement of the data
service). For example:

<javaUpdateExit className="SpecialOrderUpdate"/>

b. Alternatively, open the Property entering the class name in the Update Override property
WebLogic Workshopas the update override class Update Override for specific data service by
referring to it from the data service by placing a javaUpdate element in the pragma statement
of the data service.

Deve lop ing the UpdateOver r ide C lass

Client Application Developer’s Guide 9-7

 Listing 9-2 is an example of an update override implementation.

Listing 9-2 Update Override Sample

package RTLServices;

import com.bea.ld.dsmediator.update.UpdateOverride;
import commonj.sdo.DataGraph;
import java.math.BigDecimal;
import java.math.BigInteger;
import retailer.ORDERDETAILDocument;
import retailerType.LINEITEMTYPE;
import retailerType.ORDERDETAILTYPE;

public class OrderDetailUpdate implements UpdateOverride
{
 public boolean performChange(DataGraph graph){
 ORDERDETAILDocument orderDocument =
 (ORDERDETAILDocument) graph.getRootObject();
 ORDERDETAILTYPE order =
 orderDocument.getORDERDETAIL().getORDERDETAILArray(0);
 BigDecimal total = new BigDecimal(0);
 LINEITEMTYPE[] items = order.getLINEITEMArray();
 for (int y=0; y < items.length; y++) {
 BigDecimal quantity =
 new BigDecimal(Integer.toString(items[y].getQuantity()));
 total = total.add(quantity.multiply(items[y].getPrice()));
 }
 order.setSubTotal(total);
 order.setSalesTax(
 total.multiply(new BigDecimal(".06")).setScale(2,BigDecimal.ROUND_UP));
 order.setHandlingCharge(new BigDecimal(15));
 order.setTotalOrderAmount(
 order.getSubTotal().add(
 order.getSalesTax().add(order.getHandlingCharge())));
 System.out.println(">>> OrderDetail.ds Exit completed");
 return true;
 }
}

In the sample class shown in Listing 9-2, an OrderDetailUpdate class implements the UpdateOverride
class, and, as required by the interface, defines a performChange() method. Listing 9-2 demonstrates
a common coding pattern for update overrides:

Customiz ing Data Se rv i ce Update Behav io r

9-8 Client Application Developer’s Guide

The submitted data graph (as changed by the client application) is passed to the
performChange() method.

The data graph’s root data object is obtained and then cast to an ORDERDETAILDocument
using the variable name orderDocument.

ORDERDETAILDocument orderDocument =
 (ORDERDETAILDocument) graph.getRootObject();

Objects in the changed object list are accessed through the appropriate get call and index
value. For example, to obtain the first such object:

ORDERDETAILTYPE order =
 orderDocument.getORDERDETAIL().getORDERDETAILArray(0)

A processing loop iterates through the objects in the array of line items and calculates
sub-totals and sales tax for each order item, adding the amounts to the order object.

Finally, the method returns true and the Mediator continues with the normal course of update
processing (using the modified update plan).

Note: See “Update Override Programming Patterns” on page 9-14 for some other common
programming patterns.

Invoking Data Service Procedures from an UpdateOverride
Listing 9-3 shows an example of an update override class that invokes a data service procedure. Since
UpdateOverrides are invoked locally, within the DSP server, the sample uses the typed Mediator API.
As shown in Listing 9-3, several Web services operations (to create, delete, and modify a customers
address) have been registered with a Data Service.

Listing 9-3 Invoking a Procedure from an UpdateOverride

public class CustomerAddressUpdate implements UpdateOverride {

 public boolean performChange(DataGraph graph) {

 bool status = true; // assume the best

 ChangeSummary changeSum = datagraph.getChangeSummary();

 // If no changes, do nothing.

 if (changeSum.getChangedDataObjects().size()==0) {

 return true;

 }

// Get the DataGraph’s root DataObject and cast to customer object to

Deve lop ing the UpdateOver r ide C lass

Client Application Developer’s Guide 9-9

// enable getting DataGraph constituents

 CUSTOMERDocument custDoc = (CUSTOMERDocument) graph.getRootObject();

 ADDRESS[] addr = custDoc.ADDRESS().getADDRESSArray();

 int i;

 try {

 CUSTOMER custDS = CUSTOMER.getInstance(

 new InitialContext(), "RTLApp");

// For each address in the Customer’s address array, call the Web Service’s

// update, delete, or create procedure as appropriate

 for(i = 0; i < addr.length; i++) {

 if (changeSum.isModified(addr[i])) {

 custDS.invokeProcedure("modifyCustomerAddress",

 new Object [] {addr[i]});

 }

 else if (changeSum.isDeleted(addr[i])) {

 custDS.invokeProcedure("deleteCustomerAddress",

 new Object [] {addr[i]});

 }

 else if (changeSum.isCreated(addr[i])) {

 custDS.invokeProcedure("createCustomerAddress",

 new Object [] {addr[i]});

 }

 else {

 // throw an exception for IllegalState

 }

 }

 } // end for

 }

 catch(Exception ex) {

 System.err.println(ex.printStackTrace());

 throw ex;

 }

 return status;

 }

}

Customiz ing Data Se rv i ce Update Behav io r

9-10 Client Application Developer’s Guide

The example in Listing 9-3 is for a Web service running locally on the WebLogic Server instance, so it
does not include basic setup code to obtain context and location. (If the Web service is not local to the
WebLogic Server instance, your code must obtain an InitialContext and providing appropriate location
and security properties. See “Obtaining a WebLogic JNDI Context for Data Services Platform” on
page 3-8 for more information about InitialContext.)

Listing 9-4 shows an update override alters the update plan in order to enforce referential integrity by
removing product information from the middle of a list and adds it back at the end.

Listing 9-4 Update Override Example That Enforces Referential Integrity

// delete order, item, product, due to RI between ITEM and Product

// product has to be deleted after items

 public boolean performChange(DataGraph graph)

 {

 DataServiceMediatorContext context =

DataServiceMediatorContext.currentContext();

 UpdatePlan up =context.getCurrentUpdatePlan(graph, false);

 Collection dsCollection = up.getDataServiceList();

 DataServiceToUpdate ds2u = null;

 for (Iterator it=dsCollection.iterator();it.hasNext();)

 {

 ds2u = (DataServiceToUpdate)it.next();

 if

(ds2u.getDataServiceName().compareTo("ld:DataServices/PRODUCT.ds") == 0) {

// remove product from the mid of list and add it back at the end

up.removeContainedDataService(ds2u.getDataGraph());

up.addDataService(ds2u.getDataGraph(), ds2u);

 };

 }

 context.executeUpdatePlan(up);

 return false;

 }

}

Deve lop ing the UpdateOver r ide C lass

Client Application Developer’s Guide 9-11

Testing Submit Results
Data service updates should always be tested to ensure that changes occur as expected. You can test
submits using the Test View in BEA WebLogic Workshop.

The results in Test View depend on the type of changes being made, specifically, whether you are
testing read and navigate functions or DSP procedures. For functions, the submit() returns the data.

For procedures, the Test View displays:

"Side effect function executed successfully."

For information on testing submits, refer to the Data Services Developer’s Guide.

While Test View gives you a quick way to test simple update cases in the data services you create, for
more substantial testing and troubleshooting you can use an update override class to inspect the
decomposition mapping and update plan for the update.

The override class is also the mechanism you can use to extend and override the Mediator’s default
update processing. You can use it to implement updates for data services that would otherwise not
support updates, such as non-relational sources. See “Developing the UpdateOverride Class” on
page 9-6 for information about override classes.

Update Override Context
Although an update override class can programmatically access several update framework artifacts,
including the update plan, decomposition map, and the tree of modified data objects, the content
available at any time depends on the data service context, as follows:

Top-level logical data service object. The update override class has access to the entire tree of
changed data objects.

Any lower-level or physical data service. Only the objects in the change tree bound to the data
service are available, along with the contents of the immediate container object—the
performChange() method cannot access objects at any layer above it.

Figure 9-2 illustrates the context visibility within an update override.

Customiz ing Data Se rv i ce Update Behav io r

9-12 Client Application Developer’s Guide

Figure 9-2 Context Visibility in Update Override

Update Overrides and Physical Data Services
Considerations for implementing update override classes for physical level data services include the
following:

For updated data objects bound to physical data services, further decomposition does not occur.
Therefore, requesting a decomposition map or update plan in the override class of an object
bound to such a service returns null.

If the data service is bound to a relational data source, returning true causes the Mediator to
apply the changes currently indicated by the data object to the database. It does so using the
optimistic locking strategy specified for the data service. (Note that if the data service is not
bound to a relational data source, returning true will cause an exception.)

For physical data services, the update override can calculate a primary key value or perform
other validations or calculations on the submitted data object. If an object bound to a physical
data service is being updated in the context of an update to a higher-level data service object
(that is, as a product of decomposition), changes in the physical update override (such as the
primary key calculation) will be available when the higher-level update plan is applied.
Therefore, if a primary key is calculated in the physical update override as part of a data object
insert, the key will be available in the logical update plan, so that it can be assigned as a
foreign key for the containing object.

A modified SDO that is passed to the physical level update override can see only those data
object properties projected in the higher level data service. (See Figure 9-3.) To access the
unprojected values as well, the update override must re-instantiate the data object.

customerID
customerName

customer

Orders

Items

ItemID
Parts

OrderID

Deve lop ing the UpdateOver r ide C lass

Client Application Developer’s Guide 9-13

Figure 9-3 Projected Data Objects

Additional considerations concerning update overrides for relational data services include:

If performChange() returns True, the Mediator applies the changes indicated in the data
object to the source database using the optimistic locking strategy specified for the data
service.

If an object is inserted with unset property values:

– If default values for the property are indicated by the data service schema, they are used.

– If default values are not configured, NULL is used.

If a primary key was not projected or specified, the automated update raises an error and
cancels the update request.

For physical non-relational data services, your performChange() method must:

Provide an implementation for propagating the data change because the Mediator does not
provide automatic updates for non-relational sources. Using the change summary information in
the data object, the method can identify the changes to make and submit them to the data
source using any interface or mechanism supported by the data source.

customerID = 123

FirstName = Edna

customer

LastName = Smith-Owens

customerID = 123

FirstName = Edna

customer

customerID = 123

FirstName = Edna

customer

LastName = Smith-Owens

Changed object data tree

Instantiated to access

Composite:

LastName = Smith

With new values only:

existing values:

Not projected

Customiz ing Data Se rv i ce Update Behav io r

9-14 Client Application Developer’s Guide

If no update override exists for a non-relational physical data service object for which an update
call is made, an error occurs indicating that the change cannot be persisted.

Update Override Programming Patterns
In an update override, you can modify the server-side update process as much or as little as you like,
at any step of the way, to accomplish your goal. This section provides some code samples that illustrate
common update override programming patterns, including:

Overriding the Entire Decomposition and Update Process

Augmenting Data Object Content

Customizing an Update Plan

Executing an Update Plan

Retrieving the Container of the Current Data Object

Invoking Other Data Service Functions and Procedures

Capturing Runtime Data about Overrides in the Server Log

Default Optimistic Locking Policy: What it Means, How to Change

Remember that an Update Override class is simply a Java class that implements the UpdateOverride
interface. You can give the class any valid Java filename, but should use a meaningful name for
common-sense reasons. After writing the class, you must register it with the data service, by setting
the name of the class in the data service’s Update Override Property field.

The class must include an implementation of the performChange() method; it is inside this method
that you provide all custom code required for the programming task at hand. The performChange()
method returns a boolean value that either continues or aborts processing by the Mediator, as
discussed in “How It Works: The Decomposition Process” on page 2-18. The level of customization that
you provide in your performChange() method determines whether you should return true or false, as
noted in each of the sections below.

Overriding the Entire Decomposition and Update Process
To customize the entire decomposition and update process, the performChange() method can
implement the following types of routines:

Instantiating lower level data objects and submit them for update.

Update Over r ide Prog ramming Pat te rns

Client Application Developer’s Guide 9-15

Calling a Web service passing the appropriate data.

Using JDBC to execute SQL statements.

If your performChange() method does take over all processing, it should return false so that the
Mediator does not proceed with automated decomposition.

Augmenting Data Object Content
The performChange() method can include code to inspect changed data object values and raise
DataServiceException to signal errors, rolling back the transaction in such cases.

Return true to have the Mediator proceed with update propagation using the objects as changed.

Accessing the Data Service Mediator Context
To access the change plan and decomposition map for an update, you first must get the data service’s
Mediator context. The context enables you to view the decomposition map, produce an update plan,
execute the update plan, and access the container data service instance for the data service object
currently being processed.

The following code snippet shows how to get the context:

DataServiceMediatorContext context =

 DataServiceMediatorContext().getInstance();

Accessing the Decomposition Map
Once you have the context, you can access the decomposition map as follows:

DecompositionMapDocument.DecompositionMap dm =

 context.getCurrentDecompositionMap();

Once you have a decomposition map, you can use its toString() method to obtain the string rendering
of the XML that map, as shown in Listing 9-5. (Note that although you can access the default
decomposition map, you should not modify it.)

In addition to accessing the decomposition map, you can access the update plan in the override class.
You can modify values in the tree, remove nodes, or rearrange them (to change the order in which they
are applied). However, if you modify the update plan, you should execute the plan within the override
if you want to keep the changes. As you modify the values in the tree, remove nodes or rearrange them,
the update plan will track your changes automatically in the change list.

Customiz ing Data Se rv i ce Update Behav io r

9-16 Client Application Developer’s Guide

Listing 9-5 Decomposition Map Example as XML String Fragment

<xml-fragment xmlns:upd="update.dsmediator.ld.bea.com">

 <Binding>

 <DSName>ld:DataServices/CUSTOMERS.ds</DSName>

 <VarName>f1603</VarName>

 </Binding>

 <AttributeLineage>

 <ViewProperty>CUSTOMERID</ViewProperty>

 <SourceProperty>CUSTOMERID</SourceProperty>

 <VarName>f1603</VarName>

 </AttributeLineage>

 <AttributeLineage>

 <ViewProperty>CUSTOMERNAME</ViewProperty>

 <SourceProperty>CUSTOMERNAME</SourceProperty>

 <VarName>f1603</VarName>

 </AttributeLineage>

 <upd:DecompositionMap>

 <Binding>

 <DSName>ld:DataServices/getCustomerCreditRatingResponse.ds</DSName>

 <VarName>getCustomerCreditRating</VarName>

 </Binding>

 <AttributeLineage>

 <ViewProperty>CREDITSCORE</ViewProperty>

 <SourceProperty>

 getCustomerCreditRatingResult/TotalScore

 </SourceProperty>

 <VarName>getCustomerCreditRating</VarName>

 </AttributeLineage>

 ...

 </upd:DecompositionMap>

 </upd:DecompositionMap>

 <ViewName>ld:DataServices/Customer.ds</ViewName>

</xml-fragment>

Update Over r ide Prog ramming Pat te rns

Client Application Developer’s Guide 9-17

Customizing an Update Plan
After possibly validating or modifying the values in the submitted data object, the function retrieves
the update plan by passing in the current data object to the following function:

DataServiceMediatorContext.getCurrentUpdatePlan()

The update plan can be augmented in several ways, including:

Setting values on decomposed data objects.

Adding, removing, or rearranging data objects in the update tree.

Passing the modified update plan executeUpdatePlan() method, as in:

DataServiceMediatorContext.executeUpdatePlan()

After executing the update plan, the performChange() method should return false so that the
Mediator does not attempt to apply the update plan.

The update plan lets you modify the values to be updated to the source. It also lets you modify the
update order.

You can programmatically walk the update plan to view its contents by using your own method, similar
to the navigateUpdatePlan(). As shown in Listing 9-6, navigateUpdatePlan() method takes a
Collection object and uses an iterator to recursively walk the plan.

Listing 9-6 Walking an Update Plan

public boolean performChange(DataGraph datagraph){

UpdatePlan up = DataServiceMediatorContext.currentContext().

getCurrentUpdatePlan(datagraph);

navigateUpdatePlan(up.getDataServiceList());

return true;

}

private void navigateUpdatePlan(Collection dsCollection) {

DataServiceToUpdate ds2u = null;

for (Iterator it=dsCollection.iterator();it.hasNext();) {

 ds2u = (DataServiceToUpdate)it.next();

Customiz ing Data Se rv i ce Update Behav io r

9-18 Client Application Developer’s Guide

 // print the content of the SDO

 System.out.println (ds2u.getDataGraph());

 // walk through contained SDO objects

 navigateUpdatePlan (ds2u.getContainedDSToUpdateList());

}

}

A sample update plan report would look like the following

UpdatePlan

 SDOToUpdate

 DSName: ... :PO_CUSTOMERS

 DataGraph: ns3:PO_CUSTOMERS to be added

 CUSOTMERID = 01

 ORDERID = unset

 PropertyMap = null

Now consider an example in which a line item is deleted along with the order that contains it. Given
the original data, Listing 9-7 illustrates an update plan in which item 1001 will be deleted from Order
100, and then the Order is deleted.

Listing 9-7 Example of Deleting a Line Item and Then Its Container

UpdatePlan

 SDOToUpdate

 DSName:...:PO_CUSTOMERS

 DataGraph: ns3:PO_CUSTOMERS to be deleted

 CUSTOMERID = 01

 ORDERID = 100

 PropertyMap = null

 SDOToUpdate

 DSName:...:PO_ITEMS

 DataGraph: ns4:PO_ITEMS to be deleted

 ORDERID = 100

Update Over r ide Prog ramming Pat te rns

Client Application Developer’s Guide 9-19

 ITEMNUMBER = 1001

 PropertyMap = null

In this case, the execution of the update plan is as follows: before deleting the PO_CUSTOMERS, the
contained SDOToUpdates routines are visited and processed. So the PO_ITEMS is deleted first and
then PO_CUSTOMERS is deleted.

If the contents of the Update Plan are changed the new plan can then be executed. The update exit
should then return false, signaling that no further automation should occur.

The plan can then be propagated to the data source, as described in “Executing an Update Plan.”

Executing an Update Plan
After modifying an update plan, you can execute it. Executing the update plan causes the Mediator to
propagate changes to the indicated data sources.

Given a modified update plan named up, the following statement executes it:

context.executeUpdatePlan(up);

Retrieving the Container of the Current Data Object
On a data service that is being processed for an update plan, you can get the container of the SDO
being processed. The container must exist in the original changed object tree, as decomposed. If no
container exists, null is returned. Consider the following example:

String containerDS = context.getContainerDataServiceName();

DataObject container = context.getContainerSDO();

In this example, if in the update override class for the Orders data service the you ask to see the
container, the Customer data service object for the Order instance being processed would be
returned. If that Customer instance was in the update plan, then it would be returned. If it was not in
the update plan, then it would be decomposed from CustOrders and returned.

The update plan only shows what has been changed. In some cases, the container will not be in the
update plan. When the code asks for the container, it will be returned from the update plan if present;
otherwise, it will be decomposed from the source SDO.

Customiz ing Data Se rv i ce Update Behav io r

9-20 Client Application Developer’s Guide

Invoking Other Data Service Functions and Procedures
Other data services may be accessed and updated from an update override. The data service the
Mediator API can be used to access data objects, modify and submit them. Alternatively, the modified
data objects can be added to the update plan and updated when the update plan is executed. If the
data object is added to the update plan, it will be updated within the current context and its container
will be accessible inside its data service update override.

If the DataService Mediator API is used to perform the update, a new DataService context is
established for that submit, just as if it were being executed from the client. This submit() acts just
like a client submit — changes are not reflected in the data object. Instead, the object must be
re-fetched to see the changes made by the submit.

Capturing Runtime Data about Overrides in the Server Log
DSP uses the underlying WebLogic Server for logging. WebLogic logging is based on the JDK 1.4
logging APIs (available in the java.util.logging package). You can contribute to the log (from an update
override) by acquiring a DataServiceMediatorContext instance, and then calling the getLogger()
method on the context, as follows:

DataServiceMediatorContext context =
 DataServiceMediatorContext().getInstance();
Logger logger = context.getLogger()

You can then contribute to the log by issuing the appropriate logger call with a specific log level. The
log level implies the severity of the event. When WebLogic Server message catalogs and the
NonCatalogLogger generate messages, they convert the message severity to a
weblogic.logging.WLLevel object. A WLLevel object can specify any of the values listed in Table 9-4,
from lowest to highest impact:

Table 9-4 WebLogic Server Log Level Definitions

Level Description

DEBUG Debug information, including execution times.

INFO Normal events with informational value. This will allow you
to see SQL that is executed against the underlying databases.

WARNING Events that may cause errors.

ERROR Events that cause errors.

Update Over r ide Prog ramming Pat te rns

Client Application Developer’s Guide 9-21

Development_time logging is written to the following location:

<bea_home>\user_projects\domains\<domain_name>

Given the specified logging level, the Mediator logs the information shown in Table 9-5.

Listing 9-8 shows a sample log entry.

NOTICE Normal but significant events.

CRITICAL, ALERT,
EMERGENCY

Significant events that require immediate intervention.

Table 9-5 DSP Log Levels

Level Information provided for... Information captured

Notice or summary Each submit from a client • Fully qualified data service name

• Invocation time

• Total execution time

• Invocation by user/group

Information or Detail Each submit on a data
service at any level

For a fully qualified data service name:

• Invocation time

• Number of times executed

• Total execution time

For relational sources, per SQL statement type per
table:

• SQL script

• Total execution time

• Number of times executed

Each update override
invocation

• Name of data service being overridden

• Number of times called

• Total execution time

Table 9-4 WebLogic Server Log Level Definitions

Level Description

Customiz ing Data Se rv i ce Update Behav io r

9-22 Client Application Developer’s Guide

Listing 9-8 Sample Log Entry

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo - begin

client sumbitted DS: ld:DataServices/Customer.ds>

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo -

ld:DataServices/Customer.ds number of execution: 1 total execution

time:171>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo -

ld:DataServices/CUSTOMERS.ds number of execution: 1 total execution time:0>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo - EXECUTING

SQL: update WEBLOGIC.CUSTOMERS set CUSTOMERNAME=? where CUSTOMERID=? AND

CUSTOMERNAME=? number of execution: 1 total execution time:0>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo -

ld:DataServices/PO_ITEMS.ds number of execution: 3 total execution

time:121>

<Nov 4, 2004 11:50:10 AM PST> <Info> <LiquidData> <000000> <Demo - EXECUTING

SQL: update WEBLOGIC.PO_ITEMS set ORDERID=? , QUANTITY=? where ITEMNUMBER=?

AND ORDERID=? AND QUANTITY=? AND KEY=? number of execution: 3 total

execution time:91>

<Nov 4, 2004 11:50:10 AM PST> <Notice> <LiquidData> <000000> <Demo - end

clientsumbitted ds: ld:DataServices/Customer.ds Overall execution time:

381>

Default Optimistic Locking Policy: What it Means, How to
Change
Locking mechanisms are used in numerous types of multi-user systems for concurrency control—to
ensure that data is consistent, across transactions and regardless of the number of users acting on the
system at the same time. Optimistic locking mechanisms are so-called because they typically only lock
data at the time it is being updated (written to), not when it is being read.

DSP uses optimistic locking as its concurrency control policy, locking data only when updates are
being attempted. When DSP receives submitted data graph, it compares the values of the data used to
instantiate the original data objects with the original values in the data graph to ensure that the data
was not changed by another user process during the time the data objects were being modified by a
client application.

Update Over r ide Prog ramming Pat te rns

Client Application Developer’s Guide 9-23

The Mediator compares fields from the original and the source; by default, Projected is used as the
point of comparison (see Table 9-6).

You can specify the fields to be compared at the time of the update for each table. Note that primary
key column must match, and BLOB and floating types might not be compared. Table 9-6 describes the
options.

Note: If DSP cannot read data from a database table because another application has a lock on the
table, queries issued by DSP are queued until the application releases the lock. You can
prevent this by setting transaction isolation (on your WebLogic Server’s JDBC connection
pool) to read uncommitted. See "Setting the Transaction Isolation Level" in the
Administration Guide for details on how to set the transaction isolation level.

Table 9-6 Optimistic Locking Update Policy Options

Optimistic Locking
Update Policy

Effect

Projected Projected is the default setting. It uses a 1-to-1 mapping of elements in the SDO data
graph to the data source to verify the “updateability” of the data source.

This is the most complete means of verifying that an update can be completed,
however if many elements are involved updates will take longer due to the greater
number of fields to be verified.

Update Only fields that have changed in your SDO data graph are used to verify the changed
status of the data source.

Selected Fields Selected fields are used to validate the changed status of the data source.

http://e-docs.bea.com/liquiddata/docs85/admin/server.html
http://e-docs.bea.com/liquiddata/docs85/admin/index.html

Customiz ing Data Se rv i ce Update Behav io r

9-24 Client Application Developer’s Guide

Client Application Developer’s Guide 10-1

C H A P T E R 10

Advanced Topics

This chapter provides information on miscellaneous topics related to client programming with BEA
AquaLogic Data Services Platform (DSP). It covers the following topics:

Using Catalog Services to Obtain Data Services’ Metadata

Filtering, Sorting, and Fine-tuning Query Results

Handling Large Result Sets with Streaming APIs

Providing Role-based Access to DSP Relational Sources

Setting Up Handlers for Web Services Accessed by DSP

Using Catalog Services to Obtain Data Services’
Metadata

BEA AquaLogic Data Services Platform (DSP) maintains metadata about all data services through a
system catalog-type data service, known as Catalog Services. Catalog Services are available to client
application developers to use in the same way they use any other data service in DSP.

Catalog services provide a convenient way for client-application developers to programmatically
obtain information about the data services that are running on the server. The primary benefit of
Catalog Services to developers is that they can create dynamic applications based on the metadata
underlying the data service applications that have been deployed. Enterprise, third-party, and other
developers who want to build dynamic, metadata driven query-by-form (QBF) applications can

Advanced Top ics

10-2 Client Application Developer’s Guide

leverage DSP’s Catalog Services to do just that. In addition, Catalog Services enables interoperability
with other metadata repositories.

By querying Catalog Services, developers can obtain all the information they need about data services.
For example, you can obtain information about:

Applications

Folders

DataServices

DataServiceRefs

Functions

Relationships

Schemas

SchemaRefs

To develop a metadata-driven application, developers can use the client Mediator API and invoke the
Catalog Service’s methods (see Listing 10-2) as needed populate the page they present to users of
their application, for example.

Since the Catalog Services are data services, just as with any other data service you can also view these
data services in three other ways, specifically through the:

DSP Console

DSP Palette

Data Service controls

However, given the typical use case for the catalog services—metadata driven QBF applications—it
is far more likely that application developers will invoke Catalog Services methods by using the
Mediator API.

Generally speaking, to create a QBF application your code can leverage Catalog Services as follows:

1) Call Folder.getFolder()

2) Select a data service

3) Call DataService.getDataServiceById(dsId)

4) [optional] call Schema.getSchemaByDataServiceRef(ds.getRef())

Us ing Cata log Serv ices to Ob ta in Data Serv i ces ’ Me tadata

Client Application Developer’s Guide 10-3

5) Select a function from the selected dataservice

6) Provide a form to enter the arguments. The more complex the arguments, the more complex the
code you must write.

Obtain a schema for parameters using the Catalog I think you can get the schema for parameters from
Catalog Services – see Test View code on how to generate a ‘template’

Installing Catalog Services
The ability to build Catalog Services within any DSP-enabled application is available by default when
you install the product. DSP Catalog Services are installed easily on a per-application basis, by
selecting Install Catalog Services from the WebLogic Workshop main menu.

Figure 10-1 Installing Catalog Services

Installing the Catalog Services creates a _metadata.jar file in the application’s Library folder, and
creates the various CLASS files that provide the typed accessors (see Table 10-2).

After installing Catalog Services, you will have access to all application metadata. For any
DSP-enabled application that you want to leverage in this way, simply install the Catalog Services into
the application.

Table 10-2 Catalog Services Accessor Methods

Data Service Name Return Type (Java
Class)

Accessor

DataService DataService getDataServiceByRef(DataServiceRef)

DataService DataService getDataServiceById(string)

Advanced Top ics

10-4 Client Application Developer’s Guide

DataService DataServiceRef getDataServiceDependencyRefs(DataService)

DataService DataServiceRef getDataServiceDependentRefs(DataService)

DataService Function getFunctionsByDataService(DataService)

DataService Relationship getRelationshipsByDataService(DataService)

DataService SchemaRef getSchemaRefsByDataService(DataService)

DataServiceRef DataServiceRef getDataServiceRefs()

Folder Folder getFolder(String)

Function Function getFunctionById(FunctionId)

Function DataService getDataServiceByFunction(Function)

Function Function getFunctionDependenciesByFunction(Function)

Function Function getFunctionDepdendentsByFunction(Function)

Function Relationship getRelationshipsByFunction(Function)

Function SchemaRef getSchemaRefsByFunction(Function)

Relationship Relationship getRelationshipsByDataService(DataService)

Relationship Relationship getRelationshipsByDataServiceId(String)

Relationship Relationship getRelationshipById(String)

Schema Schema getSchemaById (String)

Schema SchemaRef getSchemaDependencyRefsBySchema (Schema)

SchemaRef SchemaRef getSchemaDependencyRefsBySchemaRef (SchemaRef)

SchemaRef Schema getSchemaByRef(SchemaRef)

Table 10-2 Catalog Services Accessor Methods

Data Service Name Return Type (Java
Class)

Accessor

F i l t e r ing , So r t ing , and F ine- tun ing Quer y Resu l ts

Client Application Developer’s Guide 10-5

In addition to the methods shown in Table 10-2, you will also see several extraneous methods that
define relationships among data services. However, the methods shown are the only methods you need
to develop a metadata-driven client application.

Creating a Query-by-Form (QBF) Application Using Catalog
Services
You can create a Query-by-Form (QBF) application using DSP’s Catalog Services and the Mediator
APis. Your application can leverage the Catalog Service in the same way you might leverage any data
service using the Mediator APIs.

Note: For more information about using the Mediator API, see Chapter 3, “Accessing Data Services
from Java Clients.”

Filtering, Sorting, and Fine-tuning Query Results
The Filter API enables client applications to apply filtering conditions to the information returned by
data service functions. In a sense, filtering allows client applications to extend a data service interface
by allowing them to specify more about how data objects are to be instantiated and returned by
functions.

The Filter API alleviates data service designers from having to anticipate every possible data view that
their clients may require and to implement a data service function for each view. Instead, the designer
may choose to specify a broader, more generic interface for accessing a business entity and allow
client applications to control views as desired through filters.

Only objects in the function return set that meet the condition are returned to the client. (The
evaluation occurs at the server, so objects that are filtered are not passed over the network. Often,
objects that are filtered out are not even retrieved from the underlying sources.) A filter is similar to
a WHERE clause in an XQuery or SQL statement—it applies conditions to a possible result set. You

Advanced Top ics

10-6 Client Application Developer’s Guide

can apply multiple filter conditions using AND and OR operators. Other operators that be applied to
filter conditions are listed in Table 10-3.

Note: Filter API Javadoc, as well as other Data Services Platform APIs, is described at “DSP
Mediator API Javadoc” on page 1-13.

Using Filters
Filtering capabilities are available to Mediator and Data Service control client applications. You use
filter conditions to specify the data you want returned, sort the data, or limit the number of records
returned. To use filters in a mediator client application, import the appropriate package and use the

Table 10-3 Filter Operators

Operator Usage Note or Example

LESS_THAN Can also use "<". For example:
myFilter.addFilter("CUST/CUST_ORDER/ORDER",
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT", ">",
"1000");

myFilter.addFilter("CUST/CUST_ORDER/ORDER",
"CUST/CUST_ORDER/ORDER/ORDER_AMOUNT",
FilterXQuery.GREATER_THAN, "1000");

GREATER_THAN Can also use ">".

LESS_THAN_EQUAL Can also use "<=".

GREATER_THAN_EQUAL Can also use ">=".

EQUAL Can also use "=".

NOT_EQUAL Can also use "!=".

matches Tests for string equality.

sql-like Tests whether a string contains a specified pattern.

OR Compound operator that can apply to more than one filter.

NOT Compound operator that can apply to more than one filter.

AND Compound operator that can apply to more than one filter.

Using F i l t e rs

Client Application Developer’s Guide 10-7

supplied interfaces for creating and applying filter conditions. Data service control clients get the
interface automatically. When a function is added to a control, a corresponding "WithFilter" function
is added as well.

The filter package is named as follows:

com.bea.ld.filter.FilterXQuery;

To use a filter, perform the following steps:

1. Create an FilterXQuery object, such as:

FilterXQuery myFilter = new FilterXQuery();

2. Add a condition to the filter object using the addFilter() method. With this method you can specify
what node your filter condition will apply to and specify the number of records to be returned
based on a limit; for example, you can specify the filter will apply to customer orders where only
orders with an amount over a specified value will be returned.

The addFilter() method has several signatures with different parameters, including the
following:

public void addFilter(java.lang.String appliesTo,
 java.lang.String field,
 java.lang.String operator,
 java.lang.String value,
 java.lang.Boolean everyChild)

This version of the method takes the following arguments:

– appliesTo indicates the node that filtering affects. That is, if a node specified by the field
argument does not meet the condition, appliesTo nodes are filtered out.

– field is the node against which the filtering condition is tested.

– operator and value together compose the condition statement. The operator
parameter specifies the type of comparison to be made against the specified value. See
Table 10-3, “Filter Operators,” on page 10-6 for information about available operators.

– everyChild is an optional parameter. It is set to false by default. Specifying true for this
parameter indicates that only those child elements that meet the filter criteria will be
returned. For example, by specifying an operator of GREATER_THAN (or ">") and a value of
1000, only records for customers where all orders are over 1000 will be returned. A
customer that has an order amount less than 1000 will not be returned, although other
order amounts might be greater than 1000.

Advanced Top ics

10-8 Client Application Developer’s Guide

The following is an example of an add filter method where those orders with an order
amount greater than 1000 will be returned (note that everyChild is not specified, so order
amounts below 1000 will be returned):

 myFilter.addFilter("CUSTOMERS/CUSTOMER/ORDER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 ">",
 "1000");

3. Use the Mediator API call setFilterCondition() to add the filter to a data service, passing the
FilterXQuery instance as an argument. For example,

CUSTOMER custDS = CUSTOMER.getInstance(ctx, "RTLApp");
custDS.setFilterCondition(myFilter);

4. Invoke the data service function. (For more information on invoking data service functions, see
Chapter 3, “Accessing Data Services from Java Clients.”)

Specifying Filter Effects
If a filter condition applied to a specified element value resolves to false, an element is not included
in the result set. The element that is filtered out is specified as the first argument to the addFilter()
function.

The effects of a filter can vary, depending on the desired results. For example, consider the
CUSTOMERS data object shown in Figure 10-1. It contains several complex elements (CUSTOMER
and ORDERS) and several simple elements, including ORDER_AMOUNT. You can apply a filter to any
elements in this hierarchy.

Figure 10-1 Nested Value Filtering

In general, with nested XML data, a condition such as “CUSTOMER/ORDER/ORDER_AMOUNT >
1000” can affect what objects are returned in several ways. For example, it can cause all CUSTOMER
objects to be returned, but filter ORDERS that have an amount less than 1000.

ORDERS *
CUSTOMER *

ORDER_AMOUNT

CUSTOMERS

Using F i l t e rs

Client Application Developer’s Guide 10-9

Alternatively, it can cause only CUSTOMER objects to be returned that have at least one large order,
and all ORDER objects are returned for every CUSTOMER. Further, it can cause only CUSTOMER
objects to be returned for which every ORDER is greater than 1000. For example,

XQueryFilter myFilter = new XQueryFilter();

myFilter.addFilter("CUSTOMERS/CUSTOMER",

"CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",

FilterXQuery.GREATER_THAN,"1000",true);

Note that in the optional fourth parameter everyChild = true, by default this attribute is false.
By setting this parameter to true, only those CUSTOMER objects for which every ORDER is greater
than 1000 will be returned.

The following examples show how filters can be applied in several different ways:

Returns all CUSTOMER objects but only their large ORDER objects:

XQueryFilter myFilter = new XQueryFilter();
Filter f1 = myFilter.createFilter(
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000");
myFilter.addFilter("CUSTOMERS/CUSTOMER/ORDER", f1);

Returns only CUSTOMER objects that have at least one large order but view all ORDER objects
for such CUSTOMER:

XQueryFilter myFilter = new XQueryFilter();
myFilter.addFilter("CUSTOMERS/CUSTOMER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000");

Returns only CUSTOMER objects that have at least one large order and return only large
ORDER objects:

XQueryFilter myFilter = new XQueryFilter();
myFilter.addFilter("CUSTOMERS/CUSTOMER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000");
myFilter.addFilter("CUSTOMERS/CUSTOMER/ORDER",
 "CUSTOMERS/CUSTOMER/ORDER/ORDER_AMOUNT",
 FilterXQuery.GREATER_THAN,"1000");

The last example is a compound filter; that is, a filter with two conditions. Listing 10-1 uses the AND
operator to apply a combination of filters to a result set, given a data service instance customerDS.

Advanced Top ics

10-10 Client Application Developer’s Guide

Listing 10-1 Example of Combining Filters by Using Logical Operators

FilterXQuery myFilter = new FilterXQuery();

Filter f1 = myFilter.createFilter("CUSTOMER_PROFILE/ADDRESS/ISDEFAULT",

 FilterXQuery.NOT_EQUAL,"0");

Filter f2 = myFilter.createFilter("CUSTOMER/ADDRESS/STATUS",

FilterXQuery.EQUAL,

"\"ACTIVE\"");

Filter f3 = myFilter.createFilter(f1,f2, FilterXQuery.AND);

Customer customerDS = Customer.getInstance(ctx, "RTLApp");

CustomerDS.setFilterCondition(myFilter);

Ordering and Truncating Data Service Results
Another type of filter you can use in client application code is an ordering condition—you specify the
order (descending, ascending) in which results should be returned from the data service. The method
(addOrderBy(), in the FilterXQuery class), takes a property name as the criterion upon which the
ascending or descending decision is based. Listing 10-2 provides an example of creating a filter that
will return customer profiles in ascending order, based on the date each person became a customer.

Listing 10-2 Example of Applying an Ordering Filter

FilterXQuery myFilter = new FilterXQuery();

myFilter.addOrderBy("CUSTOMER_PROFILE",

"CustomerSince" ,FilterXQuery.ASCENDING);

ds.setFilterCondition(myFilter);

DataObject objArrayOfCust = (DataObject) ds.invoke("getCustomer", null);

Similarly, you can set the maximum number of results that can be returned from a function. The
setLimit() function limits the number of elements in an array element to the specified number. And
on a repeating node, it makes sense to specify a limit on the results to be returned. (Setting the limits
on non-repeating nodes does not truncate the results.)

Listing 10-3 shows how to use the setLimit() method. It limits the number of active address in the
result set (filtering out active addresses) to 10 given a data service instance ds.

Using F i l t e rs

Client Application Developer’s Guide 10-11

Listing 10-3 Example of Applying a Filter that Truncates (Limits) Results

FilterXQuery myFilter = new FilterXQuery();

Filter f2 = myFilter.createFilter("CUSTOMER_PROFILE/ADDRESS",

 FilterXQuery.EQUAL,"\"INACTIVE\"");

myFilter.addFilter("CUSTOMER_PROFILE", f2);

myFilter.setLimit("CUSTOMER_PROFILE", "10");

ds.setFilterCondition(myFilter);

Using Ad Hoc Queries to Fine-tune Results from the Client
An ad hoc query is an XQuery function that is not defined as part of a data service, but is instead
defined in the context of a client application. Ad hoc queries are typically used in client applications
to invoke data service functions and refine the results in some way. You can use an ad hoc query to
execute any valid XQuery expression against a data service. The expression can target the actual data
sources that underlie the data service, or can use the functions and procedures hosted by the data
service.

To execute an XQuery expression, use the PreparedExpression interface, available in the Mediator
API. Similar to JDBC’s PreparedStatement interface, the PreparedExpression interface takes the
XQuery expression as a string in its constructor, along with the JNDI server context and application
name. After constructing the prepared expression object in this way, you can call the executeQuery()
method on it. If the ad hoc query invokes data service functions or procedures, the data service’s
namespace must be imported into query string before you can reference the methods in your ad hoc
query. Listing 10-4 shows a complete example; the code returns the results of a data service function
named getCustomers(), which is in the namespace:

ld:DataServices/RTLServices/Customer

Listing 10-4 Invoking Data Service Functions using an Ad Hoc Query

String queryStr =

 "declare namespace ns0=\"ld:DataServices/RTLServices/Customer\";" +

 "<Results>" +

 " { for $customer_profile in ns0:getCustomer()" +

 " return $customer_profile }" +

 "</Results>";

Advanced Top ics

10-12 Client Application Developer’s Guide

PreparedExpression adHocQuery =

 DataServiceFactory.prepareExpression(context,"RTLApp",queryStr);

XmlObject objResult = (XmlObject) adHocQuery.executeQuery();

DSP passes information back to the ad hoc query caller as an XMLObject data type. Once you have the
XMLObject, you can downcast to the data type of the deployed XML schema. Since XMLObject has only
a single root type, if the data service function returns an array, your ad hoc query should include a root
element as a container for the array.

For example, the ad hoc query shown in Listing 10-4 specifies a <Results> container object to hold
the array of CUSTOMER_PROFILE elements that will be returned by the getCustomer() data service
function.

Security policies defined for a data service apply to the data service calls in an ad hoc query as well.
If an ad hoc query uses secured resources, the appropriate credentials must be passed when creating
the JNDI initial context. (For more information, see “Obtaining a WebLogic JNDI Context for Data
Services Platform” on page 3-8.)

As with the PreparedStatement interface of JDBC, the PreparedExpression interface supports
dynamically binding variables in ad hoc query expressions. PreparedExpression provides several
methods (bindType() methods; see Table 10-4), for binding values of various data types.

Table 10-4 PreparedExpression Methods for Bind Variables

To bind data type of... Use bind method...

Binary bindBinary(javax.xml.namespace.QName qname,
byte[] abyte0)

BinaryXML bindBinaryXML(javax.xml.namespace.QName qname,
byte[] abyte0)

Boolean bindBoolean(javax.xml.namespace.QName qname,
boolean flag)

Byte bindByte(javax.xml.namespace.QName qname, byte
byte0)

Date bindDate(javax.xml.namespace.QName qname,
java.sql.Date date)

Calendar bindDateTime(javax.xml.namespace.QName qname,
java.util.Calendar calendar)

Using F i l t e rs

Client Application Developer’s Guide 10-13

To use the bindType methods, pass the variable name as an XML qualified name (QName) along with
its value; for example:

DateTime bindDateTime(javax.xml.namespace.QName qname,
java.util.Date date)

DateTime bindDateTime(javax.xml.namespace.QName qname,
java.sql.Timestamp timestamp)

BigDecimal bindDecimal(javax.xml.namespace.QName qname,
java.math.BigDecimal bigdecimal)

double bindDouble(javax.xml.namespace.QName qname,
double d)

Element bindElement(javax.xml.namespace.QName qname,
org.w3c.dom.Element element)

Object bindElement(javax.xml.namespace.QName qname,
java.lang.String s)

float bindFloat(javax.xml.namespace.QName qname,
float f)

int bindInt(javax.xml.namespace.QName qname, int i)

long bindLong(javax.xml.namespace.QName qname, long
l)

Object bindObject(javax.xml.namespace.QName qname,
java.lang.Object obj)

short bindShort(javax.xml.namespace.QName qname,
short word0)

String bindString(javax.xml.namespace.QName qname,
java.lang.String s)

Time bindTime(javax.xml.namespace.QName qname,
java.sql.Time time)

URI bindURI(javax.xml.namespace.QName qname,
java.net.URI uri)

Table 10-4 PreparedExpression Methods for Bind Variables

To bind data type of... Use bind method...

Advanced Top ics

10-14 Client Application Developer’s Guide

adHocQuery.bindInt(new QName("i"),94133);

Listing 10-5 shows an example of using a bindInt() method in the context of an ad hoc query.

Listing 10-5 Binding a Variable to a QName (Qualified Name) for use in an Ad Hoc Query

PreparedExpression adHocQuery = DataServiceFactory.preparedExpression(

 context, "RTLApp",

 "declare variable $i as xs:int external;

 <result><zip>{fn:data($i)}</zip></result>");

adHocQuery.bindInt(new QName("i"),94133);

XmlObject adHocResult = adHocQuery.executeQuery();

Note: For more information on QNames, see:

http://www.w3.org/TR/xmlschema-2/#QName

Listing 10-6 shows a complete ad hoc query example, using the PreparedExpression interface and
QNames to pass values in bind methods.

Listing 10-6 Sample Ad Hoc Query

import com.bea.ld.dsmediator.client.DataServiceFactory;
import com.bea.ld.dsmediator.client.PreparedExpression;
import com.bea.xml.XmlObject;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.xml.namespace.QName;
import weblogic.jndi.Environment;

public class AdHocQuery
{
 public static InitialContext getInitialContext() throws NamingException {
 Environment env = new Environment();
 env.setProviderUrl("t3://localhost:7001");
 env.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
 env.setSecurityPrincipal("weblogic");
 env.setSecurityCredentials("weblogic");
 return new InitialContext(env.getInitialContext().getEnvironment());
 }

http://www.w3.org/TR/xmlschema-2/#QName

Handl ing La rge Resu l t Sets wi th St reaming AP Is

Client Application Developer’s Guide 10-15

 public static void main (String args[]) {
 System.out.println("========== Ad Hoc Client ==========");
 try {
 StringBuffer xquery = new StringBuffer();
 xquery.append("declare variable $p_firstname as xs:string external; \n");
 xquery.append("declare variable $p_lastname as xs:string external; \n");

 xquery.append(
 "declare namespace ns1=\"ld:DataServices/MyQueries/XQueries\"; \n");
 xquery.append(
 "declare namespace ns0=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n");

 xquery.append("<ns1:RESULTS> \n");
 xquery.append("{ \n");
 xquery.append(" for $customer in ns0:CUSTOMER() \n");
 xquery.append(" where ($customer/FIRST_NAME eq $p_firstname \n");
 xquery.append(" and $customer/LAST_NAME eq $p_lastname) \n");
 xquery.append(" return \n");
 xquery.append(" $customer \n");
 xquery.append(" } \n");
 xquery.append("</ns1:RESULTS> \n");

 PreparedExpression pe = DataServiceFactory.prepareExpression(
 getInitialContext(), "RTLApp", xquery.toString());
 pe.bindString(new QName("p_firstname"), "Jack");
 pe.bindString(new QName("p_lastname"), "Black");
 XmlObject results = pe.executeQuery();
 System.out.println(results);

 } catch (Exception e) {
 e.printStackTrace();
 }
}

Handling Large Result Sets with Streaming APIs
This section discusses further programming topics related to client programming with the Data
Service Mediator API. It includes the following topics:

Using the Streaming Interface

Writing Data Service Function Results to a File

Advanced Top ics

10-16 Client Application Developer’s Guide

Using the Streaming Interface
When a function in the standard data service interface is called, the requested data is first
materialized in the system memory of the server machine. If the function is intended to return a large
amount of data, in-memory materialization of the data may be impractical. This may be the case, for
example, for administrative functions that generate "inventory reports" of the data exposed by DSP.
For such cases, DSP can serve information as an output stream.

DSP leverages the WebLogic XML Streaming API for its streaming interface. The WebLogic Streaming
API is similar to the standard SAX (Streaming API for XML) interface. However, instead of contending
with the complexity of the event handlers used by SAX, the WebLogic Streaming API lets you use
stream-based (or pull-based handling of XML documents in which you step through the data object
elements. As such, the WebLogic Streaming API affords more control than the SAX interface, in that
the consuming application initiates events, such as iterating over attributes or skipping ahead to the
next element, instead of reacting to them.

Note: For more information on the WebLogic Streaming API, see "Using the WebLogic XML
Streaming API" at http://e-docs.bea.com/wls/docs81/xml/xml_stream.html.

It is important to note that although serving data as a stream relieves the server from having to
materialize large objects in memory, the server is using the request thread while output streaming
occurs. This can tie up a thread for quite a while and affect the server’s ability to respond to other
service requests in a timely fashion. The streaming API is intended for use only for administrative sorts
of uses, and should be avoided except at off-peak times or in non-production environments.

Data Services Platform streaming API can only be invoked from Java code that is part of the same
application from which you are streaming data. That is, the client code needs to be in the same EAR
application file in which the data services are hosted.

You can get DSP information as a stream by using either an ad hoc or an untyped data service
interface.

Note: Streaming is not supported through static interfaces.

The streaming interface is in these classes in the com.bea.ld.dsmediator.client package:

StreamingDataService

StreamingPreparedExpression

Using these interfaces is very similar to using their SDO mediator client API equivalents. However,
instead of a document object, they return data as an XMLInputStream. For functions that take
complex elements (possibly with a large amount of data) as input parameters, XMLInputStream is
supported as an input argument as well. The following is a example:

http://e-docs.bea.com/wls/docs81/xml/xml_stream.html

Handl ing La rge Resu l t Sets wi th St reaming AP Is

Client Application Developer’s Guide 10-17

StreamingDataService ds = StreamingDataServiceFactory.getInstance(

 context,

 "ld:DataServices/RTLServices/Customer");

XMLInputStream stream = ds.invoke("getCustomerByCustID", "CUSTOMER0");

The previous example shows the dynamic streaming interface. The following example uses an ad hoc
query:

String adhocQuery =

 "declare namespace ns0=\"ld:DataServices/RTLServices/Customer\";\n" +

 "declare variable $cust_id as xs:string external;\n" +

 "for $customer in ns0:getCustomerByCustID($cust_id)\n" +

 "return\n" +

 " $customer\n";

StreamingPreparedExression expr =

 DataServiceFactory.prepareExpression(context, adhocQuery);

If you have external variables in the query string (adhocQuery in the above example), you will also
need to do the following:

expr.bindString("$cust_id","CUSOMER0");

XMLInputStream xml = expr.executeQuery();

Note: For more information on using the dynamic and ad hoc interfaces, see “Using a Dynamic
Mediator API” in Chapter 3, “Accessing Data Services from Java Clients.”

Javadoc for the StreamingDataService interface and other Data Services Platform APIs is
described at: “DSP Mediator API Javadoc” on page 1-13.

Listing 10-7 shows an example of a method that reads the XML input stream. This method uses an
attribute iterator to print out attributes and namespaces in an XML event and throws an XMLStream
exception if an error occurs.

Listing 10-7 Sample Streaming Application

import weblogic.xml.stream.Attribute;

import weblogic.xml.stream.AttributeIterator;

import weblogic.xml.stream.ChangePrefixMapping;

import weblogic.xml.stream.CharacterData;

import weblogic.xml.stream.XMLEvent;

import weblogic.xml.stream.EndDocument;

import weblogic.xml.stream.EndElement;

Advanced Top ics

10-18 Client Application Developer’s Guide

import weblogic.xml.stream.EntityReference;

import weblogic.xml.stream.Space;

import weblogic.xml.stream.StartDocument;

import weblogic.xml.stream.XMLInputStream;

import weblogic.xml.stream.XMLInputStreamFactory;

import weblogic.xml.stream.XMLName;

import weblogic.xml.stream.XMLStreamException;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

public class ComplexParse {

public void parse(XMLEvent event)throws XMLStreamException

{

 switch(event.getType()) {

 case XMLEvent.START_ELEMENT:

 StartElement startElement = (StartElement) event;

 System.out.print("<" + startElement.getName().getQualifiedName());

 AttributeIterator attributes = startElement.getAttributesAndNamespaces();

 while(attributes.hasNext()){

 Attribute attribute = attributes.next();

 System.out.print(" " + attribute.getName().getQualifiedName() +

 "='" + attribute.getValue() + "'");

 }

 System.out.print(">");

 break;

 case XMLEvent.END_ELEMENT:

 System.out.print("</" + event.getName().getQualifiedName() +">");

 break;

 case XMLEvent.SPACE:

 case XMLEvent.CHARACTER_DATA:

 CharacterData characterData = (CharacterData) event;

 System.out.print(characterData.getContent());

 break;

 case XMLEvent.COMMENT:

 // Print comment

 break;

 case XMLEvent.PROCESSING_INSTRUCTION:

 // Print ProcessingInstruction

Handl ing La rge Resu l t Sets wi th St reaming AP Is

Client Application Developer’s Guide 10-19

 break;

 case XMLEvent.START_DOCUMENT:

 // Print StartDocument

 break;

 case XMLEvent.END_DOCUMENT:

 // Print EndDocument

 break;

 case XMLEvent.START_PREFIX_MAPPING:

 // Print StartPrefixMapping

 break;

 case XMLEvent.END_PREFIX_MAPPING:

 // Print EndPrefixMapping

 break;

 case XMLEvent.CHANGE_PREFIX_MAPPING:

 // Print ChangePrefixMapping

 break;

 case XMLEvent.ENTITY_REFERENCE:

 // Print EntityReference

 break;

 case XMLEvent.NULL_ELEMENT:

 throw new XMLStreamException("Attempt to write a null event.");

 default:

 throw new XMLStreamException("Attempt to write unknown event["

 +event.getType()+"]");

 }

}

Writing Data Service Function Results to a File
You can write serialized results of a data service function to a file using a WriteOutputToFile method.
Such a function is generated automatically for each function defined in the data service. For security
reasons it writes only to a file on the server’s file system.

These functions provide services that are similar to streaming APIs. They are intended for creating
reports or an inventory of data service information. However, the writeOutputToFile method can be
invoked from a remote mediator API (in contrast with the streaming API described in “Using the
Streaming Interface” on page 10-16).

Advanced Top ics

10-20 Client Application Developer’s Guide

The following example shows how to write to a file from the untyped interface.

 StreamingDataService sds =

 DataServiceFactory.newStreamingDataService(

 context,"RTLApp","ld:DataServices/RTLServices/Customer"");

 sds.writeOutputToFile("getCustomer", null, "streamContent.txt");

 sds.closeStream();

Note: No attempt to create folders is made. In the above example, if you want to write data inside a
folder named myData that folder should be present in the server domain root prior to the
write operation.

Providing Role-based Access to DSP Relational Sources
When you import metadata from relational sources, you can provide logic in your application that
maps users to different data sources depending on the user’s role. This is accomplished by creating an
intercepter and adding an attribute to the RelationalDB annotation for each data service in your
application.

The interceptor is a Java class that implements the SourceBindingProvider interface. This class
provides the logic for mapping a users, depending on their current credentials, to a logical data source
name or names. This makes it possible to control the level of access to relational physical source based
on the logical data source names.

For example, you could have the data source names cgDataSource1, cgDataSourc2, and
cgDataSource3 defined on your WebLogic Server and define the logic in your class so that an user who
is an administrator can access all three data sources, but a normal user only has access to the data
source cgDataSource1.

Note: All relational, update overrides, stored procedure data services, or stored procedure XFL files
that refer to the same relational data source should also use the same source binding
provider; that is, if you specify a source binding provider for at least one of the data service
(.ds) files, you should set it for the rest of them.

To implement the interceptor logic, do the following:

1. Write a Java class SQLInterceptor that implements the interface
com.bea.ld.binds.SourceBindingsProvider and define a getBindings() public
method within the class. The signature of this method is:

public String getBinding(String genericLocator, boolean isUpdate)

The genericLocator parameter specifies the current logical data source name. The isUpdate
parameter indicates whether a read or an update is occurring. A value of true indicates an

Prov id ing Ro le-based Access to DSP Re la t i ona l Sources

Client Application Developer’s Guide 10-21

update. A value of false indicates a read. The string returned is the logical data source name to
which the user is to be mapped. Listing 10-8 shows an example SQLInterceptor class.

2. Compile your class into a JAR file.

3. In your application, save the JAR file in the APP-INF/lib directory of your WebLogic Workshop
application.

4. Define the configuration interceptor for the data source in your DS or XFL files (or both if
necessary) by adding a sourceBindingProviderClassName attribute to the RelationalDB
annotation. The attribute must be assigned the name of a valid Java class, which is the name of as
your interceptor class. For example (the attribute and Java class are in bold):

<relationalDB dbVersion="4" dbType="pointbase" name="cgDataSource"
sourceBindingProviderClassName="sql.SQLInterceptor"/>

5. Compile and run you application. The interceptor will be invoked on execution.

Listing 10-8 Interceptor Class Example

public class SqlProvider implements com.bea.ld.bindings.SourceBindingProvider{
 public String getBinding(String dataSourceName, boolean isUpdate) {

 weblogic.security.Security security = new weblogic.security.Security();
 javax.security.auth.Subject subject = security.getCurrentSubject();
 weblogic.security.SubjectUtils subUtils =
 new weblogic.security.SubjectUtils();

 System.out.println(" the user name is " + subUtils.getUsername(subject));

 if (subUtils.getUsername(subject).equals("weblogic"))
 dataSourceName = "cgDataSource1";

 System.out.println("The data source is " + dataSourceName);
 System.out.println("SDO " + (isUpdate ? " YES " : " NO "));

 return dataSourceName;
 }
}

Advanced Top ics

10-22 Client Application Developer’s Guide

Setting Up Handlers for Web Services Accessed by DSP
When you import metadata from web services for DSP, you can create SOAP handler for intercepting
SOAP requests and responses. The handler will be invoked when a web service method is called. You
can chain handlers that are invoked one after another in a specific sequence by defining the sequence
in a configuration file.

To create and chain handlers, follow these two steps:

1. Create Java class implements the interface javax.xml.rpc.handler.GenericHandler.
This will be your handler. (Note that you could create more than one handler. For, example you
could have one named WShandler and one named AuditHandler.) Listing 10-9 shows an example
implementation of a GenericHandler class. Place your handlers in a folder named WShandler in
Weblogic Workshop. (For detailed information on how to write handlers, refer to “Creating SOAP
Message Handlers to Intercept the SOAP Message” in Programming WebLogic Web Services.

Listing 10-9 Example Intercept Handler

package WShandler;

import java.util.Iterator;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.soap.SOAPElement;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.GenericHandler;
import javax.xml.namespace.QName;

/**
* Purpose: Log all messages to the Server console
*/
public class WShandler extends GenericHandler
{
 HandlerInfo hinfo = null;

 public void init (HandlerInfo hinfo) {
 this.hinfo = hinfo;
 System.out.println("*****************************");
 System.out.println("ConsoleLoggingHandler r: init");
 System.out.println(
 "ConsoleLoggingHandler : init HandlerInfo" + hinfo.toString());
 System.out.println("*****************************");
 }

 /**

http://e-docs.bea.com/wls/docs81/webserv/design.html#1053805
http://e-docs.bea.com/wls/docs81/webserv/design.html#1053805

Se t t ing Up Hand le rs fo r Web Serv i ces Accessed by DSP

Client Application Developer’s Guide 10-23

 * Handles incoming web service requests and outgoing callback requests
 */
 public boolean handleRequest(MessageContext mc) {
 logSoapMessage(mc, "handleRequest");
 return true;
 }

 /**
 * Handles outgoing web service responses and
 * incoming callback responses
 */
 public boolean handleResponse(MessageContext mc) {
 this.logSoapMessage(mc, "handleResponse");
 return true;
 }

 /**
 * Handles SOAP Faults that may occur during message processing
 */
 public boolean handleFault(MessageContext mc){
 this.logSoapMessage(mc, "handleFault");
 return true;
 }

 public QName[] getHeaders() {
 QName [] qname = null;
 return qname;
 }

 /**
 * Log the message to the server console using System.out
 */
 protected void logSoapMessage(MessageContext mc, String eventType){
 try{
 System.out.println("*****************************");
 System.out.println("Event: "+eventType);
 System.out.println("*****************************");
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }

 /**
 * Get the method Name from a SOAP Payload.
 */
 protected String getMethodName(MessageContext mc){

 String operationName = null;

Advanced Top ics

10-24 Client Application Developer’s Guide

 try{
 SOAPMessageContext messageContext = (SOAPMessageContext) mc;
 // assume the operation name is the first element
 // after SOAP:Body element
 Iterator i = messageContext.

getMessage().getSOAPPart().getEnvelope().getBody().getChildElements();
 while (i.hasNext())
 {
 Object obj = i.next();
 if(obj instanceof SOAPElement)
 {
 SOAPElement e = (SOAPElement) obj;
 operationName = e.getElementName().getLocalName();
 break;
 }
 }
 }
 catch(Exception e){
 e.printStackTrace();
 }
 return operationName;
 }
 }

2. Define a configuration file in your application. This file specifies the handler chain and the order
in which the handlers will be invoked. The XML in this configuration file must conform to the
schema shown in Listing 10-10.

Listing 10-10 Handler Chain Schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.bea.com/2003/03/wlw/handler/config/"
xmlns="http://www.bea.com/2003/03/wlw/handler/config/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="wlw-handler-config">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="handler-chain" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="handler">
 <xs:complexType>
 <xs:sequence>

Se t t ing Up Hand le rs fo r Web Serv i ces Accessed by DSP

Client Application Developer’s Guide 10-25

 <xs:element name="init-param"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="description"
 type="xs:string" minOccurs="0"/>
 <xs:element name="param-name" type="xs:string"/>
 <xs:element name="param-value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="soap-header"
 type="xs:QName" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="soap-role"
 type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="handler-name"
 type="xs:string" use="optional"/>
 <xs:attribute name="handler-class"
 type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

The following is an example of the handler chain configuration. In this configuration, there are
two chains. One is named LoggingHandler. The other is named SampleHandler. The first chain
invokes only one handler named AuditHandler. The handler-class attribute specifies the fully
qualified name of the handler.

<?xml version="1.0"?>
<hc:wlw-handler-config name="sampleHandler"
xmlns:hc="http://www.bea.com/2003/03/wlw/handler/config/">
 <hc:handler-chain name="LoggingHandler">
 <hc:handler
 handler-name="handler1"handler-class="WShandler.AuditHandler"/>
 </hc:handler-chain>
 <hc:handler-chain name="SampleHandler">
 <hc:handler
 handler-name="TestHandler1" handler-class="WShandler.WShandler"/>

Advanced Top ics

10-26 Client Application Developer’s Guide

 <hc:handler handler-name="TestHandler2"
 handler-class="WShandler.WShandler"/>
 </hc:handler-chain>
 </hc:wlw-handler-config>

3. In your DSP application, define the interceptor configuration for the method in the data service
to which you want to attach the handler. To do this, add a line similar the bold text shown in the
following example:

xquery version "1.0" encoding "WINDOWS-1252";

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"
 targetType="t:echoStringArray_return"
 xmlns:t="ld:SampleWS/echoStringArray_return">
<creationDate>2005-05-24T12:56:38</creationDate>
<webService targetNamespace=
"http://soapinterop.org/WSDLInteropTestRpcEnc"
wsdl="http://webservice.bea.com:7001/rpc/WSDLInteropTestRpcEncService?W
SDL"/></x:xds>::)

declare namespace f1 = "ld:SampleWS/echoStringArray_return";

import schema namespace t1 = "ld:AnilExplainsWS/echoStringArray_return"
at "ld:SampleWS/schemas/echoStringArray_param0.xsd";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="read" nativeName="echoStringArray"
nativeLevel1Container="WSDLInteropTestRpcEncService"
nativeLevel2Container="WSDLInteropTestRpcEncPort" style="rpc">
<params>
 <param nativeType="null"/>
</params>
<interceptorConfiguration aliasName="LoggingHandler"
fileName="ld:SampleWS/handlerConfiguration.xml" />
 </f:function>::)

declare function f1:echoStringArray($x1 as
element(t1:echoStringArray_param0)) as
schema-element(t1:echoStringArray_return) external;
<interceptorConfiguration aliasName="LoggingHandler"
fileName="ld:testHandlerWS/handlerConfiguration.xml">

Here the aliasName attribute specifies the name of the handler chain to be invoked and the
fileName attribute specifies the location of the configuration file.

4. Include the JAR file in the library module that defines the handler class referred to in the
configuration file.

Se t t ing Up Hand le rs fo r Web Serv i ces Accessed by DSP

Client Application Developer’s Guide 10-27

5. Compile and run your application. Your handlers will be invoked in the order specified in the
configuration file.

Advanced Top ics

10-28 Client Application Developer’s Guide

	Introducing Data Services Platform for Client Application Developers
	Simplifying Application Data Programming
	What is a Data Services Platform Client?
	Data Your Way

	The Role of WebLogic Server and WebLogic Workshop
	What is a Data Service?
	What is a Data Services Platform Client Application?
	Security Considerations in Client Applications

	Choosing a Data Services Programming Model
	Introducing Service Data Objects (SDO)
	Update Frameworks and the Data Service Mediator

	Typical Client Application Development Process
	Development Resources
	Runtime Client JAR Files
	DSP Mediator API Javadoc

	Performance Considerations

	Additional Technical and Product Information

	DSP’s Data Programming Model and Update Framework
	Data Services Platform and Service Data Objects (SDOs)
	Static and Dynamic Data APIs
	Static Data API
	XML Schema-to-Java Type Mapping Reference
	Dynamic Data API

	Role of the Mediator and SDOs

	The Data Services Platform Update Framework
	How It Works: The Decomposition Process
	Physical Data Service Update Process
	Logical Data Service Update Process
	Primary-Foreign Key Relationships Mapped Using a KeyPair
	Managing Key Dependencies
	Transaction Management

	Accessing Data Services from Java Clients
	Overview of the Data Services Platform Mediator API
	Setting the Classpath
	Mediator API Summary and Reference

	Generating a Static Mediator API JAR File
	Building the Client JAR
	Using the Data Service Mediator API
	Obtaining a WebLogic JNDI Context for Data Services Platform
	Invoking Functions and DSP Procedures
	Static and Dynamic Mediator APIs
	Using a Static Data Service Mediator API
	Using a Dynamic Mediator API

	Static and Dynamic SDO APIs
	Using the Static SDO API
	Using the Dynamic SDO API

	Bypassing the Data Cache When Using the Mediator API
	Client Management of the Data Cache

	Step-by-Step: A Java Client Programming Example
	Step 1. Instantiating and Populating Data Objects
	Step 2: Accessing Data Object Properties
	Quantifying Return Types

	Step 3: Modifying, Adding, and Deleting Data Objects and Properties
	Modifying Data Object Properties
	Adding New Data Objects
	Deleting Data Objects

	Step 4: Submitting Changes to the Data Service

	Examining a Java Client Application

	Enabling DSP Applications for Web Service Clients
	Overview of Web Services and DSP
	Different Styles of Web Services Integration for DSP

	Server-Side DSP-Enabled Web Service Development
	Developing DSP-Enabled Read-Only Web Services
	Adding a Data Service Control to a Web Service
	Generating a Web Service from a Data Service Control

	Developing DSP-Enabled Read-Write Web Services
	Testing a Web Service in WebLogic Workshop

	Client-Side DSP-Enabled Web Service Development
	Static Web Service Clients
	Dynamic Web Service Clients
	Developing Static Web Service Clients
	Generating the DSP Web Service Proxy
	How To Set Up a Web Service Client Environment for DSP
	Sample Java Static Web Service Client

	Developing Dynamic Web Service Clients
	Setting Up a Dynamic Web Service Environment
	Developing the Dynamic Web Service Client
	Sample Java Dynamic Web Service Client

	Accessing Data Services from WebLogic Workshop Applications
	WebLogic Workshop and Data Services Platform
	Data Service Controls
	Use With Page Flow, Web Services, Portals, Business Processes

	Data Service Control (JCX) File
	Design View
	Source View
	Using Data Service Controls for Ad Hoc Queries

	Creating Data Service Controls
	Step 1: Create a Project in an Application
	Step 2: Start WebLogic Server, If Not Already Running
	Step 3: Create a Folder in a Project
	Step 4: Create the Data Service Control
	Step 5: Enter Connection Information for WebLogic Server
	Step 6: Select Data Service Functions to Add to Your Control

	Modifying Existing Data Service Controls
	Changing a Method Used by a Control
	Adding a New Method to a Control
	Updating an Existing Control When Schemas Change

	Using Data Services Platform with NetUI
	Generating a Page Flow From a Control
	To Generate a Page Flow From a Data Service Control

	Adding a Data Service Control to an Existing Page Flow
	Adding Service Data Objects (SDO) Variables to the Page Flow
	To Add a Variable to a Page Flow
	To Initialize the Variable in the Page Flow
	Working with Data Objects

	Displaying Array Values in a Table or List
	Adding a Repeater to a JSP File
	Adding a Nested Level to an Existing Repeater
	Adding Code to Handle Null Values

	Caching Considerations When Using Data Service Controls
	Bypassing the Cache When Using a Data Service Control
	Cache Bypass Example When Using a Data Service Control

	Security Considerations When Using Data Service Controls
	Security Credentials Used to Create Data Service Controls
	Testing Controls With the Run-As Property in the JWS File
	Trusted Domains
	Configuring Trusted Domains

	Supporting ADO.NET Clients
	Overview of ADO.NET Integration in Data Services Platform
	Understanding ADO.NET
	ADO.NET Client Application Development Tools

	Understanding How DSP Supports ADO.NET Clients
	Supporting Java Clients

	Enabling DSP Support for ADO.NET Clients
	Creating a New Web Service Project
	Creating an ADO.NET-Enabled Data Service Control
	Generating a Web Service for ADO.NET Clients
	Generating an ADO.NET-Enabled WSDL

	Adapting DSP XML Types (Schemas) for ADO.NET Clients
	Approaches to Adapting XML Types for ADO.NET
	XML Type Requirements for Working With ADO.NET DataSets

	References

	Generated Artifacts Reference
	XML Schema Definition for ADO.NET Typed DataSet
	Web Services Description Language (WSDL) File for Microsoft ADO.NET Clients

	Using Workflow with DSP-Enabled Applications
	Brief Overview of WebLogic Integration JPDs
	How SDO’s Handling of XMLObjects Differs from JPD
	Adding a Data Service Control to a Process
	Creating a Data Service Control
	Adding a Data Service Control to a JPD File
	Setting Up the Data Service Control in the Business Process
	Submitting Changes from a Business Process

	Invoking JPDs from Data Services Platform
	Invoking a JPD from an Update Override
	Invoking a JPD by Using the JpdService API in an Update Override
	Synchronous and Asynchronous Behavior
	Error Handling

	Using the Data Services Platform JDBC Driver
	About the Data Services Platform JDBC Driver
	Features of the Data Services Platform JDBC Driver
	Data Services Platform and JDBC Driver Terminology

	Installing the Data Services Platform JDBC Driver with JDK 1.4x
	Using the JDBC Driver
	Obtaining a Connection
	Using the preparedStatement Interface
	Getting Data Using JDBC

	Connecting to the JDBC Driver from a Java Application
	Connecting to Data Services Platform Client Applications Using the ODBC-JDBC Bridge from Non-Java Applications
	Using the EasySoft ODBC-JDBC Bridge
	Using OpenLink ODBC-JDBC Bridge

	Using Reporting Tools with the Data Services Platform ODBC-JDBC Driver
	Crystal Reports 10 - ODBC
	Crystal Reports 10 - JDBC
	Business Objects 6.1 - ODBC
	Microsoft Access 2000 - ODBC

	DSP and SQL Type Mappings
	SQL-92 Support
	Supported Features
	Limitations

	Customizing Data Service Update Behavior
	What is an Update Override?
	An Update Override is a Java Class
	How an Update Override Affects Update Processing

	When Are Update Overrides Required?
	When Are Update Overrides Required for Relational Data Sources?
	Developing the UpdateOverride Class
	Invoking Data Service Procedures from an UpdateOverride
	Testing Submit Results
	Update Override Context
	Update Overrides and Physical Data Services

	Update Override Programming Patterns
	Overriding the Entire Decomposition and Update Process
	Augmenting Data Object Content
	Accessing the Data Service Mediator Context
	Accessing the Decomposition Map

	Customizing an Update Plan
	Executing an Update Plan

	Retrieving the Container of the Current Data Object
	Invoking Other Data Service Functions and Procedures
	Capturing Runtime Data about Overrides in the Server Log
	Default Optimistic Locking Policy: What it Means, How to Change

	Advanced Topics
	Using Catalog Services to Obtain Data Services’ Metadata
	Installing Catalog Services
	Creating a Query-by-Form (QBF) Application Using Catalog Services

	Filtering, Sorting, and Fine-tuning Query Results
	Using Filters
	Specifying Filter Effects
	Ordering and Truncating Data Service Results
	Using Ad Hoc Queries to Fine-tune Results from the Client

	Handling Large Result Sets with Streaming APIs
	Using the Streaming Interface
	Writing Data Service Function Results to a File

	Providing Role-based Access to DSP Relational Sources
	Setting Up Handlers for Web Services Accessed by DSP

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

