
AquaLogic Data Services
Platform™ Tutorial: Part I
A Guide to Developing BEA AquaLogic Data Services Platform (DSP) Projects

Note: This tutorial is based in large part on a guide originally developed for enterprises
evaluating the BEA AquaLogic Data Services Platform for their specific requirements. In
some cases illustrations, directories, and paths reference Liquid Data, the previous name
of the Data Services Platform.

Version: 2.1
Document Date: June 2005
Revised: June 2006

Data Services Platform: Samples Tutorial 2

Copyright

Copyright © 2005, 2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the
BEA Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the agreement.
This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from BEA
Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-
Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the Commercial
Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment
on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt,
JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems,
Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, BEA AquaLogic Enterprise Security,
BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for
Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of
BEA Systems, Inc. All other company and product names may be the subject of intellectual property
rights reserved by third parties.

All other trademarks are the property of their respective companies.

Data Services Platform: Samples Tutorial 3

Contents

AQUALOGIC DATA SERVICES PLATFORM™ TUTORIAL: PART I....................... 1

A Guide to Developing BEA AquaLogic Data Services Platform (DSP) Projects 1

Lesson 1 Introducing the Data Services Platform Environment .. 10
Lab 1.1 Starting WebLogic Workshop ...10
Lab 1.2 Navigating the DSP Integrated Development Environment (IDE) ..11
Lab 1.3 Starting WebLogic Server ...17
Lab 1.4 Stopping WebLogic Server..18
Lab 1.5 Saving Your Work...19

Lesson 2 Creating a Physical Data Service ...21
Lab 2.1 Creating a DSP Application...21
Lab 2.2 Creating a Data Services Project..24
Lab 2.3 Creating Project Sub-Folders...25
Lab 2.4 Importing Relational Source Metadata ..26
Lab 2.5 Building a Project ..29
Lab 2.6 Viewing Physical Data Service Information..30
Lab 2.7 Testing Physical Data Service Functions...35

Lesson 3 Creating a Logical Data Service .. 39
Lab 3.1 Creating a Simple Logical Data Service ..41
Lab 3.2 Defining the Logical Data Service Shape ..42
Lab 3.3 Adding a Function to a Logical Data Service ..44
Lab 3.4 Mapping Source and Target Elements ...45
Lab 3.5 Viewing XQuery Source Code ..47
Lab 3.6 Testing a Logical Data Service Function...48

Lesson 4 Integrating Data from Multiple Data Services ... 51
Lab 4.1 Joining Multiple Physical Data Services within a Logical Data Service ...52
Lab 4.2 Defining a Where Clause to Join Multiple Physical Data Services ...54
Lab 4.3 Creating a Parameterized Function..58

Lesson 5 Modeling Data Services ..64
Lab 5.1 Creating a Basic Model Diagram for Physical Data Services..65
Lab 5.2 Modeling Relationships Between Physical Data Sources..67

Lesson 6 Accessing Data in Web Services... 71

Data Services Platform: Samples Tutorial 4

Lab 6.1 Importing a Web Service Project into the Application ..71
Lab 6.2 Importing Web Service Metadata into a Project ..74
Lab 6.3 Testing the Web Service via a SOAP Request...79
Lab 6.4 Invoking a Web Service in a Data Service ..80

Lesson 7 Consuming Data Services Using Java ... 85
Lab 7.1 Running a Java Program Using the Untyped Mediator API ..86
Lab 7.2 Running a Java Program Using the Typed Mediator API..91
Lab 7.3 Resetting the Mediator API ...94

Lesson 8 Consuming Data Services Using WebLogic Workshop Data Service Controls............. 96
Lab 8.1 Installing a Data Service Control ...96
Lab 8.2 Defining the Data Service Control...97

Lesson 9 Accessing Data Service Functions Through Web Services.. 100
Lab 9.1 Generating a Web Service from a Data Service Control ...100
Lab 9.2 Using a Data Service Control to Generate a WSDL for a Web Service ..102

Lesson 10 Updating Data Services Using Java... 105
Lab 10.1 Modifying and Saving Changes to the Underlying Data Source ...105
Lab 10.2 Inserting New Data to the Underlying Data Source Using Java ..107
Lab 10.3 Deleting Data from the Underlying Data Source Using Java ..109

Lesson 11 Filtering, Sorting, and Truncating XML Data ... 111
Lab 11.1 Filtering Data Service Results ...111
Lab 11.2 Sorting Data Service Results ...114
Lab 11.3 Truncating Data Service Results..116

Lesson 12 Consuming Data Services through JDBC/SQL.. 118
Lab 12.1 Running DBVisualizer...119
Lab 12.2 Integrating Crystal Reports and Data Services Platform ...121
Lab 12.3 (Optional) Configuring JDBC Access through Crystal Reports ..122

Lesson 13 Consuming Data via Streaming API ... 124
Lab 13.1 Stream results into a flat file ..124
Lab 13.2 Consume data in streaming fashion ...125

Lesson 14 Managing Data Service Metadata ... 128
Lab 14.1 Defining Customized Metadata for a Logical Data Service ..129
Lab 14.2 Viewing Data Service Metadata Through the DSP Console..131
Lab 14.3 Synching a Data Service with Underlying Data Source Tables...133

Data Services Platform: Samples Tutorial 5

Lesson 15 Managing Data Service Caching.. 137
Lab 15.1 Determining the Non-Cache Query Execution Time...138
Lab 15.2 Configuring a Caching Policy Through the DSP Console...138
Lab 15.3 Testing the Caching Policy ..140
Lab 15.4 Determining Performance Impact of the Caching Policy ..141
Lab 15.5 Disable Caching...142

Lesson 16 Managing Data Service Security.. 144
Lab 16.1 Creating New User Accounts...145
Lab 16.2 Setting Application-Level Security..146
Lab 16.3 Granting User Access to Read Functions ..148
Lab 16.4 Granting User Access to Write Functions..152
Lab 16.5 Setting Element-Level Data Security...153
Lab 16.6 Testing Element-Level Security ..155

Data Services Platform: Samples Tutorial 6

About This Document
Welcome to the AquaLogic Data Services Platform (DSP) Samples Tutorial. In this document, you are
provided with step-by-step instructions that show how you can use DSP to solve the types of data
integration problems frequently faced by Information Technology (IT) managers and staff. These
issues include:

 What is the best way to normalize data drawn from widely divergent sources?

 Having normalized the data, can you access it, ideally through a single point of access?

 After you define a single point of access, can you develop reusable queries that are easily tested,
stored, and retrieved?

 After you develop your query set, can you easily incorporate results into widely available
applications?

Other questions may occur. Is the data-rich solution scalable? Is it reusable throughout the enterprise?
Are the original data sources largely transparent to the application — or do they become an issue each
time you want to make a minor adjustments to queries or underlying data sources?

Document Organization

This two-part guide is organized into 33 lessons that illustrate many aspects of Data Services Platform
functionality:

 Data service development. In which you specify the query functions that DSP will use to access,
aggregate, and transform distributed, disparate data into a unified view. In this stage, you also
specify the XML type that defines the data view that will be available to client-side applications.

 Data modeling. In which you define a graphical representation of data resource relationships and
functions.

 Client-side development. In which you define an environment for retrieving data results.

Each lesson in the tutorial consists of an overview plus “labs” that demonstrate DSP’s capabilities on a
topic-by-topic basis. Each lab is structured as a series of procedural steps that details the specific
actions needed to complete that part of the demonstration.

The lessons are divided into two parts:

 Part 1: Core Training includes Lessons 1 through 16, which illustrate the DSP capabilities that are
most commonly used.

 Part 2: Power-User Training includes Lessons 17 through 33; these illustrate DSP’s more
advanced capabilities.

Note: The lessons build on each other and must be completed in sequential order. Unless a step or
lesson is labeled as optional it should be completed. Otherwise you may not be able to successfully
complete a subsequent, dependent lesson.

Data Services Platform: Samples Tutorial 7

 Technical Prerequisites

The lessons within this guide require a familiarity with the following topics: data integration and
aggregation concepts, the BEA WebLogic® Platform™ (particularly WebLogic Server and WebLogic
Workshop), Java, query concepts, and the environment in which you will install and use DSP.

For some lessons, a background in XQuery is helpful.

System Requirements

To complete the lessons, your computer requires:

Server: BEA WebLogic Server 8.1 Service Pack 5

Application: BEA AquaLogic Data Services Platform 2.1

Operating System: Windows 2000 or Windows XP

Memory: 512 MB RAM minimum; 1 GB RAM recommended

Browser: Internet Explorer 6 or higher

Data Sources Used Within These Tutorials

The DSP Samples Tutorial builds data services that draw on a variety of underlying data sources.
These data sources, which are provided with the product, are described in the following table:

Data Source Type Data Source Data

Relational Customer Relationship Management
(CRM) RTLCUSTOMER database

Customer and credit card data

Relational Order Management System (OMS)
RTLAPPLOMS database

Apparel product, order, and order line
data

Relational Order Management System (OMS)
RTLELECOMS database

Electronics product, order, and order
line data

Relational RTLSERVICE database Customer service data, organized in a
single Service Case table

Web service CreditRatingWS Credit rating data

Stored procedure GETCREDITRATING_SP Customer credit rating information

Java function Functions.DSML Java function enabling LDAP access

Java function Functions.excel_jcom Excel spreadsheet data, via JCOM

Java function Functions.CreditCardClient Customer credit card information, via
an XMLBean

XML files ProductUNSPSC.xsd Third-party product information

Flat file Valuation.csv Data received from an internal
department that deals with customer
scoring and valuation models

Data Services Platform: Samples Tutorial 8

Related Information

In addition to the material covered in this guide, you may want to review the wealth of resources
available at the BEA Web site, WebLogic developer site, and third-party sites. Information at these
sites includes datasheets, product brochures, customer testimonials, product documentation, code
samples, white papers, and more.

For more information about Java and XQuery, refer to the following sources:

 The Sun Microsystems, Inc. Java site at:
http://java.sun.com/

 The World Wide Web Consortium XML Query section at:
http://www.w3.org/XML/Query

For more information about BEA products, refer to the following sources:

 DSP documentation site at:
http://edocs.bea.com/aldsp/docs21/

 BEA e-docs documentation site at:
http://e-docs.bea.com/

 BEA online community for WebLogic developers at:
http://dev2dev.bea.com

http://java.sun.com/
http://www.w3.org/XML/Query
http://edocs.bea.com/aldsp/docs21/
http://e-docs.bea.com/
http://dev2dev.bea.com/

Data Services Platform: Samples Tutorial 9

Part 1 Core Training
BEA AquaLogic Data Services Platform approaches the problem of creating integration architectures
by providing tools that let you build physical data services around individual physical data sources,
and then develop logical data services and business logic that integrate and return data from multiple
physical and logical data services. Logical data services use easily-maintained, graphically-designed
XML queries (XQueries) to access, aggregate, transform, and deliver its data results.

Developing DSP services involves three basic steps:

1. Create a unified view of information from all relevant sources. This step, which involves
development of physical data services and (optionally) data models, is typically performed by a
data services architect who understands the information available in underlying sources and can
define the unified view that different projects will use. DSP is capable of modeling relational and
non-relational sources; it includes tools for introspection and mapping of the underlying sources to
the unified data view.

2. Develop application-specific queries. This step, which involves development of logical data
services, is typically performed by application developers who write simple queries against the
unified view to get the required data. DSP provides tools to visually create robust XQueries and
also publish them as services.

3. Tie query results to client applications. This step, which involves accessing data through a
variety of consuming applications, is typically performed by application developers who execute
the queries and receive results as XML or Java objects. In addition, DSP provides an out-of- the-
box Workshop control to easily develop portal or Web applications from which to access data
retrieved by a data service.

Data Services Platform Development Process

As part of the development process, DSP provides flexible options for updating both relational and
non-relational data sources. DSP lets you write update logic via an EJB in BEA WebLogic Server™;
via a database, JMS, or Data Services Platform Control in Workshop; or via a business process in BEA
WebLogic Integration™.

In addition, DSP provides visual tools for managing various administrative tasks, including controlling
data service metadata, caching, and security.

Within Part 1, examples are provided that illustrate DSP’s most commonly used capabilities:
developing and testing physical and logical data services, accessing data services through various
consuming applications, updating underlying data sources, and managing various administrative tasks.

Note: The lessons within Part 1 build upon one another and should be completed in sequential order.

Data Services Platform: Samples Tutorial 10

Lesson 1 Introducing the Data Services Platform Environment
BEA AquaLogic Data Services Platform provides the tools and components that let you build physical
data services around individual physical data sources, and then develop the logical data services and
business logic that integrate data from multiple physical and logical data services. The environment
also lets you test the data service and manage data service metadata, caching, and security.

The basic menus, behavior, and look-and-feel associated with the WebLogic Workshop environment
apply to DSP. However, there are several tools and components within WebLogic Workshop that are
especially relevant to DSP. In this lesson, you will learn about a few of those tools and components. In
addition, you will learn how to complete several basic tasks, such as starting and stopping WebLogic
Server, that are essential to using WebLogic Workshop.

As the first lesson within the AquaLogic Data Services Platform Samples Tutorial, there are no
dependencies on other lessons. However, your familiarity with WebLogic Workshop is assumed.
Workshop is fully described in online documentation, which you can view at:

http://edocs.bea.com/workshop/docs81/index.html

Objectives

After completing this lesson, you will be able to:

 Navigate the DSP environment.

 Start and stop WebLogic Server.

 Save a Data Services application and associated files.

Overview

WebLogic Workshop consists of two parts: an Integrated Development Environment (IDE) and a
standards-based runtime environment. The purpose of the IDE is to remove the complexity in building
applications for the entire WebLogic platform. Applications you build in the IDE are constructed from
high-level components rather than low-level API calls. Best practices and productivity are built into
both the IDE and runtime.

Lab 1.1 Starting WebLogic Workshop

The first step is starting WebLogic Workshop and opening the RTLApp sample application, which you
will use in the next lab.

Objectives

In this lab, you will:

 Start WebLogic Workshop.

 Open the RTLApp application.

Instructions

1. Choose Start → Programs → BEA WebLogic Platform 8.1 → WebLogic Workshop 8.1. If this is
the first time you are starting WebLogic Workshop, then the SamplesApp project opens.
Otherwise, the project that you last opened appears.

2. Choose File → Open → Application.

http://edocs.bea.com/workshop/docs81/index.html

Data Services Platform: Samples Tutorial 11

3. Open the RTLApp.work file from the following location:

<beahome> \weblogic81\samples\LiquidData\RTLApp\

Note: Depending on your computer settings, the .work extension may not be visible.

In Figure 1-1, the RTLApp application opens in Design View for the Case data service. If this is not
the view that you see, double-click Case.ds located at DataServices/ RTLServices and select
the Design View tab.

Figure 1-1 RTLApp in Design View for Case.ds

Note: The RTLApp application opens in the last active view. This action also resets the default
WebLogic server home directory instance to the ldplatform sample domain.

Lab 1.2 Navigating the DSP Integrated Development Environment (IDE)

Within the WebLogic Workshop environment, there are several tools and components that are relevant
to developing DSP applications and projects. Five of the most frequently used are:

 Application Pane

 Design View

 XQuery Editor View

 Source View

 Test View

Screenshots of the environment are taken from within the RTLApp application.

Data Services Platform: Samples Tutorial 12

Figure 1-2 Data Services Platform Running in WebLogic Workshop

Objectives

In this lab, you will:

 Explore five of the most frequently used development tools.

 Discover the features and functions of these tools.

Functions

XML Type

Data Sources

Status Bar

Data Services Platform: Samples Tutorial 13

Application Pane

The Application pane displays a hierarchical representation of a DSP
application.

A Workshop application is a collection of all resources and
components—projects, schemas, modules, libraries, and security
roles—deployed as a unit to an instance of WebLogic Server. Only one
application can be active at a time. Open files display in boldface type.

If the Application pane is not open, complete one of the following
options:

 Choose View → Application.

 Press Alt+1.

Design View

Design View presents an editable, graphical representation of a data
service. It is a single point of consolidation for a data service’s query
functions and other business logic. Using Design View, you can:

 View the data service’s XML type, native data types, functions, and
data source relationships.

 Add functions and data source relationships.

 Create an XML type definition for elements within the data service, such as xs:string or xs:date.

 Associate the data service with an XML Schema Definition (.xsd) that defines the unified view for
all retrieved data.

Figure 1-3 Design View of a Logical Data Service

Data Source
Relationship

Data Services Platform: Samples Tutorial 14

If Design View is not open, complete the following steps:

1. Open a data service such as Case.ds located in DataServices/RTLServices.

2. Select the Design View tab.

XQuery Editor View

XQuery Editor View provides a graphical, drag-and-drop approach to constructing queries. Using this
view, you can inspect or edit the query Return type and add the data source nodes, parameters,
expressions, conditions, and source-to-target mappings that comprise data service query functions.

Figure 1-4 XQuery Editor View

If XQuery Editor View is not open:

1. Open a data service such as Case.ds located in DataServices/RTLServices.

2. Select the XQuery Editor View tab.

XQuery Editor View Tools

XQuery Editor View includes several editors and palettes that simplify the construction of queries:

 Expression Editor. Lets you add where and order by conditions to parameter, let or for nodes. The
Expression Editor is only active when you select a specific node.

Data Services Platform: Samples Tutorial 15

 Data Services Palette. Lets you add previously-defined query functions as data sources. Each
function displays as a for node, which serves as a for clause within the FLWOR (for-let-where-
order by-return) statement that is the heart of an XQuery.

To add data sources, drag and drop an item from the Data Services Palette into the XQuery Editor
View work area. After you drop the node into XQuery Editor View, the node’s data source schema
(shape) displays in the XQuery Editor View.

If the Data Services Palette is not open, choose View → Windows → Data Services Palette.

XQuery Function Palette. Lets you add any of the more than 100 built-in functions provided
within the XQuery language. In addition, you can add any of the special built-in functions defined
by BEA.

To add a built-in function, drag and drop the selected item into the Expression Editor.

If XQuery Function Palette is not open, choose View → Windows → XQuery Function Palette.

Any work created in XQuery Editor View is immediately reflected in Source View, which permits you
to augment the graphical approach to constructing queries with direct work on the XQuery syntax.
Two-way editing is supported. Changes you make in Source View are reflected in XQuery Editor
View, and vice versa.

Source View

Source View lets you view and/or modify a data service’s XQuery annotated source code. Although
DSP provides extensive visual design tools for developing a data service, sometimes you may need to
work directly with the underlying XQuery syntax.

Data Services Platform: Samples Tutorial 16

Two-way editing is supported. Changes you make in Source View are reflected in XQuery Editor
View, and vice versa.

Figure 1-5 Source View

If Source View is not open, complete the following steps:

1. Open a data service such as Case.ds located in DataServices/RTLServices.

2. Select the Source View tab.

Within Source View, you can use the XQuery Construct Palette, which lets you add any of several
built-in generic FLWOR statements to the XQuery syntax. You can then customize the generic
statement to match your particular needs.

To add a FLWOR construct, drag and drop the selected item into the appropriate declare function
space.

If XQuery Construct Palette is not open, choose View → Windows → XQuery Construct Palette.

Test View

Test View provides a means of running developed query functions within the IDE. Options available in
Test View depend on the query being tested. For example, if the query supports parameters, then the
Parameters section appears, providing a field for each parameter required by the query.

Using Test View, you can select a specific function, specify appropriate parameters, and execute the
query to determine that it is functioning properly. In addition, you can edit the results of the query and
pass the modifications back to the underlying data source.

Data Services Platform: Samples Tutorial 17

Figure 1-6 Test View

If Test View is not open, complete the following steps:

1. Open a data service such as Case.ds located in DataServices/RTLServices.

2. Select the Test View tab.

Lab 1.3 Starting WebLogic Server

WebLogic Server need not be running while you are designing a DSP project. However, before you
import source metadata or test a developed function, you must start an instance of WebLogic Server.

Any DSP projects that you create will run on your system’s installation of WebLogic Server, at least
until you deploy them.

Note: Multiple versions of WebLogic Server can exist, even on local, sample systems. If you have
previously run an instance of WebLogic Server you should shut down that server and change your
WebLogic Workshop server settings. This can be done through the Workshop Tools→Application
Properties dialog box.

Objectives

In this lab, you will:

 Discover ways to start WebLogic Server.

 Confirm that your server is running.

Data Services Platform: Samples Tutorial 18

Instructions

There are three ways to start WebLogic Server. Start the server using one of the following ways:

Menu Command WebLogic Workshop → Tools → WebLogic Server → Start
WebLogic Server

Shortcut Keys Ctrl + Shift + S

Procedure Right-click the red Server Stopped icon, located at the bottom of
the WebLogic Workshop window. Then click Start WebLogic
Server.

Starting the WebLogic Server may take some time. During the server startup sequence, you may see
the following message box:

Figure 1-7 (Possible) WebLogic Server Startup Message

If this box displays, click OK.

When WebLogic Server is running, the WebLogic server icon, which appears on the WebLogic

Workshop status bar, will turn green .

Lab 1.4 Stopping WebLogic Server

There may be times when you want to stop WebLogic Server while still working within DSP for
WebLogic Workshop.

Objectives

In this lab, you will:

 Discover how to stop WebLogic Server.

 Confirm that the server is not running.

Data Services Platform: Samples Tutorial 19

Instructions

You can stop WebLogic Server using any one of the following ways:

Menu Command WebLogic Workshop → Tools → WebLogic Server → Stop
WebLogic Server

Shortcut Keys Ctrl + Shift + T

Procedure Right-click the green Server Running icon, located at the bottom of the
WebLogic Workshop window. Then click Stop WebLogic Server.

Check the WebLogic Server icon of WebLogic Workshop to determine whether WebLogic Server is

stopped. If WebLogic Server is stopped, the icon will turn red .

Lab 1.5 Saving Your Work

As you build your data services, you may want to save your work on a regular basis.

Objectives

In this lab, you will:

 Discover three ways to save your work while working within the application.

 Discover how to save one or more files when exiting the application or closing WebLogic
Workshop.

Instructions

You can save your work using the following commands:

Menu Command Icon

 File → Save

 File → Save As Not Applicable

 File → Save All

Save All is generally recommended for DSP applications. The Save As and Save All options are only
available if you have made changes to your application.

In addition, if you exit WebLogic Workshop and there are any unsaved changes, you are provided with
an option to save either specific or all edited files.

Data Services Platform: Samples Tutorial 20

Figure 1-8 Save File Options on Exiting WebLogic Workshop

Lesson Summary

In this lesson, you learned how to:

 Use several of the key tools within DSP for WebLogic Workshop environment.

 Start and stop the WebLogic Server.

 Save files within a Data Services application.

Data Services Platform: Samples Tutorial 21

Lesson 2 Creating a Physical Data Service
A data service is simply a file containing XQuery functions and supporting structured information.
The most basic data service is a physical data service, which models a single physical data source
residing in a relational database, Web service, flat file, XML file, or Java function.

Data Services Platform approaches the problem of creating integration architectures by building data
services around multiple physical data services. Therefore, in this lesson, you will create data services
based on relational data included in the sample PointBase database provided with DSP:

 Customer Relationship Management (CRM) data, stored in the RTLCUSTOMER database.

 Order Management System (OMS) data for apparel and electronic products, stored in the
RTLAPPLOMS and RTLELECOMS databases.

 Customer service data, stored in the RTLSERVICE database.

Objectives

After completing this lesson, you will be able to:

 Create a DSP application and project.

 Generate multiple physical data services, based on underlying relational data sources.

 Test a physical data service.

Overview

A data service is a collection of one or several related query functions. The service typically models a
unit of enterprise information, such as customer or product data.

The shape of a data service is defined by an XML type that classifies each data element as a particular
form of information, according to its allowable contents and units of data. For example, an xs:string
type can be a sequence of alphabetic, numeric, and/or special characters, while an xs:date type can only
be numeric characters presented in a YYYY-MM-DD format. DSP uses the XML type to model and
normalize disparate data into a unified view.

The data service interface consists of public functions that enable client-based consuming applications
to retrieve data from the modeled data source.

Lab 2.1 Creating a DSP Application

Because a data service is part of a specific DSP project, and a project is part of a single WebLogic
Workshop application, you will first need to create the application, and then a project, before creating a
physical data service. (Alternatively, an existing application could be used; in that case you would
simply create a DSP project within the application.)

An application, which is deployed as a single unit to an instance of WebLogic Server, is a J2EE
enterprise application that ultimately produces a J2EE Enterprise Application Archive (EAR) file.
This, in turn, provides you with a multi-user application that is ready for Internet deployment. Except
in specific cases, such as accessing remote EJBs or Web services, an application is self-contained. The
application’s components may reference each other, but may not generally reference components in
other applications. An application’s components include:

Data Services Platform: Samples Tutorial 22

 One or more projects, data services, schemas, and libraries.

 Zero or more modules and security roles.

An application should represent a related collection of business solutions. For example, if you are
deploying two Web sites — one an e-commerce site and the other a human resources portal for
employees — you would probably create separate WebLogic applications for each.

An application is also the top-level unit of work that you manipulate within the WebLogic Workshop
environment. Only one application can be active at a time.

Objectives

In this lab, you will:

 Create a DSP-enabled application.

 Explore default application components.

Instructions

1. Choose File → New → Application

2. In the New Application dialog box, select Data Services Application.

3. Enter Evaluation in the Name field.

Note: The sample code used to work on this tutorial uses Evaluation as the application name. Ensure
that you name the DSP application as Evaluation so that the sample works successfully with your
application.

4. Click Create.

Figure 2-1 Creating a DSP Application

The components of the application are represented in a hierarchical tree structure in the Application
pane. When you first create a Data Services application, the following default components are
automatically generated:

Data Services Platform: Samples Tutorial 23

 Data Service project. Takes the name of your application (in this case, Evaluation). Within the
project folder, there is initially a single component, the xquery-types .xsd file. This file is an XML
Schema Definition (XSD) that describes the contents, semantics, and structure of the project.

 Modules. Initially an empty folder.

 Libraries. Contains the ld-server-app.jar file. This file contains various folders and files, as
displayed in Figure 2-2.

Note: Initially, the Libraries folder is empty. The ld-server-app.jar file is created only after you
build the Evaluation project.

 Security Roles. Initially an empty folder.

Figure 2-2 displays the default folders created for the Evaluation application.

Figure 2-2 Initial Application Structure

Data Services Platform: Samples Tutorial 24

Lab 2.2 Creating a Data Services Project

A project groups related files—data services, models, and metadata—within an application. Each
application can support multiple projects. As you develop the application, you may want to create new
projects for the following reasons:

 To separate unrelated functionality. Each project should contain closely-related components. For
example, if you want to create one or more data services that expose order status to your customers,
and also one or more Web services that expose inventory status to your suppliers, you would
probably organize these two sets of unrelated Web services into two projects.

 To control build units. Each project produces a particular type of file when the project is built. For
example, a Java project produces a JAR file. If you want to reuse the Java classes, you would
segregate the Java classes into a separate project, and then reference the resulting JAR file from
other projects in your application.

Although a default Data Services project is created when you create a new Data Service application,
for this tutorial you will create a new project.

Objectives

In this lab, you will:

 Create a new Data Service project.

 Review the results.

Instructions

1. Choose File → New → Project

2. In the New Project dialog box, select Data Service Project.

3. Enter DataServices in the Project name field.

4. Click Create.

Figure 2-3 Creating a New Data Service Project

Data Services Platform: Samples Tutorial 25

The components of your new Data Service project are represented in a hierarchical tree structure in the
Application pane. At present, there is only one component in the project, the xquery-types .xsd file.
This file is an XML schema definition that describes the contents, semantics, and structure of the
project.

Lab 2.3 Creating Project Sub-Folders

Folders let you logically group different data services, and their associated files, within a single
project. For example, if you had three data sources — one relational database containing tables for
customer-oriented information and two Web services providing credit rating and information — you
would probably want to create two folders, one for the database and one for the Web services.

Objectives

In this lab, you will:

 Create four sub-folders within the DataServices project folder.

 Review the results.

Instructions

1. Right-click the DataServices project folder.

2. Choose New → Folder.

3. Enter CustomerDB in the Name field.

4. Click OK.

5. Repeat steps 1 through 4 to create additional data service folders for:

 ApparelDB

 ElectronicsDB

 ServiceDB

After adding these four folders, your DataServices project folder should look similar to Figure 2-4.

Figure 2-4 Project Sub-Folders

Data Services Platform: Samples Tutorial 26

Lab 2.4 Importing Relational Source Metadata

When you installed DSP, several sample data sources were also installed. One such sample data source
is the Avitek RTL PointBase database. It contains a number of relational database schemas that
provide the metadata needed to build your physical data services, including:

 Customer Relationship Management (CRM) data, stored in the RTLCUSTOMER database.

 Order Management System (OMS) data for apparel products, stored in the RTLAPPLOMS
database.

 Order Management System (OMS) data electronic products, stored in the RTLELECOMS
database.

 Customer service data, stored in the RTLSERVICE database.

A physical data service, which models physical data existing somewhere in your enterprise, is
automatically generated when you import relational source metadata. Each generated physical data
service represents a single data source that can be integrated with other physical or logical data
services.

Objectives

In this lab, you will:

 Import source metadata from four RTL PointBase databases, thereby generating multiple physical
data services.

 Review the results.

Instructions

Note: WebLogic Server must be running. If it is not already running, start the server (Lab 1-3) before
you begin this lab.

1. Right-click the CustomerDB folder.

2. Choose Import Source Metadata from the pop-up menu.

3. Select Relational from the Data Source Type drop-down list and click Next.

Figure 2-5 Select Data Source

Data Services Platform: Samples Tutorial 27

4. Specify the data source, by completing the following steps:

a. Select cgDataSource from the Data Source drop-down list.

b. Click Select All and then click Next.

Figure 2-6 Select Data Source

WebLogic Server fetches the specified data, and then displays the Select Database Objects to Import
dialog box. The source metadata for each selected object will be used to generate a physical data
service.

5. Expand the RTLCUSTOMER and RTLBILLING folders, located in the left pane.

6. Select all tables from both schemas and click Add. The selected objects display in the right pane.

Figure 2-7 Selected Database Objects to Import

7. Click Next. A Summary dialog box opens, displaying the following information:

 XML type, for database objects whose source metadata will be imported.

Data Services Platform: Samples Tutorial 28

 Data Service Name, for each data service that will be generated from the source metadata. (Any
name conflicts appear in red; you can modify any data service name.)

 Target Namespace, for the data service being generated. This is optional.

 Location, where the generated data services will reside.

Figure 2-8 Summary

8. Click Finish.

9. Repeat steps 1 through 8 to import source metadata into the ApparelDB, ElectronicsDB, and
ServiceDB folders, substituting the following information for steps 1 and 5:

Database Objects
(Step 1)

Data Source (Step 5)

ApparelDB RTLAPPLOMS

ElectronicsDB RTLELECOMS

ServiceDB RTLSERVICE

The Application pane should appear similar to Figure 2-9. If you expand a data service’s schema
folder, you will see XSD files for each data service generated from the underlying data source.

Data Services Platform: Samples Tutorial 29

Figure 2-9 New Data Services

Lab 2.5 Building a Project

Building a project simply means that the project’s source code is compiled into machine-readable
instructions. Each project produces a particular type of file when the project is built. For example, a
Java project produces a JAR file.

Objectives

In this lab, you will:

 Build the DataServices project.

 Review the results in the Build window.

Instructions

1. Right-click the DataServices project folder.

2. Choose Build DataServices. It may take a few moments for the project to be built. When complete,
you will see a message in the Build window, similar to that displayed in Figure 2-10. (If the Build
window is not open, choose View → Windows → Build or press Alt+5.)

Data Services Platform: Samples Tutorial 30

Figure 2-10 Build Project Information

3. Scroll through the Build window. As part of the Build process, DSP generates a number of files,
including the following:

 Data service (.ds) files for each table within the underlying data source.

 Miscellaneous JAR and EJB files.

Figure 2-11 displays the complete Build information for the DataServices project.

Figure 2-11 Complete Build Information for the DataServices Project

4. (Optional) Expand the Libraries folder. You should see the DataServices.jar file.

Lab 2.6 Viewing Physical Data Service Information

A physical data service is automatically generated when you import source metadata and build the
associated project. Each generated physical data service represents a single data source that can be
integrated with other physical or logical data services.

When DSP generates a physical data service, it also generates XML data types, an XML Schema
Definition (.xsd file), default query and navigation functions, and pragma information.

Data Services Platform: Samples Tutorial 31

Objectives

In this lab, you will:

 View XML type, native data types, XML schema definition, generated functions, and metadata.

 Use Design View and Source View to obtain information about a data service.

Viewing XML type

An XML type, which derives from the data service’s XML Schema Definition (XSD), is a structured
XML document that classifies each element within the data service as a particular form of information,
according to its allowable contents and units of data. For example, the XML type for the CUSTOMER
data service is CUSTOMER, whose elements include:

 CUSTOMER_ID, whose xs:string classification indicates the element’s return data will be
formatted as a sequence of alphabetic, numeric, and/or special characters.

 CUSTOMER_SINCE, whose xs:date classification indicates the element’s return data will be
formatted as numeric characters presented in a YYYY-MM-DD format.

Multiple data services can use a single XML type. DSP uses the XML type as the default superset of
data elements that will be returned by a set of queries. This superset XML type, known as the Return
type, models and normalizes data retrieved from the underlying data source, thereby transforming
disparate data into a unified view.

Instructions

1. In the Application pane, expand the CustomerDB folder.

2. Double-click the CUSTOMER.ds file. The data service opens in Design View.

Note: The data service automatically opens in the View workspace last used; if Design View is not
currently open, click the Design View tab.

3. In the middle of the data service representation you should see the CUSTOMER XML (also known
as schemas) type for the data service, plus the XML classification for each element in the data
service. Items marked with a question mark (?) are optional elements, which indicates: 1) if there is
no data in the underlying data source, that element will not display in the data set returned by the
data service and 2) a query function can succeed without providing any value for that particular
element.

Figure 2-12 Design View of XML Type

Data Services Platform: Samples Tutorial 32

Viewing Native Data Type

A Native Data Type classifies each data element according to the definitions specified in the
underlying data source. For relational data sources, DSP generates Native Data Type definitions based
on the underlying database’s table structure and column data definitions.

Instructions

1. Right-click the CUSTOMER Data Service header on the Design View tab. (You can also right-
click any empty space within the data service diagram.)

2. Select Display Native Type. This will display the original data type for each element in the
underlying data source.

3. In the middle of the data service representation, you should see Native Types for each data element
in the data service.

Figure 2-13 Design View of Native Type

Viewing XML Schema Definition

An XML Schema Definition file (.xsd) corresponds exactly to the XML type of a data service. It
defines the structure and content of an XML document, such as the XML type document. In other
words, it defines the vocabulary, rules, and conventions for representing information in a system.

A .xsd file is organized as a flat catalog of complex elements, any attributes, and any child elements.
For physical data services, DSP automatically generates a .xsd file from underlying data when the
underlying data source’s metadata is imported. Generated .xsd files are placed in the appropriate data
service’s schema directory.

Note: For logical data services, you must create a schema. You can use XQuery Editor View,
discussed in Lesson 3, to create such schemas (XSD files).

Instructions

1. Right-click the CUSTOMER element, located in the XML type pane. A pop-up menu opens.

2. Choose Go to Source to view the underlying schema information.

Data Services Platform: Samples Tutorial 33

Figure 2-14 XML Schema Definition

3. After reviewing the XSD, click the Close box (X) in the upper-right corner of the source pane to
return to Design View of your data service.

Note: Clicking the large red X will close WebLogic Workshop.

Viewing Generated Functions

The data service interface consists of public functions of the data service, which can be of several
types:

 One or more read functions, which typically return data in the form of the data service XML type.

 One or more navigation functions, which return data from related data services. The navigation
functions are based on any relationships defined within the underlying data source. Relationships
enhance the flexibility of data services by enabling the return of data in the shape of another data
service.

 One submit() function, which allows users to persist changes to the original data source. The
submit() function does not appear in Design View.

In addition to public functions, a data service can include private functions and side effect functions.
Private functions are only used within the data service. They generally contain common processing
logic that can be used by more than one data service function. Side effect functions can be invoked
from the client side. For example, a side effect function can contain code to update a non-rdbms data
source, such as xml, flat files, and Web services, and clients can invoke this function to perform
updates. (For more information, see the Data Service Developer’s Guide.)

Instructions

1. In Design View, notice the public functions displayed in the left pane of the diagram. These
functions, which were generated for the data service, include the following:

 CUSTOMER(), a read function that retrieves data from the underlying RTLCUSTOMER
database.

 getADDRESS(), a navigate function that retrieves data from the ADDRESS data service. This
function is based on a relationship between the CUSTOMER and ADDRESS tables, which are
defined in the RTLCUSTOMER database.

Data Services Platform: Samples Tutorial 34

Figure 2-15 Design View: Generated Functions

2. (Optional) Right-click the CUSTOMER Data Service header and choose Display XML type from
the pop-up menu. (You can also right-click any empty space within the data service diagram.)

Viewing Data Service Metadata

Metadata is simply information about the structure of data; it provides facts about the data service’s
data, format, meaning, and lineage. For example, a list of tables and columns within a database is
metadata. DSP uses metadata to describe a data service: what information is provided by the data
service and the information’s lineage (that is, the source for the information.)

In addition to documenting data services for potential consumers, metadata helps you determine what
data services are affected when inevitable changes occur in the underlying data source layer. Of course
in the case of physical data services, the metadata primarily describes metadata extracted from the
physical data source.

Metadata information is contained in the data service’s META-INF folder. Normally you should not
need to refer to the contents of this folder.

Instructions

1. Select the Source View tab. The metadata information used by the Customer data service appears.
(Also available in Source View are data service namespace, schema namespace, and XQuery
functions; these items are not displayed in Figure 2-16.)

2. Click the + icon to display all metadata information.

3. Notice the following:

 The date the data service was created.

 The data source from which the metadata was imported.

 The XML type, XPath, Native Data Type, and native XPath for each element within the data
service.

 The relationship target, role name, role number, XDS, and relationship parameters for each data
service associated with the active data service.

Data Services Platform: Samples Tutorial 35

Figure 2-16 Source View of Metadata

Note: Before you test any function or data service, you should ideally clean and redeploy the
application, so that the data is updated on the WebLogic server also.

4. To clean the application, right-click Evaluation and select Clean Application.

5. To redeploy the application, right-click Evaluation and select Deployment Redeploy.

Lab 2.7 Testing Physical Data Service Functions

Testing a data service’s functionality within Test View lets you determine whether the data service is
able to return the expected data results.

Objectives

In this lab, you will:

 Test the CUSTOMER() function.

 Review the results in Test View.

 Review the results in the Output window to confirm that the data is pulled from the correct data
source.

Instructions

1. Select the Test View tab.

2. Select CUSTOMER() from the function drop-down list.

3. Click Execute. You should see data returned from the RTLCUSTOMER database, formatted
according to the CUSTOMER data service’s Return type, which is defined by each element’s XML
type.

Note: At times the WebLogic server may not get updated automatically. In that case, you may get
some validation errors when you execute the function. To fix this, try cleaning and redeploying the
application.

4. Expand the nodes and notice the following:

Data Services Platform: Samples Tutorial 36

Each element defined by the XML type returns specific data retrieved from the RTLCUSTOMER
database. For example, the <FIRST_NAME> element returns “Jack” as an xs:string, while the
<CUSTOMER_SINCE> element returns "2001-10-01" as an xs:date.

Figure 2-17 Physical Data Service Test Results

5. To view the results in the Output window, you need to enable auditing in the ALDSP console. To
enable auditing:

a. Open the ALDSP console, typically located at http://localhost:7001/ldconsole.

b. Log on using the following credentials:

 User = weblogic

 Password = weblogic

c. Expand ldplatform in the left-hand menu and click Evaluation.

d. Click the Audit tab.

e. Select all the options in the Global Settings section as shown in Figure 1-1.

f. Select the At Default Level option from the Configure all Properties list in Audit Properties.

g. Click Apply.

Figure 2-18 Audit Tab in the ALDSP Console

http://localhost:7001/ldconsole

Data Services Platform: Samples Tutorial 37

h. In the left-hand menu, expand Evaluation, DataServices, and then CustomerDB as shown in
Figure 2-19.

i. Click Customer and select the Admin tab.

j. Click the Audit tab.

k. Select the check box in the Enable Audit column for the CUSTOMER function.

Figure 2-19 Enabling Function-Level Auditing

l. Click Apply. This enables auditing for the CUSTOMER () function.

Note:

 To enable auditing for any other function in this tutorial, repeat the steps h to l.

 Ensure that you keep auditing enabled in the ALDSP console throughout this tutorial.
For details about auditing, refer to
http://edocs.bea.com/aldsp/docs21/admin/monitor.html.

6. In WebLogic Workshop Test View, click Execute again.

7. Open the Output window (View → Windows → Output).

8. Confirm that the output is similar to that displayed in Figure 2-20

Note: You can use the Output window to verify that each element in the data service is pulling data
from the correct data source. In this example, the return results are pulled from the RTLCUSTOMER
database, CUSTOMER table 1, and a specific column (c1, c2, c3, and so on) for each element.

http://edocs.bea.com/aldsp/docs21/admin/monitor.html

Data Services Platform: Samples Tutorial 38

Figure 2-20 Test Results Output

Lesson Summary

In this lesson, you learned how to:

 Create a DSP application and project.

 Create project sub-folders to group data services.

 Import relational tables to create a simple physical data services.

 Build a project and review the build information.

 Examine a physical data service’s shape/schema definition, data types, functions, and source code.

 Test a data service function.

Data Services Platform: Samples Tutorial 39

Lesson 3 Creating a Logical Data Service
As noted in Lesson 2, there are two types of data services: physical and logical. Physical data services
model a single physical data source residing in a relational database, Web service, flat file, XML file,
or Java function.

To enable the integration of data from multiple sources through Data Services Platform (DSP), you
define a logical data service. In this lesson you will create a logical data service that integrates data
from the CUSTOMER data service.

Objectives

After completing this lesson, you will be able to:

 Create a simple logical data service, define its shape, and specify its query conditions

 Test the logical data service’s read, write, and limit functions

Overview

A logical data service integrates data from two or more physical or logical data services. Its shape is
defined by an XML type schema that classifies a data element as a particular form of information,
according to its allowable contents and units of data. For example, an xs:string type can be a sequence
of alphabetic, numeric, and/or special characters, while an xs:date type can only be numeric characters
presented in a YYYY-MM-DD format.

The data service interface consists of public functions that enable client-based consuming applications
to retrieve data from the modeled data source. A data service’s functions can be of several types:

 One or more read functions, which typically return data in the form of the XML type.

 One or more navigate functions, which return data from related data services. Within a logical data
service, you must define relationships through modeling. Although similar to relationships in the
RDBMS context, a logical data service lets you establish relationships between data from any
source. This gives you the ability to, for example, relate an ADDRESS relational table with a -
STATE look-up Web service.

 One submit() function, which allow users to persist changes to the back-end storage

In addition to public functions, a data service can include private functions and side effect functions.
Private functions are only used within the data service. They generally contain common processing
logic that can be used by more than one data service function. Side effect functions can be invoked
from the client side. For example, a side effect function can contain code to update a non-rdbms data
source, such as xml, flat files, and Web services, and clients can invoke this function to perform
updates. (For more information, see the Data Service Developer’s Guide.)

Every function within a logical data service also includes source-to-target mappings that define what
results will be returned by that function. There are four types of mappings:

 A simple mapping means that you are mapping simple source node elements to simple elements in
the Return type one at a time. You can create a simple mapping by dragging and dropping any
element from the source node to its corresponding target element in the Return type. Optional
Return type elements do not need to be mapped; otherwise elements in the Return type need to be
mapped to run your query.

Data Services Platform: Samples Tutorial 40

 An induced mapping means that a complex element is mapped to a complex element in the Return
type. In this gesture, the top level complex element in the Return type is ignored (source node name
need not match). The editor then automatically maps any child elements (complex or simple) that
are an exact match for source node elements.

 An overwrite mapping replaces a Result type element and all its children (if any) with the source
node elements. As an example of the general steps needed to create an overwrite mapping, you
would press <Ctrl>, then drag and drop the source node’s complex element onto the corresponding
element in the Result type. The entire source node’s complex element is brought to the Result type,
where it completely replaces the target element with the source element.

 An append mapping adds a simple or complex element (and any children or attributes) as a child of
the specified element in the Return type. To create an append mapping, select the source element,
then press <Ctrl>+<Shift> while dragging and dropping the source node’s element onto the
element in the Return type that you want to be the parent of the new element(s).

Alternatively, if you simply want to add a child element to a Return type, you can drag a source
element to a complex element in your Return type. The element will be added as a child of the
complex element and mapped accordingly.

In addition to the mappings, each function can also include parameters and variations on the basic
XQuery FLWOR (for-let-where-order by-return) statements that further define the data retrieval results.

In Figure 3-1, what you see in Design View is a logical data service that:

 Uses the getAllCustomers(), getCustomer(), getPaymentList(), and getLatePaymentList() functions
to retrieve data.

 Uses the customer.xsd schema definition to define its XML type, and thus its Return type.

 Integrates data from the ApparelDB and CustomerDB physical data services, plus a CreditRating
Web service.

Figure 3-1 Design View of a Logical Data Service

If you open XQuery Editor View for a particular function, you would see the function’s source-to-
target mappings.

If you open Source View, you would see each function’s parameters and FLWOR statements.

Data Services Platform: Samples Tutorial 41

Lab 3.1 Creating a Simple Logical Data Service

A logical data service integrates and transforms data from multiple physical and logical data services.

Objectives

In this lab, you will:

 Create a new folder for the logical data service.

 Create an empty data service that can be built into a logical data service.

 Import a pre-defined XML schema definition that you will associate as the logical data service’s
XML type.

 Define functions and their mappings, parameters, and FLWOR statements.

Instructions

1. Create a new folder within the DataServices project and name it CustomerManagement.

2. Create a new data service within the CustomerManagement folder by completing the following
steps:

a. Right-click the CustomerManagement folder.

b. Choose New → Data Service. The New File dialog box opens.

c. Confirm that Data Service → Data Service are selected.

d. Enter CustomerProfile in the Name field.

e. Click Create.

Figure 3-2 New Data Service

A new data service is generated, but without any associated data services or XML type.

Data Services Platform: Samples Tutorial 42

Lab 3.2 Defining the Logical Data Service Shape

A data service transforms received data into the shape defined by its Return type. Pragmatically, the
Return type is the "R" in a FLWOR (for-let-where-order by-return) query. A Return type, which
describes the structure or shape of data returned by the data service’s queries, serves two main
purposes:

 Provides a superset of data elements that can be returned by an XQuery.

 Defines the unified structure, and order of the data returned by an XQuery.

The Return type is generated from the data service’s XML type. An XML type classifies a data element
as a particular form of information, according to its allowable contents and units of data. For example,
an xs:string type can be a sequence of alphabetic, numeric, and/or special characters, while an xs:date
type can only be numeric characters presented in a YYYY-MM-DD format.

Objectives

In this lab, you will:

 Import a schema file, which you will associate with the data service’s XML type.

 Review the results.

Instructions

Note: Although you can use DSP to graphically build a schema file, in this lab you will import a pre-
defined schema file to save time. For more information on using WebLogic Workshop to create the
XML types, see the Data Services Platform Data Services Developer’s Guide.

1. Create a new folder in the CustomerManagement folder and name it schemas.

2. Import a schema file into the schema folder by completing the following steps:

a. Right-click the schema folder, located in the CustomerManagement folder.

b. Choose Import.

c. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide.

d. Select the CustomerProfile.xsd file.

e. Click Import.

Figure 3-3 Import XML Schema Definition File

Data Services Platform: Samples Tutorial 43

3. Right-click the CustomerProfile Data Service header on the Design View tab.

4. Choose Associate XML Type.

5. Select the CustomerProfile.xsd file, located in CustomerManagement\schemas.

6. Click Select.

Figure 3-4 Associating XML type with XSD

You should see that the CustomerProfile data service is now shaped by the CustomerProfile.xsd
file.

You should also see that several of the elements are identified with a question (?) mark. This indicates
that these elements are optional. Because the schema file identifies these elements as optional, DSP
will not require the mapping of these elements to the Return type; however, if mapped to the Return
type and there is no corresponding data in the underlying data source, then the result set will not
include the empty elements.

Figure 3-5 Logical Data Service XML type

Data Services Platform: Samples Tutorial 44

Lab 3.3 Adding a Function to a Logical Data Service

A data service consumer—a client application or another data service—uses the data service’s function
calls to retrieve information. A logical data service includes the same types of functions that are found
in a physical data service:

 One or more read functions that form the data service’s external interface, which is exposed to
consuming applications requesting data. These read functions typically return data in the form of
the data service’s XML type.

 One or more navigate functions that return data from other data services. Within a logical data
service, you must define relationships through modeling. Although similar to relationships in the
RDBMS context, a logical data service lets you establish relationships between data from any
source. This gives you the ability, for example, to relate an ADDRESS relational table with a
STATE lookup Web service.

 One submit() function, which allows users to persist changes to the back-end storage.

Objectives

In this lab, you will:

 Add a new read function, getAllCustomers(), to the logical data service.

 View the results in XQuery Editor View.

Instructions

1. Right-click the CustomerProfile Data Service header.

2. Choose Add Function. A new function displays in the left pane of the data service model.

3. Enter getAllCustomers() as the function name.

Figure 3-6 Design View of New Function

Data Services Platform: Samples Tutorial 45

Lab 3.4 Mapping Source and Target Elements

In the previous lab, you associated a logical data service with an XML Schema Definition (.xsd file),
which generated a Return type that includes all data elements defined within the schema. However,
there are no conditions associated with the Return type; conditions specify which source data will be
returned.

You can define conditions by mapping source and target (Return) elements.

Objectives

 Add a physical data service function as a data source for the logical data service.

 Create a simple map between the source node and the Result type.

Instructions

1. Click the getAllCustomers() function to open XQuery Editor View. You should see a Return type
populated with the CustomerProfile schema definition. The Return type determines what data can
be made available to consuming applications, as well as the shape (string, data, integer, and so on)
that the data will take. The Return type was automatically populated when you associated the
logical data service with the CustomerProfile.xsd.

Figure 3-7 XQuery Editor View of Function Return Type

Data Services Platform: Samples Tutorial 46

2. In the Data Services Palette, expand CustomerDB\CUSTOMER.ds. If the Data Services Palette is
not open, choose View → Windows → Data Services Palette.

Figure 3-8 Data Services Palette

3. Drag and drop CUSTOMER() into XQuery Editor View. This method call represents a root or
global element within the CUSTOMER physical data service (see Lesson 2). A for node for that
element is automatically generated and assigned a variable, such as For: $CUSTOMER. Within the
XQuery Editor View, this for node is a graphical representation of a for clause, which is an integral
part of an XQuery FLWOR expression (for-let-where-order by-return).

Figure 3-9 Source Node and Return Type

4. Create a simple map by dragging and dropping individual elements from the $CUSTOMER source
node onto the corresponding elements in the Return type. The logical data service CustomerProfile
should now be similar to what is shown in Figure 3-10.

Note: There are alternatives to mapping elements instead of using the slow simple mapping technique.
Faster mapping techniques are described in labs that follow.

Data Services Platform: Samples Tutorial 47

Figure 3-10 Simple Mapping Between Source Node and Return Type

Lab 3.5 Viewing XQuery Source Code

When you use XQuery Editor View to construct an XQuery, source code in XQuery syntax is
automatically generated. You can view this generated source code in Source View and, if needed,
modify the code. Any changes made in Source View will be reflected in XQuery Editor View.

Objectives

In this lab, you will:

 View generated XQuery source code in Source View.

 Review the for and return clauses of the getAllCustomers() query function.

Instructions

1. Select the Source View tab. A portion of the generated XQuery source code is displayed in Figure
3-11.

2. Notice the for clause, which references the CUSTOMER() function.

3. Notice the return clause, which reflects the simple mapping between the $CUSTOMER source
node and the Return type. All optional elements are identified with a question mark in the field
description, as shown (emphasis added):

<TelephoneNumber?> {fn:data($x0/TELEPHONE_NUMBER)}</Telephone number

4. Also, notice that the <orders> elements are empty because order information has not yet been
mapped to the Return type. This means that a consuming application, using this query, will only
see customer information, not order information.

Data Services Platform: Samples Tutorial 48

Figure 3-11 Source View of XQuery Code for CUSTOMER() Node

Lab 3.6 Testing a Logical Data Service Function

You can use Test View to validate the functionality of a logical data service.

Objectives

In this lab, you will:

 Build the DataServices project.

 Test the function’s retrieve and limit result capabilities.

Instructions

1. Build the DataServices project by right-clicking the DataServices folder and choosing Build
DataServices from the pop-up menu.

2. After the build completes successfully, select the Test View tab.

3. Select getAllCustomers() from the function drop-down list.

Test the ability to specify the number of tuples returned by completing the following steps:

a. Clear the Validate Result option. This feature is not mandatory to complete this lab.

Data Services Platform: Samples Tutorial 49

b. Enter CustomerProfile/customer in the Parameter field. This specifies the XPath expression
for the element whose return results you want to limit to a set number of occurrences such as
the order_line_items.

c. Enter 5 in the Number field. This will limit the results to the first five customers retrieved.

d. Click Execute.

Figure 3-12 Test Truncate Capabilities

4. View the results, which appear in the Result pane.

5. Expand the top-level node. There should be only five Customer Profiles listed.

6. Expand the first <customer> node. You should see a Customer Profile for Jack Black, as displayed
in Figure 3-13.

Figure 3-13 Customer Profile Test Results

Data Services Platform: Samples Tutorial 50

Lesson Summary

In this lesson, you learned how to:

 Create a simple logical data service.

 Associate an XML schema definition with the data service.

 Create a simple function.

 Use XQuery editor view to map elements from the source node to the return type.

 Use Source View to examine an XQuery function’s source code.

 Use Test View to test a logical data service query capabilities, limit the number of data set results
returned as part of the query, and test data service editing capabilities.

Data Services Platform: Samples Tutorial 51

Lesson 4 Integrating Data from Multiple Data Services
The power of logical data services in Data Services Platform (DSP) is the ability to integrate and
transform data from multiple physical and logical data services.

In the previous lesson, you created a simple logical data service that mapped to a single physical data
service. In this lesson, you will further develop the logical data service to enable data retrieval from
multiple data services.

Objectives

After completing this lesson, you will be able to:

 Use the Data Services Palette to add physical and logical data service functions to a logical data
service, thereby accessing data from multiple sources.

 Join data services by connecting source elements, thereby integrating data from multiple sources.

 Use the Expression Builder to define a parameterized where clause.

 Set the context for nested elements in the source node.

 Create a complex override mapping.

 Test parameterized data services to verify the return of integrated data results.

Overview

How is data integration different from process integration? Most applications involve a combination of
informational interactions and transactional interactions. Examples of informational interaction
include: get customer info, review order status, get customer profile, and get customer’s case history.
Examples of transactional interactions include: place order, update customer address, and create
customer.

Informational interactions involve efficiently aggregating discrete pieces of data that are potentially
resident in multiple data sources, and potentially in multiple data formats. Developers can end up
spending inordinate amounts of time writing custom code to handle the various interface protocols and
data formats, and integrate disparate data into manageable, business-relevant information. DSP
simplifies this activity by providing a simple, declarative approach to aggregating data from
heterogeneous data sources.

Transactional interactions involve taking a piece of data (say a purchase order) and orchestrating its
propagation to the various underlying applications. This involves coordinating a business process
through a formal or informal workflow, managing long-running processes, managing human
interactions (such as a supervisor approval to an order), handling applications that have indeterminate
response times (such as batch systems), maintaining transactional integrity across applications, etc.

Both data integration and process integration are essential elements when building applications that
handle information from across multiple data sources. For functions of interest across data services,
you can use function libraries. A function library (.xfl file) contains operations that return simple types
(not the XML data type of a standard data service) that can be called from various data services. Read
functions on a data service can be defined to return information in various ways. For example, the data
service may define read functions for getting all customers, customers by region, or customers with a
minimum order amount.

Data Services Platform: Samples Tutorial 52

Lab 4.1 Joining Multiple Physical Data Services within a Logical Data Service

In the previous lab, you mapped a single physical data service to the Return type. In this lab, you will
enable data retrieval from both the CUSTOMER and CUSTOMER_ORDER physical data services.

Objectives

In this lab, you will:

 Create a second for node, by adding the CUSTOMER_ORDER() function to the XQuery Editor
View.

 Create a simple map between the new for node and the Return type.

 Create an automatically-generated where clause, by joining the two for nodes.

 Review source code.

 Test the results (read and write capability)

Instructions

1. Open CustomerProfile.ds in XQuery Editor View.

2. In the Data Services Palette, expand ApparelDB\CUSTOMER_ORDER data service.

3. Drag and drop CUSTOMER_ORDER() into XQuery Editor View to create a second for node,
For:$CUSTOMER_ORDER.

4. Create a simple map: Drag and drop the individual elements from the $CUSTOMER_ORDER
source node onto their corresponding elements in the Return type.

Note: Do not map the TRACKING_NUMBER and DATE_INT elements.

5. Create a join: Drag and drop the CUSTOMER_ID element from the $CUSTOMER source node
onto the C_ID element in the $CUSTOMER_ORDER source node. This action joins the two for
nodes. By joining these two nodes, you automatically create a where clause within the FLWOR
statement.

Figure 4-1 Joined Data Services

Data Services Platform: Samples Tutorial 53

6. Select the Source View tab to view the XQuery code. You should see a where clause joining
$CUSTOMER and $CUSTOMER_ORDER, using the CUSTOMER_ID element. In Figure 4-2,
the where clause is:

where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID

Figure 4-2 Source View of Joined Data Services

7. Build the DataServices project. Right-click the DataServices project folder and choose Build
DataServices.

8. After the build is successful, select the Test View tab and determine whether you can retrieve order
information integrated with the customer information, by completing the following steps:

a. Select getAllCustomers() from the function drop-down list.

b. Click Execute. (You don’t need any parameters, because you are not testing the limit returned
tuples feature.)

c. Expand the nodes. The results should include order information for each customer, as displayed in
Figure 4-3.

Data Services Platform: Samples Tutorial 54

Figure 4-3 Integrated Customer and Order Data Results

Lab 4.2 Defining a Where Clause to Join Multiple Physical Data Services

In the previous lab, you joined the CUSTOMER and CUSTOMER_ORDER data services, thereby
automatically generating a where clause. In this lab, you will manually define the where clause that
joins multiple data services.

Objectives

In this lab, you will:

 Add a third for node, by adding the CUSTOMER_ORDER_LINE_ITEM() function.

 Define a where clause, using the Expression Editor.

 View the results in Design View and Source View.

 Test the results.

Instructions

1. Open XQuery Editor View for the getAllCustomers() function.

2. In the Data Services Palette, expand ApparelDB\CUSTOMER_ORDER_LINE_ITEM data services.

3. Drag and drop CUSTOMER_ORDER_LINE_ITEM() into XQuery Editor View. This creates a
third for node: For: $CUSTOMER_ORDER_LINE_ITEM.

Data Services Platform: Samples Tutorial 55

4. Create simple mappings by dragging and dropping the individual elements from the
$CUSTOMER_ORDER_LINE_ITEM source node onto the corresponding elements in the Return
type.

Figure 4-4 Three Data Service Functions Mapped to the Return Type

5. Define a where clause that joins two data services, by completing the following steps:

a. Select the node header for $CUSTOMER_ORDER_LINE_ITEM to activate the expression
editor for that node. (Note: Do not select the CUSTOMER_ORDER_LINE_ITEM* element.)

b. Click the Add Where Clause icon .

c. Click the ORDER_ID element in the $CUSTOMER_ORDER_LINE_ITEM source node.
You should see the following in the WHERE field (the variable name may be different, in
your case):

 $CUSTOMER_ORDER_LINE_ITEM/ORDER_ID

d. Select eq: Compare Single Values from the operator list (“…” icon). You should see the
following in the Where field:

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID eq

e. Click the ORDER_ID element in the CUSTOMER_ORDER source node. You should see the
following in the where field (the variable name may be different, in your case):

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID eq

$CUSTOMER_ORDER/ORDER_ID

f. Click the green check box to add the parameterized WHERE clause to the
getAllCustomers() function.

Data Services Platform: Samples Tutorial 56

Figure 4-5 Where Clause Joining Two Data Services

6. Verify the joins you created and view the results, by completing the following steps:

a. Open CustomerProfile.ds in Design View. The physical data services associated with the
three functions that you dropped into XQuery Editor View as for nodes are displayed in the
right pane as data sources for the logical data service.

Figure 4-6 Design View of Integrated and Parameterized Data Service

Data Services Platform: Samples Tutorial 57

b. Open CustomerProfile.ds in Source View. The XQuery code for the logical data service
is displayed.

Figure 4-7 Source Code for Data Integrated with WHERE Clauses and Parameters

7. Test the results, by completing the following steps:

a. Build the DataServices project.

b. Open CustomerProfile.ds in Test View.

c. Select getAllCustomers() from the function drop-down list.

d. Set the element (by path) option to CustomerProfile/customer.

e. Click Execute. (You do not need any parameters.)

f. Expand the nodes and confirm that you can retrieve order line information integrated with
order information, similar to that displayed in Figure 4-8. (You can use customer_id =
CUSTOMER3 to verify this information).

g. Click Edit.

h. Navigate to the Orders node for CUSTOMER3 and update handling_charge information by
double clicking the element content (the 6.8 value).

Data Services Platform: Samples Tutorial 58

i. Confirm changes by pressing Submit button.

j. Verify that the update was done successfully by re-executing getAllCustomers() function and
navigating to order information for CUSTOMER3.

Figure 4-8 Order Line Data Integrated Within Order Information

Lab 4.3 Creating a Parameterized Function

Adding a parameter to a function ensures that the consuming application can access specific user-
defined data, such as an individual customer’s profile information.

Objectives

In this lab, you will:

 Add a new function, getCustomerProfile().

 Add a for node based on the getAllCustomers() function.

 Set the context for nested elements within the logical data service.

Data Services Platform: Samples Tutorial 59

Instructions

1. In Design View, create a new function for the CustomerProfile data service, and name it
getCustomerProfile().

2. Click getCustomerProfile() to open XQuery Editor View for that function.

3. In the Data Services Palette, expand CustomerManagement\CustomerProfile data service.

4. Drag and drop getAllCustomers() into the XQuery Editor View. You should see a new for node.
For: $CustomerProfile, with its shape defined by the CustomerProfile logical data service’s
getAllCustomers() function.

Figure 4-9 Complex Element Node

Note: In a previous lab, you defined getAllCustomers() to include a complex, nested customer element
associated with the customer_id element of the $CUSTOMER_ORDER_LINE_ITEM source. You
must set the context of the $CustomerProfile source node to point to the customer element because
customer_id uses a string parameter for filtering.

5. Create a parameter by completing the following steps:

a. Right-click an empty space in XQuery Editor View.

b. Select Add Parameter.

Data Services Platform: Samples Tutorial 60

c. Enter CustomerID in the Parameter Name field.

d. Select xs:string from the Primitive Type drop-down list.

e. Click OK.

Figure 4-10 Add Parameter

Note: You may need to move the $CustomerProfile node to make the parameter node visible.

6. Create a complex, overwrite mapping, by completing the following steps:

a. Press Ctrl.

b. Drag and drop the $CustomerProfile customer* element onto the customer+ element in the
Return type. (The Return type will change.)

7. Create a join: Drag and drop the parameter’s string element onto the customer_id element of the
$CustomerProfile source node. This joins the string parameter to the $CustomerProfile source node
and creates a function that will return data based on the user-specified parameter. (You will see this
in action in the next lab.)

Data Services Platform: Samples Tutorial 61

Figure 4-11 Data Source Node and Parameter Joined

8. Select the Source View tab and confirm that the XQuery code for the getCustomerProfile()
function is as follows:

declare function tns:getCustomerProfile($CustomerID as xs:string) as
element(ns0:CustomerProfile)* {

 <ns0:CustomerProfile>

 {

 for $CustomerProfile in tns:getAllCustomers()/customer

 where $CustomerID = $CustomerProfile/customer_id

 return

 $CustomerProfile

 }

 </ns0:CustomerProfile>

9. Remove the asterisk * from the return type element(ns0:CustomerProfile)*, because this function,
as currently written, will return all customer profiles. Your source code should be similar to that
displayed in Figure 4-12.

Data Services Platform: Samples Tutorial 62

Figure 4-12 Source Code for a Parameterized and Complex Overwrite Mapped Function

10. Test the function, by completing the following steps:

a. Build your project.

b. Open CustomerProfile.ds in Test View.

c. Select getCustomerProfile(CustomerID) from the function drop-down list.

d. Enter CUSTOMER3 in the xs:string CustomerID Parameter field. (Note: The parameter is
case-sensitive.)

e. Confirm that you retrieved the requested information — customer, orders, and order line
items for Britt Pierce.

Data Services Platform: Samples Tutorial 63

Figure 4-13 Integrated Data Results

Lesson Summary

In this lesson, you learned how to:

 Use the Data Services Palette to add physical and logical data service functions to a logical data
service, thereby accessing data from multiple sources.

 Join data services by connecting source elements, thereby integrating data from multiple sources.

 Use the Expression Builder to define a parameterized where clause.

 Set the context for nested elements in the source node.

 Create a complex override mapping.

 Test parameterized data services to verify the return of integrated data results.

Data Services Platform: Samples Tutorial 64

Lesson 5 Modeling Data Services
Any data service — physical or logical — can be placed in a model diagram. Model diagrams show:

 The basic structure of data returned by each data service within the model.

 Any functions associated with that data service.

 Any relationships between data services.

The main purpose of the diagram is to help you envision meaningful subsets of the model, but it can
also be used to define new artifacts or edit existing artifacts.

Objectives

After completing this lesson, you will be able to:

 Create model diagrams and add data source nodes to the diagram.

 Confirm relationships inferred during the Import Source Metadata process.

 Define new relationships between data services and modify relationship properties.

Overview

Model diagrams show how various data services are related. Models can represent physical data
services, logical data services, or a combination.

Each physical model entity represents a single data source. In the case of relational sources, you can
automatically generate physical models that are representative of data sources. After being generated,
physical data services can be integrated with other physical or logical sources in the same or new
models. Physical model types use a key icon to identify primary keys.

Logical data model entities, which are discussed in detail in the Data Service Developer’s Guide,
represent composite views of physical and/or logical models.

Within the model diagram, data services appear as boxes. Relationships are represented by annotated
lines between two data services. Each side of the relationship line represents the role played by the
nearest data service. The annotations for each relationship include the following:

 Target Role Name. By default, the target role name reflects the name of its adjacent data service.
You can modify the target role name to better express the relationship, which is particularly useful
when there are multiple relationships between two data services.

 Cardinality. A relationship can be zero-to-one (0:1 or 1:0), one-to-one (1:1), one-to-many (1:n) or
many-to-many (n:n). For example, a customer can have multiple orders, therefore, the relationship
should be 1:n (customer:orders).

 Directionality. A relationship can be either unidirectional or bidirectional. If unidirectional, data
service a can navigate to data service b but b does not navigate to a. If bidirectional, data service a
can navigate to b and b can navigate to a.

A data service’s navigation functions determine the relationship’s cardinality and directionality.
Arrowheads indicate possible navigation paths.

Data Services Platform: Samples Tutorial 65

DSP model diagrams are very flexible; they can be based on existing data services (and corresponding
underlying data sources), planned data services, or a combination. Using models you can easily
manage multiple data services as well as identify needs for new data services. You can also create and
modify data service types directly in the modeler and inspect data services.

Figure 5-1 Model Diagram for Physical Data Services

Lab 5.1 Creating a Basic Model Diagram for Physical Data Services

Modeling data services begins by adding individual data services to a diagram.

Objectives

In this lab, you will:

 Create a diagram that you will use to model relationships between physical data services.

 Add the ApparelDB and CustomerDB physical data services to the model diagram.

 Confirm relationships “captured” during the Import Source Metadata process.

Instructions

1. Create a new folder in the DataServices project and name it Models.

2. Create a new folder in the Models folder and name it Physical.

3. Create a blank model diagram, by completing the following steps:

a. Right-click the Physical folder.

b. Choose New → Model Diagram.

c. Select Data Service → Model Diagram as shown in Figure 5-2.

Data Services Platform: Samples Tutorial 66

Figure 5-2 Create Model Diagram

d. Enter ApparelDB_Physical_Model in the File name field.

e. Click Create. A blank workspace opens, which you can used to construct the model diagram.

4. Add the ApparelDB and CustomerDB physical data services to the model by dragging and
dropping the following data service files from the Application pane into the model:

Data Service File Located In:

CUSTOMER_ORDER.ds DataServices\ApparelDB

CUSTOMER_ORDER-LINE_ITEM.ds DataServices\ApparelDB

PRODUCT.ds DataServices\ApparelDB

ADDRESS.ds DataServices\CustomerDB

CREDITCARD.ds DataServices\CustomerDB

CUSTOMER.ds DataServices\CustomerDB

Notice that relationships between some data services already exist. These relationships were
automatically generated during the Import Source Metadata process, and are based on the foreign
key relationships defined in the underlying database.

Data Services Platform: Samples Tutorial 67

Figure 5-3 Model Diagram for a Physical Data Service

Lab 5.2 Modeling Relationships Between Physical Data Sources

The next step in data service modeling is to define additional relationships, beyond any relationship
that was automatically generated during the import source metadata process.

A relationship is a logical connection between two data services, such as the CUSTOMER and
CUSTOMER_ORDER data services. A relationship exists when one data service retrieves data from
another, by invoking one or more of the other data service’s functions.

 A data service’s navigation functions determine the relationship’s cardinality and directionality.
Arrowheads indicate possible navigation paths. Directionality can be either one directional or
bidirectional.

Objectives

In this lab, you will:

 Define a relationship between the CUSTOMER and CUSTOMER_ORDER nodes, thereby
creating a navigational function between the two nodes.

 Modify the relationship properties to enable a “1:0 or many” relationship.

Instructions

1. Drag and drop the top-level CUSTOMER element onto the top-level CUSTOMER_ORDER
element. The Relationship Properties dialog box opens.

2. In the Relationship Properties dialog box, modify the cardinality properties of the CUSTOMER
and CUSTOMER_ORDER data services, by completing the following steps:

a. Select 0 from the Min occurs drop-down list.

Data Services Platform: Samples Tutorial 68

b. Select n from the Max occurs drop-down list.

The relationship cardinality is now "1:0 or many" between the CUSTOMER and
CUSTOMER_ORDER data services. In other words, one customer can have none, one, or any
number of orders.

3. Click Finish.

Note: In subsequent lessons, you will use additional features of the Relationship Properties dialog
box to customize relationship properties.

Figure 5-4 Relationship Properties — Cardinality

Note: It may take a few seconds to generate the relationship line.

Figure 5-5 New Customer: Customer_Order Relationship Defined

Data Services Platform: Samples Tutorial 69

4. Save all files.

5. Open CUSTOMER.ds in Design View. The file is located in the DataServices\CustomerDB
folder.

6. Confirm that the CUSTOMER data service includes a new relationship with the
CUSTOMER_ORDER data service, using the getCustomer_Order() function.

Figure 5-6 Design View of Added Relationship Function

7. Open CUSTOMER_ORDER.ds in Design View. The file is located in DataServices\ApparelDB.

8. Confirm that the CUSTOMER_ORDER data service includes a new relationship with the
CUSTOMER data service, using the getCustomer() function.

Figure 5-7 Design View of Added Relationship Function

9. (Optional) Create a relationship between CUSTOMER and CREDIT_CARD data services.

10. (Optional) Close all open files.

Data Services Platform: Samples Tutorial 70

Lesson Summary

In this lesson, you learned how to:

 Create model diagrams and add data source nodes to the diagram.

 Confirm relationships inferred during the Import Source Metadata process.

 Define relationships between data services.

Data Services Platform: Samples Tutorial 71

Lesson 6 Accessing Data in Web Services
One of the data sources available with the samples installed with DSP is a Web service that provides
customer credit rating information. In this lesson, you will generate a physical data service that can be
integrated into the CustomerProfile logical data service.

The process for creating a data service based on a Web service is similar to importing relational
database source metadata. The difference is that DSP uses the WSDL (Web services description
language) metadata to introspect the Web service’s operation and generate the data service.

Objectives

After completing this lesson, you will be able to:

 Import a WSDL.

 Use the WSDL to generate a data service.

 Test the Web service by passing a SOAP request body as a query parameter.

 Use a logical data service to invoke the Web service and retrieve data.

Overview

A Web service is a self-contained, platform-independent unit of business logic that is accessible to
other systems on a network. The network can be a corporate intranet or the Internet. Other systems can
call the Web services’ functions to request data or perform an operation.

Web services are increasingly important resources for global business information. Web services can
facilitate application-to-application communication and are a useful way to provide data, like stock
quotes and weather reports, to an array of consumers over a corporate intranet or the Internet. But they
take on additional new power in the enterprise, where they offer a flexible solution for integrating
distributed systems, whether legacy systems or new technology.

WSDLs are generally publicly accessible and provide enough detail so that potential clients can figure
out how to operate the service solely from reading the WSDL file. If a Web service translates English
sentences into French, the WSDL file will explain how the English sentences should be sent to the
Web service, and how the French translation will be returned to the requesting client.

Lab 6.1 Importing a Web Service Project into the Application

When you want to use an external Web service from within WebLogic Workshop, you should first
obtain that service’s WSDL file. In this lab, you will use the WSDL for a Web service project that was
created in WebLogic Workshop.

Objectives

In this lab, you will:

 Import the CreditRatingWS Web service into your sample application. This Web service provides
getCreditRating() and setCreditRating() functions for retrieving and updating a customer’s credit
rating.

 Run the Web service to test whether you can retrieve credit rating information.

Data Services Platform: Samples Tutorial 72

Instructions

1. Import a Web service into the DSP-enabled application, by completing the following steps:

a. Choose File → Import Project. The Import Project → New Project dialog box opens.

b. Select Web Service Project.

Caution: Make sure that you select a project of type Web service. If you select another project type,
then the CreditRatingWS application may not work correctly.

c. In the directory field, click Browse.

d. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide.

e. Select CreditRatingWS and click Open.

f. Make sure that the Copy into Application directory checkbox is selected.

g. Click Import and then click Yes when the confirmation message to update your project
appears.

Figure 6-1 Import Web Services Project

2. In the Application pane, verify that the following items were imported:

 A CreditRatingWS project folder containing:

 A controls folder, within which are the CreditRatingDB.jcx control and
CreditratingDBTest.jws Web service.

 A credit rating folder, within which is the Web service folder that contains the
CreditRating.java file.

 A WEB-INF folder.

Data Services Platform: Samples Tutorial 73

Figure 6-2 Web Service Project

3. Open CreditRatingDBTest.jws in Design View. This file is located in
CreditRatingWS\controls. The Web service diagram should be as displayed in Figure 6-3.

Figure 6-3 Design View of Credit Rating Web Service

4. Test the imported Web service, by completing the following steps:

a. Click the Start icon , or press Ctrl + F5, to open Workshop Test Browser.

b. Enter CUSTOMER3 in the customer_id field.

c. Click getCreditRating. The requested information displays in Workshop Test Browser.

Data Services Platform: Samples Tutorial 74

Figure 6-4 Workshop Test Browser

d. Scroll down to the Service Response section and confirm that you can retrieve credit rating
information for CUSTOMER3.

Figure 6-5 Web Service Results

Lab 6.2 Importing Web Service Metadata into a Project

WSDL is a standard XML document type for describing an associated Web service so that other
software applications can interface with the Web service. Files with the .wsdl extension contain Web
service interfaces expressed in the Web Service Description Language (WSDL).

A WSDL file contains all the information necessary for a client to invoke the methods of a Web
service:

 The data types used as method parameters or return values.

 The individual method names and signatures (WSDL refers to methods as operations).

 The protocols and message formats allowed for each method.

 The URLs used to access the Web service.

Objectives

In this lab, you will:

 Import the CreditRatingWS source metadata via its WSDL, into the DataServices project, thereby
generating a new data service (getCreditRatingResponse.ds).

 Confirm that the new data service includes the getCreditRating() function that you tested in the
previous lab.

Data Services Platform: Samples Tutorial 75

Instructions

1. In Workshop Test Browser, scroll to the top of the window.

2. Click the Overview tab.

Figure 6-6 Workshop Test Browser Overview

3. Click Complete WSDL.

4. Copy the WSDL URI, located in the Address field. The URI is typically:
http://localhost:7001/CreditRatingWS/controls/CreditRatingDBTest.jws?WSDL=

Figure 6-7 WSDL URI

5. Close Workshop Test Browser.

6. In Workshop: Close all open files.

7. Create a new folder within the DataServices project folder, and name it WebServices.

8. Import Web service source metadata into the WebServices folder, by completing the following
steps:

a. Right-click the WebServices folder.

b. Choose Import Source Metadata.

c. Choose Web Service from the Data Source Type drop-down list. Then click Next.

http://localhost:7001/CreditRatingWS/controls/CreditRatingDBTest.jws?WSDL

Data Services Platform: Samples Tutorial 76

Figure 6-8 Web Service Data Source Type

d. Paste the copied WSDL URI into the URI or WSDL File box and click Next.

e. Expand the CreditRatingDBTestSoap and Operations folders.

f. Select getCreditRating operation, and click Add to populate the Selected Web Service
Operations pane.

Figure 6-9 Selected Web Service Operations

g. Do not select the getCreditRating procedure as the side effect procedure in the Select Side
Effect Procedures dialog box, and click Next.

Data Services Platform: Samples Tutorial 77

Figure 6-10 Select Side Effect Procedures

h. Review the Summary information, which includes

 Function name.

 XML type, for Web service objects whose source metadata will be imported.

 Name, for each data service that will be generated from the source metadata. (Any name
conflicts appear in red and must be resolved before proceeding. However, you can modify
any data service name.)

 Add to Existing Data Service, to add the function to an existing data service.

 Location, where the generated data service(s) will reside.

i. Click Finish.

Data Services Platform: Samples Tutorial 78

Figure 6-11 Web Services Summary

9. Open getCreditRatingResponse.ds in Design View. This file is located in
DataServices\WebServices.

10. Confirm that there is a function called getCreditRating().

Figure 6-12 Web Service Function Added

Data Services Platform: Samples Tutorial 79

Lab 6.3 Testing the Web Service via a SOAP Request

Extensible Markup Language (XML) messages provide a common language by which different
applications can talk to one another over a network. Most Web services communicate via XML. A
client sends an XML message containing a request to the Web service, and the Web service responds
with an XML message containing the results of the operation. In most cases these XML messages are
formatted according to Simple Object Access Protocol (SOAP) syntax. SOAP specifies a standard
format for applications to call each other’s methods and pass data to one another.

Note: Web services may communicate with XML messages that are not SOAP-formatted. The types of
messages supported by a particular Web service are described in the service’s WSDL file.

Objectives

In this lab, you will:

 Use the getCreditRating() function and a SOAP parameter to test
getCreditRatingResponse.ds.

 Review the results.

Instructions

1. Build the DataServices project.

2. Open getCreditRatingResponse.ds in Test View. (This file is located in
DataServices\WebServices.)

3. Select getCreditRating(x1) from the Function drop-down list.

4. Enter the following SOAP body in the Parameter field:
<getCreditRating xmlns="http://www.openuri.org/">

 <customer_id>CUSTOMER3</customer_id>

</getCreditRating>

Note: An alternative to adding the SOAP body in the parameter field is to create a template for the
input parameter by clicking Insert Template.

Figure 6-13 SOAP Parameter

Data Services Platform: Samples Tutorial 80

5. Click Execute.

6. Review the results, which should be similar to those displayed in Figure 6-14. Notice that only two
data elements are returned: the customer ID and the credit rating for that customer.

Figure 6-14 Web Service Results

Lab 6.4 Invoking a Web Service in a Data Service

You are now ready to use the Web service to provide the data that populates the CustomerProfile
logical data service.

Objectives

In this lab, you will:

 Use the getCreditRatingResponse data service to populate the credit rating element in the
CustomerProfile data service.

 Test the invocation.

 Review the results.

Instructions

1. Open CustomerProfile.ds file in Source View. The file is located in
DataServices\CustomerManagement.

2. In the Source View, add the following namespace definitions, in addition to the ones already
defined for the CustomerProfile data service:

declare namespace
ws1="ld:DataServices/WebServices/getCreditRatingResponse";

declare namespace ws2 = "http://www.openuri.org/";

Data Services Platform: Samples Tutorial 81

3. Open the creditRatingXQuery.txt file, located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide in a text editor.

4. Copy the following code from the creditRatingXQuery.txt file:
{

 for $rating in ws1:getCreditRating(

 <ws2:getCreditRating>

 <ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>

 </ws2:getCreditRating>)

 return

 <creditrating>

 <rating>{data($rating/ws2:getCreditRatingResult/ws2:Rating)}</rating>

<customer_id>{data($rating/ws2:getCreditRatingResult/ws2:Customer_id)
}</customer_id>

 </creditrating>

 }

5. In the CustomerProfile.ds file, expand the getAllCustomers() function.

6. Insert the copied text into the section where the empty CreditRating complex element is located.
The empty complex element is as follows:

 <creditrating>

 <rating/>

 <customer_id/>

</creditrating>

7. Confirm that the <creditrating> code is as displayed in Figure 6-15.

Figure 6-15 Credit Rating Source Code

8. View the results, by completing the following steps:

a. Open CustomerProfile.ds in XQuery Editor View.

b. Select getAllCustomers() from the Function dropdown list. The function should be similar to
that displayed in Figure 6-16.

Data Services Platform: Samples Tutorial 82

Figure 6-16 XQuery Editor View of a Web Service Being Invoked

c. Open CustomerProfile.ds in Design View. The Web service is listed as a data source, in
the right pane of the diagram.

Figure 6-17 Design View of a Web Service Invoked in a Data Service

9. Test the data service by completing the following steps:

a. Build the DataServices project.

b. Open CustomerProfile.ds in Test View.

c. Select getCustomerProfile(CustomerID) from the Function drop-down list.

Data Services Platform: Samples Tutorial 83

d. Enter CUSTOMER3 in the xs:string CustomerID field.

e. Click Execute.

f. Confirm that you can retrieve the credit rating for Customer 3.

Figure 6-18 Customer Profile Data Integrated with Web Service Credit Rating Data

10. Import the CreditRatingExit1.java file from the EvalGuide folder:

a. Right-click the WebServices folder.

b. Select Import option.

c. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide and select file
CreditRatingExit1.java for import. Click Import.

d. Build the DataServices project.

e. Open getCreditRatingResponse.ds; click on the header and change the UpdateOverride
Class property in the Property Editor to WebServices.CreditRatingExit1. (If the Property Editor is
not open, you can select it using the View menu Property Editor option.

Data Services Platform: Samples Tutorial 84

Figure 6-19 Selecting the Update Override Class

11. (Optional) Open the Output window to view the data sources used to generate the Test View
results. You should see the following statement, which indicates that data was pulled from the
invoked Web service:

Note: To perform this step, you need to enable auditing in the DSP Console.

Figure 6-20 Viewing the Data Sources in the Output Window

Lesson Summary

In this lesson, you learned how to:

 Import a Web service project, locate its WSDL, and use that WSDL to generate a data source.

 Test the Web service by passing a SOAP request body as a query parameter.

 Use a logical data service to invoke a Web service and retrieve data.

Data Services Platform: Samples Tutorial 85

Lesson 7 Consuming Data Services Using Java
After a Data Services Platform (DSP) application is deployed to a WebLogic Server, clients can use it
to access real-time data. DSP supports a services-oriented approach to data access, using several
technologies:

 Mediator API. The Java-based Mediator API instantiates DSP information as data objects, which
are defined by the Service Data Objects (SDO) specification. SDO is a proposed standard that
defines a language and architecture intended to simplify and unify the way applications handle
data.

 Data Services Workshop Control. The Data Services Workshop control is a wizard-generated
Java file that exposes a user-specified data service function to WebLogic Workshop client
applications (such as page flows, portals, or Web services). You can add functions to the control
from data services deployed on any WebLogic server that is accessible to the client application,
whether it is on the same WebLogic Server as the client application or on a remote WebLogic
Server.

 WSDL. WSDL-based Web services can act as wrappers for data services.

 SQL. The Data Services Platform JDBC driver gives SQL clients (such as reporting and database
tools) and JDBC applications a traditional, database-oriented view of the data layer. To users of the
JDBC driver, the set of data served by DSP appears as a single virtual database, with each service
appearing as a table.

 In this lesson, you will enable DSP to consume data through the SDO Mediator API.

Objectives

After completing this lesson, you will be able to:

 Use SDO in a Java application.

 Invoke a data service function using the untyped SDO Mediator API interface.

 Access data services from Java, using the typed SDO Mediator API.

Overview

SDO is a joint specification of BEA and IBM that defines a Java-based programming architecture and
API for data access. A central goal of SDO is to provide client applications with a unified interface for
accessing and updating data, regardless of its physical source or format.

SDO has similarities with other data access technologies, such as JDBC, Java Data Objects (JDO), and
XMLBeans. However, what distinguishes SDO from other technologies is that SDO gives applications
both static programming and a dynamic API for accessing data, along with a disconnected model for
accessing externally persisted data. Disconnected data access means that when DSP gets data from a
source, such as a database, it opens a connection to the source only long enough to retrieve the data.
The connection is closed while the client operates on the data locally. When the client submits changes
to apply to the source, the connection is reopened.

DSP implements the SDO specification as its client programming model. In concrete terms, this means
that when a client application invokes a read function on a data service residing on a server, any data is
returned as a data object. A data object is a fundamental component of the SDO programming model.
It represents a unit of structured information, with static and dynamic interfaces for getting and setting
its properties.

Data Services Platform: Samples Tutorial 86

In addition to static calls, SDO, like RowSets in JDBC, has a dynamic Mediator API for accessing data
through untyped calls (for example, getString("CUSTOMER_NAME")). An untyped Mediator API is
useful if you do not know the data service to run at development time.

The Mediator API gives client applications full access to data services deployed on a WebLogic server.
The application can invoke read functions, get the results as Service Data Objects, and pass changes
back to the source. To use the Mediator API, a client program must first establish an initial context
with the server that hosts the data services. The client can then invoke data service queries and operate
on the results as Service Data Objects.

Lab 7.1 Running a Java Program Using the Untyped Mediator API

An untyped Mediator API is useful if, at development time, you do not know the data service to run.

Objectives

In this lab, you will:

 Add a Java project to your application.

 Add the method calls necessary to use the Mediator API.

 Review the results in the Output window and a standalone Java application.

Instructions

1. Add a Java project to your application by completing the following steps:

a. Right-click the Evaluation application folder.

b. Select Import Project.

c. Select Java Project.

d. Click Browse and navigate to
<beahome>\weblogic81\samples\liquiddata\EvalGuide.

e. Select DataServiceClient, click Open, and then click Import.

Figure 7-1 Importing Java Project

The Java project is added to the application, in the DataServiceClient folder. To use the Mediator API,
you need to add the method calls to instantiate the data service, invoke the getCustomerProfile()
method and assign the return value of the function to the CustomerProfileDocument SDO/XML bean.

Data Services Platform: Samples Tutorial 87

2. Open the DataServiceClient.java file, located in the DataServiceClient folder.

3. Insert the method calls necessary to use the Mediator API, by completing the following steps:

Note: The com.bea.ld.dsmediator.client API has been deprecated for the Data Service and
Data Service Factory functions. To work with Data Service and Data Service Factory functions, you
may need to change the import statement in Source View to import the
com.bea.dsp.dsmediator.client.DataService and
com.bea.dsp.dsmediator.client.DataServiceFactory APIs.

a. Locate the main method. You will see a declaration of the data service, a String params [], plus
the CustomerProfileDocument variable.

Figure 7-2 Java Source Code

b. Confirm that the String params [], which is an object array consisting of arguments to be passed
to the function, is set as follows:

 String params[] = {customer_id};

c. Construct a new data service instance, by modifying the DataService ds = null line. The Mediator
API provides a class called DataServiceFactory, which can be used to construct the new data
service instance. Using the newDataService method, you can pass in the initial JNDI context, the
application name, and the data service name as parameters. For example:

DataService ds = DataServiceFactory.newDataService(

getInitialContext(), // Initial Context

"Evaluation", // Application Name

"ld:DataServices/CustomerManagement/CustomerProfile" // Data Service Name

);

Note: You may need to remove “*” in the return type in the getCustomerProfile() function
inside the CustomerProfile data service.

d. Invoke the data service, by modifying the CustomerProfileDocument doc = null line, as shown in
the following code:

Data Services Platform: Samples Tutorial 88

CustomerProfileDocument[] doc = (CustomerProfileDocument[])
ds.invoke("getCustomerProfile",params);

e. Specify the first element of the customer profile array by changing the following code:

Customer customer = doc.getCustomerProfile().getCustomerArray(0);

to

Customer customer = doc[0].getCustomerProfile().getCustomerArray(0);

Note: In AquaLogic Data Services Platform 2.1, the automatic creation of Arrayof functions has
been deprecated. Ensure that you change the code line in the //Show Customer Data section as
follows:

Customer customer = doc[0].getCustomerProfile().getCustomerArray(0);

f. Review the inserted code and verify that it is similar to that displayed in Figure 7-3.

Figure 7-3 Untyped Mediator API Code Added

4. Review the code included in the //Show Customer Data and //Show Order Data sections. This code
will be used to retrieve customer information, all orders of that customer (order ID, order date, and
total amount) and the line items of each order (product ID, price and quantity). The code should be
similar to that displayed in Figure 7-4.

Data Services Platform: Samples Tutorial 89

Figure 7-4 Customer and Order Code

5. Click the Start icon (or press Ctrl + F5) to compile your program (if a Confirmation message
regarding debugging properties appears, then click OK). It may take a few moments to compile the
program.

Note: WebLogic Server must be running. Confirm that the program returns the specified results by
viewing the results in the Output window (if the Output window is not open, choose View →
Windows → Output).

Figure 7-5 Results: Output Window

6. (Optional) View the results in a standalone Java environment of your choice.

Note: To use the Mediator API outside of WebLogic Workshop, you need to add the following
files to your classpath:

 WebLogic Libraries:
%\bea\weblogic81\server\lib\weblogic.jar

 XML Bean:
%\bea\weblogic81\server\lib\xbean.jar

Data Services Platform: Samples Tutorial 90

 CustomerProfile classes:
%\bea\user_projects\applications\Evaluation\APP-
INF\lib\DataServices.jar

 DSP Server Libraries:
%\bea\weblogic81\liquiddata\lib\ld-server-core.jar

 DSP Client Libraries (including Mediator API):
%\bea\weblogic81\liquiddata\lib\ld-client.jar

 Service Data Object:
%\bea\weblogic81\liquiddata\lib\wlsdo.jar

Figure 7-6 Results: Standalone Java Environment

Data Services Platform: Samples Tutorial 91

Lab 7.2 Running a Java Program Using the Typed Mediator API

With the typed mediator interface, you instantiate a typed data service proxy in the client, instead of
using the generic data service interface. The typed data service interface may be easier to program and
it improves code readability.

In this lab, you will access data services from a Java client, using the typed SDO Mediator API. You
will be provided with a generated API for your data service, which lets you directly invoke the actual
functions as methods (for example, ds.getCustomerProfile(customer_id).

Objectives

In this lab, you will:

 Build your application as an EAR file.

 Build the SDO mediator client.

 Add the SDO mediator client’s generated JAR file to your libraries folder.

 Construct a DataServices instance and invoke the data service.

 View the results in the Output window.

 View the results in a standalone Java application.

Instructions

1. Build your application as an EAR file by completing the following steps:

a. Choose Tools → Application Properties and click Build.

b. In the Project build order section, place DataServices as the first project.

c. Clear the Project: DataServiceClient checkbox, because this is not required for the EAR file.

d. Click OK.

Figure 7-7 Project Build Order

2. Build the SDO Mediator Client, by completing the following steps:

Data Services Platform: Samples Tutorial 92

a. Right-click the Evaluation application and select Build Application from the pop-up menu.

b. Right-click the Evaluation application again and select Build SDO Mediator Client. A message
displays notifying you that an EAR file will be created.

c. Click Yes when asked whether you want to build an EAR file.

Note: This confirmation box appears only the first time you build the SDO Mediator Client. However,
to ensure that the latest EAR file is used while building the SDO Mediator Client, you must build the
EAR before you build the SDO Mediator Client.

d. Confirm that you see the following text in the Build window (if not open, choose View →
Windows → Build):

Generating SDO client API jar...

clean:

de-ear:

build:

[delete] Deleting: C:\bea\user_projects\applications\Evaluation\Evaluation-ld-
client.jar

[mkdir] Created dir: C:\Documents and Settings\jsmith\Local Settings\Temp\wlw-
temp-53911\sdo_compile42918\client\src

[java] May 2, 2006 6:41:26 PM com.bea.ld.context.MetadataContext getRepositoryRoot

[java] INFO: 30 (ms)

[java] May 2, 2006 6:41:27 PM com.bea.ld.wrappers.ws.JAXRPCWebserviceAdapter
<clinit>

[java] WARNING: Unable to instantiate ServiceFactory. Please ensure that
javax.xml.rpc.ServiceFactory property has been properly set.

[mkdir] Created dir: C:\Documents and Settings\jsmith\Local Settings\Temp\wlw-
temp-53911\sdo_compile42918\client\classes

[javac] Compiling 12 source files to C:\Documents and Settings\jsmith\Local
Settings\Temp\wlw-temp-53911\sdo_compile42918\client\classes

[jar] Updating jar: C:\bea\user_projects\applications\Evaluation\Evaluation-ld-
client.jar

all:

Importing SDO client API jar into application...

SDO client API jar available as
C:\bea\user_projects\applications\Evaluation\Evaluation-ld-client.jar

Note: The drive information may be different for your application.

3. Construct a new data service instance and invoke the data service, by completing the following
steps:

a. Open the DataServiceClient.java file.

b. Replace the declaration of the DataService and CustomerProfileDocument objects with the
following (modified code is displayed in boldface type):
CustomerProfile ds = CustomerProfile.getInstance(

getInitialContext(), // Initial Context

"Evaluation" // Application Name

);

CustomerProfileDocument[] doc = ds.getCustomerProfile(customer_id);

Data Services Platform: Samples Tutorial 93

Note: In the case of typed mediator APIs, you specify whether you are retrieving a single object or
an array based on the data service function declaration. In the preceding example, to retrieve a
single object in the output, the doc object is used instead of doc[0].

c. Click Alt + Enter and select dataservices.customermanagement.CustomerProfile. This imports
the specified element.

d. Edit getInitialContext () to suit your environment. Typically no changes are needed when
working through the tutorial on your local computer.

4. View the results in the Output window, by completing the following steps:

a. Click the Start icon (or press Ctrl + F5) to compile your program.

b. Click OK if a confirmation message asking if you would like to run DataServiceClient.

c. Confirm that the program return the specified results by viewing the results in the Output
window (if not open, choose View → Windows → Output).

Figure 7-8 Results—Output Window

5. (Optional) Run your program in a standalone Java application to list customer orders. Note that you
must add the generated file (the typed data-service proxy, Evaluation-ld-client.jar) to the classpath,
along with the other libraries listed for Lab 7.1, (optional) step 7.

Data Services Platform: Samples Tutorial 94

Figure 7-9 Results—Standalone Java Application

Lab 7.3 Resetting the Mediator API

After Lab 7.2, you must remove the Evaluation_ld-client.jar file from your Libraries folder
because this JAR file will create inconsistencies in future lessons. You must also revert the method
calls to use the Untyped Mediator API.

Objectives

In this lab, you will:

 Remove the Evaluation_ld-client.jar file from the Libraries folder.

 Revert the method calls to use the untyped Mediator API.

Instructions

1. Delete the Evaluation-ld-client.jar file by completing the following steps:

a. Expand the Libraries folder.

b. Right-click the Evaluation-ld-client.jar file.

c. Choose Delete from the pop-up menu.

d. Click Yes, when the confirmation message displays.

2. Revert the method calls to use the untyped mediator API, by completing the following steps:

a. Open the DataServiceClient.java file.

Data Services Platform: Samples Tutorial 95

b. Replace the declaration of the DataService and CustomerProfileDocument objects
with the following (modified code is displayed in bold):

DataService ds = DataServiceFactory.newDataService(

getInitialContext(), // Initial Context

"Evaluation", // Application Name

"ld:DataServices/CustomerManagement/CustomerProfile" // Data Service Name

);

CustomerProfileDocument[] doc = (CustomerProfileDocument[])

ds.invoke("getCustomerProfile", params);;

System.out.println("Connected to Liquid Data 8.2 : CustomerProfile Data Service
...");

Note: If your application name is different from Evaluation, locate “Evaluation” in the
newDataService() call and rename it to reflect the name of your application.

c. Remove the import CustomerProfile statement.

d. Save your work.

Lesson Summary

In this lesson, you learned how to:

 Set the classpath environment to use the SDO Mediator API.

 Use the untyped and typed SDO Mediator API to access data services from Java.

 Generate the specific client-side Mediator API for your data service.

Data Services Platform: Samples Tutorial 96

Lesson 8 Consuming Data Services Using WebLogic Workshop
Data Service Controls

A Data Service control provides WebLogic Workshop applications with easy access to data service
functions.

Objectives

After completing this lesson, you will be able to:

 Install the Data Service Control in your application.

 Create a Java page flow (.jpf) Web application file, using WebLogic Workshop.

Overview

A convenient way to quickly access DSP from a WebLogic Workshop application, such as page flows,
process definitions, portals, or Web services, is through the Data Service control.

The Data Service control is a wizard-generated Java file that exposes to WebLogic Workshop client
applications only those data service function that you choose. You can add functions to a control from
data services deployed on any WebLogic Server that is accessible to the client application, whether it
is on the same WebLogic Server as the client application or on a remote WebLogic Server.

If accessing data services on a remote server, information regarding the information that the service
functions return (in the form of XML schema files) are first downloaded from the remote server into
the current application. The schema files are placed in a schema project named after the remote
application. The directory structure within the project mirrors the directory structure of the remote
server.

When you create a Data Service control, WebLogic Workshop generates interface files for the target
schemas associated with the queries and then a Java Control Extension (.jcx) file. The .jcx file contains
the methods included from the data services when the control was created and a commented method
that, when uncommented, allows you to pass any XQuery statement to the server in the form of an ad-
hoc query.

Lab 8.1 Installing a Data Service Control

Data Service controls let you easily access data from page flows, process definitions, portals, or Web
services.

Objectives

In this lab, you will:

 Import a Web project that will be used to demonstrate Data Service control capabilities.

 Install a Data Service control.

Instructions

1. Right-click the Evaluation application folder.

2. Choose Import Project.

Data Services Platform: Samples Tutorial 97

3. Choose Web Project.

4. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide.

5. Select the CustomerManagementWebApp project and click Open.

6. Click Import, and then click Yes when asked whether you want to install project files.

7. Right-click the Evaluation application folder.

8. Choose Install → Controls → Data Service.

Note: The Data Service option will not display if you previously installed a Data Service control.

9. Expand the Libraries folder and confirm that the LiquidDataControl.jar file is installed.

Figure 8-1 Data Service Control

Lab 8.2 Defining the Data Service Control

1. Create a new folder in the CustomerManagementWebApp Web project, and name it controls.

2. Define a new Java control as a Data Service control by completing the following steps:

a. Right-click the controls folder.

b. Choose New → Java Control.

c. Select Data Service.

d. Enter CustomerData in the File name field.

e. Click Next.

Figure 8-2 Creating a New Java Control

Data Services Platform: Samples Tutorial 98

f. In the New Java Control – Data Service dialog box, click Create.

Note: Do not change any default settings.

Figure 8-3 Creating a New Data Service Control

g. In the Select Data Service Functions box, expand the CustomerManagement and then the
CustomerProfile.ds folders.

h. Select getCustomerProfile().

i. Press Ctrl.

j. Select submitCustomerProfile().

k. Click Add and then click Finish.

Figure 8-4 Selecting Functions for the Data Service Control

It will take a few moments for the project to compile. After compilation, you should see a Java-based
Data Service Control called CustomerData.jcx, with the following signatures:

 getCustomerProfile() is a data service read function.

 submitCustomerProfile() is a submit function for all the changes (inserts, updates, and deletes)
done to the customer profile and persisting the data to the data sources involved.

Data Services Platform: Samples Tutorial 99

Note: You can use the data service control that you define as any WebLogic Workshop control in a
workflow, a JPF, or a portal.

Lesson Summary

In this lesson, you learned how to:

 Install the Data Service Control in your application.

 Create a Data Service Control for a Web project, and then add functions from your data service into
the Data Service Control.

Data Services Platform: Samples Tutorial 100

Lesson 9 Accessing Data Service Functions Through Web
Services

A Data Service Control can be used to access data through a page flow, Web service, or business logic.
In the previous lesson, you created a Data Service Control and used it within a Web application’s page
flow. In this lesson, you will use that same Data Service Control to generate a .wsdl for a Web service
that can invoke data service functions.

Objectives

After completing this lesson, you will be able to:

 Use a Data Service Control to generate a Web service for a data service.

 Test the generated Web service and invoke data service functions through the Web service
interface.

 Generate a .wsdl file for Web service clients.

Overview

A Web service is a set of functions packaged into a single entity that is available to other systems on a
network. The network can be a corporate intranet or the Internet. Other systems can call these
functions to request data or perform an operation.

Web services are a useful way to provide data to an array of consumers over the Internet, like stock
quotes and weather reports. But they take on a new power in the enterprise, where they offer a flexible
solution for integrating distributed systems, whether legacy systems or new technology.

Lab 9.1 Generating a Web Service from a Data Service Control

In the previous lesson, you created a Data Service Control, which enabled WebLogic Workshop to
generate a Java Control Extension (.jcx) file. This file contains the underlying data service’s method
calls. In this lab, you will use that Data Service Control to generate a Web service.

Objectives

In this lab, you will:

 Generate a stateless Web service interface, through which you can access the Data Service Control.

 Test the Web service to determine that it returns customer profile and order information.

Instructions

1. Expand the CustomerManagementWebApp and controls folders.

2. Right-click the CustomerData.jcx control.

3. Choose Generate Test JWS (Stateless). A new file, CustomerDataTest.jws, is generated. With this
Java Web Service (.jws) file, the Data Service Control methods are now available through a Web
service interface.

Data Services Platform: Samples Tutorial 101

Figure 9-1 Java Web Service File

4. Open the CustomerDataTest.jws file in Source View.

5. Click the Start icon (or press Ctrl+F5). Workshop Test Browser opens.

6. Enter CUSTOMER3 in the string CUSTOMER ID field.

Figure 9-2 Workshop Test Browser: Web Service

7. Click getCustomerProfile. The customer profile and order information for Customer 3 is retrieved.

8. View both the "Returned from" and "Service Response" results, which should be similar to that
displayed in Figure 9-3.

Data Services Platform: Samples Tutorial 102

Figure 9-3 Web Service Test Results

9. Close Workshop Test Browser.

Lab 9.2 Using a Data Service Control to Generate a WSDL for a Web Service

You can use the Java Web Service file to generate a WSDL. A WSDL file contains all of the
information necessary for a client to invoke the methods of a Web service:

 The data types used as method parameters or return values.

 The individual methods names and signatures (WSDL refers to methods as operations).

 The protocols and message formats allowed for each method.

 The URLs used to access the Web service.

Objectives

In this lab, you will:

 Generate a .wsdl file, based on the Data Service Control.

 (Optional) View the .wsdl file’s structure and source code.

Instructions

1. Right-click the CustomerDataTest.jws control.

2. Choose Generate WSDL File. The CustomerDataTestContract.wsdl is generated, which can be
used by other Web service clients.

Data Services Platform: Samples Tutorial 103

Figure 9-4 New WSDL File

3. (Optional) Open the CustomerDataTestContract.wsdl file and explore the document structure and
source code.

Figure 9-5 Document Structure

Data Services Platform: Samples Tutorial 104

Lesson Summary

In this lesson, you learned how to:

 Use a Data Service Control to generate a Web service for a data service.

 Test the generated Web service and invoke data service functions through the Web service
interface.

 Generate a .wsdl file for Web service clients.

Data Services Platform: Samples Tutorial 105

Lesson 10 Updating Data Services Using Java
One of the features introduced with Data Services Platform (DSP) is the ability to write data back to
the underlying data sources. This write service is built on top of the Service Data Object (SDO)
specification, and provides the ability to update, insert, and delete results returned by a data service. It
also provides the ability to submit all changes to the SDO (inserts, deletes, and updates) to the
underlying data sources for persisting.

Objectives

After completing this lesson, you will be able to:

 Update, add to, and delete data from data service objects.

 Submit changes to the underlying data sources, using the Mediator API.

Overview

When you update, add, or delete from data service objects, all changes are logged in the SDO’s change
summary. When the change is submitted, items indicated in the Change Summary log are applied in a
transactionally-safe manner, and then persisted to the underlying data source. Changes to relational
data sources are automatically applied, while changes to other data services, such as Web services and
portals, are applied using a DSP update framework.

Lab 10.1 Modifying and Saving Changes to the Underlying Data Source

Although the steps in the next three labs are different, the underlying principle is the same: When you
update, add, or delete from data service objects, all changes are logged in the SDO’s change summary.
When the change is submitted, items indicated in the Change Summary log are applied in a
transactionally-safe manner, and then persisted to the underlying data source. Changes to relational
data sources are automatically applied, while changes to other data services, such as Web services and
portals, are applied using a DSP update framework.

Objectives

In this lab, you will:

 Modify customer data and save the changes to the SDO Change Summary log.

 View the results in the Output window.

 Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

 Verify the results in Test View.

Data Services Platform: Samples Tutorial 106

Instructions

1. Open the DataServiceClient.java file, located in the DataServiceClient project folder.

2. Change the first and last name of CUSTOMER3 from Brett Pierce to Joe Smith, by using the set()
methods of the Customer data object instance. You do this by adding the set() method to the //Show
Customer Data section (new code is displayed in boldface type):

Customer customer = doc[0].getCustomerProfile().getCustomerArray(0);

customer.setLastName("Smith");

customer.setFirstName("Joe");

System.out.println("Customer Name : " + customer.getLastName() +
", " + customer.getFirstName());

Note: The Arrayof function has been deprecated. Ensure that you modify
doc.getCustomerProfile().getCustomerArray(0) to
doc[0].getCustomerProfile().getCustomerArray(0):

Figure 10-1set() Method Specified

3. Save your work.

4. Right-click the DataServiceClient project folder and choose Build DataServiceClient.

5. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).

6. Confirm that the changes were submitted, by viewing the results in the Output window. (If the
window is not open, choose View → Windows → Output.)

Note: At this point, the changes only exist as entries in the SDO Change Summary Log, not in the data
source. You must complete the remaining steps in this lab to ensure that the underlying data source is
updated.

Data Services Platform: Samples Tutorial 107

Figure 10-2 Change Results in Output Window

7. Invoke the Mediator API’s submit() method and save the changes to the data source, by using the
data service instance. The submit() method takes two parameters: the document to submit and the
data service name. You do this by adding the following code into the //Show Customer Data
section of the file:

ds.submit(doc);

8. Change the output code, as follows:
System.out.println("Change Submitted");

Figure 10-3 submit() and Output Method Specified

9. Open DataServices\CustomerManagement\ CustomerProfile.ds in TestView.

10. Enter CUSTOMER3 in the xs:string CustomerID field.

11. Click Execute. The result should change the customer name to Smith Joe.

Lab 10.2 Inserting New Data to the Underlying Data Source Using Java

You can use the Mediator API to add new information to the underlying data source, thereby reducing
the need to know a variety of data source APIs.

Objectives

In this lab, you will:

 Add new data and save the changes to the SDO Change Summary log.

Data Services Platform: Samples Tutorial 108

 Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

 Verify the results in Test View.

Instructions

1. In WebLogic Workshop open the DataServiceClient.java file.

2. Add a new item to ORDER_3_0 (the first order placed by CUSTOMER3), by using the
addNewOrderLine()method of the Order Item data object instance. You do this by inserting the
following code into the //Show Customer Data section, after System.out.println("Change
Submitted"):

 // Get the order

 Order myorder = customer.getOrders().getOrderArray(0);

 // Create a new order item

 OrderLine newitem = myorder.addNewOrderLine();

3. Set the values of the new order item, including values for all required columns. (You can check the
physical or logical .xsd file to determine what elements are required.) All foreign keys must be
valid; therefore, use APPA_GL_3 as the Product ID.

You do not need to setOrderID(); the SDO update will automatically set the foreign key to match
its parent because the item will be added as a child of ORDER_3_0.

To set the values, insert the following code above the //Show Order Data section of the Java file:
// Fill the values of the new order item

 newitem.setLineId("8");

 newitem.setProductId("APPA_GL_3");

 newitem.setProduct("Shirt");

 newitem.setQuantity(new BigDecimal(10));

 newitem.setPrice(new BigDecimal(10));

 newitem.setStatus("OPEN");

4. Press Alt + Enter to enable java.math.BigDecimal.

5. Invoke the Mediator API’s submit method and save the changes to the data source, by using the
data service instance. (The submit() method takes: the document to submit as a parameter)

You do this by inserting the following code before the //Show Order Data section of the java file:
// Submit new order item

 ds.submit(doc, "ld:DataServices/CustomerManagement/CustomerProfile.ds");

 System.out.println("Change Submitted");

6. Comment out the code where customer first name and last name were set, including call to submit
method

7. Confirm that the //Show Customer Data section of your java file is as displayed in Figure 10-4.

Data Services Platform: Samples Tutorial 109

Figure 10-4Java Code to Add Line Item

8. Open DataServices\CustomerManagement\ CustomerProfile.ds in TestView.

9. Enter CUSTOMER3 in the xs:string CustomerID field.

10. Click Execute. The result should contain the new order information.

Lab 10.3 Deleting Data from the Underlying Data Source Using Java

You can use the Mediator API to delete information to the underlying data source, thereby reducing
the need to know a variety of data source APIs.

Objectives

In this lab, you will:

 Delete data and save the changes to the SDO Change Summary log.

 Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

 Verify the results in Test View.

Instructions

1. In Workshop Test Browser, determine the new item’s placement in the array and subtract 1. For
example, if line item with line_id = 8 is the fifth item for ORDER_3_0, its order placement is 4.

2. Close Workshop Test Browser.

3. In the DataServicesClient.java file delete or comment out the code that added a new order
line item.

4. Add an instance of the item that you want to delete, by inserting the following code file:
// Get the order item

 OrderLine myItem = customer.getOrders().getOrderArray(0).getOrderLineArray(4);

Note: The getOrderLineArray() is based on the item’s placement in the array. In this case, 8 is the
fifth item, making the variable 4. You should use the variable that is correct for your situation.

5. Call the delete method by inserting the following code:
// Delete the order item

Data Services Platform: Samples Tutorial 110

myItem.delete();

6. Submit the changes, using the Mediator API’s submit() method.
// Submit delete order item

" ds.submit(doc,);

 System.out.println("Change Submitted");

7. Confirm that the code is as displayed in Figure 10-5.

Figure 10-5 Java Code to Delete Line Item

8. Build the DataServiceClient project.

9. Open DataServices\CustomerManagement\ CustomerProfile.ds in TestView.

10. Enter CUSTOMER3 in the xs:string CustomerID field.

11. Click Execute. Note that the fourth order item has been deleted.

Lesson Summary

In this lesson, you learned how to:

 Update, add to, and delete data from data service objects.

 Submit changes to the underlying data sources, using the Mediator API.

Data Services Platform: Samples Tutorial 111

Lesson 11 Filtering, Sorting, and Truncating XML Data
When designing your data service, you can specify read functions that filter data service return values.
However, instead of trying to create a read function for every possible client requirement, you can
create generalized read functions to which client applications can apply custom filtering or ordering
criteria at runtime.

Objectives

After completing this lesson, you will be able to:

 Use the FilterXQuery class to create dynamic filter, sort, and truncate data service results.

 Apply the FilterXQuery class to a data service, using the Mediator API or Data Service Control.

Overview

Data users often want to access information in ways that are not anticipated in the design of a data
service. The filtering and ordering API allow client applications to control what data is returned by a
data service read function call based on conditions specified at runtime.

Although you can specify read functions that filter data service return values, it may be difficult to
anticipate all the ways that client applications may want to filter return values. To deal with this
contingency, DSP lets client applications specify dynamic filtering, sorting, and truncating criteria
against the data service. These criteria are evaluated on the Server, before being transmitted on the
network, thereby reducing the data set results to items matching the criteria. Where possible, these
instances are “pushed down” to the underlying data source, thereby reducing the data set returned to
the user.

The advantage of the FilterXQuery class is that you can define client-side filtering operations, without
modifying or re-deploying your data services.

Lab 11.1 Filtering Data Service Results

With the FilterXQuery class addFilter() method, filtering criteria are specified as Boolean condition
statements (for example, ORDER_AMOUNT > 1000). Only items that meet the condition are included
in the return set.

The addFilter() method also lets you create compound filters that provide significant flexibility, given
the hierarchical structure of the data service return type. In other words, given a condition on a nested
element, compound filters let you control the effects of the condition in relation to the parent element.

For example, consider a multi-level data hierarchy for CUSTOMERS/CUSTOMER/ORDER, in which
CUSTOMERS is the top level document element, and CUSTOMER and ORDER are sequences within
CUSTOMERS and CUSTOMER respectively. Finally, ORDER_AMOUNT is an element within
ORDER.

An ORDER_AMOUNT condition (for example, CUSTOMER/ORDER/ORDER_AMOUNT > 1000)
can affect what values are returned in several ways:

 It can cause all CUSTOMER objects to be returned, but filter ORDERS that have an amount less
than 1000.

 It can cause only CUSTOMER objects to be returned that have at least one large order. All
ORDER objects are returned for every CUSTOMER.

Data Services Platform: Samples Tutorial 112

 It can cause only CUSTOMER objects to be returned that have at least one large order along with
only large ORDER objects.

 It can cause only CUSTOMER objects to be returned for which every ORDER is greater than
1000.

Instead of writing XQuery functions for each case, you just pass the filter object as a parameter when
executing a data service function, either using the Data Service Control or Mediator API.

Objectives

In this lab, you will:

 Import the FilterXQuery class, which enables filtering, truncating, and sorting of data.

 Add a condition filter.

 View the results through the Mediator API.

Instructions

1. Open the DataServiceClient.java file.

2. Delete the code that removed the line item with line_id = 8 order item delete code.

3. Delete the invoke and println code from the //Insert Code section:
CustomerProfileDocument[] doc = (CustomerProfileDocument[])
ds.invoke("getCustomerProfile",params);

System.out.println("Connected to Liquid Data 8.2 : CustomerProfile
Data Service ...");

4. Import the FilterXQuery class by adding the following code:
import com.bea.ld.filter.FilterXQuery;

5. Create a filter instance of the FilterXQuery, plus specify a condition to filter orders greater than
$1,000, by adding the following code:

//Create a filter and condition

FilterXQuery filter = new FilterXQuery();

filter.addFilter(

"CustomerProfile/customer/orders/order",
"CustomerProfile/customer/orders/order/total_order_amount",

">", "1000");

6. Apply the filter to the data service, by adding the following code:

// Apply the filter

 RequestConfig config = new RequestConfig();

 config.setFilter(filter);

 CustomerProfileDocument doc[] = (CustomerProfileDocument[])
ds.invoke("getCustomerProfile",params, config);

7. Change the //Show Customer Data code so that it is as follows:

Data Services Platform: Samples Tutorial 113

// Show Customer Data

 System.out.println("======================= Customers =====================");

 Customer customer = doc[0].getCustomerProfile().getCustomerArray(0);

 System.out.println("Connected to Liquid Data 8.2 : CustomerProfile Data
Service ...");

Figure 11-1 Filter Code

8. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).

9. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The return results should be similar to those displayed in Figure 11-2.

Figure 11-2 Filtered Data Results

Data Services Platform: Samples Tutorial 114

Lab 11.2 Sorting Data Service Results

With the FilterXQuery class sortfilter.addOrderBy() method, you can specify criteria for organizing the
data service return results. For example, to sort the order amount results in ascending order, you would
use a sort condition similar to the following:

("CustomerProfile/customer/orders/order","total_order_amount",

FilterXQuery.ASCENDING);

Objectives

In this lab, you will:

 Add a sort condition.

 View the results using the Mediator API.

Instructions

1. Open the DataServiceClient.java file.

2. Create a sort instance of the FilterXQuery, by adding the following code before the //Apply Filter
section:

// Create a sort

FilterXQuery sortfilter = new FilterXQuery();

3. Add a sort condition, using the addOrderBy() method, to sort orders based on total_order_amount
(ascending) as shown:

sortfilter.addOrderBy(

"CustomerProfile/customer/orders/order",

"total_order_amount",

FilterXQuery.ASCENDING);

4. Apply the sort filter to the data service by adding the following code:
// Apply the sort

filter.setOrderByList(sortfilter.getOrderByList());

Figure 11-3Sort Code

5. Click the Start icon (or press Ctrl + F5) for the DataServiceClient.java file.

Data Services Platform: Samples Tutorial 115

6. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The data results should be similar to those displayed in Figure 11-4.

Figure 11-4 Filtered and Sorted Data Results

Data Services Platform: Samples Tutorial 116

Lab 11.3 Truncating Data Service Results

The FilterXQuery class also provides the filter.setLimit() method, which lets you limit the number of
return results. For example, to limit the return results to two line items, you would use a truncate
condition similar to the following:

("CustomerProfile/customer/orders/order/order_line",”2”);

The filter.setLimit method is based on the following:

public void setLimit(java.lang.String appliesTo, String max)

Objectives

In this lab, you will:

 Truncate the data result set.

 View the results using the Mediator API.

Instructions

1. Open the DataServiceClient.java file.

2. Add a truncate condition, using the setLimit() method to limit the result set to a maximum of two
order lines for each order, as shown:

// Truncate result set

 filter.setLimit("CustomerProfile/customer/orders/order/order_line",”2”);

Figure 11-5 Truncate Code

3. Click the Start icon (or press Ctrl + F5) for the DataServiceClient.java file.

4. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The data results should be similar to those displayed in Figure 11-6.

Data Services Platform: Samples Tutorial 117

Figure 11-6 Truncated Result Set

Lesson Summary

In this lesson, you learned how to:

 Use the FilterXQuery class to filter, sort, and truncate data service results.

 Apply the FilterXQuery class to a data service, using the Mediator API or Data Service Control.

Data Services Platform: Samples Tutorial 118

Lesson 12 Consuming Data Services through JDBC/SQL
Data Services Platform JDBC driver gives JDBC clients read-only access to the information supplied
by data services. With the Data Services Platform JDBC driver, DSP acts as a virtual database. The
driver allows you to invoke data service functions from any JDBC client, from custom Java
applications to database, and from reporting tools, including Crystal Reports.

Objectives

After completing this lesson, you will be able to:

 Access DSP via JDBC.

 Integrate a Crystal Report file, populated by DSP, into your Web application.

Overview

Data services built into DSP can be accessed using a Data Services Platform JDBC driver, which
provides access to the DSP-enabled Server via JDBC APIs. With this functionality, JDBC clients—
including business intelligence and reporting tools such as Business Objects and Crystal Reports—are
granted read-only access to the information supplied by DSP services. The main features of the Data
Services Platform JDBC driver are:

 Supports most SQL-92 SELECT statements.

 Provides error handling; if an error is detected in SQL query, then the error will be reported along
with an error code.

 Performs metadata validation; the translator checks SQL syntax and validates it against the data
service schema.

When communicating with DSP via a JDBC/ODBC interface, standard SQL-92 query language is
supported. The Data Services Platform JDBC driver implements components of the java.sql.*
interface, as specified in JDK 1.4x.

Note: The Data Services Platform JDBC driver needs to be in your computer’s CLASSPATH variable
within System variables:

 $BEA_HOME\weblogic81\liquiddata\lib\ldjdbc.jar

Data Services Platform: Samples Tutorial 119

Lab 12.1 Running DBVisualizer

WebLogic Platform includes DBVisualizer, which is a third-party database tool designed to simplify
database development and management.

Before you start:

 The Data Services Platform JDBC driver needs to be in your computer’s CLASSPATH variable:

$BEA_HOME\weblogic81\liquiddata\lib\ldjdbc.jar

 The WebLogic Server needs to be running.

 Make sure that your Evaluation application is deployed correctly to WebLogic Server.

Objectives

In this lab, you will:

 Create a database connection that enables DBVisualizer to access your Evaluation application as if
it were a database.

 Use DBVisualizer to explore your Evaluation application.

Instructions

1. Choose Start → Programs → BEA WebLogic Platform8.1 → Other Development Tools →
DBVisualizer. The DBVisualizer tool opens.

Figure 12-1 DBVisualizer Interface

2. Choose Database → Add Database Connection.

3. Select the JDBC Driver tab from the Connection Data section.

4. Enter the following parameters:

 Connection Alias: LD

 JDBC Driver: com.bea.ld.jdbc.LiquidDataJDBCDriver

 Database URL: jdbc:ld@localhost:7001:Evaluation

 Userid: weblogic

 Password: weblogic

Data Services Platform: Samples Tutorial 120

5. Click Connect.

Figure 12-2 New Database Connection Parameters

6. Use DBVisualizer to explore your DSP application as if it were a database. Data service projects
display as database schemas. Functions within a project display as a database view; functions with
parameters display as database functions.

7. Select a tab (Database Info, Data Types, Table Types, Tables, and References) to view that
category of information for all data services within your application. For example, selecting the
Tables tab displays each data service as a table.

Figure 12-3 Tables

8. Double-click an element to view the values for a specific data service. For example, double-
clicking the DataServices~CustomerDB element from the Table Schema column displays that data
services values.

Data Services Platform: Samples Tutorial 121

Figure 12-4 Table Column Values

Lab 12.2 Integrating Crystal Reports and Data Services Platform

The Data Services Platform JDBC driver makes data services accessible from business intelligence and
reporting tools, such as Crystal Reports, Business Objects, Cognos, and so on. In this lab, you will
learn how to use the Date Service Platform JDBC driver in conjunction with Crystal Reports. (For
ODBC applications, you can use JDBC to ODBC Bridge Drivers provided by vendors such as
OpenLink, available as of this writing at http://www.openlinksw.com.)

Objectives

In this lab, you will:

 Install Crystal Reports View in a Web application.

 Import a saved Crystal Report file and JSP into the Web application.

 View the report from the Web application.

Instructions

1. Install Crystal Reports Viewer in the CustomerManagementWebApp by completing the following
steps:

a. Right-click CustomerManagementWebApp.

b. Choose Install → Crystal Reports.

2. Import a saved Crystal Reports file and JSP that displays the report by completing the following
steps:

a. Right-click CustomerManagementWebApp.

b. Choose Import.

c. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide and select
the SpendByCustomers.rpt and showCrystal.jsp files:

d. Click Import. You should see showCrystal.jsp and SpendByCustomers.rpt files
within CustomerManagementWebApp.

e. Right-click the CustomerPageFlow folder.

f. Choose Import.

g. Select index.jsp, located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide.

http://www.openlinksw.com/

Data Services Platform: Samples Tutorial 122

h. Click Import and choose Yes when asked if you want to overwrite the existing
index.jsp file.

3. Open CustomerPageFlowController.jpf, located in
CustomerManagementWebApp\CustomerPageFlow.

4. Click the Start icon (or press Ctrl + F5) to run Workshop Test Browser.

5. In Workshop Test Browser, click Customer Report to test the report. The first invocation may take
time to display.

Figure 12-5 Crystal Report

Lab 12.3 (Optional) Configuring JDBC Access through Crystal Reports

Crystal Reports 10.0 comes with a direct JDBC interface, which can be used to interact with the Data
Services Platform JDBC driver.

Objectives

In this lab, you will:

 Install Crystal Reports software, JDBC driver, and Java server files.

 Add environment variables.

 Create a new JDBC data source in Crystal Reports.

Instructions

1. Install the Crystal Reports software, per the vendor’s installation instructions.

2. Install the JDBC driver files and Java Server, available from Crystal Reports.

Data Services Platform: Samples Tutorial 123

You can download the files from:
http://www.businessobjects.com/products/downloadcenter/ceprofessional.asp

3. Select Windows JDBC, XML and DB@ Unicode—all languages.

4. Navigate to where you installed the driver and server files.

5. Add the JAVA_HOME variable to your environment variable. For example:
JAVA_HOME=C:\j2sdk1.4.2_06

where

C:\j2sdk1.4.2_06

identifies the Java SDK location on your computer.

6. Make sure that the jvm.dll is in the path variable for your computer. For example:
$BEA_HOME\jdk142_04\jre\bin\server

7. Open CRDB_JavaServer.ini and make the following changes:

 Move $classpath to the beginning of the line. It should be like this:
CLASSPATH = ${CLASSPATH};C:\Program Files\Common Files\Crystal
Decisions\2.5\bin\CRDBJavaServer.jar;C:\Program Files\Common
Files\Crystal Decisions\2.5\java\lib\external\CRDBXMLExternal.jar

 Modify the following entries:

 JDBCUserName = weblogic

 JDBCDriverName = com.bea.ld.jdbc.LiquidDataJDBCDriver

 GenericJDBCDriverBehavior = SQLServer

8. Create a new JDBC data source in Crystal Reports, by providing the following parameters:

 JDBC Driver: com.bea.ld.jdbc.LiquidDataJDBCDriver

 URL string: jdbc:ld@localhost:7001:Evaluation

 Provide a user name and password

9. Login to Crystal Reports. Once authenticated, Crystal Reports will show you a view of the
Evaluation application.

Lesson Summary

In this lesson, you learned how to:

 Access DSP via JDBC.

 Integrate a Crystal Reports file, populated by DSP, into your Web application.

http://www.businessobjects.com/products/downloadcenter/ceprofessional.asp

Data Services Platform: Samples Tutorial 124

Lesson 13 Consuming Data via Streaming API
Streaming API allows developers to retrieve Data Services Platform (DSP) results in a streaming
fashion.

Objectives

After completing this lesson, you will be able to:

 Stream results returned from AquaLogic Data Services Platform into a flat file.

 Test the results.

Overview

There are situations where you need to extract large amounts of data from operational systems using
DSP. For those cases, DSP provides a data streaming API. Large data sets can be retrieved to
application in a streaming fashion or be streamed directly to a file on server. All security enforcements
previously defined will still be relevant in case of the streaming API.

When working with streaming API keep the following things in mind:

 The ability to get results as streams will be only available on the Server; there will not be any
client-server support for this API.

 Only the Generic Data Service Interface is available for getting streaming results.

Lab 13.1 Stream results into a flat file

Objectives

In this lab, you will:

 Create a new function that streams CustomerProfile information into a flat file.

 Import a new jsp file to access a streaming function.

 Test streaming data into a file.

Instructions

1. Import new index page into your application

a. Right-click CustomerPageFlow located in CustomerManagementWebApp.

b. Choose Import.

c. Navigate to
<beahome>\weblogic81\samples\LiquidData\EvalGuide\Streaming.

d. Select index.jsp as the page to be imported.

e. Click on Import button.

f. Open index.jsp and verify that you have a new link called “Export All Data”.

2. Insert streaming function into your page flow

Data Services Platform: Samples Tutorial 125

a. Open CustomerPageFlowController.jpf located in
CustomerManagementWebApp\ CustomerPageFlow

b. Go to Source View.

c. Add two additional methods into the page flow.

d. Open Streaming.txt file located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide\Streaming.

e. Copy and paste both functions found in Streaming.txt file immediately after method
submitChanges() in the CustomerPageFlowController.jpf java page flow.

f. Press four times the key combination of Alt + Enter keys to import missing packages or
type the following in import section of page flow:

import com.bea.ld.dsmediator.client.StreamingDataService;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import com.bea.ld.dsmediator.client.DataServiceFactory;

import weblogic.jndi.Environment;

Note: If your application name is different from “Evaluation”, locate “Evaluation” in
newStreamingDataService method and rename it to reflect the name of your application.

g. Save your changes.

3. Start your CustomerPageFlowController.jpf

4. Once the application is started, click the Export All Data link

5. Verify that data is exported successfully by opening customerexport.txt, located in:

<BEAHOME>\weblogic81\samples\domains\ldplatform

Lab 13.2 Consume data in streaming fashion

Objectives

In this lab, you will:

 Import a new version of CustomerPageFlow.

 Instantiate a new Streaming Data Service.

 Retrieve results into XMLInputStream object by calling getCustomerProfile function.

 Test fetching data from DSP in a streaming fashion.

Instructions

1) Import a new folder into your application

a. Right-click CustomerManagementWebApp located in your Evaluation application.

b. Choose Import.

c. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide.

d. Select CustomerPageFlowStream folder to be imported.

e. Click Import.

Data Services Platform: Samples Tutorial 126

f. Open CustomerPageFlowController.jpf file in Source View.

g. Locate stream method and the following comments:

//instantiate and initialize your streaming data service here

h. Add the following code:

com.bea.dsp.dsmediator.client.StreamingDataService sds = null;

 //instantiate and initialize your streaming data service here

 sds =
com.bea.dsp.dsmediator.client.DataServiceFactory.newStreamingData
Service(getInitialContext(), "Evaluation",
"ld:DataServices/CustomerManagement/CustomerProfile");

i. The DataServiceFactory class contains a method to create a streaming data service.

j. Replace stream = null with following code:

stream = sds.invoke("getCustomerProfile", new String[]{"CUSTOMER3"});

For reference, your code should look similar to that shown below:

Figure 13-1 Instantiating and Initializing Streaming Data

k. Test running your CustomerPageFlowController.jpf. You can use CUSTOMER3 as a
parameter to retrieve results. This time, data is fetched in streaming fashion as shown in
Figure 13-2.

Figure 13-2 Data in Streaming Format

Data Services Platform: Samples Tutorial 127

Lesson Summary

In this lesson, you learned to:

 Stream results returned from AquaLogic Data Services Platform into a flat file.

 Test the results.

Data Services Platform: Samples Tutorial 128

Lesson 14 Managing Data Service Metadata
DSP uses a set of descriptors (or metadata) to provide information about data services. The metadata
describes the data services: what information they provide and where the information derives from
(that is, its lineage). In addition to documenting services for potential consumers, metadata helps
administrators determine what services are affected when inevitable changes occur in the data source
layer. If a database changes, you can easily tell which data services are affected by the change.

Objectives

After completing this lesson, you will be able to:

 Synchronize physical data service metadata with changes made to the physical data source.

 Analyze impacts and dependencies.

 Create custom metadata for a logical data service.

Overview

DSP metadata information is stored as annotations at the data service and function levels. The
metadata is openly structured as XML fragments for easy export and import. At deployment time, the
metadata is incorporated into a compiled data service, and then deployed as part of the data service
application in WebLogic Server.

Stored metadata includes:

Physical data service metadata:

 Relational data source, type, and version

 Column names, native data types, size, and scale

 XML schema types

 Web service WSDL URI

User-defined metadata:

 Description

 Custom properties at the data service level

 Custom properties at the function level

 Relationships created through data modeling

The Data Services Platform Console lets you access metadata stored within the DSP metadata
repository. The DSP Console supports the following functionality:

 Searching the metadata repository

 Exploring where and how a given data service or function is consumed

 Analyzing data service lineage and dependencies (all data service objects dependent on a given
data service)

Imported physical data service metadata can be re-synchronized to capture changes at the data source.

Data Services Platform: Samples Tutorial 129

Lab 14.1 Defining Customized Metadata for a Logical Data Service

There may be times when you need to modify the generated metadata descriptions to provide more
detailed information to others who will be working with the data service.

Objectives

In this lab, you will:

 Create customized metadata for the CustomerProfile logical data service, at both the data service
and function levels.

 Build the DataServices project to enable persistence of the new metadata.

Instructions

1. Add customized metadata at the data service level, by completing the following steps:

a. Open CustomerProfile.ds in Design View. The file is located in the
DataServices\CustomerManagement.

b. Click the data service header to open the Property Editor at the data service level. If the
Property Editor is not open, choose View → Windows → Property Editor, or press Alt + 6.

c. In Property Editor, click the Description field, located in the General section. This activates
the Description field.

d. Click the "…" icon for the Description field. The Property Text Editor opens.

e. In Property Text Editor, enter the following text:

Unified Customer Profile View – contains CRM, order information, credit rating, and valuation
information.

f. Click OK. The specified text is added to the Description field.

Figure 14-1 Property Text Editor

g. In Property Editor, click the + icon for the User-Defined Properties section.

h. Click the + icon for the Property(1) field. This activates the Property(1) field.

i. Add a user-defined property, using the following values:

 Name = Owner

 Value = <your name>

Data Services Platform: Samples Tutorial 130

Figure 14-2 User-Defined Property for a Logical Data Service

2. Add customized metadata at the function level, by completing the following steps:

a. In Design View, click the getCustomerProfile() function arrow to open that function’s
Property Editor.

Note: Do not click the function, which will open XQuery Editor View.

b. In Property Editor, click the + icon, located in the User-Defined Properties section.

c. Add a user-defined property, using the following values:

 Name = Notes

 Value = This function is consumed by the Customer Management Portal.

Figure 14-3 User-Defined Property for a Function

3. Save the file.

4. Build the DataServices project.

Data Services Platform: Samples Tutorial 131

Lab 14.2 Viewing Data Service Metadata Using the DSP Console

All data service metadata, whether automatically generated or user-defined, can be viewed using the
DSP Console.

Objectives

In this lab, you will:

 Use the DSP Console to view both generated and customized metadata.

 Use the console’s Search feature to locate metadata for a specific data service.

Instructions

1. Open the DSP Console, typically located at http://localhost:7001/ldconsole/.

Note: WebLogic Server must be running.

2. Log in using the following credentials:

 User = weblogic

 Password = weblogic

3. Open the CustomerProfile data service, located in
ldplatform\Evaluation\DataServices\CustomerManagement using the left-hand menu.

Figure 14-4 DSP Console

4. Click the Properties tab and verify that user-defined properties for the data service display. The
property should be similar to that displayed in Figure 14-5, except that it will be your name in the
Value field.

http://localhost:7001/ldconsole/

Data Services Platform: Samples Tutorial 132

Figure 14-5 CustomerProfile Properties Metadata

5. Explore the CustomerProfile data service metadata by completing the following steps:

a. Select the Read Functions tab.

b. Click getCustomerProfile().

c. Click the Properties tab. The Note that you created for getCustomerProfile() should be visible.

Figure 14-6 Metadata—Read Function Properties

d. (Optional) Select the Return Type, Relationships, Properties, and Where Used tabs to view
other metadata.

6. Search the DataServices folder for metadata by completing the following steps:

a. Right-click the Evaluation folder and click Search (A search can be on data service name,
function name, description, or return type.)

b.

c. Enter CustomerProfile in the Data Service Name search box and click Search. The data
service name, path, and type of data service are displayed for the CustomerProfile data
service. Clicking the data service name displays the Admin page for the data service.

Data Services Platform: Samples Tutorial 133

Figure 14-7 Search Results

Lab 14.3 Synching a Data Service with Underlying Data Source Tables

Sometimes the underlying data source changes; for example, a new table is added to a database. For
those inevitable situations, DSP provides an easy way to update a data service.

Objectives

In this lab, you will:

 Import a Java project that contains additional CUSTOMER_ORDER database columns.

 Synchronize the information in the Java project with the CUSTOMER_ORDER data service.

 Confirm the addition of a new element in the CUSTOMER_ORDER data service schema.

Instructions

1. In WebLogic Workshop, choose File → Import Project.

2. Select Java Project.

3. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide.

4. Select the AlterTable folder, click Open, and then click Import.

Figure 14-8 Importing Java Project

5. Open AlterTable.java. (The file is located in the AlterTable project folder).

6. Click the Start icon, and then click OK when a Confirmation message displays. Compiling the file
adds a new column to the CUSTOMER_ORDER table.

7. Open the Output window and confirm that you see the CUSTOMER_ORDER_TABLE altered
message.

Data Services Platform: Samples Tutorial 134

Figure 14-9 Altered Table Message

8. Right-click the ElectronicsDB folder, located in the DataServices project folder.

9. Select Update Source Metadata. The Metadata Update Targets wizard opens, displaying a list of all
new columns.

Figure 14-10 Physical Data Sources

10. Click Next. The Metadata Update Preview dialog box opens, which provides details on the data to
be synchronized.

Figure 14-11 Synchronization Preview

11. Click Finish.

12. Open CUSTOMER_ORDER.ds in Source View. The file is located in the ElectronicsDB.

Data Services Platform: Samples Tutorial 135

13. Expand the data service annotation, located on the first line of the file, to view the captured
metadata for the relational data source (type, version, column names, native data types, size, scale,
and XML schema types).

14. Scroll down until you locate the following code, which represents the customized metadata that
you define in Lab 14.1:

<field type="xs:string" xpath="OWNER">

 <extension nativeFractionalDigits="0" nativeSize="50"
nativeTypeCode="12" nativeType="VARCHAR" nativeXpath="OWNER"/>

 <properties nullable="true"/>

</field>

Figure 14-12 Source View of Updated Metadata

15. Select the Design View tab, and verify that an Owner element exists in the XML type for the
CUSTOMER_ORDER data service.

Figure 14-13 Design View

16. Right-click the CUSTOMER_ORDER Data Service header and select Display Native Type.
Confirm that there is a new element, called OWNER VARCHAR(50).

Data Services Platform: Samples Tutorial 136

Lesson Summary

In this lesson, you learned how to:

 Synchronize physical data service metadata with changes made to the physical data source.

 Analyze impacts and dependencies.

 Create custom metadata for a logical data service.

Data Services Platform: Samples Tutorial 137

Lesson 15 Managing Data Service Caching
Caching enables the use of previously obtained results for queries that are repeatedly executed with the
same parameters. This helps reduce processing time and enhance overall system performance.

Objectives

After completing this lesson, you will be able to:

 Use the DSP Console to configure a DSP cache.

 Enable the cache for a data service function and define its time-to-live (TTL).

 Check the database to verify whether a cache is used.

 Determine the performance impact of the cache, by checking the query response time.

Overview

When DSP executes a query, it returns to the client the data that resulted from the query execution. If
DSP caching is enabled, then DSP saves its results into a query results cache the first time a query is
executed. The next time the query is run with the same parameters, DSP checks the cache
configuration and, if the results are not expired, quickly retrieves the results from the cache, rather than
re-running the query. Using the previously obtained results for queries that are repeatedly executed
with the same parameters reduces processing time and enhances overall system performance.

By default, the query results cache is disabled. Once enabled, you can configure the cache for
individual stored queries as needed, specifying how long query results are stored in the cache before
they expire (time out), and explicitly flushing the query cache.

In general, the results cache should be periodically refreshed to reflect data changes in the underlying
data stores. The more dynamic the underlying data, the more frequently the cache should expire. For
queries on static data (data that never changes), you can configure the results cache so that it never
expires. For extremely dynamic data, you would never enable caching.

If the cache policy expires for a particular query, DSP automatically flushes the cache result on the
next invocation. In the event of a Server shutdown, the contents of the results cache are retained. On
the server restart, the Server resumes caching as before. On the first invocation of a cached query, DSP
checks the results cache to determine whether the cached results for that query are valid or expired, and
then proceeds accordingly.

Data Services Platform: Samples Tutorial 138

Lab 15.1 Determining the Non-Cache Query Execution Time

To understand whether caching improves query execution time, you first need to know how long it
takes to execute a non-cached query.

Objectives

In this lab, you will:

 Execute a query function.

 Determine the query execution time.

Instructions

1. Open CustomerProfile.ds in Test View.

2. Select getCustomerProfile(CustomerID) from the function drop-down menu.

3. Enter CUSTOMER3 in the Parameter field.

4. Click Execute. The Output window displays the cache’s execution time.

Note: Ensure that auditing is enabled in the ALDSP console, to view results in the Output window. For
details about auditing, refer to http://edocs.bea.com/aldsp/docs21/admin/monitor.html.

5. Open the Output window.

6. Search for query/performance evaltime for the value of query execution time.

Figure 15-1 Query Execution Time

Lab 15.2 Configuring a Caching Policy Through the DSP Console

By default, DSP results caching is disabled. You must explicitly enable caching. In this lab, you will
learn how to enable caching.

Objectives

In this lab, you will:

 Enable caching at the application level.

 Enable caching at the function level.

Data Services Platform: Samples Tutorial 139

Instructions

1. In the DSP Console (http://localhost:7001/ldconsole/), using the + icon, expand the
ldplatform directory. (Note: If you click the ldplatform name, the Application List page opens. You
do not want this page for this lesson.)

2. Enable caching at the application level, by completing the following steps:

a. Click Evaluation. The DSP Console’s General page opens.

b. In the Data Cache section, select Enable Data Cache.

c. Select cgDataSource from the Data Cache data source name drop-down list.

d. Enter MYLDCACHE in the Data Cache table name field.

e. Click Apply.

Figure 15-2 DSP Console General Page

3. Enable caching at the function level, by completing the following steps (you can cache both logical
and physical data service functions):

a. Open the CustomerProfile folder, located in
Evaluation\DataServices\CustomerManagement. The list of data service functions
page opens.

b. For the getCustomerProfile() function, select Enable Cache.

c. Enter 300 in the TTL (sec) field.

d. Click Apply.

Note: Application level cache should be enabled.

http://localhost:7001/ldconsole/

Data Services Platform: Samples Tutorial 140

Figure 15-3 Setting TTL

Lab 15.3 Testing the Caching Policy

Testing the caching policy helps you determine whether the specified query results are being cached.

Objectives

In this lab, you will:

 Use WebLogic Workshop to test the caching policy for the getCustomerProfile() function.

 Use the DSP Console to verify that the cache is populated.

Instructions

1. In WebLogic Workshop, open the CustomerProfile data service in Test View.

2. Select getCustomerProfile(CustomerID) from the Function drop-down list.

3. Enter CUSTOMER3 in the Parameter field.

4. Click Execute.

5. In the DSP Console, verify that the cache is populated by completing the following steps:

a. Go to the CustomerProfile folder.

b. Confirm that there are entries in the Number of Cache Entries field for the
getCustomerProfile() function.

Data Services Platform: Samples Tutorial 141

Figure 15-4 Cache Test Results in the Metadata Browser

Lab 15.4 Determining Performance Impact of the Caching Policy

A caching policy can reduces processing time and enhance overall system performance.

Objectives

In this lab, you will:

 Use the PointBase Console to confirm that the cache was populated.

 Use WebLogic Workshop to determine caching performance.

Instructions

1. Use the PointBase Console to verify that the cache was populated, by completing the following
steps:

a. Start the PointBase Console, by entering the following command at the command prompt:
$BEA_HOME\weblogic81\common\bin\startPointBaseConsole.cmd

b. Enter the following configuration parameters to connect to your local PointBase Console:

 Driver: com.pointbase.jdbc.jdbcUniversalDriver

 URL: jdbc:pointbase:server://localhost:9093/workshop

 User: weblogic

 Password: weblogic

c. Click OK.

d. Enter the SQL command SELECT * FROM MYLDCACHE to check whether the cache is
populated.

e. Click Execute.

Data Services Platform: Samples Tutorial 142

Figure 15-5 PointBase Console

2. In WebLogic Workshop, open the CustomerProfile data service in Test View.

3. Select getCustomerProfile(CustomerID) from the Function drop-down menu.

4. Enter CUSTOMER3 in the Parameter field.

5. Click Execute. The Output window displays the cache’s execution time.

6. Use the Output window to determine whether caching helped reduce the query execution time.

Lab 15.5 Disable Caching

Important: For the purposes of the following lessons, you must disable the cache to avoid problems
with data updates.

Objectives

In this lab, you will:

 Disable caching at the application.

 Disable caching at the function level.

Instructions

1. In the DSP Console using the + icon, expand the ldplatform directory. (Note: If you click the
ldplatform name, the Application List page opens. You do not want this page for this lab.)

2. Disable application-level caching, by completing the following steps:

a. Click Evaluation. The DSP Console’s General page opens.

b. In the Data Cache section, clear Enable Data Cache.

c. Click Apply.

Data Services Platform: Samples Tutorial 143

3. Disable function-level caching, by completing the following steps:

a. Open the CustomerProfile folder, located in

Evaluation\DataServices\CustomerManagement

The list of data service functions page opens.

b. For the getCustomerProfile() function, clear Enable Data Cache.

c. Click Apply.

Lesson Summary

In this lesson, you learned how to:

 Use the DSP Console to configure the DSP cache.

 Enable the cache for a data service function and define its time-to-live (TTL).

 Check the database to verify whether a cache is used.

 Determine the performance impact of the cache, by checking the query response time.

Data Services Platform: Samples Tutorial 144

Lesson 16 Managing Data Service Security
The Data Services Platform (DSP) leverages the security features of the underlying WebLogic
platform. Specifically, it uses resource authorization to control access to DSP resources based on user
identity or other information.

Note: WebLogic Server must be running.

Objectives

After completing this lesson, you will be able to:

 Enable application-level security.

 Set function-level read and write access security.

 Set element-level security.

Overview

DSP’s security infrastructure extends WebLogic Server’s security policies to include DSP objects such
as data sources and stored queries, as well as security roles, groups, and users. These security policies
allow DSP administrators to set up rules that dynamically determine whether a given user:

 Can access a particular object.

 Holds read/write/execute permissions on a DSP object or a subset of those permissions.

By default data services do not have any security policies configured. Therefore data is generally
accessible unless a more restrictive policy for the information is configured. Security policies can
apply at various levels of granularity, including:

 Application level. The policy applies to all data services within the deployed DSP application.

 Data service level. The policy applies to individual data services within the application.

 Element level. A policy can apply to individual items of information within a return type, such as a
salary node in a customer object. If blocked by insufficient credentials at this level, the rest of the
returned information is provided without the blocked element.

Implementing DSP access control involves using the WebLogic Server Console to configure user
groups and roles. You can then use the DSP Console to create policies for DSP, including data services
and their functions.

Data Services Platform: Samples Tutorial 145

Lab 16.1 Creating New User Accounts

The first step in creating data service security policies is to create user accounts and either assign the
user account to a default group or configure a new group. There are 12 default authenticator groups.

Objectives

In this lab, you will:

 Open the WebLogic Server Console.

 Create two user accounts that use a default user group.

 View the user list.

Instructions

1. Open the WebLogic Server Console (http://localhost:7001/console/), using the following
credentials:

 User Name = weblogic

 Password = weblogic

2. Choose Security → Realms → myrealm → Users.

Figure 16-1User Security

http://localhost:7001/console/

Data Services Platform: Samples Tutorial 146

3. Select Configure New User.

Figure 16-2 Define User in Security Realm

4. Create a new user account by completing the following steps:

d. Enter Joe in the Name field.

e. Enter password in the Password field.

f. Enter password in the Confirm Password field.

g. Click Apply.

5. Repeat step 3 and step 4, entering Bob in the Name field (step 4a).

6. (Optional) Choose Security → Realms → myrealm → Users to view the results.

Figure 16-3 New Users Added

Lab 16.2 Setting Application-Level Security

Application-level security applies to all data services within the deployed DSP domain, regardless of
user permission or group. By default, when you turn on access control for an application, access to any
of its resources is blocked, except for users who comply with policies configured for the resources.

Alternatively, by allowing default anonymous access, you can grant access to its resources by default.
You can enable default anonymous access level by navigating to Application level General tab under
Access Control (application Name → General). In this case, a resource is restricted only if a more
specific security policy for it exists; for example, a security policy at the data service function level.

Data Services Platform: Samples Tutorial 147

Objectives

In this lab, you will:

 Use the AquaLogic Data Services Platform Console to enable application-level security.

 Use WebLogic Workshop to test the security policy.

Instructions

1. In the DSP Console (http://localhost:7001/ldconsole/), using the + icon, expand the ldplatform
directory.

Note: If you click the ldplatform name, the Application List page opens. You do not want this page
for this lesson.

2. Click Evaluation. The application’s General page opens.

3. Select Check Access Control.

4. Click Apply.

Figure 16-4 Set General Security

5. Test the security policy by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should return an Access Denied error. With the current security
settings, no one can access the application’s functions. You must grant user access to read and
write functions.

http://localhost:7001/ldconsole/

Data Services Platform: Samples Tutorial 148

Figure 16-5 Access Denied

Lab 16.3 Granting User Access to Read Functions

DSP security policies can be set at the function level, which applies to specific functions within
specific data services. Function-level security can be read and/or write permissions. A policy may
include any number of restrictions; for example, limiting access based on the role of the user or on the
time of access. Specifically, policies can be based on the following criteria:

 User Name of the Caller. Creates a condition for a security policy based on a user name. For
example, you might create a condition indicating that only the user John can access the Customer
data service.

 Caller is a Member of the Group. Creates a condition for a security policy based on a group.

 Caller is Granted the Role. Creates a condition based on a security role. A security role is a
special type of user group specifically for applying and managing common security needs of a
group of users.

 Hours of Access are Between. Creates a condition for a security policy based on a specified time
period.

 Server is in Development Mode. Creates a condition for a security policy based on whether the
server is running in development mode.

Objectives

In this lab, you will:

 Use the DSP Console to grant Joe read access permissions, based on user name.

 Use WebLogic Workshop to test the new security policy.

Instructions

1. In the DSP Console, open the CustomerProfile data service. (The data service is located in
ldplatform\Evaluation\DataServices\CustomerManagement.)

2. Click the Security tab. The Security Policy tab opens.

Data Services Platform: Samples Tutorial 149

Figure 16-6 Data Service-Level Security Policy

3. Click the Action Policy icon for the getCustomerProfile resource to open the Access Control
Policy window.

Figure 16-7 Configure Security

4. Set read access for a specific user, by completing the following steps:

a. Select User name of the caller.

Data Services Platform: Samples Tutorial 150

b. Click Add. The Users dialog box opens.

c. Enter Joe in the Name field.

d. Click Add.

Figure 16-8 Adding User

e. Click OK and move back to the Access Control Policy window.

f. Click Apply.

5. Login to the now-secure application, by completing the following steps:

a. In WebLogic Workshop, choose Tools → Application Properties → WebLogic Server.

b. Select Use Credentials Below.

c. Enter Joe and password in the Use Credentials Below fields.

d. Click OK.

Data Services Platform: Samples Tutorial 151

Figure 16-9 Logging Into Secure Application

6. Test the security policy by completing the following steps:

a. Open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should permit access and return the requested data.

e. Click Edit, modify an item, and then click Submit. An error message will display because
Joe is granted only read access.

Data Services Platform: Samples Tutorial 152

Lab 16.4 Granting User Access to Write Functions

As noted in the previous lab, security policies at the function level can allow either read and/or write
permissions.

Objectives

In this lab, you will:

 Use the DSP Console to grant Joe write access permissions.

 Use WebLogic Workshop to test the new security policy.

Instructions

1. In the DSP Console, open the CustomerProfile data service.

2. Select the Security tab. The Security Policy tab opens.

3. Click the Action Policy icon for the submit resource. The Access Control Policy window opens.

4. Set write access to a user, by completing the following steps:

a. Select User name of the caller.

b. Click Add.

c. Enter Joe in the Name field.

d. Click Add.

e. Click OK.

f. Click Apply.

5. Test the security policy, by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View. The file is located in
DataServices\CustomerManagement.

b. Select getCustomerProfile() from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should permit access and return the specified results.

e. Click Edit. Because Joe is granted both read and write access, you can now edit the results.

Data Services Platform: Samples Tutorial 153

Lab 16.5 Setting Element-Level Data Security

A policy can apply to individual items of information within a return type, such as a salary node in a
customer object. If blocked by insufficient credentials at this level, the rest of the returned information
is provided without the blocked element.

Objectives

In this lab, you will:

 Enable element-level security.

 Set a security policy for specific elements.

Instructions

1. In the DSP Console, open the CustomerProfile data service.

2. Select the Security tab.

3. Set element-level security, by completing the following steps:

a. Select the Secured Elements tab.

b. Expand the CustomerProfile and customer+ nodes.

c. Select the checkbox for the ssn simple element.

d. Expand the orders ? and orders * nodes.

e. Select the checkbox for the order_line * complex element.

f. Click Apply.

Figure 16-10 Setting Element-Level Security

Data Services Platform: Samples Tutorial 154

4. Return to the Security Policy tab for CustomerProfile. You should see two new resources:
CustomerProfile/customer/ssn and
CustomerProfile/customer/orders/order/order_line.

Figure 16-11 New Secured Element Resources

5. Set the security policy for the complex order_line element, by completing the following steps:

a. Return to the Security Policy tab for CustomerProfile.

b. Click the Action Policy icon for the
CustomerProfile/customer/orders/order/order_line resource. The Access
Control Policy window opens.

c. Select User name of the caller.

d. Click Add.

e. Enter Joe in the Name field.

f. Click Add.

g. Click OK.

h. Click Apply.

6. Set the security policy for the simple ssn element, by completing the following steps:

a. Click the Action Policy icon for the CustomerProfile/customer/ssn resource. The
Access Control Policy window opens.

b. Select User name of the caller.

c. Click Add.

d. Enter Bob in the Name field.

e. Click Add.

f. Click OK.

g. Click Apply.

Data Services Platform: Samples Tutorial 155

Lab 16.6 Testing Element-Level Security

At this point, element-level security policies are defined for both Bob and Joe. Testing the policy
within WebLogic Workshop lets you determine what data results these two users will be able to
access.

Objectives

In this lab, you will:

 Test the security policy for Bob and Joe.

 Change the security policy for Bob and test the new security policy.

Instructions

1. Test element-level security for Joe, by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should permit access and return all results except SSN.

e. Click Edit, modify an order_line value, click Submit, and click OK. The specified change is
submitted.

f. Click Execute to refresh the data set.

g. Verify that changes have been saved.

2. Test the element-level security policy for Bob, by completing the following steps:

a. Choose Tools → Application Properties → WebLogic Server.

b. Select Use Credentials Below.

c. Enter Bob and password in the Use Credentials Below fields.

d. Click OK.

e. Open CustomerProfile.ds in Test View.

f. Select getCustomerProfile(CustomerID) from the Function drop-down list.

g. Enter CUSTOMER3 in the Parameters field.

h. Click Execute. The test should fail. Although Bob can access the SSN element, he does not
have read access to the getCustomerProfile() function.

3. Change the security policy for Bob, by completing the following steps:

a. In the DSP Console, open the CustomerProfile data service.

b. Select the Security tab.

c. Click the Action Policy icon for the getCustomerProfile resource. The Access Control Policy
window opens.

d. Set read access for Bob, by completing the following steps:

i. Select User name of the caller.

ii. Click Add.

Data Services Platform: Samples Tutorial 156

iii. Enter Bob in the Name field.

iv. Click Add.

v. Click OK.

vi. Click the "and User name of the caller" line, located in the Policy Statement section of
the window.

vii. Click Change, which changes the line to an "or User name of the caller" condition.

viii. Click Apply.

Figure 16-12 Enabling read Access for Two Users

4. In WebLogic Workshop, test the getCustomerProfile() function again. This time, user Bob can
view all elements except order_line information.

5. Try modifying data by clicking on Edit button and changing SSN. Submit changes by clicking on
Submit button. An error message will display because Bob does not have write privileges.

6. Reset the application-level security, by completing the following steps:

a. In the DSP Console (http://localhost:7001/ldconsole/), using the + icon, expand the ldplatform
directory.

Note: If you click the ldplatform name, the Application List page opens. You do not want this
page for this lesson.

b. Click Evaluation. The Administration Control’s General page opens.

c. Clear Check Access Control.

d. Click Apply.

http://localhost:7001/ldconsole/

Data Services Platform: Samples Tutorial 157

Lesson Summary

In this lesson, you learned how to:

 Activate application level security.

 Set security permissions on both read and write function access.

 Set security permissions on simple and complex elements.

Data Services Platform: Samples Tutorial 158

Data Services Platform: Samples Tutorial 159

Glossary
ad-hoc query. A hand-coded or generated query that is passes to Data Services Platform on the fly, rather than
stored in the DSP repository.

administration console. A Web-based administration tool that an administrator uses to configure and monitor
WebLogic Servers. DSP provides a console to help manage instances of Data Services Platform.

application. A collection of all resources and components deployed as a unit to an instance of WebLogic Server.
The application contains one or more projects, which in turn contain the folders and files that make up your
application. Only one application can be open at a time.

cache. The location where DSP stores information about commonly executed stored queries for subsequent,
efficient retrieval, thereby enhancing overall system performance. DSP provides query plan cache and result set
cache.

cache policy. In the result set cache, configuration settings determine when the cached results expire for individual
stored queries.

data model. A visual representation of data resources.

data object. In SDO, a complex type that holds atomic values and references to other data objects.

data service. A modeled object that describes a data shape and functions used to retrieve and update the data, as
well as functions to navigate to other related data services.

data service mediator. The SDO mediator that uses data services to retrieve and update data.

data service update. The engine responsible for handling submits of changes to SDOs

data source. Any structured, semi-structured, or unstructured information that can be queried. The types of data
sources that DSP can query include relational databases, Web services, flat files (delimited and fixed width), XML
files, Java functions, application views via Web applications (business-level interfaces to the data in packaged
applications such as Siebel, PeopleSoft, or SAP), data views (dynamic results of DSP queries).

data source schema. An XML schema that defines the content, semantics, and physical structure of a data source.

function. A uniquely named portion of an XQuery that performs a specific action. In the case of DSP the function
would typically query physical or logical data.

Java Server Page (JSP). A J2EE component that extends the Servlet class, and allows for rapid server-side
development of HTML interfaces that can be co-mingled with Java.

logical data service. A data service that integrates data from multiple physical and/or logical data services.

mapping. The process of connecting data source schemas to a target (result) schema.

metadata. Descriptors about a data service’s information, format, meaning, and lineage.

physical data service. The leaf-level data services that expose external data. For relational sources, this would be a
data service representing tables or stored procedures. For functional sources, this would be the functions that are
considered to be the initial source of data operated on by XQuery.

project. Groups related files within an application.

query. In the Data Services Platform an XQuery function that retrieves data from a data source. Functions define
what tasks the query will perform, while expressions define what data to extract.

query operation. Operation that a query performs, such as a join, aggregation, union, or minus.

query plan. A compiled query. Before a query is run, DSP compiles the XQuery code into an executable query
plan. When the query executes, the query plan is sent to the data source for processing.

http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#54450
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57806
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#59865
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57092

Data Services Platform: Samples Tutorial 160

repository. File-based metadata maintained in a DSP project.

result set. The data returned from an executed query. There are two types of result sets: intermediate result sets are
temporary result sets that the query processor generates while processing an analytical query; final result sets are
returned to the client application that requested the query in the form of XML data.

return type. A type of XML schema that defines the shape of data returned by a query.

schema. A model for representing the data types, structure, and relationships of data sets and queries.

security. Set of mechanisms available to prevent access to, corruption of, or theft of data. DSP extends the
WebLogic Server compatibility security mechanisms to define groups, users, and access control to DSP resources.

service data object (SDO). Defines a Java-based programming architecture and API for data access.

Simple Object Access Protocol (SOAP). An extensible, platform-independent, XML-based protocol that allows
disparate applications to exchange messages over the Web. SOAP can be used to invoke methods on servers, Web
services, application components, and objects in a distributed, heterogeneous environment. SOAP-based Web
services are one of the data sources DSP supports.

source schema. XML schema that describes the shape (structure and legal elements) of the source data — that is,
the data to be queried. The DSP-enabled server runs queries against source data and returns query results in the form
of the source schema.

stored query. A query that has been saved to the DSP repository. There is a performance benefit to using a stored
query because its query plan is always cached in memory, optionally along with query result. With an ad-hoc query,
however, the query plan and result are not cached. In addition, caching of query results for a stored query is
configurable through the Cache tab on the DSP node in the Administration Console.

Structured Query Language (SQL). The standard, structured language used for communicating with relational
databases. Database programmers use SQL queries to retrieve information and modify information in relational
databases. In order to be able to access different types of data sources dynamically, DSP employs the XML-based
XQuery language as a layer on top of platform-dependent query systems such as SQL.

target schema. See return type.

Weblogic Server. The platform upon which DSP is built.

Weblogic Workshop. The IDE in which DSP runs as an application.

Web service. Business functionality made available by one company, usually through an Internet connection, for
use by another company or software program. Web services are a type of service that can be shared by, and used as
components of, distributed Web-based applications. Web services communicate with clients (both end-user
applications and other Web services) through XML messages that are transmitted by standard Internet protocols,
such as HTTP. Web services endorse standards-based distributed computing. Currently, popular Web Service
standards are Simple Object Access Protocol (SOAP), Web services description language (WSDL), and Universal
Description, Discovery, and Integration (UDDI).

Web Services Description Language (WSDL). Specification for an XML-based grammar that defines and
describes a Web service. A WSDL is necessary if two different online systems need to communicate without human
intervention.

xml schema. A structured model for describing the structure, content, and semantics of XML documents based on
custom rules. Unlike DTDs, XML schemas are written in XML data syntax and provide more support for standard
data types and other data-specific features. When metadata about a data source is obtained, it is stored in an XML
schema in the DSP repository.

XQuery. An XML query language, which represents a query as an expression which is used to query relational,
semi-structured, and structured data.

xsd. An abbreviation for XML Schema Definition. An XSD file describes the contents, semantics, and structure of
data within an XML document.

Data Services Platform: Samples Tutorial 161

	 Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document

	Document Organization
	 Technical Prerequisites
	System Requirements
	Data Sources Used Within These Tutorials
	Related Information
	Part 1 Core Training

	Lesson 1 Introducing the Data Services Platform Environment
	Objectives
	Overview

	Lab 1.1 Starting WebLogic Workshop
	Objectives
	Instructions

	Lab 1.2 Navigating the DSP Integrated Development Environment (IDE)
	Objectives
	 Application Pane
	Design View
	XQuery Editor View
	XQuery Editor View Tools

	Source View
	Test View

	Lab 1.3 Starting WebLogic Server
	Objectives
	 Instructions

	Lab 1.4 Stopping WebLogic Server
	Objectives
	 Instructions

	Lab 1.5 Saving Your Work
	Objectives
	Instructions

	Lesson Summary

	Lesson 2 Creating a Physical Data Service
	Objectives
	Overview

	Lab 2.1 Creating a DSP Application
	Objectives
	Instructions

	Lab 2.2 Creating a Data Services Project
	Objectives
	Instructions

	Lab 2.3 Creating Project Sub-Folders
	Objectives
	Instructions

	Lab 2.4 Importing Relational Source Metadata
	Objectives
	Instructions

	Lab 2.5 Building a Project
	Objectives
	Instructions

	Lab 2.6 Viewing Physical Data Service Information
	 Objectives
	Viewing XML type
	Instructions
	Viewing Native Data Type
	Instructions
	Viewing XML Schema Definition
	Instructions
	Viewing Generated Functions
	Instructions
	Viewing Data Service Metadata
	Instructions

	Lab 2.7 Testing Physical Data Service Functions
	Objectives
	Instructions

	Lesson Summary

	Lesson 3 Creating a Logical Data Service
	Objectives
	Overview

	Lab 3.1 Creating a Simple Logical Data Service
	Objectives
	Instructions

	Lab 3.2 Defining the Logical Data Service Shape
	Objectives
	Instructions

	Lab 3.3 Adding a Function to a Logical Data Service
	Objectives
	Instructions

	Lab 3.4 Mapping Source and Target Elements
	Objectives
	Instructions

	Lab 3.5 Viewing XQuery Source Code
	Objectives
	Instructions

	Lab 3.6 Testing a Logical Data Service Function
	Objectives
	Instructions

	Lesson Summary

	Lesson 4 Integrating Data from Multiple Data Services
	Objectives
	Overview

	Lab 4.1 Joining Multiple Physical Data Services within a Logical Data Service
	Objectives
	Instructions

	Lab 4.2 Defining a Where Clause to Join Multiple Physical Data Services
	Objectives
	Instructions

	Lab 4.3 Creating a Parameterized Function
	Objectives
	Instructions

	Lesson Summary

	Lesson 5 Modeling Data Services
	Objectives
	Overview

	Lab 5.1 Creating a Basic Model Diagram for Physical Data Services
	Objectives
	Instructions

	Lab 5.2 Modeling Relationships Between Physical Data Sources
	Objectives
	Instructions

	Lesson Summary

	Lesson 6 Accessing Data in Web Services
	Objectives
	Overview

	Lab 6.1 Importing a Web Service Project into the Application
	Objectives
	Instructions

	Lab 6.2 Importing Web Service Metadata into a Project
	Objectives
	Instructions

	Lab 6.3 Testing the Web Service via a SOAP Request
	Objectives
	Instructions

	Lab 6.4 Invoking a Web Service in a Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 7 Consuming Data Services Using Java
	Objectives
	Overview

	Lab 7.1 Running a Java Program Using the Untyped Mediator API
	Objectives
	Instructions

	Lab 7.2 Running a Java Program Using the Typed Mediator API
	Objectives
	Instructions

	Lab 7.3 Resetting the Mediator API
	Objectives
	Instructions

	Lesson Summary

	Lesson 8 Consuming Data Services Using WebLogic Workshop Data Service Controls
	Objectives
	Overview

	Lab 8.1 Installing a Data Service Control
	Objectives
	Instructions

	Lab 8.2 Defining the Data Service Control
	Lesson Summary

	Lesson 9 Accessing Data Service Functions Through Web Services
	Objectives
	Overview

	Lab 9.1 Generating a Web Service from a Data Service Control
	Objectives
	Instructions

	Lab 9.2 Using a Data Service Control to Generate a WSDL for a Web Service
	Objectives
	Instructions

	 Lesson Summary

	Lesson 10 Updating Data Services Using Java
	Objectives
	Overview

	Lab 10.1 Modifying and Saving Changes to the Underlying Data Source
	Objectives
	 Instructions

	Lab 10.2 Inserting New Data to the Underlying Data Source Using Java
	Objectives
	Instructions

	Lab 10.3 Deleting Data from the Underlying Data Source Using Java
	Objectives
	Instructions

	Lesson Summary

	Lesson 11 Filtering, Sorting, and Truncating XML Data
	Objectives
	Overview

	Lab 11.1 Filtering Data Service Results
	Objectives
	Instructions

	Lab 11.2 Sorting Data Service Results
	Objectives
	Instructions

	Lab 11.3 Truncating Data Service Results
	Objectives
	Instructions

	Lesson Summary

	Lesson 12 Consuming Data Services through JDBC/SQL
	Objectives
	Overview

	Lab 12.1 Running DBVisualizer
	Objectives
	Instructions

	Lab 12.2 Integrating Crystal Reports and Data Services Platform
	Objectives
	Instructions

	Lab 12.3 (Optional) Configuring JDBC Access through Crystal Reports
	Objectives
	Instructions

	Lesson Summary

	Lesson 13 Consuming Data via Streaming API
	Objectives
	Overview

	Lab 13.1 Stream results into a flat file
	Objectives
	Instructions

	Lab 13.2 Consume data in streaming fashion
	Objectives
	Instructions

	Lesson Summary

	Lesson 14 Managing Data Service Metadata
	Objectives
	Overview

	Lab 14.1 Defining Customized Metadata for a Logical Data Service
	Objectives
	Instructions

	Lab 14.2 Viewing Data Service Metadata Using the DSP Console
	Objectives
	Instructions

	Lab 14.3 Synching a Data Service with Underlying Data Source Tables
	Objectives
	Instructions

	Lesson Summary

	Lesson 15 Managing Data Service Caching
	Objectives
	Overview

	Lab 15.1 Determining the Non-Cache Query Execution Time
	Objectives
	Instructions

	Lab 15.2 Configuring a Caching Policy Through the DSP Console
	Objectives
	Instructions

	Lab 15.3 Testing the Caching Policy
	Objectives
	Instructions

	Lab 15.4 Determining Performance Impact of the Caching Policy
	Objectives
	Instructions

	Lab 15.5 Disable Caching
	Objectives
	Instructions

	Lesson Summary

	Lesson 16 Managing Data Service Security
	Objectives
	Overview

	Lab 16.1 Creating New User Accounts
	Objectives
	Instructions

	Lab 16.2 Setting Application-Level Security
	 Objectives
	Instructions

	Lab 16.3 Granting User Access to Read Functions
	Objectives
	Instructions

	Lab 16.4 Granting User Access to Write Functions
	Objectives
	Instructions

	Lab 16.5 Setting Element-Level Data Security
	Objectives
	Instructions

	Lab 16.6 Testing Element-Level Security
	Objectives
	Instructions

	Lesson Summary
	 Glossary

