0?7,

r
S’ 7
L/

BEAAqualogic
Data Services
Platform=

Data Services
Developer’s Guide

Version: 2.0.1
Document Date: June 2005
Revised: September 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

September 13, 2005 1:37 pm

Contents

Introduction to Data Services

Data Services and the Enterpriseot i 1-2
Data Access Integration Architectureo 1-3
Data Services Platform Applications and Projectscooviiiiinn..,. 1-5
DSP: Roles and Responsibilitiesco i 1-7
DSP: Typical Development Process.ovvvve ettt eeeens 1-7
Examples, Samples, and Tutorials. . ..ottt 1-8

Data Services Platform Projects and Components

DSP-Based BEA WebLogic Projects ..ot 2-1
Creating a Data Services Platform-based Application 2-2
Adding a DSP Project to an Existing BEA WebLogic Application 2-3

Major Components of a DSP Project. ... 2-4
Using the WebLogic Workshop IDEt e 2-b
Survey of DSP Additions to WebLogic Workshop, 2-9

Building and Deploying Applications, EARs, and SDO Mediator Clients 2-20
Building and Deploying Applicationst 2-20
Deploying Your Applicationottt e 2-21
Creating the SDO Mediator API 2-22

Obtaining Enterprise Metadata

Creating Data Source Metadataoo it 3-1

Creating Metadata From Relational Sources................coiiiiiiiii i, 3-4
Data Services Developer's Guide iii

Importing Relational Table and View Metadata.oovvint. 3-5

Importing Stored Procedure-Based Metadataccooiiiiiin.,. 3-13
Using SQL to Import Metadata.cooviiiiii e 3-27
Importing Web Services Metadatac.coiiiiiiiii i, 3-33
Importing Java Function Metadata............. ... i, 3-38
Importing Delimited File Metadata.cc i, 3-63
Importing XML File Metadata 3-57
Updating Data Source Metadataccoi i 3-61
Considerations When Updating Source Metadatacovii... 3-62
Using the Update Source Metadata Wizard, 3-62
Archival of Source Metadatacooii i 3-66

4. Using Data Services Design View

Data Services inthe Enterprise.c.oiiiii e e 4-2
Physical and Logical Data Services.oouiiiiiiiiiiiiiiiinennne, 4-2
Data Service Functions. 4-3

Data Service Design View Components.uueinttenieeniie e 4-3
XML Types and Return Typeso oot i e 4-6

Creating a Data Service.t e e e 4-7
Adding a Function to Your Data Serviceot 4-9
Adding a Relationship to Your Data Service................coiiiiiiiiiiiiii i, 4-9
Working with XML Types.o v vee et e e 4-21
Creating an XML TYPe. . ..o oottt e e e e 4-23

Managing Your Data Service.o e 4-24
Setting Update OPtions.vvnttt e e i e 4-25
Notable Data Service Propertiescoviiiiiiiii i, 4-29

iv Data Services Developer’s Guide

5. Modeling Data Services

Model-Driven Data Services.c.ooiiuiir i 5-3
Logical and Physical Data Models.ccoiiiiiiiiiiiii i, 5-3
Rules Governing Model Diagrams.c..cviiiiiiiii i, 5-4

Building a Simple Model Diagram.ooiuttint e 5-b
Displaying Relationships Automatically....................ooiiiiiiiiiii ., 5-10
Generated Relationship Declarations in Source View, 5-10
Modeling Logical Dataouetii e i 5-11

Building Data Service Relationships in Models., 5-12
Direction, Role, and Relationships. ..., 5-12

Working with Model Diagrams.ot e 5-16
Model Right-click Menu Options.ouvvrn i 5-17
Creating Relationships in Model Diagramscooiiiiii .. 5-19
Locating Data Services in Large Model Diagrams.t 5-19
Generating Reports on Your Models.c.ovviiiniiii e, 5-20
Zoom MOde . ..ot e 5-22
Editing XML Types in Model Diagrams.c.ooiiiieiiiieniinennn., 5-22

How Changes to Data Services and Data Sources Can Impact Models.................... 5-24
How Metadata Update Can Affect Models ...t 5-24

6. Using Query Editor View

Purpose of the XQuery Editorot 6-2
Data Source Representationsot 6-4
XQuery Editor Options.oouueer i e e 6-b

Creating a New Data Service and an XQuery Function.ot 6-7

Key Concepts of Query Function Building, 6-14
Data SOUTCESt e 6-14
Source Schemas and Return Types. 6-14

Data Services Developer's Guide

XQuery Editor Componentsouueeinruritii i 6-15

Setting Conditions.vuei i e e 6-30
Setting EXpressions.vuvee e e 6-37
Managing Query COmMPONENtS.uvvt ettt e e it 6-38
Working With Data Representations and Return Type Elements. 6-38
Mapping to Return Types . ..ot e 6-39
Modifying a Return Type . . .ottt e 6-43

/. Testing Query Functions and Viewing Query Plans

Running Queries Using TeSt VIEWottt i 71
Using Test VIEWottt e e e i 7-3
Limiting Array Results e 7-10
Starting Client Transaction Optiono, 7-11
Validating Resultso e 7-11
Disregarding a Running Queryot 7-12
Reviewing Query Performance.o 7-12

Analyzing Queries Using Plan Viewt e 7-13
Analyzing a Sample QUETYovuriiii e 7-14
Working With Your Query Plan. 7-16
Reviewing Query Performance.t 7-17

8. Using Source View

What is Source VIEW?.o 8-1
XQUETY SUPPOTT ottt ettt ettt et e e e 8-2
USING SOUICE VI . . vttt ettt ettt ettt e e e s 8-3
Finding Text . . .ottt 8-3
Code Editing Features.vvtitiiii i e 84

vi Data Services Developer’s Guide

CHAPTERo

Introduction to Data Services

Just as the BEA WebLogic Application Server freed application developers from the tedium associated
with managing multi-user applications across the Internet, BEA Aqualogic Data Services Platform
allows data application developers to concentrate on developing and extending enterprise
information without a need to directly program to the underlying physical data sources.

Data Services Platform (DSP) takes advantage of emerging standards to enable you to create
hierarchical, enterprise-wide data services which can be accessed by any Web-based application.

Specifically, data services enable you to:

e Insulate integrated applications and processes from complexity of divergent data forms and
potentially disconnected sources of enterprise data.

e Manage the metadata information imported from disparate data sources.

e Create data models showing the relationships between various data services.

Note: DSP was initially named Liquid Data. Some artifacts of the original name remain in the
product, installation path, and components.

Data Services Developer's Guide 1-1

Introduction to Data Services

Figure 1-1 BEA Integrated Development Environment

User Integration Application Integration
WebLogic Portal BEA WebLogic Integration

Enterprise Data Services
Aqualogic Data Services Platform

Application Framework
Beehive

Application Server
BEA WebLogic Server

-
c
[
£
Q

o
o
>
[

(=)

o
Q

2
©
Y
o
5]

I

£

Environment
BEA WebLogic Workshop

JVM:
BEA WebLogic JRockit

Data Services and the Enterprise

In modern enterprises data is generally readily available. While this has reduced that need to move
physical data into data warehouses, data marts, data mines, or other costly replications of existing
data structures, the problems of dynamic data integration, immediate secured access and update,
data transformation, and data synchronization remain some of the most vexing challenges facing the
IT world.

DSP provides a comprehensive approach to this challenge by:

e Providing a unified means of importing metadata representing the structure of any data source
using its Metadata Import Wizard.

o Allowing for the creation of hierarchical data structures from tradition column-row data.

e Providing a query-driven interface to extend the physical model so data specialists can create
powerful transformations of existing data and queries.

o Automatically creating data models that introspect physical data structures (and their
contents) i situ, normalizes representation of diverse data, and allow the representation of
the relationship of physical and logical data.

e Maintaining the accuracy of metadata through automated updates from the data source.

1-2 Data Services Developer’s Guide

Data Services and the Enterprise

DSP can be used to create, refine, and validate logical data structures through a process of importing
data sources, creating physical and logical models, and designing queries for use by applications in an
infrastructure that provides for easy maintenance, while enhancing security and performance.

Through standardized Service Data Objects (SDO) technology, web-based applications can
automatically read and update relational data. Through simple Java programs DSP update capabilities
can be extended to support any logical data source.

e For an overview of the DSP system, see the Data Services Platform Concepts Guide.

e For detailed, hands-on tutorial illustrating many DSP features and techniques see the samples
tutorial, available from the Data Service Platform e-docs page.

Data Access Integration Architecture

In contemporary enterprise computing, data typically passes through multiple processing and storage
layers. While enterprise data can easily be accessed, turning that data into useful information
economically and efficiently, particularly updateable information, remains a difficult and
high-maintenance task.

Data Services Developer's Guide 1-3

http://e-docs.bea.com/liquiddata/docs85/concepts/index.html
http://e-docs.bea.com/liquiddata/docs85/index.html

Introduction to Data Services

1-4

Figure 1-2 Data Services Platform Component Architecture

data users

XQuery
Web Java clients | | (ad ho¢ | |SGLMJDBC]
services queries)

read/update
calls

Java API®\Warkshop Control
WebServices ®XQuery *JDBC

Administration
Console

Data Service
Development 0o
Tools T

caching, security
management

Data Processing Engine

Model
Repository

i I
data sources* Y + y
JDBC Web Files Java
RDBMS Services ML ® CSV functions

DSP approaches the problem of creating integration architectures by building logical data services
around physical data sources and then allowing business logic to be added as part of easily
maintained, graphically designed XML query functions (also called XQueries).

Using standard protocols such as JDBC, DSP automatically introspects data sources, creating
physical data services and corresponding schemas that model a physical data source. Optional model
diagrams capture relationships between relational data sources, such as primary and foreign keys.

Any WebLogic Workshop application can include DSP-based projects. And any application can access
DSP queries — including update functions — through a mediator API or a Data Services Platform
Control. In the case of relational data, updates can be performed automatically through Service Data
Objects (SDO) (For details see “Programming with Service Data Objects” in the Data Services
Platform Application Developer’s Guide.)

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/appdev/sdo.html

Data Services and the Enterprise

DSP provides for the development of integrated queries within any WebLogic Workshop application.
Each application can contain multiple Data Services Platform-based projects, as well as any other
types of projects offered by WebLogic Workshop.

Figure 1-3 Sample Data Service

|| Application * || Customet.xds - {DataServicesH,
[«]
i3 Demo m | [. Customer.nds ¥ML Dats Service
(5 crwsProject Feeturn Type - CUSTCMER #
[= {23 Danubeteb At (2t CUiSEOMIET @ CUSTOMER
(0 CustomerPF - ;
= @ CUSTOMERID xsiint
(C DatagerviceCtrls PAMENTS. /5] | CUSTOMERS.

@ CUSTOMERNAME xs:string
=) CREDIT*
() CREDITSCORE xsint
(@) CREDITRATING xs:string]
E @ ORDER*
(@) ORDERID xs:int
&) CUSTOMERID xs:int
E-@ POITEM*
@ ORDERID xsint

[T resources
(] WEB-INF
BrTOF.j5p
01_,_% TestProcess.jws
= {23 DataServices
(2 diagrams
£ META-INF
) Processes
(1 schemas

e OetPaymentList

= getPavmentTest

PO CUSTOMERS

PO _ITEMS

ElEil

[\\S @ KEY wsiint
&] CredtRatingUpdate.ja @ ITEMWUMBER 7 xs:iry
[9) Customer.nds @ QUANTITY 7 xasink

[68) cusTOMERS s
'9 CustomerUpdatelogic,

[l
Fj gebCustomerCreditRati| | K IIl
[63) 1TEMS s
[62) PocrmENTS, ks

Data Services Platform Applications and Projects

DSP query and model development services are available through a DSP-based WebLogic Workshop
project. After you have installed DSP (see the Installation Guide), you have two options:

stomerCreditRating +

L]

e (reating a Data Services Platform-based project within any WebLogic Workshop application:
File — New — Project — DSP Project

e Creating a new Data Services Platform-based application:
File —New — Application — DSP Application

Services Available to a Data Services Platform Based Project

A DSP-based project is comprised of a number of interrelated data services used in developing models
and query functions. Service components are designed to enable rapid development, prototyping, and
deployment of these services and functions in your applications.

Data Services Developer's Guide 1-5

http://e-docs.bea.com/liquiddata/docs85/install/index.html

Introduction to Data Services

Table 1-4 Survey of Major Services Provided by Data Services Platform

Service Feature

Data Modeling e Physical models
e Logical models
e Relationships
e Data services
¢ Read functions
e Navigation functions

* Roles

Metadata Management e Browse metadata
e Search metadata
e Impact analysis
e Reports

Import Metadata e Relational, web services, XML files, delimited files, Java
e Metadata update

Query Management e Graphical development
e Testing
e Plan analysis
e Performance reporting
e Source editing

Application Services e Mediator API

e Data Services Platform control

e JDBC
Service Data Objects e Automatic read-write to relational sources
(SD0) e (Custom update

For more information on WebLogic Workshop applications and projects see “Applications and
Projects” in WebLogic Workshop online documentation.

1-6 Data Services Developer’s Guide

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/project/conWorkspaces.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/project/conWorkspaces.html

Data Services and the Enterprise

DSP: Roles and Responsibilities

e Metadata Development. Using the DSP Metadata Import Wizard, any team member can quickly
create a set of physical data services from enterprise data sources.

e Data Service Development. A data architect with knowledge of the relationships between
enterprise data sources can then create data services based on physical and previously
developed logical services.

e Query Development. Once data services are created, any IT team member can create reusable
query functions using the graphical XQuery Editor. The editor is directly tied to a Source View
that facilitates code-based modifications to automatically-generated designs.

e Application Development. Application designers can use data service query functions in their
BEA WebLogic applications. Through Service Data Objects (SDO) and the Mediator API or a
Data Services Platform control, applications can retrieve and update data, yet remaining
insulated from the complexities of managing the underlying data interaction.

e Metadata Management. Administrators, architects, and designers can use the Metadata
Browser for real-time introspection of disparate data source metadata that has been developed
through DSP.

DSP: Typical Development Process

The following steps summarize a typical Data Services Platform-based project development cycle.

1. Create your project. Create a DSP-based project in a new or existing WebLogic Workshop
application as described in “Creating a Data Services Platform-based Application” on page 2-2 and
“Adding a DSP Project to an Existing BEA WebLogic Application” on page 2-3.

2. Import metadata. Metadata can be obtained for any data source that is available through your
local application or BEA WebLogic Server. This may include relational data, web service data,
delimited files (spreadsheets), custom Java functions, and XML files. See Chapter 3, “Obtaining
Enterprise Metadata.”

3. Create a data model. You can graphically build a data model that shows the relationships and
cardinality between the data services you have selected (see Chapter 5, “Modeling Data
Services” for details). In the data model, you can also modify and extend relationships between
various data services as well as their return type.

Data Services Developer's Guide 1-1

Introduction to Data Services

1-8

4. Develop data services. You can elaborate on existing physical data through queries that span

multiple physical and/or logical data services (Chapter 4, “Using Data Services Design View”.
The built-in XQuery Editor (Chapter 6, “Using Query Editor View”) includes standard XQuery
functions and language construct prototypes. Using the editor you can map source elements or
transformations to a return type.

The Data Service Palette provides access to all data services available to your application.
Queries and data service logic are maintained in a single, editable source file that is fully
integrated with your data service (Chapter 8, “Using Source View”).

. Test your function. The data service functions you create can be tested at any time. You can

select any query in the current data service, add a simple or complex parameter (if required),
run the query, and see the results (Chapter 7, “Testing Query Functions and Viewing Query
Plans”). If you have appropriate permissions, you can also update source data through Test View.

. Review the query plan. You can view the query plan prior to or after running your query. The

query plan describes the generated statements used to retrieve and update data. Execution time
statistics are also available (“Analyzing Queries Using Plan View” on page 7-13).

Examples, Samples, and Tutorials

Samples and examples used in this book are based on the Sample Retail Application (RTLApp) that
is included with DSP. See also the “Sample Retail Application Overview” in the DSP Installation
Guide.

A number of examples of DSP technology can be found in the DSP Samples Tutorial. This tutorial is
also based on RTLApp.

To access the tutorial see the DSP e-docs page:

http://edocs.bea.com/aldsp/docs20/index.html

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/install/sampleapp.html
http://e-docs.bea.com/aldsp/docs20/index.html

CHAPTERa

Data Services Platform Projects and
Components

BEA Aqualogic Data Services Platform (DSP) can be added to WebLogic Workshop in two ways:
e As a new application designed to provide data services

e Asa project in an existing application

The basic menus, common behavior, and look-and-feel associated with WebLogic Workshop all apply
to DSP.

Note: WebLogic Workshop online documentation is available at:
http://e-docs.bea.com/workshop/docs81/index.html

This chapter discusses various WebLogic Workshop facilities that you will likely use in creating and
managing your DSP-based projects. DSP extensions to WebLogic Workshop are also described from an
interface perspective.

The following topics are covered:
e DSP-Based BEA WebLogic Projects

e Major Components of a DSP Project

DSP-Based BEA WebLogic Projects

You can create a WebLogic Workshop application that automatically includes a Data Services Platform
project. Or you can add DSP projects to any BEA WebLogic application. When an application contains
a DSP project it is considered DSP-based.

Data Services Developer's Guide 2-1

http://localhost:7001/console
http://e-docs.bea.com/workshop/docs81/index.html

Data Services Platform Projects and Components

Note: It often makes sense to consolidate DSP queries in a WebLogic Workshop application
dedicated to DSP development. Other applications can then access these queries through the
DSP Mediator API or a Data Services Platform control. For details see the DSP Client
Application Developer’s Guide.

Verifying Your DSP Version Number

To ascertain that DSP is available to your application or to determine the version of DSP that you are
using, start your BEA WebLogic Server and access its Administration Console. For example, the
Console for the sample domain provided with BEA WebLogic can be accessed from:

http://localhost:7001/console

Navigate to the Console — Versions page (Console being the top menu item) and find the version and
creation date for DSP.

Creating a Data Services Platform-based Application

To create a DSP-based application select File — New — Application from the WebLogic Workshop
menu. When the dialog appears, select DSP Application (Figure 2-1).

Figure 2-1 Creating a New Data Services Platform Application

Al éﬁl Data Services Application [<]
1) Data Service éﬁl Default Application
g Fortal éﬁl Empty Application
Process F- S
Paortal Application
[Z) Tutarial o PP

éﬁl Process Application

éﬁl Tutorial: Enterprise JavaBeans

éﬁl Tutorial: Hello World Process application

éﬁl Tutorial: Java Control [=]

Direckory: | Ciibealuser_projectstapplicationsintitled | | Browse, .. |

Mame: | Untitled |

I~
Server: | C:'l,bea'l,weblﬁ&ics1'l,samples'l,domains'l,ldplatfo‘ - | | Browse, .. |

Creates a new empty application with a Data Service project,

You probably will want to change the name of the application from Untitled to something else. Your
new application automatically contains an initial DSP-based project.

2-2 Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html
http://e-docs.bea.com/liquiddata/docs85/appdev/index.html

DSP-Based BEA WebLogic Projects

Figure 2-2 Application View of a New Data Services Platform Application

('] My - BEA WebLogic Workshop (=[]

File Edit Wew EBuld Debug Tools Window Help
DEES |- [2B =03 B
I Applicatigs, *
2y
@MyDataServices

£ Modules

(T Libraries
(3 Security Raoles

Build ™. *

Ready @ Server Stopped

You can save your application at any time using the File — Save, Save As, or Save All commands. Save
All saves any modified files in your application.

When you initially create a WebLogic Workshop application such as “myLD”, a file called myLD . work
is created in the root directory of the application. Invoking Workshop with this file also opens your
application.

An application can contain any number of DSP or other types of WebLogic Workshop projects.

Adding a DSP Project to an Existing BEA WebLogic Application

You can also add one or several DSP projects to any WebLogic Workshop application.

To do this select File — New — Project. When the project creation dialog appears, choose DSP
Project.

Data Services Developer's Guide 2-3

Data Services Platform Projects and Components

Figure 2-3 Application Pane of a New Data Services Platform Application

Application . Files . *

Zymy
= @ yDataServices
|<—j xquery-types%sd
£ Madules
(T Libraries
(3 Security Raoles

Major Components of a DSP Project

When a new Data Services Platform application or project is created, a DSP project folder is also
created. This becomes the root directory of your project (see Figure 2-3). Two Java archive (.jar)
files are added to the application’s Libraries folder including 1d-server-app.jar and the
mediator.jar, which manages Service Data Objects (SDOs), described in detail in the Client
Application Developer’s Guide.

2-4

Table 2-4 list major DSP file types and their purposes.

Table 2-4 Data Services Platform Components, Including File Types

Component

Purpose

Data Services (. ds)

Data services are contained in . ds files and can be located anywhere in your
application. Each data service file is an XQuery document.

Note: Since a . ds file may contain numerous XQueries as well as other
automatically-generated pragma directives, care should be exercised
when editing this file directly.

Model Diagrams (. md)

Model diagrams provide a graphical representation of the relationships between
various data services, which themselves represent the physical and logical data
services available to your DSP queries.

Model diagrams have the extension . md and can be located anywhere in your DSP
project.

Metadata information

Metadata information is contained in META-INF folders associated with JAR files.
The non-editable contents of this Libraries folder contains information on data
sources used by data services.

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html
http://e-docs.bea.com/liquiddata/docs85/appdev/index.html

Major Components of a DSP Project

Component Purpose

Schemas (. xsd) Data services typically are associated with XML types whose physical
representation is an XML schema file. Schema files can be located anywhere in
your application. Schemas automatically created by the Metadata Import wizard
are placed in a schemas directory inside your project.

Schema files can be manually created or modified using any text editor as well as
though the data service Design View and model diagrams containing the data
service.

The XML type is repeated for each read function as its return type. The return type
precisely describes the shape of the document to be returned by your query.

The return type can be modified through the XQuery Editor or directly in source.
However, this generally should only be done in conjunction with the Save and
Associate Schema command (see “Creating a New Data Service and an XQuery
Function” on page 6-7 for additional details).

XQuery function library ~ XQuery function libraries typically contain utility XQuery functions that can be

files (. x£f1) used in data services and in building data transformations. A typical example
would be a routine for converting currencies based on daily exchange rate. Such
functions could be used by any data service in your application.

Other files which may appear in DSP projects include Java files containing custom update logic and
SDO configuration files such as sdo . xsdconf ig, which allows XMLBean technology to create SDOs
rather than XMLBeans.

Using the WebLogic Workshop IDE

WebLogic Workshop is fully described in on-line and printed documentation. A good place to start is:

http://e-docs.bea.com/workshop/docs81/index.html

Alternatively, WebLogic Workshop provides complete on-line help.

Data Services Developer's Guide 2-5

http://e-docs.bea.com/workshop/docs81/index.html

Data Services Platform Projects and Components

Figure 2-5 Some WebLogic Workshop Components in a DSP-bhased Project

@ Demo - BEA WebLogic Workshop - Customer.xds

MET=|

File Edit ¥ew Buld Debug Tools window Help

=R

o/l H s~ ¢ | HE e

|| Customer xds* - {DataServicesH

[. Customer.xds WML Data Service

(&0 crwsPriect

[=H29 DataServices
=29 diagrams
@ logical xmd*
B physical.xmd
L META-INF

PAYMEN, ., j.ﬁ

=33 DanubeWeb A (12} IS OMEY
{2 Custor . .
Tioaas ApPIication wewrs)
resour
% rea Structure I
errar.jsp A getPavmentTest
"L.% TestProcess. jws —

Return Type - CUSTO,., &
(&) CUSTOMER
& CUSTOMERID xs:i
(@ CUSTOMERNAME
@ cREDIT*
@ ORDER*

USTOMERS, xds

CUSTOMERS

FO_CUSTOMERS, xds
FO_ITEMS, xds
w7

T

(] Pracesses gebCustomerCredit. .,
[0 schemas Data SerVICG)
@ CreditR atinglpdate java VIeWS flscommensied e R
@ Customer.rds* E
[s8) cusTOMERS xds | i ———
@ CustomerUpdatelogic. jav. ! ! lz‘
Fj getCustomer CreditR.atingR] | m
Fj TTEMS s | | Design Yiew [¥Query Editor | Source Yiew | Test View | Guery Plan Yiew |
@ PAYMEMTS xds #Query Function Palstte ~{ ®Query Construct Palette j LiquidData Palette £l
[¢¥] PO_CUSTOMERS s y{wwces N /
3] PO
[o, XQUery {2 Customer, xds XQuery Data Source
@ sdo . J getCustomer() g
(0 Module: FU nctions [getpaymentList COnStl’u cts Functions
() Librarie: J getPaymentTest,,
(&] Security Roles [CUSTOMERS. xds
[] cusTomERS(
. et Cus! Jxds :
Buld 2% Output Properties
Results arme Results Editor
_:'PO_CUL._. e
\ | (£33 PO_ITEMS xds
\ ¥ Build | output A Propert Editﬂr)(*®

The following table briefly describes:

2-6

e WebLogic Workshop functionality extensively used by DSP.

e DSP extensions to the Workshop user interface.

Data Services Developer’s Guide

Major Components of a DSP Project

Table 2-6 Summary of WebLogic Workshop Pane Used by DSP

Service Purpose

Application pane Lists the projects and other components in your application.

Files pane Provides an ordered listing of files used in your application.

Build pane Provides feedback while the application is being built and reports

build success or failure.

Output pane Shows data sources accessed, execution times, and query
statement.
Property Editor Provides information on properties associated with the currently

selected object. Some properties are configurable or editable.

Table 2-7 describes the several WebLogic Workshop menu commands you will use with DSP projects.

Table 2-7 Summary of WehLogic Workshop Menu Services Used by DSP

Service Purpose

File menu When working with DSP projects you will often use the following
File menu options:

e Save, Save As, Save All. The Save command saves the current
file while the Save All command saves all open or modified files
inyour project. Use the Save All command to make sure that all
changes you have made to your application will be persisted.

e Import commands. Use the Import file browser to add files or
libraries to your project. For example, if you have an externally
developed schema you can use the Import command and
associated file browser to bring a copy of it into your project.

Property Editor

You can use the Property Editor to view details related to any DSP artifact (see Figure 2-8). For
example, in Design View (see “Design View” on page 2-12) if you click on the general data service, the
Property Editor provides details on the entire service. If you click on a relationship represented in a
data service, property details on that relationship appear. In many cases, property settings are
editable or configurable.

Data Services Developer's Guide 2-1

Data Services Platform Projects and Components

2-8

Figure 2-8 Relationship Properties in a Data Service

Customer, xds* - {DataServicesH * "

=]

Customer.xds %ML Data Service
Return Type - CUSTD,,, #
getCustomer © CUSTOMER ,—\;\ﬁ CUSTOMERS. xds
(&) CUSTOMERID xsvir
&) CUSTOMERMAME

L

CUSTOMERS +

) =) CREDIT* ’:
et PayrnentList Q 3 PO_CIUSTOMERS, xds
(&) ORDER* [Fen T
e 0t Pavment Test 3

PO CUSTOMERS 4

Wg\] PO_ITEMS,xds
W

PAYMEN. .. .ﬁ

PO ITEMS 4

getCustomerCredit, ..

k&

stomerCreditRating 4
1 [—‘ =
[5]
Design View [®Query Editor [Source View | Test View | Query Plan Yiew
| Build | Oukput " Property Editar ®
PAYMENTS - Relationship
General
Role-Mame PAYMENTS
Target-xDS Id:DataServices/PAYMENTS.xds
min-occurs
Max-0CCUrs
opposite getCustomer
Description ¥

The role name of the relationship in the target ¥DS which traverses is in the opposite direction from this relationship,

You can find important properties detailed in conjunction with feature descriptions.

Finding Text in Files

WebLogic Workshop provides a comprehensive file search facility with its Find in Files option,
available from the Edit menu (Edit — Find in Files).

Data Services Developer’s Guide

Major Components of a DSP Project

Figure 2-9 Workshop File Search Facility

Find in Files
Text to Find: | cus| |~] [Fnd
]

Search files of type: | ".jws,*.jcx,*.jcs,*.ctrl,*.jpd,*.ij,*.jsp,*.jspf,*.java,*.jsx,*.xml,*.ejb| - | | Cancel |
Search in: | [:\bealweblogics1isamplesiLiquidDatalR TLAppiDataServices | -

Search in subdirectaries Browse. ..
Options
[] Case sensitive Use * and ? far pattern matching
[Find whale words anly [Qutput in new pane

You can use Find in Files to search for references to any DSP artifacts such as particular data sources,
use of functions, and so forth.

Survey of DSP Additions to WebLogic Workshop

A DSP project adds menu items and views to the basic WebLogic Workshop environment to support
the following functionality:

e Metadata Import
e Data Models

e Data Services

Metadata Import

Data services are central to creating data models and physical and logical data views that can be used
in DSP queries. The first step in creating a data service is to import metadata from physical data
sources so that corresponding physical data services can be created.

Data Services Developer's Guide 2-9

Data Services Platform Projects and Components

2-10

Figure 2-10 Selecting Metadata Import for a DSP Project

|| Application ™/ Files . *
23 Demo

(31 crwsProject
(&1 Danubeiweb

22 Iq Mew 3

B2 p
B3y Install 4
|<—j u Build DataServices

CaMETA Clean DataServices

[C sche

@ Credi Import...
[¢] cust Delete
[4 cusT
@ Custo
|<—j gebCy
|<—j ITEM Import Source Metadata, .,
|<—j PAYN
[4 ro_g
[4 Po_x External Tools 4
|<—j sdo.x
3] untit
(C1) DemoLiquidDatatpp
(C1 Modules
(T Libraries
(3 Security Raoles

Remove from Application

Rename

Synchronize Source Metadata. ..

Properties

For details related to importing and updating metadata into your DSP project see Chapter 3,
“Obtaining Enterprise Metadata.”

Data Models
It is through the data model interface that you can:

e Establish or modify relationships between data services.
e Edit a data service’s return type.

e (Create annotations to a model or a data service.

Data Services Developer’s Guide

Major Components of a DSP Project

Figure 2-11 Creating a Data Model Diagram From the File Menu

E Demo - BEA Weblogic Workshop - model5. xmd
Edit ‘iew ®DS Buld Debug Tools ‘Window Help
@ Java Class

Qpen »

Close modelS.xmd — Chrl4+F4 Fj Al IRt SR
Close Al Files Chrl+Shift+F4 Other File Types... Cbrl+N
Close Application Application. ..
ﬂ Project...
Save As...

Import Project...

Impart Library...
Import Module. ..
O Import Files. ..

Page Setup...
Print... Chrl+P

Recent Files 4

Recent Applications]

Exit
= |

(3 Security Raoles

For details on developing and maintaining data models see Chapter 5, “Modeling Data Services.”

Data Services

Every data service provides a Design View, XQuery Editor View, Source View, Test View, and Query
Plan View. Each data service is based around a single XQuery source file. And every data service has
an associated XML type.

Data services are composed of read and navigation functions. Read functions must return the XML
type of the data service. Navigation functions, return the XML type of their native data service.

Data Services Developer's Guide 2-11

Data Services Platform Projects and Components

2-12

Figure 2-12 Sample Data Service

&RTLApp - BEA WebLogic Workshop - Customer.ds E]@
File Edt Wew DataService Buld Debug Todls Window Help

DEE@ - B« =EaF|PHEEs - EEE 6

Customer ds - {DataServicesHRTLServices| *

[[§2" Customer Data Service |

El @ PROFILE retailerType:PROFILE_TYPE

¢ EH— CustomerDE{ADDR. ..
@ FirstMame xsd:skring

— QetCustomerByCustin
AT RO T @ Lastiame xsd:string

CustometDBICLIST...

@ Customersince xsdidate b
@ Emailiddress xsdistring ’
1@ Telephonehiumber 7 xsd:string
@ 5507 xsdhstring
@ BithDay 7 xsdidate
@ DefaulshippmentMethod xsdistring
@ Emailiatification xsd:short
@ OniineStatement xsdshort

@ ADDRESS * retalerType: ACDRESS_TYA

getApplOrder

getCreditCard

ElecOrder

< getElecOrder

K1l] [» El
4]
Design View [Heuery Edior Yiew Query Flan View
Build ™. *
Ready @ Server Stopped s [eofio0

Design View
Design View is the central reference point of every data service. It is through Design View that you can:

e Add or modify the XML type.
o Add read functions using the XQuery Editor View.

e Add relationships in the form of navigation functions. These functions are typically developed
using the Relationship wizard.

For details on developing and maintaining data services see Chapter 4, “Using Data Services Design
View.”

XQuery Editor View

It is through the XQuery Editor View that you can develop query functions by projecting data service
function elements, as well as transformations, to the function’s return type.

Data Services Developer’s Guide

Figure 2-13 Sample XQuery Editor Query with Its Return Type

Major Components of a DSP Project

CustomerYiew.ds* - {DataServicesRTLServices),

%
B getCustomer\u‘iew(CustID)‘ -
= (@ Return 2
=iFor: $Profile_type 20 [l Customerisv
S| nput [=] = CUSTOMER_YIEW * CUSTOMER_VIEW
= ‘: u;tu_t\su:tnng |:| CustomerID skring
5 PROFILE * PROFILE_TYPE / e ——
LastMarne string
{?|Parameter: §Cus... » e 51 CRDERS
FirstMame string
CustD string LastMame string [=-ORDER_SUMMARY * ORDER_SUMMARY_TYPE
uskamerSinee dake = Type ? string
4 [¥] OrderID string
CustarmnerID string
OrderDate 7 date
S9For: §0rder_type 2 0 TotalorderAmount decimal
(=i Input [] ShipToName string
custamer_id string EstimatedshipDate date
[=I4=| Qutput Trackinghumber 7 string
=) ORDER * ORDER_TVPE Status string
@TYPE 7 string = LINE_ITEM *
OrderID string ProductDescription string
SqFor: $Line_item 2 0 CustomerID string Quaritity ik
£} LINE_ITEM * LINE_ITEM_[~]| OrderDate date
@TYPE? string ShippingMethod string
. HandingCharge decimal
OrderID string SubTatal decimal
ProductId string TotalOrderAmount decimal
ProductDescription sty ST]
Cuantity int EstimatedshipmentDate dat |
Price decimal ’—|Stat“5 string lz‘ E‘
Skatus skring E‘ m E‘
4

[1o8][]

Design ¥iew | ¥Query Editor Yiew [Source View | Test View | Query Plan View |

The graphical editor directly supports common constructs of the emerging XQuery standard. Several
resources are available to help in the development and maintenance of query business logic. These
are all available from the WebLogic Workshop View or View — Windows menu).

For details on developing queries using XQuery Editor View see Chapter 6, “Using Query Editor View.”

XQuery Function Palette

An XQuery function palette (Figure 2-14) that supports standard XQuery and BEA-specific functions.
This function palette is also available from the Workshop View — Windows menu.

Data Services Developer's Guide

2-13

Data Services Platform Projects and Components

2-14

Figure 2-14 XQuery Function Palette

| #Query Function Palette | XQuery Construct Palette . LiquidData Palette
I-1 #QueryFunctions
[Z1) Accessor Functions
[C) Error and Trace Functions
(Z2) Mumeric Functions
(2 String Functions
(Z1 URI Functions
(C1) Boolean Functions %
(Z) Duration, Date, and Time Functions
- C) QMame Functions
J friresolve-Qhamei$gname as xs:string?, $element as element()) as xs:QMame?
J fr:expanded-Qiame($paramURI as xs:string?, $paramLocal as xs:string) as xs:QMame
J fr-bea: QMame-from-string{$param as xs:string) as xs:Qhame
J frilocal-name-from-QMamel$arg as xs:QMame?) as xs:NCNAME?
J fr:namespace-uri-from-Qilamei$arg as xs:QMame?) as xs:anyURI?
J Fr:namespace-uri-for-prefix{$prefix as xs:string, $element as element()) as xs:anyURI?
J friin-scope-prefixesi$element as element()) as xs:string*
(Z) Mode Functions
[Z1 Sequence Functions
C| Aggregate Functions
(C) IdfTdref Functions
= C) %ML Data Source Functions
J frdoc{$uri as xsistring?) as document-noded)?
J fricollection{$arg as xs:string?) as noded)*
(C) Context Accessors

Like all Workshop pan_es, the XQuery Function Palette can be placed anywhere in the WebLogic
Workshop window. Functions can be dragged into the XQuery Editor View as well as Source View.

XQuery Constructs Palette

DSP projects also have access to the XQuery Constructs palette (Figure 2-15). This palette supports
creation of different types of XQuery statements in the XQuery Editor View or Source View. Many of
the construct prototypes such as FLWGR, FGWOR, FWGR, and so forth are variations on the most
common XQuery construct, FLWR (for-let-where-return).

Data Services Developer’s Guide

Major Components of a DSP Project

Figure 2-15 XQuery Constructs Palette

%Query Function Palette | XQuery Construct Palette | LiquidData Palette
=) #Query Constructs
O FLWDR
COFLwGR
COFLwWoR
COAFLwR
COFWoR
CaFweR
COAFWOR
. G
CaFoR
CAFGR
CaFoR
CaFr
() IFTHEMELSE
() IFTHEMELSEIF

For example, FLWGR adds the DSP extension Group By. The prototype is shown below in Source View.

for $var in ()

let $var2:=()

where (true)

group by () as $var3 with partitions $var as $var4
return

0
For details on Group By and other BEA XQuery extensions see the XQuery Developer’s Guide.

Data Services Palette

The Data Services Palette (Figure 2-16) is only available toDSP projects. It provides the XQuery Editor
access to data service and XFL (XQuery function library) routines.

Data Services Developer's Guide 2-15

http://e-docs.bea.com/liquiddata/docs85/xquery/index.html

Data Services Platform Projects and Components

2-16

Figure 2-16 Data Services Palette

|| Data Services Palette *
") DataServices
1 ApparelE %
(C1 BilingDE
) CustomerDE
[} £ ADDRESS.ds
£ ADDRESS()
& getCUSTOMER()
£ CUSTOMER. ds
1 Demo
(C) Electronicsws
) RTLServices
() Address.ds
1 Applorder.ds
1 ApplorderDetailview.ds
1 ApplProduct.ds
[Case.ds
[T Caseview.ds
(C) CreditCard.ds
(C Customer ds
(C1) Customerviewds
[C) ElecCrder.ds
[C) ElecrderDetailview.ds
[C) ElecProduct.ds
[C1) ©rderDetailview.ds
[C1) ©rderSummaryYiew.ds
(C) Orderview.ds
(C1 Productview.ds
(C Profileview.ds
(C1 ServiceDE

For details on using the XQuery Editor see Chapter 6, “Using Query Editor View.”

Editing XML Types and Return Types

A schema editor for modifying XML types in model diagrams and data services, as well as return types
in the XQuery Editor, is available. See “Working with XML Types” on page 4-21.

Right-click menu commands for return types differ slightly from the right-click menu commands
available for editing XML types. This is because you can use the XQuery Editor to create if-then-else
constructs, zones, and cloned elements as a means of exactly specifying the form your query result
document should take. (See “Modifying a Return Type” on page 6-43.)

Data Services Developer’s Guide

Major Components of a DSP Project

Figure 2-17 Editing an XML Type Element

|| PO_CUSTOMERS.xds XML Data Service
Return Type - PO_CUSTOMERS &
= PO_CIISTOMERS Q PO_CUSTOMERS
BE@ cus
=@

A Add Attribute
d

d
& @ne

Delete

Felationships kS

Test View

After you have developed a query you can run it using Test View. For details see Chapter 7, “Testing
Query Functions and Viewing Query Plans.”

Source View

If you are working in Source View you can easily add pre-built XQuery functions and constructs to your
source, as well as make other changes to your data service. For additional details see Chapter 8, “Using
Source View.”

Query Plan View

You can review the query plan developed by DSP for a particular function in order to verify the
generated SQL or look for opportunities to improve performance. See “Analyzing Queries Using Plan
View” on page 7-13.

XQuery Function Library (XFL) Files

In any Data Services Platform project you can create XQuery libraries containing functions which can
be used by any data service in your application. XQuery function libraries can be created in two ways:

e Using the File — New Library option

e Automatically, when Java functions returning primitive types are imported as metadata

An XQuery function library is ideal for containing transformation and other types of functions without
the overhead of having to build a data service.

Data Services Developer's Guide 2-11

Data Services Platform Projects and Components

An XQuery function library can also be used to hold security functions which, in turn, can be used by
any data service.

Also see in the Data Services Platform Samples Tutorial Part Il

- Lesson 35: Creating an XQuery Function Library

Create An XQuery Function Library

Since an XQuery function library can hold any number of heterogeneous functions, only namespace
conflicts need to be resolved before you can make your function generally available.

For example the following function is available in the Credit Card data service provided with the DSP
sample application, RTLApp (namespace declarations from a separate section of the source file are
included):

declare namespace nsl="1ld:DataServices/BillingDB/CREDIT CARD";

import schema namespace nsO="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/CreditCard.xsd";

declare namespace tns="1ld:DataServices/RTLServices/CreditCard";
(: ...)

declare function tns:getCreditCard() as element (ns0:CREDIT CARD)* {

for $CREDIT CARD in nsl:CREDIT CARD()

return <ns0:CREDIT_CARD>
<CreditCardID>{fn:data ($CREDIT CARD/CC_ID) }</CreditCardID>
<CustomerID>{fn:data($CREDIT_CARD/CUSTOMER_ID)}</CustomerID>
<CustomerName>{fn:data ($CREDIT CARD/CC_CUSTOMER_NAME) }</CustomerName>
<CreditCardType>{fn:data ($CREDIT CARD/CC TYPE) }</CreditCardType>
<CreditCardBrand>{fn:data ($CREDIT CARD/CC_BRAND) }</CreditCardBrand>
<CreditCardNumber>{fn:data ($CREDIT CARD/CC NUMBER) }</CreditCardNumbers>
<LastDigits>{fn:data ($CREDIT_CARD/LAST DIGITS) }</LastDigits>
<ExpirationDate>{fn:data (SCREDIT CARD/EXP DATE) }</ExpirationDate>
{fn-bea:rename (SCREDIT CARD/STATUS, <Status/>) }
{fn-bea:rename (SCREDIT CARD/ALIAS,<Alias/>)}
<AddressID>{fn:data ($CREDIT CARD/ADDR ID) }</AddressID>

</ns0:CREDIT_ CARD>

Here are the steps you would take to make this function available from an XQuery library:

2-18 Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Major Components of a DSP Project

1. The first step is to create and name a library, if you do not already have one:

File —New — XQuery Function Library

Figure 2-18 Creating a New XQuery Function Library

New File
Caal B8 Madel Diagram
() Business Logic {2 Data Service
(] Liquid Data 3] #cuery Function Library

(O] Web Services
[C) Web User Interface
(2] Comman

File name:| myLibrary.x£1l |

Create in: {DataServicesHRTLServices),

Create a new XQuery Function Library.,

2. Name your library such as myXQueryLibrary.
3. Copy your function into the newly created file.

4. Change the function declaration to match the namespace of your library file.

Here is the complete source of the XQuery library file containing the CREDIT_CARD function. To
simplify, the object is returned as $x rather than as a set of individually-mapped elements.

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com"></x:xfl> ::)
xquery version "1.0" encoding "WINDOWS-1252";

declare namespace tns="lib:DataServices/MyXQueryLibrary";

declare namespace nsl="ld:DataServices/BillingDB/CREDIT_ CARD";

import schema namespace nsO="urn:retailerType" at
"ld:DataServices/RTLServices/schemas/CreditCard.xsd";

(: function pragma removed for readability :)

declare function tns:getCreditCard() as element (nsl:CREDIT CARD)*

for $x in nsl:CREDIT_ CARD ()

Data Services Developer's Guide

Data Services Platform Projects and Components

return $x

}i
A common use of the XQuery Function Library would be as transformational functions that can then
be made available through the Data Services Palette to any data service in your application.

Building and Deploying Applications, EARs, and SDO Mediator
Clients

DSP attempts to rebuild your application when necessary. However, there are times when you need to
initiate a build directly.

Building and Deploying Applications

The following table describes relevant Build menu options and their uses.

Build Menu Options Usage

Build Application Builds or rebuilds your application. The result is that the contents
of all the project-specific JAR files are updated according to the
underlying project script. If your application has already been
deployed, this option will automatically redeploy after a successful
build.

You can also build individual projects.

Clean Application Attempts to undeploy EJBs and other resources that were produced
by the compilation process. In some cases this is not possible
because of the state of the server. If Clean Application does not
solve the problem, stop and restart WebLogic Server.

Clean Application addresses problems that occur due to cyclic
compilation of Java files during iterative development, not on
production servers.

You can also clean individual projects.

Build Ear Creates an archive file of your application. The EAR file has the
same name as your application.

2-20 Data Services Developer’s Guide

Building and Deploying Applications, EARs, and SDO Mediator Clients

When to Rebuild Your Application or Project

You need to rebuild whenever you delete a file from a DSP-based project. Rebuilds can occur on a
project or at the application level. Generally speaking, there is no need to rebuild your entire
application unless you have made changes to multiple projects.

Rebuild your project (or application) in two steps:

1. Clean your project (or application). You can do this by right-clicking on your project (or
application) in the Application pane and selecting the available Clean option. Alternatively, use
the appropriate Clean option available from the WebLogic Workshop Build menu.

2. Build your project (or application) using the appropriate right-click or Build menu options.

Note: Ifyou try to run a function in Test View and it fails unexpectedly, it is often curative to clean,
then rebuild your application before attempting to run your query again.

Deploying Your Application

If your application is already deployed, it is automatically redeployed whenever you rebuild it. Under
some conditions you may want to undeploy your application before building it. The following table
describes relevant options available when you click on your application folder in the Application pane.

Application Level Right-click Usage
Deployment Options
Deployment —>Redeploy Redeploys your application.
Note: If you build your application it is automatically
redeployed.
Deployment —> Full Redeploy First undeploys your application, then deploys it.
Deployment — Undeploy Removes your application from the Application Server.

For additional information on deploying WebLogic Workshop applications see:
e “Building and Deploying Integrated Applications”

e “Deploying Applications to a Production Server”

Data Services Developer's Guide 2-21

http://e-docs.bea.com/workshop/docs81/doc/en/integration/deploy/deployIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/deployment/navDeployingApplications.html

Data Services Platform Projects and Components

2-22

Creating the SDO Mediator API

After you have created and tested your application’s query functions, you need to make them available
to client applications. The SDO mediator API is the primary means of providing access to your
updatable functions.

Note: For details on programming with SDO and accessing data in Java clients through the
mediator API see the Data Services Platform Client Application Developer’s Guide.

A way to create the SDO mediator client Java archive (. jar) file is through the right-click menu
option Build SDO Mediator Client. This is only available from the root folder of your application.

In order to build your client, you must first have successfully build an application EAR file. See
“Building and Deploying Applications” on page 2-20.

When successful, your SDO mediator client will be created in the root directory of your application.
The file will be named as:

<name_of your application>-1ld-client.jar

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html

GHAPTERa

Obtaining Enterprise Metadata

A first step in enabling the data services provided by the BEA Aqualogic Data Services Platform (DSP)
is to obtain metadata from physical data available to your application.

Topics in this chapter include:
e (reating Data Source Metadata

e (Creating Metadata From Relational Sources

Importing Relational Table and View Metadata

Importing Stored Procedure-Based Metadata

Using SQL to Import Metadata

Importing Web Services Metadata

Importing Java Function Metadata

Importing Delimited File Metadata

Importing XML File Metadata

Updating Data Source Metadata

Creating Data Source Metadata

Metadata is simply information about the structure of a data. For example, a list of the tables and
columns in a database is metadata.

Data Services Developer's Guide 3-1

Obtaining Enterprise Metadata

In DSP, data services are initially derived from metadata extracted from physical data sources. These
base data services are often called physical data services.

Figure 3-1 Data Services Available to the RTL Sample Application

|| Data Services Palette *
") DataServices
1 ApparelE %
(C1 BilingDE
) CustomerDE
[} £ ADDRESS.ds
£ ADDRESS()
& getCUSTOMER()
£ CUSTOMER. ds
1 Demo
(C) Electronicsws
) RTLServices
() Address.ds
1 Applorder.ds
1 ApplorderDetailview.ds
1 ApplProduct.ds
[Case.ds
[T Caseview.ds
(C) CreditCard.ds
(C Customer ds
(C1) Customerviewds
[C) ElecCrder.ds
[C) ElecrderDetailview.ds
[C) ElecProduct.ds
[C1) ©rderDetailview.ds
[C1) ©rderSummaryYiew.ds
(C) Orderview.ds
(C1 Productview.ds
(C Profileview.ds
(C1 ServiceDE

Table 3-2 list the types of sources from which DSP can create metadata.

Table 3-2 Data Sources Available for Creating Data Service Metadata

Data Source Type Access

Relational (including JDBC
tables, views, stored
procedures, and SQL)

Web Services (.wsdl) URI, UDDI, WSDL

Delimited (. csv) File-based data such as spreadsheets

3-2 Data Services Developer’s Guide

Creating Data Source Metadata

Data Source Type Access
Java functions (. java) Programmatic
XML (.xml) File- or data stream-based

When information about physical data is developed using the Metadata Import Wizard two things
happen:

e A physical data service (extension .ds) is created in your DSP-based project.

e A companion schema of the same name (extension .xsd), is created that describes the XML
type of the data service. This schema is placed in a sub-directory of your newly created data
service.

DSP provides a Metadata Import wizard that introspects available data sources and identifies data
objects that can be rendered as data services or functions. Once created, physical data services
become the building-blocks for queries and logical data services.

The next sections of this chapter describe how you can use the Metadata Import wizard to create data
services from various types of data.

Data Services Developer's Guide 3-3

Obtaining Enterprise Metadata

3-4

Creating Metadata From Relational Sources

You can create metadata on any relational data source available to the BEA WebLogic Platform. For
details see the BEA Platform document entitled “How Do I Connect a Database Control to a Database
Such as SQL Server or Oracle.”

Four types of metadata can be created from a relational data source:
e Table based
e View based
e Stored procedure-based

e SQL based

Note: When using an XA transaction driver you need to mark your data source’s connection pool to
allow LocalTransaction in order for single database reads and updates to succeed.

For additional information in XA transaction adaptor settings see “Developing Adaptors” in

BEA WebLogic Integration documentation:
http://e-docs.bea.com/wli/docs81/devadapt/dbmssamp.html

Data Services Developer’s Guide

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howConnectDatabaseControlSQLServerOracle.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howConnectDatabaseControlSQLServerOracle.html
http://e-docs.bea.com/wli/docs81/devadapt/dbmssamp.html

Creating Data Source Metadata

Importing Relational Table and View Metadata

To create metadata on relational tables and views follow these steps:

1. Select the project in which you want to create your metadata. For example, if you have a project
called myLDProject right-click on the project name and select Import Source Metadata... from the
pop-up menu. Click Next.

2. From the available data sources in the Import Wizard select Relational (see Figure 3-3).

Figure 3-3 Selecting a Relational Source from the Import Metadata Wizard

Dl Select data source type

Data Source Type: | Relational N IZ|

| Mext || || Cancel |

3. Either select a data source from available sources or make a new data source available to the
WLS.

Data Services Developer's Guide 3-5

Obtaining Enterprise Metadata

3-6

Figure 3-4 Import Data Source Metadata Selection Dialog Box

& Select data source

Data Source: | bpmarchDataSource | - | | Mew, .. |

(1 Select all

Displays all tables, wiews, and procedures in the data source,

(@) Filter data source objects

Enter specific tables, views, or procedures ta restrict returned objects,

Catalog |

Schema |

Table,l’\n'iew| CLISTYs, PRODY|

Procedure |

JDEC wildcard operators: _ For single characters; % for strings,

(C1 50U skatement

Allowe data service creation from a user-provided SGL staternent,

| Previous | | NextN | | | Cancel |

Data Object Selection Options

For information on creating a new data source see “Creating a New Data Source” on page 3-7.

If you choose to select from an existing data source, several options are available (Figure 3-4).

Select All Database Objects

If you choose to select all, a table will appear containing all the tables, views, and stored procedures
in your data source organized by catalog and schema.

Filter Data Source Objects

Sometimes you know exactly the objects in your data source that you want to turn into data services.
Or your data source may be so large that a filter is needed. Or you may be looking for objects with
specific naming characteristics (such as $audit2003%, a string which would retrieve all objects
containing the enclosed string).

In such cases you can identify the exact parts of your relational source that you want to become data
service candidates using standard JDBC wildcards. An underscore (_) creates a wildcard for an

Data Services Developer’s Guide

Creating Data Source Metadata

individual character. A percentage sign (%) indicates a wildcard for a string. Entries are
case-sensitive.

For example, you could search for all tables starting with CUST with the entry: CUST?%. Or, if you had
arelational schema called ELECTRONICS, you could enter that term in the Schema field and retrieve
all the tables, views, and stored procedure that are a part of that schema.

Another example:
CUST%, PAYS%
entered in the Tables/Views field retrieves all tables and views starting with either CUST or PAY.

Note: If no items are entered for a particular field, all matching items are retrieved. For example,
if no filtering entry is made for the Procedure field, all stored procedures in the data object
will be retrieved.

For relational tables and views you should choose either the Select all option or Selected data source
objects. For details on stored procedures see “Importing Stored Procedure-Based Metadata” on
page 3-13.

SQL statement

Allows you to enter an SQL statement that is used as the basis for creating a data service. See “Using
SQL to Import Metadata” on page 3-27 for details.

Creating a New Data Source

Most often you will work with existing data sources. However, if you choose New... the WLS DataSource
Viewer appears (Figure 3-5). Using the DataSource Viewer you can create new data pools and sources.

Data Services Developer's Guide 3-7

Obtaining Enterprise Metadata

Figure 3-5 BEA WebLogic Data Source Viewer

E DataSource Yiewer

)3 Data Sources Data Source
J coDatasource DataSource Name cgDataSource
J cgDakaSource-nonss
Pool cgPool
J cgSamplebataSource
J weblogic, jdbe. jts, ebusinessPq Drop Data Source
23 Connection Pools
J cgIMSPool-nonsa
J cgPool
Connection Pool
Pool Mame cgPool
Drriver com. pointbase. jdbe. jdbclUniversalDriver
LRL jdbc:pointbase:server: fflocalhost: 9093 waorkshop
Properties {user=weblogick
Drop Pool
Mew Data Source

For details on using the DataSource Viewer see “Configuring a Data Source” in WebLogic
Workshop documentation.

Selecting an Existing Data Source

Only data sources that have set up through the BEA WebLogic Administration Console are available
to a Data Services Platform application or project. In order for the BEA WebLogic Server used by DSP
to access a particular relational data source you need to set up a JDBC connection pool and a JDBC
data source.

e For details on setting up a JDBC connection pool see:

http://e-docs.bea.com/wls/docs81l/ConsoleHelp/domain jdbcconnectionpool config
general.html

e For details on setting up a JDBC data source see:

http://e-docs.bea.com/wls/docs81l/ConsoleHelp/domain jdbcdatasource config.html

3-8 Data Services Developer’s Guide

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/datasource/navWorkingWithDataSources.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcdatasource_config.html

Creating Data Source Metadata

Figure 3-6 Selecting a Data Source

{& Select data source

|

Data Source: | cgDaktaSource

P— bpmArchDataﬁurce
cgDakaSource!

| Mew. .. |

[»]] «

® Sélect d cghataSource-nonxa
. cgDataSourcel caDataSource ||* =240
() Selected g caDataSource2

Displays id cgSampleDataSource the data source,

Catalog contentDataSource

plan.datasyncDataSource
Schema lz‘

Once you have selected a data source, you need to choose how you want to develop your metadata —

by selecting all objects in the database, by filtering database objects, or by entering a SQL statement.
(see Figure 3-4).

Creating Table- and View-Based Metadata

Once you have selected a data source and any optional filters, a list of available database objects
appears.

Data Services Developer's Guide 3-9

Obtaining Enterprise Metadata

3-10

Figure 3-7 Identifying Database Objects to be Used as Data Services

D Select database objects to import a
Available database objects Selected database objects
| | | Search | |- Schemas
RTLEILLIMNG
|- Schemas =0 e
[C) BROADBAND =0 = ;EDIT e
Cacran RTLC(LI)STOMER B
A RTLAPPLOMS =0
) -] Tables
= @ ADDRESS
@ CUSTOMER,
.
g m - C) RTLELECOMS
0 wesLoalc . tlT(_?)blzsLISTOI\ﬂER CRDER
WIRELESS Remove Al = -
a Q _ @ CUSTOMER_ORDER_LIME_ITEM
@ PRODUCT
- C) RTLSERYICE
-] Tables
@ SERVICE_CASE
| Previous | | Mext | | | | Cancel |

Using standard dialog commands you can add one or several tables to the list of selected data
objects. To deselect a table, select that table in the right-hand column and click Remove.

A Search field is also available. This is useful for data sources which have many objects. Enter a
search string, then click Search repeatedly to move through your list.

4. Once you have selected one or several data sources, click Next to verify the location of the

to-be-created data services and the names of your new data services.
The imported data summary screen:

— Lists selected objects by name. You can mouse over the XML type to see the complete path
(Figure 3-8).

— Lists the location of the generated data service in the current application.

— Identifies any name conflicts. Name conflicts occur when there is an data service of the
same name present in the target directory. Any name conflicts are highlighted in red.

You can edit the file name to clarify the name or to avoid conflicts. Simply click on the name
of the file and make any editing changes.

Data Services Developer’s Guide

Creating Data Source Metadata

Alternatively, choose Remove All to return to the initial, nothing-is-selected state.

5. There are several situations where you will need to change the name of your data service:
— There already is a data service of the same name in your application.
— You are trying to create multiple data services with the same name.

In such cases the name(s) of the data service(s) having name conflicts appear in red. Simply
change to a unique name using the built-in line editor.

Figure 3-8 Relational Source Import Data Summary Screen

& Summary E
The following data service(s) will be created. Edit suggested name(s) as needed.
AML Type Marme
ADDRESS ADDRESS sl
CREDIT_CARD CREDIT_CARD
CUSTOMER, CUSTOMER,
CUSTOMER _ORDER. CUSTOMER _ORDER.
CUSTOMER_ORD%LINE_ITEM CUSTOMER_ORDER._LIME_ITEM
PRODUCT [POINTEASE. RTLELECOMS. CUSTOMER_ORDER_LINE_ITEM |
SERNICE_CASE | SERNICE_CASE E
Location | D:\bealuser_projectsiapplicationsidanube\RTLApp \DataServices | | Browse, .. |
| Previous | | | | Finish | | Cancel |

6. Click Finish. A data service will be created for each object selected. The file extension of the
created data services will always be .ds.

Database-specific Considerations

Database vendors variously support database catalogs and schemas. Table 3-9 describes this support
for several major vendors.

Data Services Developer's Guide 3-11

Obtaining Enterprise Metadata

3-12

Table 3-9 Vendor Support for Catalog and Schema Objects

Vendor Catalog Schema
Oracle Does not support catalogs. When specifying Typically the name of an Oracle user ID.
database objects, the catalog field should
be left blank.
DB2 If specifying database objects, the catalog ~ Schema name corresponds to the catalog
field should be left blank. owner of the database, such as db2admin.
Sybase Catalog name is the database name. Schema name corresponds to the database
owner.
Microsoft SQL Catalog name is the database name. Schema name corresponds to the catalog
Server owner, such as dbo. The schema name
must match the catalog or database owner
for the database to which you are
connected.
Informix Does not support catalogs. If specifying Not needed.
database objects, the catalog field should
be left blank.
PointBase Pointbase database systems do not support ~ Schema name corresponds to a database

catalogs. If specifying database objects, the
catalog field should be left blank.

name.

XML Name Conversion Considerations

When a source name is encountered that does not fit within XML naming conventions, default
generated names are converted according to rules described by the SQLX standard. Generally
speaking, an invalid XML name character is replaced by its hexadecimal escape sequence (having the

form xuuuy).

For additional details see section 9.1 of the W3C draft version of this standard:

http://www.sglx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

Once you have created your data services you are ready to start constructing logical views on your
physical data. See Chapter 4, “Using Data Services Design View.” and Chapter 5, “Modeling Data

Services.”

Data Services Developer’s Guide

http://www.sqlx.org/SQL-XML-documents/5WD-14-XML-2003-12.pdf

Creating Data Source Metadata

Importing Stored Procedure-Based Metadata

Enterprise databases utilize stored procedures to improve query performance, manage and schedule
data operations, enhance security, and so forth. You can import metadata based on stored procedures.
Each stored procedure becomes a data service.

Note: Refer to your database documentation for details on managing stored procedures.

Stored procedures are essentially database objects that logically group a set of SQL and native
database programming language statements together to perform a specific task.

Table 3-10 defines some commonly used terms as they apply to this discussion of stored procedures.

Table 3-10 Terms Commonly Used When Discussing Stored Procedures

Term

Usage

Function

A function is identical to a procedure except a function always return one or more
values to the caller and a procedure never returns a value. The value can be a
simple type, a row type, or a complex user defined type.

Package

A package is a group of related procedures and functions, together with the
cursors and variables they use, stored together in a database for continued use as
a unit. Similar to standalone procedures and functions, packaged procedures and
functions can be called explicitly by applications or users.

Procedure

A sequence of programming commands written in an extended SQL (such as
PL/SQL or T-SQL) or Java, stored in the database where it is to be used to
maximize performance and enhance security. The application can call the stored
procedure to fetch or manipulate database records, rather than using code outside
the database to get the same results. Procedures do not return values.

Stored procedure

The term stored procedure is used when referring to a procedure, function, or
package.

Rowset

The set of rows returned by a procedure or query.

Result set

JDBC term for rowset.

Parameter mode

Procedures can have three modes: IN, OUT, and INOUT. There roughly correspond
to “write”, “read”, and “read/write”.

Data Services Developer's Guide 3-13

Obtaining Enterprise Metadata

3-14

Importing Stored Procedures Using the Metadata Import Wizard
The initial three steps for importing stored procedures are the same as importing any relational
metadata (described under “Importing Relational Table and View Metadata” on page 3-5).

Note: Examples in this section use an Oracle database containing a large number of stored
procedures.

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 31: Accessing Data in Stored Procedures

You can select any combination of database tables, views, and stored procedures. If you select one or
several stored procedures, the Metadata Import Wizard will guide you through the additional steps
required to turn a stored procedure into a data service. These steps are:

1. Select one or several stored procedures. A data service can represent only one stored procedure.
In other words, if you have five stored procedures, you will create five data services.

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Creating Data Source Metadata

Figure 3-11 Selecting Stored Procedure Database Objects to Import

= Select database objects to import
Available database objects Selected database objects
| | | — | |- Schemas
B C) WIRELESS
I_1 Schemas -] Tables
(£ BROADBAND @ CUSTOMER
CICRM @ CUSTOMER_ORDER
O RTLAPPLOMS O CUSTOMER_ORDER._LIME_ITE
O RTLCUSTOMER O PRODUCTS
A RTLELECOMS = £ Procedures
) RTLSERVICE © GETORDERINFO
o [Remove]
=3
EE
@
@
@
@
=3
@
[« | [] K1 |]
| Previous | | NEthl | | | Cancel |

2. Click Next after you have added the database objects that you want to become data services.

3. You next need to select, then configure each stored procedure. If your stored procedure has an
OUT parameter requiring a complex element, you may need to provide a schema.

Data Services Developer's Guide 3-15

Obtaining Enterprise Metadata

Figure 3-12 Configuring a Stored Procedure in Pre-editing Mode

o
A

Selected Pracedures | [Procedure Profil

| GETCUSTOMER
*| TESTPROC_RICH

Editable Parameters:

ame Mode Type Schema Location

| Previous | | Mext | | | | Cancel |

Data objects in the stored procedure that cannot be identified by the Metadata Import wizard
will appear in red, without a datatype (Figure 3-12). In such cases you need to enter Edit mode
(click the Edit button) to identify the data type.

Your goal in correcting an error condition associated with a stored procedure is to bring the
metadata obtained by the import wizard into conformance with the actual metadata of the
stored procedure. In some cases this will be correcting the location of the return type. In others
you will need to adjust the type associated with an element of the procedure or add elements
that would not found during the initial introspection of the stored procedure.

3-16 Data Services Developer’s Guide

Creating Data Source Metadata

Figure 3-13 Stored Procedure in Editing Mode (with Callouts)

= Configure Procedure

Selected Procedures | [SETORDERINFO

| GETORDERINFC

Parameters:

ame 2 Mode Type Schema Location
1 F1 in xsiskring
Fz in *siink 5
P3 out wsiink
P4 out wsiink
3
| Add | | Remove | I Up I | Down
4
Editable Row Set:
| Type Schema Location
Add | | Remove | | Up | | Down
6

| Accept Changes | | Cancel Changes |

| Previous | | NEXtR{J | | | Cancel |

The Edit Procedure dialog allows you to:

1. Select a stored procedure from the complete list of stored procedures that you want to turn into
data services.

2. Edit stored procedure parameters including setting mode (in, out, inout), type, and for out
parameters, schema location.

3. Verify and, if necessary, add, remove, or change the order of parameters.
4, Verify and, if necessary, add, remove, or change any editable rowset.

5. Supply a return type (either simple or complex through identifying a schema location) in cases
the Metadata Import wizard was unable to determine the type.

6. Accept or cancel your changes.

You need to complete information for each selected stored procedure before you can create your data
services. In particular, any procedures shown in red must be addressed.

Details for each section of the procedure import dialog box appear below.

Data Services Developer's Guide 3-17

Obtaining Enterprise Metadata

Procedure Profile

Each element in a stored procedure is associated with a type. If the item is a simple type, you can
simply choose from the pop-up list of types.

Figure 3-14 Changing the Type of an Element in a Stored Procedure

& Configure Procedure
Selected Procedures (3P _TIMESTAMP_ZONE
=] GETCUSTOMER [=] F[%ameters:
=+ TEST
=+ TESTPROC_RICH Marmne Mode Type Schema Location
=+ SP_WARCHARZ P_TIMESTAMP_Z... in xsidateTime -
T SP_UROWID P_TIMESTAMP_Z... aut usidateTime [~
—+ SP_TIMESTAMP_ZOME istring
—+| SP_TIMESTAMP_LOCAL P_TIMESTAMP_Z... it sinormalized. .
=+ SP_TIMESTAMP FID OUT ok xsikoken
T =P_ROWID — xzzi: nedByte
T SPREAL Remave xs:basegE;‘lBin:ry EI
& SP_Raw wsihexBinary 7]
= SP_CMNLYOUT_ROWTYPE Editable Fow Seb:
=+ SP_MYARCHARZ
=+ SP_MUMBER_MN_5 | Type Schema Location
—+| 5P_MUMEER_M
| 5P_NUMBER Add || Remove || up || Down
=+ SP_MNCHAR
| SP_LONG_RAW
=+ SP_INTERYALYM
=| SP_INTERYALDS B | Accept Changes | | Cancel Changes |
| Previous | | Mext | | | | Cancel |

If the type is complex, you may need to supply an appropriate schema. Click on the schema location
button and either enter a schema path name or browse to a schema. The schema must reside in your
application.

After selecting a schema, both the path to the schema file and the URI appear. For example:

{http://temp.openuri.org/schemas/Customer.xsd}CUSTOMER

Procedure Parameters

The Metadata Import wizard, working through JDBC, identifies any stored procedure parameters. This
includes the name, mode (input [in], output [out], or bidirectional [inout]) and data type. The out
mode supports the inclusion of a schema.

Complex type is only supported under three conditions:

3-18 Data Services Developer’s Guide

Creating Data Source Metadata

e as the output parameter
e as the return type
e as arowset
All parameters are editable, including the name.

Note: If you make an incorrect choice you can use the Previous, then Next button to return the
dialog to its initial state.

Editable Rowsets

Not all databases support rowsets. In addition, JDBC does not report information related to defined
rowsets. In order to create data services from stored procedures that use rowset information, supply
the correct ordinal (matching number) and a schema. If the schema has multiple global elements, you
can select the one you want from the Type column. Otherwise the type will be the first global element
in your schema file.

The order of rowset information is significant; it must match the order in your data source. Use the
Move Up / Move Down commands to adjust the ordinal number assigned to the rowset.

Complete the importation of your procedures by reviewing and accepting items in the Summary screen
(see step 4. in “Importing Relational Table and View Metadata” for details).

Note: XML types in data services generated from stored procedures do not display native types.
However, you can view the native type in the Source View pragma (see “Using Source View”).

Stored Procedure Data Service and Schema Files

Imported stored procedure metadata is quite similar to imported metadata for relational tables and
views.

Note: Ifastored procedure has only one return value and the value is either simple type or a RowSet
which is mapping to an existing schema, no schema file created.

Handling Stored Procedure Rowsets

A rowset type is a complex type. The name of the rowset type can be:
e The parameter name (in case of a input/output or output only parameter)
e An assigned name such as RETURN_VALUE (if return value)

e The referenced element name (result rowsets) in a user-specified schema

Data Services Developer's Guide 3-19

Obtaining Enterprise Metadata

The rowset type contains a sequence of a repeatable elements (for example called CUSTOMER) with
the fields of the rowset.

Note: All rowset-type definitions must conform to this structure.

In some cases the Metadata Import wizard can automatically detect the structure of a rowset and
create an element structure. However, if the structure is unknown, you will need to provide it through
the wizard.

Stored Procedure Support for Commonly Used Databases

Each database vendor approaches stored procedures differently. XQuery support limitations are, in
general, due to JDBC driver limitations.

General Restriction
DSP does not support rowset as an input parameter.
Oracle Stored Procedure Support

Table 3-15 summarizes DSP support for Oracle database procedures.

Table 3-15 Support for Oracle Store Procedures

Term Usage

Procedure types ® Procedures

¢ Functions

e Packages
Parameter e Input only
modes ¢ Output only

e Input/Output

3-20 Data Services Developer’s Guide

Creating Data Source Metadata

Term Usage

Parameter data Any Oracle PL/SQL data type except those listed below:
types e ROWID
e UROWID

Note: When defining function signatures, note that the Oracle %TYPE and
%ROWTYPE types must be translated to XQuery types that match the
true types underlying the stored procedure’s %¥TYPE and %¥ROWTYPE
declarations. ¥TYPE declarations map to simple types; s ROWTYPE
declarations map to rowset types.

For a list of database types supported by DSP see “Relational Data
Types-to-Metadata Conversion” on page 3-28.

Data returned Oracle supports returning PL/SQL data types such as NUMBER, VARCHAR,
from a function %TYPE, and %4ROWTYPE as parameters.

Limitations The following identifies limitations associated with importing Oracle database
procedure metadata.

e The Metadata Import wizard can only detect the data structure for cursors
that have a binding PL/SQL record. For a dynamic cursor you need to manually
specify the cursor schema.

e Data from a PL/SQL record structure cannot be retrieved due to Oracle JDBC
driver limitations.

e The Oracle JDBC driver supports rowset output parameters only if they are
defined as reference cursors in a package.

e The Oracle JDBC driver does not support NATURALN and POSITIVEN as
output only parameters.

Sybase Stored Procedure Support

Table 3-16 summarizes DSP support for Sybase SQL Server database procedures.

Data Services Developer's Guide 3-21

Obtaining Enterprise Metadata

3-22

Table 3-16 Support for Sybase Stored Procedures

Term

Usage

Procedure types

Procedures
Grouped procedures
Functions

Functions are categorized as a scalar or inline table-valued and
multi-statement table-valued function. Inline table-valued and
multi-statement table-valued functions return rowsets.

Parameter
modes

Input only
Output only

Parameter data

types

For the complete list of database types supported by DSP see “Relational Data
Types-to-Metadata Conversion” on page 3-28.

Data returned
from a function

Sybase functions supports returning a single value or a table.

Procedures return data in the following ways:

As output parameters, which can return either data (such as an integer or
character value) or a cursor variable (cursors are rowsets that can be
retrieved one row at a time).

As return codes, which are always an integer value.

As a rowset for each SELECT statement contained in the stored procedure or
any other stored procedures called by that stored procedure.

As a global cursor that can be referenced outside the stored procedure
supports, returning single value or multiple values.

Limitations

The following identifies limitations associated with importing Sybase database
procedure metadata:

The Sybase JDBC driver does not support input/output or output only
parameters that are rowsets (including cursor variables).

The Jconnect driver and some versions of the BEA Sybase driver cannot detect
the parameter mode of the procedure. In this case, the return mode will be
UNKNOWN, preventing importation of the metadata. To proceed, you need to
set the correct mode in order to proceed.

Only data types generally supported by DSP metadata import can be imported
as part of stored procedures.

Data Services Developer’s Guide

Creating Data Source Metadata

IBM DB2 Stored Procedure Support

Table 3-17 summarizes DSP support for IBM DB2 database procedures.

Table 3-17 Support for IBM Store Procedures

Term Usage
Procedure types ® Procedures
e Functions
e Packages
Each function is also categorized as a scalar, column, row, or table function.
Here are additional details on function categorization:
e Ascalar function is one that returns a single-valued answer each time it is
called.
¢ A column function is one which conceptually is passed a set of like values (a
column) and returns a single-valued answer (AVG()).
e A row function is a function that returns one row of values.
e Atable function is function that returns a table to the SQL statement that
referenced it.
Parameter e Input only
modes

e Qutput only
e Input/output

Parameter data

types

For the complete list of database types supported by DSP see “Relational Data
Types-to-Metadata Conversion” on page 3-28.

Data returned
from a function

DB2 supports returning a single value, a row of values, or a table.

Limitations

The following identifies limitations associated with importing DB2 database
procedure metadata:

e Column type functions are not supported.
e Rowsets as output parameters are not supported.

e The DB2 JDBC driver supports float, double, and decimal input only and
output only parameters.

Float, double, and decimal data types are not supported as input/output
parameters.

e Only data types generally supported by DSP metadata import can be imported
as part of stored procedures.

Data Services Developer's Guide

Obtaining Enterprise Metadata

3-24

Informix Stored Procedure Support

Table 3-18 summarizes DSP support for Informix database stored procedures.

Table 3-18 Support for Informix Stored Procedures

Term Usage
Procedure types ® Procedures
¢ Functions
A function may return more than one value.
Parameter e Input only
modes

e Qutput only
e Input/output

Parameter data

types

For the complete list of database types supported by DSP see “Relational Data
Types-to-Metadata Conversion” on page 3-28.

Data Services Developer’s Guide

Creating Data Source Metadata

Term Usage

Data returned Informix supports returning single value, multiple values, and rowsets.
from a function

Limitations Informix treats return value(s) from functions or procedures as a rowset. For this
reason a rowset needs to be defined for the return value(s).

The following limitations have been identified:
Informix Native Driver Limitations

e All parameter names are missing; instead in the Metadata Import wizard
parameters are assigned the same system-generated name:

RETURN VALUE

e All return values are reported as parameters with mode return instead of
mode result. This leads to a problem since only the first parameter should
be in mode return. This also causes a runtime failure. The workaround is to
get the value(s) using resultset.

BEA WebLogic Driver Limitations

e Input parameter names and return values are reported as result mode.
Since there is no name declared for those return values insider the procedure,
their corresponding parameters have no name either. The problem is that this
does not model “result” parameters as a group; thus result parameters are
likely to repeat as multiple rows. (Unlike the Oracle cursor which has the
cursor itself as an outer parameter, there is no holder for Informix result
parameters.)

Recommendations

Due to the limitations described above, the following approach is suggested for
importing Informix stored procedure metadata:

1. Use the BEA WebLogic driver wherever possible.

2. Define a schema that matches the return value structure (using the same
approach as external schemas for other databases).

3. Inthe Metadata Import wizard’s stored procedure section, remove all the
parameters in the Result section using Edit mode. Add a result parameter
and associate it with the schema defined in step 2. (If you are using the
Informix native driver assign a proper name for the input parameters.)

4, Manually edit the parameter’s section of the generated data service file.

Microsoft SQL Server Stored Procedure Support

Table 3-19 summarizes DSP support for Microsoft SQL Server database procedures.

Data Services Developer's Guide 3-25

Obtaining Enterprise Metadata

3-26

Table 3-19 DSP Support for Microsoft SQL Server Stored Procedures

Term Usage

Procedure types SQL Server supports procedures, grouped procedures, and functions. Each
function is also categorized as a scalar or inline table-valued and multi-statement
table-valued function.
Inline table-valued and multi-statement table-valued functions return rowsets.

Parameter SQL Server supports input only and output only parameters.

modes

Parameter data

types

SQL Server procedures/functions support any SQL Server data type as a
parameter.

Data returned
from a function

SQL Server functions supports returning a single value or a table.
Data can be returned in the following ways:

¢ As output parameters, which can return either data (such as an integer or
character value) or a cursor variable (cursors are rowsets that can be
retrieved one row at a time).

e Asreturn codes, which are always an integer value.

e Asarowset for each SELECT statement contained in the stored procedure or
any other stored procedures called by that stored procedure.

Limitations

The following identifies limitations associated with importing SQL Server
procedure metadata.

¢ Result sets returned from SQL server (as well as those returned from Sybase)
are not detected automatically. Instead you will need to manually add
parameters as a result.

e The Microsoft SQL Server JDBC driver does not support rowset input/output
or output only parameters (including cursor variables).

e Only data types generally supported by DSP metadata import can be imported
as part of stored procedures.

Data Services Developer’s Guide

Creating Data Source Metadata

Using SQL to Import Metadata

One of the relational import metadata options (see Figure 3-4) is to use an SQL statement to
customize introspection of a data source. If you select this option the SQL Statement dialog appears.

Figure 3-20 SQL Statement Dialog Box
@}SQL Statement

SQL Staktement
Enter SELECT staternent, Uszer ? for parameters,

Parameters
Enter paramater walues,

Position Type

]

1

2

3

[«

[ea¢|[Remoe |

| Previous | | Mext | | | | Cancel |

You can type or paste your SELECT statement into the statement box (Figure 3-20), indicating
parameters with a “?” question-mark symbol. Using one of the DSP data samples, the following
SELECT statement can be used:

SELECT * FROM RTLCUSTOMER.CUSTOMER WHERE CUSTOMER ID = ?
RTLCUSTOMER is a schema in the data source, CUSTOMER is, in this case, a table.

For the parameter field, you would need to select a data type. In this case, CHAR or VARCHAR.
The next step is to assign a data service name.

When you run your query under Test View, you will need to supply the parameter in order for the query
to run successfully.

Data Services Developer's Guide 3-21

Obtaining Enterprise Metadata

Once you have entered your SQL statement and any required parameters click Next to change or verify
the name and location of your new data service.

Also see in the Data Services Platform Samples Tutorial Part Il

- Lesson 22: Creating Data Services Based on SQL Statements

Figure 3-21 Relational SQL Statement Imported Data Summary Screen

S
& Summary

The following data service(s) will be created. Edit suggested name(s) as needed.

AML Type Marme
=]
sqlCiuery SQLQueryCustID| =
Location | D:\bealuser_projectsiapplicationsidanube\RTLApp \DataServices | | Browse, .. |
| Previous | | | | Finish | | Cancel |

The imported data summary screen identifies a proposed name for your new data service.

The final steps are no different than you used to create a data service from a table or view.

Relational Data Types-to-Metadata Conversion

The following table shows how data types provided by various relational databases are converted into
XQuery data types. Types are listed in alphabetical order.

3-28 Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Creating Data Source Metadata

Table 3-22 Relational Data Types and Their XQuery Counterparts

Datatype Name XQuery Oracle IBM Sybase Informix Microsoft Pointhase
Equivalent DB2 SQL Server

ARRAY not supported X

BFILE not supported X

BIGINT xs:long X X X

BINARY xs:hexBinary X X

BIT xs:boolean X X

BLOB xs:hexBinary X X X X

BOOLEAN xs:Boolean X X

BYTE xs:hexBinary X

CHAR xs:string X X X X X X

CHAR() FOR BIT xs:hexBinary X

DATA

CLOB xs:string X X X X

DATE xs:date X X

DATE xs:datetime X

DATETIME xs:datetime X X X

DECIMAL({n, s} xs:decimal X X X X X

s>0

DECIMAL{n} xs:integer X X X X X

DOUBLE xs:double X

DOUBLE xs:double X X

PRECISION

FLOAT xs:double X X X X X X

IMAGE xs:hexBinary X X

Data Services Developer's Guide 3-29

Obtaining Enterprise Metadata

Datatype Name XQuery Oracle IBM Sybase Informix Microsoft Pointhase
Equivalent DB2 SQL Server
INT xs:int X X
INT8 xs:long X
INTEGER xs:int X X X
INTERVAL not supported X
INTERVALDS xdt:dayTimedur X
ation
INTERVALYM xdt:yearMonthd X
uration
LONG xs:string X
LONG RAW xs:hexBinary X
LONG VARCHAR xs:string X
LONG VARCHAR xs:hexBinary X
FOR BIT DATA
LVARCHAR xs:string X
MONEY xs:decimal X X X
MSLABEL not supported X
NCHAR xs:string X X X X
NTEXT xs:string X
NUMBER xs:double X
NUMBER({n, s} xs:integer X
s<0
NUMBER({n, s} xs:decimal X
s>0
NUMBER({n} xs:integer X

3-30

Data Services Developer’s Guide

Creating Data Source Metadata

Datatype Name XQuery Oracle IBM Sybase Informix Microsoft Pointhase
Equivalent DB2 SQL Server

NUMERIC{n, s} xs:decimal X X X X

s>0

NUMERIC{n} xs:decimal X X X X

NVARCHAR xs:string X X X

NVARCHAR2 xs:string X

RAW xs:hexBinary X

REAL xs:float X X X X

REF not supported X

ROWID xs:string X

SERIAL not supported X

SERIALS not supported X

SMALLDATETIME xs:datetime X X

SMALLFLOAT xs:float X

SMALLINT xs:short X X X X X

SMALLMONEY xs:decimal X X

SQL_VARIANT xs:string X

STRUCT not supported X

SYSNAME xs:string X X

TEXT xs:string X X X

TIME xs:time X X

TIMESTAMP xs:datetime X X X

TIMESTAMP xs:hexBinary X

Data Services Developer's Guide 3-31

Obtaining Enterprise Metadata

3-32

Datatype Name XQuery Oracle IBM Sybase Informix Microsoft Pointhase
Equivalent DB2 SQL Server

TIMESTAMP xs:datetime X

WITH LOCAL

TIME ZONE

TIMESTAMP xs:datetime X

WITH TIME ZONE

TINYINT xs:short X X

UNIQUEIDENTIFIER xs:hexbinary X

UROWID xs:string X

VARBINARY xs:hexBinary X X

VARCHAR xs:string X X X X X

VARCHAR() FOR xs:hexBinary X

BIT DATA

VARCHAR2 xs:string X

Data Services Developer’s Guide

Creating Data Source Metadata

Importing Web Services Metadata

A web service is a self-contained, platform-independent unit of business logic that is accessible
through application adaptors, as well as standards-based Internet protocols such as HTTP or SOAP.

Web services facilitate application-to-application communication and, as such, are increasingly
important enterprise data resources. A familiar example of an externalized web service is a
frequent-update weather portlet or stock quotes portlet that can easily be integrated into a Web
application.

Turning a web service into a data service is similar to importing relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-5). Here are the web service-specific steps
involved:

1. Select the DSP-based project in which you want to create your web service metadata. For example,
if you have a project called DataServices right-click on the project name and select Import
Metadata... from the pop-up menu.

2. From the available data sources in the Metadata Import wizard select Web Service and click
Next.

3. There are three ways to access a web service:
— From a web service description language (WSDL) file that is in your current application.
— From a URI which is a WSDL accessible via a URL (HTTP).

— From a Universal Description, Discovery, and Integration service (UDDI).

Figure 3-23 Locating a Web Service

r& Specify web service URI “
URIL: | | | Browse. .. |
I~
&3
| Previous || Mext || || Cancel |

Note: For the purpose of showing how to import web service metadata a WSDL file from the RTLApp
sample is used for the remaining steps. If you are following these instructions locate
ElecDBTestContract.wsdl. It is found in the ElecWS folder of the RTLApp application.

Data Services Developer's Guide 3-33

Obtaining Enterprise Metadata

<beahome>\weblogic8l\samples\liquiddata\RTLApp\ElecWS\controls\
ElecDBTestContract.wsdl

Figure 3-24 Selecting a Web Service WSDL File

{'d Select a WSDL file...

Lookn |20 coneas -]

@ ElecDETestContract, wsdl

Mame: | ElecDBETestContract, wsdl |

Type: [WSDL Files |~]

4. From the selected web service choose the operations that you want to turn into data services.

3-34 Data Services Developer’s Guide

Creating Data Source Metadata

Figure 3-25 Identifying Web Service Operations to be Used as data services

-‘h . N = (=]
[Select web service operations to import
Available web service operations Selected web service operations

| | | Search | (22 Ports
[}) ElecDETestSoap
1 Ports B C) Operations
- ElecDBTestSoap @ getCustomerOrderByCustamnerD
(-0 Operations @ getCustomerOrderByOrderID
@ @ getProductList
@
S}
@ setCustomerOrder
Remove Al
[« [+
| Previous | | Mext | | | | Cancel |

Using standard dialog editing commands you can select one or several operations to be added to
the list of selected web service operations. To deselect an operation, click on it, then click
Remove. Or choose Remove All to return to the initial state.

5. Click Next to verify the location of the to-be-created data services and their names.

Data Services Developer's Guide 3-35

Obtaining Enterprise Metadata

Figure 3-26 Web Services Imported Data Summary Screen

& Summary
The following data service(s) will be created. Edit suggested name(s) as needed.
AML Type Marme
getCustomerOrderByCustomer 1D getCustomerOrderByCustomerIDResponse (L2
& getCustomerOrderByOrderID getCustomerOrderByOrderIDResponse
getProductList getProductListResponse E
Location | D:\bealuser_projectsiapplicationsidanube\RTLApp \DataServices | | Browse, .. |
| Previous | | | | Finish | | Cancel |

The screen in Figure 3-26:
— Lists the web service operations you have selected.
— Lists the target location for the generated services.
— Identifies in red any name conflicts with data services in the same location.

You can edit the data service name either to clarify the name or to avoid conflicts with other
existing or planned data services. Simply click on the name of the data service to change its
name.

6. Click Finish. A data service will be created for each selected operation.

Also see in the Data Services Platform Samples Tutorial Part I.

- Lesson 6: Accessing Data in Web Services

3-36 Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial1.pdf

Creating Data Source Metadata

Testing the Metadata Import Wizard With a Web Service URI

If you are interested in testing the Metadata Import wizard with a web service URI, the following URI
is available as of this writing:

http://ws.strikeiron.cmo/DataEnhancement ?WSDL

Simply copy the above string into the Web Service URI field and click Next to begin selecting elements
you want to turn into data services.

Data Services Developer's Guide 3-31

Obtaining Enterprise Metadata

Importing Java Function Metadata

You can create metadata based on custom Java functions. When you use the Metadata Import wizard
to introspect a . c1ass file, metadata is created around both complex and simple types. Complex
types become data services while simple Java routines are converted into XQueries and placed in an
XQuery function library (XFL). In Source View (see Chapter 8, “Using Source View”) a pragma is
created that defines the function signature and relevant schema type for complex types such as Java
classes and elements.

In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate Java
function metadata import.

Also see in the Data Services Platform Samples Tutorial Part I.

- Lesson 10: Updating Data Services Using Java

Also see in Data Services Platform Samples Tutorial Part II:

1- Lesson 32: Accessing Data with Java Functions

Supported Java Function Types

Your Java file can contains two types of functions:

Types of Java Functions Use in Data Services Platform

Functions processing Grouped into an XQuery Function Library file, callable by any data service in
primitive types or arrays of the same application.
primitive types

Functions processing Grouped into a data services, using XMLBean Java-to-XML technology.
complex types or arrays of
complex types

Before you can create metadata on a custom Java function you must create a Java class containing
both schema and function information. A detailed example is described in “Creating XMLBean
Support for Java Functions” on page 3-41.

3-38 Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial1.pdf
http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Using the Import Wizard on a Java Function

Creating Data Source Metadata

Importing Java function metadata is similar to importing relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-5). Here are the Java function-specific

steps involved:

1. Select the DSP-based project in which you want to create your Java function metadata. (In the
DataServices project of the RTLApp there is a special Demo folder containing XML, CSV and Java

data and schema samples.)

2. Build your project to validate its contents. A build will create a . c1ass file from your . java
function and place it in your application’s library.

3. Right-click on the Java folder and select Import Source Metadata from the pop-up menu.

4. From the available data sources in the Metadata Import wizard select Java Function (see

Figure 3-27). Click Next.

Figure 3-27 Selecting a Java Function as the Data Source

EQ‘Select data source type

Data Source Type:

Java Function

-]

Delimited Source
Java Function
Relational

Web Service
#ML Source

|| Mext ||

|| Cancel |

5. Your Java .class file must be in your BEA WebLogic application. You can browse to your file or
enter a fully-qualified path name starting from the root directory of your DSP-based project.

Data Services Developer's Guide 3-39

Obtaining Enterprise Metadata

3-40

Figure 3-28 Specifying a Java Class File for Metadata Import

ta

Look In: | Java

El-[=] DataServices.jar
1 ApparelE
[C) dataServices
=] Dema
B Java
E‘ FuncData.class
(C) Electronics\ws
(C) noMamespace
Cora
.

-

File: Mame: | Demo,Java.FuncData.class

Files of Types: | Class File

-]

6. Click Next to verify the name and location of your new data service.

Figure 3-29 Java Function Imported Data Summary Screen

X

& Summary
The following data service(s) will be created. Edit suggested name(s) as needed.
AML Type Marme
getalProducts PRODUCTS sl
getFirstProduct PRODUCTS =
These function{s) will be saved to the specified XML library file:
echoBigDecimal, echoBigDecimall, echoBignteger, echoBigintegerl, echo... | library
Location | D:\bealweblogics1isamplesiliquiddatalR TLAPP Dataservices | | Browse, .. |
| Previous | | | | Finish % | Cancel |

Data Services Developer’s Guide

Creating Data Source Metadata

You can edit the proposed data service name either for clarity or to avoid conflicts with other
existing or planned data services. All functions returning complex data types will be in the
same data service. Simply click on the proposed data service name to change it.

7. Click Finish.
Note: If your Java function contained any simple routines, these will be placed in an XML File

Library.

Creating XMLBean Support for Java Functions

Before you can import Java function metadata, you need to create a . class file that contains
XMLBean classes based on global elements and compiled versions of your Java functions. To do this,
you first create XMLBean classes based on a schema of your data. There are several ways to
accomplish this. In the example in this section you create a WebLogic Workshop project of type
Schema.

Generally speaking, the process involves:

e Creating a WebLogic Workshop project of type Schema. Schema projects (and applications)
generate XMLBeans from schema files.

e Importing a schema (. xsd file) representing the shape of the global elements invoked by your
function.

e Importing your custom Java function into your DSP-based project or Java project.

o Building your application to create a Java . class file, if under a DSP-based project, or you can
add the JAR file from a Java project to the Library folder of your application.

e (Creating metadata for your data service based on the .c1ass file.
o Use the resulting data service or functions in your application.

Creating a Metadata-enriched Java Class: An Example

In the following example there are a number of custom functions in a . java file called
FuncData.java. In the RTLApp this file can be found at:

ld:DataServices/Demo/Java/FuncData.java

Data Services Developer's Guide 3-41

Obtaining Enterprise Metadata

3-42

Some functions in this file return primitive data types, while others return a complex element. The
complex element representing the data to be introspected is in a schema file called Funcbata .xsd.

File Purpose

FuncData.java Contains Java functions to be converted into data service
query functions. Also contains as small data sample.

FuncData.xsd Contains a schema for the complex element identified in
FuncData.java

The schema file can be found at:

ld:DataServices/Demo/Java/schema/FuncData.xsd

To simplify the example a small data set is included in the . java file as a string.

The following steps will create a data service from the Java functions in Funcbata. java:

L.
2.

Create a new DSP-based application called CustomFunctions.
Create a new project of type Schema in your application; name it Schemas.
Right-click on the newly created Schemas project and select the Import... option.

Browse to the RTLApp and select Funcbata . xsd for import.
Importing a schema file into a schema project automatically starts the project build process.

When successful, XMLBean classes are created for each function in your Java file and placed in
a JAR file called JavaFunctSchema. jar

The . jar file is located in the Libraries section of your application.
Build your project.

In your DSP-based project (customFunctionsDataServices) create a folder called
JavaFuncMetadata.

Right-click on the newly created JavaFuncMetadata folder and select the Import... option.

Browse to the 1d:DataServices/Demo/Java folder in the RTLApp and select
FuncData.java for import. Click Import.

Build your project.

Data Services Developer’s Guide

The JAR file named for your DSP-based project is updated to include a. c1ass file named

Creating Data Source Metadata

FuncData.class; It is this file that can be introspected by the Metadata Import wizard. The
file is located in a folder named JavaFuncMetadata in the Library section of your application.

Figure 3-30 Class File Generated Java Function XML Beans

Aplication | Files *
29 JavaTest

=23 JavaFuncschema
I MFL Classes
[C1 %ML Bean Classes
|<—j FuncData.xsd
=] @ JavaTestDataServices
=29 FuncDataMetadata
"Z FuncData.java
(£ javaFunction
(T META-INF
|<—j sdo,xsdconfig
|<—j xquery-types, xsd
(C1 Modules
29 Libraries
- [=] JavaFuncschema.jar
[C) noMamespace
[C schema
=) Q JavaTestDataServices. jar
=29 FuncDataMetadata
@ FuncData.class
(C1 JavaTestDataServices
(T META-INF
Cora
[C schema
gj sdo,xsdconfig
Q ld-server-app.jar
(3 Security Raoles

10. Now you are ready to create metadata from your Java function. Right-click on your DSP-based
project icon (customFunctionsDataServices) and select Import Source Metadata.

11. Select Java Function as the data source, click Next.

12. Browse to your Java class file FuncData.class (dialog box is shown in Figure 3-28).

The file is located in customFunctionsDataServices.jar (the fully-qualified name is
customFunctionsDataServices.FuncData. class).

Click Open, then Next.

Data Services Developer's Guide

3-43

Obtaining Enterprise Metadata

Figure 3-31 Java Function Imported Data Summary Screen

& Select Java Functions

Available Java Functions Selected Java Functions

echoBigDecimal
echoBigDecimall
echoBignteger %
echoBigIntegerl
echolnt
echoMaxBiginteger
echostr
getallProducts
qgetFirstProduct

g

| Previous | | Mext | | | | Cancel |

Of the Java functions available to be imported in Figure 3-31 getAllProducts and getFirstProduct are
complex elements. The remaining simple Java functions represent either Java primitives or Java
object primitives and will be placed in an .xf1 file.

13. Once you've selected your functions click Next to verify that the name of your new data service is
unique to your application.

3-44 Data Services Developer’s Guide

Figure 3-32 Java Function Import Summary Screen

Creating Data Source Metadata

& Summary

X

The following data service(s) will be created. Edit suggested name(s) as needed.

AML Type

Mame

getallProducts

Iy

PRODUCTS

getFirstProduct

(AL 1]

PRODUCTS

These function{s) will be saved to the specified XML library file:

echoBigDecimal, echoBigDecimall, echoBiginteger, echoBigintegerl, echo... ProductsCustomFunctions|

Location 'ojects'l,applications'l,customFunctions'l,customFunctionsDataServices'l,JavaFuncMetadata| | Browse, .. |

| Previous | | | | Finish | | Cancel |

You can edit the projected data service name for clarity or to avoid conflicts with other existing or
planned data services. Conflicts are shown in red. Simply click on the name of the data service to
change its name. You can also change the name of your library, as has been done in the Summary page

shown in Figure 3-32.

When ready, click Finish to create your data service and library file. (See also “XQuery Function
Library (XFL) Files” on page 2-17.)

Looking at Source

The . java file used in this example contains both functions and data. More typically, your routine will
access data through a data import function. The first function in Listing 3-1 simply retrieves the first
element in an array of PRODUCTS. The second returns the entire array.

Data Services Developer's Guide 3-45

Obtaining Enterprise Metadata

Listing 3-1 JavaFunc.java getFirstPRODUCT() and getAlIPRODUCTS() Functions

public class JavaFunc {

public static noNamespace.PRODUCTSDocument . PRODUCTS getFirstProduct () {
noNamespace . PRODUCTSDocument . PRODUCTS products = null;
try{
noNamespace .DbDocument dbDoc =
noNamespace .DbDocument . Factory.parse (testCustomer) ;
products = dbDoc.getDb () .getPRODUCTSArray (1) ;
//return products;
}catch (Exception e) {
e.printStackTrace() ;

}

return products;

}

public static noNamespace.PRODUCTSDocument . PRODUCTS[] getAllProducts () {
noNamespace . PRODUCTSDocument . PRODUCTS [] products = null;
try{
noNamespace .DbDocument dbDoc =
noNamespace.DbDocument . Factory.parse (testCustomer) ;
products = dbDoc.getDb () .getPRODUCTSArray () ;
//return products;
}catch (Exception e)
e.printStackTrace() ;
}

return products;

The schema used to create XMLBeans is shown in Listing 3-2. It simply models the structure of the
complex element; it could have been obtained by first introspecting the data directly.

Listing 3-2 B-PTest.xsd Model Complex Element Parsed by Java Function

<xs:schema elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >

<xs:element name="db">

3-46 Data Services Developer’s Guide

Creating Data Source Metadata

<xs:complexType>
<XS:sequences>
<xs:element ref="PRODUCTS" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="AVERAGE SERVICE COST" type="xs:decimal"/>
<xs:element name="LIST PRICE" type="xs:decimal"/>
<xs:element name="MANUFACTURER" type="xs:string"/>
<xs:element name="PRODUCTS">
<xs:complexType>
<XS:sequences>
<xs:element ref="PRODUCT NAME"/>
<xs:element ref="MANUFACTURER"/>
<xs:element ref="LIST PRICE"/>
<Xs:element ref:"PRODUCT_DESCRIPTION"/>
<xs:element ref="AVERAGE_SERVICE COST"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="PRODUCT DESCRIPTION" type="xs:string"/>
<xs:element name="PRODUCT NAME" type="xs:string"/>

</xs:schema>

Java functions require that an element returned (as specified in the return signature) come from a
valid XML document. A valid XML document has a single root element with zero or more children, and
its content matches the schema referred.

Listing 3-3 Approach When Data is Retrieved Through a Document

public static noNamespace.PRODUCTSDocument . PRODUCTS
getNextProduct () {

// create the dbDocument (the root)

noNamespace .DbDocument dbDoc =
noNamespace .DbDocument . Factory.newInstance () ;

Data Services Developer's Guide 3-41

Obtaining Enterprise Metadata

//

the db element from it

noNamespace .DbDocument .Db db = dbDoc.addNewDb () ;

//

get the PRODUCTS element

PRODUCTS product = db.addNewPRODUCTS () ;

//.. create the children

product . set PRODUCTNAME ("productName") ;

product . setMANUFACTURER ("Manufacturer") ;

product .setLISTPRICE (BigDecimal .valueOf ((long)12.22)) ;

product . set PRODUCTDESCRIPTION ("Product Description") ;
product . set AVERAGESERVICECOST (BigDecimal .valueOf ((long) 122.22)) ;

//

update children of db

db.setPRODUCTSArray (0, product) ;

//

update the document with db

dbDoc.setDb (db) ;

//.. now dbDoc is a valid document with db and is children.
// we are interested in PRODUCTS which is a child of db.
// Hence always create a valid document before processing the

/7
//
//
//

children.

Just creating the child element and returning it, is not
enough, since it does not mean the document is wvalid.

The child needs to come from a valid document, which is created
for the global element only.

return dbDoc.getDb () .getPRODUCTSArray(0) ;

3-48

How Metadata for Java Functions Is Created

In DSP, user-defined functions are typically Java classes. The following are supported:

e Java primitive types and single-dimension arrays.

e (lobal elements, global complex types, and global arrays through XMLBean classes

In order to support this functionality, the Metadata Import wizard supports marshalling and
unmarshalling so that token iterators in Java are converted to XML and vice-versa.

Functions you create should be defined as static Java functions. The Java method name when used in
an XQuery will be the XQuery function name qualified with a namespace.

Data Services Developer’s Guide

Creating Data Source Metadata

Table 3-33 shows the casting algorithms for simple Java types, schema types and XQuery types.

Table 3-33 Simple Java Types and XQuery Counterparts

Java Simple or Defined Type Schema Type
boolean xs:boolean
byte xs:byte
char xs:char
double xs:double
float xs:float
int xs:int
long xs:long
short xs:short
string xd:string
java.lang.Date xs:datetime
java.lang.Boolean xs:boolean
java.math.BigInteger xs:integer
java.math.BigDecimal xs:decimal
java.lang.Byte xs.byte
java.lang.Char xs:char
java.lang.Double xs:double
java.lang.Float xs:float
java.lang.Integer xs:integer
java.lang.Long xs:long
java.lang.Short xs:short

Data Services Developer's Guide 3-49

Obtaining Enterprise Metadata

Java Simple or Defined Type Schema Type
java.util.Calendar xs:datetime
java.sqgl.timestamp xs:datetime

Java functions can also consume variables of XMLBean type that are generated by processing a
schema via XMLBeans. The classes generated by XMLBeans can be referred in a Java function as
parameters or return types.

The elements or types referred to in the schema should be global elements because these are the only
types in XMLBeans that have static parse methods defined.

The next section provides additional code samples that illustrate how Java functions are used by the
Metadata Import wizard to create data services.

Technical Details, with Additional Example Code

In order to create data services or members of an XQuery function library, you would first start with a
Java function.

Processing a Function Returning an Array of Java Primitives
As an example, the Java function getListGivenMixed() can be defined as:

public static float[] getListGivenMixed (float[] fpList, int size) {
int listLen = ((fpList.length > size) ? size : fpList.length);
float fpListop = new float[listLen];

for (int 1 =0; 1 < listLen; i++)

fpListop[i]=fpList[i];

return fpListop;

}
After the function is processed through the wizard the following metadata information is created:
xquery version "1.0" encoding "WINDOWS-1252";
(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com">
<creationDate>2005-06-01T14:25:50</creationDate>
<javaFunction class="DocTest"/>
</x:xfl>::)

declare namespace f1 = "lib:testdoc/library";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
nativeName="getListGivenMixed">

3-50 Data Services Developer’s Guide

Creating Data Source Metadata

<params>
<param nativeType="[F"/>
<param nativeType="int"/>
</params>
</f:functions>::)

declare function fl:getListGivenMixed ($x1l as xsd:float*, $x2 as xsd:int) as
xsd:float* external;

Here is the corresponding XQuery for executing the above function:

declare namespace fl1 = "ld:javaFunc/float";
let $y := (2.0, 4.0, 6.0, 8.0, 10.0)
let $x := fl:getListGivenMixed(Sy, 2)

return $x

Processing complex types represented via XMLBeans

Consider that you have a schema called Customer (customer . xsd), as shown below:

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema targetNamespace:"ld:xml/cust:/BEA_BBlOOOO"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >

<xs:element name="CUSTOMER">

<xs:complexType>

<XS:sequence>

<xs:element name="FIRST NAME" type="xs:string" minOccurs="1"/>
<xs:element name="LAST NAME" type="xs:string" minOccurs="1"/>
</Xs:sequences>

</xs:complexType>

</xs:element>

</xs:schema>

If you want to generate a list conforming to the CUSTOMER element you could process the schema via
XMLBeans and obtain xm1 . cust . beaBB10000 . CUSTOMERDocument . CUSTOMER. NOw you can use
the CUSTOMER element as shown:

public static xml.cust.beaBB10000.CUSTOMERDocument .CUSTOMER []
getCustomerListGivenCustomerList (
xml.cust.beaBB10000.CUSTOMERDocument . CUSTOMER [] ipListOfCust)
throws XmlException {

xml.cust .beaBB10000.CUSTOMERDocument . CUSTOMER [] mylocalver =
ipListOfCust;

return mylocalver;

}

Then the metadata information produced by the wizard will be:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="datasource" access="public">

Data Services Developer's Guide 3-51

Obtaining Enterprise Metadata

<params>
<param nativeType="[Lxml.cust.beaBB10000.CUSTOMERDocument SCUSTOMER; " />
</params>

</f:function>::)

declare function fl:getCustomerListGivenCustomerList ($x1 as
element (t1:CUSTOMER) *) as element (tl:CUSTOMER) * external;

The corresponding XQuery for executing the above function is:

declare namespace f1 = "ld:javaFunc/CUSTOMER";
let $z := (

validate (<n:CUSTOMER
xmlns:n="1d:xml/cust:/BEA BB10000"><FIRST NAME>John2</FIRST NAME><LAST
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>) ,

validate (<n:CUSTOMER
xmlns:n="1d:xml/cust:/BEA BB10000"><FIRST NAME>John2</FIRST NAME><LAST
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>) ,

validate (<n:CUSTOMER
xmlns:n:"ld:xml/cust:/BEA_BBlOOOO"><FIRST_NAME>John2</FIRST_NAME><LAST_
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>) ,

validate (<n:CUSTOMER
xmlns:n="1d:xml/cust:/BEA BB10000"><FIRST NAME>John2</FIRST NAME><LAST
NAME>Smith2</LAST_NAME>

</n:CUSTOMER>))

for $zz in $z
return
fl:getCustomerListGivenCustomerList ($z)

Restrictions on Java Functions

The following restrictions apply to Java functions:
e Function overloading is based on the number of arguments; not on the types of the parameter.
e Array support is restricted to single-dimension arrays only.

e In functions returning complex types the return element needs to be extracted from a valid
XML document.

3-52 Data Services Developer’s Guide

Creating Data Source Metadata

Importing Delimited File Metadata

Spreadsheets offer a highly adaptable means of storing and manipulating information, especially
information which needs to be changed quickly. You can easily turn such spreadsheet data in a data
services.

Spreadsheet documents are often referred to as. csv files, standing for comma-separated values.
Although . csv is not a typical native format for spreadsheets, the capability to save spreadsheets as
.csv files is nearly universal.

Although the separator field is often a comma, the metadata import wizard supports any ASCII
character as a separator, as well as fixed-length fields.

In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate delimited
file metadata import.

Also see in the Data Services Platform Samples Tutorial Part Il

- Lesson 34: Accessing Data in Flat Files

Providing a Document Name, a Schema Name, or Both
There are several approaches to developing metadata around delimited information, depending on

your needs and the nature of the source.

e Provide a delimited document name only. If you supply the Metadata Import wizard with the
name of a valid CSV file, the wizard will automatically create a schema based on the columns in
the document. All the columns will be of type string, although you can later modify the
generated schema with more accurate type information.

Note: The generated schema takes the name of the source file.

e Providing a schema name only. This option is typically used when the source file is dynamic;
for example, when data is streamed.

e Providing both a schema and a document name. Providing a schema gives you the ability to
more accurately type information in the columns of a delimited document.

Data Services Developer's Guide 3-53

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Obtaining Enterprise Metadata

3-54

Using the Metadata Import Wizard on Delimited Files

Importing XML file information is similar to importing a relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-5). Here are the steps that are involved:

1. Select the project in which you want to create your delimited file metadata. For example, if you
have a project called myProject right-click on the project name and select Import Source Metadata

from the pop-up menu.

2. From the available data sources in the Metadata Import wizard select Delimited Source as the

data type (see Figure 3-34).

Figure 3-34 Selecting a Delimited Source from the Import Metadata Wizard

&&elect data source type

Data Source Type:

Delimited Source

-

Delimited Source
Java Function
Relational

Web Service
#ML Source

|| Mext ||

|| Cancel |

3. The file must be in your DSP application. You can supply either a schema name, a source file

name, or both. Several other criteria can be supplied:

— Header. Indicates whether the delimited file contains header data. Header data is located
in the first row of the spreadsheet. If you check this option, the first row will not be treated

as data.

Delimited or Fixed Width. Data in your file is either separated by a specific character

(such as a comma) or is of a fixed width (such as 10 spaces). If the data is delimited, you
also need to provide the delimited character. By default the character is a comma (,).

Data Services Developer’s Guide

Creating Data Source Metadata

Figure 3-35 Specifying Import Delimited Metadata Characteristics

& Select Delimited Source

~Specify a schema file, a delimited file, or bath files:

Schema File {optional) Browse, ..

Browse. ..

Delimited Source foptional)| C:ibeaiuser_projectsiapplicationsdanube\Demo\DataServicesiCUSTOMER. csv

Has Header
(@ Delimited ") Fixed Width l\

Delimiter | ,

| Previous | | Mext | | | | Cancel |

4, Once you have selected a document and optional schema, click Next to verify the location and
unique location/name of your new data service.

Figure 3-36 Delimited Document Imported Data Summary Screen

& Summary
The wizard will create the following XML Data Service file. Edit file names, if needed.
Source Files #ML Data Service Mame
Ciibeatuser_projectstapplicationsidanubetDemolDataServices\ CUSTOMER _WILLA, xsd CISTOMER
C:'l,bea'l,user_Qajects'l,applications'l,danube'l,Demo'l,DataServices'l,CUSTOMER.csv
Location | Ciibealuser_projectstapplicationstdanube’Demo || Browse, .. |
| Previous | | | | Finish | | Cancel |

=
You can edit the data service name either to clarify the name or to avoid conflicts with other
existing or planned data services. Conflicts are displayed in red. To adjust the name, double
click on the name of the data service to activate the line editor.

5. Click Finish. A data service will be created with your schema as its XML type. The extension of
the created data service will always be .ds.
Note: When importing . csv data there are several things to keep in mind:

e The number of delimiters in each row must match the number of header columns in
your source minus one (# of columns-1). If subsequent rows contain more than the

Data Services Developer's Guide 3-55

Obtaining Enterprise Metadata

maximum number of delimiters (fields), subsequent use of the data service will not be
successful.

e If the delimited file has rows with a variable number of delimiters (fields), you can
supply a schema that contains optional elements for the trailing set of extra elements.

e Not all characters are not equal. Some may need special escape sequences before
spreadsheet data can be accessed at run-time.

3-56 Data Services Developer’s Guide

Creating Data Source Metadata

Importing XML File Metadata

XML files are a convenient means of handling hierarchical data. XML files and associated schemas are
easily turned into data services.

Importing XML file information is similar to importing a relational data source metadata (see
“Importing Relational Table and View Metadata” on page 3-5).

In the case of XML files, you need to supply both a schema and an XML file. The Metadata Import
Wizard allows you to browse for an XML file anywhere in your application. You can also import data
from any XML file on your system using an absolute path prepended with the following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root C:
directory using the following URI:

file:///c:/Orders.xml
On a UNIX system, you would access such a file with the URI:

file:///home/Orders.xml

XML File Import Sample

In the RTLApp DataServices/Demo directory there is a sample that can be used to illustrate XML file
metadata import.

Here are the steps involved:

1. Select your DSP-based project in which you want to create your XML file metadata. For example,
if you have a project called myProject, right-click on the project name and select Import
Metadata... from the pop-up menu.

2. From the available data sources in the Metadata Import wizard select XML Source.

Data Services Developer's Guide 3-51

Obtaining Enterprise Metadata

Figure 3-37 Selecting an XML File from the Import Metadata Wizard

Dl Select data source type

Data Source Type: | WML Source IZ|

Delimited Source

Java Function
Relational

Web Service

#ML Source #ML Source

| || Mext || || Cancel |

3. Inorder to access XML data you must first identify a schema; the schema must be located in
your application.

Figure 3-38 Specify an XML File Schema for XML Metadata Import
& %ect XML Source

-Specify a schema file:

Schema File rataServicesischemasCustomerCredit.,xsd || Browse. .,
¥ML Source {optional) Browse, ..
| Previous | | Mext | | | | Cancel |

4, Optionally specify an XML file. If the XML file exists in your DSP-based project you can simply
browse to it. More likely your document is available as a URI, in which case you want to leave the
XML file field empty and supply a URI at runtime.

5. Once you have selected a schema and optional document name, click Next to verify that the
name of your new data service is unique to your application.

3-58 Data Services Developer’s Guide

Figure 3-39 XML File Imported Data Summary Screen

Creating Data Source Metadata

J,Y
'l Summary

The wizard will create the following XML Data Service file. Edit file names, if needed.

Source Files #ML Data Service Mame

Ciibealuser_projectstapplicationsidanubeDemolDataServices\CUSTOMER _WILLA. xsd | CUSTOMER

Ciibealuser_projectstapplicationstdanube’DemolDataServices\CUSTOMER., xml

Location | C:ibealuser_projectsiapplicationsidanube)\Demo || Browse, .. |
| Previous | | | | Finish | | Cancel |

You can edit the data service name either to clarify the name or to avoid conflicts with other
existing or planned data services. Conflicts are shown in red. Simply click on the name of the
data service to change its name. Then click Next.

6. Next select a global element in your schema (Figure 3-40). Click Ok.

Figure 3-40 A Selecting a Global Element When Importing XML Metadata

& Select Global Element DHalog

Flease select a global element:

wilcusts %

CITY

CUSTOMER,
CUSTOMER_ID
EMAIL_ADDRESS
FIRST_MAME
LAST_MAME

7. Complete the importation of your procedures by reviewing and accepting items in the Summary
screen (see step 4. in “Importing Relational Table and View Metadata” for details).

Data Services Developer's Guide 3-59

Obtaining Enterprise Metadata

3-60

Also see in the Data Services Platform Samples Tutorial Part I.

- Lesson 11: Filtering, Sorting, and Truncating XML Data

Also see in the Data Services Platform Samples Tutorial Part Il

- Lesson 33: Accessing Data in XML Files

Testing the Metadata Import Wizard with an XML Data Source

When you create metadata for an XML data source but do not supply a data source name, you will need
to identify the URI of your data source as a parameter when you execute the data service’s read
function (various methods of accessing data service functions are described in detail in the Client
Application Developer’s Guide).

The identification takes the form of:

<uri>/path/filename.xml

where uri is representative of a path or path alias, path represents the directory and filename.xml
represents the filename. The .xml extension is needed.

You can access files using an absolute path prepended with the following:

file:///

For example, on Windows systems you can access an XML file such as Orders.xml from the root C:
directory using the following URI:

file:///c:/Orders.xml
On a UNIX system, you would access such a file with the URI:

file:///home/Orders.xml

Figure 3-41 shows how the XML source file is referenced.

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html
http://e-docs.bea.com/liquiddata/docs85/appdev/index.html
http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial1.pdf
http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Updating Data Source Metadata

Figure 3-41 Specifying an XML Source URI in Test View

OrderskML.ds - {DataServicesH, *

Select Function:

|-B Orders{x1) | - |

Farameters

wsdistring ®1: | Id:DataServices Demo/XMLIOrders, xml |

Mumber Element hy path)
Limit elements in array results to:

[s0]| [~]
[start Client Transaction
Result [Tem || me

- <miOrders xminsin="ld:DataServicesDemofXMLischemas/Crder xsd" xmlns:xsi="http:,|’,|’www.\E
- <MWL_CUSTOMER_ORDER =
<WL_ORDER_DATE > 2002-04-09 </l _ORDER_DATE>
<WL_ORDER_ID> ORDER_ID_1_0 </%L_ORDER_ID:=
WL _CUSTOMER_ID= CUSTOMER_1 </WL_CUSTOMER_ID=
<WL_TOTAL_ORDER_AMOUNT> 11000.00 </%L_TOTAL_ORDER_AMOUNT =
<l _CUSTOMER_ORDER =
+ <MWL_CUSTOMER_ORDER =
+ <MWL_CUSTOMER_ORDER =
+ =Wl _CUSTOMER_ORDER = =

[0 0]

Updating Data Source Metadata

When you first create a physical data service its underlying metadata is, by definition, consistent with
its data source. Over time, however, you metadata can become “out of sync” for several reasons:

e The structure of underlying data sources may have changed, in which case it is important to be

able to identify those changes so that you can determine when and if you need to update your
metadata.

e You have modified schemas or added relationships.

You can use the Update Source Metadata right-click menu option to report discrepancies between
your source metadata files and the structure of the source data including:

e Object added
e Object deleted

Data Services Developer's Guide 3-61

Obtaining Enterprise Metadata

3-62

e Object modified

e Source Unavailable

In the case of Source Unavailable, the issue likely relates to connectivity or permissions. In the case
of the other types of reports, you can determine when and if to update data source metadata to
conform with the underlying data sources.

If there are no discrepancies between your metadata and the underlying source, the Update Source
Metadata wizard will report up-to-date for each data service tested.

Considerations When Updating Source Metadata

Source metadata should be updated with care since the operation can have both direct and indirect
consequences. For example, if you have added a relationship between two physical data services,
updating your source metadata will remove the relationship from both data services. If the
relationship appears in a model diagram, the relationship line will appear in red, indicating that the
relationship is no longer described by the respective data services.

Direct effects apply to physical data services. Indirect effects occur to logical data services, since such
services are themselves ultimately based — at least in part — on physical data service. For example,
if you have created a new relationship between a physical and a logical data service, updating the
physical data service will invalidate the relationship. In the case of the physical data service, there
will be no relationship reference. The logical data service will retain the code describing the
relationship but it will be invalid because the opposite relationship notations will no longer be
present.

Several safeguards are in place to protect your development effort while preserving your ability to
keep your metadata up-to-date. These are described in the next section.

Thus updating source metadata should be done carefully. See “Archival of Source Metadata” on
page 3-66 for information of how your current metadata is preserved as part of the source update.

Using the Update Source Metadata Wizard

Note: Before attempting to update source metadata you should make sure that your build project
has no errors.

The Update Source Metadata wizard allows you to update your source metadata.

Data Services Developer’s Guide

Updating Data Source Metadata

Figure 3-42 Updating Source Metadata for Several Data Services
| Application *
Y RTLAPP

=) i Dakas —
o AJ @ Find in Files. ..
. = Mew »
Cac
Cao
CEl Build DataServices
CIME Clean DataServices
cam
CarT
Cdss Delste
:[E cy Remove from Application
:[E all
[
:[E o Import Source Metadata, .,

|<—j s
8w
|<—j xc‘ Properties

& Elecws
(3] RTLSelfService

Schemas

£ Madules

29 Libraries

@ DatasServices. jar

@ ElecDBTest. jar

@ ld-server-app.jar

@ LiquidDataContral. jar
@ Schemas. jar

(3 Security Raoles

Install 4

Import...

Rename

O B

You verify that your data structure is up-to-date by performing a metadata update on one or several
data services in your DSP-based project. In Figure 3-42 the update will be on all the data services in
the project.

After you select your target(s), the wizard identifies the metadata that will be verified and any
differences between your metadata and the underlying source.

Data Services Developer's Guide 3-63

Obtaining Enterprise Metadata

Figure 3-43 Data Services Metadata to be Updated

Dl Metadata Update Targets

The following local data services and libraries will be updated:
=) caDataSourcez
QIB |d:DataServices!ServiceDB/SERVICE _CASE . ds
I_) caDataSaurce
QIB ld:DataServices!ApparelDB{CUSTOMER _ORDER_LIME_ITEM.ds
QIB Id:Dataservices/BilingDE/CREDIT_CARD.ds
QIB Id:DataServices ApparelDE/PRODUCT ds
QIB |d:DataServices!ApparelDBfCUSTOMER _ORDER.ds
I=) caDataSourcel
QIB ld:DataServices/CustomerDE/CUSTOMER. ds
QIB Id:DataServices/CustomerDEfADDRESS. ds
=) http:fflocalhost: 7001 /ElecwS controls/ElecDBTest, jws?WSDL=
QIB |d:DataServices/Electronicsws/getProductList . ds
QIB |d:DataServices Electronicsws/getCustomer OrderByCustomer 1D, ds
QIB ld:DataServices Electronicsws/getCustomer OrderByOrder 1D, ds
|- Demo. Java, FuncData
|<—j lib: DataServices/Demoy dava/library , <fl
QIB ld:DataServices Demof Java/PRODUCTS ds
=] ld:DataServices/Dema/CSY cdTracks. csv
QIB Id:Dataservices/Demo/CSYCDTracks.ds
=] ld:DataServices/DemafCSY/ cdTitles.csv
QIB ld:DataServices/Demo/CSYCDTitles, ds

| Mext % | | | Cancel

Next, your metadata is updated and an on-screen report prepared. Both general and field-level
differences are displayed.

3-64 Data Services Developer’s Guide

Figure 3-44 Sample Update Preview Report

Updating Data Source Metadata

& Metadata Update Preview

X1

The following changes will be made to the local data services and libraries:

A2 |d:Dataservices ServiceDB/SERVICE_CASE.ds
J Up-to-date

) Schemas

QIE |d:DataServices)ApparelDE/PRODUCT ds
J Up-to-date

= L Field Added

&

[=-{C] Function Madified
=] Annotations
) Schemas

U2 |d:Dataservices Customer DB/ CUSTOMER. ds

[0

QIE ld:DataServices!ApparelDB{CUSTOMER _ORDER_LIME_ITEM.ds

J Schema Modifiedld: DataServices)ApparelDBfschemas/ CUSTOMER _ORDER. xsd

H2 |d:Dataservices/ApparelDE/CUSTOMER,_ORDER.ds

[& mative Name: CUSTOMER _ORDER_LINE_ITEM
[& mative Name: CUSTOMER _ORDER_LINE_ITEM

J Schema Modifiedld: DataServices)ApparelDBfschemas/ CUSTOMER _ORDER. xsd

]

=
D]

On Finish, this update report will be persisted as file metadata-diff <timestamp . xml"

Previous | Fini$A | Cancel

Table 3-45 describes the update source metadata message types and color legends.

Table 3-45 Source Metadata Update Targets and Color Legend

Category Color

Data source field added Green

A data source field has been added since
the last metadata update.

Data service schema (XML type) modified Black

A change has been made in a schema that
was derived from a data source.

Data source field deleted Red A field used by your metadata is no longer
appearing in source.

Field modified Blue A field in your metadata does not exactly
match the data source field.

Function modified Blue A function in your metadata does not

exactly match the data source function.

Data Services Developer's Guide

3-65

Obtaining Enterprise Metadata

When you click Finish your metadata will be updated to conform with the underlying data sources.

Archival of Source Metadata

When you update source metadata two files are created and placed in a special directory in your
application:

e A copy of the update report in the form:
1d: /updateMetadataHistory/metadatadiff<timestamp>.xml

e The XQuery source data services and other artifacts that were overwritten by the update
operation are saved in the form of:

1d: /updateMetadataHistory/sourceBackUp<timestamp>.zip

An update metadata source operations assigns the same timestamp to both generated files.

Figure 3-46 UpdateMetadataHistory Directory Sample Content

() D:\beatweblogic 81\samples\LiquidData\RTLApp\up dateMetadataHistory E]@
© File Edit ‘View Favorites Tools Help o

Folders s Mame Size | Type
-0 integration ~| [fmetadata-dif1116277532161,xml | 56KE XML Document
#-3) javelin N | metadata-diff 111629062 1650, xml 3KE ®ML Document
+-7) liquiddata If@sourceBacld_lpl 116277532161.2ip 16KE WinZip File
03 plan If@sourceBacld_lpl 116290621650, zip 6KE WinZip File

+-) portal
=) samples %
+-2) domains
+-{) inteqgration
=I-{) LiquidData
+-{J) Demo
+-{J) EvalGuide
=I-{J) RTLApp
+-I) .workshop
+-) APP-INF
+-|) DataServices
+-{) Elecws
120 Idejbtmp
L) META-IMF
+-J) RTLSelfService
1) Schemas
) updateMetadataHistory [«
< > [<] >

Working with a particular update operations report and source, you can often quickly restore
relationships and other changes that were made to your metadata while being assured that your
metadata is up-to-date.

3-66 Data Services Developer’s Guide

GHAPTERa

Using Data Services Design View

A data service gives you access to a structured view of a unit of information in the enterprise such as
a customer, sales order, product, or service.

Collectively, a set of data services comprise the data integration layer in an IT environment. For
additional information on data services see “Unifying Information with Data Services” in the BEA
Aqualogic Data Services Platform Concepts Guide.

Design View presents the data service as a “integrated chip” or schematic representation (Figure 4-1)
of all the query functions, underlying data sources, navigational relationships, and transformation
logic needed to support returning results in a particular arrangement, the return type. For details see
Chapter 2, “Data Services Platform Projects and Components.”

A data service exists in a DSP-based project as a single XQuery file containing query functions and
metadata support. For details see Chapter 8, “Using Source View” and the Data Services Platform
XQuery Developer’s Guide.

For information on setting security and caching policies for functions and elements see “Securing
Data Services Platform Resources” in the Administration Guide.

The following major topics are included in this chapter:
e Data Services in the Enterprise
e Data Service Design View Components
e Creating a Data Service

e Managing Your Data Service

Data Services Developer's Guide 4-1

http://e-docs.bea.com/liquiddata/docs85/concepts/dataServices.html
http://e-docs.bea.com/liquiddata/docs85/xquery/index.html
http://e-docs.bea.com/liquiddata/docs85/admin/security.html

Using Data Services Design View

Also see in the Data Services Platform Samples Tutorial Part I.
- Lesson 2: Creating a Physical Data Service
- Lesson 3: Creating a Logical Data Service

- Lesson 4: Integrating Data from Multiple Data Services

Data Services in the Enterprise

42

In modern enterprises there are increasingly two “data worlds”: the traditional relational world of
tables, columns, views, and stored procedures and the world of web services and other forms of data
that is accessed through the desktop or through various Web interfaces.

Increasingly, the cost of accessing and updating data across systems with fundamentally different
architectures and purposes can rival the cost of setting up the services themselves.

Comparing Data Services with Web Services

A data service is similar to a conventional web service in the following respects:
e It consists of public functions.
o The functions that access its services are modular, reusable, and extensible.

e Implementation details are hidden.

Of course a conventional web service does not have a core XML data type that allows for easy
manipulation of the shape of the return data. Another minor difference is that data services can access
private functions contained in XQuery library files (. x£1 files).

In concrete terms, a data service is a file that contains XML Query (XQuery) instructions for
retrieving, aggregating, and transforming data.

Physical and Logical Data Services

There are two types of data services: physical and logical. Physical data services comprise both
relational and service data. Logical data services are consumers of physical or other logical data
services. The data access layer of the enterprise includes both logical and physical data services.

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial1.pdf

Data Service Design View Components

An important benefit of this approach is that in the case of a virtual data access layer such as the Data
Services Platform provides there is no transfer or storage of data — other than for
application-controlled caching. Instead data services simply expose interface calls to read functions
that dynamically retrieve data from data sources. The retrieved data is then arranged based on the
data service’s XML type. Update logic is associated with each data service. In the case of relational
data the update logic is automatic; otherwise custom update functions can be developed (see Enabling
SDO Data Source Updates in the Application Developer’s Guide.

Data Service Functions

Data services should be designed so as to present client applications with a sensible, uniform data
access layer for obtaining and updating data.

The data service interface consists of several types of public functions.

e Read functions. Return data in the form of the data service’s XML type. Read functions can be
developed either in the XQuery Editor or through Source View. Data services are ideal for
encapsulating any number of specific functions with roles such as “Get all customers with
pending orders”, “Find customer number " and so forth.

e Navigation functions. Return data in the form of a related data service’s XML type using an
instance of the current data service as a parameter. See“Understanding Navigation Functions”
on page 4-9.

e A submit function. Allows clients to persist changes (update) to underlying (physical) data.

Note: The single submit() function can be found in Source View. It is not represented in the
Design View of the data service.

Data Service Design View Components

Design View provides a means of visualizing the entire data service (see Figure 4-1). Each data service
appears in WebLogic Workshop optionally bounded by panes that describe the application
components, properties of selected Design View properties, and so forth. For details on DSP-based
project components see Chapter 2, “Data Services Platform Projects and Components.”

At the heart of each data service is its XML type. The XML type describes the shape of the document
that will be returned when read functions are called either from this or a related navigation function.
(For additional information see “XML Types and Return Types” on page 4-6.)

Design View displays:

Data Services Developer's Guide 4-3

http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html
http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html

Using Data Services Design View

4-4

o Read functions, also called query functions, that return data according to the XML type

associated with the service. Navigation functions to related data services; these return data in
the shape of their native XML type.

o Immediate underlying physical and logical data services and their read functions.

Figure 4-1 Components of a Data Service

fl Demo - BEA WebLogic Workshop - Customer. xds

[=1

File Edit Wew ¥DS Buld Debug Tools Window Help

DEEH@| o | B|« +|&

ERFIPEEEs > B EE OB

|| Bpplication /| Files =

Customer.xds - {DataServicesH,

kS

3 Demo
(3] crwsProject
=133 Danubetieb
(1 CustomerPF
(1) DataServiceCtrls
() resources
() WEB-TNF
E Brror . jsp
‘1§ TestProcess.jws
E1-23 DataServices
=2 diagrams
F_;] logical.xmd
F_;] physical.xmd
(T META-INF
(1 schemas
@ CreditR atingUpdate. java
3] Customer.xds
[¢¥] CUSTOMERS.xds
@ CustomerUpdateLogic. java
B getCustomerCreditRating|
[¢8] ITEMS xds
&3] PAYMENTS. xds
[¢¥] PO_CUSTOMERS.xds
3] PO_ITEMS.xds
B sdo, xsdeonfig
{2 testproj
{2 Modules
[Libraries
{30 Security Roles

|| Customer.xds XML Data Service

% B @ CUSTOMER

A etCUStOMREY @) CUSTOMERID xsvint

1

CUSTOMERMAME xs:strim
CREDIT *
ORDER *

4

@
=@
=@

PAYMENTS 3
é QetPaymentList

[I N

.ﬁ CUSTOMERS. xds
PO_CUSTOMERS xds
2
.ﬁ PO_ITEMS. xds
.ﬁ getCustomerCredi. .,

]

[Design Yiew [®Query Editor | Source Yiew | Test Yiew | Query Plan View

Property Editor | LiquidData Palette | XQuery Construct Palette | kGuery Function Palstte

{_) DataServices

[PO_ITEMS xds

(2] PAYMENTS xds

(2 Customer . xds

{2 getCustomer CreditR tingResponse. xds
{21 CUSTOMERS. xds

{2 PO_CUSTOMERS. xds

[C1 ITEMS. xds

‘ 0]

{2 Customerl . xds

@ Server Running

INS 447111

Table 4-2 details the functional components of the data service shown in Figure 4-1.

Data Services Developer’s Guide

Data Service Design View Components

Table 4-2 Graphical Components of a Data Service.

Key

Component

Purpose

1

Query functions

Query functions are typically developed through the XQuery Editor. In
Figure 4-1 the getCustomer() function accepts a custID and returns data in
the shape of the customer XML type. (See “Modifying a Return Type” on
page 6-43).

2

Base data services

The data services that are used as immediate building blocks for the current

data service are shown. Click on its chevron symbol :: inside the
underlying data service representation to view its functions that are used by
the current data service. If you click on the function name itself the data
service will open. (Use the Back button to return to the original data
service.)

Note: Underlying data services are only displayed to one level. Use the
Metadata Browser to identify all underlying data services and
dependencies (see “Viewing Metadata” in the Data Services
Platform Administration Guide).

3

Navigation
functions

Relationships that are both inferred (relational) or created are shown.
Navigation functions return data in the shape of their native type. Clicking

on the chevron symbol :: inside your relationship representation, you will
see the navigation functions that are defined for that relationship.

If you click on the function name your view will switch to the XQuery Editor.

Relationships can be created through the Data Services Platform modeler
(see Chapter b, “Modeling Data Services”) or directly in your data service
using the relationship wizard (see “Using the Relationship Wizard to Create
Navigation Functions” on page 4-11).

4

XML type

The XML type is represented by an editable XML schema. The return type
of read functions shown in the XQuery Editor (see Chapter 6, “Using Query
Editor View”) should match the data service XML type.

Note: Multiple data services can depend on a single XML type. In such situations it is advantageous
to design such data services as a group, so that they always should return the same XML type.

Data Services Developer's Guide 4-5

http://e-docs.bea.com/liquiddata/docs85/admin/metadataBrowser.html

Using Data Services Design View

XML Types and Return Types

A key product of DSP-based projects are data service query functions and return types, sometimes
called target schemas. XML schemas are used to represent in hierarchical form physical and logical

data and the shape of documents returned from DSP queries.

Return types can be thought of as the backbone of both data services and data models.
Programmatically, return types are the “r” in for-let-where-return (FLWR) queries.

Figure 4-3 Sample Return Type

customerOrderReport, xsd

CustomerOrderReport
=] customerOrder®
=] CUSTOMER.
FIRST_MAME -xs:string
LAST_MAME -xs:skring
CUSTOMER_ID -xs:string
STATE -xs:string
EMAIL_ADDRESS -xs:string
TELEPHOME_MUMEER. -xs:long
=} wireless_orders
= CUSTOMER _ORDER™
ORDER_DATE -xs:string
ORDER_ID -xs:string
CUSTOMER_ID -xs:string
SHIP_METHOD -xs:string
TOTAL_ORDER_AMOUNT -xs:decimal
=} broadband_orders
= CUSTOMER _ORDER™
ORDER_DATE -xs:string
ORDER_ID -xs:string
CUSTOMER_ID -xs:string
SHIP_METHOD -xs:string
TOTAL_ORDER_AMOUNT -xs:decimal

Return types have the following main purposes:

e Provide a template for the mapping of data from a variety of data sources.

e Help determine the arrangement of the XML document generated by the XQuery.

For more information on specifying the XML type in a data service see “Associating an XML Type” on

page 4-21.

4-6

Data Services Developer’s Guide

Creating a Data Service

Where XML Types are Used

The Data Services Platform modeler, data services, XQuery Editor, and Metadata Browser use XML
type representations as follows:

e Modeler. A DSP Model shows the relationships and cardinality between data services, as well as
read query functions. For details see Chapter 5, “Modeling Data Services.”

e Data Service. A data service generally contains an editable return type.

e Data Sources. Hierarchical-structured XML types represent both relational and non-relational
data. For details see Chapter 3, “Obtaining Enterprise Metadata.”

e XQuery Editor. The XQuery Editor uses physical and logical data source representations and
transformational functions to develop queries that are mapped to a return type. For details see
Chapter 6, “Using Query Editor View.”

e Metadata Browser. The Metadata Browser can display the return type associated with a data
service. For details see “Viewing Metadata” in the Data Services Platform Administration Guide).

For the versions of the XQuery and XML specifications implemented in DSP see the Data Services
Platform XQuery Developer’s Guide.

Where Return Types are Used

Return types describes the structure or shape of data that a query produces when it is run. A return
type can be thought of as an object of XML type.

Note: Inorder to maintain the integrity of DSP queries used by your application, it is important that
the query return type match the XML type in the containing data service. Thus if you make
changes in the return type, you should use the XQuery Editor’s “Save and associate schema”
command to make the data service’s XML type consistent with query-level changes.
Alternatively, create a new data service based on your return type. For details see “Creating
a New Data Service and an XQuery Function” on page 6-7.

Creating a Data Service

You can create a data service in several ways:

e Through the DSP Metadata Import Wizard, which automatically generates physical data
services from available data sources. See Chapter 3, “Obtaining Enterprise Metadata.”

e By selecting a DSP-based project and then choosing File — New — Data Service.
Alternatively, right click on the project folder and choose New — Data Service.

Data Services Developer's Guide 4-7

http://e-docs.bea.com/liquiddata/docs85/admin/metadataBrowser.html
http://e-docs.bea.com/liquiddata/docs85/xquery/index.html

Using Data Services Design View

e By selecting Create Data Service from a data model and then opening the newly-created data
service. See Chapter 5, “Modeling Data Services.”

Figure 4-4 Adding a Function to a New Data Service

Untitledl .ds - {DataServicesH 4
_’E\ Untitledl Data Service]
Create XML Type
[« | 0]
Design View [WQuery Editor View | Source Wiew | Test View [Query Plan Yiew

Data services always reside in the current DSP-based project. Once created, you can use the Data
Service menu (or right-click) to develop your data service. Table 4-5 lists available right-mouse click
options and their usage.

Table 4-5 Data Service Menu Options

Command Usage

Add Function Adds a function to your data service. After entering a name for the
function, clicking on the name will open the XQuery Editor.

Add Relationship Creates a relationship to another data service. A file browser allows
you to enter the name of the data service which you want to relate
to your current data service. This, in turn, will bring up the
Relationship wizard, where you can define the navigation functions
that will relate the two services.

4-8 Data Services Developer’s Guide

Creating a Data Service

Command Usage

Associate XML Type Associates your data service with an XML type. You can choose the
type (. xsd schema) from anywhere in your application. If your
data service currently has an associated XML type, it will be
replaced.

Create XML Type Allows you to create an XML type using the built-in schema editor.

Note: Once your data service is associated with a XML type, this
option becomes unavailable.

Display XML Type / For physical data services you have the option of displaying the
Display Native Type XML type (example: xs:int) or the native type (example:
CUSTOMERID INTEGER(10)) for each element.

Subsequent sections describe each of these commands in detail.

Adding a Function to Your Data Service

When adding a query function to your data service, you can accept the default function name or edit
it directly. Then, when you click on the name of your new function, you will be placed in the XQuery
Editor. See Chapter 6, “Using Query Editor View”.

Note: It is important that function names in any given data service be unique even when their arity
(number of parameters) does not match. This is because JDBC is not able to differentiate
between functions of the same name.

Adding a Relationship to Your Data Service

Relationships allow you to call out to another data service using an instance of your data service as a
parameter. Data is returned in the shape of the related service. In this way you can populate your data
services with a set of functions.

Understanding Navigation Functions

Two data services can be related by one or more relationships.

For example, CUSTOMER and ORDER might be related by a CUSTOMER-ORDER relationship that has
three navigation functions in all:

cst:getAll0rders (CUSTOMER) —>ORDER*

Data Services Developer's Guide 4-9

Using Data Services Design View

cst:getOpenOrders (CUSTOMER) —>ORDER*
ord:getCustomer (ORDER) —>CUSTOMER

The first two functions are different ways of navigating the CUSTOMER-ORDER relationship from a
customer to all or some of their orders. The third function is a way to navigate from an ORDER to the
associated CUSTOMER.

In the most common case, a relationship will result in the availability of two navigation functions, one
for moving through the relationship in one direction and one for moving in the other direction.

In the less common case of a unidirectional relationship, there will be only one navigation function.

Effect of Using a Navigation Function to Return Data

In a data service the functional difference between a read function and a navigation function is the
shape of the returned data. Here is a simple example:

In a read function if you have an OpenOrders data service with an XML type of:

<openOrders>
<custID>
<first name>
<last _name>
<orderID>

</openOrders>

and pass it a customer ID such as 101 and an order ID such as Lrp-111. The query result
appears as:

<customerInfo>
<custID>101</custID>
<first names>Jane</first names>
<last_name>Smith</last_name>
<orderID>Smith</orderID>

</customerInfos>

However, if your data service has a navigation function associated with a table called
TrackOrders, the query parameter can remain the same but data will be returned in the shape
of the TrackOrders type, which looks like this:

<TrackOrders>
<custID>
<first name>
<last _name>
<orderID>
<ship_date>

4-10 Data Services Developer’s Guide

Creating a Data Service

<weight>
<delivery date>

</T;f;':1;:k0rders>
Creating a Relationship Between Data Services
In a data service adding a relationship is a three-part process:

1. Add and name the relationship.

Figure 4-6 Adding a Relationship to a Data Service Using Right-click Menu Option

CreditCard. ds - {DataServicesHRTLServices),

_’@\ CreditCard Data Service
Bl @ CREDIT_CARD retailerType: CREDIT_CARD. TYPE

at§ gtCreditCard CreditCardID xsd:skring

CustomerID xsdistring
Ay p getCreditCardByCustiD

CustomerMame xsd:skring
CreditCardType xsd:shring
CreditCardBrand xsd:shring
CreditCardiumber xsd:sking

LastDigits xsd:skr
Add Function " g

Add Relationship

ExpirationDate xsd:date
Status 7 xsdishring
Associate XML Type Alias 7 xsdskring
AddressID xsdishring

Customer
ﬁ A e

2. Associate the relationship with an existing data service.

3. Use the Relationship wizard to define the relationship.

Using the Relationship Wizard to Create Navigation Functions

You can develop fully-functional binary navigation functions using the Relationship wizard.

The value of navigation functions is that client applications can call the function using complex
parameters without having to know the internal structure of function, join conditions, and so forth.
From the perspective of the data service creator, the internals of the function can be changed without
affecting applications dependent on the ability to invoke the data service function.

Data Services Developer's Guide 4-1

Using Data Services Design View

4-12

When you choose to create a relationship through Design View or within a model diagram, the
Relationship wizard is invoked. With the wizard you can set the following navigation function
notations:

e Role names
e Direction

e Cardinality

You can also identify parameters and specify where clauses.

Setting Relationship Notations: Role Names, Direction, Cardinality

The first dialog of the Relationship wizard allows you to set role names, direction, and cardinality.
Table 4-8 provides details on the callouts shown in Figure 4-7.

Figure 4-7 Relationship Wizard Specifying Direction, Cardinality, and Role Name

[Ea Relationship Properties

Relationship CUSTOMER_ORDER. -3 PRODUCT 1 Relationship PRODUCT - CUSTOMER_ORDER

Dataservice CUSTOMER_ORDER: ————— rDataService PRODUCT:

Target Role name: | ppopoct 2 | Target Role name: | CUSTOMER_ORDER. |

Min occurs: | 1 | - | Min occurs: | 1 | - |
Max occurs: | ! | M | Max occurs: | ! | M |
| Mext | | Finish | | Cancel |

Data Services Developer’s Guide

Creating a Data Service

Table 4-8 Primary Relationship Settings

Key

Component

Purpose

1

Direction

Query functions are typically developed using the XQuery Editor. A
bidirectional relationship is the default condition. This means that each
data service will have a navigation function that invokes the related data
service. Direction notations have no run-time effect.

Direction can also be specified through the Property Editor associated with
each data service or through a model diagram.

2

Role name

Each end of a relationship can have a target role name. By default, the role
name is the same as its adjacent data service. For example, the default role
name for the ADDRESS data service is ADDRESS. You can change the role
name in the Relationship wizard.

Role names can also be specified through the Property Editor associated
with your data service or through a model diagram showing the relationship.

Note: Role name notations have no run-time effect.

3

Cardinality

Cardinality notations can be set for each side of the relationship. The
default cardinality is 1-to-1 but this can be changed to any combination of
<blank>, 0, 1, and ».

Cardinality can also be specified through the Property Editor associated
with your data service or through a model diagram showing the relationship.

Note: Cardinality notations have no run-time effect

Setting Function Name, Identifying the Opposite Data Service, Mapping Parameters, and

Building Where Clauses

The second Relationship wizard dialog page allows you to set the navigation function name and other
characteristics.

Data Services Developer's Guide 4-13

Using Data Services Design View

Figure 4-9 Relationship Wizard Dialog Specifying Function Name, Parameters, and Where Clauses

('] Configure navigation function in CUSTOMER_ORDER

Mavigation Function name: gebCUSTOMER-N |]

Choose a read function From the Following list. IF wou do not choose a read function, FOR loop will not be created
in the navigation function

Select Function : (<Function> [~] from cusTomER Data Service 2
<Function
Map Input Parameters
Parameter name Parameter bype Map from CUSTOMER_ORDER

Build WHERE clause
CUSTOMER _ORDER. CUSTOMER.

4

5 [oas | [romoe

6 |Previ0us || Mext || Finish || Cancel |

Table 4-10 provides details on callouts shown in Figure 4-9.

4-14 Data Services Developer’s Guide

Creating a Data Service

Table 4-10 Primary Relationship Settings

Key Component

Purpose

1 Navigation
function name

By default, the navigation function name is the name of the target data
service with “get” prepended, as in “getCustomer”. If a function of that
name exists, numbers will be appended to the function name as in
getCustomerl.

However, you can change the navigation function name to any valid function
name.

Note: When you invoke the Relationship wizard through a model
diagram the opposite data service is determined by the gesture of
drawing a line from one data service to another. In such cases the
option of selecting a navigation function name is not present.

2 Related data
service function

By default, the root function in the target data service is selected. However,
you can select any available read function in the target data service.

3 Map input
parameters

If the related function has input parameters, the name and type of the
available parameters are displayed. You can then use a pulldown menu to
select an element from the target data service to map as the input
parameter.

4 Build WHERE
clause

Where clauses can be added to the function using pulldown menus that
allow you to select join elements from each side of the relationship.

5 Add or Remove

Allows you to add additional where clauses or delete a selected where
clause.

6 Next

When the relationship between data services is bidirectional clicking Next
changes the focus to the second data service, where you can identify a
navigation function name, parameters, and add where clauses for the
second side of the relationship.

Example of Creating a Navigation Function

This section contains a small example showing how you can use the Relationship wizard to create
fully-formed navigation functions. The goal is to create a navigation function that returns the first
available address on file for a particular customer by supplying a customer ID.

The following steps use the RTLApp provided with DSP.

Data Services Developer's Guide 4-15

Using Data Services Design View

1. Starting with the RTLServices/ApplOrder data service in Design View, select Add Relationship
from the right-click menu.

2. Select a target data service. In this case RTLServices/CustomerProfile.

Figure 4-11 Selecting a Target Data Service for the ApplOrder Navigation Function

Applorder,ds* - {DataServicesHRTLServices),

_IE\AppIDrder Data Service
=@ APPL_ORDER. rebaisrType:APPL_ORCER _TYPE[~]

— ’ ApparelDBICUSTO,.,
0 CustomerID xed:string

A 1k Appatel Order By CustID —~
S SRR) OrderDate xsd:date

- ApparelDB/CUSTO...

& Select Target Data Service...
Laok In: |C| RTLServices | - |
[C) schemas 4 CustomerProfile.ds
ik Address.ds ik Customer'iew.ds
i Applorder.ds i ElecOrder.ds
i ApplProduct.ds i1 ElecProduct.ds
ik Case.ds i OrderDetailview.ds
ik CaseView.ds i1 OrderSummaryView,ds
ik CreditCard.ds i Orderview.ds
4k CreditCardOld.ds 3 Profiletiew.ds
ik Customer.ds

Mame: | CustomerProfile. ds |

Tvpe: |Data Service Files | - |

3. Next you can set direction and cardinality.

The relationship remains bidirectional, meaning that you can get customer profile information
by supplying an address object and you get can address information using a customer profile
object. However, the cardinality relationship notation of Customer Profile — Address is 1-to-n,
since a customer can have multiple orders.

4-16 Data Services Developer’s Guide

Creating a Data Service

Figure 4-12 Setting Direction and Cardinality for the Relationship

r -
& Relationship Properties
Relationshi%\pplOrder -z CustomerProfile Relationship CustomerProfile - = ApplCrder
rDataService Applorder: ~DataService CustomerProfile:
Target Role name: | CustomerProfile | Target Role name: | Applorder |
Min occurs: | 1 | - | Min occurs: | 1 | - |
N -] .o - |
Max occurs: Max occurs:
| Mext | | Finish | | Cancel |

4. Click Next. This creates the first navigation function which is given a default name of
getCustomerProfile().

The next stage for each navigation function is to:

accept or change the name of the navigation function

identify a read function contained in the navigation function (there may be more than one)

specify parameters to invoke if parameters are supported by the underlying query function

optionally add one or multiple where clauses

Data Services Developer's Guide 4-17

Using Data Services Design View

Figure 4-13 Defining the First Navigation Function

Bl Configure navigation function in ApplOrder

Mavigation Function name: getCustomerProFilﬁ’

Choose a read function From the Following list. IF wou do not choose a read function, FOR loop will not be created
in the navigation function

Select Function : betCustomerProFile | M | From CustomerProfile Data Service

Map Input Parameters
Parameter name Parameter type Map from ApplOrder

Build WHERE clause

Applorder CustomerProfile
A4PPL_ORDERCustamerID = | CustomerProfils/CLISTOMER (O ISTOMER 10| ™ |

|Previ0us || Mext || Finish || Cancel |

In the case of the getCustomerProfile() navigation function:
— there is only a single read function
— there are no parameters

— the where clause join elements are APPL,_ORDER/CustomerID and
CustomerProfile/Customer/CUSTOMER_ID

5. Click Next to define the opposite navigation function whose default name is getApplOrder().

The apparel orders data service more typically contains multiple read functions. If you select
getApparelOrdersByCustID(), then you will be able to map an element (cust_id) from the
opposite data service.

Notice in Figure 4-14 that the where clause you defined for the first navigation function is
pre-determined and shown in read-only format.

4-18 Data Services Developer’s Guide

Creating a Data Service

Figure 4-14 Selecting a Parameter

Bl Configure r'!a\n'gation function in CustomerProfile

Mavigation Function name: getAppIOrderbyCustID|

Choose a read function From the Following list. IF wou do not choose a read function, FOR loop will not be created
in the navigation function

Select Function : betApparelOrderByCustID |~ | from ApplOrder Data Service

Map Input Parameters
Parameter name Parameter type Map from CustomerProfile
usk_jd xsiskring CustomerProfile/CUSTOMERSCUST, ..

Build WHERE clause

CustomerProfile Applorder
ustomerProfile CUSTOMERCUSTOMER._ID = APPL_ORDER)CustomerID

| Previous | | | | Finish | | Cancel |

6. Click Finish.

Data Services Developer's Guide 4-19

Using Data Services Design View

4-20

Figure 4-15 Resulting getCustomerProfile() Navigation Function

ApplCrder.ds - {DataServicesHR TLServices|

getiCustomerProfile(arg)

-]

= APPL_ORDER APPL_ORDER_TYPE
@TYPE ? string
OrderID string
CustomerID skring
OrderDate date
ShippingMethod string
HandlingCharge decimal
SubTotal decimal
Totalorderamount decimal
SaleTax decimal
EstimatedShipDate date

{?]Parameter: $arg —

Status string
ShipTa string
ShipTollame string
BilTo string

Trackinghumber 7 string
APPAREL_LINE_ITEM * APPARE—

~ b @ Return
=) - CustomerProfile
I [CUSTOMER *
— .
[For: sb e " CUSTOMER_ID string
0
= Custnmar’meﬂe* for $b in ns5:getCustomerProfils()
[CUSTOMER ™ \vere $arg/CustomerID = $b/CUSTOMER/CUSTONER_ID
CUSTOMER_ a EMPIL_FUDRE ST Siring
FIRST_NAME stting [} CUSTOMER_ORDER *
LAST_MAME string CQRDER_ID string
EMAIL_ADDRESS string CRDER_DATE date
] CUSTOMER_ORDER * SHIP_METHCD string
CORDER_ID string [u] TOTAL_CORDER_AMOUNT decim
ORDER_DATE date
SHIP_METHOD string |7 |
]

El]

il |
Ol [[v3

Where $arg/CustamerID = $b/CUSTOMERJCUSTOMER_ID

Design ¥iew | xQuery Editor Yiew [Source View | Test Yiew | Query Flan View

Testing Your Navigation Function

When you execute a navigation function in Test View, you can provide input in the form of a complex
parameter such as would result from, for example, getting back a customer record. Alternatively, you
could use the Test View template option to supply the appropriate parameter. See “Using an Input

Parameter’s Template to Guide Input” on page 7-9.

Navigation Functions in Source View

In data service Source View the navigation function is defined through a pragma and a function body.

(For details see the Data Services Platform XQuery Developer’s Guide).

For example, a navigation function named Payment() has a read function getPaymentList().

The navigation function appears as:

declare function nsl:getCustomer ($Sarg as element (ns0:APPL_ORDER)) as

element (ns15:PROFILE) * {
for $b in nsl6:getCustomerByCustID ($Sarg/CustomerID)

return Sb

}i

Data Services Developer’s Guide

D

http://e-docs.bea.com/liquiddata/docs85/xquery/index.html

Creating a Data Service

A key element in understanding this function is in the namespace ns15 which imports the schema that
models the XML type, PAYMENTLi st . xsd. The namespace is defined as:

import schema namespace nslS="urn:retailerType" at
"l1d:DataServices/RTLServices/schemas/Profile.xsd";

Note: If you modify a role name in the pragma of your data service, and that relationship exists in
any model diagram, then you will need to similarly modify the role name in any model
diagrams in which the relationship appears. Otherwise the relationship will become invalid.

Working with XML Types

Read functions associated with data services return information in a particular shape, the XML type.

Associating an XML Type

You can add or replace an XML type that has been associated with an data service using a browser.
Your type must be located in the your application file structure.

Selecting a Global Element

If the schema you select has more than one global element, a dialog allows you to choose the global
element you want to use.

Figure 4-16 Select Global Element Dialog Box

¥ Global Element x|

Select the global element. to use

getCustomerCreditRating -

getCustomerCreditRating

gd getCustomerCreditRatingResponse L
|

Ok Cancel

Editing an XML Type

You can also edit any XML type. data service. Several XML type right-click menu options are available
(Table 4-17).

Data Services Developer's Guide 4-1

Using Data Services Design View

4-22

Table 4-17 Right-click XML Type Editing Options

Option Purpose

Add Child Adds a child element to the currently selected element. Available sub-menu options
include special-purpose schema elements Choice and All.

Add Sibling Adds a sibling element to the currently selected element. Available sub-menu options
include special-purpose schema elements Sequence and Choice.

Add Attribute Adds an attribute to the currently selected element.

Delete Deletes the currently selected element or attribute. This option is not available for the
root element of the schema.

Allow Global A toggle that applies to the entire schema. Schemas should be edited with care. To do so,

Types and this option must be selected.

Elements Editing

Go to Source

Opens the XML type in the built-in schema editor.

Move Up

Moves the selected element towards the top of the schema.

Move Down

Moves the selected element towards the bottom of the schema.

Another option, Enable Optimistic Locking, becomes available for elements in relational-based XML
types under some conditions. See “Enable/Disable Optimistic Locking” on page 4-26.

Table 4-18 identifies how various right-click options apply to different XML type elements.

Table 4-18 XML Type Editing Options / Element Matrix

Element Add Child Add Add Delete Move
Element/ Sibling Attribute Up/
Choice/ Element/ Move
All Sequence/ Down
Choice
Root element
Complex element
Leaf element

Data Services Developer’s Guide

Creating a Data Service

Element Add Child Add Add Delete Move
Element/ Sibling Attribute Up/
Choice/ Element/ Move
Al Sequence/ Down
Choice
Conditional
element
All element
Sequence element
Choice element
Attribute

In some cases complex type components that appear in schemas will not appear in your XML type.

Warning: XML types are based on schemas which may be used by other data services. Similarly, all
the functions in your data service should be written to return the XML type of your data
service. For this reason, XML types should be modified carefully, with adequate backup
in case you need to revert to a previous version.

External Editing of XML Types

In addition to the right-click menu described in Table 4-18, you can use the Go to source command to
edit your schema file using WebLogic Workshop's assigned text editor.

Creating an XML Type

You can choose to create an XML type for a new data service. Since your data service already has a
name, you need only supply:

e A schema file name
o A XML type root element

e A target namespace

By default, the name of your data service is the same as the schema file name, the schema (XML type),
and the target namespace all have the same name.

Data Services Developer's Guide 4-23

Using Data Services Design View

Figure 4-19 Create New Schema File Dialog

& Create Mew Schema Frlle
b
Schema File | 1ube'l,Demo'l,DataServices,l’myNewDataService.xsd|| lz‘
Return bype | myMewDataService |

Target Mamespace | Id:DataServices myNewDataService |

Once created, you can then use the data services built-in schema editor to create your schema.
Alternatively, you can create a schema in a program such as XMLSpy.

Managing Your Data Service

There are several important pre-deployment tasks before you can make your data service available to
client applications. This includes setting properties for your data service and it’s functions.

Figure 4-20 Data Service Properties

| | Property Editor *
Data Servic%
General
Mame Customer.ds
Description
Type
Type {http:/ /temp.openuri.org,/schemi
Data Service Update
Allove Update true hd
Decomposition Function true
Update Override Class false
User Defined Properties

You can use the Properties Editor (View — Property Editor) to set or change key data service
functionality including:

e Enabling or disabling update logic.

e Specifying the Java file to access for update logic.

e (Creating user-defined properties, which then become available to the DSP Metadata Browser.
e Enabling or disabling caching for particular functions.

o Changing relationship settings include role name, target data service, and cardinality.

See “Notable Data Service Properties” on page 4-29.

4-24 Data Services Developer’s Guide

Managing Your Data Service

Setting Update Options
Each data service contains a set of properties that control its update characteristics.

Note: For complete information on decomposition functions, override classes, optimistic locking
settings, and other SDO-related information see “Enabling SDO Data Source Updates” in the
Application Developer’s Guide.

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 23: Performing Custom Data Manipulation Using Update
Override

- Lesson 24: Updating Web Services Using Update Override
- Lesson 25: Overriding SQL Updates Using Update Overrides

Allowing Updates

You can use the Allow Update option in the Property Editor to control whether calling applications
can exercise update logic associated with your data service. This is especially important in regard to
relational-based data services, since update logic is automatically available unless disabled.

Set the option to True to allow update; False to prevent updates.

Setting the Override Class

In order to update non-relational sources that are associated with your data service you need to create
an update override class. In addition, you may want to overwrite built-in update logic for relational
sources to apply custom logic to the update process.

Before you can set the override class, you need to develop it. The steps involved are:
e Add an appropriately named Java class to your DSP-based project.
e Within the Java file, implement the UpdateOverride interface.
e Import the required packages into your class and add a performChange() function to the class.
e Implement your processing logic.

e Associate your data service with the class.

Data Services Developer's Guide 4-25

http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html
http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Using Data Services Design View

<javaUpdateExit className="nameOfYourJdavaClass"/>

For information on developing an override class see “Enabling SDO Data Source Updates” in the
Application Developer’s Guide.

Note: Each data service can have only one update override class. However, multiple data services
can share the same update override class.

Enable/Disable Optimistic Locking

The SDO update mechanism for relational data uses an optimistic locking policy to avoid change
conflicts. With optimistic locking, the data source is not locked after the SDO client acquires the data.
Later, when an updated is needed, the data in the source is compared to a copy of the data at a time
when it was acquired. If there are discrepancies, the update is not committed.

Optimistic locking update policy is set for each data service. The following table lists the three
optimistic locking update policy options.

Optimistic Locking Effect
Update Policy

Projected Projected is the default setting, It uses a 1-to-1 mapping of elements
in the SDO data graph to the data source to verify the
“updateability” of the data source.

This is the most complete means of verifying that an update can be
completed, however if many elements are involved updates will
take longer due to the greater number of fields needing to be

verified.

Updated Only fields that have changed in your SDO data graph are used to
verify the changed status of the data source.

Selected Fields Selected fields are used to validate the changed status of the data
source.

For relational-based data service the Enable/Disable Optimistic Locking option becomes available for
elements in its XML type when the optimistic locking property is set to Selected.

4-26 Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html

Managing Your Data Service

Figure 4-21 Data Service Allowing Updates and Optimistic Locking on Selected Fields

l&Property Editor *

"'Data Service

General

Mame CUSTOMER.ds
Description

Authar

Creation Date 2005-04-18T09:45:27
Type

Data Service Update

Allov Update true

Update Override Class
DOptmisticLockingFields

Optmistic Locking Fields SELECTED FIELDS

User defined properties

When active, the Selected Fields option allows you to validate optimistic locking logic prior to an
update. Any number of fields can be selected through the right-click menu associated with the XML
type. (If a complex element is selected, all its children are selected even though they are not so

marked.)

When the Selected Fields option is picked, a right-mouse click toggle option named Enable/Disable
Optimistic Locking becomes available. Multiple elements can be selected.

Figure 4-22 Disahling Optimistic Locking Policy for a Field

CIUSTOMER_CRDER_LIME_ITEM.ds* - {DataServicesHApparelDEBY 4
| [{f5 CUSTOMER_ORDER_LINE_ITEM Data Service]
Bl @ CUSTOMER_ORDER_LINE_ITEM
Ay ot CLISTOMER_ORDER _LINE_ITEM © LNEID xsistring
¥ ORDER_ID xs:skring
(@) PROD_ID xs:skring
(@ PROD_DSC xsiskring
© qus addchid »
O PRIC add Sibling »
© 54 Add Attribute
Delete
Allow Global Types & Elements Editing
qetCUSTOMER. ORDER Go ko Source
Maovellp
MoveDown
Find
[« Dl
| Design Yiew [®GQuery Editar View | Source View | Test View | Query Plan View

Data Services Developer's Guide 4-21

Using Data Services Design View

4-28

In Figure 4-22 two fields are selected, PRODUCT_ID and QUANTITY.
These choices are reflected in the Source View pragma.

<optimisticLockingFieldss>
<field name="PRODUCT ID"/>
<field name="QUANTITY"/>
</optimisticLockingFields>
For complete details on handling change conflicts based on optimistic locking policies see “Enabling
SDO Data Source Updates” in the Application Developer’s Guide.

Caching Functions

For each function in your data service, cache can be set to True or False. If False, results from
executing your query function cannot not be cached. If True, results from earlier invocations of your
function will be cached based on caching policies that are set through the Data Services Platform
Administration Guide.

Caching Considerations

There are several things to keep in mind when considering whether to enable caching for a particular
function.

o If data accessed by your function is updated frequently, the function is not a good candidate for
caching.

e Generally speaking, you should only enable cache to data service functions that are
parameterized. For example, if cache is enabled to functions that return the complete contents
of a table, you may see performance degradation instead of gains as a result of cache.

Therefore you should cache database tables with care, typically only for tables that have a small
number of rows.

Setting Caching Policy for a Function

To inspect or set the caching policies for a particular read function in your data service click on the
arrow to the left of the name of the function and then set its caching policy through the Properties
Editor.

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html
http://e-docs.bea.com/liquiddata/docs85/appdev/sdoupdate.html
http://e-docs.bea.com/liquiddata/docs85/admin/index.html

Managing Your Data Service

Figure 4-23 Click Arrow to the Left of a Function Name to Inspect or Set Its Caching Policy

ApplOrder.ds - {DataServicesHRTLServices),

_’@\ ApplOrder Data Service

4—@— getApparelOrder

4—@— getApparelOrderByCustID

Customer
ﬁ A e

You need to build your application in order for cache policy changes effective.

Note:

Data Services Platform Console.

Notable Data Service Properties

The following table identifies notable properties associated with various parts of your data service.

Table 4-24 Notable Data Service Properties

Function cache policy (True of False) set in a data service cannot be overridden through the

Focus Property Settings Comments
Data service | Name Editable Must end in . ds
Description Text Optional
Author Text Optional
Creation Date Non-editable
Type URI to optional XML type Also known as XML type.

Data Services Developer's Guide 4-29

Using Data Services Design View

Focus Property Settings Comments
Update : Allow Update | True / False Allows calling applications
to execute the data service’s
update logic.
Update : Override Optional and editable Identifies a external Java
Class class that provides custom
update logic.
Optimistic Locking Projected / Updated / Applies only to
Fields Selected Fields relational-based data
services.
User-defined Optional and editable Create any number of
Properties name/value pairs.
Data Service Name Editable
Read Function
Cache True / False Enables cache for the
function.
User Defined Optional and editable Create any number of
Properties name/value pairs.

XML type Root: Name Editable Typically same name as the
data service without the
file’s extension.

Root: Is Referenced False Read only. For the root

element the Is Referenced
property is always false as it
is always a global element in
the schema.

Root: Type <blank> or named type Blank if the root element is
an anonymous type;
otherwise named type is
shown

Element: Is True / False Read only. Identifies any

Referenced elements that are imported

into the current function. In
source this appears as
ref="element”.

4-30 Data Services Developer’s Guide

Managing Your Data Service

Focus

Property Settings Comments

Element: Type XML type Examples: xs:int; retailer:
CUSTOMER_VIEW

Element: Min Occurs | 1,0,0rn

Element: Max Occurs | 1,0, orn

Element: Native Type | Data type Available only for physical
data. Example: VARCHAR

Element: Native Size Size of the data Available only for physical

data. Example: 10

Data Services Developer's Guide 4-31

Using Data Services Design View

4-32

Focus

Property Settings Comments
Primary key: <blank>, identity, sequence, | This and the Sequence
AutoNumber or userComputed Object Name option appear

for elements representing
primary keys in
relational-based physical
data services.

Autonumber can be used to
provide a value for a
database primary key.

Leaving the field blank
means you will provide a
value for the primary
key.

The identity option
pertains to IBM DB2,
Sybase, SQL Server, and
MySQL. In this case the
database will provide a
value for the primary
key.

Sequence objects are
available for DB2 and
Oracle. You must
provide a sequence
object name.

User computed is a
notational flag
indicating that the
primary key information
has been provided to the
database through your
SDO custom update
override class.

Note: It is not necessary

to set this flag in
order for the
update override
computed primary
key logic to be
used.

Data Services Developer’s Guide

Managing Your Data Service

Focus Property Settings Comments
Primary key: If sequence is selected in the
Sequence Object AutoNumber property
Name (above), then the sequence
object name must be
supplied
Related Data Role Name Editable Also changes the role name
Service shown in a model diagram.

Related Data Service | Path to the related data

service
Min Occurs 1,0,0orn
Max Occurs 1,0,0rn
Opposite Role Name Editable Also changes the role name
shown in the model diagram.
Relationship Name Editable
Read Function
Cache True / False Enables cache for the
function.
Implements Name of the related data
service
User Defined Editable Create any number of
Properties name/value pairs.

Data Services Developer's Guide 4-33

Using Data Services Design View

4-34 Data Services Developer’s Guide

Modeling Data Services

Using BEA Aqualogic Data Services Platform (DSP), you can create and maintain models of your
enterprise data services. Models describe data, relationship between data objects, data semantics,
and consistency constraints.

Models also express relationships between physical data services, logical data services, or a
combination. In DSP all model relationships are binary; each binary relationship is expressed in a
model diagram as one or more lines between two data services.

You can use DSP model diagrams to:
e Obtain a high-level, visual view of data resources
e View the relationships between physical and logical data resources
e Facilitate the creation or modification of relationships between resources
e Quickly access or create a data service

e Modify a XML type of a data service

The following topics are covered in this chapter:
e Model-Driven Data Services
e Building a Simple Model Diagram
o Building Data Service Relationships in Models

e Working with Model Diagrams

Data Services Developer's Guide 5-1

Modeling Data Services

5-2

e How Changes to Data Services and Data Sources Can Impact Models

Note:

For more information on data service modeling concepts see “Modeling and a

Service-Oriented Architecture” in the Data Services Platform Concepts Guide.

Also see in the Data Services Platform Samples Tutorial Part I.

- Lesson 5: Modeling Data Services

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 20: Implementing Relationship Functions and Logical Modeling

Figure 5-1 Model Diagram of Physical Data Services

CanaricalMadel,md* - {DataservicesPIMODELS|Logicall

I
:[BElEEULI\&EI

B @ ELEC_ORDER retalerType:ELEC [~ |
@ orderlD xsdistring ¢
0 CustomerID xsd:string
@ OrderDate xsdidate
@ shippingMethod xsd:string =

[— D

L] getElecOrderByOrdID()
L] getElecOrdersByCustID()
L] getEmptyElecOrder()

{E creditCard

® CrediCardlD xedstring
@ CustomerID xsdistring
@ Customerhame xsd:string

*
1]
{E customer
=@ PROFILE retslerTypeiPROFIE_TTPE [=]
D CustomerID xsd:string o
) FirstName xsd:string
0 Lasthame xsdistring
@ Customersince xsdicate A ApplOrder
@ Emailaddress xsd:sking =@ APPL_CRDER retalerTypeiARPL_ORDE|~
@ Telephonehumber ? xsdistring B ® OrdeID xshstring
0 55N 7 xsdistring @ CustomerID xsd:string
@ BirthDay ? xsddate @ oOrderDate xsdidate
1 DefaulshippmentMethod xsd:string @ shippingMethad xsd:string
@ Emailiotification xsd:shert @ HandingCharge xsd:dedimal
AT et emdichent] mEl @ subTotal xsd:decimal
@ Totalorderamount xsdidecimal [~
+] getCustomer(} [=] q
1 gettustumerﬂytu.s.tlD() EI TpRTw———
T T 5] getApparelOrderByCust1D0
{Fcase
@ CASE retallerTypeiCASE_TYPE
@ CaselD xsdistring
) CustomerID xsd:skring
0 ProductID xsd:istring

1 credeCardType xsd:string
@ CrediCardbrand xsdrstring
1 CreditCardiumber xsd:string

@ CREDIT_CARD retaierType:CREDIT_CARD_TYFE

0 CaseType xsdistring
@ CaseDescription xsd:string
) CaseDate xsdrdate

0 LastDigits xsd.strimg 0 AsigneslD xsd:string
@ EspirationDate xsdidste @ Status xsdistring
0 status ? xsdistring @ StatusDate xsd:date
0 Alias 7 xsd:isking
getCase()
0 AddressiD xsdistring aa getCaseByCustiDg) E
£ getCreditcard() [=]
] getCreditCardByCusting)] =
Il]

A model diagram is a graphical representation of a data model supported by DSP. In addition to
showing collections of data services and relationships between data services, model diagrams also

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial1.pdf
http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf
http://e-docs.bea.com/liquiddata/docs85/concepts/modeling.html
http://e-docs.bea.com/liquiddata/docs85/concepts/modeling.html

Model-Driven Data Services

identify role direction and cardinality information at each end of the relationship. By default, types
shown in model diagrams are XML schema types, but you can change this to display native data source
types in the case of physical data services.

Model-Driven Data Services

In large enterprises modeling is — or at least should be — an early task in developing a data services
layer. By starting with a graphical representation of physical data resources it is easier to view data
resources globally, leveraging existing information in interesting and useful ways. It is also easy to see
opportunities for creating additional business logic in the form of logical services.

Model diagrams are quite flexible; they can be based on existing data services (and corresponding
underlying data sources), planned data services, or a combination. You can also create and modify
data services and data service XML types directly in a modeler diagram.

In DSP model relationships are logical connections between two data services. The connections
describe:

e The direction of the binary relationship (one- or two-way)
e The cardinality of the relationship (1-to-1, 1-to-many, 0-to-many, or many-to-many)

e A role name for each side of the relationship

Relationships can have one or more navigation functions that allows data associated with one data
service (such as Customer) to potentially become a complex parameter for a related data service
(such as Orders).

Some relationships — such as between relational data services — are automatically inferred through
introspection of primary and foreign keys. See “Importing Relational Table and View Metadata” on
page 3-5 for details.

Additional relationships can be created in several ways:

e Automatically, by dragging two or more relational-based data services into a model diagram
simultaneously. In such cases primary/foreign key relationships are automatically identified.

e Graphically, through gestures you make in your model diagram.

e Programmatically, through Source View of a data service.

Logical and Physical Data Models

Models can represent any combination of logical and physical data services.

Data Services Developer's Guide 5-3

Modeling Data Services

Physical Data Models

Physical data services represent data that physically resides in the enterprise (see Chapter 3,
“Obtaining Enterprise Metadata”). The source may be from a relational database, a web service, an
XML data stream or document, a flat file such as a spreadsheet, or a Java file contain custom
functions.

Logical Data Models
Logical data models are developed in DSP and are based on physical other logical data.

In other words, each physical model entity represents a single data source. Logical data model
entities represent composite views of physical and/or logical models.

Rules Governing Model Diagrams

Model diagrams follow a set of rules:

e Each entity in the model has a title which is the data service local name (the fully-qualified
name is visible as a mouse-over).

e Data services in models need not be associated with an XML type. However, if they are, the type
is always displayed. For physical data services you have the option of displaying native schema
types such as Integer(10).

e Associated read functions can be displayed, with or without signatures.

e Model diagrams do not “own” data services, but simply reference them. Multiple models can,
without limit, contain representations of the same data service or relationships between data
services.

e Models are not nested. That is, one model diagram cannot reference another.
e Multiple models can be defined and located anywhere in your project.

e Changes made to a model diagram can be reversed using the Edit — Undo command. However
it is important to keep in mind that changes to any underlying files such as schemas (XML
types) or data services made through the model will not be undone. Instead, edit the data
service directly or close and reopen your application before saving your changes.

Note: Changes to a model diagram that affect data services such as when a new relationship is
created are only made permanent in WebLogic Workshop after you do a File — Save All.

5-4 Data Services Developer’s Guide

Building a Simple Model Diagram

Building a Simple Model Diagram
You can create a data model by selecting a DSP-based project and then choosing;

File —>New —>Model Diagram

The following example describes how to create a model around physical data.

Figure 5-2 Creating a Data Model Using the File Menu

|| Application ¥ || logical.md* - {DataServicestidiagrams!,
23 Demo
(31 crwsProject
E%E New File
T o B
-
=)
Caal 28 Model Diagram it
(C) Business Lagic ik Data Service E xs:st
|:| Liquid Diata |<—j ¥Query Function Library
o [C) Web Services ORE xg0
[C) Web User Interface MG x|
O [Z) Comman A
q .
E gt
- bie] xs.'iv'lZ‘
& L]
4
E Filz game:| myHodelL mid |
4 ; ; N
Create in: {DataServicesHdiagrams), M
a orowse.. |
M| | Create a new Model Diagram,
& A
0 sustomer2
4
‘
4
[k PO_ITEMS.ds e
|<—j sdo,xsdconfig
[3) untitled.xf
(C) Modules

This example assumes that you are using the DSP demonstration program RTLApp.

The data services used in the example in this chapter are PRODUCT, CUSTOMER_ORDER, and
CUSTOMER_ORDER_LINE_ITEM. See Chapter 3, “Obtaining Enterprise Metadata” for details
related to importing metadata.

Here are the steps required to create and populate a simple model:

1. First choose a name and physical location for your model. It can be created anywhere in your BEA
WebLogic application. In the demonstration application provided with DSP, models are located in
a MODELS folder.

Data Services Developer's Guide 5-5

Modeling Data Services

2. Right-click on your project and select New — Model Diagram.

3. Pick a location for your model and name it myModel Diagram.

Figure 5-3 Selecting a Data Service

-

New File
Caal 2] Model Diagram
(1 Business Logic [4) Data service
(] Liquid Data |<—j Liquid Drata ¥Query
(O] Web Services
[C) Web User Interface
(2] Comman

File: game:| myHodelDiagraml. nd |

Create in: {DataServicesH,

Create a new Model Diagram,

4. Right-click in the work area of your new model and select Add Data Service.

5. From the dialog box select the CUSTOMER_ORDER data service in Data Services/ApparelDB.

5-6 Data Services Developer’s Guide

Figure 5-4 Adding Data Services to a Data Model

Building a Simple Model Diagram

|| Application || Untitled, md* - {DataServicesHMODELS, X
SR RTLAPR [+] =
& Bilingws
El & DataServices
TN 1E cUSTOMER_ORDER
(1 schemas [}3 =
{2 CUSTOMER _ORDER. ds =@ QUSTOMER_ORDER
{8 CUSTOMER_ORDER_LINE_ITEM.ds @ ORDER_ID f(srstrw
& LineltemUpdate. java U C_ID xsisking
22 myModel.md L_) ORDER_DT xs:date
412 PRODUCT.ds © SHIP_METHOD DSC xsistring
A1 Uniitled.ds © HANDLING_(HRG_AMT xs:decimal
2 untitledt . ds (D SUBTOTAL_AMT xs:decimal
@ Unkitled!, #sd @ TOTAL_ORDER_AMT xs:decimal
(21 BilingDB U SALE_TAX_AMT xs:decimal
£ Bilingws L_) SHIP_TO_ID xs:stving
=429 CustomerDB © SHIP TGN xsistring
(1 schemas (:) BILL_T_ID xsistring
{12 ADDRESS.ds @ ESTIMATED_SHIP_DT xs:date
{2 cuSTOMER.ds © STATUS xsistring
(2 Demo @ TRACKING_NO 7 xs:string
(1 Blectronicsvs 4| CUSTOMER _ORDER()
1 Java L]
T META-INF
[MODELS
[RTLServices
{0 ServiceCB
[63] sdo.xsdeonfig =]
8] Untitled. <1 . O
18] Untitled1 Al =] () Loz -]
Updating

Since the data services in this example are representations of relational sources, a considerable
amount of metadata is available. For example, primary keys are identified from the data; these

are shown in data service type as a key icon (@).

6. Right-click on the CUSTOMER_ORDER data service titlebar and choose the Add Related
Services command.

In this case you will see that two relationship already exists: CUSTOMER and
CUSTOMER_ORDER_LINE_ITEM (Figure 5-5).

Data Services Developer's Guide 5-7

Modeling Data Services

5-8

Figure 5-5 Adding Related Services

myModel. md* - {DataServices}ApparelDEY

*

{2 CUSTOMER_ORDER |

Open

B @ CUSTOMER_CRD)

? ORDER_ID k
@ C_ID xs:shi Remove Data Service
@ ORDER_DT Create Relationship to Another Data Service

@ SHIP_METHO
@ HANDLING (]

CUSTOMER.
CUSTOMER_CRDER_LIME_ITEM

@ SUETOTAL_A Mative XML Types

© TOTAL_ORDE Shaw Read Functions
© SALE_Tax_A Show Function Signatures

@ SHIP_TO_ID xsmsermng —
@ SHIP_TO_MM xs:string
@ BILL_TO_ID xs:string

B cermren cum nr et)

K1 | [

-] CUSTOMER_ORDER()

Kl

=
D]

Y
d w00% |~

7. Mouse over to the related data service that you want to add to your model diagram. For this
example perform this operation twice, adding both related data services to your model.

Once you have done this, you should automatically see the relationships between these three
data services (Figure 5-6). (If not, try selecting the Show Relationship command for the

Address data Service.)

Data Services Developer’s Guide

Building a Simple Model Diagram

Figure 5-6 Automatically Inferred Relationships Between Physical Data Sources

%

myModel.md* - {DataservicesHMODELS,
< ADDRESS 3 CREDIT_CARD
E () ADDRESS Bl CREDIT_CARD
T ADDR_ID xsistring B CC_ID xsistring
@ CUSTOMER_ID xs:string @ CUSTOMER_ID xs:string
@ FIRST_NAME xs:stiing 1.1 @ CC_CUSTOMER_NAME xs:string
@ LAST_NAME xs:string ADDRESS o.nl @ CC_TYPE xsistring
@ STREET_ADDRESS! xsistring ‘—‘ CREDIT_CARD @ CC_BRAND xsistring
@ STREET_ADDRESSZ ? xsistring @ CC_NUMBER xs:string
@ CITY xsistring @ LAST_DIGITS xsisting
@ STATE xs:string (@) EHP_DATE xs:date
@ ZIPCODE xs:string @ STATUS ? xsisting
Q COUNTRY xs:skring 0.n Q 15_DEFALLT xs:short
@ DAV_PHONE ? xs:string \DORE @ ALIAS ? xsistring
@ EVE_PHOME ? xsistring @) ADDR_ID xs:string
© ALAS? xsisting { CREDIT_CARD()
@ STATUS ? xsistring el =7
@ 15 _DEFAULT xs:short CUSTOMER
f ADDRESS()
SERWICE_CASE
Remove Data Service CUSTOMER_CRDER
Creats relationship ko Data Service getCustomerOrderByCustIDResponse
Show Relationship » CUSTOMER_CRDER
Hative XML Types »
v show Read Functions =
[Show Function Signatures
f CUSTOMER()

As described previously, relationship lines are graphical representations of relationship
declarations and navigation functions.

There is a role at each end of a relationship. Initially, role names simply reflect their respective
data service. Table 5-7 details the model diagram’s services, roles, and cardinality of the model
diagram, shown in Figure 5-1.

Table 5-7 Relationship Declarations in Sample Model’s Data Services

data Role Name Role Opposite Role Current Minimum Maximum
service Number data service Role Occurrences Occurrences
Address Customer 1 customer.xds Address 1 1
CreditCard 2 credit_card.xds Address 0 n
Credit_Card Address 1 address.xds Credit_card 1 1
Customer Address 2 address.xds Customer 0 n

Data Services Developer's Guide

5-9

Modeling Data Services

5-10

Displaying Relationships Automatically

In the Application pane you can multi-select data services using either Shift-click (contiguous
services) or Control-click (individual services). If you drag a set of data services into a model diagram,
any existing relationships to other data services in the model will be created automatically.

The relationships shown in the example are based on automatically created navigation functions
found in the respective physical data services (see Table 5-8).

Table 5-8 Navigation Functions in a Model’s Data Services

data service Returns Navigation Function
Address Customer, Credit_ Card getCustomer()
Customer Address getAddress()

Generated Relationship Declarations in Source View
An example of a navigation function in the underlying source is:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="navigate" roleName="ADDRESS"/>::)

This specifies a relationship to the Address data service from the Customer data service.

Data services also contain declarations describing the nature of the relationship; this information is
the source for the role names and cardinality values that appear in your model diagram.

For example, the data service Address contains the following relationship declarations:

<relationshipTarget roleName="CUSTOMER" roleNumber="1"
XDS="1ld:DataServices/CustomerDB/CUSTOMER.ds" opposite="ADDRESS"/>

For each data service, a relationship is created which identifies its role name, cardinality, opposite
data service, and a unique (to the data service) role number.

In the above example, a navigation function is automatically created that retrieves customer
information based on the customerID. The Customer data service getAddress() function is show in
Listing 5-1.

Data Services Developer’s Guide

Building a Simple Model Diagram

Listing 5-1 Customer Data Service getAddress() Navigation Function

import schema namespace t2 = "ld:DataServices/CustomerDB/ADDRESS" at
"l1d:DataServices/CustomerDB/schemas/ADDRESS.xsd";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="navigate" roleName="ADDRESS"/>::)

declare function f1:getADDRESS (Spk as element (tl:CUSTOMER)) as
element (t2:ADDRESS) *

{
for $fk in f£2:ADDRESS ()
where $pk/CUSTOMER_ID eqg $fk/CUSTOMER_ID
return Sfk

}i

In the case of the relationship between Customer and Address, the relationship is 0-to-n for the
Address role (it can make and appearance any number of times or not at all) based on CustomerID
being a foreign key in Address and a primary key in the Customer data service (and the underlying
relational data sources respectively).

Since the relationships are bilateral, Customer’s opposite is Address while Address’s opposite is
Customer. This is shown in the Properties Editor (Figure 5-9).

Figure 5-9 Property Editor for New Model Diagram

|| Property Editor *
Relationship: ADDRESS{CUSTOMER) - CUSTOMER{ADDRESS)
Role {1)
role-name % CUSTOMER
target-DS Id:DataServices/CustomerDB,/CUSTOMER.ds
min-occurs 1
Max-occurs 1
Role {2)
role-name ADDRESS
target-DS Id:DataServices/CustomerDB,;/ADDRESS.ds
min-occurs 1}
Max-0CCUrs n

Modeling Logical Data

The major difference between a logical model and a physical model is that the logical model contains
representations of at least one logical data service, in addition to physical data services. In practice

Data Services Developer's Guide 5-11

Modeling Data Services

there are no constraints between creating models that contain mixtures of logical or physical data
services, including data services which are themselves composed of logical data services.

If your data model is composed of both physical and logical data services, you should keep in mind that
a metadata update on any underlying physical data services will remove any relationships you have
created involving those data services. For details see “Updating Data Source Metadata” on page 3-61.

Building Data Service Relationships in Models

5-12

In model diagrams, a relationship is created by the gesture of drawing a line from one data service to
another (see Figure 5-1). In some cases (such as relational data services) relationships and the lines
representing the relationship can be automatically inferred. In other cases, you need to create the
relationship.

A relationship has several editable properties:

e Cardinality. Is the relationship zero-to-one (0:1 or 1:0) as in customer and promotion,
one-to-one (1:1) as in customerID and custID, one-to-many (1:%) as in customers and orders, or
many-to-many (n:n) as in customer orders and ordered items?

e Direction. Arrows indicate possible navigation paths. Is there an originating entity associated
with a subordinate entity (such as orders and order items) or is the relationship bidirectional
(such as customers and orders)?

e Roles. A name matching the name of the adjacent data services navigation function (see
below). Does the assigned relationship name capture the purpose of the navigation function it
represents?

Navigation functions are visible as properties of each data service in the binary relationship. They can
be fully inspected in Source View for each data service. Navigation functions also appear as
mouse-over text over each endpoint of the relationship line.

Direction, Role, and Relationships

In a model diagram, each side of a relationship represents the role played by the adjacent data service.
For example, in an ADDRESS: CUSTOMER relationship the end of the line near the customer is, by
default, also called CUSTOMER. If you mouse over the role name, the opposite role name appears
(Figure 5-10), as well as the name of the navigation function.

Data Services Developer’s Guide

Building Data Service Relationships in Models

Figure 5-10 Model of Two Relational Data Services, ADDRESS and CUSTOMER

Titled. md - {DataServicesHMODELSY *
Navigation functions [=]
{EADDRESS Cardinality notations
= © ADDRESS on navigation functions
¥ ADOR_ID xsstving
@ CUSTOMER_ID xs:string
@ FIRST_MAME xs:sting
(@) LAST_MNAME xs:shring
@ STREET_ADDRESS1 xs:sting 1 CUSTOMER
(@ STREET_ADDRESSZ ? xsistring =
@ CITY xsistring =@ CUSTOMER
© STATE xs:sting ? CUSTOMER_ID xs:string
® ZIPCODE xwistring 1.1 CUSTOMER © FIRSTNAME xsistring
© COUNTRY xs:string Jap—— {:) LAST_MAME xs:skring
© DAY_PHONE ? xsistring © CUSTOMER_SINCE xs:date
© EVE_PHONE ? xsistring © EMAIL_ADDRESS xsistring
© ALIAS? xsistring © TELEPHONE_NUMEER xs:string
@ STATUS 7 xssbring © 55N 7 xsisking
© I5.DEFALLT xsishort © BIRTH DAY ? xsidste
(@ DEFAULT_SHIP_METHOD 7 xs:string
2] ADDRESS() @ EMAIL_NOTIFICATION 7 xs:short
@ MEWS_LETTTER ? xs:short
Read fundions (@) OMLIME_STATEMEMT ? xs:short
] CUSTOMER()
=]
[D]

In the model diagram shown in Figure 5-10 the ADDRESS role is accessed by CUSTOMER through its
primary key, ADDR_ID. In the CUSTOMER data service the ADDRESS relationship has an
automatically created function called getADDRESS(). Its role is to return address-type information
about the holders of specific credit cards.

Data Services Developer's Guide 5-13

Modeling Data Services

Figure 5-11 getAddress(pk) Function in the CUSTOMER Data Service

WCIUSTOMER, ds* - {DataServicesHCustomerDEBY

CUSTOMER_ID string
FIRST_MAME string

LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMEER. string
SEN? skring

BIRTH_DAY 7 date

DEFALLT _SHIP_METHOD 7 skring
EMAIL_MOTIFICATION ? short
MEWS_LETTTER 7 short
OMLINE_STATEMENMT ? short

For: $fk 3

[ADDRESS *

ADDR_ID skring
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
STREET_ADDRESS! string
STREET_ADDRESSZ 7 string
CITY string

STATE skring

ZIPCODE string
COUNTRY skring
DAY_PHOME 7 string
EVE_PHOME 7 string
ALIAS 7 string

STATUS 7 skring
I5_DEFALLT short

& getALDRESS(pk)| +
{?]Parameter: $pk 2= 7 (@ Return
- CUSTOMER -E-ADDRESS

ADDR_ID skring
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
STREET_ADDRESS! string
STREET_ADDRESSZ 7 string
CITY string
STATE skring
ZIPCODE string
COUNTRY skring
DAY_PHOME 7 string
EVE_PHOME 7 string
ALIAS 7 string
STATUS 7 skring

] I5_DEFALLT short

In the function shown in Figure 5-11 the navigation function getADDRESS(pk) can take any
CUSTOMER parameter input that includes a primary key CUSTOMER_ID and returns customer

address information.

At the other end of the relationship in Figure 5-10 is the CUSTOMER role, which supplies customer

information to the ADDRESS data service also based on a unique customer ID.

In Figure 5-10 notational arrows also identify cardinality notations. The ADDRESS role has a 0-to-1
cardinality with CUSTOMER, since your data source can have a customer without address information.
The ADDRESS role has a 1-to-1 cardinality with CUSTOMER, since each ADDRESS must be identified

with a single customer.

Cardinality notations can be modified in three places:

e Through your model diagram’s Property Editor (see “Model Diagram Properties” on page 5-23).

e Through each data service Design View, using the Property Editor.

e Through Source View in each data service (not recommended).

5-14 Data Services Developer’s Guide

Building Data Service Relationships in Models

Role Names

You can change role names to better express the relationship between two data services. This is
particularly useful when there are multiple relationships between two data services.

Take, for example: Customers and Orders. One relationship between these two data services would
typically by 1: n, expressing two facts about the relationship:

e There is no limit to the number of orders a customer may have made.

e An order must be associated with one and only one customer.

By default, the role names would also be Customers and Orders. However you could change the role
names to Supplies_Customer_Info and Orders_Array, respectively, to more precisely express the role
of each side of the relationship.

A second relationship line could represent a different function, getMostRecentOrder(). This
relationship would be 1:1 and the roles could be expressed as CustInfo and getOrder.

Figure 5-12 Mousing Over a Role Displays Its Navigation Function Name

1E caseview

Bl @ CASE retaller:CASE_VIEW
) CaselD xsdiskring

0 CustomerID xsdishring
) CaseType xsd:shing

0 ProductID xsd:shring 1.1 Profile¥iew

0 Status xsdistring - [
) StatusDate xsddaske - getProfieVien()

-F‘] getCaseYiew()

If you mouse over the end of a relationship line you will either see the navigation functions defined for
that particular role (Figure 5-12) or a message indicating that no navigation functions have been
defined.

Relationships

In a model diagram, drawing a line between two data services opens the Relationship Wizard.

Data Services Developer's Guide 5-15

Modeling Data Services

Figure 5-13 First Dialog of Relationship Wizard

& Relationship Properties

Relationship CUSTOMER. - CustomerProfile Relationship CustomerProfile - = CUSTOMER
DataService CUSTOMER: ————— -DataService CustomerProfile:

Role name: [cisToMERS | || Rolename: | customerprofilea |

Min occurs: | 1 | - | Min occurs: | 1 | - |
Max occurs: | ! | M | Max occurs: | ! | M |

N
| Mext | | Finish | | Cancel |

The wizard allows you to specify:
e Direction
e Role name

e (Cardinality

Then, for each data service, you can additionally specify:
e Join conditions

e Parameters
When you are done you will have created a fully functional navigation function.

For an example and additional details see “Adding a Relationship to Your Data Service” on page 4-9.
With a few minor exceptions the Relationship wizard works the same when invoked in a model
diagram as it does when you add a relationship to an existing data service.

Working with Model Diagrams

This section describes some of the common operations you will use when working with model
diagrams.

5-16 Data Services Developer’s Guide

Working with Model Diagrams

Model Right-click Menu Options

You can edit your model using a combination of right-mouse click menu options and the model
Property Editor. Table 5-14 describes right-mouse click options based on the functional area of the
model diagram that is in scope.

Table 5-14 Data Model Options

Scope

Command

Meaning

Data Model

Add Data Service

Allows you to add one or several data services in your application to
the current model diagram. The Add command brings up a file
browser from which you can select a data service.

Alternatively, you can drag data services from the Application pane
into the model either individually or in groups (press the Ctrl key to
select non-contiguous data services from your application).

In the case of relational-based data services, dragging multiple data
services into a model diagram at the same time will create
relationships between the data services, if any exist. The
relationships, of course, are based on primary/foreign key
relationships that are available through imported metadata.

Note: If a data service is already represented in your diagram,
dragging will have no effect.

New Data Service

Allows you to create a new data service. After selecting a name and
physical location for the data service (. ds) file using a browser,
the service is created and placed on the diagram.

Select All Nodes

Select all nodes in the model diagram.

Generate Report

Creates either a Summary or Detail report describing the data
services in the model, their bilateral relationships, and a
description of each data service. See “Generating Reports on Your
Models” on page 5-20.

Find Data Service

Locates a data service within your model. See “Locating Data
Services in Large Model Diagrams” on page 5-19 for details.

Data Service

Open

Opens the currently selected data service in Design View (see
“Creating a Data Service” on page 4-7). Alternatively, double-click
on the data service representation.

Data Services Developer's Guide 5-11

Modeling Data Services

Scope Command Meaning
Add Related Data | The Add Related command is available when one or several data
Service services are selected in the model. Add Related lists data services

that contain navigation functions referencing your currently
selected data source. Click on the service you want to add and then
repeat the process to add other available related services, if any.

Remove Data

Removes the selected data service from the model diagram.

Service Alternatively, use the Delete key.
Note: This operation does not affect the underlying data service.
Create Dialog allows you to select from a list of data services in the model
Relationship to diagram. As with drawing a line between two data services, this
Another Data option brings up the Relationship wizard. (See “Using the
Service Relationship Wizard to Create Navigation Functions” on page 4-11.
Show Optionally displays/hides relationship lines associated with the
Relationship currently selected data service. Click a relationship name in the
sub-menu to select/deselect the display of its relationships.
Show/Hide Native | Optionally displays/hides native types for elements representing
XML Types physical objects associated with simple data types. Example:
VARCHAR (25).
Show/Hide Read | Display/hides read functions associated with the data service.
Functions
Show Function Displays/hides full read function signatures such as:
Signatures getAddress () as element (Address)
Relationship line | Remove Removes the relationship from the diagram without affecting the
Relationship underlying data service.
Delete Removes relationship notations in each respective data services
Relationship and removes the relationship line from the model diagram.
Show/Hide Role Displays/hides the role name assigned to each side of the
Name relationship.

Data Services Developer’s Guide

Working with Model Diagrams

Scope Command Meaning
Show/Hide Displays/hides the cardinality of each side of the relationship. Only
Cardinality relationships between relational sources typically display
cardinality.
XML type Various XML types can be edited in your model diagram. For detailed
editing information see “Editing an XML Type” on page 4-21.

Creating Relationships in Model Diagrams

You can create additional relationship notations in model diagrams in several ways:

1. Bydrawing a line between two data services in your model diagram.

2. Byright-clicking on a data service representation and selecting Add Related Data Service. Then
select a data service from the sub-menu. The related data service will appear in the diagram

along with a relationship line.

3. Byselected a data service already in the model. Right-click on your data service and select
Create Relationship to Another Data Service. Then, from the dropdown list in the resulting
dialog, choose the data service to which you want to create a relationship. This will create a
relationship line between the two data service representations.

4. By editing in Source View.

Inthe cases of options land 2, above, the Relationship wizard will appear. The wizard is fully described
in “Adding a Relationship to Your Data Service” on page 4-9. Note that in the model diagram you do
not have the option of changing the names of each side of the relationships since this has already been
defined by the line connecting the two data services.

Locating Data Services in Large Model Diagrams

You can locate data services in your model diagram using the Find Data Services option, available from
the right-click menu in your model diagram. Alternatively, use Ctrl-F when your model diagram is in

focus.

Data Services Developer's Guide 5-19

Modeling Data Services

5-20

Figure 5-15 Find Data Service Dialog Box

-

Find Data Service
Data Service ko find: | Cust* M | Find |
Options: [] Match case

[Match whale waord anly
Wildcard (* and ?) search

[] Reqular Expressions

Options include the ability to:
e Match case
e Restrict search to whole words only
e Restrict the search to regular expressions
Wildcard character (?) and string (*) search is available.

Nodes matching the search criteria are highlighted and the model diagram view changes to show the
first matching node.

Searches made during the current session can be retrieved using the drop-down combination listbox
and entry field.

Generating Reports on Your Models

You can generate summary and detailed reports on the current model using the right-click Generate
Report menu option, available from the title bar of your model. There are two types of reports:
Summary and Detailed.

e Summary Report. Provides general information related the model including:
— Location of each data service in the model

— Type: logical or physical

Allows updates: true/false

Owner (if any)

Comment (if any)

Date created

Date last modified

Data Services Developer’s Guide

Working with Model Diagrams

e Detail Report. A detailed model report contains all summary information listed above and, for
each relationship between data services, the following additional information:

Return type fully qualified name (known as the qname)

Details on each read function including return type, description, and comments

Details on the data service relationships including role name, target data service, minimum
and maximum occurrences, opposite role name, navigation functions including return type,
description, comment and user-defined properties

Dependencies — a list of all dependent data services

Creating a Model Report

When you choose the Create a Model Report right-mouse click option you are asked to select a name

for the HTML document that is generated. By default, the name of the summary report is:
<model name> md_summary.html

and the name of the detail report is:

<model name> md_detail.html
Figure 5-16 Model Report Generator Dialog Box

=
Lo

[C1 warkshop
0] APP-INF

[C) crwsProject
(C1) Danubetweh
(O] DataServices
0] META-TNF
@7 Untitled. bl

Mame: | logical_model_summary, html |

Type: |HTML Files I~]

You can save the report to any location in your application (Figure 5-16) including to a new folder.

Model Report Format

The model report is in HTML format. When you initially run your report it opens in a WebLogic
Workshop pane in HTML. A source tab is also available (Figure 5-17).

Data Services Developer's Guide 5-21

Modeling Data Services

5-22

Figure 5-17 Sample Summary Model Report

*

&) logical_dm_summary.html - D:\bealuser_projectsiapplicationsidanubeiDema’,

loiical.md

s Data Service: Customer

o General Information:
Locator: ldDataZervices/Customer. ds
Type: logical
Description:
Allows Updates: true
Cwner:
Commnent:
Date Created:

» Last Modified: Feb-22-2005 12:11:32 0500

s Data Service: PATIENTS

o General Information:
Locator: ldDataZervices PATIENTS ds
Type: physical
Description:
Allows Updates: true
Data Sowrce Type: relational
Data Sowrce Name: cglataZource
Cwner:
Commnent:
Date Created:
Last Modified: Fek-22-2005 12:11:32 -0500

[

| Design Yiew [Source View |

Note: Print your report from any browser or application that supports HTML printing.

Zoom Mode

For larger models you can use a display-only zoom option, available in the lower right-hand corner of
your model diagram (Figure 5-19). When in zoom mode an “lock” icon appears, indicating that Zoom
mode is active and the model is read only.

Editing XML Types in Model Diagrams

You can edit any data service XML type represented in your model diagram. For XML type options see
“Editing an XML Type” on page 4-21.

Data Services Developer’s Guide

Working with Model Diagrams

Model Diagram Properties

Properties both reflect and define relationships created in the model diagram. Table 5-18 describes
data model properties based on scope: data service, relationship, navigation functions, and XML type.

Table 5-18 Notahle Data Model Properties

Scope Property Settings Comments

Data Service Properties described in
“Managing Your Data
Service” on page 4-24.

Relationship data servicel(Role 1) | Read only Shows names of the related
- data service2 (Role 2 data services and their
respective roles.

Role (1) Provides information on Role
1.

role-name Editable text

target data service Read only Name of data servicel.

min-occurs Drop down, editable Minimum occurrences can

be blank, 0, 1, or 7.

max-occurs Drop down, editable Maximum occurrences can
be blank, 0, 1, or 7.

Role (2) See above. Same settings as Role (1).
Navigation Name Read only
function
Return Cardinality Read only, 1 or * Returns single type or an
array
return type See “Editing XML Types and

Return Types” on page 2-16.

Data Services Developer's Guide 5-23

Modeling Data Services

How Changes to Data Services and Data Sources Can Impact
Models

5-24

A model diagram is dependent on its components including physical data, logical data, and
relationships, all of which are subject to change outside the model itself.

Changes in a qualified name or deletion of a data service or changes in the underlying data can all
cause a data model to become an incorrect representation of data services and their relationships.

A model diagram is revalidated when:
e it is opened or regains focus
e when the application is saved

e when metadata is updated

You can also use the Property Editor to correct a qualified name reference or to delete a stale
reference. See “Model Diagram Properties” on page 5-23 for details.

How Metadata Update Can Affect Models

Updating metadata will remove any manually created relationships between affected data services. In
your model diagram this change is represented by the relationship line, appearing in red. In such
cases, you will need to recreate the relationship with the newly updated data services.

Data Services Developer’s Guide

How Changes to Data Services and Data Sources Can Impact Models

Figure 5-19 Relationships Invalidated by Metadata Update Appear in Red

Titled. md* - {DataServicesHMODELSY

*

{EADDRESS
|:| Unable to display Schema Tree - unl

K1]

] ADDRESS()

ADDRESS1

{E cusTOMER

=

1.1
CUSTOMER1

B @ CUSTOMER

¥ CUSTOMER_ID xs:stving

(@ FIRST_MNAME xs:string

@ LAST_MNAME xs:shring

@ CUSTOMER_SINCE xs:date

(@ EMAIL_ADDRESS xs:string

(@ TELEPHOME_NUMEER. xs:string

@) 55M 7 xs:string

(@ BIRTH_DAY ? xsidate

(@ DEFAULT_SHIP_METHOD ? xs:string
(@ EMAIL_NOTIFICATION ? xs:short

ADDRESS1

TTER ? xsishort

o Mavigation Functions Defined

ATEMENT ? xs:short

[+] cusTOMER()

A

=

A oo -]

Data Services Developer's Guide

5-25

Modeling Data Services

5-26 Data Services Developer’s Guide

Using Query Editor View

BEA Aqualogic Data Services Platform (DSP) services provide a framework for creation and
maintenance of functions that access and transform available data. You can use the XQuery Editor to
create such functions.

A valid query function is always associated with a return type. In Source View a return type is
described for each function. It typically matches the XML type — or schema — that defines the shape
of your data service.

Once created, your query functions can be called by client applications. Details on the various
methods of invoking DSP functions can be found in the Data Services Platform Client Application
Developer’s Guide.

You can also use the XQuery Editor to create standalone, ad hoc queries that can be run in Test View
(see Chapter 7, “Testing Query Functions and Viewing Query Plans”™).

Topics discussed in this chapter include:
e Purpose of the XQuery Editor
e Key Concepts of Query Function Building
e Managing Query Components

e Working With Data Representations and Return Type Elements

Data Services Developer's Guide 6-1

http://e-docs.bea.com/liquiddata/docs85/appdev/index.html
http://e-docs.bea.com/liquiddata/docs85/appdev/index.html

Using Query Editor View

Purpose of the XQuery Editor

Using the XQuery Editor you can create query functions using an intuitive, drag-and-drop approach.

During the creation process you can easily move back and forth between the editor to Source View.

Figure 6-1 Sample Parameterized Function in the XQuery Editor

Status string

K1

[
0]

[*]
0|

CustomerView,ds* - {DakaServicesHRTLServices!, *
@ qetCustomerView(CustID)| -
@Relum £
=4For: $Profile_type 40
[% & LD = Customertiew
Sl lnput [2] 5 CUSTOMER,_VIEW * CLISTOMER_YIEW
E“_L”;tft'd :t”"g |:| CustomerID string
utpu " N
FirstMame strin
[PROFILE * PROFILE_TYPE Lasth L o
asthame strin
{?)Parameter: §Cus.. » EetonerDEsting——— [} ORDERS ®
= Firsthame string -
CustID string LastHame string = ORDER_SUMMARY * ORDER_SUMMARY_TYPE
U Typs ? string
(<] m OrderID string
CustomerID string
OrderDate 7 date
=4For: $0rder_type % 0 TatalOrderamount decimal
= Input = ShipToMame. string
customer_id string EstimatedshipDate date
4= Output Trackinghumber ? string
[=-ORDER * ORDER_TYPE Status string
@TYPE ? string [LINE_ITEM *
©rderID string ProductDescription string
=4qFor: $Line_item a 0 CustomerID string Quantity int
CFLINE_ITEM * LINE_ITEM_[~] SLLBLILLD
@THPE 7 string ShippingMethad string
Pee o) P HandingCharge decimal
GrderlD string SubTatal decimal
e g TotalGrderAmount decimal
5 SaleTaxAmount decimal
ProductDescription sh
Quantity it EstimatedShipmentDate dat
Price decimal Status string K i

[[e®[.]

#Quety Editor Yiew [Source Ve

w | Tesk View | Query Plan iew

The XQuery Editor relies on data services functions for the metadata necessary to represent various
types of data. (For detailed information on importing metadata see Chapter 3, “Obtaining Enterprise
Metadata”.)

6-2 Data Services Developer’s Guide

Purpose of the XQuery Editor

Also see in the Data Services Platform Samples Tutorial Part II:
- Lesson 18: Building XQueries in XQuery Editor View

- Lesson 19: Building XQueries in Source View

A data service may represent a physical data source or it may represent logical data that has previously
been created. Data service and custom XQuery library functions are both represented from the Data
Service Palette (Figure 6-2), a WebLogic Workshop pane available when XQuery Editor View is active.

Figure 6-2 Data Service Functions Available to the RTL Sample Application

|| Data Services Palette X
") DataServices
1 ApparelE %
(C1 BilingDE
) CustomerDE
[} £ ADDRESS.ds
£ ADDRESS()
& getCUSTOMER()
£ CUSTOMER. ds
1 Demo
(C) Electronicsws
) RTLServices
() Address.ds
1 Applorder.ds
1 ApplorderDetailview.ds
1 ApplProduct.ds
[Case.ds
[T Caseview.ds
(C) CreditCard.ds
(C Customer ds
(C1) Customerviewds
[C) ElecCrder.ds
[C) ElecrderDetailview.ds
[C) ElecProduct.ds
[C1) ©rderDetailview.ds
[C1) ©rderSummaryYiew.ds
(C) Orderview.ds
(C1 Productview.ds
(C Profileview.ds
(C1 ServiceDE

Data Services Developer's Guide 6-3

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Using Query Editor View

6-4

Notice in Figure 6-2 that there are two different type of function representations: Functions represent
by a straight (green) arrow are read functions, while functions represented by a more stylized (blue)
arrow are navigation functions.

Essentially you create a query function by:
o Dragging in data representations from the Data Service Palette to the XQuery Editor work area.
o Identifying conditions, parameters, functions, and expressions that for your query.

e Associating elements with a return type.
As you work graphically you are automatically creating an XQuery in Source View.

Once created, you can execute your function using Test View (see Chapter 7, “Testing Query Functions
and Viewing Query Plans™). When you execute your query function, underlying data sources are
accessed and the results appear. If you have appropriate permissions, data can be updated directly
after the query is run.

Data Source Representations

Metadata representations of source are available to the XQuery Editor from the Data Service Palette.
The Data Service Palette lists available data services and their read and relationship functions. Any
such function can be dragged into the XQuery Editor work area where it will be transformed into a for
clause.

Read functions and web services often have input parameters. For example, the logical data service
Customer (customer.ds) can be represented in the XQuery Editor by its read functions:
getCustomer() and getPaymentList(). If you drag the getCustomer() item from the Data Service
Palette to the XQuery Editor, the source representation shown in Figure 6-3 appears in the work area.

Data Services Developer’s Guide

Purpose of the XQuery Editor

Figure 6-3 Data Service Function From the Data Service Palette

H For: $x3
=+ Input
xsistring ¥
4= Oubpuk
b1 CUSTOMER *
ELCUSTOMERID xsvint
ELCUSTOMERMAME xs:skring
[t1:CREDIT *
ELCREDITSCORE xsvint
ELCREDITRATING xs:string
=1 t1:0RDER *
E1:ORDERID xsvint
ELCUSTOMERID xsvint
[} t1:POITEM *
E1:ORDERID xsvint
ELKEY xavink
ELITEMNUMBER. 7 xsvint
ELQUANTITY ? xsvint

In some cases you may want to use a physical or logical data source representation several times in a
query.

See Chapter 3, “Obtaining Enterprise Metadata” and Chapter 4, “Using Data Services Design View” for
details on creating physical and logical data services.

XQuery Editor Options

When you create a new function in your data service and then click on the name of your new function
(Figure 6-1), you will automatically be placed in the XQuery Editor. Alternatively, click the XQuery
Editor View tab and select your function from the drop-down menu. Initially your XQuery will have only
a return type, assuming that your data service is associated with an XML type (see “Associating an
XML Type” on page 4-21).

Data Services Developer's Guide 6-5

Using Query Editor View

6-6

Figure 6-4 Right-click Menu Options in the XQuery Editor

CIUSTOMER, ds* - {DataServicesHCustomerDEY *

-B newFunction() | -

>

@Return

7 = CUSTOMER

CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMEER. string
SEN? skring

BIRTH_DAY 7 date

DEFALLT _SHIP_METHOD 7 skring
EMAIL_MOTIFICATION ? short
MEWS_LETTTER 7 short
OMLINE_STATEMENMT ? short
Jul LOGIM_ID 7 string

Edit in Source Yiew

Default Layout

[#4 show Condition Line! !

Remove Selected Itemis)
Collapse Al
Expand All

A

[

|]

Several right-click menu options are available when you click in any unoccupied part of the work area.

Option

Meaning

Edit in Source View

Opens Source View to the section containing the currently selected
function.

Default layout The elements in the XQuery Editor are rearranged according to a
pre-established formula including docking the return type to the
right side of the work area.

Add Parameter Adds a simple or complex parameter to your work area. Complex

parameters require you to select a schema file and global type. See
“Parameter Nodes” on page 6-19.

Show Condition Lines

Hides/displays lines that identify conditions such as where clause
predicates. By default condition lines are shown.

Remove Selected Item(s)

Deletes selected items from the work area.

Collapse All

Collapses all nodes in the work area including the return type.

Expand All

Expands all nodes in the work area.

Data Services Developer’s Guide

Creating a New Data Service and an XQuery Function

Creating a New Data Service and an XQuery Function

Creating a data service — as you will if you follow the steps in this section — is a good way to get the
feel of what it is like to work with the XQuery Editor, as well as other aspects of the data service
creating system provided with DSP.

Through Source View you can quickly see how changes in the XQuery Editor are translated into XQuery
code. Similarly any changes you make in Source View will be immediately reflected in the XQuery
Editor work area. (See Chapter 8, “Using Source View.”)

Note: There are a number of examples of query building in the XQuery Editor and Source View in
the DSP Samples Tutorial.

To access the tutorial see the Data Services Platform edocs page:

http://edocs.bea.com/aldsp/docs20/index.html

The Goal

The goal is to quickly create a logical data service from scratch, including creating an XML type for
your data service, using the XQuery Editor. In this example you create a logical data service by first
building up a return type from several physical data services and then making that the type of your
data service.

Note: The easiest way to change something you have done in the XQuery Editor is to use the
Edit — Undo command (or Ctrl-Z). Since before saving your application you will be able to
undo any number of previous steps, it is often preferable to use Undo rather than redrawing
mappings, zone settings, or conditions, since these actions all modify the underlying source.

Setting Up Your Application

Using DSP sample data, the following steps illustrate one way to create a logical data service,
including a return type.

Create a new DSP application, called myLogical.

Importing Your Metadata
1. Right-click on the automatically-created project titled myLogicalDataServices.

2. Select Import Source Metadata. (If your BEA WebLogic Server is not already running you will
need to start it.)

3. Select Relational as the data source type.

Data Services Developer's Guide 6-7

http://e-docs.bea.com/aldsp/docs20/index.html

Using Query Editor View

6-8

4, Select all objects in cgDataSource from the drop-down list of available relational data sources.

5. Select the CUSTOMER table from the RTLCUSTOMER database.

6. Click through the remaining options in the wizard to created these a new data services.
7. Repeat steps 5 and 6 for CUSTOMER_ORDER table in the RTLAPPLOMS database.
Creating Your Data Service

1. Right-click again on the myLogicalDataServices project and choose New — Data Service.

2. Name the data service myLogicalDS, then click Create. At this point your data service has no
XML type.

3. Click on the titlebar of your new data service; select Add function. Name your new function
CustOrder. Enter the XQuery Editor by clicking on the newly assigned name.

Creating Your Return Type

1. From the Data Service Palette drag your CUSTOMER() and CUSTOMER_ORDER() functions into
the XQuery Editor work area (Figure 6-5).

Figure 6-5 XQuery Editor With Two Data Sources and an Empty Return Type

myLogical ds* - {myLogicalDatagervices},

] Custorder()| +
(@ Return el
= 1 D Bt
E4For: SCUSTOMER » © & emply
=} CUSTOMER *] smpty
- CUSTOMER_ID string
=qFor: $CUSTOMER_ORDER * © FIRST NAVE string
=l CUSTOMER _ORDER. * ; LAST_NAME string

ORDER_ID string CUSTOMER _SINCE dats
C_ID string EMAIL_ADDRESS string
ORDER_DT date TELEPHOME _MUMBER. sl
SHIP_METHOD_DSC string 55N 7 string
HANDLING_CHRG_AMT decimal BIRTH_DAY 7 date
SUBTOTAL_AMT decimal DEFAULT_SHIP_METHOI
TOTAL_ORDER_AMT decimal EMAIL_NOTIFICATION
SALE_TAR_AMT decimal MEWS_LETTTER * shart|
SHIP_TO_ID string OMNLINE_STATEMENT ?
SHIP_TO_MM string [
EILL_TO_ID string L 1 [
ESTIMATED_SHIP_DT date
STATUS string

£l bJ

i
4 | 0]

The existence of the two unmapped for clauses, §CUSTOMER and $CUSTOMER_ORDER is
accounted for by the return type’s list of two empty elements.

Data Services Developer’s Guide

Creating a New Data Service and an XQuery Function

Next you need to populate the return type. In this case CUSTOMER_ORDER should be set up as
a child of the CUSTOMER complex element so that information will be return in the following
shape:

Customerl
. .Orderl
. .Order2
é’t.lstomerZ
2. Holding down the Ctrl key map the CUSTOMER* element in the CUSTOMER for node to the

topmost empty element in the return type.

Figure 6-6 Return Type After An Induced Mapping of the Customer For Node

myLogical ds* - {myLogicalDataServicesH, *
-B CustOrder()| -
(@ Return sl
U E-List
= o [} CUSTOMER.
SqFor: §CUSTOMER... » U | |E3For: SCUSTOMER * U l&cusmmsr{_m string
= CUSTOMER _ORDER * ; (= CUSTOMER * FIRST_MAME string
ORDER_ID string CUSTOMER_ID string LAST_MAME string
C_ID skring FIRST_NAME string CUSTOMER_SINCE date
ORDER_DT date LAST_MAME string EMAIL_ADDRESS string
SHIP_METHOD_DSC s CUSTOMER_SINCE date TELEPHOME_MUMBER. string
HANDLIMG_CHR.G_AM EMAIL_ADDRESS string SSM P string
SUBTOTAL_AMT deir TELEPHOME_MUMEBER. strin EIRTH_DA&Y ? date
TOTAL_ORDER_AMT ¢ 35N 7 string DEFALLT_SHIF_METHOD ? 5
SALE_TAX_AMT decim BIRTH_DAY 7 date EMAIL_MNOTIFICATION 7 she
SHIP_TO_ID string DEFALLT_SHIP_METHOD ? MEWS_LETTTER. 7 shart
SHIP_TO_MM string EMAIL_MNOTIFICATION ¥ sl ful OMNLIME_STATEMENT 7 shart
BILL_TCQ_ID string L MEWS_LETTTER 7 short H empty
ESTIMATED_SHIP_DT OMNLIME_STATEMENT 7 shg
STATUS string =]
Ell Dl K|]
M
[« | [l

3. Inyour return type right-click on the new CUSTOMER root element and select Expand Complex
Mapping. This maps all the elements in your CUSTOMER node to corresponding elements in
your return type.

As this report also must list each customer’s orders, you will need to create a second for clause.
One way to do this is to simply add the CUSTOMER_ORDER type as a subordinate to
CUSTOMER, as shown in the next step.

Data Services Developer's Guide 6-9

Using Query Editor View

4. Holding down Shift+Ctrl keys select the root element in the §CUSTOMER_ORDER for node and
drag it over the CUSTOMER root element in your return type.

Figure 6-7 Append Mapping of the §CUSTOMER_ORDER to the Return Type

6-10

myLogical ds* - {myLogicalDataServicesH,

-B CustOrder()| -

>

C_ID skring

ORDER_DT date
SHIP_METHOD_DSC strir
HANDLING _CHRG_AMT c
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT dec
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string L
ESTIMATED _SHIP_DT da
STATUS string =

[O]

FIRST_MAME string
LAST_MAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS string
TELEPHOMNE _MUMEER. striny
SEN? skring

BIRTH_DAY 7 date
DEFALLT _SHIP_METHOD ?
EMAIL_MOTIFICATION sl
MEWS_LETTTER 7 short
OMLINE_STATEMENMT 7 shg

[]

= = = CUSTRMER *

S4For: §CUSTOMER... # U S4For: §CUSTOMER # U CMER— o

[l CUSTOMER,_CGRDER, * B I CUSTOMER * FIFL nap string
ORDER_ID string CUSTOMER_ID string EME string

i}

© Repuin N
m

Lisk

CUSTOMER_SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMEER. string
SEN? skring ¥
BIRTH_DAY ? date ?
DEFALLT_SHIP_METHCOD 7 5
EMAIL_MOTIFICATION ? shc
MEWS_LETTTER 7 short 7
OMLINE_STATEMENMT ? short
empky

[

|]

Data Services Developer’s Guide

The CUSTOMER_ORDER elements will appear as subordinate to CUSTOMER.

Creating a New Data Service and an XQuery Function

Figure 6-8 Subordinate Node Added to the Return Type

@Return
7 = CUSTOMER *
CUSTOME&D skring
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE date
EMAIL_ADDRESS skring
TELEPHOME _MUMEER. string
SEN? skring ¥
BIRTH_DAY ? date ?
DEFALLT _SHIP_METHOD 7 skring 7
EMAIL_MOTIFICATION ? short 7
MEWS_LETTTER ? short 7
OMLINE_STATEMENT ? short 7
LOGIN_ID ? string 7
m = CUSTOMER _ORDER.
ORDER_ID skring
C_ID skring
ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
] TRACKING_MC 7 string

If you try to run a query at this point it will fail for several reasons:

Your data service has no associated XML type (schema).

Your project (or application) needs to be build to create the proper SDO infrastructure.

No where clause connecting the customer ID primary keys has been created.

The master-detail structure of the report has not been created.

Similarly, if you attempt to map source elements to CUSTOMER_ORDER, you will not be
successful. This is because

These issues will be resolved through the steps that follow.

5. Inyour CUSTOMER_ORDER node select the zone icon (see Figure 6-9) and drag it over the
CUSTOMER_ORDER element in your return type. This will create an inner zone in your return
type which in source translates into an inner for clause for your query.

Data Services Developer's Guide 6-11

Using Query Editor View

Figure 6-9 Creating a Zone Supporting CUSTOMER_ORDER

myLogical ds* - {myLogicalDataServicesH, *
-B CustOrder()| -
7 . (@ Return 1=
= one 1con
S4For: §CUSTOMER # U T 5 CLUSTOMER *
[} CUSTOMER * CUSTOMER_ID skring
CUSTOMER_ID string FIRST_MAME string
FIRST_MAME string LAST_NAME string
S9For: SCUSTOMER_ORDER (0 CUSTOMER_SINCE date

EMAIL_ADDRESS string
TELEPHOME _MUMEER. string
SEN? skring ¥

BIRTH_DAY ? date ?

DEFALLT _SHIP_METHOD 7 skring
EMAIL_MOTIFICATION ? short 7
MEWS_LETTTER 7 short 7
OMLINE_STATEMENT ? short 7

[CUSTOMER_ORDER *
ORDER_ID skring
C_ID skring
ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal

TOTAL_ORDER_AMT. decimal ol = CUS&MER_ORDER
SALE_TAX_AMT.deumaI DER_ID string
SHIP_TO_ID skring C_ID string

SHIP_TO_MM - string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC ? string

ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decit
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decima
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM - string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring

] TRACKING_MC ? string

A

[« | [l

6. Create a join between your two data source representations by dragging the CUSTOMER_ID
element in the CUSTOMER node to the C_ID element in the CUSTOMER_ORDER node. A green
line connecting the two elements will appear.

Creating Your Data Service’s XML Type, Building Your Application, and Running Your Query

The default name for your new schema matches the name of your data service; the default
namespace is actually the qualified name of the root element of your return type.

Note: Since the proposed qualified namespace of your new XML Type is identical to the qualified
name of your CUSTOMER data service, a type conflict will occur if you try to complete this
operation. The solution is to modify either the namespace or the root name.

1. Click on the titlebar of your return type and select Save and Associate XML Type. In order to
complete this operation you need to provide a name and location for the underlying schema file,

6-12 Data Services Developer’s Guide

Creating a New Data Service and an XQuery Function

anamespace, and a name for the root element in your return type. As shown in Figure 6-10, in each

case a default setting is provided.

Figure 6-10 Save and Associate XML Type Dialog

Dl Save and Associate XML Type

Location | :ations'l,myLogicaI'l,myLogicaIDataServices,l’myLogicaIDS.xsd| |

Mamespace | Id:myLogicalDataServices/CUSTOMER |

Narme | cusTomeR

N

2. Change the root name from CUSTOMER to CUST_ORDER_DETAIL. Then click OK. This will also
change the root name of your return type and complete the association.

3. Build your application.

4. Execute your query through Test View. Results should show customer orders nested for each

customer. (See partial results in Figure 6-11.)

Figure 6-11 Test Results

Result

[Tem || me

<faifirrayOFCUST_ORDER_DETAIL>

|d:myLogicalDataServices/CIUSTOMER"
|d:myLogicalDataServices/CIUSTOMER"
|d:myLogicalDataServices/CIUSTOMER"
|d:myLogicalDataServices/CIUSTOMER"
|d:myLogicalDataServices/CIUSTOMER"
|d:myLogicalDataServices/CIUSTOMER"
|d:myLogicalDataServices/CIUSTOMER"
|d:myLogicalDataServices/CIUSTOMER"
|d:myLogicalDataServices/CIUSTOMER"

D

- <aiArrayOFCUST _ORDER_DETAIL xmins:a="ld:myLogicalDataServices/CUSTOMER" =
+ <ns0CUST_ORDER_DETAIL xmins:ns0="ld:myLogicalDataServices/CIUSTOMER"
+ <ns0CUST_ORDER_DETAIL xmins:ns0="
+ <ns0CUST_ORDER_DETAIL xmins:ns0="
+ <ns0CUST_ORDER_DETAIL xmins:ns0="
+ <ns0CUST_ORDER_DETAIL xmins:ns0="
+ <ns0CUST_ORDER_DETAIL xmins:ns0="
+ <ns0CUST_ORDER_DETAIL xmins:ns0="
+ <ns0CUST_ORDER_DETAIL xmins:ns0="
+ <ns0CUST_ORDER_DETAIL xmins:ns0="
+ <ns0CUST_ORDER_DETAIL xmins:ns0="

>
>
>
>
>
>
>
>
>
>

Design View | #Query Editor View | Source View

| Test Wiew [Query Flan Yiew

Although there are several ways to go about accomplishing the same task, it is also important to be
aware that there were points along the way where an effort to build or deploy your application would
not have been successful because the query or the return type was not fully formed. Thus the order in

which steps are accomplished is often important.

Data Services Developer's Guide 6-13

Using Query Editor View

Key Concepts of Query Function Building

6-14

The following terms and concepts are introduced in this section:
e Data Sources
e Source Schemas and Return Types
e XQuery Editor Components

e The Distinct By node represents a single distinct by clause.

Setting Expressions

Mapping to Return Types

Modifying a Return Type

Data Sources

DSP supports multiple data sources including:
e RDBMS (relational database management systems)
e Web services
e Java functions
e Delimited files (such as spreadsheets)

o XML files

For details on importing data source metadata from these sources into DSP-based projects see
“Obtaining Enterprise Metadata.”

Source Schemas and Return Types

The XQuery Editor uses XML schema representations as:
e XML type. An XML schema that describes the structure of a physical or logical data source.

e Return type. The return type of a function. In the XQuery Editor the return type contains
information necessary to support customized queries in terms of the ordering of information
returned from the query.

For more information see “XML Types and Return Types” on page 4-6.

Data Services Developer’s Guide

Key Concepts of Query Function Building

XQuery Editor Components

Using the XQuery Editor, query functions can be built-up graphically using a combination of graphical
gestures and functions, including:

e Standard XQuery for and let clauses

e XQuery constructs such as where and order by

e XQuery extensions such as group by and if-then-else
e Standard and user-defined XQuery functions

e Physical and logical data source references

The following topics describe XQuery clauses as rendered in the XQuery Editor. (For information on
the XQuery engine used by DSP and specific uses of XQuery in Source View see the Data Services
Platform XQuery Developer’s Guide. This document also contains references to the most up-to-state
XQuery W3C specifications.)

Return Type Node

Query functions always map to a single return type. If your data service is associated with a return
type, that type will appear in the Return node.

Figure 6-12 Sample Return Type

@qu\urn
0 L CUSTOMER, *
CUSTOMERID xsd:int
CIUSTOMERMAME xsd:string 7
[=HCREDIT
CREDITSCORE xsd:int 7
CREDITRATING xsd:string 7
) = ORDER *
ORDERID xsd:int
CUSTOMERID xsd:int ?
v = POITEM *
ORDERID xsdtink 7
KEY wsdtint
ITEMMUMEER xsdiint 7
(] QUANTITY xsd:int 7

The return type can be thought of as extending the XML type to in support of:
o If-then-else constructs using the right-mouse click Conditional operation.

e Zones (see “Setting Zones in Your Return Type” on page 6-46).

Data Services Developer's Guide 6-15

http://e-docs.bea.com/liquiddata/docs85/xquery/index.html

Using Query Editor View

6-16

When you click on a simple element in the return type, the expression on that element’s constructor
appears.

For Clause Nodes

Afor clause node represents a named XQuery for clause construct. For and let clause nodes are always
based data service functions.

Figure 6-13 Sample For Statement Node

|T_°‘ For: $i

F3:PO_ITEMS *
KEY wsdtint
ORDERID ? xsdtint
ITEMMUMEER ? xsd:int
QUANTITY 7 xsd:int

By default, whenever you add a data service to the XQuery Editor work area, it is represented in a for
node. The for node typically represents looping over a query function using either:

e avariable reference
e an expression

Parameterized Input

A for node, representing a parameterized query function, provides both Input and Output sections. As
you would expect, parameters are mapped to the Input elements while Output elements either serve
as input to other nodes or to the return type.

Data Services Developer’s Guide

Key Concepts of Query Function Building

Figure 6-14 Example of Parameterized For Node

SyqFor: $x0 =
[=|==| Input
customer_jd string %
{=I4=| Output
[ORDER * ORDER_TYPE
@TYPE ? string
OrderID string
CuskomerID string
OrderDate date
Shippingiethod string

]l a

HandlingCharge decimal
SubTotal decimal
TotalOrderamount decimal
SaleTaxamount decimal
EstimatedShipmentDate date
Status skring

ShipTa string
ShipToMame string
BillTo string
Trackinghumber 7 string
= LIME_ITEM * LIME_ITEM_TY¥PE
@TYPE ? string
LineltemIDr skring

54
[| | [+]

Several options are available when you right-click on the title of a for node.

Option Meaning

Rename Brings up a dialog which allows you to rename your node. Names
cannot contain spaces.

Delete Removes the node and any mappings in or out of the node from the

work area.

Convert to let Clause

Changes the clause from a for to a let. This operation is reversible.

Relationship Functions

Relationship functions associated with the data service are listed.
Selecting a relationship function allows your for or let node to serve
as input for the relationship. See “Adding Relationship Functions to
Existing Data Service” on page 6-23 for an illustration and code
sample.

View Source

Shows the source underlying the currently selected node.

Data Services Developer's Guide

Using Query Editor View

6-18

Converting Between For and Let Clauses

For and let clauses (see “Let Statement Nodes” on page 6-18) have many interchangeable
characteristics.

The following code shows the conversion of the DataServices/RTLServices/Case/getCaseByCustID()
function expression from a for clause:

declare function nsl:getCaseByCustID(Scust_id as xs:string) as
element (ns0:CASE) * {

for $x0 in nsl:getCase()

where $cust_id eq $x0/CustomerID
return $x0

Vi

to a let clause:

declare function nsl:getCaseByCustID(Scust_id as xs:string) as
element (ns0:CASE) * {
let $x0 := nsl:getCase()
where $cust_id eq $x0/CustomerID
return $x0

Vi

Let Statement Nodes

A let clause binds a sequence of elements (graphically contained in a node) to a variable that in turn
becomes available to the FLWR expression.

Options available for use with for clauses are also available for let clauses.

Data Services Developer’s Guide

Key Concepts of Query Function Building

Figure 6-15 Let Statement in the RTLServices/OrderSummaryView Data Service

BlLet sy0 | 2 0|
[=l==| Input e 1
customer_jflet 70 1= nsZ:getOrderSummaryView(fcustomer_id) |
[=l4=| Output

[Ordersummaryiew
= ORDER_SUMMARY_YIEW * ORDER_SUMMARY_VIEW
= ORDER_SUMMARY * ORDER_SUMMARY _TYPE
Type ¥ string
OrderID string
CuskomerID string
OrderDate ? date
TotalOrderamount decimal
ShipToMame string
EstimatedShipDate date
Trackinghumber 7 string
Status skring
=} LINE_ITEM *
ProductDescription string
Quankity ik

When examining a let clause, you can read the assign string (:=) as the “be bound to”. For example, in
the following let clause:

let $x := (1, 2, 3)
Can be read as "let the variable named & be bound to the sequence containing the items 1, 2, and 3."

See also “Converting Between For and Let Clauses” on page 6-18.

Parameter Nodes

Parameter nodes enable you to associate a parameter with a for or let clause. Parameter nodes are
created in the XQuery Editor work area (Figure 6-4). Three right-click menu options are available:
Rename, Delete, and View Source.

Data Services Developer's Guide 6-19

Using Query Editor View

Figure 6-16 XQuery Editor Add Parameter Dialog Box

&Add Parameter...

Parameter Mame |myParam| '|' |

Specify the bype of the parameter

(®) Primitive Type |xs:string | - |

("1 Complex Type

You can create parameters that range from simple data elements to elements of any complexity.

Adding a Parameter Requiring a Simple Type

You can create a simple type parameter by selecting the type from the drop-down list and clicking Ok.

Figure 6-17 Setting a Simple Parameter Types

&Add Parameter...

Parameter Narne ryParam |

Specify the bype of the parameter

(®) Primitive Type |xs:string -
) Complex: Type stinteger B
x5 positivelnteger
xs:negativelnteger |:|

x5 inonhegativelnteger
x5 nonPositivelnkeger
xsint

s iunsignedIng
xs:long % =]

The act of mapping a parameter to a for or a let node containing an Input creates a parameterized
query and also establishes a where condition. In Figure 6-18 the customer_id string parameter is
dragged over the element in the ADDRESS node which is to be associated with the parameter through
a where clause.

6-20 Data Services Developer’s Guide

Key Concepts of Query Function Building

Figure 6-18 Parameter Mapped to a For Node

Caseliew,ds* - {DataServicesHRTLServices)

-B getCaseView(argD)l -

{?lParameter: ... =
custID skring =
=49For: $x0 & U
% (=== Input
cust_jd string
[=l4=| Output

[E CASE * CASE_TYPE
CaselD skring
CuskomerID string
ProductID string
CaseType skring
CaseDescription skring
CaseDate date
AsigneelD skring
Status skring
StatusDate date

The corresponding Source View code highlights the parameter:

declare function ns5:getCaseView ($custID as xs:string) as
element (ns6:CaseView) {
<nsé6:CaseView>
{
<CASE_VIEW>
<CASES>{
for $Case in ns7:getCaseByCustID($custID)
return <CASE>
<CaseID> {fn:data($Case/CaselID)} </CaseID>
<CustomerID>{fn:data($Case/CustomerID) }</CustomerID>
<CaseType> {fn:data($Case/CaseType)} </CaseType>
<ProductID> {fn:data($Case/ProductID)} </ProductID>
<Status> {fn:data($Case/Status)} </Status>
<StatusDate> {fn:data($Case/StatusDate)} </StatusDate>
</CASE>
}
</CASES>
< /CASE_VI EW>
}
</ns6:CaseView>
Vi
When you invoke your function from an application — or execute your function in Test View — you
will supply a value for your parameter.

Data Services Developer's Guide 6-21

Using Query Editor View

Adding a Complex Parameter

Complex parameters are established by identifying a schema and a global element. Some schemas
have only one global element.

Figure 6-19 Setting a Complex Parameter Type

&Add Parameter...

Parameter Narne ryParam |

Specify the bype of the parameter
("3 Primitive Type

(@) Complex Type

Schema file | vices\schemas\Orderyiew_ArrayOFORDER, xsd | | - |

Type |[ArrayOFORDER N -
ArrayOFORDER i
(ORDER
LIME_ITEM
The resulting parameter can be associated with any for or let node. See also “Parameterized Input” on
page 6-16.

Using the Parameter Dialog to Create a WHERE Clause

You can use the parameter dialog to create a where clause condition simply by dragging the simple or
complex parameter over an element in a for or let clause. In Figure 6-20 the newly created parameter
productID is mapped to PRODUCT_ID. Since the $PRODUCT for node is selected, the where clause is
in scope.

6-22 Data Services Developer’s Guide

Key Concepts of Query Function Building

Figure 6-20 Parameterized Where Clause

ApplProduct. ds* - {DataServicesHRTLServices),

-B getAppIProducts()| -
{?lParameter: $product... = [— 7
productID string =
~P|S9For:$PRODUCT | = U||
= PRODUCT * ™ !

@Return &

] B APPAREL_PRODUCT AR
ProductID string
CategoryID skring

PRODUCT_ID string
CATEGORY_ID strin

where $productID

for $PRODUCT in nsl:PRODUCT ()

= $PRODUCT/PRODUCT_ID

PRODUCT_MAME skring
PRODUCT_DESC string
MANUFACTIURER. string
LIST_PRICE decimal
AVERAGE_SERWICE_COST 7 deci

[[

T O ST ST
ListPrice decimal
i AverageServiceCosl

1 L]

O8N [[V

‘WWhere $productID = $PRODUCT/PRODUCT_ID

o [€B]

Design Yiew | ¥Query Editor View [Source View | Test View | Query Plan Yiew

Adding Relationship Functions to Existing Data Service

There are several ways to add relationship functions to existing data services. The recommended way
is to use the right-click menu option available from for and let nodes, since this will created more

appropriately nested clauses than simply dragging a relationship function from the Data Service

Palette into the work area.

For example, if you want to create a logical data service that was a union of customer order and order
line items, you could start with a customer order and add the related line item data.

Figure 6-21 takes the RTLApp DataServices/ApparelDB/CUSTOMER_ORDER() function and shows
the process of adding the related getCUSTOMER_ORDER_LINE_ITEM() function.

Data Services Developer's Guide

6-23

Using Query Editor View

Figure 6-21 Adding a Relationship Function

Untitledl .ds* - {DataServicesHRTLServices), 4
-B newFunction()| - |
@ Return el
%] Let: $CUSTOMER_ORDER = 0| ©
Rename -E-CUSTOMER _ORDER
[CUSTOMER_ORDER * .
5 Delete CRDER_ID string
ORDER_ID skring .
C_ID string Corvert to for clause C_ID string
- (Y =N ol e date
ORDER_DT date Relationship Funck gns F1:getCUSTOMER _ORDER_LIME_ITEM .
SHIP_METHOD_DSC stri k = - D_DSC string
strin i
iy - - BIED SR | HANDLING_CHRG_AMT decimal
HANDLING_CHRG_AMT decimal)
. SUBTOTAL_AMT decimal
SUBTOTAL_AMT decimal . L
. TOTAL_ORDER_AMT decimal
TOTAL_ORDER_AMT decimal)
. SALE_TAX_AMT decimal
SALE_TAX_AMT decimal .
. SHIP_TO_ID skring
SHIP_TO_ID skring A
. SHIP_TO_MM - string
SHIP_TO_MM - string ;
. BILL_TO_ID string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
ESTIMATED_SHIP_DT date -
. STATUS string
STATUS skring _
- = Ju] TRACKING_MO 7 string
TRACKTMG MO ? shrinn
[« I[r]
| KT [+]

The function initially appears as:

declare function tns:newFunction() as element (ns30:CUSTOMER ORDER9) * {
for $CUSTOMER_ORDER in ns28:CUSTOMER_ORDER ()
return $CUSTOMER ORDER

Adding the relationship function changes it to:

declare function tns:newFunction() as element (ns30:CUSTOMER ORDERY) * {
for $CUSTOMER_ORDER in nS28:CUSTOMER_ORDER()
for $CUSTOMER_ORDER_LINE_ITEM in
ns28:getCUSTOMER ORDER LINE ITEM ($CUSTOMER_ORDER)
return $CUSTOMER_ORDER

}i

To complete this simple example you would need to add elements from the related data service to your
return type and complete your mappings, as well as any transformations.

Group By Statement Nodes

The Group By node represents a single group by clause with zero or more grouping expressions. The
top part of the Group By node defines variables available to the generated group by expression. The
bottom part defines the grouping expression itself.

Group By expressions are often used with aggregation functions such as grouping customers by total
sales. A for or let clause supports multiple group by elements.

6-24 Data Services Developer’s Guide

Key Concepts of Query Function Building

You can generate a Group By node by right-clicking on any element in a for or let node and selecting

Create Group By from the right-click menu.

Figure 6-22 Creating a Group By Expression

SqFor: $§CUSTOMER_ORDER #

= CUSTOMER_ORDER. *

ORDER_ID skring
C_ID string
ORDER DT Create Group By

TOTAL_ORDER_R =
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC 7 string

Data Services Developer's Guide

In Figure 6-22 output will be grouped by the C_ID (customer ID) element. Once a GroupBy node is
created, mappings to target objects — such as the return type — are done through the new node.

6-25

Using Query Editor View

Figure 6-23 Projecting Total Orders Grouped by Customer ID

aroupBy2. ds* - {DataServicest, e

@ getCustnmerOrderAmnunt()| - ‘

@Relum L]
7 & CUSTOMER_ORDER
ORDER_ID string

SqFor: §CUSTOMER_ORDER = U
[ECUSTOMER _ORDER *

ORDER_ID string

C_ID string

ORDER_DT date
SHIP_METHOD _DSC string
HAMDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAX_AMT decimal
SHIP_TO_ID string
SHIP_TC_MM skring
BILL_TO_ID skring
ESTIMATED_SHIP_DT date

{E GroupBy: $CUSTOMER_OR... # CID string

[=I%= Group

E-CUSTOMER_ORDER *
ORDER_ID string
iZ_ID string
ORDER_DT date
SHIP_METHOD_DSC string
HANDLIMNG_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAX_AMT decimal
SHIP_TO_ID string

ORDER_DT date
SHIP_METHOD _DSC string
HAMNDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER,_AMT decimal
SALE_TAX_AI‘:%
SHIP_TO_ID string
SHIP_TO_WM string
BILL_TO_ID string
ESTIMATED_SHIP_DT date
STATUS string

ecimal

STATUS string SHIP_TO_NM skring Jul TRACKING_MO ? skring
TRACKING_NO? string GUCRTH B i,] L
ESTIMATED_SHIP_DT date
STATUS string
TRACKING_NOQ 7 skring
= By
C_ID string
Kl [
o[| >

| Expression {fn:sum{$CUSTOMER _ORDER _groupi TOTAL_ORDER_AMT)} |

The default name of the group by node will be a unique name based on the local name of the for/let
node. Thus the CUSTOMER_ORDER for clause becomes the basis for CUSTOMER_ORDER_group0.
Group By nodes cannot be renamed from the XQuery Editor.

As seen in Figure 6-23, any node mappings are automatically transferred to the Group By node.
The resulting source is:

declare function tns:getCustomerOrderAmount () as
element (ns5:CUSTOMER ORDER) * {
for $CUSTOMER_ORDER in ns6:CUSTOMER_ORDER()
group $CUSTOMER_ORDER as $CUSTOMER_ORDER_group by $CUSTOMER_ORDER/C_ID
as $C_ID group

return

<ns5: CUSTOMER_ORDER>
<ORDER_ID></ORDER_ID>
<C_ID>{fn:data($C_ID group) }</C_ID>
<ORDER_DT></ORDER_DT>
<SHIP_METHOD DSC»></SHIP_METHOD_ DSC>
<HANDLING CHRG AMT></HANDLING CHRG AMT>
<SUBTOTAL_AMT></SUBTOTAL_AMT>

6-26 Data Services Developer’s Guide

Key Concepts of Query Function Building

<TOTAL_ORDER_AMT>{fn:sum($CUSTOMER ORDER group/TOTAL ORDER AMT) }</TOTAL
_ORDER_AMT>

<SALE_TAX AMT></SALE_TAX AMT>

<SHIP_TO ID></SHIP_TO ID>

<SHIP_TO NM></SHIP TO NM>

<BILL_TO ID></BILL TO_ ID>

<ESTIMATED SHIP DT></ESTIMATED SHIP DT>

<STATUS></STATUS>

<TRACKING NO?>< /TRACKING_NO >

</ns5: CUSTOMER_ORDER>

Vi

If you delete a Group By node any mappings from the parent node will need to be redrawn.

Creating Multiple Group By Elements

In the example you can add additional grouping expressions simply by dragging new elements over the
“By” separator, (Figure 6-24).

Figure 6-24 Adding a Second Group By Element

SqFor: §CUSTOMER_ORDER = 0
= CUSTOMER_ORDER. *

ORDER_ID skring
C_ID skring
ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM string
BILL_TO_ID string {E GroupBy: $CUSTOMER_OR... #
ESTIMATED _SHIP_DT date =
STATUS skring
TRACKING_MC 7 string

SALE_TAY_AMT decimal (2]
SHIP_TO_ID skring
SHIP_TO_MM string
BILL_TO_ID string

ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC 7 string

(=]

[Sl==+| B k
C_Iing

[|

The act of dragging the element over an existing group by expression, adds a second group by
expression, as shown in Figure 6-25.

Data Services Developer's Guide 6-27

Using Query Editor View

6-28

Figure 6-25 The New Group By Expression Element

SqFor: §CUSTOMER_ORDER = U
[CUSTOMER_ORDER *

ORDER_ID skring

C_ID skring

ORDER_DT date

SHIP_METHOD_DSC string {2 GroupBy: $CUSTOMER_OR... #

HAMDLING _CHRG_AMT decimal =4 Group

SUBTOTAL_AMT decimal 5 CUSTOMER_ORDER *

TOTAL_ORDER_AMT decimal ORDER_ID string

SALE_TAX_AMT decimal C_ID string

SHIP_TC_ID string ORDER_DT date

SHIP_TO_MM string SHIP_METHOD_DSC string

BILL_TO_ID string HANDLING_CHRG_AMT decimal

ESTIMATED _SHIP_DT date SUBTOTAL_AMT decimal

STATUS string TOTAL_ORDER_AMT decimal

TRACKING_MO 7 string SALE_TAX_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM string

BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
TRACKING_MC 7 string
==+ By
_I0 skring
==+ By

STATUS strir[%S

The effect of adding the second group by in the above example is to group total orders by their status
value.

<ORDER_ID/>
<C_ID>CUSTOMERO</C_ID>
<TOTAL_ORDER_AMT>1173.2</TOTAL_ORDER_AMT>
<STATUS>CLOSED</STATUS>
</ns0:CUSTOMER_ORDER5 >
<ns0:CUSTOMER_ORDER5
xmlns:ns0="1d:DataServices/ApparelDB/CUSTOMER ORDER5" >
<ORDER_ID/>
<C_ID>CUSTOMERO</C_ID>
<TOTAL_ORDER_AMT>436.3</TOTAL_ORDER_AMT>
<STATUS>OPEN</STATUS>
</nSO:CUSTOMER_ORDER5>
<ns0:CUSTOMER_ORDER5
xmlns:ns0="1d: DataServices/ApparelDB/CUSTOMER_ORDERS ">
<ORDER_ID/>

Using Multiple Group Nodes

You can create additional multiple Group By expressions to enable creation of logic such as:

Data Services Developer’s Guide

Key Concepts of Query Function Building

Group by A, then
Group by B

In order to do this you need to introduce an additional for or let clause to establish the parent-child
structure that will support the needed logic.

To creating a second-level group by:

L.

7.

Creating a child for clause. Right-click on the root element in your primary group by node and
select Create For Clause.

Create a new zone (see “Setting Zones in Your Return Type” on page 6-46) in your return type.
There are several ways to do this. One is to Add a Child Element.

Right-click on the new child element and select Mark as Zone.

Set the zone of your new for clause to the new child element. Do this by dragging the zone
symbol over your new child element. You will know you have succeeded when the
newChildElement displays an array symbol.

NewChildElement * empty

And, when you mouse over the new child element, it will be highlighted, indicating that it is a
zone unto itself.

Create a group by right-clicking on the grouping element in the new for clause node.

Replace the new child element by dragging the group by element over the new child element
while holding down the control key. This effectively overwrites the element with the group by
expression.

Save and associate your new return type so that it become the XML type of your data service.

You can use Test View to verify your work.

Distinct By Statement Nodes

The Distinct By node represents a single distinct by clause.

Distinct by is useful:

e When you what to return all distinct values for a particular element.

e When you want to perform functional operations on the result of a distinct by, such as the total

number of distinct elements.

Data Services Developer's Guide 6-29

Using Query Editor View

Setting Conditions

Several types of conditions can be graphically applied to for and let clauses. You can create these
conditions using a multi-function editor that appears at the bottom of XQuery Editor work area.
(Figure 6-26).

Figure 6-26 Multi-function Condition Editor

Caseliew,ds* - {DataServicesHRTLServices) *
-B getCaseView(cust_id)l -
(@ Return =]
7} : % =
L FETECTRCR SqFor: $ease 2 O T 5 CASE CASE_VIEW
cust_id string o) Tnput L CaselD string
cust_id string CustomerID string
[=14=| Cukput CaseType string
[E CASE * CASE_TYPE ProductID string
Casellr string Skatus string
CustomerID skring £} SkatusDate date

ProductID string —
CaseType skring
CaseDescription skring
Condition Editor Cosshate date
AsigneelD skring
Status skring
StatusDate date

K1} D
O []vi ¢

1+
¥
]

[Design View | #Query Editor Yiew [Source View | Test Yiew | Query Plan Yiew

To add or modify constraints for a for or let node first select the node, then click anywhere in the
multi-function editor. Everything but your selected expression will become unavailable, as indicated
by the “grayed out” appearance of unselected objects.

Condition types are:
e where

e group by

Figure 6-27 provides a closer look at the multi-function dialog which includes the ability to:
e Add any number of where or order by conditions.

e Edit a condition using the built-in line editor.

6-30 Data Services Developer’s Guide

Key Concepts of Query Function Building

o Adjust the order in which the conditions are applied.
e Select XQuery operators from a drop-down list.
e Accept or cancel editing changes to a particular condition.

e Delete a where or order by clause.

Functions from the XQuery Function Palatte can be dragged into the multifunction box and then
edited.

Figure 6-27 Detail of Multifunction Box

XQuery Operators
Add Add
Cancel Accept Where Order By
r— >

o[]J[v2l :
Move Up — -ﬁ Where $case/CustomerID eq "lack”
Move Down— _@ Where $rasefStatus eq "Open”
Close i] OrderBy $case/CaseDate %

|| Design Yiew | %Query Editor View [Source View | Test view | Query Plan View |

Using XQuery Functions

Data Services Platform contains a full set of built-in XQuery functions. Most XQuery functions in the
XQuery Function Palette are standard XQuery functions supported by the W3C. However, there are
several BEA-specific functions as well as several extensions to the language. (For details on the BEA
implementation of the 1.0 XQuery engine see XQuery Developer’s Guide. For more detailed
information on standard XQuery functions, see the W3C XQuery 1.0 and XPath 2.0 Functions and
Operators specification.)

The functions available from the XQuery Functions palette are used to create conditions around for
and let clauses. For example, if you wanted to establish a condition related to which customers a query
would return you would follow these steps:

1. Inyour DSP-based project create a new data service and new functions using any name. Click on
the function name to enter the XQuery Editor.

1. From the RTLApp application select the CustomerDB/Customer data service from the Data
Services Platform Palette; drag it into the work area.

Data Services Developer's Guide 6-31

http://e-docs.bea.com/liquiddata/docs85/xquery/index.html
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/

Using Query Editor View

6-32

AT -

Replace the empty return type with the node elements by dragging CUSTOMER over the empty
element in the return type.

Expand complex mapping (or map to each individual element).

Save and associate your new return type to your XML type.

Click on the LastName element.

Click the Where icon (see “The Where Clause” on page 6-34) to create a new where condition.
Open the XQuery Function palette (if it is not already showing).

Drag the fn:string-length() as xs:integer function from the XQuery Palette into the
Where condition.

Data Services Developer’s Guide

Figure 6-28 XQuery Palette

¥Query Function Palette ™.

Key Concepts of Query Function Building

*

(£ Liquid Data SGL Functions =]
(C) Mode Functions

(221 Mumeric Functions

(Z) QMame Functions

(Z11 Sequence Functions

=} String Functions

|| fr-beaimatchi$source as xsistring?, $regularExp as xsistring?) as x

|| fr-beaisglliked$source as xsistring?, $pattern as xsistring?) as xsib—

|| fr-beaitrim-left{$arg as xs:string) as xs:string

|| fr-beatrim-right($arg as xs:string) as xs:string

|| fricodepoints-to-string($arg as xsiinteger*) as xs:string

|| fricompare$eomparandl as xsistring?, $romparand2 as xs:string?)

|| freends[ithi$argl as xs:string?, $arg2 as xs:string?, $eollation as »

|| frematches{$input as xs:istring?, $pattern as xs:string) as xs:boolea

|| frenormalize-space() as xs:string

|| fr-beattrimi$source as xsistring?) as xs:string?

|| friconcat($argl as xdtanyAtomicType?, $arg2 as xdtianyAtomicTy)
|| fricontainsi$argl as xsistring?, $arg2 as xsistring?, $eollation as xs
|| Frelower-case($arg as xs:string?) as xs:string

|| frenormalize-space($arg as xs:string?) as xs:string

| | frenormalize-unicode($arg as xs:string?, $normalizationForm as xs:st

|| frereplace($input as xs:string?, $pattern as xs:string, $replacement

fr-bea:sql-ikei$source as xs:string?, $pattern as xsistring?, $escap

fri:compare($comparandl as xs:string?, $comparand? as xs:string?,

fricontains{$argl as xs:string?, $arg2 as xs:string?) as xs:boolean

friends-with{$argl as xs:string?, $argZ as xs:string?) as xs:boolean|

fri:escape-uri{$uri-part as xs:string?, $escape-reserved as xs:boole

Frimatches{$input as xs:string?, $pattern as xs:string, $flags as xs:

fri:normalize-unicode($arg as xs:string?) as xs:string

frireplacei$input as xsistring?, $pattern as xs:string, $replacement

Fri:starts-with{$argl as xs:string?, $argZ as xs:string?) as xs:boolea

|| Frustarts-with($argl as xs:string?, $arg2 as xsistring?, $ollation as

fristring-join{$argl as xs:string®, $arge as xsistring) as xs:string

|| frustring-lengthi$arg as xs:string?) as xs:integer

|| frstring-lengthi) as xstinteger

|| frustring-to-codepoints($arg as xs:string?) as xstinteger®

|| fresubstring{$sourceString as xs:string?, $startingloc as xs:double) B

L B Sy S SR S S AU TS RO SO 1

[«

9. Using the built-in line editor drag PO_ITEMS/ORDERID into the function so that it appears as:

Where fn:string-length ($CUSTOMER/LAST NAME)

10. Add <5 as the predicate so the string appears as:

Where fn:string-length ($i/ORDERID) <5

11. Press Return, then click the checkmark.

Data Services Developer's Guide

6-33

Using Query Editor View

Figure 6-29 Editing an XQuery Function

OB [|v ’
e ‘WWhere fristring-lengthf $CUSTOMERD/LAST _MAME)<S %
JL
w
L

Design Yiew | ¥Query Editor View [Source View | Test View | Query Plan Yiew
If you mouse over the title of your for clause, you can see that the condition has been associated
with the fragment. You can also verify this change in source view.

Figure 6-30 Mouse-over of Node Title Displays Its Conditions

= CUSTOMERS
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE da

SqFor: §CUSTAMERD 4 O || EMAIL_ADDRESS strin
TELEPHOME_NUMBER.
* -
= CUSEE:I'FSME for $CUSTOMEROD in ns4:CUSTOMER() SSM 7 string
FIRST NAD here fn:string-length{ $CUSTOMERO/LAST NAME) =S BIRTH_DAY ? date
T M

DEFAULT _SHIP_METH:
EMAIL_MOTIFICATION
MNEW'S_LETTTER 7 sho
£ OMLIME_STATEMENT ?

LAST_MAME string
CUSTOMER _SINCE date
EMAIL_ADDRESS skring
TELEPHOME _MUMEER. string
SEN? skring

BIRTH_DAY 7 date
DEFALLT_SHIP_METHCD # sk
EMAIL_MOTIFICATION ? shor
MEWS_LETTTER 7 short
OMLINE_STATEMENMT ? short

[[

When you run the function only records with LAST_NAMEs shorter than five characters will
appear.

Automatic type casting generally ensures that input parameters used in functions and mappings are
appropriate to the function in which they are used.

The Where Clause

The where clause places a condition on a for and/or let clause. A where clause can be any query
expression, including another FLWR expression. The where clause typically filters the number of
matches in a FLWR loop.

A common use of the where clause is to specify a join between two sources. For example, consider the
following query:

6-34 Data Services Developer’s Guide

Key Concepts of Query Function Building

<results>

{
for $x in (1, 2, 3), Sy in (2, 3, 4)
where $x eq $y
return
<matches>{$x}</matches>

</results>

The where clause in this query filters (or joins or constraints) the results that match two sequences
specified in the for clause. In this case, the numbers 2 and 3 match, and the query returns the
following results:

<results>
<matches>2</matches>
<matches>3</matches>
</results>

To effect this in the XQuery Editor you would select the for or let clause to which the where condition
applies. Then, in the where condition field, you enter:
Sx eq Sy

You can type in the name of an element or drag it from the a node in the work area into the Condition
Editor. The eq XQuery operator can be entered directly or selected from the conditional pop-up list.

Data Services Developer's Guide 6-35

Using Query Editor View

Figure 6-31 Conditional Operator Selection List

=: Compare Single Yalues
I=; Compare Single Values

< Compare Single Values

<=1 Compare Single Yalues =

== Compare Single Values
eq: Compare Sequences
= ne: Compare Sequences

It: Compare Sequences

le: Compare Sequences
— gt: Compare Sequences

TR

ge: Compare Sequences

and: Logical Conjunction
or: Logical Disjunction

not; Logical Negation

is: Compare Mode Identities

<< Compare Document Order

=2 Compare Document Order

{ 1 Logical Grouping

See also “Using the Parameter Dialog to Create a WHERE Clause” on page 6-22.

The Order By Clause

The order by clause indicates output order for a given set of data.

Unless otherwise specified, the order data appears will follow the XML tree. This is known as the
document order. The order by keyword indicates that the content should be sorted in ascending
order by the identified element(s).

XQuery keywords such as descending are supported. For example, an XQuery can be written that
orders the customers by last name in descending order:

for $customer in document ('customers.xml')//customer
order by last name descending
return
<customer>
{$customer/first name}
{$customer/last_name}
</customer>

In the XQuery Editor you would select the for or let clause to which the order by condition applies and
in the order by condition field enter:

6-36 Data Services Developer’s Guide

Key Concepts of Query Function Building

last name descending

You can type in the name of an element or drag it from the work area into the Condition Editor
Figure 6-27.

Creating Join Conditions

Join conditions are represented as equality relationships in where clauses. Therefore you can create
such an equality relationship by dragging and dropping the eq function onto a row in the Conditions
tab and then selecting two source elements/attributes into the same row.

Setting Expressions

The Expression editor is most commonly used to edit return type expressions. For example, if the
return type contains:

ORDERID xsd:int

The Expression Editor could be used to limit the scope of the expression to a single customer:

Expression>{fn:data($o0/ORDERID)} eqg “1001”

Prototypes of functions available from the XQuery Function Palatte can be dragged into the
Expression editor or you can use the build-in line editor to enter them yourself.

Figure 6-32 Expression Editor

Cancel Accept Operators Condition Editor

O A

Expression | {fr:datal$ifkETTr eq "10"]

Design Yiew | »Query Editor [Source View | Test Yiew | Query Flan Yiew

Operation of the Expression editor is similar to that for the multifunction box. When you select a
element other workspace artifacts are grayed out. However, you can drag elements from any part of
the work area into the Expression Editor.

XQuery operators are available as a drop down list, as shown in Figure 6-31, or you can simply type
them in.

Data Services Developer's Guide 6-37

Using Query Editor View

Managing Query Components

If you think of selected data elements as nouns (what you want to work on), the functions as verbs
(the action), then the mapping among the data elements creates a logical sentence that expresses
the query.

Results and query performance can change significantly depending on how you:
e Map (or project) source data from one or more sources to the return type.

e Specify zones and other conditions (filter source data) and expressions (element level
operations).

Although you can simply type in an XQuery and run it from Test View, the more common way to create
a query is build it up through the following operations:

e Map simple or complex elements to the return type

e Define query parameters

e Transform information using built-in or custom functions
e Filter data using where or order by conditions

o Adjust expressions as required by business requirements

Note: Some operations are not deterministic. For example if a node has elements mapped to a
return type, deleting the node before removing the mappings may create error conditions.
Instead you can use Undo and then delete the mappings or you can make the necessary
changes in Source View.

Working With Data Representations and Return Type Elements

Mapping elements involves establishing a visual relationship between data source elements and the
return type or an intermediary node requiring input parameters.

There are two types of schema elements: simple and complex. Complex elements contain elements
and/or attributes.

6-38 Data Services Developer’s Guide

Working With Data Representations and Return Type Elements

Figure 6-33 Expanded Schema Showing Complex and Simple Elements

@Return
] B ORDER_DETAIL ORDER_DETAIL_WIEW
v} [F1 ORDER_DETAIL * ORDER_DETAIL_TYPE
@TYPE ? string
OrderID string
CustomerID string %
OrderDate date
Shippingiethod string

HandlingCharge decimal
SubTotal decimal
TotalOrderamount decimal
SalesTax decimal
EstimatedShipDate date
Status skring
Trackinghumber 7 string
ShipToMame string

v} = LIME_ITEM * LIME_ITEM_TY¥PE

@TYPE ? string

LineltemIDr skring

OrderID string

ProductID string

ProductDescription string

Quankity ik

Price decimal

Status skring

To expand a complex element, click on the plus sign (+) to the left of its name. (If you double click on
the name itself, you will enter edit mode.)

Mapping to Return Types

As shown in “Creating a New Data Service and an XQuery Function” on page 6-7, the XQuery Editor
automatically generates queries based on graphical mappings into a return type.

The XQuery Editor supports two types of mappings: value mappings and complex element mappings.
Value mappings map (assign) only the value of an element or attribute from a source to the value of
its target element or attribute. Element mappings allow mapping source elements (simple or
complex) to target.

In order to map an element to a return type, that element needs to be ¢n scope. If the element you are
attempting to map is not in scope, a message will appear indicated that the mapping is invalid (see
XX). Invalid mappings occur whenever the underlying for or let statement would not be able to validly
handle the association of the data element(s) with the return type schema.

Data Services Developer's Guide 6-39

Using Query Editor View

6-40

Figure 6-34 Invalid Mapping Attempt Flagged by Alert

| RTLApp - BEA WebLogic Workshop - Customer. ds E]@
Fie Edi WView DataService Buld Debug Tooks wwindow Help
papm—— = = ‘L P -
DEHT e | B¢ |03 0P HHEs ~¢HEE OB
| | [Customer.ds* - {DataServicesHRTLServices) %
23R |£] getCustamer() |-
% SaFor: §20 % 0 @ Return &
5 —
[CUSTOMER * - = 7 short ?
[] EoFor SADDRESS » 0 ONLINE_STATEFENT ? short [+
CUSTOMER_ID string | LOGINID ? string ?
I ADDRESS * - -~
& FIRST_NAME string it 0[] ADDRESS*
= LAST_NAME string ADDR_ID string e — ADDR_ID string
o CUSTOMER_SINCE date _ID string CURTOMER_ID string
EMAIL_ADDRESS string FIRST_JAME string
= = FIRSY_HAME string
@ TELEPHONE_MUMEER. string LASTNAME string LAST_NAME string
SSN? string STHEET_ADDRESSL st STREET_ADDRESS string
BIRTH_DAY 7 date SFREET_ADDRESSZ ? STREET_ADDRESSZ ? string
DEFAULT_SHIP_METHOD ? stri CITY string
EMAIL_NOTIFICATION 7 short, STATE string /] STATE string
EWS_LETTTER 7 short ZIPCODE string ZIPCODE string
ONLINE_STATEMENT 7 short COUNTRY string
LOGIN_ID 7 string g = DAY_PHONE ? string
EVE_PHOMNE » strin
—— = & 8 s [
] | [

[em] / / :

Design View | ¥Query Editor Yiew [Source View | Tes) Yiew/ Query Plan View |

Oubput 1/ Bl
|)4
Q[TRpaing nvald, aur source element may nat be n scope.—> @ server Stapped ms [77ise

For more information on element scoping and other related issues see “XML Types and Return Types”
on page 4-6 and “Editing XML Types and Return Types” on page 2-16.

Mapping Elements and Attributes to the Type

A questionmark symbol [2] next to an element name represents an optional element, meaning that it
is not required by the query. Primary keys are never optional.

Complex Element Mappings to a Return Type

You can rapidly map complex elements from source to your return type. This known as an induced
mapping is useful where all or part of the return type should match source representations.

There are many situations when you will find it convenient to map elements into your type, including:
e When you are creating a type from scratch.

e When you want elements individually mapped but it is easier to map complex elements, expand
the mappings to include values, and then add or delete some mappings using right-click return
type management commands.

If the match is not exact, mapping a complex element to your return type will be appended.

Data Services Developer’s Guide

Working With Data Representations and Return Type Elements

There are several benefits of mapping or projecting elements:
e Manual one-to-one mapping of multiple elements is less often needed.
e The query is often easier to read.

o If the underlying structure of the complex element changes — an element is added, deleted, or
an attribute is changed — the generated query does not change.

Figure 6-35 shows the results of the mapping of a complex element to a return type.

Figure 6-35 Example of Mapping of a Complex Element

Customer, xds* - {DataServicesH,

{Il}getPaymentList()l -

Parameter: % — 7
ELICUSTOMER. anyType

Return

—™ [E2:PAYMENTS

/ CUSTID xsdiint
PAYMENT xsd:int

] COMMENT 7 xsd:istring

= M[= For: $p

L2 PAYMENTS *
CUSTID xsdink
PAYMENT xsd:int
COMMENT ? xsd:strin

[0 I

Note: You cannot map multiple elements to a single target element.

Source-to-Target Mapping Options
Three source-to-return type gesture mappings are available — value mappings, overwrite mappings,
and append mappings.

e Value mappings. Individual source node elements are individually mapped to simple elements
or attributes in the return type. You can create a value or simple mapping by dragging and
dropping elements from the source node to a corresponding target element in the return type.
All elements may not need to be mapped, depending on the information you want in the XML
document generated by your query function. However, special attention should be paid to

Data Services Developer's Guide 6-41

Using Query Editor View

non-optional elements (those without adjacent question-marks (?)), since your query will fail if
non-optional elements are not projected.

Overwrite mappings. When you hold down the Ctrl key when mapping an element, the source
element (and any children) will replace the target element (and any children). This gesture
sometimes results in an induced mapping. An induced mapping occurs when a complex
element in source is mapped to a comparable (exactly named) element in the return type. For
example, you create an induced map when you drag and drop the CREDIT_CARD* element
(root element in a source node) onto the CREDIT_CARD complex element in the return type.

The following code expresses the results of an induced mapping:

declare function tns:newFunction() as element (ns5:CREDIT CARD) * {
for $CREDIT CARD in tns:getCreditCard()

return

$SCREDIT_CARD

In many cases an induced mapping is insufficient either for further building your query function
or running it. You can always expand an induced mapping by right-clicking on the element in
the return type and selecting the only available option: Expand Complex Elements.

In the above case the source would be correspondingly modified:

declare function tns:newFunction() as element (ns5:CREDIT CARD) * {

for $CREDIT CARD in tns:getCreditCard()
return

<ns5:CREDIT CARD>

<CreditCardID>{fn:data ($CREDIT CARD/CreditCardID) }</CreditCardID>
<CustomerID>{fn:data ($CREDIT CARD/CustomerlID) }</CustomerID>
<CustomerName>{fn:data($CREDIT_CARD/CustomerName)}</CustomerName>
<CreditCardType>{fn:data (SCREDIT CARD/CreditCardType) }</CreditCardTypes>
<CreditCardBrand>{fn:data ($CREDIT CARD/CreditCardBrand) }</CreditCardBrand>

<CreditCardNumber>{fn:data ($CREDIT CARD/CreditCardNumber) }</CreditCardNumbers>

<LastDigits>{fn:data ($CREDIT CARD/LastDigits) }</LastDigits>
<ExpirationDate>{fn:data ($CREDIT CARD/ExpirationDate) }</ExpirationDates>
<Status?>{fn:data ($CREDIT CARD/Status) }</Status>

<Alias?>{fn:data ($CREDIT CARD/Alias) }</Alias>

<AddressID>{fn:data (SCREDIT CARD/AddressID) }</AddressID>

</ns5:CREDIT CARD>

Vi

6-42

Data Services Developer’s Guide

Working With Data Representations and Return Type Elements

Figure 6-36 Expanded Complex Element

Customer, xds* - {DataServicesH,

{Il}getPaymentList()l -

Parameter: $c — 7 %

ELICUSTOMER. anyType

Return

[E2:PAYMENTS
CUSTID xsdink
PAYMENT xsd:int

] COMMENT xsd:string 7

For: $p
E2:PAYMENTS *
CUSTID xsdiink
PAYMENT xsdiink f
COMMENT 7 xsd:strind

L A

[0 I

e Append mappings. You can append a source element and children (if any) to an element in a
return type using the key combination of Ctrl+Shift. Click the source element, press the key
combination of Ctrl+Shift and drag the element over an element in the return type. If the
underlying element is highlighted, you can add the source as its child.

Note: Any changes you make to a return type should be propagated to your data services XML type
using the Save and Associate XML Type right-mouse option, available from the return type
titlebar.

Removing Mappings
You can delete mappings between elements by selecting the mapping line (link) and pressing Delete.
Alternatively, use the Delete key.

Modifying a Return Type

The shape of the information returned by your query is determined by its return type. Using a
combination of mapping techniques and return type options you can:

e Add or remove elements and attributes from your return type.

e Set up repeatable sections, known as zones.

Data Services Developer's Guide 6-43

Using Query Editor View

You should only modify a return type if you intend to propagate the change to the data service’s XML
type using the Save and Associate XML Type command, described in “Creating a New Data Service and
an XQuery Function” on page 6-7.

Modifying a Return Type

You can edit your return type by right-clicking any element. Editing options for a type in the XQuery
Editor are somewhat different options described in “Editing an XML Type” on page 4-21. For example,
in a return type you can create zones automatically add for clauses to your query, allowing for a
“master-detail” arrangement of results.

Warning: While it is possible to modify a return type and run a query in an ad hoc manner,
problems will likely arise when your application calls a query with a mismatch between
the return clause and the XML type of the data service.

Table 6-37 describes notable return type editing options.

Table 6-37 Notable Return Type Options

Option Meaning

Add Child Element Creates a child element for the currently selected element.

Add Complex Child Allows you to specify a schema and type for a new complex child
Element element. By default, the type is the root element of the schema. If

the schema has several global elements, however, you will first
need to specify the element that you want to become the root.

Add Attribute Creates an attribute for the selected element.

Make Conditional Inserts an element named Conditional above the currently selected
element and clones the element (and children, if any).

Conditional elements can be used in conjunction with if-then-else
constructs. Transformational logic can then be developed through
the XQuery Editor and mapped to the appropriate branch of the
condition.

Clone Duplicates the selected element (and children, if any) to the same
level of the schema hierarchy.

Ifyou clone a simple element an unmapped, untyped element of the
same name will be created.

6-44 Data Services Developer’s Guide

Working With Data Representations and Return Type Elements

Option Meaning
Mark as Zone / Sets (or removes) a zone setting for the current element and its
Remove Zone children (if any).

If the elements are in a zone the query will return them in a
master-detail arrangement. See “Setting Zones in Your Return
Type” on page 6-46.

Delete Deletes the selected element and any child elements or attributes.

Find The Find dialog allows you to search for text strings in the return
type with options to match case, match whole words only, use
wildcards (*, ?), or regular expressions.

A special option, Expand Complex Mappings, is becomes available for use with Induced mappings. See
“Complex Element Mappings to a Return Type” on page 6-40 for details.

There are several things to keep in mind when making changes to a return type:
e Changes to a return type should be propagated the your data service’s XML type.

e Changes to a return type through DSP components exist only in memory until you run the
File — Save All command in WebLogic Workshop.

e Changes to a file using the Save All command cannot be reversed through Undo.

Adding a Complex Child Element

You can add a complex child element to a return type by selecting a schema and identifying a global
element (a type). Complex child elements incorporate data service schemas (. xsd file) into the
return type.

To add a complex global element to your return type:
1. Click on the element you want to be the parent of the complex element.
2. Right-click and select Add Complex Child Element.

3. Inthe dialog that appears navigate to the schema you want to use. If your schema only has one
global element, then it will be automatically selected. Otherwise, you will need to pick which
global element to use.

When you add a complex child element it will be place at the end of its peers in the return

type.

Data Services Developer's Guide 6-45

Using Query Editor View

Setting Zones in Your Return Type

In DSP return types zones identify how query results will be arranged. Introducing zones using the
XQuery Editor is the same as adding a subordinate for clause to your query.

For example in Figure 6-38 the CUSTOMER_ORDER elements for a particular customer will be
grouped under that customer.

Figure 6-38 Sample Return Type With Two Zones

@Return
93 CUSTOMER *
CUSTOME&D skring
FIRST_MAME string
LAST_MAME string Uuter zone
CUSTOMER _SINCE date
EMAIL_ADDRESS skring
Zones TELEPHOME _MUMEER. string
Markers SSM ¥ string ?
BIRTH_DAY ? date ?
DEFALLT _SHIP_METHOD 7 skring 7
EMAIL_MOTIFICATION ? short 7
MEWS_LETTTER 7 short 7
OMLINE_STATEMENT ? short 7
LOGIN_ID ? string 7
9 EHCUSTOMER _ORDER Inner zone
ORDER_ID skring
C_ID skring
ORDER_DT date
SHIP_METHOD_DSC string
HANDLING_CHRG_AMT decimal
SUBTOTAL_AMT decimal
TOTAL_ORDER_AMT decimal
SALE_TAY_AMT decimal
SHIP_TO_ID skring
SHIP_TO_MM string
BILL_TO_ID string
ESTIMATED _SHIP_DT date
STATUS skring
] TRACKING_MC 7 string

By default, return types have only a single zone. However, without additional zones elements simply
repeat in their natural order. In the simple example shown in Figure 6-38 this would mean that if a
customer had more than one order, both the customer information and the order information would
be repeated it your report until all matching orders had appeared.

The following slightly simplified XML illustrates a single-zone approach.

<CUSTOMERID>987655</CUSTOMERID>
<CUSTOMERNAME >Supermart</CUSTOMERNAME >
<ORDER>

6-46 Data Services Developer’s Guide

Working With Data Representations and Return Type Elements

<ORDERID>632</ORDERID>

<CUSTOMERID>987655</CUSTOMERID>
<CUSTOMERID>987655</CUSTOMERID>
<CUSTOMERNAME >Supermart</CUSTOMERNAME >
<ORDER>

<ORDERID>888</ORDERID>

<CUSTOMERID>987655</CUSTOMERID>

Notice the repetition of CUSTOMERNAME and CUSTOMERID.
The XQuery source clearly shows why this is:

for $o in £2:PO_CUSTOMERS ()
where $c/CUSTOMERID eq $o/CUSTOMERID
return
<t1:CUSTOMER>
<CUSTOMERID>{fn:data ($c/CUSTOMERID) }</CUSTOMERID>
<CUSTOMERNAME>{ fn:data ($c/CUSTOMERNAME) } </CUSTOMERNAME >
<ORDER>
<ORDERID>{fn:data ($0/ORDERID) }</ORDERID>
<CUSTOMERID>{fn:data ($0/CUSTOMERID) }</CUSTOMERID>

{

for $i in f3:PO_ITEMS()

where $o0/ORDERID eqg $i/ORDERID
return

0)
1
</ORDER>

</t1:CUSTOMER>

Ifyou were, however, to create a repeatable zone around the ORDER element, a subordinate for clause
will be created.

where $c/CUSTOMERID eq $arg0
return
<t1:CUSTOMER>
<CUSTOMERID>{fn:data ($c/CUSTOMERID) }</CUSTOMERID>
<CUSTOMERNAME>{fn:data ($c/CUSTOMERNAME) } </CUSTOMERNAME >

{

for $o in £2:PO_CUSTOMERS ()
where $c/CUSTOMERID eq $o/CUSTOMERID
return
<ORDER>
<ORDERID>{fn:data ($0/ORDERID) }</ORDERID>
<CUSTOMERID>{fn:data ($0/CUSTOMERID) }</CUSTOMERID>

{

for $i in £3:PO_ITEMS()

Data Services Developer's Guide 6-41

Using Query Editor View

6-48

where $o0/ORDERID eq $i/ORDERID
return

0
}

</ORDER>

}

</t1:CUSTOMER>
Specifically the highlighted where clause in the second code fragment mandates that all orders be
collected under a single instance of customer.

To create a zone simply right-click on an element and select Mark as Zone. Once created, the zone will
appear highlighted whenever you move your cursor into areas under its control (Figure 6-38).

Associating XQuery Editor Nodes With Zones

In XQuery for, let, and group by clauses can enclose other for, let, or group by clauses. Similarly, nodes
representing these constructs can be associated with return type zones using the create zone icon in
the titlebar of the node (see Figure 6-9 in the XQuery Editor example at the beginning of this chapter).
Simply drag the icon over an existing zone to associate the node with the zone.

To verify that the operation is successful mouse-over the zone icon after the association is complete.
If successful, the appropriate zone will be highlighted (see Figure 6-38). Alternatively, look at Source
View to verify that your operation has been successful or simply run your query under Test View.

Note: The order in which you create zones and other aspects of your XQuery in the XQuery Editor
can be significant. For example, zones should be created before creating a where clause
associating two nodes.

Removing Zones
To remove a zone, right-click on the parent element in the zone and select the Remove Zone option.

Validating and Saving Your Return Type

You can make changes in your function’s return type and, optimally, bring your data service into
conformance with the changes that you have made.

Data Services Developer’s Guide

Working With Data Representations and Return Type Elements

Figure 6-39 Return Type Management Options

Returr B

LI ELiCUST
5]

CUs1
5 CRET Dock to Right

Compare Return bype

Save and associate schema

CREDITSCORE xsd:int 7
CREDITRATING xsd:string 7
) = ORDER *
ORDERID xsd:int
CUSTOMERID xsd:int ?
v = POITEM *
ORDERID xsdtink 7
KEY wsdtint
ITEMMUMEER xsdiint 7
(] QUANTITY xsd:int 7

Several right-click menu options are available for managing the return type, including:

e Show Type Difference. A toggle that displays or hides distinctions between your return type
and the data service XML type. When activated Show Type Difference color coding is used to
categorize differences between your return type and your data service’s XML type.

Color Meaning

Black Unchanged from XML type.

Red Removed from the return type (but still present in the XML type).
Blue In the return type but not the XML type.

Notice in the following example that two new child elements have been added to the return

type.

Elements differences detected when comparing the return type with the content of the XML
type are shown in red. This includes elements you have deleted from the return type as well as
those you have added to the return type.

The addition of DESCRIPTION to the return type is shown in blue in Figure 6-40.

Data Services Developer's Guide 6-49

Using Query Editor View

Figure 6-40 Return Type With a New Element

@Return(Tvpe Difference)
CUSTOMER.
CUSTOMERID int
CUSTOMERNAME string
[E}4e= CREDIT
we= CREDITSCORE ink
ez CREDITRATIMG string
[J E ORDER *
ORDERID ink {empty;)
CUSTOMERID int {empty)
= POITEM *
ORDERID ink {empty;)
KEY int {empty)
ITEMMUMEER. ? int {empty)
QUANTITY 7 int {empty)
<= POITEM_child1
0 > DESCRIPTION empy

The arrows to the left of changed items indicate whether the change is originating locally in the
return type (—) or in the data service’s XML type (<—).

e Save and Associate Schema. Provides a means for substituting the schema of a revised return
type for the data service XML type. In order to change the data service XML type using this
command you should not change the return type name.

Figure 6-41 Save and Associate Dialog

Dl Save and Associate XML Type

Location | -ationsimyLogicalimyLogicalDataServices/myLogicalDs, xsd | | " |

Mamespace | Id:myLogicalDataServices/CUSTOMER |

Narme | cusTomeR |

N

This command can also be used to save the revised return type to a schema, schema location,
target Namespace, or root name that is different than that used by the containing data service.

When you are building a return type from data service functions it is sometimes necessary to
change either the namespace or the root name prior to using the Save and Associate Schema
command. This is because the qualified name of your return type will initially be the same as
the function used to create the return type.

Other options include:

6-50 Data Services Developer’s Guide

Working With Data Representations and Return Type Elements

— Going to Design View and use the right-click menu Associate XML Type to change the
schema associated with the data service (see “Associating an XML Type” on page 4-21). This
will change the return type for all the read functions in your data service.

— Saving your data service to a new name using the Save As command. Then associate the new
XML type. This is probably the better option if you have other data services that are
dependent on the XML type.

e Dock to Right. A toggle that attaches/detaches the return type to the right edge of the work
area.

e View Source. Shows your return type in its native XML format.

Data Services Developer's Guide 6-51

Using Query Editor View

6-52 Data Services Developer’s Guide

cHAPTERﬂ

Testing Query Functions and Viewing
Query Plans

You can use Test View to execute any data service read or relationship function for which data is
available.

When you run a query in Test View results appear in an editable window in text or structured XML
form. When updates are available for your data, you can immediately update your back-end data. Query
results can also be used as complex parameters for other queries.

In creating support for query functions, BEA Aqualogic Data Services Platform (DSP) determines Test
View options from your query function’s signature. Three types of query function signatures are
supported:

e Queries without parameters
e Queries with a simple parameter type

e Queries with a complex parameter type
Query Plan View is also described in this chapter.

The following major topics are covered in this chapter:
e Running Queries Using Test View

e Analyzing Queries Using Plan View

Running Queries Using Test View

In Test View you can select any of the read or navigation functions defined in your data service from a
drop-down list.

Data Services Developer's Guide 1-1

Testing Query Functions and Viewing Query Plans

Figure 7-1 Test View Options for a Function Accepting a Simple Parameter

Customer,ds - {DataServicesHRTLServices) *

Select Function:

|-B getCustomerByCustID{cust_id) | '—'— 1 Available query fUnCtionS

Parameters
xsstring cust_id: | | CUSTOMER1 |
2 A 0uerfunetion-pars tarla)
SUCTIT y ancuuort }JGI anicicl \O)
Mumber Element hy path)
Limit elements in array results to:
_ s I~]
5 | Timit elements in specified array results
L J
E&%ﬁentﬂansaction lidate Results Validate results
6 I|nitiate cli i 7 :
| Execute |} nitiate client transaction against schema
Result Text Kl
- <ns:ArrayOFCUSTOMER _PROFILE xmins:ns0="urr:retailer Type" = E

- =ns0iCUSTOMER _PROFILE =
<CustomerlD> CUSTOMER1 </CustomerID
<Firstame = Jack </FirstMame:> 5
<LastMame> Black <fLastMame:= T 3 ReSUHS
<CustomerSince> 2001-10-01 </CustomerSince =
<Emailaddress > Jack@hotmail.com </Emailaddress=
<TelephoneMumber > 2145134119 < TelephoneMumber =
£55N>= 295-13-4119 </55N>
<BirthDay> 1970-01-01 <[BirthDay =
«DefaulshippmentMethod > AIR </DefaulshipprentMethod: B

4 Edit results

| Design View [®Query Editor View | Source View | Test Yiew [Query Flan Yiew
If the query accepts complex parameters, the parameter entry dialog automatically adjusts, as shown
in Figure 7-2.

Also see in the Data Services Platform Samples Tutorial Part II:
- Lesson 21: Running Ad Hoc Queries

- Lesson 26: Understanding the Query Plan

1-2 Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf

Figure 7-2 Function Accepting a Complex Parameter As Input

Running Queries Using Test View

Customer,ds - {DataServicesHRTLServices)

*

Parameters

ns2CUSTOMER, _PROFILE arg:

Browse... | | Faste Result| | Insert Template |

<CUSTOMER,_PROFILE xmins="urn:retailerType" =
<CustomerID xmins="">CUSTOMER 3 </CustomerID =
<FirstMame xmins=""=string < FirstMame =
<LastMame xmins=""=string </LastMame >
<CustomerSince xmins=""»2008-09-28 </CustomerSince =
<Emailaddress xmins=""=string </Emailaddress =
<1--Optional:-- =
<TelephoneMumber xmins=""=string </ TelephoneMumber =
<1--Optional:-- =

B
]

Mumber Element hy path)

Limit elements in array results to:
[so0 ||

[start Client Transaction Yalidate Results

(e |

Result | [Results are valid,

- <ns:ArrayOFCREDIT_CARD xmins:ns0="urn:retailer Type" =
+ <ns0CREDIT_CARD =
+ <ns0CREDIT_CARD =
<ins0:ArrayOFCREDIT_CARD =

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

Using Test View

To use Test View, follow these steps:

L.

You can review instructions generated by your query in the Output window. See “Reviewing Query

Enter function parameters, if any.

Click on Execute to run the query and view the results.

Performance” on page 7-12 for details.

Data Services Developer's Guide

Select the Test View tab, then chose a function from the pulldown menu. The menu contains all
the read and navigation functions in your current data service.

If you have back-end data write permission, you can make changes in your data as well. Click on
Edit Results and make any necessary changes. Then click Submit to update your data.

1-3

Testing Query Functions and Viewing Query Plans

Running a Query With No Parameters

In the case of a query such as getAllCustomers(), no parameters are needed (Figure 7-3).

Figure 7-3 Query Without Parameters

Customer,ds - {DataServicesHRTLServices) *

Select Function:

|-B gekCustomeri) | - |

Parameters

Mumber Element hy path)

Limit elements in array results to:
[s0]| [~]

[start Client Transaction [[] Yalidate Results

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew
When you click Execute the query will run.

Results are returned in text or XML form. Click on the + next to a complex element (in this case, a
table representation) to see more detailed results.

Editing Results

When you have appropriate update permissions — as is commonly the case with “sand box” testing —
you can directly edit results. For example, you could change a customer ID.

Figure 7-4 Editing query results

Result | ||

- <CUSTOMERDocument =
- <CUSTOMER =
<CUSTOMERID> 987654 </CUSTOMERID>
<CUSTOMERMAME = Acme Widget Store #1 </CUSTOMERMAME =
+ <CREDITArray >
ORDERArTay =
<fCUSTOMER =
</CUSTOMERDocument =

| || Subrmit || Cancel |

When you are satisfied with the changes click Submit.

1-4 Data Services Developer’s Guide

Running Queries Using Test View

Running a Function With Simple Parameters

When your query requires one or multiple simple parameters, Test View display each parameter in its
own field, identified by name and type. The query function will be listed with a parameter as in:

getCust(CustNum, CustName)

Figure 7-5 Function with Two Input Parameters in Test View

COrderDetailview. ds - {DataServicesHRTLServices) *

Select Function:

|-B getapplorderDetailview{order_id, customer_id)l - |

Parameters

xsistring order_id: | ORDER_1_0 |

xsistring customer_id: | Jack] |

Mumber Element hy path)

Limit elements in array results to:
[s0]| [~]

[start Client Transaction [] Yalidate Results

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew
See “Running a Query With No Parameters” on page 7-4 for details or executing a query and editing
and submitting results.

Running a Query Requiring a Complex Parameter

Enterprise-scale queries often require a complex parameter type as input. For example, an inventory
query may require a set of parameters which are based on a web service supplying a list of orders
received. It is easier to just pass the entire object than to specify a large set of individual parameters.

When your query requires a complex parameter, the query function will be listed with a parameter as
in:

getProfileView (arg)

The arg parameter indicates that a complex parameter type is needed.

For such parameters Test View displays a box (Figure 7-2) into which you can:
e Paste the results of the most recently run query (assuming the results are relevant).

e Paste a template of the complex parameter into which you can enter necessary values.

Data Services Developer's Guide 1-5

Testing Query Functions and Viewing Query Plans

e Browse to an XML file to serve as input.

e Enter your complex parameter directly.

Using Prior Results as Input

In any given data service you can use results from a previously run query as input. This is particularly
useful when invoking navigation functions, since navigation functions always require complex
parameters.

Note: When pasting prior results it’s important to keep in mind that queries returning multiple
results (arrays) cannot be input to functions looking for a single object as a parameter. For
example, a function that gets orders for a particular customer is likely to return multiple
orders. Those results cannot be used for a function that returns information about a
particular customer.

The following steps show how results of a singleton query can be repurposed as input for a complex
parameter.

1. Assume that you have first run a simple query, selecting information on a particular order. Then
you want to get additional information on the customer who placed the order.

Results shown below contain elements called for by the function:
getElecOrderByOrdID (ORDER_ID)

located in the RTLServices/ElecOrder data service.

2. In the Test View parameter area supply a valid order ID such as ORDER_1_0.

1-6 Data Services Developer’s Guide

Running Queries Using Test View

Figure 7-6 Executing a simple parameterized query

ElecOrder.ds - {DataServicesHRTLServices) *
Select Function:
5] getElecorderByOrdID{ORDER_ID)| ~ |
Parameters
xs:string ORDER_ID: | | ORDER_1 D |
Mumber Element hy path)
Limit elements in array results to:
o] [-]
[start Client Transaction [] Yalidate Results
[
)
Result Text KL
- <ns:ArrayOFELEC _ORDER xmins:ns0="urn:retailerType" = Z
- <ns:ELEC_ORDER TYPE="ELEC" =
<OrderID= DRDER_1_0 </OrderID=
<CustomerlD> CUSTOMER1 </CustomerID
<OrderDate> 2001-10-01-07:00 </OrderDate=
<ShippingMethod> AIR </ShippingiMethod =
<HandlingCharge> 6.8 </HandlingCharge =
<SubTotal> 309.85 </SubTotal>
<TotalCrderamount = 316.65 < TotalOrderAmount =
<SaleTax>= D <fSaleTax=
<EstimatedShipDate> 2001-10-04-07:00 </EstimatedShipDate = |
<Status> CLOSED </Status:=
zShipTa> ADDR_1_1 </ShipTo>
<ShipToMame = Lucy Black </ShipToMame >
<EillTo» CC_1_1 «/BillTo= =]

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

3. Your results now contain the required customer ID. Select the getCustomer() relationship

function from the dropdown list of available functions.

4. Click on the Paste Result button. Your previous results appear as an editable complex parameter

in XML format (Figure 7-7).

Data Services Developer's Guide

1-1

Testing Query Functions and Viewing Query Plans

Figure 7-7 Using Query Results in a New Query

ElecOrder.ds - {DataServicesHRTLServices)

Select Function:

|za getCustomer{arg) |~ |

Parameters

ns1&:ELEC_ORDER Erowse... | | Faste Result | | Insert Template |

I,

<nsD:ArrayOFELEC_ORDER. xmlns:nsD="urn:retailerType"H\ﬁﬂsD:ELEC_ORDER E
TYPE="ELEC"=><0OrderID=0RDER _1_0<fOrderID> <CustomerID=CUSTOMER] <
'CustomerID = <OrderDate =2001-10-01-07:00 <fOrderDate = <ShippingMethod ;|
wIR </ShippingMethod = <HandlingCharge =6, 8 < /HandlingCharge = <SubTotal =3
09,85</SubTotal = <TotalOrderAmount =316,65 </ TokalOrderAmount = <SaleTax
=0<[SaleTax > <EstimatedShipDate =2001-10-04-07:00 < EstimatedShipDate = <
Bhatus =CLOSED </Status = <ShipTo=ADDR_1_1 </ShipTo=<ShipToMame =Lucy
Black</ShipToMame = <BillTo=CC_1_1</BillTo><TrackingMumber =ORDER _1_07
708338681 </ Trackinghumber = <ns0ELEC_LINE_ITEM=><LineltemID =0 <,|’LineIt|z|

[]

Mumber Element hy path)
[s0]| [~]

Limit elements in array results to:

[start Client Transaction [] Yalidate Results

Note: Your results have been returned as a singleton element in an array (highlighted in blue

in Figure 7-7). The array element needs to removed before you can successfully execute
your navigation function.

5. Edit your results to remove the ArrayOfELEC_ORDER element. The outermost elements of your
XML document will change from:

<ns0:ArrayOfELEC ORDER xmlns:nsO="urn:retailerType">

<ns0:ELEC_ORDER TYPE="ELEC">
<OrderID>ORDER 1 0</OrderID»>

</ns0:ELEC_ORDER>
</ns0:ArrayOf ELEC_ORDER>

to:

<ns0:ELEC_ORDER TYPE="ELEC" xmlns:nsO="urn:retailerType">
<OrderID>ORDER 1 0</OrderID>

</ns0:ELEC_ORDER>

6. After making the necessary changes click Execute. Results of your new query based on the
Customer XML type appear (Figure 7-8).

1-8 Data Services Developer’s Guide

Running Queries Using Test View

Figure 7-8 Complex Parameterized Query Results

Result Text KL ‘
- <ns:ArrayOFCUSTOMER _PROFILE xmins:ns0="urr:retailer Type" = E
- =ns0iCUSTOMER _PROFILE =
<CustomerlD> CUSTOMER1 </CustomerID
<Firstame = Jack </FirstMame:>

<LastMame> Black <fLastMame:=

<CustomerSince> 2001-10-01 </CustomerSince =

<Emailaddress > Jack@hotmail.com </Emailaddress=
<TelephoneMumber > 2145134119 <[TelephoneMumber = B

Using an Input Parameter’s Template to Guide Input

You can also automatically enter a template of the XML type of your data service. In Figure 7-9, a
customer ID (CUSTOMERS3) and order ID (ORDER_3_0), are provided through the template. Results
are also shown.

Data Services Developer's Guide 1-9

Testing Query Functions and Viewing Query Plans

Figure 7-9 Using XML Type Template to Guide Data Input

ElecOrder.ds - {DataServicesHRTLServices)

*

Select Function:

v

|za getCustomer{arg) | - |
Parameters
ns13ELEC_ORDER arg: | Erowse... | | Faste Result| | Insert Template |
<ELEC_ORDER TY¥PE="string" xmins="urr:retailerType"= E
<OrderID xmins="">=CRDER_3_0</OrderID =
<CustomerID xmins="">CUSTOMER 3 </CustomerID =
<OrderDate xmins="">2008-09-28 </OrderDate =

<ShippingMethod xmins=""=string </Shippingrethod =

<HandlingCharge xmins="">1000,00</HandlingCharge =

<SubTatal xmins="">1000,00</SubTotal=

<TotalCrderamount. xmins=""=1000,00 </ TotalCrderAmount =

<SaleTax xmins="">1000.00</SaleTax > B

Mumber Element hy path)
Limit elements in array results to:

EZN) -]

[start Client Transaction [] Yalidate Results

N
[ren o]

- <ns:ArrayOFCUSTOMER _PROFILE xmins:ns0="urr:retailer Type" = E
- =ns0iCUSTOMER _PROFILE = |:

<CustomerlD> CUSTOMER3 </CustomerID
<FirstMame > Britt </Firsthamez=
<LastMame: Pierce <fLastMame: B
| Design View [®Query Editor View | Source View | Test Yiew [Query Flan Yiew

Template parameters are ideal when you know the key parameters required by your query.

Limiting Array Results

You can filter query results through Test View to % instances of a single element. For example, the first
five customers from an array of 5,000.

An Example

Figure 7-10 shows a function where the results for RTLServices/Customer/getCustomer() are limited
to three. Without the limitation, all 10 customers are returned.

1-10 Data Services Developer’s Guide

Running Queries Using Test View

Figure 7-10 Limiting Elements in an Array Result

Customer,ds - {DataServicesHRTLServices) *

Select Function:

|-B gekCustomeri) | - |

Parameters

Mumber Element hy path)
ENE [~]
[start Client Transaction [] Yalidate Results

Result Text KL

Limit elements in array results to:

- <ns:ArrayOFCUSTOMER _PROFILE xmins:ns0="urr:retailer Type" =
+ =ns0iCUSTOMER _PROFILE =
+ =ns0iCUSTOMER _PROFILE = %
+ =ns0iCUSTOMER _PROFILE =
<{nsD:ArrayOFCUSTOMER_PROFILE >

Design View | ®Query Editor View | Source Wiew | Test View [Query Plan Yiew

Starting Client Transaction Option

The Client Transaction Option supports functions that query more than multiple (two or more)
relational sources using XA transaction drivers. By default this option is not selected, meaning that
the NotSupported EJB transaction method is used. If the option is checked, the Required transaction
mode will be used instead.

For general information on the subject see “Transactions in EJB Applications” BEA WebLogic Server
documentation.

Validating Results

Test View results are validated against the data service’s schema file when the Validate Results
checkbox (shown in Figure 7-10) is selected. When active the following conditions will be flagged as
invalid:

e An illegal type mismatch between source elements and the return type. For example, if an
element of type string is mapped to an element of type date, the query results are invalid since
a string cannot be guaranteed to cast successfully to a date.

Data Services Developer's Guide 1-11

http://e-docs.bea.com/wls/docs81/jta/trxejb.html

Testing Query Functions and Viewing Query Plans

e An element or attribute that is required in the schema is removed from the return type.

e An element or attribute is added to the return type.

Invalid results are reported in the Output window. Such results can be addressed by correcting the
return type or associating the return type with a new, corrected schema. See “Validating and Saving

Your Return Type” on page 6-48.

Notes: Whenever you attempt to edit results of a query, those results are re-validated. The criteria is
the same as that used for the Validate Results option.

Results are validated by calling the XMLBean validate() method, currently documented at
the following URL:

http://workshop.bea.com/xmlbeans/reference/com/bea/xml/XmlObject .html#validate
()

Disregarding a Running Query

An executing query can only be ended through the Data Services Platform Console or by ending your
server process. However, you can start a new query by changing your selection in Test View.
Performance may be affected.

Reviewing Query Performance

When a query function is invoked through Test View performance information appears in the
WebLogic Workshop Output window (View — Windows — Output). The most recent query results
are reported at the bottom of the Output pane.

Information includes:
e Compilation time
e Execution time

e Retrieval time and number of invocations for each data source

e Query statement

1-12 Data Services Developer’s Guide

http://workshop.bea.com/xmlbeans/reference/com/bea/xml/XmlObject.html#validate()

Analyzing Queries Using Plan View

Figure 7-11 Function Query Output Windows Results

Build { Cutput " *
{time.execute=100, time.coupile=26l, return profile_data=Datadource name: cglatafource Invocations: 1 Time: l0ms
Statement: SELECT tl."CUSTOMERID" A3 cl, tl."CUSTOMERNAME" A5 c2Z
FROM "WEELOGIC"."CUSTOMERS" tl
WHERE ((? = tl."CUSTOMERNAME™] AND (7 = tl."CUSTOMERID"))

Datafource name: ld:DacaservicesﬁgetcufgomerCreditRatingResponse Invocations: 1 Time: 50ma

Statement: getfCustomerCreditRating

Datafource nawe: cgDataSource Invocations: 1 Time: l0ws

Statement: SELECT '1' A3 c3, tZ."CUSTOMERID" AS c4, tZ."ORDERID™ A3 cf

FROM "WEBLOGIC"."PO_CUSTOMERS" tz

WHERE ((? = t2."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR (? = t2."CUSTOMERID") OR (? =
tZ2."CUSTOMERID™) OR (? = t2."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR f

? = tZ."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR (? =

tZ2."CUSTOMERID™) OR (? = t2."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR f

? = tZ."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR (? = tZ."CUSTOMERID") OR (? =

tZ."CUSTOMERID") OR (? = t2."CUSTOMERID™) OR (? = tZ."CUSTOMERID"))

DatafSource name: cgDataSource Invocations: 1 Time: Z0ms

Statement: SELECT 'l1' A3 c6, t3."ITEMNUMBER"™ A3 c7, t3."EEY" A3 c8, t3."0RDERID" A% c9, t3."(UANTITY" A3 clO
FROM "WEBLOGIC"."PO_ITEMS"™ t3

WHERE ({? = t3."0RDERID") OR (? = t3."0ORDERID"} OR (? = t3."0ORDERID") OR (? = t3."ORDERID") OR (? =
t3."0RDERID") OR (? t3."0RDERID") OR (? t3."0RDERID") OR (? = t3."0ORDERID") OR (?

t3."0RDERID") OR (? = t3."0ORDERID") OR (? = t3."ORDERID") OR (? t3."0RDERID") OR (? =
t3."0RDERID") OR (? = t3."0ORDERID") OR (? = t3."ORDERID") OR (? t3."0RDERID") OR (? =
t3."0RDERID") OR (? = t3."0ORDERID") OR (? = t3."ORDERID") OR (? t3."0RDERID")) }

Analyzing Queries Using Plan View

Two types of information are available to help you analyze the design and performance of your query.
e Performance Information appearing in the Results window
e Query Plan

Query Plan View is designed to help you understand how a query is designed.

The returned plan identifies the following query components:
e Joins

e QOuter join

Select statements

Data sources

Custom function calls

Order-bys

Remove duplicates

Source access operator

Data Services Developer's Guide 1-13

Testing Query Functions and Viewing Query Plans

Figure 7-12 Query Plan Fragment for RTLApp’s Customer Data Service getCustomerByCustID(cust_id) Function

=Function=

[etcustomergycustiDieust i) |~ |

Show Query Plan

Queg Plan ESE RS

B FLWOR
© return E—
B <PROFILE>
L~ <CustomerID:> {3162879)
<Firsthiame > {{162874} N

<Lasthame:> {$162877}
<CustomerSince > (162878}

Return type <Emailaddress> {5162873} V|eW Options
=Telephonetlumber = {$162869}

<55 {$l62870}
<BirthDay > {§162876}

<DefaulshippmentMethod: {$162875
<Emailtotification = {}162872}
<Orlinestatement = {}162871}

o e o] Temporary Traceable
HRWOR Variables

E} <ADDRESS>
<AddressID> {62881/ {t62831}}
<CustomerID> {62881,/ (162846} }
<Firsthame {62881/ {t62845}}
<Lastiame > {f62881/{t62838}}
<streetaddress_1 > {62881/ (162833)}
<streetaddress_2> {62881/ (162832} }
<City>> {62881/ {t62836}}
<state > {62881/ (162835}
<ZipCode> {62881/ {162841}}
<Country>> {62881/ {t62839}}
<DayPhone:» {f62881,/{t62843})
<EveningPhone > {62881/ {62842}
<dlias {f62881/{t62834}
<Status:s {f62881/(t62844))
<IsDefault> {f62881/ {62840}

E-F where
El fexists)
${f62881/{t62837}}
[for ¢r62881
groupBy preclustered="true" stable="true"

-2 for $f62867
. e . relational source :cgDataSource :
SOU rce |dent|f|Cat|0n SELECT £1."BIRTH_DAY" AS c1, t1,"CUSTOMER _ID" AS c2, t1."CLSTOMER_SINCE" AS c3,
T UDEFALLTSHIP_METHOD' AS cf, L1 "EMAIL_ADDRESS' A5 o5, tL/EMALL NOTIFICATION' A5 <6,
LLFIRST_MAME" AS c7, £1."LAST_NAME" AS c8, t1."ONLINE_STATEMENT" AS c9, t1."SSN" AS c10,
t1"TELEPHORE _MUMBER" A5 c11, t2."ADDR_ID" AS c12, t2."ALIAS" AS c13, t2,"CITY" AS c14,
12, "COUNTRY" A5 €15, t2."CUSTOMER_ID" AS c16, £2."DAY_PHONE" AS c17, L2."E¥E_PHONE" AS c18,
12, "FIRST_MAME" AS £19, t2,"I5_DEFALLT" A5 c20, t2."LAST_MAME" AS c21, £2."STATE" AS 22,
12,"STATUS" AS c23, t2,"STREET_ADDRESS1" AS 24, t2."STREET_ADDRESS2" AS c25, t2."ZIPCODE" AS (26
. FROM "RTLCUSTOMER" "CLISTOMER" £
JOl n —_ LEFT OUTER. JOIN "RTLCUSTOMER","ADDRESS" k2
Fr—————— ON {t1."CUSTOMER_ID" = £2,"CLISTOMER _ID")
WHERE (7 = t1."CUSTOMER_ID")
ORDER BY £1."CUISTOMER_ID" ASC

Desian View | ¥Guery Edtor View | Source View | Test View | Query Plan Yisw |

There are several ways that a query plan can be viewed:
e Tree view. This is a collapsible graphical presentation of the query plan.
e XML view. Provides a collapsible XML document view of the query plan.

o Text view. Presents the information as text.

Analyzing a Sample Query

The following query is from the Data Services Platform RTLApp:
(RTLServices/OrderDetailView/getElecOrderDetailView(order_id, customer_id)

From the function signature you know that the query returns data related to order details after it is passed
an order ID and a customer ID.

The query can be described with the following psuedocode:
1-14 Data Services Developer’s Guide

Analyzing Queries Using Plan View

Jor electronic orders matching CustomerID and OrderID
return order information and ship-to information
Jfor credit card information matching an AddressID
return credit information and bill-to address information
Jfor electronic line item information matching the line item in the order
return line item information

A compressed version of the query plan is shown in Figure 7-13.

Figure 7-13 Query Plan for getElecOrderDetailView()

Query Plan

=l =OrderDetailview =
[=ORDER_DETAIL_WIEW =
= FLWOR
return %
¥ where

[=-join impl="index-cpp" kind="left-outer"
right
left
¥ condition

The let statements represent mappings or projections in the data service. This can be useful when
trying to trace performance issues.

The join conditions are identified in the plan as a left-outer join driven by a complex parameter. By
definition, joins have left and right sides, each of which can contain additional joins. One of the best
uses of the query plan is to see how the query logic works up the various data threads to return results,
as shown in Figure 7-14.

Data Services Developer's Guide 1-15

Testing Query Functions and Viewing Query Plans

1-16

Figure 7-14 Top Down Schematic of getElecOrderDetailView() Function

| left-outer join |
index-cpp
I
left-outer join)
| Jndere e | RTLCUSTOMER : ADDRESS
I
| left-outer join | RTLCUSTOMER : ADDRESS
index-cpp
| ‘
getCustomerOrderByCustomerlD RTLBILLING :CREDITCARD
(order by emptyOrder ascending)

Working With Your Query Plan

Two options are available in the Query Plan.

e Expand All This right-click menu option expands the currently selected element and any
children. If applied to the top-most element in the plan, all elements are expanded.

e Match highlighting. When you click on a variable name any elements (open or closed)
containing a match for that variable are highlighted. This feature helps you trace variables in
the query plan.

Data Services Developer’s Guide

Analyzing Queries Using Plan View

Reviewing Query Performance

See “Reviewing Query Performance” on page 7-12.

Data Services Developer's Guide 111

Testing Query Functions and Viewing Query Plans

1-18 Data Services Developer’s Guide

Using Source View

This chapter describes BEA Aqualogic Data Services Platform (DSP) Source View. It includes the
following topics:

e What is Source View?

e Using Source View

What is Source View?
The underlying XQuery source of a data service typically:
e References a schema as the data service’s XML type
e Defines one or several read functions and, optionally, one or several relationship functions
e Declares namespaces for referenced services

o Contains various pragma directives to the XQuery engine

In addition, data services created from physical data sources contain metadata related to the physical
sources. For example, data services based on relational data describe the XML field type (such as
xs:string), the xpath, native size, native type, nullability setting and so forth.

In developing data services there are many occasions when it is more convenient or necessary to
modifying source.

Data Services Developer's Guide 8-1

Using Source View

8-2

Also see in the Data Services Platform Samples Tutorial Part II:

- Lesson 28: Configuring Alternatives for Unavailable Data Sources

There are times when it may be preferable to develop or troubleshoot data services by working directly
in source. The Source View tab allows you to directly edit data service source code, as well as schemas.
Changes to source are immediately reflected in other data service modes such as the XQuery Editor;
similarly, source is immediately updated when changes are made through the XQuery Editor View or
Design View.

XQuery Support

Data Services Platform supports the XQuery language as specified in XQuery 1.0: An XML Query
Language, W3C Working Draft of July, 23, 2004. You can use any feature of the language described
by the specification.

DSP supplements the base XQuery syntax with a set of elements and directives that appear in the
source view as pragmas. Pragmas are a standard XQuery feature that give implementors and vendors
a way to include custom elements and directives within XQuery code.

The BEA implementation of XQuery also contains some extensions to the language and additional
functions. BEA extensions to XQuery and links to W3C documentation are described in the Data
Services Platform XQuery Developer’s Guide.

Data Services Developer’s Guide

http://e-docs.bea.com/liquiddata/docs85/interm/SamplesTutorial2.pdf
http://e-docs.bea.com/liquiddata/docs85/xquery/index.html

Using Source View

Figure 8-1 Source View Showing Pragmas, Namespace Declarations, and a Function

Customer.xds* - {DataServicest, ®
(ripragma xds <x:xds targetType="t{:CUSTOMER™ Jmlns:x="um:amotdtions.ld.bea;
<userDefinedView >
«relationshipTarget roleName="payment" ><functionForDecomposition nape="f:get
< xrxdszrr)
declare namespace £l = "ld:Datafervices/CUSTOMERS: POINTEASE/WEELOGIC™:
declare namespace £z = "ld:Datalervices/PO_CUSTOMERS: POINTEBASE /WEBLOGIC™;
declare namespace £3 = "ld:Datadervices/PO_ITEMS: FOINTEASE /WEELOGIC™;
declare namespace 11 = "ld:Datafervices/Customer™;
import schema namespace tl = "http://temp.openuri.orgsschemas/Custoner.xsd™ a
import schema namespace crxsd = "http://wnr.openuri.org/™ at "ld:DataServices
declare namespace £ll = "ld:DataServices/getCustonerCreditRatingResponse: crRa
(ripragme function <F:function xmlns:f="wrn:annotations.ld.bed.con" kind="dat

[# declare function 11:getfustomer(sizrgl as x3:int) as element| NESES
import schema namespace t3 = "1d:/DataSerwvices/schemnas/PAVMENTList" at "1d:Da
declare namespace £5 = "ld:Datafervices/PAYMENTS: POINTEASE /WEEBLOGIC™:
import schema namespace t2 = "ld:Datalfervices/PAVMENTS:POINTEASE /WEELOGIC™ at
(:ipragme function <f:function kind="navigate" retwrns="payment" xmlns:f="ur
declare function ll:getPaymentlist(ic as element(tl:CU3ITOMER)) as element(t3:

fn-bea:probe (<t3: PAYMEHTLiSt> {
for §p im £5:PAYMENTS()
where &p/CUSTID = 987654
return
<PAYMEHTS -
<CUSTIDC: {fn:data(sp/CUSTID)} <fCUSTID=
<PRYMENT> {fn:data(sp/PAYMENT))} </PRYMENT:-
<COMMEHT {fn:data(sp/COMMENT) } </ COMMENT -
< fPIYMEHTS =
}
“<ft3: PRYMEHTList)
bi =
Kl | bl
[Design Yiew | xQuery Editor | Source View [Test View | Query Plan Yiew

Using Source View

You can view a file in Source View by clicking the Source View tab. To open Source View to a particular
query function, first select the function from Design View or XQuery Editor View, then click the Source
View tab.

Finding Text

You can search for specific text strings in Source View using is open you can access file search using
WebLogic Workshop’s Edit — Find command option or <Ctrl-f>. Complete search and replace
facilities are available including specifying case, whole words only, wildcard search patterns, and
limited search. You also have the option to mark all occurrences of found strings.

Found items are highlighted in yellow. This makes it easy to trace the use of variables, for example.

Data Services Developer's Guide 8-3

Using Source View

Figure 8-2 Source View Search Dialog Box
"Find Text

Text ko find: | getall | - | | Find |

Options: [] Case sensitive

[Find whale words anly

Use * and 7 for pattern matching
[] search fram the start of the fils
Wrap back to the start of the fils
Search inside collapsed regions
Mark all occurrences

Direction: () Forward () Backward

Code Editing Features

WebLogic Workshop contains a rich code editing environment.

Color Coding

XQuery documents in Source View are color-coded to highlight the various elements of the source
code. By default keywords are blue and bold, comments (including pragmas) are colored grey, and
variables are colored magenta.

Figure 8-3 Color Coding in Source View

declare namespace £l = "1d:TEippLiquidDbatadpp/CUSTOMER™ :

import schema namespace t6 = "ld:TEipplLicuidDatabdpp/CUSTOMER™ at "1d:TEippLimuidDatadpp/schenas/CUSTOMER.x=d";
(:ipragme function «<f:function xmlns:f="urn:amnotations.ld.bed.con™ XKind="read" nativeName="CUSTOMER"™ nativel:
declare function f£1:CUSTOMER() as schema-element|té:CUSTOMER)* external;

declare namespace £2="1d:TEippLimquidDatadpp/ADDRESS™;

import schema namespace t4 = "l1d:TEipplLicuidDatabdpp/ADDEESS™ at "1d:TEAppLicuidDatadpp/schenmas/ADDRESS . xsd™;
(:ipragme function <f:function xmlns:f="wrn:amnotations.ld.bed.con™ kind="navigate" roleName="ADDRESS" =::)
declare function f£l:getiDDBRESS3s(5pk as element(t6:CUSTOMER)) as element(td:ADDRESS)*
! for 5fk in £2:ADDRESS()

where spi/CUSTOMER_ID eqg §7k/CUSTOMER_ID

return $7k
b:

You can customize color coding through the Preferences dialog (Tools — Preferences).

8-4 Data Services Developer’s Guide

Code Auto Complete

Using Source View

When working with Source View you can use WebLogic Workshop auto-complete facilities to complete

Xpath expressions. To do this:
1. Position your cursor at the end of the existing path expression.

2. Press the key combination of Ctrl-Space.

3. Select the appropriate element from the pop-up list (Figure 8-4).

Figure 8-4 XPath Code Completion in Source View

CreditCard. ds - {DataServicesHRTLServices),

|

import schema namespace nsS="urn:retailerType™ at "ld:DataServices/I
declare namespace nsf="ld:DataServices/RTL3erwvices/Custoner™;
declare namespace nsl="ld:DataServices/BillingDE/CREDIT CARD™:
import schema namespace nsl="urn:retailerType™ at "ld:DataServices/I
declare namespace tns="ld:Datajervices/RTL3erwvices/CreditCard”;

are function tns:getCreditCard() as element(ns0:CREDIT_CARD)* {
for FCREDIT CARD in nsl:CREDIT CARD()

return <ns0:CREDIT CAED-

<CreditCardID={fn: data(§CREDIT CARM) }</CreditCardID>

<CustomerID>{fn:data(§CREDIT CARD/(/ADDE_ID omerID>

<CustomerHame’-{fn:data(sCREDIT CAR) /ALIAS 1< fCustomer
<CreditCardType>{fn:data|sCREDIT C4/CC_BRAND litCardType:
<CreditCardBrand-{fn:data|$CREDIT (/CC_CUSTOMER NAME feditCardBri
<CreditCardfumber>{fn: data(fCREDIT| /CC ID CreditCardt
<LastDigits>{fn:data(§CREDIT CARD/]/CC mﬂ{n\m IDigits>

<ExpirationDate>{fn:data($CRENIT C4/CC_TYPE irationDate

<Status- [fn:data($CREDIT CARD/SETE /CUSTOMER_ID

<flias?> {fn:data|$CREDIT CARD/ALIL/EXP DATE

<hddressID={fn:data(yCREDIT CARD/AL /TS DEFAULT >
<fns0: CREDIT_CARD- ALAST DIGITS
AETATUS

F declare function tns:getCreditCardByCustID(fcustoner id as xs:strinc_lz‘

Kl | [

Design View | ®Query Editor View | Source View |Test View [Query Plan Yiew

Error Identification

Syntax errors that occur in source either as a result of editing or as a result of changes made in the
XQuery Editor are flagged on Source View scroll bar (Figure 8-5). Clicking on the error mark takes the
cursor to that line of code.

The actual code in question is underlined in red. Mouse-over the text to see the complete error
message.

Data Services Developer's Guide

8-5

Using Source View

For additional information on editing the WebLogic Workshop properties configuration file see:

http://e-docs.bea.com/workshop/docs70/help/reference/configfiles/conWorkshop_propertiesConfigur
ationFile.html

Figure 8-5 Syntax Errors Are Flagged and Mouse-over Text Provides Details

ElecProduct. ds* - {DataServicesHRTLServices)

[l

ERROR: Id:DataServices/RTLServices ElecProduct.ds, line 11, column 1: {errk=PO003: Invalid -
expression; expecting EQF, found 'declare
gg&&%;g namspace nzS="http://temp.openuri.ory/Sanpledpp /Product.xsd™;

declare namespace nsd="http:/ mn. operuri.org/”;

declare namespace ns3="ld:Datalervices/ElectronicsWs/getProductlistResponse™;
import schema namespace nsZ="urn:retailerType” at "ld:DataServices/RTL3ervices/schemas
declare namespace tns="ld:Datalervices/RTLServices/ElecProduct"”;

declare function tns:getElecProducts() as element(nszZ:ELEC_PRODUCT)* |
for ggetProductlistResponse in ns3:getProductlist(<nsd:getProductlists< /nsd:getPrc

1/nsh: Products/nss: PRODUCT

return <nszZ:ELEC_PRODUCT-
<ProductID>{fn:data(sgetProductlistResponse /nas: FRODUCT ID) < /ProductID:
<CategqoryID-{fn:data(§getProductlistResponse /ma5: CATEGORY_ID) }</CategorylDs
<ProductName>{fn: data(fgetProductlistResponse /ns5: PRODUCT NAME) }</ProductNames
<ProductDescriptions{fn:data(fgetProductlistResponse/ns5: PRODUCT DESC) }</ProductDe
<ManufacturerName>{fn:data(fgetProductlistResponse /ns5: MANUFACTURER) 1< /Marfacture
<LiztPrice>{fn:data(sgetProductlistResponse/ns5: LIST PRICE) }</ListPrices
{fn-bea:rename (§getProductlistResponse /ms5: AVERAGE SERVICE_COST, <AwverageServiceCc

</nsz:ELEC_PRODUCT:
b

A

Kl | [

If you would like Source View to provide code completion and error highlighting for additional classes,
edit the Workshop.properties file to add class files or JAR files to the paths.classPath property, then
restart WebLogic Workshop.

8-6 Data Services Developer’s Guide

http://e-docs.bea.com/workshop/docs70/help/reference/configfiles/conWorkshop_propertiesConfigurationFile.html

	Introduction to Data Services
	Data Services and the Enterprise
	Data Access Integration Architecture
	Data Services Platform Applications and Projects
	Services Available to a Data Services Platform Based Project

	DSP: Roles and Responsibilities
	DSP: Typical Development Process
	Examples, Samples, and Tutorials

	Data Services Platform Projects and Components
	DSP-Based BEA WebLogic Projects
	Verifying Your DSP Version Number
	Creating a Data Services Platform-based Application
	Adding a DSP Project to an Existing BEA WebLogic Application

	Major Components of a DSP Project
	Using the WebLogic Workshop IDE
	Property Editor
	Finding Text in Files

	Survey of DSP Additions to WebLogic Workshop
	Metadata Import
	Data Models
	Data Services
	XQuery Function Library (XFL) Files

	Building and Deploying Applications, EARs, and SDO Mediator Clients
	Building and Deploying Applications
	When to Rebuild Your Application or Project

	Deploying Your Application
	Creating the SDO Mediator API

	Obtaining Enterprise Metadata
	Creating Data Source Metadata
	Data Object Selection Options
	Creating a New Data Source
	Selecting an Existing Data Source
	Creating Table- and View-Based Metadata
	Relational Data Types-to-Metadata Conversion
	Testing the Metadata Import Wizard With a Web Service URI
	Using the Import Wizard on a Java Function
	Creating XMLBean Support for Java Functions
	Looking at Source
	How Metadata for Java Functions Is Created
	Technical Details, with Additional Example Code
	Providing a Document Name, a Schema Name, or Both
	Using the Metadata Import Wizard on Delimited Files
	XML File Import Sample
	Testing the Metadata Import Wizard with an XML Data Source

	Updating Data Source Metadata
	Considerations When Updating Source Metadata
	Using the Update Source Metadata Wizard
	Archival of Source Metadata

	Using Data Services Design View
	Data Services in the Enterprise
	Physical and Logical Data Services
	Data Service Functions

	Data Service Design View Components
	XML Types and Return Types
	Where XML Types are Used
	Where Return Types are Used

	Creating a Data Service
	Adding a Function to Your Data Service
	Adding a Relationship to Your Data Service
	Understanding Navigation Functions
	Effect of Using a Navigation Function to Return Data
	Creating a Relationship Between Data Services
	Using the Relationship Wizard to Create Navigation Functions
	Example of Creating a Navigation Function
	Navigation Functions in Source View

	Working with XML Types
	Associating an XML Type
	Editing an XML Type

	Creating an XML Type

	Managing Your Data Service
	Setting Update Options
	Allowing Updates
	Setting the Override Class
	Enable/Disable Optimistic Locking
	Caching Functions

	Notable Data Service Properties

	Modeling Data Services
	Model-Driven Data Services
	Logical and Physical Data Models
	Physical Data Models
	Logical Data Models

	Rules Governing Model Diagrams

	Building a Simple Model Diagram
	Displaying Relationships Automatically
	Generated Relationship Declarations in Source View
	Modeling Logical Data

	Building Data Service Relationships in Models
	Direction, Role, and Relationships
	Role Names
	Relationships

	Working with Model Diagrams
	Model Right-click Menu Options
	Creating Relationships in Model Diagrams
	Locating Data Services in Large Model Diagrams
	Generating Reports on Your Models
	Creating a Model Report
	Model Report Format

	Zoom Mode
	Editing XML Types in Model Diagrams
	Model Diagram Properties

	How Changes to Data Services and Data Sources Can Impact Models
	How Metadata Update Can Affect Models

	Using Query Editor View
	Purpose of the XQuery Editor
	Data Source Representations
	XQuery Editor Options

	Creating a New Data Service and an XQuery Function
	Key Concepts of Query Function Building
	Data Sources
	Source Schemas and Return Types
	XQuery Editor Components
	Return Type Node
	For Clause Nodes
	Converting Between For and Let Clauses
	Let Statement Nodes
	Parameter Nodes
	Adding Relationship Functions to Existing Data Service
	Group By Statement Nodes
	Distinct By Statement Nodes

	Setting Conditions
	Using XQuery Functions
	The Where Clause
	The Order By Clause
	Creating Join Conditions

	Setting Expressions

	Managing Query Components
	Working With Data Representations and Return Type Elements
	Mapping to Return Types
	Mapping Elements and Attributes to the Type
	Complex Element Mappings to a Return Type
	Removing Mappings

	Modifying a Return Type
	Modifying a Return Type
	Adding a Complex Child Element
	Setting Zones in Your Return Type
	Validating and Saving Your Return Type

	Testing Query Functions and Viewing Query Plans
	Running Queries Using Test View
	Using Test View
	Running a Query With No Parameters
	Running a Function With Simple Parameters
	Running a Query Requiring a Complex Parameter

	Limiting Array Results
	An Example

	Starting Client Transaction Option
	Validating Results
	Disregarding a Running Query�
	Reviewing Query Performance

	Analyzing Queries Using Plan View
	Analyzing a Sample Query
	Working With Your Query Plan
	Reviewing Query Performance

	Using Source View
	What is Source View?
	XQuery Support

	Using Source View
	Finding Text
	Code Editing Features
	Color Coding
	Code Auto Complete
	Error Identification

