

Oracle® Fusion Middleware
User's Guide for Oracle Business Rules

11g Release 1 (11.1.1)

E10228-01

May 2009

Oracle Fusion Middleware User's Guide for Oracle Business Rules 11g Release 1 (11.1.1)

E10228-01

Copyright © 2005, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Van Raalte

Contributing Author: Peter Purich

Contributors: Chris Cowell-Shah, Ching Luan Chung, Kathryn Gruenefeldt, Gary Hallmark, Joe Rosinski,
Phil Varner, Neal Wyse

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documentation... xii
Conventions .. xii

1 Overview of Oracle Business Rules

1.1 What are Business Rules? .. 1-1
1.1.1 What Are Rule Conditions? ... 1-3
1.1.2 What Are Rule Actions?.. 1-3
1.1.3 What Are Decision Tables? .. 1-4
1.1.4 What Are Facts and Bucketsets?.. 1-4
1.1.5 What Are Rulesets? ... 1-4
1.1.6 What Are Decision Functions?... 1-4
1.1.7 What Are Decision Points?... 1-5
1.1.8 What Are Dictionaries?... 1-5
1.2 Oracle Business Rules Runtime and Design Time Elements.. 1-5
1.2.1 Decision Component (Business Rules) in an SOA Composite Application................ 1-5
1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application................. 1-6
1.2.3 Oracle Business Rules RL Language... 1-6
1.2.4 Oracle Business Rules SDK .. 1-6
1.2.5 Rules Designer ... 1-7
1.3 Oracle Business Rules Engine Architecture .. 1-7
1.3.1 Declarative Rules ... 1-8
1.3.2 The RETE Algorithm... 1-8
1.3.3 What Is Working Memory?.. 1-9
1.3.4 Rule Firing and Rule Sessions.. 1-9

2 Working with Data Model Elements

2.1 Introduction to Working with Data Model Elements.. 2-1
2.2 Working with a Dictionary and Dictionary Links ... 2-1
2.2.1 Introduction to Dictionaries and Dictionary Links... 2-2
2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer............................ 2-2
2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer..................... 2-5
2.2.4 How to View and Edit Dictionary Settings.. 2-5

iv

2.2.5 How to Rename a Dictionary or Rename a Dictionary Package 2-6
2.2.6 How to Link to a Dictionary .. 2-7
2.2.7 How to Update a Linked Dictionary .. 2-9
2.2.8 What You Need to Know About Dictionary Linking... 2-9
2.2.9 What You Need to Know About Dictionary Linking and Dictionary Copies......... 2-10
2.2.10 What You Need to Know About Dictionary Linking to a Deployed Dictionary.... 2-10
2.2.11 What You Need to Know About Business Rules Inputs and Outputs with BPEL . 2-10
2.3 Working with Oracle Business Rules Globals ... 2-10
2.3.1 How to Add Oracle Business Rules Globals... 2-11
2.3.2 How to Edit Oracle Business Rules Globals ... 2-12
2.3.3 What You Need to Know About the Final and Constant Options............................ 2-12
2.4 Working with Decision Functions... 2-13
2.5 Working with Oracle Business Rules Functions ... 2-13
2.5.1 Introduction to Oracle Business Rules Functions .. 2-13
2.5.2 How to Add an Oracle Business Rules Function ... 2-13

3 Working with Facts and Bucketsets

3.1 Introduction to Working with Facts and Bucketsets ... 3-1
3.2 Working with XML Facts... 3-2
3.2.1 How to Import XML Schema and Add XML Facts .. 3-3
3.2.2 How to Display and Edit XML Facts .. 3-5
3.2.3 How to Reload XML Facts with Updated Schema ... 3-6
3.2.4 What You Need to Know About XML Facts ... 3-6
3.3 Working with Java Facts .. 3-7
3.3.1 How to Import Java Classes and Define Java Facts.. 3-7
3.3.2 How to Display and Edit Java Facts ... 3-9
3.3.3 What You Need to Know About Java Facts.. 3-10
3.4 Working with RL Facts.. 3-11
3.4.1 How to Define RL Facts ... 3-11
3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties............................... 3-12
3.4.3 What You Need to Know About RL Facts .. 3-13
3.5 Working with ADF Business Components Facts .. 3-14
3.5.1 How to Import and Define ADF Business Components Facts................................... 3-15
3.5.2 What You Need to Know About ADF Business Components Fact Classpaths 3-16
3.5.3 What You Need to Know About ADF Business Components Circular References 3-16
3.5.4 What You Need to Know About ADF Business Components Facts......................... 3-16
3.6 Working with Bucketsets .. 3-17
3.6.1 How to Define a List of Values Global Bucketset .. 3-18
3.6.2 How to Define a List of Ranges Global Bucketset ... 3-20
3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types 3-22
3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types............... 3-24
3.6.5 What You Need to Know About List of Values Bucketsets 3-26
3.6.6 What You Need to Know About Range Bucketsets .. 3-27
3.6.7 What You Need to Know About Bucketset Allowed in Actions Option 3-28
3.6.8 What You Need to Know About Bucket Values .. 3-29
3.7 Associating a Bucketset with Facts and Functions.. 3-29
3.7.1 How to Associate a Bucketset with a Fact Property .. 3-29

v

3.7.2 How to Associate a Bucketset with Functions or Function Arguments 3-30

4 Working with Rulesets and Rules

4.1 Introduction to Working with Rulesets and Rules .. 4-1
4.2 Working with Rulesets... 4-2
4.2.1 How to Create a Ruleset ... 4-2
4.2.2 How to Set the Effective Date for a Ruleset ... 4-2
4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset .. 4-3
4.3 Working with Rules.. 4-6
4.3.1 How to Add Rules ... 4-7
4.3.2 How to Define a Test in a Rule .. 4-7
4.3.3 How to Define Range Tests in Rules.. 4-10
4.3.4 How to Define Set Tests in Rules ... 4-13
4.3.5 How to Define Actions in Rules ... 4-16
4.3.6 What You Need to Know About Rule Actions... 4-18
4.4 Validating Dictionaries ... 4-19
4.4.1 Understanding Data Model Validation .. 4-20
4.4.2 Understanding Rule Validation.. 4-20
4.4.3 Understanding Decision Table Validation.. 4-21
4.4.4 How to Validate a Dictionary ... 4-22
4.5 Using Advanced Settings with Rules and Decision Tables ... 4-22
4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table................. 4-23
4.5.2 How to Select the Advanced Mode Option .. 4-24
4.5.3 How to Select the Active Option .. 4-25
4.5.4 How to Select the Logical Option... 4-25
4.5.5 How to Set a Priority for a Rule.. 4-26
4.5.6 How to Specify Effective Dates... 4-27
4.6 Working with Nested Tests .. 4-27
4.6.1 How to Use Nested Tests... 4-27
4.7 Working with Advanced Mode Rules .. 4-28
4.7.1 How to Use Advanced Mode Pattern Matching Options... 4-29
4.7.2 How to Use Advanced Mode Matched Fact Naming ... 4-31
4.7.3 How to Use Advanced Mode Action Forms... 4-34
4.7.4 How to Use Advanced Mode Aggregate Conditions ... 4-35
4.7.5 What You Need to Know About Advanced Mode Rules... 4-39
4.8 Working with Tree Mode Rules... 4-40
4.8.1 Introduction to Tree Mode Rules ... 4-40
4.8.2 How to Create Simple Tree Mode Rules ... 4-45
4.8.3 How to Create Advanced Tree Mode Rules ... 4-51
4.8.4 What You Need to Know About Tree Mode Rules ... 4-52
4.9 Using Date Facts, Date Functions, and Specifying Effective Dates 4-53
4.9.1 How to Use the Current Date Fact ... 4-53
4.9.2 How to Set the Effective Date for a Rule ... 4-54
4.9.3 What You Need to Know About Effective Dates... 4-55
4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods.................... 4-56
4.10 Working with Expression Builder ... 4-57
4.10.1 Introduction to the Expression Builder ... 4-57

vi

4.10.2 How to Use the Expression Builder ... 4-58
4.11 Using Bucketsets as Constraints for Options Values in Rules .. 4-58
4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Fact Property............ 4-59
4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property............. 4-61
4.11.3 How to Use Bucketsets to Provide Options for Test Expressions 4-61

5 Working with Decision Tables

5.1 Introduction to Working with Decision Tables .. 5-1
5.1.1 What is a Decision Table? ... 5-2
5.1.2 Understanding Decision Table Values ... 5-7
5.1.3 What You Need to Know About Decision Table Loops .. 5-8
5.2 Creating Decision Tables ... 5-8
5.2.1 How to Create a Decision Table .. 5-8
5.2.2 How to Add Condition Rows to a Decision Table.. 5-9
5.2.3 How to Add Actions to a Decision Table.. 5-10
5.2.4 How to Add a Rule to a Decision Table .. 5-12
5.3 Performing Operations on Decision Tables ... 5-13
5.3.1 Introduction to Decision Table Operations... 5-13
5.3.2 How to Compact or Split a Decision Table ... 5-21
5.3.3 How to Merge or Split Conditions in a Decision Table .. 5-21
5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells 5-21
5.3.5 How to Perform Decision Table Gap Analysis .. 5-22
5.3.6 How to Perform Decision Table Conflict Analysis.. 5-22
5.3.7 How to Select the Auto Conflict Resolution Option.. 5-23
5.4 Creating and Running an Oracle Business Rules Decision Table Application............... 5-23
5.4.1 How to Obtain the Source Files for the Order Approval Application...................... 5-24
5.4.2 How to Create an Application for Order Approval .. 5-24
5.4.3 How to Create a Business Rule Service Component for Order Approval 5-26
5.4.4 How to View Data Model Elements for Order Approval... 5-30
5.4.5 How to Add Bucketsets to the Data Model for Order Approval 5-31
5.4.6 How to Associate Bucketsets with Order and CreditScore Properties..................... 5-33
5.4.7 How to Add a Decision Table for Order Approval ... 5-35
5.4.8 How to Check the Business Rule Validation Log for Order Approval 5-45
5.4.9 How to Deploy the Order Approval Application.. 5-45
5.4.10 How to Test the Order Approval Application ... 5-46

6 Working with Decision Functions

6.1 Introduction to Decision Functions.. 6-1
6.2 Working with Decision Functions.. 6-1
6.2.1 How to Add or Edit a Decision Function... 6-1
6.3 What You Need to Know About Decision Functions.. 6-5
6.3.1 What You Need to Know About Using Undo Operation with Decision Functions.. 6-5
6.3.2 What You Need to Know About Rule Firing Limit Option for Debugging Rules..... 6-5
6.3.3 What You Need to Know to About Decision Function Arguments............................. 6-5
6.3.4 What You Need to Know About the Will Be Invoked As Web Service Option 6-6
6.3.5 What You Need to Know About the Decision Function Stateless Option 6-7

vii

7 Working with Rules SDK Decision Point API

7.1 Introduction to Rules SDK and the Car Rental Sample Application 7-1
7.1.1 Introduction to Decision Point API... 7-1
7.1.2 How to Obtain the Car Rental Sample Application ... 7-2
7.1.3 How to Open the Car Rental Sample Application and Project..................................... 7-2
7.2 Creating a Dictionary for Use with a Decision Point... 7-3
7.2.1 How to Create Data Model Elements for Use with a Decision Point........................... 7-3
7.2.2 How to View a Decision Function to Call from the Decision Point 7-4
7.2.3 How to Create Rules or Decision Tables for the Decision Function 7-6
7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table... 7-8
7.3 Creating a Java Application Using Rules SDK Decision Point .. 7-9
7.3.1 How to Add a Decision Point Using Decision Point Builder..................................... 7-10
7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary 7-11
7.3.3 How to Use Executor Service to Run Threads with Decision Point.......................... 7-12
7.3.4 How to Create and Use Decision Point Instances.. 7-13
7.4 Running the Car Rental Sample... 7-14
7.5 What You Need to Know About Using Decision Point in a Production Environment. 7-15

8 Testing Business Rules

8.1 Testing Oracle Business Rules at Design Time... 8-1
8.1.1 How to Test Rules Using a Test Function in Rules Designer.. 8-1
8.1.2 What You Need to Know About Testing Using an Oracle Business Rules Function 8-3
8.1.3 How to Test a Decision Function Using an Oracle Business Rules Function 8-3
8.1.4 What You Need to Know About Testing Decision Functions 8-5
8.2 Testing Oracle Business Rules at Runtime.. 8-6

9 Creating a Rule-enabled Non-SOA Java EE Application

9.1 Introduction to the Grades Sample Application .. 9-1
9.2 Creating an Application and a Project for Grades Sample Application 9-2
9.2.1 How to Create a Fusion Web Application for the Grades Sample Application......... 9-2
9.2.2 How to Create the Grades Project ... 9-3
9.2.3 How to Add the XML Schema and Generate JAXB Classes in the Grades Project.... 9-4
9.2.4 How to Create an Oracle Business Rules Dictionary in the Grades Project................ 9-6
9.3 Creating Data Model Elements and Rules for the Grades Sample Application................ 9-9
9.3.1 How to Create Bucketsets for Grades Sample Application... 9-9
9.3.2 How to Add a Decision Table for Grades Sample Application 9-11
9.3.3 How to Add Actions in the Decision Table for Grades Sample Application 9-12
9.3.4 How to Rename the Decision Function for Grades Sample Application 9-13
9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application........................ 9-14
9.4.1 How to Add a Servlet to the Grades Project... 9-14
9.5 Adding an HTML Test Page for Grades Sample Application... 9-21
9.5.1 How to Add an HTML Test Page to the Grades Project... 9-21
9.6 Preparing the Grades Sample Application for Deployment ... 9-22
9.6.1 How to Create the WAR File for the Grades Sample Application 9-22
9.6.2 How to Add the Rules Library to the Grades Sample Application 9-25
9.6.3 How to Add the MDS Deployment File to the Grades Sample Application 9-26

viii

9.6.4 How to Add the EAR File to the Grades Sample Application................................... 9-30
9.7 Deploying and Running the Grades Sample Application ... 9-32
9.7.1 How to Deploy to Grades Sample Application.. 9-32
9.7.2 How to Run the Grades Sample Application ... 9-33

10 Working with Oracle Business Rules and ADF Business Components

10.1 Introduction to Using Business Rules with ADF Business Components 10-1
10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types 10-1
10.1.2 Understanding Oracle Business Rules Decision Point Action Type 10-3
10.2 Using Decision Points with ADF Business Components Facts ... 10-4
10.2.1 How to Call a Decision Point with ADF Business Components Facts 10-4
10.2.2 How to Call a Decision Function with Java Decision Point Interface....................... 10-7
10.2.3 What You Need to Know About Decision Function Configuration with ADF Business

Components 10-8
10.3 Creating a Business Rules Application with ADF Business Components Facts 10-9
10.3.1 How to Create an Application That Uses ADF Business Components Facts 10-9
10.3.2 How to Add the Chapter10 Generic Project ... 10-10
10.3.3 How to Create ADF Business Components Application for Business Rules......... 10-10
10.3.4 How to Update View Object Tuning for Business Rules Sample Application...... 10-12
10.3.5 How to Create a Dictionary for Oracle Business Rules... 10-12
10.3.6 How to Add Decision Point Dictionary Links.. 10-13
10.3.7 How to Import the ADF Business Components Facts... 10-14
10.3.8 How to Add and Run the Outside Manager Ruleset .. 10-15
10.3.9 How to Add and Run the Department Manager Ruleset ... 10-25
10.3.10 How to Add and Run the Raises and Retract Employees Rulesets 10-31

11 Working with Decision Components in SOA Applications

11.1 Introduction to Decision Components.. 11-1
11.2 Working with a Decision Component .. 11-2
11.2.1 Working with Decision Component Metadata .. 11-2
11.2.2 Working with Decision Components that Expose a Decision Function................... 11-4
11.2.3 Using Stateful Interactions with a Decision Component.. 11-5
11.2.4 What You Need to Know About Stateful Interactions with Decision Components 11-5
11.3 Decision Service Architecture .. 11-5

A Oracle Business Rules Files and Limitations

A.1 Rules Designer Naming Conventions... A-1
A.1.1 Ruleset Naming... A-1
A.1.2 Dictionary Naming... A-1
A.1.3 Alias Naming... A-1
A.1.4 XML Schema Target Package Naming .. A-1

B Rules Extension Methods

B.1 Duration Extension Methods (oracle.rules.rl.extensions.Duration)................................... B-1
B.2 JavaDate Extension Methods (oracle.rules.rl.extensions.JavaDate) B-2
B.3 XMLDate Extension Methods (oracle.rules.rl.extensions.XMLDate)................................. B-3

ix

B.4 OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate) .. B-4
B.5 OracleDuration Methods (oracle.rules.sdk2.extensions.OracleDuration)......................... B-6

C Oracle Business Rules Frequently Asked Questions

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed
Without Using the Modify Action? C-1

C.2 What are the Differences Between Oracle Business Rules RL Language and Java? C-2
C.3 How Does a RuleSession Handle Concurrency and Synchronization?............................. C-2
C.4 How Do I Correctly Express a Self-Join? .. C-3
C.5 How Do I Use a Property Change Listener in Oracle Business Rules?.............................. C-5
C.6 What Are the Limitations on a Decision Service with Oracle Business Rules? C-6
C.7 How Do I Change the Name of a Dictionary or Dictionary Package?............................... C-7
C.8 How Do I Put Java Code in a Rule? .. C-7
C.9 Can I Use Java Based Facts in a Decision Service with BPEL? .. C-7
C.10 How Do I Enable Debugging in a BPEL Decision Service? ... C-7
C.11 How Do I Support Versioning with Oracle Business Rules? .. C-7
C.12 What is the Priority Order Using Priorities with Rules and Rulesets? C-8
C.13 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement? C-8
C.14 Why Are Changes to My Java Classes Not Reflected in the Data Model? C-9
C.15 How Do I Use Rules SDK to Include a null in an Expression? ... C-9
C.16 Is WebDAV Supported as a Repository to Store a Dictionary? .. C-9

D Oracle Business Rules Troubleshooting

D.1 Getter and Setter Methods are not Visible ... D-1
D.2 Java Class with Only a Property Setter... D-1
D.3 Renaming a Dictionary or Dictionary Package ... D-2
D.4 Runtime NoClassDefFound Error ... D-2
D.5 RL Specific Keyword Naming Conflict Errors .. D-3
D.6 java.lang.IllegalAccessError from Business Rules Service Runtime D-3
D.7 JAXB 1.0 Dictionaries and RL MultipleInheritanceException... D-4
D.8 Why Does XML Schema with Underscores Fail JAXB Compilation? D-4
D.9 How Are Decision Service Inputs and Outputs Restricted? ... D-5

E Working with Oracle Business Rules and JSR-94 Execution Sets

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets E-1
E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets..................... E-1
E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text............ E-2
E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL.................... E-3
E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources........................... E-4
E.3 Using the JSR-94 Interface with Oracle Business Rules.. E-4
E.3.1 Creating a Rule Execution Set with createRuleExecutionSet E-5
E.3.2 Creating a Rule Session with createRuleSession.. E-5
E.3.3 Working with JSR-94 Metadata .. E-5
E.3.4 Using Oracle Business Rules JSR-94 Extensions .. E-6

x

F Working with Rule Reporter

F.1 Introduction to Working with Rule Reporter .. F-1
F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets.......................... F-1
F.1.2 What You Need to Know About RuleReporter API.. F-1
F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files......................... F-2
F.2 Using Rule Reporter Command Line Interface ... F-2
F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line F-2
F.3 Using Rule Reporter with Java... F-3
F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java................. F-3

Index

xi

Preface

This Preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
Oracle Fusion Middleware User's Guide for Oracle Business Rules is intended for
application programmers, system administrators, and other users who perform the
following tasks:

■ Create Oracle Business Rules programs

■ Modify or customize existing Oracle Business Rules programs

■ Create Java applications using rules programs

■ Add rules programs to existing Java applications

To use this document, you need a working knowledge of Java programming language
fundamentals.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documentation
Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Overview of Oracle Business Rules 1-1

1 Overview of Oracle Business Rules

Oracle Business Rules enable dynamic decisions at runtime allowing you to automate
policies, computations, and reasoning while separating rule logic from underlying
application code. This allows more agile rule maintenance and empowers business
analysts with the ability to modify rule logic without programmer assistance and
without interrupting business processes.

This guide describes how to:

■ Work with the Oracle Business Rules Designer (Rules Designer) extension to
Oracle JDeveloper to create Oracle Business Rules artifacts

■ Use Oracle Business Rules as part of an Oracle SOA Suite composite application as
a Decision component

■ Use Oracle Business Rules as part of Java EE application with the Oracle Business
Rules SDK

■ Use the Oracle Business Rules SDK (Rules SDK)

■ Access the Oracle Business Rules Rules Engine using the JSR-94 Java Rule Engine
API

This chapter includes the following sections:

■ Section 1.1, "What are Business Rules?"

■ Section 1.2, "Oracle Business Rules Runtime and Design Time Elements"

■ Section 1.3, "Oracle Business Rules Engine Architecture"

For more information, see:

■ Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

■ Oracle Fusion Middleware Java API Reference for Oracle Business Rules

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1.1 What are Business Rules?
Business rules are statements that describe business policies or describe key business
decisions. For example, business rules include:

■ Business policies such as spending policies and approval matrices.

■ Constraints such as valid configurations or regulatory requirements.

■ Computations such as discounts or premiums.

■ Reasoning capabilities such as offers based on customer value.

What are Business Rules?

1-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

For example, a car rental company might use the following business rule:

An airline might use a business rule such as the following:

A financial institution could use a business rule such as:

These examples represent individual business rules. In practice, you can use Oracle
Business Rules to combine many business rules or to use more complex tests.

For the car rental example, you can name the rule the Driver Age Rule. Traditionally,
business rules such as the Driver Age Rule are buried in application code and might
appear in a Java application as follows:

public boolean checkDriverAgeRule (Driver driver) {
 boolean declineRent = false;
 int age = driver.getAge();
 if(age < 21) {
 declineRent = true;
 }
 return declineRent;
}

This code is not easy for nontechnical users to read and can be difficult to understand
and modify. For example, suppose that the rental company changes its policy so that
all drivers under 18 are declined using the Driver Age Rule. In many production
environments the developer must modify the application, recompile, and then
redeploy the application. Using Oracle Business Rules, this process can be simplified
because a business rules application is built to support easily changing business rules.

Oracle Business Rules allows a business analyst to change policies that are expressed
as business rules, with little or no assistance from a programmer. Applications using
Oracle Business Rules support continuous change that allows the applications to adapt
to new government regulations, improvements in internal company processes, or
changes in relationships between customers and suppliers.

A rule follows an if-then structure and consists of the following parts:

What are Business Rules?

Overview of Oracle Business Rules 1-3

■ IF part: a condition or pattern match (see Section 1.1.1, "What Are Rule
Conditions?").

■ THEN part: a list of actions (see Section 1.1.2, "What Are Rule Actions?").

Alternatively, you can express rules in a spreadsheet-like format called a Decision
Table (see Section 1.1.3, "What Are Decision Tables?").

You write rules and Decision Tables in terms of fact types and properties. Fact types
are often imported from the Java classes, XML schema, Oracle ADF Business
Components view objects, or may be created in Rules Designer. Fact properties have a
name, value, data type, and an optional bucketset. A bucketset splits the value space of
the data type into buckets that can be used in Decision Tables, choice lists, and for
design time validation (see Section 1.1.4, "What Are Facts and Bucketsets?").

You group rules and Decision Tables in an Oracle Business Rules object called a
ruleset (see Section 1.1.5, "What Are Rulesets?").

You group one or more rulesets and their facts and bucketsets in an Oracle Business
Rules object called a dictionary (see Section 1.1.8, "What Are Dictionaries?").

For more information, see Section 1.2, "Oracle Business Rules Runtime and Design
Time Elements".

1.1.1 What Are Rule Conditions?
The rule IF part is composed of conditional expressions, rule conditions, that refer to
facts. For example:

IF Rental_application.driver age < 21

The conditional expression compares a business term (Rental_application.driver age)
to the number 21 using a less than comparison.

The rule condition activates the rule whenever a combination of facts makes the
conditional expression true. In some respects, the rule condition is like a query over
the available facts in the Rules Engine, and for every row returned from the query the
rule is activated.

For more information, see:

■ Chapter 4, "Working with Rulesets and Rules"

■ "Rule Conditions" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

1.1.2 What Are Rule Actions?
The rule THEN part contains the actions that are executed when the rule is fired. A
rule is fired after it is activated and selected among the other rule activations using
conflict resolution mechanisms such as priority. A rule might perform several kinds of
actions. An action can add facts, modify facts, or remove facts. An action can execute a
Java method or perform a function which may modify the status of facts or create
facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of
rule activations and thus change the next rule to fire.

For more information, see:

■ Section 1.3.4, "Rule Firing and Rule Sessions"

■ Chapter 4, "Working with Rulesets and Rules"

What are Business Rules?

1-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ "Ordering Rule Firing" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

1.1.3 What Are Decision Tables?
A Decision Table is an alternative business rule format that is more compact and
intuitive when many rules are needed to analyze many combinations of property
values. You can use a Decision Table to create a set of rules that covers all
combinations or where no two combinations conflict.

For more information, see Chapter 5, "Working with Decision Tables".

1.1.4 What Are Facts and Bucketsets?
In Oracle Business Rules, facts are the objects that rules reason on. Each fact is an
instance of a fact type. You must import or create one or more fact types before you
can create rules.

In Oracle Business Rules a fact is an asserted instance of a class. The Oracle Business
Rules runtime or a developer writing in the RL Language uses the RL Language
assert function to add an instance of a fact to the Oracle Business Rules Engine.

In Rules Designer you can define a variety of fact types based on, XML Schema, Java
classes, Oracle RL definitions, and ADF Business Components view objects. In the
Oracle Business Rules runtime such fact type instances are called facts.

You can create bucketsets to define a list of values or a range of values of a specified
type. After you create a bucketset you can associate the bucketset with a fact property
of matching type. Oracle Business Rules uses the bucketsets that you define to specify
constraints on the values associated with fact properties in rules or in Decision Tables.
You can also use bucketsets to specify constraints for variable initial values and
function return values or function argument values.

For more information, see:

■ Section 1.3, "Oracle Business Rules Engine Architecture"

■ Chapter 3, "Working with Facts and Bucketsets"

1.1.5 What Are Rulesets?
A ruleset is an Oracle Business Rules container for rules and Decision Tables. A ruleset
provides a namespace, similar to a Java package, for rules and Decision Tables. In
addition you can use rulesets to partially order rule firing.

For more information, see:

■ Chapter 4, "Working with Rulesets and Rules"

■ "Ordering Rule Firing" in the Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules

1.1.6 What Are Decision Functions?
A decision function provides a contract for invoking rules from Java or SOA (from an
SOA composite application or from a BPEL process). The contract includes input fact
types, rulesets to run, and output fact types. For more information, see Chapter 6,
"Working with Decision Functions".

Oracle Business Rules Runtime and Design Time Elements

Overview of Oracle Business Rules 1-5

1.1.7 What Are Decision Points?
Oracle Business Rules SDK (Rules SDK) provides APIs that let you write applications
that access, create, modify, and execute rules in Oracle Business Rules dictionaries
(and all the contents of a dictionary). The Rules SDK provides the Decision Point API
to access and run rules or Decision Tables from a Java application. For more
information, see Chapter 7, "Working with Rules SDK Decision Point API".

1.1.8 What Are Dictionaries?
A dictionary is an Oracle Business Rules container for facts, functions, globals,
bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that
stores the application's rulesets and the data model. Dictionaries can link to other
dictionaries. Oracle JDeveloper creates an Oracle Business Rules dictionary in a
.rules file. You can create as many dictionaries as you need. A dictionary may
contain any number of rulesets. For more information, see Section 2.2, "Working with a
Dictionary and Dictionary Links".

1.2 Oracle Business Rules Runtime and Design Time Elements
Oracle Business Rules provides support for using business rules as a Decision
component or as a library in a Java application. A Decision component is a mechanism
for publishing rules and rulesets as a reusable service that can be invoked from
multiple business processes. To create and use rules in the Oracle SOA Suite, or to
create rules and integrate these rules into your applications, Oracle Business Rules
provides the following runtime and design time elements:

■ Decision Component (Business Rules) in an SOA Composite Application

■ Using Rules Engine with Oracle Business Rules in a Java EE Application

■ Oracle Business Rules RL Language

■ Oracle Business Rules SDK

■ Rules Designer

1.2.1 Decision Component (Business Rules) in an SOA Composite Application
Oracle SOA Suite provides support for Decision components that support Oracle
Business Rules. A Decision component is a mechanism for publishing rules and
rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is a SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision components are used for
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

Oracle Business Rules Rules Engine (Rules Engine) is available in an SOA composite
application using the SOA Business Rule service engine that efficiently applies rules to
facts and defines and processes rules.

Rules Engine has the following features:

■ High performance: Rules Engine implements specialized matching algorithms for
facts that are defined in the system.

■ Thread-safe execution suitable for a parallel processing architecture: Rules Engine
provides one thread that can assert facts while another is evaluating the network.

For more information, see Section 1.3, "Oracle Business Rules Engine Architecture".

Oracle Business Rules Runtime and Design Time Elements

1-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application
Oracle Business Rules Rules Engine (Rules Engine) is available as a library for use in a
Java EE application (non-SOA). Rules Engine efficiently applies rules to facts and
defines and processes rules. Rules Engine defines a Java-like production rule language
called Oracle Business Rules RL Language (RL Language), provides a language
processing engine (inference engine), and provides tools to support debugging.

Oracle JDeveloper Rules Designer allows business rules to be specified separately
from application code. Separating the business rules from application code allows
business analysts to change business policies quickly with graphical tools. The Rules
Engine evaluates the business rules and returns decisions or facts that are then used in
the business process.

Rules Engine has the following features:

■ High performance: Rules Engine implements specialized matching algorithms for
facts that are defined in the system.

■ Thread-safe execution suitable for a parallel processing architecture: Rules Engine
provides one thread that can assert facts while another is evaluating the network.

A rule-enabled Java application can load and run rules programs. The rule-enabled
application passes facts and rules to the Rules Engine (facts are asserted in the form of
Java objects or XML documents). The Rules Engine runs in the rule-enabled Java
application and uses the Rete algorithm to efficiently fire rules that match the facts.

For more information, see Section 1.3, "Oracle Business Rules Engine Architecture" and
Section 1.2.4, "Oracle Business Rules SDK".

1.2.3 Oracle Business Rules RL Language
Oracle Business Rules supports a high-level Java-like language called Oracle Business
Rules RL Language (RL Language). RL Language defines the valid syntax for Oracle
Business Rules programs. RL Language includes an intuitive Java-like syntax for
defining rules that supports the power of Java semantics, providing an easy-to-use
syntax for application developers. RL Language consists of a collection of text
statements that can be generated dynamically or stored in a file.

Using RL Language application programs can assert Java objects as facts, and rules can
reference object properties and invoke methods. Likewise, application programs can
use XML documents or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language
both directly and as part of the Oracle Business Rules SDK (Rules SDK).

Business analysts can use Rules Designer to work with rules. In this case, the business
analyst does not need to directly view or write RL Language programs. For more
information, see Section 1.2.5, "Rules Designer".

For detailed information about RL Language, see Oracle Fusion Middleware Language
Reference Guide for Oracle Business Rules.

1.2.4 Oracle Business Rules SDK
Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule
management features that a developer can use to write a rule-enabled program that
accesses a dictionary, or to write customized rules programs that add rules or modify
existing rules. Rules Designer uses Rules SDK to create, modify, and access rules and
the data model using well-defined interfaces. Customer applications can use Rules
SDK to access, display, create, and modify collections of rules and the data model.

Oracle Business Rules Engine Architecture

Overview of Oracle Business Rules 1-7

You can use the Rules SDK APIs in a rule-enabled application to access rules or to
create and modify rules. The rules and the associated data model could be initially
created in a custom application or using Rules Designer.

This guide describes the Oracle Business Rules SDK Decision Point API. Using a
Decision Point you can access a dictionary and run the rules in the dictionary. For
complete Oracle Business Rules SDK API information, see Oracle Fusion Middleware
Java API Reference for Oracle Business Rules.

For more information, see Chapter 7, "Working with Rules SDK Decision Point API".

1.2.5 Rules Designer
The Oracle Business Rules Designer (Rules Designer) extension to JDeveloper is an
editor that enables you to create and edit rules as Figure 1–1 shows.

Figure 1–1 Oracle JDeveloper with Rules Designer

Rules Designer provides a point-and-click interface for creating rules and editing
existing rules. Using Rules Designer you can work directly with business rules and a
data model. You do not need to understand the RL Language to work with Rules
Designer. Rules Designer provides an easy way for you to create, view, and modify
business rules.

Rules Designer supports several types of users, including the application developer
and the business analyst. The application developer uses Rules Designer to define a
data model and an initial set of rules. The business analyst uses Rules Designer either
to work with the initial set of rules or to modify and customize the initial set of rules
according to business needs. Using Rules Designer a business analyst can create and
customize rules with little or no assistance from a programmer.

1.3 Oracle Business Rules Engine Architecture
A rule-based system using the Rete algorithm is the foundation of Oracle Business
Rules. A rule-based system consists of the following:

■ The rule-base: Contains the appropriate business policies or other knowledge
encoded into IF/THEN rules and Decision Tables.

■ Working memory: Contains the information that has been added to the system.
With Oracle Business Rules you add a set of facts to the system using assert calls.

Oracle Business Rules Engine Architecture

1-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Inference Engine: The Rules Engine, which processes the rules, performs
pattern-matching to determine which rules match the facts, for a given run
through the set of facts.

In Oracle Business Rules the rule-based system is a data-driven forward chaining
system. The facts determine which rules can fire. When a rule fires that matches a set
of facts, the rule may add facts. These facts are again run against the rules. This
process repeats until a conclusion is reached or the cycle is stopped or reset. Thus, in a
forward-chaining rule-based system, facts cause rules to fire and firing rules can create
more facts, which in turn can fire more rules. This process is called an inference cycle.

1.3.1 Declarative Rules
With Oracle Business Rules you can use declarative rules, where you create rules that
make declarations based on facts rather than coding. For an example of declarative
rules,

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount

In declarative rules:

■ Statements are declared without any control flow

■ Control flow is determined by the Rules Engine

■ Rules are easier to maintain than procedural code

■ Rules relate well to business user work methods

When a rule adds facts and these facts run against the rules, this process is called an
inference cycle. An inference cycle uses the initial facts to cause rules to fire and firing
rules can create more facts, which in turn can fire more rules. For example, using the
initial facts, Rules Engine runs and adds an additional fact, and an additional rule tests
for conditions on this fact creating an inference cycle:

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount
IF a Customer spends > 1000, make them Premium customer

The inference cycle that Oracle Business Rules provides enables powerful and
modular declarative assertions.

1.3.2 The RETE Algorithm
The Rete algorithm was first developed by artificial intelligence researchers in the late
1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules
uses the Rete algorithm to optimize the pattern matching process for rules and facts.
The Rete algorithm stores partially matched results in a single network of nodes in
working memory.

By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when
facts are deleted, added, or modified. To process facts and rules, the Rete algorithm
creates and uses an input node for each fact definition and an output node for each
rule.

Fact references flow from input to output nodes. In between input and output nodes
are test nodes and join nodes. A test occurs when a rule condition has a Boolean
expression. A join occurs when a rule condition ANDs two facts. A rule is activated
when its output node contains fact references. Fact references are cached throughout
the network to speed up recomputing activated rules. When a fact is added, removed,

Oracle Business Rules Engine Architecture

Overview of Oracle Business Rules 1-9

or changed, the Rete network updates the caches and the rule activations; this requires
only an incremental amount of work.

The Rete algorithm provides the following benefits:

■ Independence from rule order: Rules can be added and removed without affecting
other rules.

■ Optimization across multiple rules: Rules with common conditions share nodes in
the Rete network.

■ High performance inference cycles: Each rule firing typically changes just a few
facts and the cost of updating the Rete network is proportional to the number of
changed facts, not to the total number of facts or rules.

1.3.3 What Is Working Memory?
Oracle Business Rules uses working memory to contain facts (facts do not exist outside
of working memory). A RuleSession contains the Oracle Business Rules working
memory.

1.3.4 Rule Firing and Rule Sessions
A Rule Session consists of rules, facts and an agenda. An assert or retract adds or
removes fact instances from working memory.

When facts in working memory are changed:

■ Conditions for rules are evaluated

■ Matching rules are added to the agenda (Activated)

■ Rules which no longer match are removed from agenda

■ Rules Engine runs and executes actions (fires), for activated rules

Figure 1–2 shows these parts of Oracle Business Rules runtime.

Oracle Business Rules Engine Architecture

1-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 1–2 Rules in Rule Session with Working Memory and Facts

A rule action may assert, modify, or retract facts and cause activations to be added or
removed from the agenda. There is a possible loop if a rule’s action causes it to fire
again. Rules are fired sequentially, but in no pre-defined order. The rule session
includes a ruleset stack. Activated rules are fired as follows:

■ Rules within top-of-the-stack ruleset are fired

■ Within a ruleset, firing is ordered by user-defined priority

■ Within the same priority, the most recently activated rule is fired first

Only rules within rulesets on the stack are fired, but all rules in a rule session are
matched and, if matched, activated.

2

Working with Data Model Elements 2-1

2Working with Data Model Elements

In Oracle Business Rules the data model consists of fact types, functions, globals,
bucketsets, decision functions, and dictionary links.

This chapter includes the following sections:

■ Section 2.1, "Introduction to Working with Data Model Elements"

■ Section 2.2, "Working with a Dictionary and Dictionary Links"

■ Section 2.3, "Working with Oracle Business Rules Globals"

■ Section 2.4, "Working with Decision Functions"

■ Section 2.5, "Working with Oracle Business Rules Functions"

For more information, see Section 1.1.8, "What Are Dictionaries?".

2.1 Introduction to Working with Data Model Elements
To implement the data model portion of an Oracle Business Rules application you
create a dictionary and add data model elements. To complete the dictionary, you
create one or more rulesets containing rules that use or depend upon these data model
elements.

For more information, see:

■ Chapter 3, "Working with Facts and Bucketsets"

■ Chapter 4, "Working with Rulesets and Rules"

■ Chapter 5, "Working with Decision Tables"

2.2 Working with a Dictionary and Dictionary Links
A dictionary is an Oracle Business Rules container for facts, functions, globals,
bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that
stores the rulesets and the data model for an application. Dictionaries can link to other
dictionaries. You can create as many dictionaries as you need. A dictionary may
contain any number of rulesets. Using Oracle Business Rules, a data model is
contained in one or more dictionaries. All the data model elements referenced by the
rulesets must be available in the dictionary.

A dictionary is stored in a *.rules file.

Working with a Dictionary and Dictionary Links

2-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

2.2.1 Introduction to Dictionaries and Dictionary Links
Each Oracle Business Rules dictionary lets you include links to other dictionaries. Each
dictionary that you create also includes the built-in dictionary; this dictionary
includes standard functions and types that all Oracle Business Rules applications
need. In addition to the main dictionary, you create one or more application-specific
dictionaries, such as PurchaseItems.rules. You can read and write the properties
of these dictionaries.

The complete data model defined by a dictionary and its linked dictionaries is called a
combined dictionary. You can create multiple links to the same dictionary; in this
case, all but the first link is ignored.

For more information, see Section 2.2.8, "What You Need to Know About Dictionary
Linking".

2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer
Oracle JDeveloper provides many ways to create a dictionary for Oracle Business
Rules. This shows one way you can create a dictionary in an SOA project. You can
create a dictionary for use in an SOA application.

A typical SOA composite design pattern is to provide each application with its own
dictionary. When different applications need access to the same parts of a common
data model, you can use dictionary links to include a target application’s dictionary in
the dictionary of a source application. Doing so copies the target application’s
dictionary into the source application. Therefore, when you work with a dictionary
that contains links the linked contents are referred to as local contents.

You may also create a dictionary in the business tier, for use outside of an SOA
application. For more information, see Section 9.2.4, "How to Create an Oracle
Business Rules Dictionary in the Grades Project".

To create a dictionary in the SOA Tier using Rules Designer:
1. In the Application Navigator, select an SOA application and select or create an

SOA project.

2. Right-click, and from the dropdown list select New....

3. In the New Gallery select the Current Project Technologies tab and, in the
Categories area, expand SOA Tier as shown in Figure 2–1.

Working with a Dictionary and Dictionary Links

Working with Data Model Elements 2-3

Figure 2–1 Creating a Business Rules Dictionary for an SOA Project

4. In the New Gallery window, in the Items area, select Business Rules.

5. Click OK. This displays the Create Business Rules dialog.

6. In the Create Business Rules dialog, enter fields as shown in Figure 2–2:

■ In the Name field, enter the name of your dictionary. For example, enter
PurchaseItems.

■ In the Package field, enter the Java package to which your dictionary belongs.
For example, com.example.

Working with a Dictionary and Dictionary Links

2-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 2–2 Create Business Rules Dialog

7. To specify the inputs and outputs:

a. Click the Add icon and select Input to create an input or Output, to create an
output.

b. In the Type Chooser dialog, expand the appropriate XSD and select the
appropriate type.

c. Click OK to close the Type Chooser dialog.

You can later add inputs or outputs, or remove the inputs or outputs. For more
information, see Chapter 6, "Working with Decision Functions".

8. In the Create Business Rules dialog, click OK to create the Decision component
and the Oracle Business Rules dictionary.

Oracle JDeveloper creates the dictionary in a file with a .rules extension, and
starts Rules Designer as shown in Figure 2–3.

Working with a Dictionary and Dictionary Links

Working with Data Model Elements 2-5

Figure 2–3 Creating a New Oracle Business Rules Dictionary PurchaseItems

9. Oracle JDeveloper also creates a Decision component in composite.xml. To view
this component double-click the composite.xml file, as Figure 2–4 shows.

Figure 2–4 Decision Component Shown in Composite Editor

2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer
The simplest way to create a rules dictionary is using Rules Designer. You can create a
dictionary for use in the business tier, outside of an SOA application. For information
on using Oracle Business Rules without SOA, see Chapter 9, "Creating a Rule-enabled
Non-SOA Java EE Application".

2.2.4 How to View and Edit Dictionary Settings
You can view and edit dictionary settings using the Dictionary Settings icon.

Working with a Dictionary and Dictionary Links

2-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

To change the dictionary alias:
1. In Oracle JDeveloper, select an Oracle Business Rules dictionary.

2. In Rules Designer, click the Dictionary Settings icon.

3. In the Dictionary Settings dialog, in the Alias field, change the alias to the name
you want to use. This field is shown in Figure 2–5.

Figure 2–5 Dictionary Settings Dialog to Change Dictionary Alias or Description

4. Click OK.

2.2.5 How to Rename a Dictionary or Rename a Dictionary Package
In the Application Navigator you can rename a dictionary or rename a dictionary
package name. Note that this the rename operation changes the name of the dictionary
but not the alias. Change the alias from the Dictionary Settings dialog. In general,
these should be set the same value. For more information, see Section 2.2.4, "How to
View and Edit Dictionary Settings".

To rename a dictionary package:
1. In Oracle JDeveloper, in Application Navigator select the dictionary, as shown in

Figure 2–6.

Working with a Dictionary and Dictionary Links

Working with Data Model Elements 2-7

Figure 2–6 Selecting an Oracle Business Rules Dictionary to Rename

2. If the dictionary is open, select the tab showing the dictionary name and click the
Close icon to close the dictionary.

3. In the Application Navigator, select the dictionary name.

4. From the File menu select Rename.... This displays the Rename Oracle Business
Rules Dictionary dialog, as shown in Figure 2–7.

Figure 2–7 Rename Oracle Business Rules Dialog

5. To rename the dictionary, in the Name field, enter a name.

6. To rename the dictionary package, in the Package field, enter a name.

7. Click OK.

2.2.6 How to Link to a Dictionary
You can link to a dictionary in the same application or in another application using the
Links navigation tab in Rules Designer. To link to another dictionary you need at least
one other dictionary available.

To link to a dictionary using resource picker:
1. In Rules Designer, click the Links navigation tab as shown in Figure 2–8.

Working with a Dictionary and Dictionary Links

2-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 2–8 Rules Designer Links Tab

2. In the Links area, click the Create icon and from the dropdown list select
Resource Picker. This displays the SOA Resource Browser dialog.

3. In the SOA Resource Browser dialog navigate to select the dictionary you want to
link to as shown in Figure 2–9.

Figure 2–9 Resource Picker

4. Click OK.

When you work with ADF Business Components Facts you should create a link to the
Decision Point Dictionary. For more information, see Chapter 10, "Working with
Oracle Business Rules and ADF Business Components".

To link to the decision point dictionary:
1. In Rules Designer, click the Links navigation tab.

Working with a Dictionary and Dictionary Links

Working with Data Model Elements 2-9

2. In the Links area, click Create and from the dropdown list select Decision Point
Dictionary. This operation takes awhile. You need to wait for the Decision Point
Dictionary to load.

2.2.7 How to Update a Linked Dictionary
When you have a dictionary, for example a dictionary named Project_rules1 that links
to a another dictionary, for example a dictionary named Shared_rules you need to see
any changes made to either dictionary in both dictionaries. Using Rules Designer you
can modify the Shared_rules dictionary and see those modifications in Project1_rules1
by updating the Project_rules1 dictionary, or you can close and then reopen Rules
Designer.

To update a linked dictionary:
1. Using these sample dictionary names click the Save icon to save the Shared_rules

dictionary.

2. Select the Project_rules1 dictionary.

3. Select the Links navigation tab.

4. Click the Dictionary Cache... icon.

5. In the Dictionary Finder Cache dialog, select the appropriate linked dictionary.

6. Click the Clear icon.

7. In the Dictionary Finder Cache dialog, click Close.

8. Click the Validate icon.

2.2.8 What You Need to Know About Dictionary Linking
Using a dictionary with links to another dictionary is useful in the following cases:

■ Data Model Sharing, to share portions of a data model within a project. When
you link to a dictionary in another project it is copied to the local project.

For example, consider a project where you would like to share some Oracle
Business Rules Functions. You can create a dictionary that contains the functions,
and name it DictCommon. Then, you can create two dictionaries, DictApp1 and
DictApp2 that both link to DictCommon, and both can use the same Oracle
Business Rules functions. When you want to change one of the functions, you only
change the version in DictCommon. Then, both dictionaries use the updated
function the next time RL Language is generated from either DictApp1 or
DictApp2.

In Oracle Business Rules a fully qualified dictionary name is called a DictionaryFQN
and this consists of two components:

■ Dictionary Package: The package name

■ Dictionary Name: The dictionary name

A dictionary refers to a linked dictionary using its DictionaryFQN and an alias. Oracle
Business Rules uses the DictionaryFQN to find a linked dictionary.

Note the following naming constraints for combined dictionaries:

■ Within a combined dictionary the full names of the dictionaries, including the
package and name, must be distinct. In addition, the dictionary aliases must be
distinct.

Working with Oracle Business Rules Globals

2-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Oracle Business Rules requires that the aliases of data model definitions of a
particular kind, for example, function, Oracle RL class, or bucketset, must be
unique within a dictionary.

■ Within a combined dictionary, a definition may be qualified by the alias of its
immediately containing dictionary. Definitions in the top and main dictionaries do
not have to be qualified. Definitions in other dictionaries must be qualified.

■ Ruleset names must be unique within a dictionary. When RL Language for a
ruleset is generated, the dictionary alias is not part of any generated name. For
example, if the dictionary named dict1 links to dict2 to create a combined
dictionary, and dict1 contains ruleset_1 with rule_1 and dict2 also contains
ruleset_1 with rule_2, then in the combined dictionary both of these rules, rule_1
and rule_2 are in the same ruleset (ruleset_1).

■ All rules and Decision Tables must have unique names within a ruleset.

For example, within a combined dictionary that includes dictionary d1 and
dictionary d2, dictionary d1 may have a ruleset named Ruleset_1 with a rule
rule_1. If dictionary d2 also has a ruleset named Ruleset_1 with a rule_2, then
when Oracle Business Rules generates RL Language from the combined, linked
dictionaries, both rules rule_1 and rule_2 are in the single ruleset named
Ruleset_1. If you violate this naming convention and do not use distinct names
for the rules within a ruleset in a combined dictionary, Rules Designer reports a
validation warning similar to the following:

RUL-05920: Rule Set Ruleset_1 has two Rules with name rule_1

For more information, see Appendix A, "Oracle Business Rules Files and Limitations".

2.2.9 What You Need to Know About Dictionary Linking and Dictionary Copies
When you create a dictionary link using the resource picker, the dictionary is copied to
the source project (the project where the dictionary that you are linking from resides).
Thus, this type of linking creates a local copy of the dictionary in the project. This is
not a link to the original target, no matter where the target dictionary is. Thus, Rules
Designer uses a copy operation for the link if you create a link with the resource
picker.

2.2.10 What You Need to Know About Dictionary Linking to a Deployed Dictionary
When you are using Rules Designer you can browse a deployed composite application
and any associated Oracle Business Rules dictionaries in the MDS connection.
However, you cannot create a dictionary link to a dictionary deployed to MDS.

2.2.11 What You Need to Know About Business Rules Inputs and Outputs with BPEL
Oracle Business Rules accesses input and output variables by type only, and not by
name. Thus, if you have two inputs of the same type, input1 and input2, the rules are
not able to distinguish which is input1 and which is input2. The variable names are
only useful in the BPEL process definition. The mapping for the Oracle Business Rules
business terms default to fact type.property, and there may be no relationship to the
BPEL variable name.

2.3 Working with Oracle Business Rules Globals
You can use Rules Designer to add Oracle Business Rules globals.

Working with Oracle Business Rules Globals

Working with Data Model Elements 2-11

In Oracle Business Rules a global is similar to a public static variable in Java. You can
specify that a global is a constant or is modifiable.

You can use global definitions to share information among several rules and functions.
For example, if a 10% discount is used in several rules you can create and use a global
Gold Discount, so that the appropriate discount is applied to all the rules using the
global.

Using global definitions can make programs modular and easier to maintain.

2.3.1 How to Add Oracle Business Rules Globals
You can use Rules Designer to add globals.

To add a global:
1. In Rules Designer, select the Globals navigation tab.

2. In the globals table, click the Create icon. This adds a global and displays the Edit
Global dialog, as shown in Figure 2–10.

Figure 2–10 Adding a Global in Rules Designer

3. In the Name field, enter a name or accept the default value.

4. In the Type field, select the type from the dropdown list.

5. Optionally, in the Bucketset field, select a value from the dropdown list.

6. In the Value field, enter a value, select a value from the dropdown list, or click the
Expression Builder icon to enter an expression. For more information, see
Section 4.10, "Working with Expression Builder".

7. If the global is a constant, then select the Constant checkbox. When selected, this
option specifies that the global is a constant value. For more information, see
Section 2.3.3, "What You Need to Know About the Final and Constant Options".

Working with Oracle Business Rules Globals

2-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

8. If the global is a nonfinal, then deselect the Final checkbox. When unselected, this
option specifies that the global is modifiable, for instance, in an assign action.

2.3.2 How to Edit Oracle Business Rules Globals
You can use Rules Designer to edit globals.

To edit a Global:
1. In Rules Designer, select the Globals navigation tab.

2. Double-click the globals icon in a row in the Globals table. When you double-click
the globals icon in a row this displays the Edit Global - Global Name window as
shown in Figure 2–11. In this window you can edit a global and change field
values, including the Final field and the Constant field (the Constant field is only
shown when you double-click a global to display the Edit Global dialog.

Figure 2–11 Edit Global Window

2.3.3 What You Need to Know About the Final and Constant Options
The Edit Global dialog shows the Constant and Final checkboxes that you can select
for a global.

Note the following when you use globals:

■ When you deselect Final, this specifies that the global is modifiable, for instance,
in an assign action.

■ When you select Final, this specifies that you can use the globals in a test in a rule
(nonfinal globals cannot be used in a test in a rule).

■ When you select Final, this specifies that the global is initialized one time at
runtime and cannot be changed.

When you select the Constant option in the Edit Global dialog, this specifies the global
is a constant. In Oracle Business Rules a constant is a string or numeric literal, a final
global whose value is a constant, or a simple expression involving constants and +, -,
*, and /.

Selecting the Constant option for a global has three effects:

■ You do not have to surround string literals with double quotes.

■ Only constants appear in the expression value choice list.

■ The expression value must be a constant to be valid.

Working with Oracle Business Rules Functions

Working with Data Model Elements 2-13

Selecting the Constant option is optional. Note that bucket values, bucket range
endpoints, and ruleset filter values are always constant.

2.4 Working with Decision Functions
The data model includes decision functions. For information on working with decision
functions, see Section 6.1, "Introduction to Decision Functions".

2.5 Working with Oracle Business Rules Functions
Oracle Business Rules provides functions to hide complexity when you create rules.
Oracle Business Rules lets you use built-in or user-defined functions in rule and
Decision Table conditions and actions.

2.5.1 Introduction to Oracle Business Rules Functions
In Oracle Business Rules you define a function in a manner similar to a Java method,
but an Oracle Business Rules function does not belong to a class. You can use Oracle
Business Rules functions to extend a Java application object model so that users can
perform operations in rules without modifying the original Java application code.

You can use an Oracle Business Rules function in a condition or in an action associated
with a rule or a Decision Table.

You can also use an Oracle Business Rules function definition to share the same or a
similar expression among several rules, and to return results to the application.

An Oracle Business Rules function includes the following:

■ Name: The Oracle Business Rules function name.

■ Return Type: A return type for the Oracle Business Rules function, or void if there
is no return value.

■ Bucketset: The bucketset to associate with the Oracle Business Rules function.

■ Arguments: The function arguments. Each function argument includes a name
and a type.

■ Function Body: The function body includes predefined actions. Using predefined
actions Rules Designer assures that an Oracle Business Rules function is well
formed and can be validated.

You can also use functions to test rules from within Rules Designer. For more
information, see Section 8.1.1, "How to Test Rules Using a Test Function in Rules
Designer".

2.5.2 How to Add an Oracle Business Rules Function
You use Rules Designer to add an Oracle Business Rules function.

To add an Oracle Business Rules Function:
1. In Rules Designer, select the Functions navigation tab.

2. Select the Create... icon.

3. Enter the function name in the Name field, or use the default name.

4. Select the return type from the Return Type dropdown list. For example, select
void.

Working with Oracle Business Rules Functions

2-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

5. Optionally, select a bucketset to associate with the function return type from the
dropdown list in the Bucketset field.

6. Optionally, in the Description field enter a description.

7. In the Arguments table, click Add to add one or more arguments for the function.

8. For each argument in the Type field, select the type from the dropdown list.

9. For each argument in the Bucketset field, to limit the argument values as specified
by a bucketset constraint, select a bucketset from the dropdown list.

10. In the Body area, enter actions and arguments for the function body. For example,
see Figure 2–12.

Figure 2–12 Adding an Oracle Business Rules Function

3

Working with Facts and Bucketsets 3-1

3Working with Facts and Bucketsets

Facts are the objects that rules reason on and bucketsets define groupings of fact
property values.

This chapter includes the following sections:

■ Section 3.1, "Introduction to Working with Facts and Bucketsets"

■ Section 3.2, "Working with XML Facts"

■ Section 3.3, "Working with Java Facts"

■ Section 3.4, "Working with RL Facts"

■ Section 3.5, "Working with ADF Business Components Facts"

■ Section 3.6, "Working with Bucketsets"

■ Section 3.7, "Associating a Bucketset with Facts and Functions"

3.1 Introduction to Working with Facts and Bucketsets
In Oracle Business Rules facts that you can run against the rules are data objects that
have been asserted. Each object instance corresponds to a single fact. If an object is
re-asserted (whether it has been changed or not), the Rules Engine is updated to reflect
the new state of the object. Re-asserting the object does not create a fact. To have
multiple facts of a particular fact type separate object instances must be asserted.

In Rules Designer, you make business objects and their methods known to Oracle
Business Rules using fact definitions that are part of a data model.

You must create one or more facts, and optionally bucketsets, before you can create
rules.

In Rules Designer you can work with the following types of facts:

■ XML Facts: XML Facts are imported from existing sources by specifying XML
Schema. You can add aliases to imported XML Facts or use XML Facts with RL
Facts to change the data model according to your business needs.

For more information, see Section 3.2, "Working with XML Facts".

■ Java Facts: Java Facts are imported from existing sources. You can add aliases to
Java Facts or use them with RL Facts to target the data model to business needs.
Java Facts are also used to import supporting Java classes for use with the rules or
Decision Tables that you create.

For more information, see Section 3.3, "Working with Java Facts".

Working with XML Facts

3-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ RL Facts: RL Facts are the only kind of facts that you can create directly and do not
have an external source. All other types of Oracle Business Rules facts are
imported. An RL Fact is similar to a relational database row or a JavaBean without
methods. An RL Fact contains a list of properties of types available in the data
model, either RL Facts, Java Facts, or primitive types. You can use RL Facts to
extend a Java application object model by providing virtual dynamic types.

For more information, see Section 3.4, "Working with RL Facts".

■ ADF Business Components Facts: ADF Business Components Facts allow you to
use ADF Business Components as Facts in rules and in Decision Tables. By using
ADF Business Components Facts you can assert view object graphs representing
the business objects upon which rules should be based, and let Oracle Business
Rules deal with the complexities of managing the relationships between the
various related view objects in the view object graph.

For more information, see Section 3.5, "Working with ADF Business Components
Facts".

You typically use Java fact types and XML fact types to create rules that examine the
business objects in a rule-enabled application, or to return results to the application.
You use RL Language fact type definitions to create intermediate facts that can trigger
other rules in the Rules Engine.

You can create bucketsets to define a list of values or a range of values of a specified
type. After you create a bucketset you can associate the bucketset with a fact property
of matching type. When a bucketset is associated with a fact property Oracle Business
Rules uses the buckets that you define as constraints for the values for the fact
properties in rules or in Decision Tables.

For more information, see:

■ Section 3.6, "Working with Bucketsets"

■ Section 3.7, "Associating a Bucketset with Facts and Functions"

3.2 Working with XML Facts
The XML fact type allows XML Schema types, elements, and attributes to be used
when writing rules. Elements and types defined in XML Schema can be imported into
the data model and can then be used to create rules and Decision Tables, just as with
Java fact types and RL Fact types. The mapping between the XML Schema definition
and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By
default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application
Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and
conventions in an XML Schema definition and the available types, allowed names and
conventions in Java. For example, an element named order-id and of type
xsd:integer is mapped to a Java Bean property named orderID of type
BigInteger (and xsd:int type maps to Java int).

Thus, with Oracle Business Rules if you have an XML document that contains data
associated with your application and you have the schema associated with the XML
document then you can use Rules Designer to define rules based on elements that you
specify from the XML Schema.

To create XML fact types, perform the following steps:

1. Define or obtain an XML Schema.

2. Use Rules Designer to import the XML Schema into a dictionary. This step uses
the JAXB compiler to generate Java classes from the XML Schema. After you

Working with XML Facts

Working with Facts and Bucketsets 3-3

compile the XML Schema, you select the desired elements from the schema to add
XML Facts in the data model and import the generated JAXB classes into the data
model. For more information on these steps, see Section 3.2.1, "How to Import
XML Schema and Add XML Facts".

3. Write rules or create Decision Tables based on these XML Facts that you added to
the data model. For more information, see Section 4.3, "Working with Rules" and
Section 5.2, "Creating Decision Tables".

Elements and types defined in XML Schema can be imported into the data model so
that instances of types can be created, asserted, modified, and retracted by rules. Most
XML documents describe hierarchical information, where each element contains
subelements. It is common for users to want to write individual rules based on
multiple elements in this hierarchy, and the hierarchical relationship among the
elements. In Oracle Business Rules the default behavior when you assert a fact is to
only assert the single fact instance, and none of the child objects it may reference in the
hierarchy of subelements. When you create rules or a Decision Table it is often
desirable to assert an entire hierarchy of elements based on a reference to a root
element. Oracle Business Rules provides the assertTree action type that allows for a
recursive assert for a hierarchy. For more information, see Section 4.8, "Working with
Tree Mode Rules".

3.2.1 How to Import XML Schema and Add XML Facts
Before you can use XML Schema definitions in a data model you must import XML
schema. This step generates the JAXB classes and makes the generated classes and
packages associated with the XML schema visible in Rules Designer.

To import XML schema and add XML facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab, as shown in Figure 3–1.

Figure 3–1 The XML Facts Tab in Rules Designer

3. In the XML Facts tab, click Create.... This displays the Create XML Fact dialog.

4. In the Create XML Fact dialog, in the Source Schemas area, click Add Source
Schema.... This displays the Add Source Schema dialog, as shown in Figure 3–2.

Working with XML Facts

3-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 3–2 XML Fact: Add Source Schema Dialog

5. In the Add Source Schema dialog, in the Schema Location field, enter the location
of the XML Schema you want to import, or click Browse to locate the XML
schema. During the import the file is copied into the project.

6. In the Add Source Schema dialog, in the JAXB Classes Directory field, accept the
default or enter the directory where you want Rules Designer to store the
JAXB-generated Java source and class files.

7. In the Add Source Schema dialog, in the Target Package field, enter a target
package name or leave this field empty. If you leave this field empty the JAXB
classes package name is generated from the XML target namespace of the XML
schema using the default JAXB XML-to-Java mapping rule or explicitly defined
package name using annotations, or "generated" if no namespace or annotation
is defined. Using the schema namespace is preferred.

For example, the namespace http://www.oracle.com/as11/rules/demo is
mapped to com.oracle.as11.rules.demo.

8. Click OK. Rules Designer processes the schema and compiles the JAXB, so
depending on the size of the schema this step may take some time to complete.
When this step completes Rules Designer displays the Create XML Fact dialog
with the Target Classes area updated to include the JAXB classes, as shown in
Figure 3–3.

Figure 3–3 XML Fact: Create XML Fact Dialog

9. In the Create XML Fact dialog, in the Target Classes area, select the classes you
want to import as XML fact types.

10. Click OK.

Working with XML Facts

Working with Facts and Bucketsets 3-5

3.2.2 How to Display and Edit XML Facts
To work with an XML Fact, in Rules Designer open the Edit XML Fact dialog.

To display and edit XML facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab.

3. In the XML Facts table, double-click the icon for the XML Fact you want to edit.
This displays the Edit XML Fact dialog, as shown in Figure 3–4.

Figure 3–4 Edit XML Fact Dialog

The Edit XML Fact dialog includes the fields shown in Table 3–1.

Table 3–1 XML Fact: Edit XML Fact Dialog Fields

Field Description

Name Displays the XML Fact name. You cannot change the name of
JAXB generated class.

Alias Enter the XML Fact alias. You can change this value. This
defaults to the unqualified name of the class.

Super Class Displays Java super class associated with this fact.

Description Enter the XML Fact description.

XML Name Displays the XML name associated with the XML Fact.

Generated From Displays the XML schema file that was the source for the XML
Fact when it was copied into the business rules data model.

Visible Select to show the XML Fact in dropdown lists in Rules
Designer. XML Facts often reference other XML Facts, forming a
tree. You should make all the XML fact types visible that contain
properties that you reference in rules.

Working with XML Facts

3-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

3.2.3 How to Reload XML Facts with Updated Schema
If an XML schema changes in a project, the schema must be reimported into the Oracle
Business Rules dictionary. When you reimport the schema Oracle Business Rules uses
JAXB to recompile all source schemas for every XML fact type and updates the XML
fact type definitions with the updated XML Schema definitions. You should reimport
facts if you changed the schema or classes and you want to use the changed schema or
classes at runtime.

To reimport XML facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the XML Facts tab on the Facts navigation tab.

3. On the XML Facts page, click the Reload XML Facts from Updated Schemas icon.

After the reimport operation you need to correct any validation warnings that may be
caused by incompatible changes (for example, the updated schema may include a
change that removed a property that is referenced by a rule).

3.2.4 What You Need to Know About XML Facts
Keep the following points in mind when you work with XML Facts:

■ When writing rules, the assertTree action type is available only in advanced
mode. For more information on creating rules using assertTree, see Section 4.8,
"Working with Tree Mode Rules".

■ When creating a decision function, the tree option for the input types defines
whether assert or assertTree is used to put the input facts in working
memory. For more information on assertTree, see Section 4.8, "Working with
Tree Mode Rules".

■ When XML Schema contain a restriction definition, this allows a user to
restrict the types that are valid for use in an element. A common use of restriction
is to define an enumeration of strings which can be used for an element, as shown
in Example 3–1.

Example 3–1 XML Schema Restriction Example

<xs:simpleType name="status-type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="manual"/>
 <xs:enumeration value="approved"/>
 <xs:enumeration value="rejected"/>
 </xs:restriction>
</xs:simpleType>

Support XPath Assertion Select to enable XPath assertion for the fact. This feature is
provided for backward compatibility only. Typically, this option
is not used.

Attributes area Select the available constructors, properties, methods, or fields
associated with the JAXB class for the XML Fact to display or
edit.

Table 3–1 (Cont.) XML Fact: Edit XML Fact Dialog Fields

Field Description

Working with Java Facts

Working with Facts and Bucketsets 3-7

Oracle JAXB 2.0 maps a restriction to a Java enum type. When you use Rules
Designer to import either a Java enum type or an element with an XML restriction,
the static final fields representing the enums are available for use in expressions.
Additionally, Oracle Business Rules creates a bucketset for each enum containing
all of the enum values and null. For more information on bucketsets, see
Section 3.6, "Working with Bucketsets".

■ There is a default version of the JAXB binding compiler supplied with Oracle
Application Server. You can use a different JAXB binding compiler. However, to
use a different JAXB binding compiler you must manually perform the XML
schema processing and then import the generated Java packages and classes into
the data model as Java Facts.

For more information about JAXB, see

http://java.sun.com/webservices/jaxb/

■ You should reimport facts if you changed the schema or classes and you want to
use the changed schema or classes at runtime. You should correct any validation
warnings that may be caused by incompatible changes (for example, removing a
property that is referenced by a rule). For more information, see Section 3.2.3,
"How to Reload XML Facts with Updated Schema".

■ Most users should not need to use the ObjectFactory or import it. If you do need to
import and use the ObjectFactory, then use a different package name for every
XML Schema that you import; otherwise the different ObjectFactory classes
conflict.

■ The use of XML schema with elements that have minOccurs="0" and
nillable="true" has special handling in JAXB. For more information, see
Section C.13, "Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?".

■ The default element naming conventions for JAXB can cause XML schema
containing the underscore character in XML-schema element names to fail to
compile. For more information, see Section D.8, "Why Does XML Schema with
Underscores Fail JAXB Compilation?".

■ There are certain restrictions on the types and names of inputs for the Decision
Service. For more information, see Section D.9, "How Are Decision Service Inputs
and Outputs Restricted?".

3.3 Working with Java Facts
In Rules Designer, importing a Java Fact makes the Java classes and their methods
become visible to Rules Designer. Rules Designer does not copy the Java code or
bytecode into the data model or into the dictionary.

A Java fact type allows selected properties and methods of a Java class to be imported
to the Rules Engine so that rules can access, create, modify, and delete instances of the
Java class.

Importing a Java fact type allows the Rules Engine to access and use public attributes,
public methods, and bean properties defined in a Java class (bean properties are
preferable because they can be modified using the modify action).

3.3.1 How to Import Java Classes and Define Java Facts
Before you can use Java Facts in rules and in Decision Tables, you must make the
classes and packages that contain the Java Facts available to Rules Designer. To do this

Working with Java Facts

3-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

you use Rules Designer to specify the classpath that contains the Java classes, and then
you import the Java Facts.

To import and define Java Facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the Java Facts tab on the Facts navigation tab as shown in Figure 3–5.

Figure 3–5 The Java Facts Table in the Facts Navigation Tab

3. In the Java Facts tab, click Create.... This displays the Create Java Fact dialog, as
shown in Figure 3–6.

Figure 3–6 Adding a Java Fact

4. In the Create Java Fact dialog, if the classpath that contains the classes you want to
import is not shown in the Classpath area, then click Add to Classpath. This
displays the Choose Directory/Jar dialog.

The default Rules Designer classpath includes three packages, java, javax, and
org. These packages contain classes that Rules Designer lets you import from the

Working with Java Facts

Working with Facts and Bucketsets 3-9

Java runtime library (rt.jar). Rules Designer does not let you remove these classes
from the Classes area (and the associated classpaths are not shown in the
Classpaths area).

5. In the Choose Directory/Jar dialog, browse to select the classpath or jar file to add.
By default, the output directory for the project is on the import classpath and any
Java classes in the project should appear in the Classes importer. If they do not
appear, execute the Build action for the project.

6. Click Open. This adds the classpath or jar file and updates the Classes area.

7. In the Create Java Fact dialog, in the Classes area select the packages and classes
to import as shown in Figure 3–7.

Figure 3–7 Selecting Java Classes for Java Facts

8. Click OK. This updates the Java Facts table in the Java Facts tab.

3.3.2 How to Display and Edit Java Facts
To display or edit Java Facts after you import the Java Facts, use the Edit Java Fact
dialog.

To display and edit Java facts:
1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab in the Facts navigation tab.

3. In the Java Facts table, double-click the Java Fact you want to edit. This displays
the Edit Java Fact dialog as shown in Figure 3–8.

Working with Java Facts

3-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 3–8 Edit Java Fact Dialog

The Edit Java Fact dialog includes the fields shown in Table 3–2.

3.3.3 What You Need to Know About Java Facts
When you define Java Facts you need to know the following:

■ On Windows systems, you can use a backslash (\) or a slash (/) to specify the
classpath in the Classpath area. Rules Designer accepts either path separator.

■ Classes and interfaces that you use in Rules Designer must adhere to the following
rules: If you are using a class or interface, only its superclass or one of its
implemented interfaces may be made visible.

■ When you specify the classpath you can specify a JAR file, a ZIP file, or a full path
for a directory.

Table 3–2 Edit Java Fact Dialog Fields

Field Description

Class Displays the Java Fact class for the source associated with the
Java Fact.

Alias Enter the Java Fact alias.

Super Class Displays Java super class associated with this fact.

Description Enter the Java Fact description.

Visible Select to show the Java Fact in dropdown lists in Rules Designer.

Support XPath Assertion Select to enable XPath assertion for the fact. This feature is
provided for backward compatibility only. Typically this option
is not used.

Attributes area Select the available class properties, constructors, methods, or
fields associated with the Java class for the Java Fact act to
display or edit.

Working with RL Facts

Working with Facts and Bucketsets 3-11

■ When you specify a directory name for the classpath, the directory specifies the
classpath that ends with the directory that contains the "root" package (the first
package in the full package name). Thus, if the classpath specifies a directory,
Rules Designer looks in that tree for directory names matching the package name
structure.

For example, to import a class cool.example.Test1 located in
c:\myprj\cool\example\Test1.class, specify the classpath value,
c:\myprj.

■ You should reimport facts if you change the classes. After the reimport operation
you may see validation warnings due to class changes. You should correct any
validation warnings that may be caused by incompatible changes (for example,
removing a property that is referenced by a rule).

3.4 Working with RL Facts
RL Facts are the only kind of facts that you can create directly and do not have an
external source. All other types of Oracle Business Rules facts are imported. An RL
Fact is similar to a relational database row or a JavaBean without methods. An RL Fact
contains a list of properties of types available in the data model, either RL Fact, Java
Fact, or primitive types. You can use an RL Fact to extend a Java application object
model by providing virtual dynamic types.

For example:

IF customer spent $500 within past 3 months

 THEN customer is a Gold Customer

This rule might use a Java Fact to specify the customer data and also use an action that
creates an RL Fact, Gold Customer. A rule might be defined to use a Gold Customer
fact, as follows:

IF customer is a Gold customer

 THEN offer 10% discount

This rule uses the RL Fact named Gold Customer. This rule then infers, using the Gold
Customer fact, that if a customer spent $500 within the past 3 months, then the
customer is eligible for a 10% discount. In addition rules could specify other ways that
a customer becomes a Gold Customer.

For testing and prototyping with Rules Designer you can create RL Facts and use the
RL Facts to write and test rules before you import a schema and switch to XML Facts
(you might need to wait for an approved XML schema to be created or to be made
available). Switching from RL Facts to corresponding XML Facts involves the
following steps:

1. Delete the RL Facts (this action shows validation warnings in the rules or Decision
Tables you created that use these RL Facts).

2. Import the XML Facts and give the facts and their properties aliases that match the
names of the RL Facts and properties you deleted in step 1.

3. This process should remove the validation warnings if the XML Fact and property
aliases and types match those of the RL Facts that you remove.

3.4.1 How to Define RL Facts
You add RL Facts from the Facts navigation tab.

Working with RL Facts

3-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

To define RL facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the RL Facts tab in the Facts navigation tab as shown in Figure 3–9.

Figure 3–9 RL Facts Tab in Rules Designer

3. In the RL Facts tab, click Create.

4. In the RL Facts table, in the Name field, enter the name for the RL Fact or accept
the default name.

5. In the RL Facts table, in the Description field, enter a description or accept the
default, no description.

3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
You add properties to RL Facts using the Edit RL Facts dialog.

To display and edit RL facts and add RL fact properties:
1. In Rules Designer, select the Facts navigation tab.

2. In the RL Facts tab, double-click the icon for the RL Fact to display or edit the fact.
This displays the Edit RL Fact dialog, as shown in Figure 3–10.

Working with RL Facts

Working with Facts and Bucketsets 3-13

Figure 3–10 Edit RL Fact Dialog

3. To add RL Fact properties, on the Edit RL Fact dialog in the Properties area, click
Create.

a. In the Name field, enter the property name.

b. In the Type field, select a type from the dropdown list or enter a property
type.

c. To associate a bucketset with the property, from the dropdown list in the
Bucketset field, select a bucketset.

d. To associate an initial value with the property enter a value in the Initial
Value field.

4. Add additional properties by repeating these steps, as required.

5. Click OK.

3.4.3 What You Need to Know About RL Facts
When you add properties to RL Facts using the Edit RL Facts dialog, in the Properties
area the Initial Value field provides a dropdown list of possible values as shown in
Figure 3–11.

Working with ADF Business Components Facts

3-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 3–11 Setting RL Fact Property Initial Value

When you are working with some fields in Rules Designer, the initial values
dropdown list or other dropdown lists may be empty as shown in Figure 3–12. In this
case the dropdown list is an empty box. Thus, when Rules Designer does not find
options to assist you in entering values, you must supply a value directly in the text
entry area or click the Expression Builder icon to display the expression builder
dialog.

Figure 3–12 RL Fact Empty List Options for Initial Value Field

3.5 Working with ADF Business Components Facts
ADF Business Components Facts allow you to use ADF Business Components as Facts
in rules and in Decision Tables. By using ADF Business Components Facts you can
assert view object graphs representing the business objects upon which rules should
be based, and let Oracle Business Rules deal with the complexities of managing the
relationships between the various related view objects in the view object graph.

Working with ADF Business Components Facts

Working with Facts and Bucketsets 3-15

For more information, see Chapter 10, "Working with Oracle Business Rules and ADF
Business Components".

3.5.1 How to Import and Define ADF Business Components Facts
When an ADF Business Components view object is imported, an ADF Business
Components fact type is created which has a property corresponding to each attribute
of the view object.

To add ADF Business Components facts:
1. Click the Facts navigation tab and select the ADF-BC Facts tab. This displays the

ADF-BC Facts table, as shown in Figure 3–13.

Figure 3–13 ADF Business Components Facts Tab

2. Click Create.... This displays the ADF Business Components Fact dialog, as shown
in Figure 3–14.

Figure 3–14 Create ADF-BC Fact Dialog

3. In the Connection field, from the dropdown list, select the connection which your
ADF Business Components objects use. The Search Classpath area shows a list of

Working with ADF Business Components Facts

3-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

classpaths. For more information, see Section 3.5.2, "What You Need to Know
About ADF Business Components Fact Classpaths".

4. In the View Definition field, select the name of the view object to import.

5. Click OK. This displays the Facts navigation tab, as shown in Figure 3–15. Note
that the imported fact includes a validation warning. For information on how to
remove this validation warning, see Section 3.5.3, "What You Need to Know About
ADF Business Components Circular References".

Figure 3–15 ADF Business Components Facts in Rules Designer

3.5.2 What You Need to Know About ADF Business Components Fact Classpaths
In the classpath list shown in the Search Classpath area in the Create ADF Business
Components Fact dialog one of the listed classpaths allows you to see the view object
definitions available in your project. In this dialog you only need to click Add to
Classpath when you need to use a classpath that is not available to your project (this
case should be very rare).

3.5.3 What You Need to Know About ADF Business Components Circular References
ADF Business Components Facts can include a circular reference, as shown in
Figure 3–15. When this warning is shown in the Business Rule validation log you need
to manually resolve the circular reference. To do this you must deselect the Visible
checkbox for one of the properties that is involved in the circular reference.

3.5.4 What You Need to Know About ADF Business Components Facts
Each ADF Business Components fact type contains a property named ViewRowImpl
that references the oracle.jbo.Row instance that the fact instance represents and a
property named key_values which points to an
oracle.rules.sdk2.decisionpoint.KeyChain object that may be used to
retrieve the set of key-values for this row and its parent rows.

When working with ADF Business Components Facts you should know the following:

■ Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View
Link Accessors.

Working with Bucketsets

Working with Facts and Bucketsets 3-17

The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many, and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a List, which contains facts of the indicated type at runtime.

■ It is not possible to use ADF Business Components fact types which have cyclic
type dependencies. These cycles must be broken by the deselecting the Visible
checkbox for at least one property involved in the cycle.

■ ADF Business Components fact types are not Java fact types and do not allow
invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact type.
In this case, all getters and setters and other methods become available but the
trade-off is that related view objects become inaccessible and, should related view
object access be required, these relationships must be explicitly managed.

■ Internally, ADF Business Components fact types are instances of RL fact types.

Thus, you cannot assert ADF Business Components view object instances directly
to a Rule Session, but must instead use the helper methods provided in the
MetadataHelper and ADFBCFactTypeHelper classes. For more information,
see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

3.6 Working with Bucketsets
You can create a bucketset to define a list of values or a list of value ranges to limit the
acceptable set of values for a fact or a property of a fact in Oracle Business Rules. You
can define a bucketset as a Global Bucketset that allows reuse, where a bucketset is
named and stored in the data model, or as a Local Bucketset that is specified when
you define a Decision Table and only applies to one condition expression. For more
information on using a local bucketset, see Section 5.2.2, "How to Add Condition Rows
to a Decision Table".

You can use Bucketsets for the following:

■ You can associate fact type properties with bucketsets. This allows you to limit the
acceptable set of values for a property of a fact. For more information, see
Section 3.7.1, "How to Associate a Bucketset with a Fact Property".

■ In a Decision Table a bucketset defines a list of values or value ranges in the
condition expressions that are part of the Decision Table. The bucketset values or
ranges determine, for each condition expression in a Decision Table, that it has
two or more possibilities. Using a bucketset each possibility in a condition
expression is divided into groups or ranges where a cell specifies one Bucket of
values from the bucketset (or possibly multiple buckets of values per cell). For
example, if a bucketset is defined for colors, then the buckets could include a list of
strings: "blue", "red", and "orange". A bucketset that includes integers could have
three buckets, less than 1, 1 to 10, and greater than 10. For more information, see
Section 5.2.2, "How to Add Condition Rows to a Decision Table".

■ You can associate globals, functions, and function arguments with bucketsets.
Associating a bucketset with a global allows for design-time validation that an
assigned value is limited to the values specified in the bucketset. Associating a
bucketset with a function argument validates that the function is only called with
values in the bucketset. Using bucketsets in this manner allows Rules Designer to
report validation warnings for global values and function arguments that are

Working with Bucketsets

3-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

assigned or passed a constant argument value that is not allowed. This type of
bucketset validation is "weak" in the sense that only design-time constant values
are validated. No runtime checks are applied based on the globals or function
arguments associated with bucketsets. Associating a bucketset with a function
automatically sets a Decision Table condition row to use that bucketset when the
function is used as the expression for that condition row. For more information,
see Section 3.7.2, "How to Associate a Bucketset with Functions or Function
Arguments".

■ In addition to design-time validation you can use an LOV bucketset to provide
options that are displayed in lists when entering expressions in IF/THEN rule
tests and actions. For more information, see Section 4.11.3, "How to Use Bucketsets
to Provide Options for Test Expressions".

There are three forms for bucketsets:

■ LOV: Defined by a list of values (see Section 3.6.1, "How to Define a List of Values
Global Bucketset").

■ Range: Defined by a list of value ranges, defined by the range endpoints (see
Section 3.6.2, "How to Define a List of Ranges Global Bucketset").

■ Enum: Defined by a list of enumerated types that is imported from either of:

■ XML types (see Section 3.6.3, "How to Define an Enumerated Type (Enum)
Bucketset from XML Types").

■ Java facts (see Section 3.6.4, "How to Define an Enumerated Type (Enum)
Bucketset from Java Types").

3.6.1 How to Define a List of Values Global Bucketset
A list of values bucketset lets you specify the type and the list of buckets for the
bucketset.

For more information, see Section 3.6.5, "What You Need to Know About List of Values
Bucketsets".

To define a list of values (LOV) global bucketset:
1. From Rules Designer select the Bucketsets navigation tab.

2. From the dropdown list next to the Create BucketSet... icon, select List of Values,
as shown in Figure 3–16.

Working with Bucketsets

Working with Facts and Bucketsets 3-19

Figure 3–16 Adding a List of Values Bucketset

3. Double-click the bucket icon for the bucket. This displays the Edit Bucketset
dialog.

4. In the Edit Bucketset dialog, enter the bucketset name in the Name column.

5. In the Data Type column select a data type from dropdown list.

For example, select String from the dropdown list.

6. Click the Create icon to add a value.

7. For each bucket that you add, do the following:

■ In the Value field, enter a value. Note that for String type values in an LOV
bucket, you can select the entire string with three clicks. This allows you to
enter the string and Rules Designer adds the same alias without quotation
marks, as shown in Figure 3–17.

■ In the Alias field, enter an alias.

■ In the Allowed in Actions field, select this if the value is an allowable value.

For more information on the Allowed in Actions field and the Include
Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know
About Bucketset Allowed in Actions Option".

■ In the Description field, enter a description.

8. Add additional values by clicking the Create icon as needed for the bucketset, as
shown in Figure 3–17.

Working with Bucketsets

3-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 3–17 Create List of Values Bucketset

9. On the Edit Bucketset window, click OK.

You can control rule ordering in a Decision Table by changing the relative position of
the buckets in an LOV bucketset associated with a condition expression in a Decision
Table.

To change the order of buckets in a list of values bucketset:
1. In the Edit Bucketset dialog for the bucketset, select the bucket you want to

reorder.

2. Click the Move Down icon to reorder the bucket down.

3. Click the Move Up icon to reorder the bucket up.

4. Click OK.

3.6.2 How to Define a List of Ranges Global Bucketset
A list of ranges bucketset lets you specify the type and the endpoints for buckets in the
bucketset.

For more information, see Section 3.6.6, "What You Need to Know About Range
Bucketsets".

To define a list of ranges (range) global bucketset:
1. From Rules Designer select the Bucketsets navigation tab.

2. From the dropdown list next to the Create BucketSet... icon, select List of Ranges.

3. Double-click in the Data Type field. This displays the Edit Bucketset dialog, as
shown in Figure 3–18.

Working with Bucketsets

Working with Facts and Bucketsets 3-21

Figure 3–18 Edit Bucketset: List of Ranges

4. In the Edit Bucketset dialog, enter the bucketset name in the Name field.

5. In the Edit Bucketset dialog, in the Data Type field, from the dropdown list, select
the appropriate data type for the bucketset.

In this example, select int.

6. Click the Add Bucket icon repeatedly to add the number of buckets you need in
the bucketset as shown in Figure 3–19.

Figure 3–19 Edit Bucketset: Adding Required Buckets

In these steps you add three buckets. You start with the default values, as shown
in Figure 3–19. After changing the default buckets, the buckets have the following
values:

■ greater than 1000

■ between 500 and 1000, inclusive

■ less than 500

Rules Designer added the buckets with the default values of 50 and 0 and a
negative Infinity (-Infinity) bucket.

7. Starting at the first or top bucket, in the Endpoint field, double-click the default
value and enter the top value bucket endpoint, and press Enter.

In this example, enter 1000 for the first bucket.

Working with Bucketsets

3-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

8. In the Included Endpoint field, select the checkbox as appropriate to include or
exclude the bucket endpoint.

In this example, you can leave this checkbox checked to include the bucket
endpoint.

9. In the Allowed in Actions field select the checkbox as appropriate to include the
bucket in the bucketset allowable values.

For more information on the Allowed in Actions field and the Include
Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know
About Bucketset Allowed in Actions Option".

10. Optionally, in the Alias field double-click the default value and enter the desired
bucket alias, and press Enter.

The alias appears in Decision Tables that use this bucketset. Use an alias to give a
more meaningful name to the bucket than the default value (the range-based
Range value).

The Range field is read-only: it clearly identifies the actual range associated with
the bucket regardless of the Alias value. For more information, see Section 3.6.6,
"What You Need to Know About Range Bucketsets").

11. Moving down the list of buckets, for each subsequent bucket, repeat from Step 7.
For the second bucket, enter the endpoint value 500.

Figure 3–20 shows the completed bucketset.

Figure 3–20 Edit Bucketset: Completed Range Buckets

12. In the Edit Bucketset dialog, click OK.

3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types
When you import an XML schema, if the XSD contains enumeration values Rules
Designer automatically creates an enumerated type bucketset for each enumeration.
Although enumerated type bucketsets are read-only, you can change the order of
buckets.

For more information, see Section 3.2.4, "What You Need to Know About XML Facts".

To define an enumerated type (enum) bucketset from XML types:
1. Obtain an XSD with the desired enumerations.

Working with Bucketsets

Working with Facts and Bucketsets 3-23

Example 3–2 shows the order.xsd schema file which contains the enumeration
Status.

Example 3–2 Order.xsd Schema

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"

targetNamespace="http://example.com/ns/customerorder"
xmlns:tns="http://example.com/ns/customerorder"
xmlns="http://www.w3.org/2001/XMLSchema">

<element name="CustomerOrder">
<complexType>
<sequence>
<element name="name" type="string" />
<element name="creditScore" type="int" />
<element name="annualSpending" type="double" />
<element name="value" type="string" />
<element name="order" type="double" />

</sequence>
</complexType>

</element>
<element name="OrderApproval">
<complexType>
<sequence>
<element name="status" type="tns:Status"/>

</sequence>
</complexType>

</element>
<simpleType name="Status">
<restriction base="string">

<enumeration value="manual"/>
<enumeration value="approved"/>
<enumeration value="rejected"/>

</restriction>
</simpleType>

</schema>

2. Open a dictionary in Rules Designer and create XML facts using the specified
schema that contains the enumeration. For more information, see Section 3.2,
"Working with XML Facts".

3. Click the Bucketsets navigation tab and select the Enum bucketset to see the
bucketset, as shown in Figure 3–21. In Figure 3–21, notice that the imported
Status enumeration values shown in Example 3–2 are imported as buckets with
the XSD-specified values.

Working with Bucketsets

3-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 3–21 Bucketset Showing the Form Enum with Imported Values

You can control rule ordering in a Decision Table by changing the relative position of
the buckets in an enum bucketset associated with a condition expression in a Decision
Table.

To change the order of buckets in an enum bucketset:
1. In the Edit Bucketset dialog for the bucketset, select the bucket you want to

reorder.

2. Click the Move Down icon to reorder the bucket down.

3. Click the Move Up icon to reorder the bucket up.

4. Click OK.

3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types
When you import a Java enum, Rules Designer automatically creates an enumerated
type bucketset for each Java enum. Although enumerated type bucketsets are
read-only, you can change the order of buckets.

To define an enumerated type (enum) bucketset from Java facts:
1. Create or obtain the Java class with the desired enumerations.

Example 3–3 shows the RejectPurchaseItem.java class which contains
enumeration OrderSize.

Example 3–3 Java Fact with enum OrderSize

package com.example;

public class Class1
{

public enum OrderSize { SMALL, MEDIUM, LARGE };
public Class1()
{
}

}

2. In Rules Designer open a dictionary and create a Java Fact using the Java class. For
more information, see Section 3.3, "Working with Java Facts".

Working with Bucketsets

Working with Facts and Bucketsets 3-25

Figure 3–22 shows a how to create a Java fact for the Java enumeration
Class1$OrderSize.

Figure 3–22 Creating a Java Fact

3. In Rules Designer click the Bucketsets navigation tab and select the Enum
bucketset, as shown in Figure 3–23. Note that the Class1$OrderSize
enumeration from the enumeration in Example 3–3 is now a bucketset with the
Java enum-specified values.

Figure 3–23 Edit Bucketset Dialog for Java Enum

You can control rule ordering in a Decision Table by changing the relative position of
the buckets in an enum bucketset associated with a condition expression in a Decision
Table.

Working with Bucketsets

3-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

To change the order of buckets in an enumerated type (enum) bucketset:
1. In the Edit Bucketset dialog for the bucketset, select the bucket you want to

reorder.

2. Click the Move Down icon to reorder the bucket down.

3. Click the Move Up icon to reorder the bucket up.

4. Click OK.

3.6.5 What You Need to Know About List of Values Bucketsets
In a Decision Table the order of the buckets in a bucketset associated with a condition
expression determines the order of the condition cells, and thus the order of the rules.
You can control rule ordering in a Decision Table by changing the relative position of
the buckets in a list of values bucketset associated with a condition expression;
however, you cannot reorder range buckets.

Figure 3–24 shows a bucketset definition in Rules Designer for a bucketset named
colors using a list of values.

Figure 3–24 Bucketset Definition Using List of Values

As shown in Figure 3–24, by default with a List of Values bucketset there is a value
otherwise included with the list of values (LOV). This value, otherwise, is distinct
from all other values and matches all values of the type that have no other bucket.
Thus, with otherwise in the list of values a condition expression that uses the
bucketset can handle every value and provides a match for every value of the specified
type, where a match is either a defined value or the otherwise bucket. The
otherwise value cannot be removed from an LOV bucketset but it can be excluded
by clearing the Allowed in Actions checkbox (when otherwise is excluded an
attempt to assign any value that is not in the list of buckets in the bucketset causes a
validation warning).

Table 3–3 shows the bucketset values that Rules Designer supports for LOV
bucketsets.

Working with Bucketsets

Working with Facts and Bucketsets 3-27

3.6.6 What You Need to Know About Range Bucketsets
When you add a bucket to a List of Ranges bucketset, the value is calculated based on
the currently selected bucket value and the next highest bucket value. When you
change the endpoint value the value is automatically sorted in the bucketset; thus, it
does not matter where a bucket is added. However, it is possible for Rules Designer to
not have spaces between the current bucketset endpoint value and the endpoint value.
In this case, Rules Designer shows a validation warning of the following form:

RUL-05849: Bucketset has duplicate bucket value "4999"

To correct this problem you must modify bucket endpoints to remove the duplicate
bucket.

Figure 3–25 shows the Edit Bucketset window for a bucketset with an integer, int,
range.

Figure 3–25 Bucketset Definition Using List of Ranges and Three Endpoints

Table 3–4 shows the types Rules Designer supports for Range buckets.

Table 3–3 Supported Types for LOV Bucketsets

Type Description

Java primitive types This includes int, double, boolean, char, byte, short,
long, and float

String Contains String types

Calendar Contains Calendar types in the current locale

Note: You are not required to specify an LOV bucketset when you
use a boolean type in a Decision Table. For boolean types, Oracle
Business Rules provides built-in buckets for the possible values (true
and false).

Table 3–4 Supported Types for Range Buckets

Type Description

Selected primitive types This includes: int, double, short, long, and float

Working with Bucketsets

3-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Note the following conventions for the Range field:

■ Logical operator: specifies a range with respect to positive or negative infinity. For
example, ">=25" means "from 25 to positive infinity" and "<18" means from
negative infinity up to but not including 18.

■ Square bracket "[": specifies a range that includes this end point value. For
example, "[18..25)" means "from 18 up to but not including 25".

■ Round bracket ")": specifies a range that excludes this end point value. For
example, "(18..25]" means "over 18, not including 18, up to and including 25".

3.6.7 What You Need to Know About Bucketset Allowed in Actions Option
When you define buckets in a bucketset you might define some buckets corresponding
to non-permissible values. For example, in a bucketset for driver ages you would
typically not allow a bucket that contains values less than 0. Thus, when a fact with
driver data includes an age property associated with a driver ages bucketset, then you
should not be able to create or modify a fact that has the age property set to a value
such as -1. In a bucketset you select Allowed in Actions for valid buckets and deselect
this option for invalid buckets.

The bucketset option Include Disallowed Buckets in Tests allows you to include all
the buckets, whether Allowed in Actions is selected or not, in Decision Table
conditions and in rule tests. By including all buckets you can explicitly test for illegal
values. Using the option Include Disallowed Buckets in Tests you can handle two
possible cases:

1. The input data for the Oracle Business Rules Engine is clean and does not contain
invalid data (such as a negative age). In this case, you should deselect the Include
Disallowed Buckets in Tests. Note: the reason you do not want to make age < 0
an Allowed in Actions is this provides design time validation warnings if you try
to create an action that uses an invalid value, such as the following:
modify(driver, age: -1)). For more information, see Section 4.11, "Using
Bucketsets as Constraints for Options Values in Rules".

2. You want to consider excluded buckets in rule tests and in Decision Tables. In this
case, you should select Include Disallowed Buckets in Tests. This is useful when
the input data for the Oracle Business Rules Engine may not be clean and may
contain invalid data (for example an invalid negative age). A Decision Table that
provides actions for all bucketsets could include cases for excluded buckets and
provide an appropriate action, such as asserting an error fact. To handle this you
could either select the Allowed in Actions field for every bucket in the bucketset,
or, leave the Allowed in Actions field configured as is and select the Include
Disallowed Buckets in Tests field. Using the Include Disallowed Buckets in
Tests field is not only convenient, you do not need to reconfigure every bucket, it
also preserves the configuration of Allowed in Actions so that you can easily
reuse this bucketset to handle the first case (when you deselect Include
Disallowed Buckets in Tests).

Calendar Contains Calendar types in the current locale

Table 3–4 (Cont.) Supported Types for Range Buckets

Type Description

Associating a Bucketset with Facts and Functions

Working with Facts and Bucketsets 3-29

3.6.8 What You Need to Know About Bucket Values
When you enter a bucket value in a bucketset, the value you supply must be valid for
the type specified for the bucketset. If the value you enter is not valid for the bucketset
type, Rules Designer makes the value you supply a string by adding quotation marks.
Adding quotation marks is the only way to make a legal literal when the user
provided data is not appropriate for the specified type. For example, if you add an int
type LOV bucketset, and then supply a value 2.2 to a bucket, Rules Designer shows a
warning such as the following:

RUL-05833: Invalid characters "2.2" in bucket value

To fix this problem either enter a valid value for the bucket value, for example in this
case the value 2, or change the type of the bucketset.

For an additional example, when you enter a value for a bucket, for example if you
enter a bucket value with bucketset with data type short and add a bucket with the
value 999999, Rules Designer assigns this the value "999999". The maximum value for
a short is 32767. In this case you see a warning related to the bucket value, similar to
the previous example, because a String is not a valid bucket value for a bucketset with
data type short. The solution to this is to enter appropriate values for all buckets (in
this example, enter a value less than or equal to 32767).

3.7 Associating a Bucketset with Facts and Functions
After you define a global bucketset you can associate parts of the data model with the
global bucketset (if their types are compatible). In this way, condition cells in the
Conditions area can automatically be assigned a bucketset when you define a
Decision Table. Also, when a bucketset is associated with a fact property Oracle
Business Rules uses the buckets that you define as constraints for the values for
expressions for the fact property in rules.

3.7.1 How to Associate a Bucketset with a Fact Property
To prepare for creating Decision Tables you can associate a global bucketset with fact
properties in the data model.

To associate a bucketset with a fact property:
1. From Rules Designer select the Facts navigation tab.

2. Select the fact type you are interested. This displays the appropriate Edit Fact
dialog for the fact type you select.

3. In the Properties table, under Bucketset, select the cell for the appropriate fact
property and from the dropdown list select the bucketset you want to associate
with the property. For example, see Figure 3–26.

Associating a Bucketset with Facts and Functions

3-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 3–26 Defining a Bucketset for a Property

4. On the Edit Fact page, click OK.

3.7.2 How to Associate a Bucketset with Functions or Function Arguments
To prepare for creating Decision Tables you can associate a global bucketset with
functions in the data model.

To associate a bucketset with a function return value:
1. From Rules Designer select the Functions tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3. In the Functions table, under Bucketset, select the cell and from the dropdown list
select the bucketset you want to use. For example, see Figure 3–27.

Associating a Bucketset with Facts and Functions

Working with Facts and Bucketsets 3-31

Figure 3–27 Defining a Bucketset for a Function Return Value

To associate a bucketset with a function argument:
1. From Rules Designer select the Functions navigation tab.

2. Select the function to edit. This shows the function arguments and the function
body for the specified function.

3. In the Functions table, in the Arguments area select the appropriate argument.

4. For the specified argument, under Bucketset, select the cell and from the
dropdown list select the bucketset you want to use.

Associating a Bucketset with Facts and Functions

3-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

4

Working with Rulesets and Rules 4-1

4Working with Rulesets and Rules

A ruleset is an Oracle Business Rules object that you use to group one or more rules
and Decision Tables.

This chapter includes the following sections:

■ Section 4.1, "Introduction to Working with Rulesets and Rules"

■ Section 4.2, "Working with Rulesets"

■ Section 4.3, "Working with Rules"

■ Section 4.4, "Validating Dictionaries"

■ Section 4.5, "Using Advanced Settings with Rules and Decision Tables"

■ Section 4.6, "Working with Nested Tests"

■ Section 4.7, "Working with Advanced Mode Rules"

■ Section 4.8, "Working with Tree Mode Rules"

■ Section 4.9, "Using Date Facts, Date Functions, and Specifying Effective Dates"

■ Section 4.10, "Working with Expression Builder"

■ Section 4.11, "Using Bucketsets as Constraints for Options Values in Rules"

For more information, see Section 1.1.5, "What Are Rulesets?".

4.1 Introduction to Working with Rulesets and Rules
You can use business rules to define key decisions and policies for a business,
including:

■ Business Policies: for example spending policies and approval matrices

■ Constraints: for example valid configurations or regulatory requirements

■ Computations: for example discounts, premiums, or scores

■ Reasoning Capabilities: for example offers based on customer value

Oracle Business Rules provides two ways to work with rules:

■ Using IF/THEN rules

■ Using rules in a Decision Table

This chapter describes working with IF/THEN rules. For information on Decision
Tables, see Chapter 5, "Working with Decision Tables".

Working with Rulesets

4-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

4.2 Working with Rulesets
A ruleset provides a unit of execution for rules and for Decision Tables. In addition,
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets
can be executed in order. This is called rule flow. The ruleset stack determines the
order. The order can be manipulated by rule actions that push and pop rulesets on the
stack. In rulesets, the priority of rules applies to specify the order of firing of the rules
in the ruleset. Rulesets also provide an effective date specification that identifies that
the ruleset is always active, or that the ruleset is restricted based on a time and date
range, or a starting or ending time and date.

4.2.1 How to Create a Ruleset
All rules and Decision Tables are created in a ruleset. A ruleset organizes rules and
Decision Tables into a unit of execution.

To create a ruleset:
1. In Rules Designer, go to the Rulesets navigation tab.

2. Click the Create Ruleset... icon. This displays the Create Ruleset dialog.

3. Enter a name in the Name field.

4. Enter a description in the Description field, as shown in Figure 4–1.

Figure 4–1 Adding a Ruleset

5. Click OK.

4.2.2 How to Set the Effective Date for a Ruleset
Effective date support provides the ability to specify a start date and an end date for a
ruleset, a rule or a Decision Table. For a ruleset the effective date defines the date
range in which the rules and Decision Tables within the ruleset are effective. For more
information on effective dates, see Section 4.9, "Using Date Facts, Date Functions, and
Specifying Effective Dates".

To set the effective date for a ruleset:
1. Select the ruleset name from the Rulesets navigation tab.

2. Click the navigation icon next to the ruleset name to expand the ruleset
information to show the ruleset Name, Description, and Effective Date fields, as
shown in Figure 4–2.

Working with Rulesets

Working with Rulesets and Rules 4-3

Figure 4–2 Ruleset Showing Effective Date Field

3. Select the Effective Date entry. This displays the Set Effective Date dialog, as
shown in Figure 4–3.

Figure 4–3 Using the Set Effective Date Dialog

4. Use the Set Effective Date dialog to specify the effective dates for the ruleset.
Clicking the Set Date icon displays a calendar to assist you in entering the From
and To field data.

4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset
As the number of rules in a ruleset increases, it can be difficult to navigate the list of
rules. You can instruct Rules Designer to filter the list of rules, to display only rules of
interest. For example, you can display only active rules or only rules that have
validation warnings.

For more information on creating rules, see Section 4.3, "Working with Rules".

To use a filter to display matching rules in a ruleset:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. To show the rule filter settings, next to the ruleset name, click Show Filter Query
as Figure 4–4 shows.

Working with Rulesets

4-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–4 Showing a Filter Query in a Ruleset

3. In the Filter Query field, click <insert test> to insert a default test as Figure 4–5
shows.

Figure 4–5 Inserting a Default Filter Query Test

4. Configure the default test.

In this case, as shown in Figure 4–6, when you click an <operand> you can choose
from the rule-specific options shown in Table 4–1.

Table 4–1 Rule Filter Query Operands

Operand Description

name Matches against the rule name.

description Matches against the rule description.

priority Matches against the rule priority. For more information, see
Section 4.5.5, "How to Set a Priority for a Rule".

start date Matches against the rule start date. For more information, see
Section 4.9.2, "How to Set the Effective Date for a Rule".

Working with Rulesets

Working with Rulesets and Rules 4-5

Figure 4–6 Filter Query Operands

For more information, see Section 4.3.2, "How to Define a Test in a Rule".

end date Matches against the rule end date. For more information, see
Section 4.9.2, "How to Set the Effective Date for a Rule".

minutes until start date Matches against a specified number of minutes until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule".

minutes until end date Matches against a specified number of minutes until the rule end date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule".

days until start date Matches against a specified number of days until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

days until end date Matches against a specified number of days until the rule end date. For
more information, see Section 4.9.2, "How to Set the Effective Date for a
Rule"

years until start date Matches against a specified number of years until the rule start date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

years until end date Matches against a specified number of years until the rule end date.
For more information, see Section 4.9.2, "How to Set the Effective Date
for a Rule"

is active Matches against whether the rule is active. For more information, see
Section 4.5.3, "How to Select the Active Option".

is valid Matches against whether the rule has validation warnings. For more
information, see Section 4.4.2, "Understanding Rule Validation".

referenced fact types Matches against one or more fact types.

Table 4–1 (Cont.) Rule Filter Query Operands

Operand Description

Working with Rules

4-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

5. Select the operator to choose an operator for the comparison. For example, for the
name you can select startsWith from the operand list.

6. Enter a comparison operand for the right-hand-side of the filter test. For example,
enter the string Customer.

7. When the filter query is complete you can apply the filter to the rules in the
ruleset:

a. To apply the filter, select the Filter On checkbox.

Rules Designer displays only the rules that match the filter query as Figure 4–7
shows.

Figure 4–7 Enable Filter Query in a Ruleset with Filter On Option

b. To disable the filter query, deselect the Filter On checkbox.

Rules Designer displays all the rules in the ruleset.

c. To delete the filter query, select it and press Delete or click the Clear Filter
icon.

4.3 Working with Rules
You create business rules to process facts and to obtain intermediate conclusions that
Oracle Business Rules can process. You create rules in a ruleset, so before working
with rules you need to create a ruleset (or use the default ruleset). For more
information on creating a ruleset, see Section 4.2, "Working with Rulesets".

You can easily test your rules as you are designing them without having to deploy
your application. For more information, see Section 8.1.1, "How to Test Rules Using a
Test Function in Rules Designer".

Rules Designer rule validation can assist you when you work with rules. To show the
validation log window, click the Validate icon or select View>Log and select the
Business Rule Validation tab. This displays warnings for incorrect or incomplete
rules. Note that you must correct all warnings before you can test or deploy rules. For

Working with Rules

Working with Rulesets and Rules 4-7

more information on rule validation, see Section 4.4.2, "Understanding Rule
Validation".

As the number of rules in a ruleset increases, you can configure Rules Designer to filter
the list of rules to show only rules of interest. For more information, see Section 4.2.3,
"How to Use a Filter to Display Matching Rules in a Ruleset".

4.3.1 How to Add Rules
To create a rule you first add the rule to a ruleset, and then you insert tests and actions.
The actions are associated with pattern matches. At runtime when a test in the IF area
of a rule matches, the Rules Engine activates the THEN action and prepares to run the
actions associated with the rule.

Rules Designer lets you create a rule where by default the rule fires for each matching
fact. To enable other options, where the same fact type matches more than once, or
never, you select Advanced Mode. For more information on advanced mode and
showing advanced settings, see Section 4.5, "Using Advanced Settings with Rules and
Decision Tables".

To add rules in a ruleset:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules.

3. Click Add to add a rule. For example, click Add to add a rule named Rule_1, as
shown in Figure 4–8.

Figure 4–8 Adding a Rule in a Ruleset

4.3.2 How to Define a Test in a Rule
To create a test in a rule you add conditions for facts. For example, with a sample
CustomerOrder fact with an annual spending property, you can add a test to

Working with Rules

4-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

determine if a customer order is associated with a high value of spending, based on
the annual spending for the customer. Note that you can use bucketsets to limit the
values for tests and actions in rules. For more information, see Section 4.11, "Using
Bucketsets as Constraints for Options Values in Rules".

Figure 4–9 shows this sample rule.

Figure 4–9 Adding a Test to a Rule

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts. For this sample rule, Rule_1,
when a fact matches the Rules Engine modifies the fact and then modifies the value
property to "High".

To define tests in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).

3. Add or select the rule you want to use, for example, select Rule_1.

4. In Rule_1, in the IF area, select <insert test>.

5. For a test, the IF area of a rule includes a left-hand-side <operand> and a
right-hand-side <operand>, as shown in Figure 4–10.

Figure 4–10 Rule Test with Left-hand-side operand and Right-hand-side operand

6. In a test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a dropdown list, as shown in Figure 4–11:

Working with Rules

Working with Rulesets and Rules 4-9

Figure 4–11 Configuring the Left-hand-side Operand of a Test in a Rule

a. To enter a value use the dropdown list to select an item from the value
options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

The value you enter must agree with the type of the corresponding operand.
For example, in the test IF CustomerOrder.annualSpending >
<operand>, valid values for <operand> must agree with the type of
CustomerOrder field annualSpending.

7. In a test, you replace the operator with the desired logical operator or accept the
default (==). To do this, select the default == operator. This displays a text entry
area and a dropdown list, as shown in Figure 4–12.

To test a logical condition between the left-hand and right-hand operands, select
one of the logical operators as shown in Figure 4–12: == (equality), != (not equal),
> (greater than), >= (greater than or equal to), < (less than), <= (less than or equal
to).

Working with Rules

4-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–12 Configuring the Operator of a Test in a Rule

8. In a test, you replace the right-hand-side operand with a value.

Configure the <operand> placeholder as you would for any operand.

For example, enter 2000 into the text entry area and press Enter or Return, as
shown in Figure 4–13.

Figure 4–13 Configuring the Right-hand-side Operand of a Test in a Rule

4.3.3 How to Define Range Tests in Rules
To create a range test in a rule, you add conditions for facts. For example, with a
sample CustomerOrder fact with an annual spending property, you can add a test to
determine if the value of a customer order falls between an upper and lower range.

The following summarizes this sample rule:

Working with Rules

Working with Rulesets and Rules 4-11

IF
 CustomerOrder.annualSpending between 100 and 2000
THEN
 Modify CustomerOrder.value = "Normal"

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define range tests in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).

3. Add or select the rule you want to use, for example, select Rule_1.

4. In Rule_1, in the IF area, select <insert test>.

5. The test in the IF area of a rule includes a left-hand side <operand> and a
right-hand-side <operand>, as shown in Figure 4–14.

Figure 4–14 Rule Test with Left-hand-side operand and Right-hand-side operand

6. In a range test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a dropdown list, as shown in Figure 4–15:

Figure 4–15 Adding a Test Left-hand-side Operand to a Rule

Working with Rules

4-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

a. To enter a value use the dropdown list to select an item from the value
options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.
The value you enter must agree with the type of the corresponding operand.

For example, in the test IF CustomerOrder.annualSpending >
<operand>, valid values for <operand> must agree with the type of
CustomerOrder field annualSpending.

7. In a range test, you choose the between operator. To do this, select the default ==
operator. This displays a text entry area and a dropdown list. Select between as
shown in Figure 4–16.

Figure 4–16 Configuring the Operator of a Range Test in a Rule

This adds two more <operand> placeholders as shown in Figure 4–17.

Figure 4–17 Between Operator in a Range Test

8. Configure the <operand> placeholders as you would for any operand as shown in
Figure 4–18.

Working with Rules

Working with Rulesets and Rules 4-13

Figure 4–18 Configuring the Operand of a Range Test in a Rule

The test is true when the left-most operand
(CustomerOrder.annualSpending) is between the values 100 and 2000.

4.3.4 How to Define Set Tests in Rules
To create a set test in a rule, you add conditions for facts. For example, with a sample
CustomerOrder fact with a line item property you can add a test to determine if the
line item belongs to an arbitrary set of products.

The following summarizes this sample rule:

IF
 CustomerOrder.lineItem.sku in 12345, 43255, 76348
THEN
 Modify CustomerOrder.value = "High"

At runtime, when this rule is processed the Rules Engine checks the facts against rule
pattern tests that you define to find matching facts.

To define set tests in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In the View field, select IF/THEN Rules (this is the Rules Designer default).

3. Add or select the rule you want to use, for example select Rule_1.

4. In Rule_1, in the IF area select <insert test>.

5. The test in the IF area of a rule includes a left-hand side <operand> and a
right-hand-side <operand>, as shown in Figure 4–10.

Working with Rules

4-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–19 Rule Test with Left-hand-side operand and Right-hand-side operand

6. In a set test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and
a dropdown list as shown in Figure 4–20:

Figure 4–20 Adding a Test Left-hand-side Operand to a Rule

a. To enter a value use the dropdown list to select an item from the value
options.

You can view the options using a single list, by selecting List View, or using a
navigator by selecting Tree View.

b. To enter a literal value, type the value into the text entry area and press Enter.

7. In a set test, you use the in operator. To do this, select the default == operator.
This displays a text entry area and a dropdown list. Select in as shown in
Figure 4–21.

Working with Rules

Working with Rulesets and Rules 4-15

Figure 4–21 Configuring the Operator of a Set Test in a Rule

This adds two more <operand> placeholders in a comma separated list and an
<insert> placeholder as shown in Figure 4–22.

Figure 4–22 In Operator in a Set Test

To add another operand to the list, click <insert>.

To delete an operand from the list, right-click the operand and select Delete Test
Expression.

8. Configure the <operand> placeholders as you would for any operand as shown
in Figure 4–23.

Working with Rules

4-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–23 Configuring the Operands of a Set Test in a Rule

The test is true when the value of the left-most operand
(CustomerOrder.lineItem.sku) is any of 12345, 43255, or 76348.

4.3.5 How to Define Actions in Rules
To create a rule you insert tests and you insert actions. The actions are associated with
pattern matches. When a test in the IF area of a rule matches, the Rules Engine
activates the THEN action and prepares to run the actions associated with the rule.

When you add an action, you use one of the forms of actions shown in Table 4–2. For
each form shown in Table 4–2 the options that Rules Designer presents are context
sensitive, so the lists and the number of items you work with may be different,
depending on which action you add and the choices you make while you enter the
action. Table 4–2 shows the basic actions; additional actions are available with
Advanced Mode. For more information on advanced mode see Section 4.5, "Using
Advanced Settings with Rules and Decision Tables".

To define actions in rules:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. In a rule, in the THEN area, select <insert action>. This displays the add action list
as shown in Figure 4–24.

Table 4–2 Rule Action Choices

Action Form Description

Assert New Assert a new fact

Modify Modify a data value associated with a matched fact

Retract Retract a fact

Call Call a function

Working with Rules

Working with Rulesets and Rules 4-17

Figure 4–24 Adding a Modify Action to a Rule

3. In the add action list, select the type of action you want to add. For example, select
modify.

4. In the THEN area, select <target> to display the option list. For example, select
customerOrder as shown in Figure 4–25.

Figure 4–25 Adding Modify Action to a Rule and Selecting the Target

5. Select <add property>. This displays the Properties dialog.

6. In the Properties dialog, in the Value column, enter "High" (include the double
quotation marks) and press Enter or Return as shown in Figure 4–26.

Working with Rules

4-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–26 Adding Modify Action Property and Value to a Rule

7. In the Properties dialog, click Close. This displays the rule as shown in
Figure 4–27.

Figure 4–27 Rule with Test and Action Added

4.3.6 What You Need to Know About Rule Actions
A rule loop occurs when the value for a condition is changed by an action. Loops can
occur across rules in a single rule, spread over several Decision Tables, or spread over
rules and Decision Tables in the same ruleset. You need to avoid creating rule actions

Validating Dictionaries

Working with Rulesets and Rules 4-19

that modify fact properties that are used in rule conditions. At runtime, such rules
could cause an infinite loop.

4.4 Validating Dictionaries
Rules Designer performs dictionary validation when you make any change to the
dictionary. Rules Designer validation can assist you when you work with rules or
Decision Tables. To show the validation log window, click the Validate icon or select
View>Log and select the Business Rule Validation tab. This displays warnings for
incorrect or incomplete rules. Note that you must correct all warnings before you can
test or deploy rules.

When a dictionary is invalid, Rules Designer produces a list of warning messages and
lists the associated dictionary objects. You can use the validation message information
to locate the dictionary object and to correct problems. In addition, Rules Designer
flags objects with validation warnings with a validation indicator (a red, wavy
underline), as shown in Figure 4–28.

Figure 4–28 Validation Warnings Shown in Log and On Screen with Wavy Underline

If a dictionary is invalid, you can save the dictionary. However, you can only generate
RL Language for a dictionary that is valid and does not display warnings in the Rules
Designer validation log.

In the validation log, each validation message includes the following:

■ Message: The message provides details on the Oracle Business Rules exception
that describes the problem.

Validating Dictionaries

4-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Dictionary Object: This field displays a path that indicates details that should
allow you to identify a component in the dictionary.

■ Property: provides information on a property of the object associated with the
warning message.

When you are viewing the validation log, if you select an item and then right-click and
select from the dropdown list Select and Highlight Object in Editor, Rules Designer
moves the cursor to select the dictionary object. Note that for some validation
warnings this functionality is not possible.

4.4.1 Understanding Data Model Validation
Rules Designer performs dictionary validation when you make any change to the
dictionary. When Rules Designer displays a warning message, the validation log
includes a message that should assist you in locating the dictionary object that caused
the validation warning. For example, the following string indicates that the warning
originates from the data model object named RLFact_1. In addition, the problem is in
the property named test_int:

CarRental/Data Model/RLFact_1/test_int/Expression

Table 4–3 specifies the parts of the dictionary object name specified in a validation
message.

For more information, see:

■ Section 4.4.2, "Understanding Rule Validation"

■ Section 4.4.3, "Understanding Decision Table Validation"

■ Section 4.4.4, "How to Validate a Dictionary"

4.4.2 Understanding Rule Validation
When you click the Validate icon Rules Designer displays the validation log. When
you first add a rule you see validation warnings similar to those shown in Figure 4–29.

Table 4–3 Data Model Dictionary Property in Validation Log

Name Description

CarRental Dictionary Name

Data Model Data Model component in dictionary.

RLFact_1 Element name in data model

test_int Property name in the specified element.

Expression Expression part of property.

Validating Dictionaries

Working with Rulesets and Rules 4-21

Figure 4–29 Rules Validation Messages

The dictionary object name part of a validation message for a rule includes details that
help you to identify the ruleset, the rule, and an area in the rule that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem:

OracleRules1/Ruleset_2/Rules_1/Pattern[1]

In validation messages, the dictionary object name for a rule uses indexes that start at
1. Thus, the first pattern is Pattern[1].

In addition to validating rules, you can also test them in Rules Designer as you are
designing them. For more information, see Section 8.1.1, "How to Test Rules Using a
Test Function in Rules Designer".

4.4.3 Understanding Decision Table Validation
When you click the Validate icon Rules Designer displays the validation log. When
you first add a Decision Table you see validation warnings similar to those shown in
Figure 4–30.

Figure 4–30 Decision Table Validation Messages

The dictionary object name part of a validation message for a Decision Table includes
details that help you to identify the area of the Decision Table that is associated with
the validation warning. For example, the following dictionary object specification
indicates a problem in the first action row, and the first action cell of the Decision
Table:

OR1/Ruleset_1/DecisionTable_1/Action[1]/Action Cell[1]

In validation messages the dictionary object name for a Decision Table object uses
indexes that start at 1. For example, to indicate the first condition cell in the first row in
the Conditions area, the message is as follows:

OracleRules1/Ruleset_1/DecisionTable_2/Condition[1]/Condition Cell[1]

This specification indicates the condition cell for the rule with the label R1 in the first
row of the Conditions area in a Decision Table as shown in Figure 4–31.

Using Advanced Settings with Rules and Decision Tables

4-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–31 Decision Table with Warning on a Condition Cell

4.4.4 How to Validate a Dictionary
Rules Designer performs dictionary validation when you make any change to the
dictionary.

To validate a dictionary:
1. In Rules Designer, click the Validate icon (a checkmark).

2. Select the Business Rule Validation log from the messages area.

3. When you are viewing the validation log, if you select an item and then right-click
and select from the dropdown list Select and Highlight Object in Editor, Rules
Designer moves the cursor to select the dictionary object. Note that for some
validation warnings this functionality is not possible.

4.5 Using Advanced Settings with Rules and Decision Tables
Advanced settings for rules and Decision Tables let you work with features that
provide advanced options that not all Oracle Business Rules users need. These features
include:

■ Advanced Mode: allows additional pattern matching options and nested tests in
rules.

For more information, see:

Using Advanced Settings with Rules and Decision Tables

Working with Rulesets and Rules 4-23

– Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision
Table"

– Section 4.5.2, "How to Select the Advanced Mode Option"

– Section 4.7.5, "What You Need to Know About Advanced Mode Rules"

■ Tree Mode: makes it easier to work with master detail hierarchy, nested elements
that map to a parent child relationship. These parent child relationships among
facts are common with XML and ADF Business Components fact types. You can
use this option with the Advanced Mode option.

For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".

■ Auto Conflict Resolution: (available only with Decision Table advanced settings).
Specifies that Decision Table conflicts are automatically resolved using an
Override conflict resolution, when this is possible using the automatic conflict
resolution policies.

For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict
Analysis".

■ Rule Active: specifies that a rule or Decision Table is active or inactive. When
Rule Active is unselected, Rules Designer does not validate the specified rule or
Decision Table.

For more information, see Section 4.5.3, "How to Select the Active Option".

■ Logical: allows you to enable or disable logical dependence between the facts that
trigger a rule and the facts asserted by a rule.

For more information, see Section 4.5.4, "How to Select the Logical Option".

■ Priority: specifies the priority for a rule or a Decision Table. Higher priority rules
run before lower priority rules, within a ruleset.

For more information, see Section 4.5.5, "How to Set a Priority for a Rule".

■ Effective Date: specifies effective dates for a rule or a Decision Table.

For more information, see, Section 4.5.6, "How to Specify Effective Dates".

■ Allow Gaps (available only with Decision Table advanced settings). This checkbox
determines if validation messages are reported when gaps are detected in a
Decision Table. The specific validation message is:

RUL-05852: Decision Table has gaps

For more information, see Section 5.3.1.3, "Understanding Decision Table Gap
Analysis" and Section 5.3.5, "How to Perform Decision Table Gap Analysis".

4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
In Rules Designer, next to each rule name and Decision Table name, the show or hide
advanced settings icon lets you show and hide advanced settings.

To show and hide advanced settings in a rule or decision table:
1. Select the ruleset where you want to show advanced settings.

2. In the View field, from the dropdown list, select either IF/THEN Rules or select a
Decision Table.

Using Advanced Settings with Rules and Decision Tables

4-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

a. To show the advanced settings, next to the rule name click Show Advanced
Settings, as shown in Figure 4–32 (there is a highlighted icon shown next to
the rule name, Rule_1).

Figure 4–32 Showing Rules Advanced Settings

b. To hide the advanced settings, next to the rule name click Hide Advanced
Settings, as shown in Figure 4–33 (there is a highlighted icon shown next to
the rule name, Rule_1).

Figure 4–33 Hiding Advanced Settings in a Rule

4.5.2 How to Select the Advanced Mode Option
Select Advanced Mode to use Rule or Decision Table features that provide additional
pattern matching options and additional actions. For more information, see
Section 4.7, "Working with Advanced Mode Rules".

To select the advanced mode option:
1. Select the rule or Decision Table where you want to set Advanced Mode.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Advanced Mode, as shown in Figure 4–34.

Using Advanced Settings with Rules and Decision Tables

Working with Rulesets and Rules 4-25

Figure 4–34 Setting Advanced Mode Option

4.5.3 How to Select the Active Option
Oracle Business Rules includes the ability to specify that a rule or a Decision Table is
active or inactive. The active option is set independent of the effective dates and may
be set without changing or removing previously specified effective dates. When Rule
Active is unselected, Rules Designer does not validate the rule.

To select the active option:
1. Select the rule or Decision Table where you want to set the Rule Active option.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Rule Active.

4.5.4 How to Select the Logical Option
A ruleset or Decision Table with the Logical option selected specifies that rules in the
generated RL Language use the logical property. The logical property allows you to
enable or disable logical dependence between the facts that trigger a rule and the facts
asserted by a rule.

A rule with the logical property enabled makes all facts that are asserted by an action
block in the rule dependent on facts matched in the rule condition. Anytime a fact
referenced in the rule condition changes, such that the rule's conditions no longer
apply, the facts asserted by the rule condition are automatically retracted. For more
information on the logical property, see Oracle Fusion Middleware Language Reference
Guide for Oracle Business Rules.

Using the ruleset and Decision Table Logical option you can enable or disable the
logical property for the generated RL Language associated with the rules in the ruleset
or the Decision Table. By default, the Logical option is not selected.

To select the logical option:
1. Select the rule or Decision Table where you want to set the Logical option.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Logical.

Using Advanced Settings with Rules and Decision Tables

4-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

4.5.5 How to Set a Priority for a Rule
You can set the priority for a rule or a Decision Table. You can select from a predefined
named priority list as shown in Table 4–4, or enter a positive or negative integer to
specify your own priority level. Higher priority rules run before lower priority rules,
within a ruleset. The default priority is medium (with the integer value 0).

To set a priority for a rule:
1. Select the rule or Decision Table where you want to set the priority.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. In the Priority field, specify the priority value:

a. To specify a named priority, select a named priority from the Priority
dropdown list as Figure 4–35 shows.

Figure 4–35 Choosing a Predefined Named Priority

b. To specify an integer priority, click in the Priority field and enter a positive or
negative integer value and press Enter, as Figure 4–36 shows.

Table 4–4 Priority String Value Mapping

Named Priority Integer Value

highest 3000

higher 2000

high 1000

medium (Default Priority) 0

low -1000

lower -2000

lowest -3000

Working with Nested Tests

Working with Rulesets and Rules 4-27

Figure 4–36 Choosing a User Defined Numeric Priority

4.5.6 How to Specify Effective Dates
You can specify effective dates for a ruleset, a rule, or a Decision Table.

To specify effective dates:
1. Select the rule or Decision Table where you want to set the effective date.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select the Effective Date field. This displays the Set Effective Date dialog.

4. Use the Set Effective Date dialog to set the effective date.

For more information on using effective dates, see Section 4.9, "Using Date Facts, Date
Functions, and Specifying Effective Dates" and Section 4.2.2, "How to Set the Effective
Date for a Ruleset".

4.6 Working with Nested Tests
In a rule or a Decision Table you can create more complicated tests using the nested
tests feature.

4.6.1 How to Use Nested Tests

To use nested tests:
1. Select the rule where you want to use a nested test.

2. In the IF area, select a test. This surrounds the test with a highlighted box.

3. With a test selected right-click to display the dropdown list, as shown in
Figure 4–37.

Working with Advanced Mode Rules

4-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–37 Adding a Nested Test to a Rule

4. To add the nested test, from the dropdown list select either Insert Before or Insert
After and then select Nested Test. A nested test is shown in Figure 4–38.

Figure 4–38 A Nested Test Added to a Rule

4.7 Working with Advanced Mode Rules
Oracle Business Rules provides features that allow you to create advanced rules that
add support for the following Oracle Business Rules features:

■ Additional Pattern Match options (see Section 4.7.1, "How to Use Advanced Mode
Pattern Matching Options")

■ Additional Matched Fact Naming options (see Section 4.7.2, "How to Use
Advanced Mode Matched Fact Naming")

■ Additional Supported Action forms (see Section 4.7.3, "How to Use Advanced
Mode Action Forms")

Working with Advanced Mode Rules

Working with Rulesets and Rules 4-29

■ Pattern Match Aggregate Function options (see Section 4.7.4, "How to Use
Advanced Mode Aggregate Conditions")

For more information, see Section 4.7.5, "What You Need to Know About Advanced
Mode Rules".

4.7.1 How to Use Advanced Mode Pattern Matching Options
The advanced mode pattern matching options specify when a rule should fire.
Table 4–5 shows the available options.

To use advanced mode pattern matching options:
1. Select the rule or Decision Table where you want to use pattern matching options.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Advanced Mode.

4. Right-click a test pattern and select Surround With... as shown in Figure 4–39.

Figure 4–39 Surrounding With Option

The Surround With dialog appears as shown in Figure 4–40.

Table 4–5 Advanced Mode Pattern Matching Options

Option Description

for each case where This is the default pattern matching option. A rule should fire
each time there is a match (for all matching cases).

there is a case where This option selects one firing of the rule if there is at least one
match.

there is no case
where

The value specifies that the rule fires once if there are no such
matches.

aggregate This specifies an aggregate function is applied to all matches.
For more information, see Section 4.7.4, "How to Use Advanced
Mode Aggregate Conditions".

Working with Advanced Mode Rules

4-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–40 Surround With Dialog

5. Choose the Pattern Block option from the Surround With dialog and click OK.

The pattern is surrounded by a nested pattern with the default (for each case
where) as shown in Figure 4–41.

Figure 4–41 Default Pattern Matching Option: for each case where

6. Select the default (for each case where) option and select the desired pattern
matching option from the list as shown in Figure 4–42.

Working with Advanced Mode Rules

Working with Rulesets and Rules 4-31

Figure 4–42 Adding an Advanced Pattern Match Option

4.7.2 How to Use Advanced Mode Matched Fact Naming
The matched fact name field, pattern binding variable, in a rule or a Decision Table lets
you test multiple instances of the same type in a single rule. The matched fact name
lets you enter a temporary name for the matched fact to use in a test. For example, the
rules shown in Figure 4–43 show the use of pattern binding variables in a rule that
applies a discount on a shoe item when an order includes at least one "matching" hat
item.

Figure 4–43 Rule Using a Pattern Binding Variable

For example, you can create the rule, as shown in Figure 4–44 to find duplicate items
in a customer order. This example shows the use of matched in a rule.

Working with Advanced Mode Rules

4-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–44 Rule to Find Duplicate Items in an Order

To use advanced mode matched fact naming:
1. Select the rule or Decision Table where you want to add a matched fact name.

2. Click the Show Advanced Settings icon next to the rule name (see Section 4.5.1,
"How to Show and Hide Advanced Settings in a Rule or Decision Table").

3. Select Advanced Mode.

4. Select the <fact type> and enter a fact type from the dropdown list.

5. Select the supplied matched fact name and modify it as needed, as shown in
Figure 4–45. For example, enter the matched fact name Order$LineItem1 and
then press Enter.

Working with Advanced Mode Rules

Working with Rulesets and Rules 4-33

Figure 4–45 Adding a Matched Fact Variable Name

6. Create the rule as Figure 4–46 shows. Note that you can choose a matched fact
name as an operand. Choose the LineItem1 and LineItem2 operands as needed to
create the rule.

Figure 4–46 Choosing a Matched Fact Variable Name as an Operand

Note in Figure 4–46 that the test checking:

RL.get fact ID(Order$LineItem1) > RL.get fact ID(Order$LineItem2)

Prevents a single instance of an Order$LineItem from matching both patterns that
match the Order$LineItem fact type. The ">" is required so that the rule does not

Working with Advanced Mode Rules

4-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

fire for different permutations of different instances. For more information, see
Appendix C.4, "How Do I Correctly Express a Self-Join?".

4.7.3 How to Use Advanced Mode Action Forms
When you create a rule with Advanced Mode, Rules Designer presents a list with the
available actions shown in Table 4–6. For each form shown in Table 4–6, the options
that Rules Designer presents are context sensitive. Thus, the lists and the number of
items you see when you work with the action types are context sensitive, depending
on which action you add and the choices you make while you enter the action.

Table 4–6 Advanced Mode Action Options

Action Form Description

Assert Assert a fact

Assert Tree Asserts a tree of facts given the root.

Assert New Assert a new fact.

Assign Assign a value to a variable.

Assign New Assign a value to a new variable.

Expression Perform expression.

Call Call a function.

For Oracle RL, like Java, has a for loop. A for loop includes a type with a
variable and a collection. The type and variable defines the loop variable
that holds the collection value used within the loop. Collection is an
expression that evaluates to a collection of the correct type for the loop
variable. A for loop can be used to iterate through any collection.

A return, throw, or halt may exit the action block.

If Using the if else action, if the test is true, execute the first action block, and
if the test is false, execute the optional else part, which may be another if
action or an action block. Oracle RL, unlike Java, requires action blocks and
does not allow a single semicolon terminated action.

Modify Modify a data value associated with a matched fact.

Retract Retract a fact.

Return The return action returns from the action block of a function or a rule. A
return action in a rule pops the ruleset stack, so that execution continues
with the activations on the agenda that are from the ruleset that is currently
at the top of the ruleset stack.

rl Use an Oracle RL expression that you supply.

synchronized As in Java, the synchronized action is useful for synchronizing the actions
of multiple threads. The synchronized action block lets you acquire the
specified object's lock, then execute the action-block, then release the lock.

throw Throw an exception, which must be a Java object that implements
java.lang.Throwable. A thrown exception may be caught by a catch in a try
action block.

try The try, catch, and finally in Oracle RL is like Java both in syntax and in
semantics. There must be at least one catch or finally clause.

while While the test is true, execute the action block. A return, throw, or halt may
exit the action block.

Working with Advanced Mode Rules

Working with Rulesets and Rules 4-35

To use advanced mode action forms:
1. In Rules Designer, select a ruleset from the Rulesets navigation tab.

2. Select or add a rule or a Decision Table.

3. In the rule or Decision Table click the Show Advanced Settings icon next to the
rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table").

4. Select Advanced Mode.

5. With the insertion areas showing, in a rule in the THEN area select <insert
action>. This displays the action list, as shown in Figure 4–47.

Figure 4–47 Adding an Action to a Rule in Advanced Mode

6. In the dropdown list select the action you want to add.

For example, select assign new.

7. In the THEN area, select the context sensitive parameters for the action and enter
appropriate values.

4.7.4 How to Use Advanced Mode Aggregate Conditions
When you create a rule with Advanced Mode, Rules Designer supports the pattern
matching aggregate option. When you write rule conditions that are based not only on
one fact, but on many facts, you can use an aggregate. You use aggregate functions
when the conditions have a view spanning multiple facts.

Table 4–7 shows the available aggregate functions.

Working with Advanced Mode Rules

4-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

For example, to write a rule that specifies a special order as follows:

IF
 an order has more than 5 line items whose price is above a certain value
THEN
 the order requires manual approval

The five line items may span multiple facts. Thus, you can use the count aggregate
function to write this sample special order rule.

When you use an aggregate function, do the following:

■ Select aggregate for the pattern.

■ Enter a function from the list shown in Table 4–7

■ Enter or select values from the context sensitive menus:

– <variable> A name for the aggregate value.

– <expression> The value to aggregate, for example driver.age. When the
aggregate function you select is the count function the <expression> is not
used.

For example, you can compute the sum of the cost all the line items with color "red", as
shown in Figure 4–48.

Table 4–7 Aggregate Functions for Advanced Mode Rules

Function Description

count Count of matching facts.

average Average of matching facts.

maximum Maximum value of matching facts.

minimum Minimum value of matching facts.

sum Sum of matching facts.

collection Builds a list of matching facts.

Working with Advanced Mode Rules

Working with Rulesets and Rules 4-37

Figure 4–48 Using Aggregate Functions with Rules Red Color Total Cost Rule

To use advanced mode aggregates:
1. Select or create the rule or Decision Table where you want to use an aggregate

function.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Select Advanced Mode.

4. Enter the fact type you want to work with.

5. Select <insert pattern> to add a pattern.

6. Select the new pattern.

7. Right-click the pattern and select Surround With.... This displays the Surround
With dialog.

8. In the Surround With dialog select Pattern Block. For more information, see
Section 4.7.1, "How to Use Advanced Mode Pattern Matching Options".

9. Click OK.

10. In the pattern select the first field. By default this field contains (for each case
where), as shown in Figure 4–49.

Working with Advanced Mode Rules

4-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–49 Adding an Advanced Pattern Match Option

11. Select the aggregate option. This adds the context sensitive fields for an aggregate,
as shown in Figure 4–50.

Figure 4–50 Using Aggregate Functions in a Rule

12. Click <function> and select a function from the dropdown list.

13. In the condition, click <fact type> and select a fact type from the dropdown list.

14. Click <expression> and select an expression from the dropdown list.

15. Rules Designer by default constructs variable names as you create the aggregate
pattern. If needed for the rule you are constructing enter variable names to replace
the default variable names. Figure 4–51 shows a completed rule using aggregate.
In this example, for clarity the rule shows the variable names total_cost and
item_x.

Working with Advanced Mode Rules

Working with Rulesets and Rules 4-39

Figure 4–51 Completed Aggregate Function in a Rule

16. Enter additional tests as required. For this example you enter the test for items
with color "red", as Figure 4–52 shows.

Figure 4–52 Using Aggregate Functions with Rules Red Color Total Cost Rule

4.7.5 What You Need to Know About Advanced Mode Rules
There are some special cases to keep in mind when you work with Advanced Mode
rules, including the following:

■ When you work with aggregates, in actions, you do not see pattern variables. The
pattern variables are only shown for action lists when you use (foreach...) patterns.
Thus, you cannot see pattern variables in aggregate, "there is a case", or "there is
no case patterns".

Working with Tree Mode Rules

4-40 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ After you select Advanced Mode the Advanced Mode stays selected and inactive
(gray), as long as your rule uses advanced options such as advanced pattern
matching. To deselect Advanced Mode you must remove or undo the advanced
mode features (sometimes it is easier to start over by creating a non-advanced
mode rule and then delete the advanced mode rule).

To deselect the advanced mode option:
1. Select the rule or Decision Table where you want to deselect Advanced Mode.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name
(see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or
Decision Table").

3. Consider the state of the rule:

■ If you can simplify the rule to enable the Advanced Mode option (such that
the Advanced Mode icon changes from gray to enabled). Then simplify the
rule and when Advanced Mode is enabled, deselect Advanced Mode.

■ If you can use Undo to undo the steps you used to create the Advanced Mode
rule, to get to a state where the rule is no longer in Advanced Mode, then use
this technique to simplify the rule.

■ If you cannot simplify the rule, then delete the rule and re-create it.

4.8 Working with Tree Mode Rules
Tree Mode rules make it easier to work with a master detail hierarchy, where there are
nested elements that map to a parent child relationship.

4.8.1 Introduction to Tree Mode Rules
To introduce tree mode rules, it is instructive to work with an example. Consider the
lifecycle of an application fragment that uses business processes and rules to process a
retail purchase order (PO). The purchase order has a header with business terms that
apply to the entire PO. The PO also contains a list of shipping destinations. Each
destination has an address, a list of items to be shipped to the destination's address,
and a list of shipments.

Consider the business rule: the status of a PO is "fully shipped" if the status of every
item is either "shipped" or "canceled".

Figure 4–53 shows a sample XML schema representation for the PO example. The
XML documents for the PO are tree structured. This allows a natural representation for
the PO. For example, the PO itself is the top level document element and destinations
are nested elements that contain item elements and shipment elements. Shipment
elements also contain item elements that reference the ordered items. Status has a list
of valid values.

Working with Tree Mode Rules

Working with Rulesets and Rules 4-41

Figure 4–53 PO Schema for Tree Mode Rules Sample

Example 4–1 shows the sample purchase order XML schema as represented in
Figure 4–53.

Example 4–1 Sample Purchase Order (PO) Schema

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="PO">
 <xsd:annotation>
 <xsd:documentation>A sample element</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="header">
 <xsd:complexType>
 <xsd:attribute name="status" type="Status"/>
 <xsd:attribute name="order-date" type="xsd:date"/>
 <xsd:attribute name="customer-value"/>
 </xsd:complexType>

Working with Tree Mode Rules

4-42 Oracle Fusion Middleware User's Guide for Oracle Business Rules

 </xsd:element>
 <xsd:element name="billing">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address"/>
 <xsd:element name="payment"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="destination" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address"/>
 <xsd:element name="item" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="ID"/>
 <xsd:attribute name="status"/>
 <xsd:attribute name="quantity" type="xsd:int"/>
 <xsd:attribute name="availability-date" type="xsd:date"/>
 <xsd:attribute name="qoh" type="xsd:int"/>
 <xsd:attribute name="price"
 type="xsd:decimal"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="shipment" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="item" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="ID"/>
 <xsd:attribute name="quantity"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="ship-date"/>
 <xsd:attribute name="method"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="status" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:simpleType name="Status">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="open"/>
 <xsd:enumeration value="partially shipped"/>
 <xsd:enumeration value="fully shipped"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Example 4–2 shows part of the XML for an instance of the PO schema. To use tree
mode rules you can create a rule that tests one or more business terms and if the tests
pass, one or more business terms are added or changed. Oracle Business Rules has
special support to enable error-free authoring of rules on fact trees like the sample PO
instance.

Working with Tree Mode Rules

Working with Rulesets and Rules 4-43

For example, consider creating a rule for an instance of the PO schema that states:

IF the time between the order date and the date for availability of an item is
more than 30 days
THEN cancel the item

Example 4–2 Sample Abbreviated PO XML Instance

<PO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org ../../../../Temp/PO.xsd"
 xmlns="http://www.example.org">
 <header/>
 <billing>
 <address/>
 <payment/>
 </billing>
 <destination>
 <address/>
 <item ID="a01"/>
 <item ID="a02"/>
 <item ID="a03"/>
 <shipment>
 <item ID="a01"/>
 <item ID="a02"/>
 </shipment>
 </destination>
</PO>

4.8.1.1 Understanding Tree Mode Rules (Non-Advanced Mode)
You use non-advanced tree mode, or simple tree mode, when the Advanced Mode
option is not selected and Tree Mode is selected. With this mode Rules Designer
shows ROOT: <fact type> where you enter the root fact type, as shown in Figure 4–54.

Figure 4–54 Simple Tree Mode Rule with Tree Mode Selected

When you create rules with Tree Mode selected and Advanced Mode unselected you
can reference properties in the tree using qualified names, for example:

■ PO/destination/item.quantity that is similar to item.quantity but only
items that are a destination of PO are matched.

■ PO$Destination$item.quantity that refers to a List<item>. This reference
is unchanged from non-tree mode.

Working with Tree Mode Rules

4-44 Oracle Fusion Middleware User's Guide for Oracle Business Rules

With Simple Tree Mode you can only choose terms that do not require many-to-many
joins or aggregation.

For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".

4.8.1.2 Understanding Advanced Tree Mode Rules
You use advanced tree mode when the Advanced Mode option is selected and the
Tree Mode option is selected. With this mode Rules Designer shows ROOT: <fact
type> where you enter the root fact type, as shown in Figure 4–55. Rules Designer
shows patterns for the tree structured facts but the simple tests that join the parent and
child facts are hidden.

Figure 4–55 Advanced Tree Mode

In advanced tree mode the tree mode patterns, except for the root, display as:

<operator> <variable> is a <fact path>

Where the <fact path> is an XPath-like path through the 1-to-1 and 1-to-many
relationships starting at the root. For example, each fact path has a name like
PO/destination, where PO is the root fact type and the destination is a property of
type List. A 1-to-many relationship in a fact path is indicated with a "/", as in
PO/destination.

A 1-to-1 relationship in a fact path is indicated with "." This unchanged from non-tree
mode. For example, item.availabilityDate.

Advanced mode exposes the concept of a pattern, the simplest of which is is a. For
example, p is a PO causes p to match, iterate over, all the PO facts, and d is a
p/destination causes d to match all the destinations of p. The left side of is a is a
variable, and the right side is a fact type or a fact path. By default, Oracle Business
Rules sets the variable name equal to the fact type or path. For example, PO is a PO. A

Working with Tree Mode Rules

Working with Rulesets and Rules 4-45

pattern can also be a pattern block. A pattern block has a logical quantifier, negation,
or aggregation that applies to the patterns and tests nested inside the block.

For more information, see Section 4.8.3, "How to Create Advanced Tree Mode Rules".

When you work with advanced tree mode rules, Rules Designer expects you to use an
aggregation pattern, including exists and not exists to combine terms from different
child forests into the same rule while avoiding a Cartesian product.

4.8.2 How to Create Simple Tree Mode Rules
Given the XML schema shown in Example 4–1 and the schema instance shown in
Example 4–2, the following procedure creates the PO rule to cancel non 30-day
availability items.

IF the time between the order date and the date for availability of an item is
more than 30 days
THEN cancel the item

To create simple tree mode rules:
1. Create an IF/THEN rule in your ruleset.

For more information, see Section 4.3.1, "How to Add Rules".

2. View advanced settings.

For more information, see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table".

3. Select Tree Mode as Figure 4–56 shows.

Figure 4–56 Simple Tree Mode Advanced Settings

4. Next to ROOT:, click the <fact type> place holder and select PO from the
dropdown list as Figure 4–57 shows.

Working with Tree Mode Rules

4-46 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–57 Simple Tree Mode: Configuring the Root

5. Select <insert test>.

The IF statement now reads IF <operand> == <operand>.

6. Select the left-hand <operand>.

7. In the dropdown list, select PO/destination/item.availabilityDate.

8. Select Expression Builder icon, as shown in Figure 4–58.

Working with Tree Mode Rules

Working with Rulesets and Rules 4-47

Figure 4–58 Adding Simple Tree Mode Expression

9. In the Expression Builder dialog, copy and delete the item shown in the
Expression area.

10. In the Expression Builder, select the Functions tab.

11. In the navigator, expand Duration and double-click the daysbetween function.

12. Remove the daysbetween argument templates, as shown in Figure 4–59.

Working with Tree Mode Rules

4-48 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–59 Using Expression Builder to Add a Simple Tree Mode Rule

13. In the daysbetween function, paste the value you previously cut as the second
argument.

14. In the Expression Builder dialog, select the Variables tab.

15. For the daysbetween function first argument, use the navigator to expand PO and
expand header, and double-click orderDate.

16. In the Expression Builder dialog, click OK.

17. In the dropdown list, in the expression area and press Enter.

18. Select the operator and enter >.

19. Select the right-hand <operand> and enter the value 30 and press Enter, as shown
in Figure 4–60.

Working with Tree Mode Rules

Working with Rulesets and Rules 4-49

Figure 4–60 Simple Tree Mode: Right-Hand Operand with Value 30

20. Click <insert action> and from the dropdown list select modify.

The THEN statement now reads: THEN modify <target>.

21. Click <target> and from the dropdown list select PO/destination/item. The
THEN statement now reads:

THEN modify PO/destination/item (<add property>)

22. Click <add property>. This displays the properties dialog.

23. In the properties dialog for the status name, enter the value "canceled", as
Figure 4–61 shows.

Working with Tree Mode Rules

4-50 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–61 Simple Tree Mode: Action

24. In the Properties dialog, click Close.

25. This displays the finished rule, as shown in Figure 4–62.

Working with Tree Mode Rules

Working with Rulesets and Rules 4-51

Figure 4–62 Simple Tree Mode Rule Final Rule

Note that in the modify statement, PO/destination/item refers to the particular
item instance member.

4.8.3 How to Create Advanced Tree Mode Rules
Given the XML schema shown in Example 4–1 and the instance of these facts shown in
Example 4–2, the following procedure creates a free shipping rule that can be
summarized as:

IF the total cost of "free shipping eligible" items to a given destination is
greater than $40
THEN shipping of those items is free

To create advanced tree mode rules:
1. Create an IF/THEN rule in your ruleset.

For more information, see Section 4.3.1, "How to Add Rules".

2. View advanced settings.

For more information, see Section 4.5.1, "How to Show and Hide Advanced
Settings in a Rule or Decision Table".

3. Select Advanced Mode and select Tree Mode as Figure 4–63 shows.

Working with Tree Mode Rules

4-52 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–63 Advanced Tree Mode Rule for Free Shipping

4. Select the <fact type> place holder and from the dropdown list, select PO.

5. Complete the free shipping rule, as shown in Figure 4–64.

Figure 4–64 Advanced Tree Mode Free Shipping Rule

4.8.4 What You Need to Know About Tree Mode Rules
When you select Tree Mode and select a root fact type, the options lists show all
available fact types (not just the children of the root fact type). This allows you to view
all available fact types as well as the children of the root fact type. There is no option to
limit the option list to only show the children of the selected root fact type.

Using Date Facts, Date Functions, and Specifying Effective Dates

Working with Rulesets and Rules 4-53

4.9 Using Date Facts, Date Functions, and Specifying Effective Dates
Oracle Business Rules provides functions that make it easier for you to work with
times and dates, and provides effective date features to let you determine when rules
are effective, based on times and dates:

■ The CurrentDate fact allows you to reason on a fact representing the current date.

■ The Effective Date value lets you specify a start date and end date that defines a
date or date and time range when all the rules and Decision Tables in a ruleset, an
individual rule, or an individual Decision Table are effective.

Table 4–8 describes the available Effective Date options.

An effective date specification other than Always can be one of the following:

■ Date only, with no time specification: In this case, an effective date assumes a time
of midnight of that date in each time zone.

■ Date, time zone, with no time specification: In this case, an effective date assumes
a time of midnight as of the specified date in the specified time zone.

■ Date, time zone, time specification: In this case, the date and time is fully specified.

■ Time specification only, with no date and no time zone: applies for all days at the
specified time.

■ Time and time zone specified, with no date: applies for all days at the specified
time.

4.9.1 How to Use the Current Date Fact
You can use the current date fact in a rule or a Decision Table.

To use the CurrentDate fact:
1. Select a ruleset from the Rulesets navigation tab.

2. Select a rule within the ruleset.

3. In the IF area, add a condition that uses the CurrentDate fact and the date method
of Calendar type, as shown in Figure 4–65.

Table 4–8 Effective Date Possible Values

Effective Date Description

Always Valid Specifies to set neither "From" nor "To" dates.

From (without To date set) Valid from a certain date indefinitely into the future.

To (without a From date set) Valid from now until a certain date.

From Set and To set Valid only between two dates.

Using Date Facts, Date Functions, and Specifying Effective Dates

4-54 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–65 Rule with Condition Using CurrentDate Fact

4.9.2 How to Set the Effective Date for a Rule
You can specify an effective start date and or an effective end date for a ruleset, a rule,
or a Decision Table. For information on specifying the effective date for a ruleset, see
Section 4.2.2, "How to Set the Effective Date for a Ruleset".

To set the effective date for a rule:
1. Select the ruleset name from the Rulesets navigation tab.

2. Select a rule within the ruleset.

3. Next to the rule name click Show Advanced Settings, as shown highlighted in
Figure 4–66.

Figure 4–66 Showing Advanced Settings in a Rule

4. Select the Effective Date field. This displays the Set Effective Date dialog, as
shown in Figure 4–67.

Using Date Facts, Date Functions, and Specifying Effective Dates

Working with Rulesets and Rules 4-55

Figure 4–67 Setting the Effective Date for a Rule

5. Use the Set Effective Date dialog to specify the effective dates for the rule. Clicking
the Set Date icon displays a calendar to assist you in entering the From and To
field data.

6. In the Set Effective Date dialog, click OK.

4.9.3 What You Need to Know About Effective Dates
By default, the Oracle Business Rules Engine implicitly manages the clock associated
with the CurrentDate fact and the effective date, setting each to the value of the system
date. Using the RL Language functions setCurrentDate() and
setEffectiveDate() you can explicitly set the current date and the effective date.
For more information, see Oracle Fusion Middleware Language Reference Guide for Oracle
Business Rules.

An effective start date is defined as the first point in time at which a rule, Decision
Table, or ruleset may actively participate in rule evaluations and fire. Thus, if a rule is
effective it may fire if its condition is satisfied and if the rule is not effective, it does not
fire whether the condition is satisfied or not.

An effective end date is the first moment in time at which the rule, Decision Table, or
ruleset no longer actively participates in rule evaluations (not effective means the rule
does not fire).

The effective start and end date can be set on a Decision Table, but these dates cannot
be set individually for the rules within a Decision Table.

Rules and Decision Tables also include the Rule Active option. This option is set
independent of the effective dates and makes dates effective without changing or
removing the specified effective date. For more information on using the Rule Active
option, see Section 4.5.3, "How to Select the Active Option".

The precedence of the effective date, when it is defined for both a ruleset and for the
rules or Decision Tables within a ruleset, is as follows (with the top precedence being
1):

Using Date Facts, Date Functions, and Specifying Effective Dates

4-56 Oracle Fusion Middleware User's Guide for Oracle Business Rules

1. If the ruleset Rule Active option is unselected, then RL Language is not generated
for that entity.

2. If one or both of the effective date properties are selected for a ruleset, then those
effective start dates and effective end dates define the range of effective dates
allowable for rules or Decision Tables that are defined within the ruleset (that is, if
in the ruleset the From checkbox, the To checkbox, or both checkboxes are selected
in the Set Effective Date dialog).

Thus, the effective dates specified for rules or Decision Tables within a ruleset
must not violate the boundaries established by the ruleset that contains the rules
or Decision Tables. For example, a rule may not have an effective end date that is
later than the effective end date specified for a ruleset.

3. If any individual rule or Decision Table has Rule Active unselected, then RL
Language is not generated for that rule or Decision Table.

4. If the Set Effective Date dialog for a ruleset includes Time selected or this option is
selected on a rule or a Decision Table in the ruleset, then all instances of rules or
Decision Tables in the ruleset must have Time selected when effective dates are
specified. In this case, if Both or Date is selected then Rules Designer shows a
validation warning:

RUL-05742: Calendar form incompatibility detected with forms Time and DateTime.
If the calendar form is set to Time on a rule set or any of the rules or
decision tables within that ruleset then the calendar form for that entire
rule set is restricted to Time.

4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods
You can use the Duration, JavaDate, and XMLDate, OracleDate, and OracleDuration
extension methods in a rule or a Decision Table. For more information, see
Appendix B, "Rules Extension Methods".

To use a Duration method:
1. Select ruleset from the Rulesets navigation tab.

2. Select a rule within the ruleset (you can also use Duration methods in a Decision
Table).

3. In the IF area, add a condition.

4. Select an operand in the rule condition.

5. From the dropdown list, select Expression Builder.... For more information, see
Section 4.10, "Working with Expression Builder".

6. In the Expression Builder, select the Functions tab.

7. In the Expression Builder, in the Navigator, expand the Duration folder.

8. Double-click to select and insert the appropriate method as needed for your
duration test.

9. Provide the appropriate arguments for the method. For example, see Figure 4–68.

10. This allows you to create a rule such as that shown in Figure 4–69.

Working with Expression Builder

Working with Rulesets and Rules 4-57

Figure 4–68 Using Duration Methods in a Rule

Figure 4–69 Adding a Rule Using Duration Function

4.10 Working with Expression Builder
Use the expression builder to create and edit expressions for Oracle Business Rules.

4.10.1 Introduction to the Expression Builder
You can access the expression builder from different parts of Rules Designer,
including in the Edit Globals dialog, and in the conditions area when you work with
conditions in Decision Tables, and when you enter rules and Decision Tables in
advanced mode with free form expressions selected.

Using Bucketsets as Constraints for Options Values in Rules

4-58 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–70 shows the Rules Designer expression builder.

Figure 4–70 Rules Designer Expression Builder

4.10.2 How to Use the Expression Builder
In the expression builder when you double-click items in the Variables or Functions
navigation trees, or in the Operators tab, or in the Constants tab, this inserts the item
into the expression in the Expression area. You can also create or edit expressions
directly by entering text in the Expression area.

When you enter an expression, note that Variables are valid assignment targets and
Constants are not valid assignment targets. Thus, you should use both tabs if you are
unsure what type of item you want to add to the expression you are building.

Specify an argument for a selected function by placing the cursor inside the function in
the Expression field and double-clicking the expression or function to insert. For
example, place the cursor inside the parentheses of a function and select a variable.
This inserts the variable in the expression at the cursor position.

4.11 Using Bucketsets as Constraints for Options Values in Rules
You can use List of Values Bucketsets and List of Ranges Bucketsets to specify
constraints for fact properties in rules. This allows you to use Rules Designer to
produce validation warnings for possible errors where a value supplied is out of
range, or not within a set of possible values as specified in a bucketset. Oracle Business
Rules also lets you use bucketsets to specify constraints for global initial values,
function return values, or function argument values. For more information, see

Using Bucketsets as Constraints for Options Values in Rules

Working with Rulesets and Rules 4-59

Section 2.3, "Working with Oracle Business Rules Globals" and Section 3.7,
"Associating a Bucketset with Facts and Functions".

4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Fact Property
You can use a list of ranges bucketset as a constraint for a fact property.

For more information on using a list of values bucket set as a constraint, see
Section 4.11.2, "How to Use a List of Values Bucketset as a Constraint for a Fact
Property".

To use a List of Ranges bucketset as a constraint for a fact property:
1. Specify a bucketset that includes the ranges you want to include and select

Allowed in Actions for all valid ranges. To include a range, deselect Allowed in
Actions for the top and bottom endpoints.

2. Select Included Endpoint as needed for the application.

3. Deselect Include Disallowed Buckets in Tests. For example, for a bucketset that
defines valid grades and that does not allow values greater than 100, or less than 0,
define the bucketset endpoints as shown in Figure 4–71.

Figure 4–71 Valid Grades Bucketset for Fact Property

4. Associate this bucketset with a fact property. For example, associate the bucketset
with test_math1 as shown in Figure 4–72.

Using Bucketsets as Constraints for Options Values in Rules

4-60 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 4–72 Associating a Bucketset with a Fact Property

Now, if you define a rule with a test that uses the fact property you receive a
validation warning when a value is out of range. For example if you define a rule with
an expression with the value -10, Rules Designer shows a validation warning as shown
in Figure 4–73.

Figure 4–73 Using a Fact Property Value that is not in the Allowed in Actions for Associated Bucketset

Using Bucketsets as Constraints for Options Values in Rules

Working with Rulesets and Rules 4-61

4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property
You can use a list of values bucketset as a constraint for a fact property.

For more information on using a list of ranges bucket set as a constraint, see
Section 4.11.1, "How to Use a List of Ranges Bucketset as a Constraint for a Fact
Property".

To use a List of Values bucketset as a constraint for a fact property:
1. Specify an LOV bucketset that includes the values you want to include, and select

Allowed in Actions for all valid values. For more information, see Section 3.6.1,
"How to Define a List of Values Global Bucketset".

2. Deselect Allowed in Actions for the otherwise bucket.

3. Deselect Include Disallowed Buckets in Tests.

4. Associate this bucketset with a fact property.

4.11.3 How to Use Bucketsets to Provide Options for Test Expressions
You can use LOV bucketsets to provide options for expressions and actions.

How to use bucketsets to provide options for rule expressions and actions:
1. In Rules Designer, define an LOV bucketset of a type corresponding to a fact

property. For more information, see Section 3.6.1, "How to Define a List of Values
Global Bucketset".

2. Associate the bucketset with a fact property. For more information, see
Section 3.7.1, "How to Associate a Bucketset with a Fact Property".

3. When you enter expressions, Rules Designer shows the bucket values in the values
options. For example, when you associate a fact property Driver.eye_test
with an LOV bucketset named eyes, with values: pass, fail, and glasses_
required, and then you use Driver.eye_test in a test expression, the bucket
values are limited as shown in Figure 4–74.

Figure 4–74 Using a Bucketset to Provide Options for a Rule Test Expression

Using Bucketsets as Constraints for Options Values in Rules

4-62 Oracle Fusion Middleware User's Guide for Oracle Business Rules

5

Working with Decision Tables 5-1

5Working with Decision Tables

Using a Decision Table you can create and use business rules in an easy to understand
format that provides an alternative to the IF/THEN rule format. The Decision Table
format is intuitive for business analysts who are familiar with spreadsheets. The
formal structure that a Decision Table provides makes it easier to author, understand,
and change multiple similar rules and lets software check for rule completeness and
consistency.

This chapter includes the following sections:

■ Section 5.1, "Introduction to Working with Decision Tables"

■ Section 5.2, "Creating Decision Tables"

■ Section 5.3, "Performing Operations on Decision Tables"

■ Section 5.4, "Creating and Running an Oracle Business Rules Decision Table
Application"

5.1 Introduction to Working with Decision Tables
Businesses invest in software to automate their business processes. Historically, this
automation focused on the collection, presentation, and manipulation of data to
facilitate human decision-making about that data. Increasingly, however, software
designers and developers are called upon to automate the decision making process by
putting detailed rules about business processes into software architectures. In
addition, many enterprises are experiencing increasing pressure to make software
systems more responsive to business changes. In some cases, the role of writing and
testing business rules is no longer assigned to software engineers, but is passed to
trained business users. Alternatively, some organizations attempt to separate changes
in the business behavior of software from the traditional software development cycles,
and tie changes to business driven imperatives like product or sales cycles.

A Decision Table provides a mechanism for describing data processing tasks,
especially when that description is done by business analysts rather than computer
programmers.

Oracle Business Rules Decision Tables provide the following features:

■ Powerful Visualization: Compact and structured presentation. This visualization
matches the way real world business policies are expressed: with many tables,
declarative, and organized into simple steps.

■ Error Prevention: Avoids incompleteness and inconsistency. Because a Decision
Table is well structured, automated tools can check for conflicts, redundancy, and
incompleteness to speed development of valid, consistent business rules.

Introduction to Working with Decision Tables

5-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Modular Knowledge Organization: Group rules into a single table. A spreadsheet
metaphor puts groups of rules that work together onto a single viewable pane. For
example, if there are six rules that check an applicant's eligibility, it is more
convenient to see all the rules than to view the rules as individual but related
rules.

■ Optimization of Rules and Performance Benefits: Oracle Business Rules Decision
Tables provide automated features that can reduce the number of required rules,
as compared to the IF/THEN rules (this is called rule coalescing).

■ Rule Validation and Verification: Provides capabilities for ensuring the logical
consistency of rules before deployment. Automated tools for checking conflicts,
incompleteness, or gaps, help speed development of valid, consistent business
rules.

Ease of verification and visualization are the major reasons for using Decision Tables.

For information, see Chapter 4, "Working with Rulesets and Rules".

5.1.1 What is a Decision Table?
A Decision Table displays multiple related rules in a single spreadsheet-style view. In
Rules Designer a Decision Table presents a collection of related business rules with
condition rows, rules, and actions presented in a tabular form that is easy to
understand. Business users can compare cells and their values at a glance and can use
Decision Table rule analysis features by clicking icons and selecting values in Rules
Designer to help identify and correct conflicting or missing cases.

To help understand Decision Table concepts, consider a set of IF/THEN rules that
determine if a driver is eligible for a license, and an equivalent Decision Table. Note if
a driver has taken a driver training class then the driver has training certification.

The IF/THEN rules follow:

if driver.age < 20 and driver.has training then driver.eligible = true
if driver.age < 20 and driver.has training = false then driver.eligible = false
if driver.age >= 20 then driver.eligible = true (do not care about training for this case)

Figure 5–1 shows a Decision Table representation of these rules that includes areas for
Decision Table Conditions and Actions.

Introduction to Working with Decision Tables

Working with Decision Tables 5-3

Figure 5–1 Sample Decision Table with Conditions and Actions

5.1.1.1 What You Need to Know About Decision Table Conditions
The Conditions area in a Decision Table includes one or more condition rows. Each
condition row has a condition expression and, for each rule, a condition cell. A
condition expression is an expression that you build in Rules Designer. Usually a
condition expression is shown in a condition row and applies to a data model fact,
either, a Java Fact, an XML Fact, an RL Fact, or an ADF Business Components fact. A
bucketset is associated with every condition expression and you can define the
bucketset on the fly using a local bucketset or you can use a global bucketset. The
value or the range for a given condition cell takes its value or its range from one or
more buckets in the associated LOV or Ranges bucketset. For more information on
bucketsets, see Section 3.6, "Working with Bucketsets".

For example, Figure 5–1 shows the condition expression for a Driver fact with the
Driver.age property. The corresponding row in the Decision Table shows condition
cells including buckets for the ranges <20, and >=20. The values in the cells come
from the global bucketset named driver_ages.

Figure 5–1 also shows a condition row for the Driver fact with the Driver.has_
training property. This condition row shows condition cells with the values, true,
false, and -. The hyphen (-) means "do not care" (that is Driver.has_training
could be true or false in this case). The values for these condition cells come from
the default bucketset associated with boolean types (this consists of default buckets for
the values true and false).

Decision Tables show rules in bucket order, and to change the order of rules you need
to change the order of buckets in the bucketsets. Thus, the order of the buckets in the
bucketset associated with a condition row determines the order of the condition cells,
and thus the order of the rules. You can control rule ordering in a Decision Table by
changing the relative position of the buckets in an LOV bucketset associated with a
condition row; however, you cannot reorder range buckets. For information on

Introduction to Working with Decision Tables

5-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

ordering buckets in a bucketset, see Section 3.6.1, "How to Define a List of Values
Global Bucketset".

5.1.1.2 What You Need to Know About Decision Table Actions
Actions are associated with rules in a Decision Table. At runtime, when facts match for
condition cells, the Rules Engine prepares to run the actions associated with the rule.

Table 5–1 shows the types of actions you can choose in the Actions area. Thus, in an
action you can call a function, assert a new fact, retract a fact, or modify a fact. In the
Actions area the cells corresponding to an individual action for a rule are called action
cells. Note, in advanced mode there are additional options for actions. For more
information on advanced mode, see Section 4.5.2, "How to Select the Advanced Mode
Option".

When you add multiple actions the actions that you add in the Actions area are
ordered; actions appearing in the higher rows run before actions in the following
rows.

The Decision Table actions such as modify can refer to facts matched in the condition
cells. For example, given a Decision Table with condition rows on the Driver fact that
includes condition rows for Driver.age and Driver.has_training, actions can
modify the property Driver.eligible and you can specify a value for
Driver.eligible for each action cell.

Certain types of actions in the Actions area include a Parameterized checkbox. This
checkbox specifies that a property from the action can have its value set in the action
cell associated with a rule in the Decision Table. When the parameterized checkbox is
selected the value you supply for the expression value in the action, in the Actions
area, becomes the default value for the property if a value is not supplied in the action
cell. For example, see Figure 5–2 where the value false is assigned as the default
value for the action property eligible.

Table 5–1 Decision Table Actions for Action Cells

Action Description

assert new Assert a new fact

call Call a function

retract Retract a fact

modify Modify a data value associated with a matched fact

Introduction to Working with Decision Tables

Working with Decision Tables 5-5

Figure 5–2 Action Editor Showing Parameterized Action with Default Value

5.1.1.3 What You Need to Know About Decision Table Rules
A ruleset contains a Decision Table; this provides a way to group the Decision Table
along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset,
the IF/THEN rules and the Decision Table rules all execute as a set of interrelated
rules.

A rule in a Decision Table is not named. Although Rules Designer shows rules in a
Decision Table with labels, for example, R1, R2, and R3, these rule labels are not names
for individual rules but are labels derived from the current ordering of the rules in the
Decision Table. Thus, a rule with the label R1 could be moved to position 3 and then
Rules Designer relabels this rule R3.

Rules in a Decision Table are organized as a table that contains a tree of condition cells.
The condition cells in the first row span the cells of later condition rows. A parent cell
in row i spans its children in row i+1.

Figure 5–3 shows rules in a Decision Table where each rule consists of one cell from
each row in the Conditions area, and an associated action cell in the same column in
the Actions area. Figure 5–3 shows the rule with the label R3 defined by the first cell
from condition 1 (the Driver.age < 20 bucket), the second cell from condition 2 (the
Driver.eye_test equals fail bucket), and the third cell from condition 3 (the
Driver.has_training equals true bucket). Likewise for each of the other rules, R1
to R12, there is a unique path through the Decision Table.

Introduction to Working with Decision Tables

5-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 5–3 Rules in a Decision Table

As shown in Figure 5–3, it is significant for a cell to be a parent of another cell and a
parent cell spans lower cells. In the Conditions area, when condition cells have the
same parent condition cell the cells are called siblings. Certain operations only apply
for condition cells that are siblings. For example, Figure 5–4 shows two sibling cells
that are selected; with these cells selected the Merge Selected Cells operation is valid.
For these cells, the corresponding bucket with the value fail for Driver.eye_test
is also a sibling (as shown in the R3 and R4 columns in Figure 5–4). For more
information, see Section 5.3.3, "How to Merge or Split Conditions in a Decision Table".

Figure 5–4 Sibling Condition Cells in a Decision Table

Introduction to Working with Decision Tables

Working with Decision Tables 5-7

Rules Designer lets you easily reorder rows by selecting the row and clicking a Move
icon. By reordering rows in the Conditions area you can perform operations on
condition cells at the desired granularity. Thus, the move operations can assist you
when you want to split, merge, or assign certain values that might only be appropriate
at a particular level in the tree, depending on the location of a condition cell or
depending on the location of the parent, children, or siblings of a condition cell.

5.1.2 Understanding Decision Table Values
By default, when you create a condition row Rules Designer creates a single condition
cell and assigns the "-" value to the cell. A condition cell with the value "-" means "do
not care" or "match any bucket" in the bucketset. For example, Figure 5–5 shows a "do
not care" value for Driver.age.

Figure 5–5 Sample Decision Table Showing Do Not Care Value in Condition Cell

In the Decision Table Actions area you can specify that an action cell "do nothing". In
this case, deselect the action cell. When the action cell checkbox is unselected this
means do not perform this action when the pattern matches for the specified condition
values in the Decision Table. Thus, for each action cell you can specify whether the
rule associated with the action cell should activate the action, or does not perform the
action.

In a Decision Table when a condition cell represents a bucket that has been removed
from the bucketset, Rules Designer provides a validation warning such as the
following:

RUL-05831: Decision table bucket reference not found

Creating Decision Tables

5-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

To fix this type of validation warning you can do one of the following:

■ Define a value by double-clicking the condition cell and selecting one or more
buckets from the dropdown list.

■ Add the missing bucket to the bucketset or associate the condition with another
bucketset that contains the missing bucket.

5.1.3 What You Need to Know About Decision Table Loops
A Decision Table loop occurs when the value for a condition row is changed by an
action. Loops can occur across the rules in a single Decision Table or spread over
several Decision Tables, or spread over rules and Decision Tables in the same ruleset.
Try not to create Decision Table actions that modify fact properties that are used in
Decision Table conditions. This could cause an infinite loop.

5.2 Creating Decision Tables
You add a Decision Table by performing several steps. These steps include:

■ Create a Decision Table

■ Add conditions to the Decision Table

■ Add actions to the Decision Table

■ Use Decision Table operations to validate, correct, and modify the Decision Table

5.2.1 How to Create a Decision Table
To work with a Decision Table you start by creating a Decision Table in a ruleset.

To create a decision table:
1. From Rules Designer select an existing ruleset from the rulesets tab or create a

ruleset by clicking Create Ruleset....

2. Click the Add icon and from the dropdown list select Create Decision Table, as
shown in Figure 5–6. This creates a Decision Table.

Figure 5–6 Adding a Decision Table

Creating Decision Tables

Working with Decision Tables 5-9

5.2.2 How to Add Condition Rows to a Decision Table
A Decision Table includes a Conditions area where you specify Decision Table
condition rows. The condition rows determine the facts that the Oracle Rules Engine
matches at runtime. To create a Decision Table you need to add one or more condition
rows to the Decision Table.

To add condition rows to a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to add conditions.

2. In the Decision Table area, from the dropdown list next to the Add icon select
Condition.

3. In the Conditions area, double-click <edit-condition> to display the navigator to
select or enter an expression as shown in Figure 5–7.

Figure 5–7 Adding a Condition to a Decision Table

4. Enter an expression by clicking in the navigator to select a variable or click the
Expression Builder icon to display the Expression Builder window. The
Expression Builder lets you build expressions.

5. Each condition row requires a bucketset from which to draw the values for each
cell. When the value you select has an associated global bucketset, then by default
the bucketset is associated with the condition row.

6. Repeat Step 2 through Step 5, as required to add additional condition rows in the
Decision Table.

Note: When you add a Decision Table the rules validation log
displays validation warnings. The Decision Table is not complete and
does not validate without warnings until you add conditions and
actions to the Decision Table.

Creating Decision Tables

5-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

To use a local bucketset or specify the bucketset for a decision table condition:
1. Each condition row requires a bucketset from which to draw the values for each

cell. When the value you select has an associated global bucketset, then by default
the bucketset is associated with the condition row.

2. If there is no global bucketset associated with the value, then after you add a
condition row to a Decision Table you need to specify either a Local List of Values
or a Local List of Ranges bucketset to associate with the condition row, or specify
an existing global bucketset. To add a bucketset for the condition, in the
Conditions area select the condition and then select from the Bucketset dropdown
list to associate a bucketset, as shown in Figure 5–8. The bucketset list includes
available global bucketsets of the appropriate type.

Figure 5–8 Specifying a Bucketset For a Condition Row in a Decision Table

3. If you do not specify a global bucketset, then you can create and use a local
bucketset by selecting either Local List of Values or Local List of Ranges to create
and use the specified type of bucketset.

4. Repeat Step 2 through Step 3, as required to define additional condition rows in
the Decision Table.

For more information on creating bucketsets, see Section 3.6, "Working with
Bucketsets".

5.2.3 How to Add Actions to a Decision Table
A Decision Table includes an Actions area where you specify Decision Table actions.
The actions determine actions for rules in a Decision Table.

To create a valid Decision Table you need to do the following:

1. Add actions to a Decision Table.

2. For each action cell, where specific values apply, set the values for the action cells.

Creating Decision Tables

Working with Decision Tables 5-11

3. For each action cell, when the action does not apply to the rule, deselect the action
cell. By default when you add an action to a Decision Table, actions for all the
rules are unselected.

To add actions to a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to add actions.

2. From the dropdown list next to the Add icon select Action and select an available
action from the dropdown list. Table 5–1 lists the available actions. For example,
select Modify. Rules Designer displays the Action Editor dialog as shown in
Figure 5–9.

Figure 5–9 Adding an Action to a Decision Table

3. In the Action Editor dialog select the action target in the Target area. This specifies
the data model object the action applies to.

4. For the specified target, as needed to make the action do what is required, modify
the fields in the Arguments table. In the Action Editor dialog the Arguments table
includes the fields shown in Table 5–2.

Table 5–2 Action Editor Dialog Arguments Fields

Field Description

Property Displays the property names for the specified target.

Type Displays the type for the property.

Value Select the default value for the action from the dropdown list of
available actions. The specified value applies to either the entire
action, as the default value, or when a particular action cell is
selected, the value specified applies for that particular action
cell.

Creating Decision Tables

5-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

5. In the Action Editor dialog, to select action cells for all the rules, select the Always
Selected checkbox.

6. Repeat Step 2 through Step 5, as required to define additional actions for the
Decision Table.

To set values for action cells in a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to specify action cell values.

2. In the Actions area, check that the appropriate action cells are selected. If the
Always Selected checkbox is specified in the Action Editor dialog, then all action
cells should be selected. If Always Selected is not selected, then select the
appropriate action cells using the action cell checkbox.

3. In the Actions area, enter the appropriate value for parameterized properties for
each selected action cell. To do this select the action cell property cell, and either
enter a value, select a value from the dropdown list, or click the Expression
Builder icon to use the Expression Builder dialog.

To deselect an action cell in a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want deselect an action cell.

2. In the Actions area, select the action cell and deselect the checkbox in the action
cell. You are not allowed to deselect action cell values when Always Selected is
selected for the action.

When you add actions, you may need to change the order of the actions. In Rules
Designer you can use the Move Down icon or Move Up icon to change the order of
actions.

5.2.4 How to Add a Rule to a Decision Table
You can add a rule to a Decision Table. Rules Designer shows a column for the rule
and each condition cell is initialized to "-" do not care.

To add a rule to a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to add the rule.

2. From the dropdown list next to the Add icon, select Rule.

3. Enter values for the condition cells. Notice that the rule moves as required to keep
bucket values in their defined order.

4. Enter values for the action cells.

Parameterized This specifies a parameterized value. A parameterized value
displays in a Decision Table action cell. When you select
parameterized value for a property, this generally means that
each rule supplies a different parameter value.

Constant Select to specify a constant value.

Table 5–2 (Cont.) Action Editor Dialog Arguments Fields

Field Description

Performing Operations on Decision Tables

Working with Decision Tables 5-13

5.3 Performing Operations on Decision Tables
After you create a Decision Table there are operations that you may want to perform
on the Decision Table, including the following:

■ Compact or split cells in a Decision Table

■ Merge a condition or split a condition in a Decision Table

■ Finding and resolving conflicts between rules in a Decision Table

■ Find and fix gaps in a Decision Table

5.3.1 Introduction to Decision Table Operations
After you create a Decision Table you may want to modify the contents of the Decision
Table to produce a Decision Table that includes a complete set of rules for all cases, or
to produce a Decision Table that provides the least number of rules for the cases.

5.3.1.1 Understanding Decision Table Split and Compact Operations
The split and compact operations allow you to manipulate the contents of the
condition cells in a Decision Table.

The split table operation creates a rule for every combination of buckets across the
conditions. For example, in a Decision Table with 3 boolean conditions, 2 x 2 x 2 = 8
rules are created. In a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion rules
are created. Thus, you only use split table when the number of rules created is small
enough that filling in the action cells is feasible.

When you want to apply match conditions for the "do not care" values in a Decision
Table and create a match case for each cell, you use the split table operation.

Split can be applied to an entire Decision Table or to a single condition row.
Additionally, split may be performed on an individual condition cell.

Depending on what is selected in the Decision Table, the split operation can create
condition cells. Thus, using the split operation you can create rules in a Decision Table.
Table 5–3 summarizes the split operation for a selected condition cell, condition row, or
for a complete Decision Table.

Depending on what is selected in the Decision Table, the compact table or merge cells
operations remove condition cells. The compact table operation can be applied to an
entire Decision Table. Additionally, the merge operation may be performed on sibling
cells or on an entire condition row. Thus, using compact table or merge you can

Table 5–3 Summary of Split Operation

Operator Description

Condition Cell Creates one sibling condition cell for each bucket value represented by the cell.

If the condition cell value is "do not care", then the cell is split into one sibling cell for each
bucket in the bucketset that is not represented by a sibling condition cell, and "do not care" is
no longer represented.

Condition Row For each condition cell in the proceeding condition expression, create a sibling group which
contains a cell for each value in the bucketset. The effect of this operation is the same as
adding a "do not care" to each sibling group and calling split on each condition cell in each
sibling group.

Decision Table Same as calling split on each condition row in the Decision Table.

Performing Operations on Decision Tables

5-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

remove rules from a Decision Table. Table 5–4 summarizes the compact table and
merge operations.

Split and merge are inverse operations when conflicting action cells are not associated
with the operation. In this case, without conflicting action cells, a merge operation
combines all the values from the siblings into one sibling, and discards the other
sibling condition cells, and as a result of merging the condition cells, when a Decision
Table contains action cells, the action cells are also merged. Thus, the merge operation
combines multiple condition cells into a single condition cell and adds all buckets to
the single cell.

When there are conflicting values for the action cells, a merge operation merges the
action cells in a form that requires additional manual steps. Thus, if two action cells
have conflicting parameters, after the merge the action cell contains multiple
conflicting parameter values. These conflicting values are appended to the action cell
and must be manually resolved by selecting and deleting the unwanted duplicate
parameters. For example, see Figure 5–10 that shows conflicting values in an action
cell.

An action cell that contains multiple values for a property is invalid. When you select
the action cell Rules Designer shows a popup window with checkboxes to allow you
to select a single value for the action cell. As shown in the validation log in
Figure 5–10, Rules Designer shows a validation warning until you select a single value.

Table 5–4 Summary of Merge Operation

Operator Description

Condition Cell Merging two or more condition cells adds all buckets in the cells to a single cell, and
removes all but one of the cells. If one of the cells represents "do not care", then the merged
cell represents "do not care".

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Condition Row Combine all values in each sibling group into a single "do not care" cell for each condition
cell in the proceeding condition expression. The effect of this is the same as calling merge
on all cells in each sibling group.

This operation may merge action cells and this can create warnings for duplicate action
cells, such as, RUL-05847: Duplicate decision table action parameter.

Decision Table Compacts the Decision Table by merging conditions of rules with identical actions.

Performing Operations on Decision Tables

Working with Decision Tables 5-15

Figure 5–10 Conflicting Properties to be Resolved for a Merged Action Cell

5.3.1.2 Understanding Decision Table Move Operations
You can move the conditions or actions in a Decision Table. The Move icons let you
reorder condition rows in the Conditions area and actions in the Actions area. Moving
conditions up or down may reorder visual display of the rules, but these operations
does not change the logic in any way. For example, if (x.a == 1 and x.b == 1) is
logically the same as if (x.b == 1 and x.a == 1).

When you work with Decision Tables some operations only apply for condition cells
that are siblings. Using the Move icon you can reorder rows so that Decision Table
operations apply to the tree at the desired granularity. For example, when you want to
change the action of a condition cell for a single rule, then you need to move that
condition cell to the last row in the Decision Table Conditions area. For example,
consider the Decision Table shown in Figure 5–11.

Performing Operations on Decision Tables

5-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 5–11 Rules in a Decision Table

To view this table with granularity for the Driver.age, move the Driver.age
condition from the first row to the third row, as shown in Figure 5–12.

Figure 5–12 Decision Table After Move Down with Age Condition Last

Now to make the Driver.age conditions "do not care" for the first two rules, where
the driver passes the eyesight test and has had driver training is true, you can easily
apply changes to these particular conditions when the Driver.age condition is in the
last row. Thus, in this table, it is easier to view and modify age related rules when
Driver.age is in the last row, with the finest granularity.

Performing Operations on Decision Tables

Working with Decision Tables 5-17

In general, the move operations can assist you when you want to split, merge, or
assign certain values that might only be appropriate at a particular level in the tree,
depending on the location of a condition cell, or depending on the location of the
parent, children, or siblings of a condition cell.

For actions in the Actions area, clicking Move Up or Move Down lets you reorder the
actions. Actions are ordered so that when multiple actions apply, the first action runs
before subsequent actions. Thus, using the Move Up or Move Down operation on an
action may be appropriate, depending on your application.

5.3.1.3 Understanding Decision Table Gap Analysis
A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of buckets, one from each condition, that is not covered by an existing
rule. Rules Designer provides Gap Analysis to check for gaps. When you click the
Gap Analysis icon Rules Designer finds gaps and presents a dialog to fix any gaps
that are found.

You can choose to make existence of gaps a validation warning. When you deselect
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Section 4.5, "Using Advanced
Settings with Rules and Decision Tables".

For example, using the Driver example if you create a gap by deleting the rule that
covers the case for Driver.age < 20 and Driver.has_training false, and then
you click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in
Figure 5–13. Clicking OK with the checkboxes selected adds either all rules or the
selected rules to the Decision Table (this example only shows a single rule to add).

Figure 5–13 Using Gap Analysis

Gap analysis generates different new rules for the following cases:

■ Sibling rules: multiple missing sibling rules are added as a single new rule. For
example, consider a rule with two conditions, Driver.age and Driver.hair.
When there are two missing rules for different hair colors and the rules are
siblings, that is, they have a common parent, then gap analysis shows a single rule
as shown in Figure 5–14.

Performing Operations on Decision Tables

5-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Non-sibling rules: multiple missing non-sibling rules are added as individual new
rules. For example, when there are two different rules missing that do not have the
same parent, then gap analysis provides two rules, as shown in Figure 5–15.

Figure 5–14 Gap Analysis with Missing Sibling Rules

Figure 5–15 Gap Analysis with Missing Non-Sibling Rules

In both of these cases shown in Figure 5–14 and Figure 5–15 there are two missing
buckets, but for sibling rules the multiple buckets are combined in a single new rule.
Thus, in general gap analysis suggests fewer more general rules in preference to many
more specific rules.

For sibling rules you can add multiple rules then edit each cell to pick the buckets you
want. Alternatively, you can use Find Gaps to add a rule and then split the cell with
multiple values, and delete the rules you do not want to keep.

5.3.1.4 Understanding Decision Table Conflict Analysis
The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a bucket in common. Overlap is common when a Decision Table contains "do not
care" condition cells. Overlap without conflict is common and harmless.

Rules Designer finds conflicts and you can see the conflicts in the Conflict Resolution
row in the Decision Table when you click Show Conflicts. For example, Figure 5–16
shows a Decision Table with conflicting rules.

Performing Operations on Decision Tables

Working with Decision Tables 5-19

Figure 5–16 Decision Table Showing Conflicting Rules in the Conflicts Area

By clicking on the cells in the Decision Table Conflict Resolution area Rules Designer
lets you resolve conflicts between rules as follows:

■ Override (Override and OverriddenBy): You override one rule with the other.
Override specifies that one rule fires. Override is a combination of prioritization
and mutual exclusion. Prioritization is transitive and not symmetric. Mutual
exclusion is both transitive and symmetric. If A overrides C and B overrides C,
then A or B runs before C but only one of A, B, or C runs.

■ Run Before (RunBefore and RunAfter): You prioritize the rules. Run before lets
the two rules fire in a prescribed order. Prioritization is transitive but not
symmetric. That is, if A runs before B runs before C, then A runs before C but B
does not run before A. This uses a Decision Table runBefore list specifying that the
rule that runs before has a higher priority than rules in the list.

■ Ignore (NoConflict): You OK the conflict. Ignore lets the two rules fire in arbitrary
order. For example, consider the following conflicting rules in a decision table:

rule1: everybody gets a 10% raise (as specified with a do not care value in a
decision table condition cell)
rule2: employee with Top Performer set to true gets a 5% raise

Performing Operations on Decision Tables

5-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

In these rules, if rule2 overrides rule1, then a top performer gets a 5% raise, and
everyone else gets a 10% raise. However, in this case, you would like to have both
rules fire. Because it does not matter which rule fires first, and there is no conflict,
then a top performer gets a 15.5% raise either way. In this case, use the NoConflict
list to remove the conflict. Note that no conflict is what you get with IF/THEN
rules with equal priorities, only you are not warned of a conflict and you have to
think carefully if you want one rule to override the other.

Figure 5–17 shows the Rules Designer Conflict Resolution dialog shown when you
select a conflicting rule in the Conflict Resolution area. This dialog lets you resolve
conflicts between rules by selecting overrides, prioritization with RunBefore or
RunAfter options, and a NoConflict option.

Figure 5–17 Using the Decision Table Conflict Resolution Dialog

You can use the Decision Table Advanced Settings Auto Conflict Resolution option to
specify that, where possible, conflicts are automatically resolved. The automatic
conflict resolution policy specifies that a special case overrides a more general case.
For more information, see Section 4.5, "Using Advanced Settings with Rules and
Decision Tables".

Thus, when there are conflicts in a Decision Table, you can do one or more of the
following to resolve the conflicts:

Performing Operations on Decision Tables

Working with Decision Tables 5-21

■ Use auto conflict resolution by selecting the Auto Conflict Resolution checkbox in
the Decision Table.

■ Use the Conflict Resolution dialog by selecting cells in the Conflict Resolution
area with the Show Conflicts checkbox selected.

■ Change the Decision Table to remove an overlap.

■ Combine actions to remove conflicts.

5.3.2 How to Compact or Split a Decision Table
Use the Compact Table and Split Table icons to compact or split cells in a Decision
Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split
and Compact Operations."

To compact a decision table:
1. In Rules Designer select a ruleset from the Rulesets navigation tab and select the

Decision Table to compact.

2. Click the Compact Table icon.

To split cells in a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table to split.

2. Click the Split Table icon.

5.3.3 How to Merge or Split Conditions in a Decision Table
Use the merge condition and split condition operations to merge or split a condition in
a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision
Table Split and Compact Operations."

To merge a condition in a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to merge a condition.

2. In the Conditions area, select the condition you want to merge.

3. Right-click, and from the dropdown list select Merge Condition.

To split a condition in a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to split a condition.

2. In the Conditions area, select the condition you want to split.

3. Right-click and from the dropdown list select Split Condition.

5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells
Use the condition cell operations to split a condition cell, to merge sibling condition
cells, or to specify a "do not care" value for a condition cell in a Decision Table. For
more information, see Section 5.3.1.1, "Understanding Decision Table Split and
Compact Operations."

Performing Operations on Decision Tables

5-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

To merge sibling cells in a condition in a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to merge condition cells.

2. Select the sibling condition cells to merge.

3. Right-click, and from the dropdown list select Merge selected cells.

To split a cell in a condition in a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to split a condition cell.

2. Select the cell to split.

3. Right-click, and from the dropdown list select Split selected cell.

To specify a "Do Not Care" value for a cell in a condition in a decision table:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Right-click, and from the dropdown list select Do Not Care.

To select all buckets to specify a "Do Not Care" value for a cell in a condition:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to set the "do not care" value.

2. Select the appropriate condition cell.

3. Double-click, and from the dropdown list select all the available checkboxes for all
possible values.

5.3.5 How to Perform Decision Table Gap Analysis
A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a
combination of buckets, one from each condition, that is not covered by an existing
rule. Rules Designer provides Gap Analysis to check for gaps. When you use this
operation Rules Designer presents a window to fix gaps. For more information, see
Section 5.3.1.3, "Understanding Decision Table Gap Analysis".

You can choose to make existence of gaps a validation warning. When you deselect
Allow Gaps in the Advanced Settings area, the Decision Table reports a validation
warning when a gap is found. For more information, see Section 4.5, "Using Advanced
Settings with Rules and Decision Tables".

To perform decision table gap analysis:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to perform.

2. Click the Gap Analysis icon.

5.3.6 How to Perform Decision Table Conflict Analysis
The rules in a Decision Table can conflict. Two rules conflict when they overlap and
they have different actions. Two rules overlap when at least one of their condition cells
has a bucket in common. For more information, see Section 5.3.1.4, "Understanding
Decision Table Conflict Analysis"

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-23

To perform decision table conflict analysis:
1. From Rules Designer select a ruleset from the Rulesets navigation tab and select

the Decision Table where you want to check conflicts.

2. In the Conditions area, in the conflicts area, when conflicts exist, for each rule
with a conflict double-click the appropriate condition cell to display the Conflict
Resolution dialog.

3. In the Conflict Resolution dialog, for each conflicting rule, in the Resolution field
select a resolution from the dropdown list.

5.3.7 How to Select the Auto Conflict Resolution Option
When you select the Advanced Settings option in a Decision Table, you can select that
the Decision Table conflicts are automatically resolved using an Override conflict
resolution (this applies only when this is possible to resolve the conflict using the
automatic conflict resolution policies). The automatic conflict resolution policy is that a
special case overrides a more general case. For more information, see Section 5.3.1.4,
"Understanding Decision Table Conflict Analysis".

To select the auto conflict resolution option:
1. Select the rule or Decision Table where you want to use Auto Conflict Resolution.

2. Click the Show Advanced Settings icon next to the rule or Decision Table name.

3. Select Auto Conflict Resolution.

5.4 Creating and Running an Oracle Business Rules Decision Table
Application

The Order Approval application demonstrates the integration of an SOA composite
application with Oracle Business Rules and the use of a Decision Table.

In this application a process is modeled that uses the decision component to:

■ Process rules from XML inputs including: a credit score and the annual spending
of a customer, and the total cost of the incoming order.

■ Provide output that determines if an order is approved, rejected, or requires
manual processing.

To complete this procedure, you need to:

■ Obtain the Source Files for the Order Approval Application

■ Create an Application for Order Approval

■ Create a Business Rule Service Component for Order Approval

■ View Data Model Elements for Order Approval

■ Add Bucketsets to the Data Model for Order Approval

■ Associate Bucketsets with Order and CreditScore Properties

■ Add a Decision Table for Order Approval

– Split the Cells in the Decision Table and Add Actions

– Compact the Decision Table

– Replace Several Specific Rules with One General Rule

Creating and Running an Oracle Business Rules Decision Table Application

5-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

– Add a General Rule

■ Check Dictionary Business Rule Validation Log for Order Approval

■ Deploy the Order Approval Application

■ Test the Order Approval Application

5.4.1 How to Obtain the Source Files for the Order Approval Application
The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

To work with the Order Approval application, you first need to obtain the order.xsd
schema file either from the sample project that you obtain online or you can create the
schema file and create all the application, project, and other files in Oracle JDeveloper.
You can save the schema file provided in Example 5–1 locally to make it available to
Oracle JDeveloper.

Example 5–1 shows the order.xsd schema file.

Example 5–1 Order.xsd Schema

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>
 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>
 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
 </schema>

5.4.2 How to Create an Application for Order Approval
To work with Oracle Business Rules, you first create an application in Oracle
JDeveloper.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-25

To create an application for order approval:
1. In the Application Navigator, click New Application.

2. In the Name your application dialog, enter the name and location for the new
application.

a. In the Application Name field, enter an application name. For example, enter
OrderApprovalApp.

b. In the Directory field, specify a directory name or accept the default.

c. In the Application Package Prefix field, enter an application package prefix,
for example com.example.order.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. For an SOA composite with Oracle Business Rules, in the Application
Template area select SOA Application for the application template. For
example, see Figure 5–18.

e. Click Next.

Figure 5–18 Adding the Order Approval Application

3. In the Name your project page enter the name and location for the project.

a. In the Project Name field, enter a name. For example, enter OrderApproval.

b. Enter or browse for a directory name, or accept the default.

c. For an Oracle Business Rules project, in the Project Technologies area ensure
that SOA, ADF Business Components, Java, and XML are in the Selected area
on the Project Technologies tab, as shown in Figure 5–19. If an item is missing,
select it in the Available pane and add it to the Selected pane using the Add
button.

Creating and Running an Oracle Business Rules Decision Table Application

5-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 5–19 Adding a Project to an Application

4. Click Finish.

5.4.3 How to Create a Business Rule Service Component for Order Approval
After creating a project in Oracle JDeveloper you need to create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

■ Add a business rules service component

■ Create input and output variables for the service component

■ Create an Oracle Business Rules dictionary in the project

To create a business rule service component:
1. In the Application Navigator, in the OrderApproval project expand SOA Content

and double-click composite.xml to launch the SOA composite editor (this may
already be open after you create the project).

2. From the Component Palette, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the
composite.xml editor.

Oracle JDeveloper displays a Create Business Rules page, as shown in Figure 5–20.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-27

Figure 5–20 Adding a Business Rule Dictionary with the Create Business Rules Dialog

3. To add an input, from the dropdown list next to the Add icon select Input to enter
input for the business rule.

4. In the Type Chooser dialog, click the Import Schema File... icon. This displays the
Import Schema File dialog, as shown in Figure 5–21.

Figure 5–21 Import Schema File with Type Chooser

5. In the Import Schema dialog click Browse Resources to choose the XML schema
elements for the input variable of the process. This displays the SOA Resource
Lookup dialog.

Creating and Running an Oracle Business Rules Decision Table Application

5-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

6. In the SOA Resource Lookup dialog, navigate to find the order.xsd schema file
and click OK.

7. In the Import Schema File dialog, make sure Copy to Project is selected, as shown
in Figure 5–22.

Figure 5–22 Importing the Order.xsd Schema File

8. In the Import Schema File dialog, click OK.

9. If the Localize Files dialog displays, click OK to copy the schema to the composite
process directory.

10. In the Type Chooser, navigate to the Project Schemas Files folder to select the
input variable.

For this example, select CustomerOrder as the input variable.

11. On the Type Chooser window, click OK. This displays the Create Business Rules
dialog, as shown in Figure 5–23.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-29

Figure 5–23 Create Business Rules Dialog with CustomerOrder Input

12. In a similar manner, add the output fact type OrderApproval from the imported
order.xsd.

13. In the Create Business Rules dialog, select Expose as Composite Service, as shown
in Figure 5–24.

Figure 5–24 Create Business Rules Dialog with Input and OrderApproval Output

14. Click OK. This creates the Business Rule component and Oracle JDeveloper shows
the Business Rule in the canvas workspace, as shown in Figure 5–25.

Creating and Running an Oracle Business Rules Decision Table Application

5-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 5–25 Business Rules Component in OrderApproval Composite

The business rule service component enables you to integrate your SOA composite
application with a business rule. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

5.4.4 How to View Data Model Elements for Order Approval
Before adding rules you need to create the Oracle Business Rules data model. The data
model contains the business data definitions (types) and definitions for facts that you
use to create rules. For example, for this sample the data model includes the XML
schema elements from order.xsd that you specify when you define inputs and
outputs for the business rule activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you
may need to create or modify elements in the data model.

To view data model elements for Oracle business rules:
1. Select the composite tab with the value composite.xml, and in the Components

lane select the business rule (this surrounds the component, OracleRules1 with a
dashed selection box).

2. Double-click the selection box to launch Rules Designer.

3. In Rules Designer select the Facts navigation tab.

4. Select XML Facts tab in the Facts navigation tab as shown in Figure 5–26.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-31

Figure 5–26 Opening a Business Rules Dictionary with Rules Designer

5.4.5 How to Add Bucketsets to the Data Model for Order Approval
To use a Decision Table you need to define bucketsets that specify how to draw values
for each cell for the conditions that constitute the Decision Table. For this example the
bucketsets are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount bucketset to the data model:
1. In Rules Designer, select the Bucketsets navigation tab.

2. From the dropdown next to the Create BucketSet... icon, select List of Ranges.

3. In the Name field, enter OrderAmount (In Rules Designer be sure to press Enter
to accept the name).

4. Double-click the OrderAmount bucketset icon to display the Edit Bucketset
dialog.

5. Click Add Bucket to add a bucket.

6. Click Add Bucket again to add another bucket.

7. In the Range Bucket Values area, in the top Endpoint field enter 1000 for the
endpoint value.

8. In the Range Bucket Values area, for the middle bucket in the Endpoint field
enter 500 for the endpoint value.

9. In the Included Endpoint field for each bucket ensure the checkbox is selected, as
shown in Figure 5–27.

Creating and Running an Oracle Business Rules Decision Table Application

5-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 5–27 Adding the OrderAmount Bucketset

10. Modify the Alias field for each value to High, Medium, and Low, as shown in
Figure 5–28.

Figure 5–28 Adding the OrderAmount Bucketset with Low Medium and High Aliases

11. Click OK.

To add CreditScore bucketset to data model:
1. In Rules Designer select the Bucketsets navigation tab.

2. From the dropdown next to the Create BucketSet... icon, select List of Ranges.

3. In the Name field, enter CreditScore.

4. Double-click the CreditScore bucketset icon to display the Edit Bucketset dialog.

5. Click Add Bucket to add a bucket.

6. Click Add Bucket again to add another bucket.

7. In the top bucket, in the Endpoint field enter 750.

8. For the middle bucket, in the Endpoint field enter 400.

9. In the Included Endpoint field for each bucket, ensure the checkbox is selected as
shown in Figure 5–29.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-33

Figure 5–29 Adding the CreditScore Bucketset

10. Modify the Alias field for each endpoint value to solid for 750, avg for 400, and
risky for -Infinity as shown in Figure 5–30.

11. Click OK.

Figure 5–30 Adding the CreditScore Bucketset with Risky Avg and Solid Aliases

5.4.6 How to Associate Bucketsets with Order and CreditScore Properties
To prepare for creating Decision Tables you can associate a bucketset with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the bucketset when you create a Decision Table.

Note that the OrderApproval.status property is associated with the Status
bucketset when the OrderApproval fact type is imported from the XML schema. In
the schema, Status is a restricted String type and is therefore represented as an
enum bucketset. Rules Designer creates the status bucketset. For more information, see
Section 3.2.4, "What You Need to Know About XML Facts".

To associate bucketsets with Order and CreditScore properties:
1. In Rules Designer select the Facts navigation tab.

Creating and Running an Oracle Business Rules Decision Table Application

5-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

2. Select the XML Facts tab in the Facts navigation tab as shown in Figure 5–31.

Figure 5–31 Opening a Business Rules Dictionary with Rules Designer

3. Select the type you want to modify. For example in the XML Facts table
double-click the icon next to the CustomerOrder entry. This displays the Edit
XML Fact dialog.

4. In the Edit XML Fact dialog, in the Properties table in the Bucketset column select
the cell for the appropriate property and from the dropdown list select the
bucketset you want to use. For example, for the property order select the
OrderAmount bucketset, as shown in Figure 5–32.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-35

Figure 5–32 Associating the OrderAmount Bucketset with CustomerOrder.order

5. In a similar manner, for the property creditScore select the CreditScore bucketset.

6. Click OK.

5.4.7 How to Add a Decision Table for Order Approval
You create a Decision Table to process input facts and to produce output facts, or to
produce intermediate conclusions that Oracle Business Rules can further process using
additional rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer
to assist you. Rules Designer performs dictionary validation when you make any
change to the dictionary. To show the validation log window, click the Validate icon
or select View>Log and select the Business Rule Validation tab. If you view the rules
validation log you should see warning messages. You remove these warning messages
as you create the Decision Table. For more information on rule validation see
Section 4.4.2, "Understanding Rule Validation".

To use a Decision Table for rules in this sample application you work with facts
representing a customer spending level and a customer credit risk for a particular
customer and a particular order. Then, you use a Decision Table to create rules based
on customer spending, the order amount, and the credit risk of the customer.

To add a decision table for order approval:
1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. Click the Add icon and from the dropdown list and select Create Decision Table.

Creating and Running an Oracle Business Rules Decision Table Application

5-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

3. In the Decision Table, click the Add icon and from the dropdown list select
Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the navigator
expand CustomerOrder and select creditScore. This enters the expression
CustomerOrder.creditScore in the Conditions column.

5. Again, in the Decision Table, click the Add icon and from the dropdown list select
Condition.

6. In the Decision Table, in the Conditions area double-click the <edit condition>.
Then, in the dropdown navigator expand CustomerOrder and select order. This
enters the expression CustomerOrder.order.

7. Again, in the Decision Table, click the Add icon and from the dropdown list select
Condition.

8. In the Decision Table, double-click <edit condition>.

9. In the dropdown navigator expand CustomerOrder and select annualSpending.
In the text entry area, add >2000 as shown in Figure 5–33.

Figure 5–33 Adding the Annual Spending Entry to a Decision Table

10. Type Enter to accept the value, as shown in Figure 5–34. If you view the rules
validation log you should see the warning messages as shown in Figure 5–34. You
remove these warning messages as you modify the Decision Table in later steps.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-37

Figure 5–34 Adding Conditions to the CustomerOrder Decision Table

To create an action in a decision table:
1. In the Decision Table click the Add icon and from the dropdown list select Action

> Assert New.

2. In the Actions area, double-click assert new(. This displays the Action Editor
dialog.

3. In the Action Editor dialog, in the Facts area select OrderApproval.

4. In the Action Editor dialog, in the Properties table for the property status select
the Parameterized checkbox and the Constant checkbox. This specifies that each
rule independently sets the status.

5. In the Action Editor dialog, select the Always Selected checkbox as shown in
Figure 5–35.

Creating and Running an Oracle Business Rules Decision Table Application

5-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 5–35 Adding an Action to a Decision Table with the Action Editor Dialog

6. In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

5.4.7.1 Split the Cells in the Decision Table and Add Actions
You can use the Decision Table split operation to create rules for the bucketsets
associated with the condition rows in the Decision Table. This creates one rule for
every combination of condition buckets. There are three order amount buckets, three
credit score buckets, and two boolean buckets for the annual spending amount for a
total of eighteen rules (3 x 3 x 2 = 18).

To split cells in a decision table:
1. Select the Decision Table.

2. In the Decision Table, click the Split Table icon and from the dropdown list select
Split Table. The split table operation eliminates the "do not care" cells from the
table. The table now shows eighteen rules that cover all ranges as shown in
Figure 5–36.

These steps produce validation warnings for action cells with missing expressions.
You fix these in later steps.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-39

Figure 5–36 Splitting a Decision Table Using Split Table Operation

To add actions for each rule in the decision table:
In the Decision Table you specify a value for the status property associated with
OrderApproval for each action cell in the Actions area. The possible choices are:
Status.MANUAL, Status.REJECTED, or Status.ACCEPTED. In this step you fill in
a value for status for each of the 18 rules. The values you enter correspond to the
conditions that form each rule in the Decision Table.

1. In the Actions area, double-click the action cell for the rule you want to work with,
as shown in Figure 5–37.

Figure 5–37 Adding Action Cell Values to a Decision Table

2. In the dropdown list, select and enter a value for the action cell. For example, enter
Status.MANUAL.

Creating and Running an Oracle Business Rules Decision Table Application

5-40 Oracle Fusion Middleware User's Guide for Oracle Business Rules

3. For each action cell, enter the appropriate value as determined by the logic of your
application. For this sample application use the values for the Decision Table
actions as shown in Table 5–5.

4. Select Save All from the File main menu to save your work.

5.4.7.2 Compact the Decision Table
In this step you compact the rules to merge from eighteen rules to nine rules. This
automatically eliminates the rules that are not needed and preserves the no gap, no
conflict properties for the Decision Table.

To compact the decision table:
1. Select the Decision Table.

2. Click the Resize All Columns to Same Width icon.

3. Click the Compact Table icon and from the dropdown list select Compact Table.
The compact table operation eliminates rules from the Decision Table. The
Decision Table now shows nine rules, as shown in Figure 5–38.

Table 5–5 Values for Decision Table Actions

Rule C1 creditScore C2 order C3 annualSpending > 2000 A1 OrderApproval status

R1 risky Low true Status.MANUAL

R2 risky Low false Status.MANUAL

R3 risky Medium true Status.MANUAL

R4 risky Medium false Status.REJECTED

R5 risky High true Status.MANUAL

R6 risky High false Status.REJECTED

R7 avg Low true Status.APPROVED

R8 avg Low false Status.MANUAL

R9 avg Medium true Status.APPROVED

R10 avg Medium false Status.MANUAL

R11 avg High true Status.MANUAL

R12 avg High false Status.MANUAL

R13 solid Low true Status.APPROVED

R14 solid Low false Status.APPROVED

R15 solid Medium true Status.APPROVED

R16 solid Medium false Status.APPROVED

R17 solid High true Status.APPROVED

R18 solid High false Status.MANUAL

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-41

Figure 5–38 Compacting a Decision Table Using Compact Table

5.4.7.3 Replace Several Specific Rules with One General Rule
Notice that five of the nine remaining rules result in a manual order approval status.
You can reduce the number of rules by deleting these five rules. Note it is often best
practice to not do this (that is not replace several specific rules with one general rule).
You need to compare the benefits of having fewer rules with the added complexity of
managing the conflicts introduced when you reduce the number of rules.

To replace several specific rules with one general rule:
1. Select the Decision Table.

2. In the Decision Table, select a rule with OrderApproval status action set to
Status.MANUAL. To select a rule, click the column heading. For example, click
rule R2 as shown in Figure 5–39.

3. Click Delete to remove a rule in the Decision Table. Be careful to click the delete
icon in the Decision Table area to delete a rule in the decision table (there is also a
delete icon shown in the Ruleset area that deletes the complete Decision Table).

Creating and Running an Oracle Business Rules Decision Table Application

5-42 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 5–39 Deleting Rules from a Decision Table

4. Repeat these steps to delete all the rules with action set to Status.MANUAL. This
should leave the Decision Table with four rules as shown in Figure 5–40.

Figure 5–40 Decision Table After Manual Actions Removed

5.4.7.4 Add a General Rule
Now you can add a single rule to handle the manual case. After adding this rule you
enable Auto Conflict Resolution.

To add a general rule:
1. In the Decision Table, click the Add icon and from the dropdown list select Rule.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-43

2. In the Conditions area, for the three conditions leave the "-" do not care value for
each cell in the rule.

3. In the Actions area, enter Status.MANUAL, as shown in Figure 5–41. Notice that
the Business Rule Validation log includes the warning RUL-05851 for
unresolved conflicts.

Figure 5–41 Decision Table with Conflicting Rules

4. Show the conflicting rules by clicking the Toggle Display of Conflict Resolution
icon, as shown in Figure 5–42.

Creating and Running an Oracle Business Rules Decision Table Application

5-44 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 5–42 Adding a Rule to Handle Status Manual

To enable auto conflict resolution:
1. In the Decision Table click Show Advanced Settings (the icon next to the Decision

Table name).

2. Select Auto Conflict Resolution. After adding the manual case rule and selecting
Auto Conflict Resolution, notice that the conflicts are resolved and special cases
override the general case, as shown in Figure 5–43.

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-45

Figure 5–43 Adding a Rule to Handle Status Manual with Auto Conflict Resolution Set

5.4.8 How to Check the Business Rule Validation Log for Order Approval
Before you can deploy the application you need to make sure the dictionary validates
without warnings. If there are any validation warnings you need fix any associated
problems.

To validate the dictionary:
1. In the Business Rule Validation Log, check for validation warnings.

2. If there are validation warnings, perform appropriate actions to correct the
problems.

5.4.9 How to Deploy the Order Approval Application
Business rules created in an SOA application are deployed as part of the SOA
composite when you create a deployment profile in Oracle JDeveloper. You deploy an
SOA composite application to Oracle WebLogic Server.

To deploy and run the order approval application:
1. If you have not started your application server instance, then start the Oracle

WebLogic Server.

2. In the Application Navigator, right-click the OrderApproval project and select
Deploy > SOAComposite1 > to > WLS Server Name.

Then the SOA Deployment Configuration dialog displays.

3. Click OK.

4. In the Authorization Request dialog, enter your authorization.

Creating and Running an Oracle Business Rules Decision Table Application

5-46 Oracle Fusion Middleware User's Guide for Oracle Business Rules

5. Click OK.

5.4.10 How to Test the Order Approval Application
After deploying the application you can test the Decision Table in the SOA composite
application with Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:
1. Open the composite application in Fusion Middleware Control Console, as shown

in Figure 5–44.

Figure 5–44 Testing the Order Approval Application

2. Click Test.

3. In the Input Arguments area, select XML View. Replace the XML with the
contents of example Example 5–2.

Example 5–2 Sample Input for Testing Order Approval Application

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/OracleRules1/OracleRules1_
DecisionService_1">
 <ns1:callFunctionStateful>
 <ns1:configURL></ns1:configURL>

 <ns1:parameterList xmlns:ns3="http://example.com/ns/customerorder">
 <ns3:CustomerOrder>
 <ns3:name>Gary</ns3:name>
 <ns3:creditScore>600</ns3:creditScore>
 <ns3:annualSpending>2001.0</ns3:annualSpending>
 <ns3:value>High</ns3:value>
 <ns3:order>100.0</ns3:order>

Creating and Running an Oracle Business Rules Decision Table Application

Working with Decision Tables 5-47

 </ns3:CustomerOrder>
 </ns1:parameterList>
 </ns1:callFunctionStateful>
 </soap:Body>
</soap:Envelope>

4. Replace the values in the input shown in Example 5–2 as desired for your test.

5. Click Test Web Service.

6. In the Response tab, view the results. For example, for this input:

/OracleRules1_DecisionService_1" xmlns:ns2="http://xmlns.oracle.com/bpel">
 <resultList>
 <OrderApproval:OrderApproval
xmlns:OrderApproval="http://example.com/ns/customerorder"
xmlns="http://example.com/ns/customerorder">
 <status>approved</status>
 </OrderApproval:OrderApproval>
 </resultList>
</callFunctionStatefulDecision>

Creating and Running an Oracle Business Rules Decision Table Application

5-48 Oracle Fusion Middleware User's Guide for Oracle Business Rules

6

Working with Decision Functions 6-1

6Working with Decision Functions

Use a decision function to call rules from a Java application, from a composite, or from
a BPEL process.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Decision Functions"

■ Section 6.2, "Working with Decision Functions"

■ Section 6.3, "What You Need to Know About Decision Functions"

6.1 Introduction to Decision Functions
A decision function is a function that is configured declaratively. A decision function
performs the following operations:

■ Collects rulesets and other decision functions under a single executable umbrella

■ Handles the assertion of inputs as rule facts into the Oracle Business Rules Engine
working memory

■ Collects the consequent actions to be executed

■ Runs rulesets

■ Returns results

You can create a decision function to simplify the use of Oracle Business Rules from a
Java application or from a BPEL process. In a decision function the rules you want to
use can be organized into several rulesets, and those rulesets can be executed in a
prescribed order. Facts may flow to the first ruleset, and this ruleset may assert
additional facts that flow to the second and subsequent rulesets until finally facts flow
back to the decision function as decision function output.

6.2 Working with Decision Functions
A decision function is a function that is configured declaratively.

6.2.1 How to Add or Edit a Decision Function
You use Rules Designer to add a decision function.

To add a decision function:
1. In Rules Designer, select the Decision Functions navigation tab.

2. In the Decision Functions area, click Create....

Working with Decision Functions

6-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

3. Enter the decision function name in the Name field, or use the default name as
Figure 6–1 shows.

Figure 6–1 The Decision Functions Area in Rules Designer

4. In the decision functions table, double-click the decision function icon. For
example, double-click the decision function icon for DecisionFunction_1. This
displays the Edit Decision Function dialog, as shown in Figure 6–2.

Working with Decision Functions

Working with Decision Functions 6-3

Figure 6–2 Edit Decision Function Dialog

5. In the Name field, enter a name or accept the default value.

6. In the Description field, optionally enter a description.

7. In the Rule Firing Limit field, select unlimited. In some cases when you are
debugging a decision function, you may want to enter a value other than
unlimited for the rule firing limit. For more information, see Section 6.3.2, "What
You Need to Know About Rule Firing Limit Option for Debugging Rules".

8. Select the appropriate decision function options:

■ Will be invoked as a Web Service: select whether the decision function will
be invoked as a Web Service. For more information, see Section 6.3.4, "What
You Need to Know About the Will Be Invoked As Web Service Option".

■ Check Rule Flow: when selected, this option specifies that the rule flow is
checked to ensure that facts of the appropriate type are either explicit inputs to
the decision function or are asserted by rules in the rule flow. However, when
this is selected this does not always produce useful information; there are
cases where facts can be asserted in Java code that uses the decision function,
but this code might not be available at design time. In this case, validation
warnings may produced with Check Rule Flow selected may not be useful.

Working with Decision Functions

6-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Stateless: when selected specifies the decision function is stateless. For more
information, see Section 6.3.5, "What You Need to Know About the Decision
Function Stateless Option".

9. In the Inputs Table, click Add to add inputs. For each input in the Inputs Table,
select the appropriate options:

■ Name - enter an input name and press Enter or accept the default name.

■ Fact Type - select the appropriate fact type from the dropdown list.

■ Tree - When unselected, the input is asserted using the assert function.
When selected, the input is asserted using the assertTree function. When
selected it is expected that the input object or objects are the root of an object
tree that is connected in one-to-many relationships with other objects using
List or array type properties. For more information, see Section 4.8, "Working
with Tree Mode Rules".

■ List - When unselected, the input must be a single object and the assertion
applies only to that single input object. When selected, the input must be a
List of objects and the assertion applies to each object in the input List
(java.util.List).

10. In the Outputs Table, click Add to add outputs. For each output in the Outputs
Table, select the appropriate options:

■ Name - enter an output name and press Enter or accept the default name.

■ Fact Type - select the appropriate fact type from the dropdown list.

■ Tree - When selected, this option sets a flag that enables certain design-time
decision function argument checking. For an output argument, this option has
no effect on runtime behavior. However, at design time in the case where
several decision functions are called in a sequence, it is useful to notate
explicitly that the output of one decision function is a tree. This implies that
the input of another decision function in the sequence is expecting a tree as an
input. For more information, see Section 4.8, "Working with Tree Mode Rules".

■ List - When unselected the output is a single object. When selected the output
is a group of objects. For more information on the behavior of the List option
on an output argument, see Section 6.3.3, "What You Need to Know to About
Decision Function Arguments".

11. In the Rulesets and Decision Functions area, use the shuttle to move items from
the Available box to the Selected box.

12. Select an item in the Selected box, and click Move Up or Move Down as
appropriate to order the rulesets and the decision functions.

To edit an existing decision function:
1. In Rules Designer, select the Decision Functions navigation tab.

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

3. Edit the appropriate decision function fields in the same manner as you would
when you add a decision function.

To change the order of inputs:
1. In Rules Designer, select the Decision Functions navigation tab.

What You Need to Know About Decision Functions

Working with Decision Functions 6-5

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

3. Select the input argument you want to move. Click either Move Up or Move
Down to reorder the input argument.

To change the order of outputs:
1. In Rules Designer, select the Decision Functions navigation tab.

2. Select the decision function to edit and click the Edit icon or double-click the
decision function icon.

3. Select the output argument you want to move. Click either Move Up or Move
Down to reorder the output argument.

6.3 What You Need to Know About Decision Functions
A decision function is a function that is configured declaratively.

6.3.1 What You Need to Know About Using Undo Operation with Decision Functions
Rules Designer enables the option to undo and redo a delete operation on a decision
function. You can perform this operation by clicking the Undo Decision Function
Changes icon. However, if you perform the undo operation after deleting a decision
function, this operation shows the decision function you deleted but can cause serious
dictionary problems and can make the dictionary unusable.

In Rules Designer, do not use the Undo Decision Function icon after you delete a
decision function.

6.3.2 What You Need to Know About Rule Firing Limit Option for Debugging Rules
The Rule Firing Limit allows you to set the maximum number of steps (rule firings)
that are allowed at runtime. Using this option and specifying a value other than
unlimited can help you debug certain rule design problems and in some cases might
help prevent java.lang.OutOfMemoryError errors at runtime. This is can be
useful when debugging infinitely recursive rule firings.

6.3.3 What You Need to Know to About Decision Function Arguments
Oracle Business Rules generates a corresponding RL Language function for each
decision function.

The signature of a generated decision function is similar to:

function <name>(InputFactType1 input1, ... InputFactTypeN inputN) returns List

In a decision function, each parameter is generated depending on the List option, with
the decision function input, as follows:

■ Input argument, List option unselected: for FactTypei the input must be a single
object and the assertion applies only to that single input object.

■ Input List option selected: List<FactTypei> the input must be a List of objects
and the assertion applies to each object in the input List (java.util.List).

The generated RL Language function includes calls either to assert or assertTree
for each argument, depending on the decision function Input option, Tree. When Tree
is unselected the input is asserted using the assert function. When Tree is selected,

What You Need to Know About Decision Functions

6-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

the input is asserted using the assertTree function. When Tree is selected it is
expected that the input object or objects are the root of an object tree that is connected
in one-to-many relationships with other objects using List or array type properties.

For the decision function selected rulesets, as specified in the Rulesets and Decision
Functions area Selected box, the generated RL Language function includes a call to
run() with the selected rulesets in the selected ruleset stack order.

The generated RL Language function includes output for the decision function
Outputs, depending on the number of output parameters. Table 6–1 describes the
decision function output options.

After you edit a decision function, for example, to change or add inputs and outputs,
the changes are visible in BPEL for new Business Rule activities. However, the changes
are not visible to existing Business Rule activities. For more information, see "Using
the Business Rule Service Component" in the Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

6.3.4 What You Need to Know About the Will Be Invoked As Web Service Option
When the decision function option Will be invoked as a Web Service is selected,
Oracle Business Rules generates an RL Language function which has input and output
as XML datatypes. This option supports using a decision function from a Web Service.

This additional RL Language function has the following signature:

function <name>Service(T1 input1, ... Tn inputN, org.w3.dom.Node outputParentNode)

Ti expands depending on the value of the decision function Input List option for
input, input i, such that:

■ List option unselected: org.w3.dom.Element

■ List option selected: java.util.List<org.w3.dom.Element>

Input Element arguments are unmarshalled to result in InputFactType inputs. The
resulting fact types are each marshalled to an Element and returned. These are
passed to the generated function, which returns no result, an OutputFactType, or a
List.

The marshalled output elements, if any, are added as child elements to the value
passed in as the last argument of the function, outputParentNode. This node must
be an Element, Document, or DocumentFragment.

For complete API information on DecisionFunction, see Oracle Fusion Middleware
Java API Reference for Oracle Business Rules.

Table 6–1 Decision Function Output Options Depending on Number of Outputs

Output Parameters Description

0 The return value is null.

1 Exactly 1 element it is returned.

More than 1 The output then depends on the value of the list property:

true: a List[OutputFactTypei] is built for each decision function
output.

false: a OutputFactTypei is built for each decision function output.

What You Need to Know About Decision Functions

Working with Decision Functions 6-7

6.3.5 What You Need to Know About the Decision Function Stateless Option
A decision function supports either stateful or stateless operation. The Stateless
checkbox in the Edit Decision Function dialog provides support for these two modes
of operation.

By default the Stateless checkbox is selected which indicates stateless operation. With
stateless operation, at runtime, the rule session is released after each invocation of the
decision function.

When Stateless is deselected the underlying Oracle Business Rules object is kept in the
memory of the Business Rules service engine, so that it is not given back to the Rule
Session Pool when the operation is finished. A subsequent use of the decision function
re-uses the cached RuleSession object, with all its state information from the previous
invocation. Thus, when Stateless is deselected the rule session is saved for a
subsequent request and a sequence of decision function invocations from the same
process should always end with a stateless invocation.

What You Need to Know About Decision Functions

6-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

7

Working with Rules SDK Decision Point API 7-1

7Working with Rules SDK Decision Point API

Oracle Business Rules SDK (Rules SDK) lets you write applications that access, create,
modify, and execute rules in Oracle Business Rules dictionaries (and work with the
contents of a dictionary). This chapter provides a brief description of Rules SDK and
shows how to work with the Rules SDK Decision Point API.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Rules SDK and the Car Rental Sample Application"

■ Section 7.2, "Creating a Dictionary for Use with a Decision Point"

■ Section 7.3, "Creating a Java Application Using Rules SDK Decision Point"

■ Section 7.4, "Running the Car Rental Sample"

■ Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment"

For more information, see Oracle Fusion Middleware Java API Reference for Oracle
Business Rules.

7.1 Introduction to Rules SDK and the Car Rental Sample Application
The Rules SDK consists of four areas:

■ Engine: provides for rules execution

■ Storage: provides access to rule dictionaries and repositories

■ Editing: provides a programatic way to create and modify dictionary components

■ Decision Point: provides an interface to access a dictionary and execute a decision
function

Other than for explanation purposes, there is not an explicit distinction between these
areas in Rules SDK. For example, to edit rules you also need to use the storage area of
Rules SDK to access a dictionary. These parts of the Rules SDK are divided to help
describe the different modes of usage, rather than to describe distinct Rules SDK APIs.

7.1.1 Introduction to Decision Point API
The Decision Point API provides a concise way to execute rules. Most users create
Oracle Business Rules artifacts, including data model elements, rules, Decision Tables,
and rulesets using the Rules Designer extension to Oracle JDeveloper. Thus, most
users do not need to work directly with the engine, storage, or editing parts of Rules
SDK.

Introduction to Rules SDK and the Car Rental Sample Application

7-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

To work with the Rules SDK Decision Point package you need to understand three
important classes:

■ DecisionPoint: is a helper class that follows the factory design pattern to create
instances of DecisionPointInstance. In most applications there should be one
DecisionPoint object that is shared by all application threads. A caller uses the
getInstance() method of DecisionPoint to get an instance of
DecisionPointInstance which can be used to call the defined Decision Point.

■ DecisionPointBuilder: follows the Builder design pattern to construct a
Decision Point.

■ DecisionPointInstance: users call invoke() in this class to assert facts and
execute a decision function.

The DecisionPoint classes support a fluent interface model so that methods can be
chained together. For more information, see

http://www.martinfowler.com/bliki/FluentInterface.html

A Decision Point manages several aspects of rule execution, including:

■ Use of oracle.rules.rl.RuleSession objects

■ Reloading of a dictionary when the dictionary is updated

To create a Decision Point in a Java application you need the following:

■ Either the name of a dictionary to be loaded from an MDS repository or a
pre-loaded oracle.rules.sdk2.dictionary.RuleDictionary instance.

■ The name of a decision function stored in the specified dictionary.

7.1.2 How to Obtain the Car Rental Sample Application
This chapter shows a car rental application that demonstrates the use of Rules SDK
and the Decision Point API. You can obtain the sample application in a ZIP file,
CarRentalApplication.zip. This ZIP contains a complete JDeveloper application
and project.

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

To work with the sample unzip CarRentalApplication.zip into an appropriate
directory. The car rental application project contains a rules dictionary and several
Java examples using Rules SDK.

7.1.3 How to Open the Car Rental Sample Application and Project
The Car Rental sample application shows you how to work with the Rules SDK
Decision Point API.

To open the car rental sample application:
1. Start Oracle JDeveloper.

2. Open the car rental application in the directory where you unzipped the sample.
For example, from the File menu select Open... and in the Open dialog navigate to
the CarRentalApplication folder.

Creating a Dictionary for Use with a Decision Point

Working with Rules SDK Decision Point API 7-3

3. In the Open dialog select CarRentalApplication.jws and click Open.

4. In the Application Navigator, expand the CarRentalApplication, expand
Application Sources and Resources. This displays the Oracle Business Rules
dictionary named CarRental.rules and several Java source files.

7.2 Creating a Dictionary for Use with a Decision Point
The car rental sample uses the Rules SDK Decision Point API with either a pre-loaded
Oracle Business Rules dictionary or a repository stored in MDS. When you are
working in a development environment you can use the Decision Point API with the
pre-loaded dictionary signature. In a production environment you would typically use
a Decision Point with the MDS repository signature.

The CarRental dictionary is pre-defined and is available in the car rental sample
application.

To work with the Decision Point API you need to create a dictionary that contains a
decision function (the car rental sample application comes with a predefined
dictionary and decision function).

You perform the following steps to create a dictionary and a decision function:

■ Section 7.2.1, "How to Create Data Model Elements for Use with a Decision Point"

■ Section 7.2.2, "How to View a Decision Function to Call from the Decision Point"

■ Section 7.2.3, "How to Create Rules or Decision Tables for the Decision Function"

7.2.1 How to Create Data Model Elements for Use with a Decision Point
You need the following to add to a decision function when you create an application
with a Decision Point.

■ A dictionary containing data model elements that you use to create rules or
Decision Tables and when working with ADF Business Components fact types,
you need to add links for the Decision Point support dictionary. For more
information, see Chapter 2, "Working with Data Model Elements". For more
information, see Chapter 10, "Working with Oracle Business Rules and ADF
Business Components".

■ A dictionary containing fact definitions. For more information, see Chapter 3,
"Working with Facts and Bucketsets".

To view the data model in the supplied car rental sample application:
1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab, as shown in Figure 7–1.

The Java Facts tab shows four fact types imported, in addition to the fact types
provided as built-in to the dictionary.

The Driver Java Fact is imported from the Driver Java class in the project.

The Denial Java Fact is imported from Denial Java class in the project.

 The LicenseType and VehicleType facts are imported from the nested enum
classes defined in the Driver class.

Creating a Dictionary for Use with a Decision Point

7-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 7–1 Defined Java Facts for the Car Rental Sample Application

When you use a Decision Point with Rules SDK, you call a decision function in a
specified dictionary. The decision function that you call can contain one or more
rulesets that are executed as part of the Decision Point.

To view the ruleset in the supplied car rental sample application:
1. In Rules Designer, expand the CarRentalApplication.

2. In the CarRentalApplication, expand Resources.

3. Double-click the CarRental.rules.

7.2.2 How to View a Decision Function to Call from the Decision Point
When you work with the Decision Point API you use decision functions to expose an
Oracle Business Rules dictionary. For more information on decision functions, see
Chapter 6, "Working with Decision Functions".

To view the decision function in the car rental sample application:
1. In Rules Designer, click the Decision Functions navigation tab. This displays the

available decision functions in the CarRental dictionary, as shown in Figure 7–2.

Creating a Dictionary for Use with a Decision Point

Working with Rules SDK Decision Point API 7-5

Figure 7–2 Car Rental Sample Decision Function

2. Select the row with CarRentalDecisionFunction and double-click the decision
function icon. This opens the Edit Decision Function dialog as shown in
Figure 7–3.

The decision function Inputs table includes a single argument for a Driver fact
type.

The decision function Outputs table includes a single argument for a Denial fact
type.

The decision function Rulesets and Decision Functions area shows Denial
Rules:if-then in the Selected box.

Creating a Dictionary for Use with a Decision Point

7-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 7–3 Car Rental Decision Function for the Car Rental Sample Application

7.2.3 How to Create Rules or Decision Tables for the Decision Function
The car rental sample includes two rulesets, one with IF/THEN rules and another
containing a Decision Table. You can use either IF/THEN rules or Decision Tables or
both in your application if you are using a Decision Point.

To view the rules in the car rental sample application:
1. In Rules Designer click the Denial Rules:if-then ruleset, as shown in Figure 7–4.

Creating a Dictionary for Use with a Decision Point

Working with Rules SDK Decision Point API 7-7

Figure 7–4 Ruleset with IF/THEN Rules for the Car Rental Sample Application

The Denial Rules:if-then ruleset includes two rules:

■ under age: this rule defines the minimum age of the driver. The rule compares the
Driver instance age property to the global Minimum driver age. If the driver
is under this age, then a new Denial fact is asserted. A call to the decision
function collects this Denial fact, as defined in its output. The rule also calls a
user-defined function, audit, to provide some auditing output about why the
Denial is created.

■ too many accidents: this rule defines an upper threshold for the number of
accidents a driver can have before a rental for the driver is denied. The rule also
calls a user-defined function, audit, to provide some auditing output about why
the Denial is created.

To view the Decision Table in the car rental application:
1. In Rules Designer, click the Denial Rules:decision table ruleset, as shown in

Figure 7–5.

Creating a Dictionary for Use with a Decision Point

7-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 7–5 Ruleset with Decision Table for the Car Rental Sample Application

7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table
The car rental sample application includes the Denial Rules: decision table ruleset. To
switch to use a Decision Table in the supplied decision function sample, move the
Denial Rules:if-then from the Selected area in the decision function and add the
Denial Rules: decision table ruleset, which uses a Decision Table to define similar
rules, as shown in Figure 7–6.

Creating a Java Application Using Rules SDK Decision Point

Working with Rules SDK Decision Point API 7-9

Figure 7–6 Decision Function for Car Rental Sample with Decision Table Ruleset

7.3 Creating a Java Application Using Rules SDK Decision Point
When use Rules SDK in a development environment you of the option of using
Decision Point API with a pre-loaded dictionary. In a production environment you
typically use the Decision Point API with the MDS repository signature and the
dictionary is stored in MDS. For more information on using a Decision Point with , see
Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment".

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

The CarRentalProject project includes the com.example.rules.demo package that
includes the car rental sample file,
CarRentalWithDecisionPointUsingPreloadedDictionary.java. The
project also includes several .java source files that support different variations for

Creating a Java Application Using Rules SDK Decision Point

7-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

using Decision Point. Table 7–1 provides a summary of the different versions of the car
rental sample.

For more information on working with the Rules SDK Decision Point API, see Oracle
Fusion Middleware Java API Reference for Oracle Business Rules.

7.3.1 How to Add a Decision Point Using Decision Point Builder
To use a Decision Point you create a DecisionPoint instance using
DecisionPointBuilder, as shown in Example 7–1.

Example 7–1 Using the Decision Point Builder

 static {
 try {
 // specifying the Decision Function and a pre-loaded
 // RuleDictionary instance
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(loadRuleDictionary())
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
e.getMessage());
 e.printStackTrace();
 }
 }

Table 7–1 Java Files in the Decision Point Sample CarRentalProject

Base Java Filename Description

CarRental This is the base class for all of the examples. It contains constant values
for using the CarRental dictionary and a method createDrivers
which creates instances of the Driver class.

CarRentalWithDecisionPoint Contains a static attribute of type DecisionPoint and a method
checkDriver() that invokes a Decision Point with a specified instance
of the Driver class. This class includes these methods for the sample
application so that both the MDS repository and pre-loaded dictionary
examples can share the same checkDriver() implementation.

CarRentalWithDecisionPointUsi
ngMdsRepository

Contains an example of creating a Decision Point that uses MDS to
access and load the rule dictionary. In a production environment, most
applications use the Decision Point API with MDS.

CarRentalWithDecisionPointUsi
ngPreloadedDictionary

Contains an example of creating a Decision Point from an instance of the
RuleDictionary class. This example also contains code for manually
loading the dictionary to create a RuleDictionary instance.

CarRentalWithRuleSession Contains an advanced usage of the Engine API that is documented
further in the comments.

CarRentalWithRuleSessionPool Contains an advanced usage of the Engine API that is documented
further in the comments.

Denial Contains the class that defines the Denial fact type used to create the
rules and Decision Table.

Driver Contains the class that defines the Driver fact type used to create the
rules and Decision Table.

DriverCheckerRunnable Contains the class which can be used as a thread for simulating
concurrent users invoking the Decision Point.

Creating a Java Application Using Rules SDK Decision Point

Working with Rules SDK Decision Point API 7-11

Example 7–1 shows the DecisionPointBuilder supports a fluent interface pattern,
so all methods can easily be chained together when you create a Decision Point. The
three most common methods for configuring the Decision Point with
DecisionPointBuilder are overloaded to have the name with(). Each with()
method takes a single argument of type RuleDictionary, DictionaryFQN, or
String. The DecisionPointBuilder also supports similar set and get methods:
getDecisionFunction(), setDecisionFunction(), getDictionary(),
setDictionary(), getDictionaryFQN(), setDictionaryFQN().

This chain shown in Example 7–1 includes the following steps:

1. The first step is to create a DecisionPointBuilder instance with code such as
the following:

new DecisionPointBuilder()

2. The with() method using a String argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.with(DF_NAME)

The DF_NAME specifies the name of the decision function you define for your
application. For example for the sample car rental application DF_NAME is defined
in CarRental.java as CarRentalDecisionFunction.

3. Call only one of the other two with() methods. In this case the sample code uses
a pre-loaded Rule Dictionary instance, containing the specified decision function.
The loadDictionary() method loads an instance of RuleDictionary from a
file. Example 7–2 shows the loadDictionary() method. For more information,
see Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary".

.with(loadRuleDictionary())

4. Call the build() method to construct and return a DecisionPoint instance.

The DecisionPoint instance is shared among all instances of the application, which
is why it is a static attribute and created in a static block. Another way of initializing
the DecisionPoint would be to initialize the m_decisionPoint attribute with a
static method that created and returned a DecisionPoint instance.

7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary
Example 7–2 shows the loadRuleDictionary() method that loads an instance of
RuleDictionary from a file.

Example 7–2 Load Rule Dictionary Method

 private static RuleDictionary loadRuleDictionary(){
 RuleDictionary dict = null;
 Reader reader = null;
 Writer writer = null;
 try {
 reader = new FileReader(new File(DICT_LOCATION));
 dict = RuleDictionary.readDictionary(reader, new
DecisionPointDictionaryFinder(null));
 List<SDKWarning> warnings = new ArrayList<SDKWarning>();

 dict.update(warnings);
 if (warnings.size() > 0) {
 System.err.println("Validation warnings: " + warnings);
 }

Creating a Java Application Using Rules SDK Decision Point

7-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

 } catch (SDKException e){
 System.err.println(e);
 } catch (FileNotFoundException e){
 System.err.println(e);
 } catch (IOException e){
 System.err.println(e);
 } finally {
 if (reader != null) { try { reader.close(); } catch (IOException ioe)
{ioe.printStackTrace();}}
 if (writer != null) { try { writer.close(); } catch (IOException ioe)
{ioe.printStackTrace();}}
 }

 return dict;
 }

7.3.3 How to Use Executor Service to Run Threads with Decision Point
The car rental sample allows you to use Oracle Business Rules and simulate multiple
concurrent users. Example 7–3 shows use of the Java ExecutorService interface to
execute multiple threads that invoke the Decision Point. The ExecutorService is
not part of the Rules SDK Decision Point API.

Example 7–3 Checking Drivers with Threads that Invoke Decision Point

 ExecutorService exec = Executors.newCachedThreadPool();
 List<Driver> drivers = createDrivers();

 for (int i = 0; i < NUM_CONCURRENT; i++) {
 Driver driver = drivers.get(i % drivers.size());
 exec.execute(new DriverCheckerRunnable(driver));
 }

Example 7–3 includes the following code for the sample application:

■ Create the Executor Service:

ExecutorService exec = Executors.newCachedThreadPool();

■ Call method createDrivers(), defined in CarRental.java, to create a list of
Driver instances.

List<Driver> drivers = createDrivers();

■ A loop through a list of Driver instances to fill the driver list with drivers.

■ A loop to start multiple threads from DriverCheckerRunnable instances. These
instances open a Decision Point and run the rules on each driver. For information
on this code, see Section 7.3.4, "How to Create and Use Decision Point Instances".

Example 7–4 shows the code that waits for the threads to complete.

Example 7–4 Code to Await Thread Termination

 try {
 exec.awaitTermination(5, TimeUnit.SECONDS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 exec.shutdown();

Creating a Java Application Using Rules SDK Decision Point

Working with Rules SDK Decision Point API 7-13

 }

7.3.4 How to Create and Use Decision Point Instances
The DriverCheckerRunnable instances call the checkDriver() method.
Example 7–5 shows the checkDriver() method that is defined in
CarRentalWithDecisionPoint. The checkDriver() method handles invoking
Decision Point with a Driver instance.

Example 7–5 Code to Create a Decision Point Instance with getInstance()

public class CarRentalWithDecisionPoint extends CarRental {

 protected static DecisionPoint m_decisionPoint;

 public static void checkDriver(final Driver driver) {
 try {
 DecisionPointInstance instance = m_decisionPoint.getInstance();
 instance.setInputs(new ArrayList<Object>() {
 {
 add(driver);
 }
 });
 List<Object> outputs = instance.invoke();

 if (outputs.isEmpty())
 System.err.println("Oops, no results");

 java.util.List<Denial> denials =
 (java.util.List<Denial>)outputs.get(0);
 if (denials.isEmpty()) {
 System.out.println("Rental is allowed for " +
 driver.getName());
 } else {
 for (Denial denial : denials) {
 System.out.println("Rental is denied for " +
 denial.getDriver().getName() +
 " because " + denial.getReason());
 }
 }
 } catch (RLException e) {
 e.printStackTrace();
 } catch (SDKException e) {
 e.printStackTrace();
 }
 }

}

Example 7–5 shows the following:

■ Getting a DecisionPointInstance from the static DecisionPoint defined
with the DecisionPointBuilder, with the following code.

 DecisionPointInstance instance = m_decisionPoint.getInstance();

■ Add inputs according to the signature of the decision function associated with the
Decision Point. This defines one argument of type List as the input. This List
contains the Driver instances:

Running the Car Rental Sample

7-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

 instance.setInputs(new ArrayList<Object>() {
 {
 add(driver);
 }
 });

■ Invoke the Decision Point and store the return value. The return type follows the
same pattern as the decision function which is being called in the Decision Point.

 List<Object> outputs = instance.invoke();

In this case the invoke() returns a List of length one, containing a List of
Denial instances.

■ If the return is a List of any other size than one, then this is an error:

if (outputs.isEmpty())
 System.err.println("Oops, no results");

■ The first entry that is returned from the Decision Point is caste it to a List of type
List<Denial>:

 java.util.List<Denial> denials =
 (java.util.List<Denial>)outputs.get(0);

■ If the denials list is empty, then no Denial instances were asserted by the rules.
This indicates that it is OK to rent a car to the driver. Otherwise, print the reasons
why the driver rental was rejected:

 if (denials.isEmpty()) {
 System.out.println("Rental is allowed for " +
 driver.getName());
 } else {
 for (Denial denial : denials) {
 System.out.println("Rental is denied for " +
 denial.getDriver().getName() +
 " because " + denial.getReason());
 }
 }

7.4 Running the Car Rental Sample
In the car rental sample installed on your system, for the code shown in Example 7–2,
modify the value of DICT_LOCATION to match the location of the dictionary on your
system.

To run the car rental sample on your system:
1. In the Application Navigator, select the dictionary and from the Edit menu select

Copy Path.

2. In the CarRentalWithDecisionPointUsingPreloadedDictionary.java
file, paste the path value into the DICT_LOCATION value.

3. In the CarRentalProject select the
CarRentalWithDecisionPointUsingPreloadedDictionary.java file.

4. Right-click and in the dropdown list select Run.

Example 7–6 shows sample output.

What You Need to Know About Using Decision Point in a Production Environment

Working with Rules SDK Decision Point API 7-15

Example 7–6 Output from Car Rental Sample

Rental is allowed for Carol
Rental is allowed for Alice
Rental is allowed for Alice
Rental is allowed for Carol
Rental is denied for Bob because under age, age was 15, minimum age is 21
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush
INFO: Fired: under age because driver age less than minimum threshold for license
number d222
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush
INFO: Fired: under age because driver age less than minimum threshold for license
number d222
Rental is denied for Bob because under age, age was 15, minimum age is 21
Rental is allowed for Alice
Rental is allowed for Eve

7.5 What You Need to Know About Using Decision Point in a Production
Environment

In a production environment you can use an MDS repository to store Oracle Business
Rules dictionaries. When you use an MDS repository to store the dictionary, the steps
shown in Section 7.3.1, "How to Add a Decision Point Using Decision Point Builder"
and Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary" change
to access the dictionary. The
CarRentalWithDecisionPointUsingMdsRepository shows sample code for
using Decision Point with MDS.

To see a complete example with deployment steps showing the use of a Decision Point
to access a dictionary in MDS, see Section 9.4, "Adding a Servlet with Rules SDK Calls
for Grades Sample Application".

Example 7–7 shows the use of DictionaryFQN with DecisionPointBuilder to
access a dictionary in an MDS repository. The complete example is shown in the
sample code in CarRentalWithDecisionPointUsingMdsRepository.

Example 7–7 Using Decision Point Builder with MDS Repository

 static {
 try {
 // specifying the Decision Function and Dictionary FQN
 // loads the rules from the MDS repository.
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
 e.getMessage());

Similar to the steps in Example 7–1, Example 7–7 shows the following:

1. The first step is to create a DecisionPointBuilder instance with.

new DecisionPointBuilder()

2. The with() method using a String argument defines the name of the decision
function that the Decision Point executes. Calling this method is mandatory.

.with(DF_NAME)

What You Need to Know About Using Decision Point in a Production Environment

7-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

The DF_NAME specifies the name of the decision function you define for your
application. For example for the car rental application this is defined in
CarRental.java a CarRentalDecisionFunction.

3. Call only one of the other two with() methods. In this case the sample code calls
a DictionaryFQN to access an MDS repository. Example 7–8 shows the routing
that uses the dictionary package and the dictionary name to create the
DictionaryFQN.

.with(DICT_FQN)

4. Call the build() method to construct and return a DecisionPoint instance.

Example 7–8 Using the DictionaryFQN Method with MDS Repository

 protected static final String DICT_PKG = "com.example.rules.demo";
 protected static final String DICT_NAME = "CarRental";

 protected static final DictionaryFQN DICT_FQN =
 new DictionaryFQN(DICT_PKG, DICT_NAME);
 protected static final String DF_NAME = "CarRentalDecisionFunction";

8

Testing Business Rules 8-1

8Testing Business Rules

You can test your rules and Decision Tables from Rules Designer by creating an Oracle
Business Rules Function. In an SOA application or in an application that accesses
Oracle Business Rules with a decision function with a web service, you can test the
rules at runtime with Oracle Enterprise Manager Fusion Middleware Control Console
using the Test function.

This chapter includes the following sections:

■ Section 8.1, "Testing Oracle Business Rules at Design Time"

■ Section 8.2, "Testing Oracle Business Rules at Runtime"

8.1 Testing Oracle Business Rules at Design Time
You can define a test function to run without deploying an application. This allows
you to call a decision function at runtime and to test data model elements and rulesets.

8.1.1 How to Test Rules Using a Test Function in Rules Designer
You can use Oracle Business Rules Functions to test rules from within Rules Designer.
The Test Function icon is active only for functions that take no parameters and return
boolean. In the body of the function you create input facts, call a decision function,
and check the output to validate the facts the decision function returns are as expected.

To enable logging you call RL.watch.all(). To run the function you click the Test
Function icon in the Functions table.

For more information about functions, see Section 2.5, "Working with Oracle Business
Rules Functions".

To test rules using a test function:
1. Confirm that your dictionary is valid.

For more information on dictionary validation, see Section 4.4.4, "How to Validate
a Dictionary".

2. In Rules Designer, select the Functions navigation tab.

3. In the Functions area click Create....

4. Enter the function name in the Name field, or use the default name.

5. Select the return type from the Return Type dropdown list.

For a test function, select boolean.

Testing Oracle Business Rules at Design Time

8-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

6. In the Arguments table, confirm that there are no arguments. For a test function,
you cannot specify any arguments.

7. In the Body area, enter the test function body.

In the body of the function you can call a decision function using assign new to
call and get the return value of the decision function. Thus, to test a decision
function you create the input data and call the decision function.

Example 8–1 shows a simple test function that calls print. Figure 8–1 shows the
test function definition. For information on adding a test function that calls a
decision function, see Section 8.1.3, "How to Test a Decision Function Using an
Oracle Business Rules Function".

Example 8–1 Test Function Body

call print("Hello World")
return true

Figure 8–1 Adding a Test Function

8. In the Functions table select the function and click the Test Function icon.

The output is displayed in a Function Test Result dialog, as Figure 8–2 shows.

Testing Oracle Business Rules at Design Time

Testing Business Rules 8-3

Figure 8–2 Test Function Results Dialog

9. Click OK to dismiss the Function Test Result dialog.

8.1.2 What You Need to Know About Testing Using an Oracle Business Rules Function
The Test Function icon is only active when the dictionary is valid (the Business Rule
validation log is empty). The Test Function icon is gray if the dictionary associated
with the function contains any validation warnings.

8.1.3 How to Test a Decision Function Using an Oracle Business Rules Function
You can test rulesets by creating a decision function and calling the decision function
from Rules Designer with an Oracle Business Rules function. In the body of the Oracle
Business Rules function you create input facts, call a decision function, and validate
the facts output from the decision function. For more information, see Section 6.1,
"Introduction to Decision Functions" and Section 2.5, "Working with Oracle Business
Rules Functions".

To test a decision function using an Oracle Business Rules function:
1. Confirm that your dictionary is valid.

For more information on dictionary validation, see Section 4.4.4, "How to Validate
a Dictionary"

2. In Rules Designer, select the Functions navigation tab.

3. In the Functions area click the Create... icon.

4. Enter the function name in the Name field, or use the default name.

5. Select the return type from the Return Type dropdown list.

For a test function, select boolean.

6. In the Arguments table, confirm that there are no arguments. For a test function,
you cannot specify any arguments.

7. In the Body area, enter the test function body.

In the body of the test function you can call a decision function using assign
new to call and get the return value of the decision function (in the body of the test

Testing Oracle Business Rules at Design Time

8-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

function you create input facts, call a decision function, and validate the facts
output from the decision function).

A decision function call returns a List. Thus, to test a decision function in a test
function you do the following:

■ You create the input data as required for the decision function input
arguments.

■ You call the decision function with the arguments you create in the test
function.

■ You place results in a List, for example, in the following:

assign new List resultsList = DecisionFunction_1(testScore)

 Figure 8–3 shows a test function that calls a decision function.

Figure 8–3 Test Function to Call a Decision Function that Returns a List

8. Select the function and click the Test Function icon.

The function is executed. The output is shown in a Function Test Result dialog, as
Figure 8–4 shows.

Testing Oracle Business Rules at Design Time

Testing Business Rules 8-5

Figure 8–4 Test Function Results for Grade Test

9. Click OK to dismiss the Function Test Result dialog.

8.1.4 What You Need to Know About Testing Decision Functions
You can use Oracle Business Rules Functions to test decision functions from within
Rules Designer. Keep the following points in mind when using a test function:

■ The Test Function icon is gray if the dictionary associated with the test Oracle
Business Rules Function contains any validation warnings. The Test Function icon
is only shown when the dictionary validates without warnings.

■ To enable logging you can call RL.watch.all(). For more information on RL
Language functions, see Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules. In this guide, RL.watch.all() is an alias for the RL
Language function watchAll().

■ As an alternative to the example shown in Figure 8–3, you can enter the function
body that is shown in Example 8–2. This function runs and shows the
RL.watch.all() output. The dialog shows "Test Passed" when the grade is in
the B range as shown in Figure 8–5. The dialog shows "Test Failed" when the grade
asserted is not in the B range, as shown in Figure 8–6.

Example 8–2 Function Body with True or False Return Value

call RL.watch.all()
assign new TestScore testScore = new TestScore()
modify (testScore, name: "Bill Reynolds", testName: "Math Test", testScore: 81)
assign new TestGrade testGrade = (TestGrade)DecisionFunction_1(testScore).get(0)
return testGrade.grade == Grade.B

For the testScore value 81, this function returns "Test Passed" as shown in
Figure 8–5. For the testScore value 91, this returns "Test Failed", as shown in
Figure 8–6.

Testing Oracle Business Rules at Runtime

8-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 8–5 Test Passed Test Function Output

Figure 8–6 Test Failed Test Function Output

8.2 Testing Oracle Business Rules at Runtime
In an SOA application that uses Oracle Business Rules with a Decision Service you can
test rules at runtime with Oracle Enterprise Manager Fusion Middleware Control
Console Test function.

For more information on using the Test function, see Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

9

Creating a Rule-enabled Non-SOA Java EE Application 9-1

9Creating a Rule-enabled Non-SOA Java EE
Application

You can use Oracle JDeveloper to create a rule-enabled non-SOA Java EE application
with Oracle Business Rules. This chapter shows a sample application, a Java Servlet,
that runs as a Java EE application using Oracle Business Rules (this describes using of
Oracle Business Rules without an SOA composite).

This chapter includes the following sections:

■ Section 9.1, "Introduction to the Grades Sample Application"

■ Section 9.2, "Creating an Application and a Project for Grades Sample Application"

■ Section 9.3, "Creating Data Model Elements and Rules for the Grades Sample
Application"

■ Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades Sample
Application"

■ Section 9.5, "Adding an HTML Test Page for Grades Sample Application"

■ Section 9.6, "Preparing the Grades Sample Application for Deployment"

■ Section 9.7, "Deploying and Running the Grades Sample Application"

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

9.1 Introduction to the Grades Sample Application
The Grades application provides a sample use of Oracle Business Rules in a Java
Servlet. The servlet uses Rules SDK Decision Point API. This sample demonstrates the
following:

■ Creating rules in an Oracle Business Rules dictionary using an XSD schema that
defines the input and the output data, and the facts for the data model. In this case
you provide the XSD schema in the file grades.xsd.

■ Creating a servlet that uses Oracle Business Rules to determine a grade for each
test score that is input.

■ Creating a test page to supply input test scores and to submit the data to the
grades servlet.

Creating an Application and a Project for Grades Sample Application

9-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Deploying the application, running it, submitting test values, and seeing the
output.

9.2 Creating an Application and a Project for Grades Sample Application
To create the application and the project for the grades sample application, you do the
following:

■ Create a Fusion Web Application (ADF)

■ Create a project in the application

■ Add the schema to define the inputs, outputs, and the objects for the data model

■ Create an Oracle Business Rules dictionary in the project

9.2.1 How to Create a Fusion Web Application for the Grades Sample Application
To work with Oracle Business Rules and create a Java EE application, you first need to
create the application in Oracle JDeveloper.

To create a fusion web application (ADF) for grades:
1. Create an application. You can do this in the Application Navigator by selecting

New Application..., or from the Application menu dropdown by selecting New
Application....

2. In the Name your application dialog enter the application options, as shown in
Figure 9–1:

a. In the Application Template area, select Fusion Web Application.

b. In the Application Name field, enter an application name. For example, enter
GradeApp.

c. In the Directory field, specify a directory name or accept the default.

d. In the Application Package Prefix field, enter an application package prefix.
For example, com.example.grades.

The prefix, followed by a period applies to objects created in the initial project
of an application.

Creating an Application and a Project for Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-3

Figure 9–1 Adding GradeApp Application

3. Click Finish. After creating the application Oracle JDeveloper displays the file
summary, as shown in Figure 9–2.

Figure 9–2 New Grades Application Named GradeApp

9.2.2 How to Create the Grades Project
In the Grades sample application you do not use the Model or ViewController
projects. You create a project in the application for the grades sample project.

To create a grades project:
1. In the GradeApp application, in the Application Navigator, from the Application

Menu select New Project....

Creating an Application and a Project for Grades Sample Application

9-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

2. In the New Gallery, in the Items area select Generic Project.

3. Click OK.

4. In the Name your project page enter the values as shown in Figure 9–3:

a. In the Project Name field, enter a name. For example, enter Grades.

b. Enter or browse for a directory name, or accept the default.

c. Select the Project Technologies tab.

d. In the Available area double-click ADF Business Components to move this
item to the Selected area. This also adds Java to the Selected area as shown in
Figure 9–3.

Figure 9–3 Adding Generic Project to the Grades Application

5. Click Finish. This adds the Grades project.

9.2.3 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
To create the Grades sample application you need to use the grades.xsd file, shown
in Example 9–1. You can create and store the schema file locally and then use Oracle
JDeveloper to copy the file to your project.

Example 9–1 grades.xsd Schema

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xs:schema targetNamespace="http://example.com/grades"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.com/grades"
 attributeFormDefault="qualified" elementFormDefault="qualified"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 <xs:element name="TestScore">

Creating an Application and a Project for Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-5

 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="testName" type="xs:string"/>
 <xs:element name="testScore" type="xs:double"/>
 <xs:element name="testCurve" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="TestGrade">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="grade" type="tns:Grade"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="Grade">
 <xs:restriction base="xs:string">
 <xs:enumeration value="A"/>
 <xs:enumeration value="B"/>
 <xs:enumeration value="C"/>
 <xs:enumeration value="D"/>
 <xs:enumeration value="F"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

To add the XML schema to the grades project:
1. Save the schema file shown in Example 9–1 to a local file named grades.xsd .

2. In the Application Navigator select the Grades project.

3. Right-click and in the context menu select New....

4. In the New Gallery select the All Technologies tab.

5. In the Categories area, expand General and select XML.

6. In the Items area, select XML Schema.

7. Click OK.

8. In the Create XML Schema dialog, in the File Name field enter grades.xsd.

9. In the Create XML Schema dialog, in the Directory field add the xsd directory to
the Grades project path name, as shown in Figure 9–4.

Figure 9–4 Adding Schema to Grades Project in xsd Directory

10. Click OK.

Creating an Application and a Project for Grades Sample Application

9-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

11. In the grades.xsd file, select the Source tab.

12. Copy the schema shown in Example 9–1 to the grades.xsd in the Grades project,
as shown in Figure 9–5.

Figure 9–5 Shows the Grades.xsd Schema File in the Grades Project

To generate JAXB 2.0 content model from grades schema:
1. In the Application Navigator, in the Grades project expand Resources and select

grades.xsd.

2. Right-click and in the context menu select Generate JAXB 2.0 Content Model.

3. In the JAXB 2.0 Content Model from XML Schema dialog, click OK.

9.2.4 How to Create an Oracle Business Rules Dictionary in the Grades Project
After creating a project in Oracle JDeveloper create business rules within the Grades
project.

To use business rules with Oracle JDeveloper, you do the following:

■ Add a business rule to the project and import grades.xsd schema

■ Create input and output variables

■ Create an Oracle Business Rules dictionary in the project

To create a business rules dictionary in the business tier:
1. In the Application Navigator, select the Grades project.

2. Right-click and in the context menu select New....

3. Select the All Technologies tab.

4. In the New Gallery, in the Categories area, expand Business Tier and select
Business Rules.

5. In the New Gallery, in the Items area, select Business Rules.

6. Click OK. Oracle JDeveloper displays the Create Business Rules dialog, as shown
in Figure 9–6.

Creating an Application and a Project for Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-7

Figure 9–6 Adding a Business Rule to Grades with the Create Business Rules Dialog

7. In the Name field, enter a name to name the dictionary. For example, enter
GradingRules.

8. To add an input, from the dropdown list next to the Add icon select Input....

9. In the Type Chooser, expand the Project Schemas Files folder and expand
grades.xsd.

10. Select the input TestScore, as shown in Figure 9–7.

Figure 9–7 Shows the Type Chooser Dialog with TestScore Element

Creating an Application and a Project for Grades Sample Application

9-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

11. On the Type Chooser window, click OK. This displays the Create Business Rules
dialog.

12. In the Create Business Rules dialog, in a similar manner to the input add the
output by selecting Output... to add the output element TestGrade from the
grades.xsd schema.

The resulting Create Business Rules dialog is shown in Figure 9–8.

Figure 9–8 Create Business Rules Dialog with Grades Input and Output

13. Click OK. Oracle JDeveloper creates the GradingRules dictionary as shown in
Figure 9–9.

14. In the File menu, select Save All to save your work.

Creating Data Model Elements and Rules for the Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-9

Figure 9–9 Shows the New Grading Rules Dictionary

Note that the business rule validation log area for the new dictionary shows several
validation warnings. You remove these validation warning messages as you modify
the dictionary in later steps.

9.3 Creating Data Model Elements and Rules for the Grades Sample
Application

To create the data model and the business rules for the Grades sample application, you
do the following:

■ Create Bucketsets for grades

■ Create rules by adding a Decision Table for grades

■ Split the Decision Table and add actions for rules

■ Rename the default decision function

9.3.1 How to Create Bucketsets for Grades Sample Application
In this example you associate a bucketset with a fact type. This supports using a
Decision Table where you need bucketsets that specify how to draw values for each
cell in the Decision Table (for the conditions in the Decision Table).

To create the bucketset for the grades sample application:
1. In Rules Designer, select the Bucketsets navigation tab.

Creating Data Model Elements and Rules for the Grades Sample Application

9-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

2. From the dropdown list next to the Create BucketSet... icon, select List of Ranges.

3. For the bucketset, double-click in the Name field to select the default name.

4. Enter Grade Scale, and press Enter to accept the bucketset name.

5. In the Bucketsets table, double-click the bucket icon for the Grade Scale bucketset
to display the Edit Bucketset dialog as shown in Figure 9–10.

Figure 9–10 Grade Scale Bucketset

6. In the Edit Bucketset dialog, click Add Bucket to add a bucket.

7. Click Add Bucket three times to add three more buckets.

8. In the Endpoint field, enter 90 for the top endpoint and press Enter to accept the
new value.

9. For the next bucket, in the Endpoint field enter 80 and press Enter to accept the
new value.

10. Similarly, for the next two buckets enter values in the Endpoint field, values 70
and 60.

11. In the Included Endpoint field for each bucket select each checkbox.

12. Modify the Alias field for each value to enter the values A, B, C, D, and F, for each
corresponding range, as shown in Figure 9–11 (press Enter after you add each
alias).

Figure 9–11 Grade Scale Bucketset with Grade Values Added

Creating Data Model Elements and Rules for the Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-11

To associate a bucketset with a fact property:
To prepare for creating Decision Tables you can associate a global bucketset with fact
properties in the data model. In this way condition cells in a Decision Table
Conditions area can use the bucketset when you create a Decision Table.

1. In Rules Designer, select the Facts navigation tab.

2. In the Facts navigation tab select the XML Facts tab.

3. Double-click the XML fact icon for the TestScore fact. This displays the Edit XML
Fact dialog.

4. In the Edit XML Fact dialog select the testScore property.

5. In the Bucketset field, from the dropdown list select Grade Scale.

6. Click OK.

9.3.2 How to Add a Decision Table for Grades Sample Application
You create rules in a Decision Table to process input facts and to produce output facts,
or to produce intermediate conclusions that Oracle Business Rules can further process
using additional rules or in another Decision Table.

To use a Decision Table for rules in this application you work with facts representing a
test score. Then, you use a Decision Table to create rules based on the test score to
produce a grade.

To add a decision table for Grades application:
1. In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

2. In Ruleset_1, click the Add icon and from the dropdown list select Create
Decision Table. This creates DecisionTable_1. You can ignore the warning
messages shown in the Business Rule Validation log area. You remove these
warning messages in later steps.

3. In the Decision Table, DecisionTable_1, click the Add icon and from the
dropdown list select Condition.

4. In the Decision Table, double-click <edit condition>. Then, in the dropdown
variables navigator expand TestScore and select testScore. This enters the
expression TestScore.testScore for condition C1.

If you view the rules validation log, you should see warning messages. You remove
these warning messages as you modify the Decision Table in later steps.

To add an action to a decision table:
You add an action to the Decision Table to assert a new Grade fact.

1. In the Decision Table, click the Add icon and from the dropdown list select Action
and select Assert New.

2. In the Actions area, double-click assert new (.

This displays the Action Editor dialog.

3. In the Action Editor dialog, in the Facts area select TestGrade.

4. In the Action Editor dialog, in the Properties table for the property grade, select
the Parameterized checkbox and the Constant checkbox.

This specifies that each rule independently sets the grade.

Creating Data Model Elements and Rules for the Grades Sample Application

9-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

5. In the Action Editor dialog select the Always Selected checkbox.

6. In the Action Editor dialog click OK.

7. Select Save All from the File main menu to save your work.

Next you add rules to the Decision Table and specify an action for each rule.

9.3.3 How to Add Actions in the Decision Table for Grades Sample Application
You can use the Decision Table split operation to create rules for the bucketset
associated with the conditions row in the Decision Table. This creates one rule for
every bucket.

To split the decision table:
1. Select the Decision Table.

2. Click the Split Table icon and from the dropdown list select Split Table.

The split operation eliminates the "do not care" cells from the table. The table now
shows five rules that cover all ranges, as shown in Figure 9–12.

These steps produce validation warnings for action cells with missing expressions.
You fix these problems in later steps when you define actions for each rule.

Figure 9–12 Splitting a Decision Table Using Split Table Operation for Grades

To add actions for each rule in the decision table:
In the Decision Table you specify a value for the result, a grade property, associated
with TestGrade for each action cell in the Actions area. The possible choices for each
grade property are the valid grades. In this step you fill in a value for each of the rules.
The values you enter correspond to the conditions that form each rule in the Decision
Table.

Creating Data Model Elements and Rules for the Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-13

1. In the Actions area, double-click the action cell for rule R1 as shown in
Figure 9–13.

Figure 9–13 Adding Action Cell Values to Grades Decision Table

2. In the dropdown list select the corresponding value for the action cell. For
example, select Grade.F.

3. For each of the remaining action cells select the appropriate value for the buckets
for TestScore: D, C, B, and A.

9.3.4 How to Rename the Decision Function for Grades Sample Application
The name you specify when you use a decision function with a Rules SDK Decision
Point must match the name of a decision function in the dictionary. To make the name
match, you can rename the decision function to any name you like. Thus, for this
example you rename the default decision function to use the name
GradesDecisionFunction.

To rename the decision function:
1. In the Application Navigator, in the Grades project, expand the Resources folder

and double-click the dictionary GradingRules.rules.

2. Select the Decision Functions navigation tab.

3. In the Name field in the Decision Functions table edit the decision function name
to enter the value GradesDecisionFunction, and then press Enter, as shown in
Figure 9–14.

Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 9–14 Renaming Decision Function in Rules Designer

9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
The Grades sample application includes a servlet that uses the Rules Engine.

To add this servlet with Oracle Business Rules you need to understand the important
Rules SDK methods. Thus, to use the Oracle Business Rules dictionary you created
with Rules Designer, you do the following:

■ Create initialization steps that you perform one time in the servlet init routine.

■ Create a servlet service routine using the Rules SDK Decision Point API.

■ Perform steps to add the servlet code in the project.

For more information on Rules SDK Decision Point API, see Chapter 7, "Working with
Rules SDK Decision Point API".

9.4.1 How to Add a Servlet to the Grades Project
You add a servlet to the grades project using the Create HTTP Servlet wizard.

To add a servlet to the Grades project with Oracle JDeveloper:
1. In the Application Navigator, select the Grades project.

2. Right-click the Grades project and in the context menu select New....

3. In the New Gallery, select the All Technologies tab.

4. In the New Gallery, in the Categories area expand Web Tier and select Servlets.

5. In the New Gallery, in the Items area select HTTP Servlet.

6. Click OK.

Oracle JDeveloper displays the Create HTTP Servlet Welcome page, as shown in
Figure 9–15.

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-15

Figure 9–15 Create HTTP Servlet Wizard - Welcome

7. Click Next.

This displays the Web Application page, as shown in Figure 9–16.

Figure 9–16 Create HTTP Servlet Wizard - Web Application

8. Select Servlet 2.5\JSP 2.1 (Java EE 1.5) and click Next.

This displays the Create HTTP Servlet - Step 1 of 3: Servlet Information page.

9. Enter values in Create HTTP Servlet - Step 1 of 3: Servlet Information page, as
follows, and as shown in Figure 9–17.

Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Class: GradesServlet

■ Package: com.example.grades

■ Generate Content Type: HTML

■ Generate Header Comments: unchecked

■ Implement Methods: service() checked and all other checkboxes unchecked

Figure 9–17 Create HTTP Servlet Wizard - Step 1 of 3: Servlet Information

10. Click Next.

This displays the Create HTTP Servlet: Step 2 of 3: Mapping Information dialog as
shown in Figure 9–18.

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-17

Figure 9–18 Create HTTP Servlet Wizard - Step 2 of 3: Mapping Information

11. Configure this dialog as follows:

■ Name: GradesServlet

■ URL Pattern: /gradesservlet

12. Click Finish.

JDeveloper adds a Web Content folder to the project and creates a
GradesServlet.java file and opens the file in the editor as shown in
Figure 9–19.

Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 9–19 Generated GradesServlet.java

13. Replace the generated servlet with the source shown in Example 9–2.

Example 9–2 Business Rules Using Servlet for Grades Application

package com.example.grades;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class GradesServlet extends HttpServlet {

 private static final String CONTENT_TYPE = "text/html";
 private static final String DICT_PKG = "com.example.grades";
 private static final String DICT_NAME = "GradingRules";
 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN(DICT_PKG, DICT_NAME);
 private static final String DF_NAME = "GradesDecisionFunction";

Adding a Servlet with Rules SDK Calls for Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-19

 private DecisionPoint m_decisionPoint = null; // init in init()

 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 try {

 // specifying the Decision Function and Dictionary FQN
 // load the rules from the MDS repository.
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
 e.getMessage());
 throw new ServletException(e);
 }
 }

 public void service(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 // retrieve parameters
 String name = request.getParameter("name");
 String strScore = request.getParameter("testScore");

 // open output document
 StringBuilder doc = new StringBuilder();
 addHeader(doc);

 // create TestScore object to assert
 final TestScore testScore = new TestScore();
 testScore.setName(name);

 try {
 testScore.setTestScore(Integer.parseInt(strScore));
 } catch (NumberFormatException e){ /* use default val */ }

 // get DecisionPointInstance for invocation
 DecisionPointInstance point = m_decisionPoint.getInstance();

 // set input parameters
 point.setInputs(new ArrayList() {{ add(testScore); }});

 // invoke decision point and get result value
 TestGrade testGrade = null;
 try {

 // invoke the decision point with our inputs
 List<Object> result = point.invoke();
 if (result.size() != 1){
 error(doc, testScore.getName(), "bad result", null);
 }
 // decision function returns a single TestGrade object
 testGrade = (TestGrade)result.get(0);
 } catch (RLException e) {
 error(doc, testScore.getName(), "RLException occurred: ", e);
 } catch (SDKException e) {
 error(doc, testScore.getName(), "SDKException occurred", e);
 }

 if (testGrade != null){
 // create output table in document
 openTable(doc);
 addRow(doc, testScore.getName(), strScore, testGrade.getGrade());

Adding a Servlet with Rules SDK Calls for Grades Sample Application

9-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

 closeTable(doc);
 }

 addFooter(doc);

 // write document
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println(doc);
 out.close();
 }

 public static void addHeader(StringBuilder doc) {
 doc.append("<html>");
 doc.append("<head><title>GradesServlet</title></head>");
 doc.append("<body>");
 doc.append("<h1>Test Results</h1>");
 }

 public static void addFooter(StringBuilder doc) {
 doc.append("</body></html>");
 }

 public static void openTable(StringBuilder doc) {
 doc.append("<table border=\"1\"");
 doc.append("<tr>");
 doc.append("<th>Name</th>");
 doc.append("<th>Score</th>");
 doc.append("<th>Grade</th>");
 doc.append("</tr>");
 }

 public static void closeTable(StringBuilder doc) {
 doc.append("</table>");
 }

 public static void addRow(StringBuilder doc, String name, String score, Grade grade){
 doc.append("<tr>");
 doc.append("<td>"+ name +"</td>");
 doc.append("<td>"+ score +"</td>");
 doc.append("<td>"+ grade.value() +"</td>");
 doc.append("</tr>");
 }

 public static void error(StringBuilder doc, String name, String msg, Throwable t){
 doc.append("<tr>");
 doc.append("<td>"+ name +"</td>");
 doc.append("<td colspan=2>"+ msg + " " + t +"</td>");
 doc.append("</tr>");
 }
}

Example 9–2 includes a Oracle Business Rules Decision Point, that uses an MDS
repository to access the dictionary. For more information, see Section 7.5, "What You
Need to Know About Using Decision Point in a Production Environment".

When you add the Servlet shown in Example 9–2, note the following:

■ In the init() method the servlet uses the Rules SDK Decision Point API for
Oracle Business Rules. For more information on using the Decision Point API, see
Chapter 7, "Working with Rules SDK Decision Point API".

■ The DecisionPointBuilder() requires arguments including a decision
function name and, in a production environment a dictionary FQN to access a
dictionary in an MDS repository, as shown:

Adding an HTML Test Page for Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-21

 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)

For more information on using the Decision Point API, see Chapter 7, "Working
with Rules SDK Decision Point API".

9.5 Adding an HTML Test Page for Grades Sample Application
The Grades sample application includes an HTML test page that you use to invoke the
servlet you created in Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades
Sample Application".

9.5.1 How to Add an HTML Test Page to the Grades Project
To add an HTML page to the servlet you use the Create HTML File wizard.

To add an HTML test page:
1. In the Application Navigator, in the Grades project select the Web Content folder.

2. Right-click the Web Content folder project and in the context menu select New....

3. In the New Gallery, select the All Technologies tab.

4. In the New Gallery, in the Categories area expand Web Tier and select HTML.

5. In the New Gallery, in the Items area select HTML Page.

6. In the New Gallery click OK.

Oracle JDeveloper displays the Create HTML File dialog.

7. Configure this dialog as follows and as shown in Figure 9–20:

■ File Name: index.html

■ Directory: C:\JDeveloper\mywork\GradeApp\Grades\public_html

Figure 9–20 Create HTML File Dialog

8. Click OK.

JDeveloper adds index.html to the Web Content folder and opens the editor.

9. In the editor for index.html, select the Source tab.

10. Copy and paste the HTML code from Example 9–3 to replace the contents of the
index.html file.

Preparing the Grades Sample Application for Deployment

9-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Note that in the form element action attribute uses the URL Pattern you
specified in Figure 9–18.

Example 9–3 HTML Test Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"></meta>
 <title>Test Grade Example Servlet</title>
 </head>
 <body>
 <form name="names_and_scores"
 method="post"
 action="/grades/gradesservlet" >
 <p>Name: <input type="text" name="name" /></p>
 <p>Test Score: <input type="text" name="testScore"/></p>
 <input type="submit" value="Submit">
 </form>
 </body>
</html>

11. Select Save All from the File main menu to save your work.

9.6 Preparing the Grades Sample Application for Deployment
Business rules are deployed as part of the application for which you create a
deployment profile in Oracle JDeveloper. You deploy the application to Oracle
WebLogic Server.

9.6.1 How to Create the WAR File for the Grades Sample Application
You deploy the GradeApp sample application using JDeveloper with Oracle
WebLogic Server.

To create the WAR file for the grades sample application:
1. In the Application Navigator, select the Grades project.

2. Right-click the Grades project and in the context menu select Project Properties....
This displays the Project Properties dialog for the project.

3. In the Project Properties navigator, select the Deployment item as shown in
Figure 9–21.

Preparing the Grades Sample Application for Deployment

Creating a Rule-enabled Non-SOA Java EE Application 9-23

Figure 9–21 Project Properties - Deployment

4. In the Project Properties dialog, click New....

This displays the Create Deployment Profile dialog.

5. In the Create Deployment Profile dialog, in the Archive Type dropdown list,
select WAR File.

6. In the Create Deployment Profile dialog, in the Name field enter grades, as
shown in Figure 9–22. Note the Name value uses the package value that you
specified in the form element action attribute in Example 9–3.

Figure 9–22 Create Deployment Profile Dialog for WAR File

7. Click OK.

This displays the Edit WAR Deployment Profile Properties dialog.

8. In the Edit War Deployment Profile Properties dialog, select General and
configure the General page as follows, as shown in Figure 9–23:

Preparing the Grades Sample Application for Deployment

9-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

a. Set the WAR File:
C:\JDeveloper\mywork\GradeApp\Grades\deploy\grades.war

b. In the Web Application Context Root area, select Specify Java EE Web
Context Root:

c. In the Specify Java EE Web Context Root: text entry area, enter grades.

d. In the Deployment Client Maximum Heap Size (in Megabytes): dropdown
list select Auto

Figure 9–23 Edit WAR Deployment Properties - General

9. In the Edit WAR Deployment Profile Properties dialog, click OK.

JDeveloper creates a deployment profile named grades (WAR File) as shown
in Figure 9–24.

Preparing the Grades Sample Application for Deployment

Creating a Rule-enabled Non-SOA Java EE Application 9-25

Figure 9–24 Project Properties - Deployment Profile Created

10. In the Project Properties dialog, click OK.

9.6.2 How to Add the Rules Library to the Grades Sample Application

To add the rules library to the weblogic-application file:
1. In the GradeApp application, in the Application Navigator expand Application

Resources.

2. Expand Descriptors and expand META-INF and double-click to open
weblogic-application.xml.

3. Add the oracle.rules library reference to the weblogic-application.xml
file. Add the following lines, as shown in Figure 9–25.

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

Preparing the Grades Sample Application for Deployment

9-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 9–25 Adding Oracle Rules Library Reference to WebLogic Descriptor

4. Save the weblogic-application.xml file.

9.6.3 How to Add the MDS Deployment File to the Grades Sample Application

To add the MDS deployment file:
1. In the Application Navigator, select the GradeApp application.

2. Right-click the GradeApp application and in the context menu select Application
Properties....

This displays the Application Properties dialog.

3. In the Application Properties navigator select the Deployment item, as shown in
Figure 9–26.

Preparing the Grades Sample Application for Deployment

Creating a Rule-enabled Non-SOA Java EE Application 9-27

Figure 9–26 Application Properties - Deployment

4. In the Application Properties dialog, click New....

This displays the Create Deployment Profile dialog.

5. Configure this dialog as follows, as shown in Figure 9–27:

■ Archive Type: MAR File

■ Name: metadata1

Figure 9–27 Create Deployment Profile Dialog for MAR File

6. Click OK.

This displays the Edit MAR Deployment Properties dialog as shown in
Figure 9–28.

Preparing the Grades Sample Application for Deployment

9-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 9–28 Edit MAR Deployment Profile Properties - MAR Options

7. Expand the Metadata File Groups item and select the User Metadata item.

8. Click Add....

This displays the Add Contributor dialog.

9. In the Add Contributor dialog, click the Browse button and navigate to the
directory for the project that contains the GradingRules.rules dictionary file.

In this example, navigate to C:\JDeveloper\mywork\GradeApp\Grades and
click Select.

10. In the Add Contributor dialog, click OK to close the dialog. This displays the Edit
MAR Deployment Properties dialog as shown in Figure 9–29

Preparing the Grades Sample Application for Deployment

Creating a Rule-enabled Non-SOA Java EE Application 9-29

Figure 9–29 Edit MAR Deployment Profile Properties - User Metadata

11. In the Edit MAR Deployment Profile Properties dialog, expand the Metadata File
Groups and expand the User Metadata item and select Directories.

This displays the Directories page as shown in Figure 9–30.

Figure 9–30 Edit MAR Deployment Profile Properties - Directories

12. Select the oracle directory checkbox. This selects the GradingRules.rules
dictionary to be included in the MAR.

13. Click OK.

Preparing the Grades Sample Application for Deployment

9-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

JDeveloper creates an application deployment profile named metadata1 (MAR
File) as shown in Figure 9–31.

Figure 9–31 Application Properties - Deployment - MAR

14. In the Application Properties dialog, click OK.

9.6.4 How to Add the EAR File to the Grades Sample Application
Add an EAR file to the Grades sample application.

To add the ear file to the grades sample application:
1. In the Application Navigator, select the GradeApp application.

2. Right-click and in the context menu select Application Properties....

3. In the Application Properties dialog, select Deployment and click New.... This
displays the Create Deployment Profile dialog.

4. Configure this dialog as follows, as shown in Figure 9–32.

■ Archive Type: EAR

■ Name: grades

Preparing the Grades Sample Application for Deployment

Creating a Rule-enabled Non-SOA Java EE Application 9-31

Figure 9–32 Create Deployment Profile Dialog for EAR File

5. Click OK. This displays the Edit EAR Deployment Profile Properties dialog.

6. In the Edit Ear Deployment Profile Properties dialog, in the navigator select
Application Assembly as shown in Figure 9–33.

Figure 9–33 Edit EAR Deployment Profile Properties - Application Assembly

7. Configure this dialog as follows:

■ Select the metadata1 checkbox.

■ Expand the Grades.jpr item and select the grades checkbox.

8. In the Edit EAR Deployment Profile Properties dialog, click OK.

JDeveloper creates an application deployment profile named grades(EAR
File) as shown in Figure 9–34.

Deploying and Running the Grades Sample Application

9-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 9–34 Application Properties - Deployment - EAR

9. Click OK to close the Application Properties dialog.

10. Select Save All from the File main menu to save your work.

9.7 Deploying and Running the Grades Sample Application
You can now deploy and run the grades sample application on Oracle WebLogic
Server.

9.7.1 How to Deploy to Grades Sample Application

To deploy the grades sample application:
1. In the Application Navigator, select the GradeApp application.

2. Right-click the GradeApp application and in the context menu select Deploy >
grades > to > and select either an existing connection or New Connection... to
create a connection for the deployment. This starts the deployment to the specified
Oracle WebLogic Server.

3. As the deployment proceeds, Oracle JDeveloper shows the Deployment
Configuration dialog.

4. In the Deployment Configuration dialog enter the following values, as shown in
Figure 9–32:

■ In the Repository Name field, from the dropdown list, select: mds-soa

■ In the Partition Name field, enter grades

Deploying and Running the Grades Sample Application

Creating a Rule-enabled Non-SOA Java EE Application 9-33

Figure 9–35 Deployment Configuration Dialog for MDS with Repository and Partition

5. In the Deployment Configuration dialog, click Deploy.

9.7.2 How to Run the Grades Sample Application
After you deploy the grades sample application, you can run the application.

To run the grades sample application:
1. Point a web browser at,

http://yourServerName:port/grades/

This displays the test servlet as shown in Figure 9–36.

Deploying and Running the Grades Sample Application

9-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 9–36 Grades Sample Application Servlet

2. Enter a name and test score and click Submit. This returns results as shown in
Figure 9–37.

The first time you run the servlet there may be a delay before any results are returned.
The first time the servlet is invoked, during servlet initialization the runtime loads the
dictionary and creates a rule session pool. Subsequent invocations do not perform
these steps and should run much faster.

Figure 9–37 Grades Sample Application Servlet with Results

10

Working with Oracle Business Rules and ADF Business Components 10-1

10Working with Oracle Business Rules and
ADF Business Components

Oracle Business Rules allows you to use Oracle ADF Business Components view
objects as facts. By using ADF Business Components facts you can assert trees of view
object graphs representing the business objects upon which rules should be based, and
let Oracle Business Rules handle the complexities of managing the relationships
between the various related view objects in the main view object's tree.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Using Business Rules with ADF Business
Components"

■ Section 10.2, "Using Decision Points with ADF Business Components Facts"

■ Section 10.3, "Creating a Business Rules Application with ADF Business
Components Facts"

10.1 Introduction to Using Business Rules with ADF Business
Components

The ADF Business Components rule development process can be summarized as
follows:

1. Create view object definitions.

2. Create action types.

3. Create rule dictionary.

4. Register view object fact types.

5. Register Java fact types for actions.

6. If you are invoking from Java:

■ If the view object is already instantiated at the Decision Point, code the
Decision Point invocation passing the view object instance.

■ If the view object is not instantiated at the Decision Point, code the Decision
Point invocation passing the view object key values.

10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types
When an ADF Business Components view object is imported into an Oracle Business
Rules data model, an ADF Business Components fact type is created which has a
property corresponding to each attribute of the view object, as shown in Figure 10–1.

Introduction to Using Business Rules with ADF Business Components

10-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Additionally, the ADF Business Components fact type contains the following:

■ A property named ViewRowImpl which points directly to the oracle.jbo.Row
instance that each fact instance represents.

■ A property named key_values which points to an
oracle.rules.sdk2.decisionpoint.KeyChain object. You can use this
property to retrieve the set of key-values for this row and its parent rows.

Figure 10–1 ADF Business Components Sample Fact Type

Note the following:

■ Relationships between view object definitions are determined by introspection of
attributes on the View Definition, specifically, those attributes which are View
Link Accessors.

The ADF Business Components fact type importer correctly determines which
relationships are 1-to-1 and which are 1-to-many and generates definitions in the
dictionary accordingly. For 1-to-many relationships the type of the property
generated is a List which contains facts of the indicated type at runtime.

■ ADF Business Components fact types are not Java fact types and do not allow
invoking methods on any explicitly created implementation classes for the view
object.

If you need to call such methods then add the view object implementation to the
dictionary as a Java fact type instead of as an ADF Business Components fact type.
In this case, all getters and setters and other methods become available but the

Introduction to Using Business Rules with ADF Business Components

Working with Oracle Business Rules and ADF Business Components 10-3

trade-off is that related view objects become inaccessible and, should related view
object access be required, these relationships must be explicitly managed.

■ Internally in Oracle Business Rules, when you use ADF Business Components fact
types these fact types are created as instances of RL fact types. Thus, you cannot
assert ADF Business Components view object instances directly to a Rule Session,
but must instead use the helper methods provided in the MetadataHelper and
ADFBCFactTypeHelper classes. For more information, see Oracle Fusion
Middleware Java API Reference for Oracle Business Rules.

10.1.2 Understanding Oracle Business Rules Decision Point Action Type
With Rules SDK, the primary way to update a view object within a Decision Point is
with an action type. An action type is a Java class that you import into the rule
dictionary data model in the same way you import a rule pattern fact type Java class.
A new instance of this action type is then asserted in the action of a rule and then
processed by the Postprocessing Ruleset in the DecisionPointDictionary.

A Java class to be used as an action type must conform to the following requirements:

■ The Java fact type class must subclass
oracle.rules.sdk2.decisionpoint.ActionType or
oracle.rules.sdk2.decisionpoint.KeyedActionType.

By subclassing KeyedActionType the Java class inherits a standard
oracle.rules.sdk2.decisionpoint.KeyChain attribute, which may be
used to communicate the rule fact's primary keys and parent-keys to the
ActionType instance.

■ The class has a default constructor.

■ The class implements abstract exec method for the ActionType. The exec
method should contain the main action which you want to perform.

■ The Java class must have properties which conform to the JavaBean interface
(that is, each property must have a getter and setter method).

Example 10–1 shows a sample ActionType implementation.

Example 10–1 Implementing an ActionType

package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
 private double raisePercent;

 public void exec(DecisionPointInstance dpi) {
 Number salary = (Number)getViewRowImpl().getAttribute("Salary");
 salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new
boolean[]{false});
 dpi.addResult("raise for " + this.getViewRowImpl().getAttribute("EmployeeId"),
 getRaisePercent() + "=>" + salary);
 getViewRowImpl().setAttribute("Salary", salary);
 }

 public void setRaisePercent(double raisePercent) {
 this.raisePercent = raisePercent;
 }

Using Decision Points with ADF Business Components Facts

10-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

 public double getRaisePercent() {
 return raisePercent;
 }
}

In Example 10–1, there is an
oracle.rules.sdk2.decisionpoint.DecisionPointInstance as a
parameter to the exec method. Table 10–1 shows the methods in
DecisionPointInstance that an application developer might need when
implementing the ActionType exec.

Using Rules Designer you can select parameters appropriate for the ActionType you
are configuring.

10.2 Using Decision Points with ADF Business Components Facts
You can use a Decision Point to execute a decision function. There are certain Decision
Point methods that only apply when working with ADF Business Components Fact
types. For more information on decision functions, see Chapter 6, "Working with
Decision Functions".

10.2.1 How to Call a Decision Point with ADF Business Components Facts
When you use ADF Business Components fact types you invoke a decision function
using the Rules SDK Decision Point interface.

To call a decision function using the Rules SDK Decision Point interface:
1. Construct and configure the template DecisionPoint instance using the

DecisionPointBuilder.

For more information, see Section 7.3.1, "How to Add a Decision Point Using
Decision Point Builder".

2. Create a DecisionPointInstance using the DecisionPoint method
getInstance.

Table 10–1 DecisionPointInstance Methods

Method Description

getProperties Supplies a HashMap<String,Object> object containing any runtime-specified
parameters that the action types may need.

If you intend to use the decision function from a Decision service, use only String
values.

getRuleSession Gives access to the Oracle Business Rules RuleSession object from which static
configuration variables in the Rule Dictionary may be accessed.

getActivationID If populated by the caller, supplies a String value to be used for Set Control
indirection.

getTransaction Provides a transaction object so that action types may make persistent changes in the
back end.

addResult Adds a named result to the list of output values in the form of a String key and
Object value.

Output is assembled as a List of
oracle.rules.sdk2.decisionpoint.DecisionPointInstance.NamedVal
ue objects as would be the case in a pure map implementation. The NamedValue
objects are simple data-bearing classes with a getter each for the name and value.
Output values from one action types instance are never allowed to overwrite each
other, and in this regard, the action type implementations should be considered
completely independent of each other.

Using Decision Points with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-5

3. Add the fact objects you want to use to the DecisionPointInstance using
DecisionPointInstance method addInput, setInputs, or
setViewObject. These are either ViewObject or ViewObjectReference
instances. These must be added in the same order as they are declared in the
decision function input. For more information, see Section 10.2.1.3, "Calling the
Invoke Method for an ADF Business Components Rule"

4. Set the transaction to be used by the DecisionPointInstance.

For more information, see Section 10.2.1.1, "Setting the Decision Point
Transaction".

5. Set any runtime properties the consequent application actions may expect.

For more information, see Section 10.2.1.2, "Setting Runtime Properties".

6. Call the DecisionPointInstance method invoke.

For more information, see:

■ Section 10.2.1.3, "Calling the Invoke Method for an ADF Business Components
Rule"

■ Section 10.2.1.4, "What You Need to Know About Decision Point Invocation"

10.2.1.1 Setting the Decision Point Transaction
The Oracle Business Rules SDK framework requires an
oracle.jbo.server.DBTransactionImpl2 instance to load a ViewObject and
to provide ActionType instances within a transactional context. The class
oracle.jbo.server.DBTransactionImpl2 is the default JBO transaction object
returned by calling the ApplicationModule method getTransaction. Setting the
transaction requires calling the DecisionPointInstance method
setTransaction with the Transaction object as a parameter.

Should a DBTransaction instance not be available for some reason, the Oracle
Business Rules SDK framework can bootstrap one using any of the three provided
overrides of the setTransaction method.

These require one of:

■ A JDBC URL, user name, and password.

■ A JDBC connection object.

■ A javax.sql.DataSource object and a flag to specify whether the
DataSource represents a JTA transaction or a local transaction.

10.2.1.2 Setting Runtime Properties
Runtime properties may be provided with the setProperty method. These can then
be retrieved by ActionType instances during their execution. If no runtime
properties are needed, you may safely omit these calls.

10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule
The ViewObject to be used in a Decision Point invocation can be specified in one of
two ways, as shown in Table 10–2.

Using Decision Points with ADF Business Components Facts

10-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Example 10–2 shows how to invoke a Decision Point with a ViewObject instance
using the setInputs method. For the complete example, see Example 10–5.

Example 10–2 Invoking a Decision Point Using setInputs Method

public class OutsideManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private static final String DF_NAME = "FindOutsideManagers";

 private DecisionPoint dp = null;

 public OutsideManagerFinder() {
 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();
 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setInputs(new ArrayList<Object>(){{ add(vo); }});
 try {

Table 10–2 Setting the View Object for a Decision Point Invocation

ViewObject Set
Method Description

setViewObject The decision function is invoked once for each ViewObject row. This
the preferred way to use view objects. Between each invocation of the
decision function, the rule session is not reset so any asserted facts from
previous invocations of the decision function are still in working
memory. In most cases, users should write rules that retract the
asserted facts before the decision function call completes. For example,
you can have a cleanup ruleset that retracts the ViewObject row that
runs before the Postprocessing decision function is called.

Section 10.3.9.3, "How to Add Retract Employees Ruleset" shows this
usage. To use setViewObject, the ViewObject must be the first
entry in the decision function InputTable.

addInput

setInputs

The decision function is invoked once with all of the ViewObject
rows loaded at the same time. This is generally not a scalable operation,
since hundreds of thousands of rows can be loaded at the same time.
There are some cases where there are a known small number of rows in
a ViewObject that this method of calling the ViewObject can be
useful.

Using Decision Points with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-7

 List<Object> invokeList = point.invoke();

List<DecisionPoint.NamedValue> results = point.getResults();

 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

Example 10–3 shows how to invoke a DecisionPoint using the setViewObject
method to set the ViewObject.

Example 10–3 Invoking a Decision Point Using setViewObject Method

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 List<Object> invokeList = point.invoke();
List<DecisionPoint.NamedValue> results = point.getResults();

 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

10.2.1.4 What You Need to Know About Decision Point Invocation
Care must be taken when invoking Decision Points using a view object that loads large
amounts of data, since the default behavior of the JBO classes is to load all data
eagerly. If a view object with many rows and potentially very many child rows is
loaded into memory, not only is there risk of memory-exhaustion, but DML actions
taken based on such large data risk using all rollback segments.

10.2.2 How to Call a Decision Function with Java Decision Point Interface
To call a decision function with a ruleset using ADF Business Components fact types
with the Oracle Business Rules SDK Decision Point interface you must configure the
decision function with certain options. For more information on using decision
functions, see Chapter 6, "Working with Decision Functions".

To define a decision function using the Java Decision Point interface:
1. Double-click the decision function icon to the left of the decision function item or

select this item and click the Edit icon. The Edit Decision Function dialog appears.

2. In the Edit Decision Function dialog, configure the decision function:

■ Input Fact Types: names the fact types to use in the configured business rules.

Using Decision Points with ADF Business Components Facts

10-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

The inputs, when working with an application using ADF Business
Components fact types, are the ADF Business Components view objects used
in your rules.

When you use the setViewObject method with a Decision Point, the List
attribute should be unselected. Each Input fact type should have the List
attribute selected when you are using addInput or setInputs methods
with the Decision Point. Optionally, depending on the usage of the view
objects, select the Tree attribute:

– List: defines that a list of ADF Business Components fact types are passed
to the decision function.

– Tree: defines that all objects in the master-detail hierarchy should be
asserted, instead of only the top-level object.

For more information, see Section 10.2.1, "How to Call a Decision Point with
ADF Business Components Facts".

■ Output Fact Types: defines the fact types that the caller returns.

When calling a decision function using the Java Decision Point interface for a
decision function that uses ADF Business Components fact types, Output Fact
Types should be left empty. The view object is updated using an
ActionType. For more information, see Section 10.1.2, "Understanding
Oracle Business Rules Decision Point Action Type".

■ RuleSets and Decision Functions: an ordered list of the rulesets and other
decision functions that this decision function executes. The rulesets
DecisionPointDictionary.Preprocessing and
DecisionPointDictionary.Postprocessing from the DecisionPoint dictionary
must be added so that they run before and after, respectively, the
application-specific rulesets and decision functions.

10.2.3 What You Need to Know About Decision Function Configuration with ADF
Business Components

Both rulesets and decision functions may be included in the definition of a decision
function. It is common for an application to require some rules or decision functions
which act as "plumbing code". Such applications include components that perform
transformations on the input data, assert auxiliary facts, or process output facts. The
plumbing code may need to run before or after the rules that contain the core business
rules of the application. You can separate these application concerns and their
associated rules from the application functional concerns using nested decision
functions. Using nested decision functions, the inner decision function does not contain
the administrative, plumbing-oriented concerns, and thus only presents those rules
which define the core logic of the application. This design eliminates the need for the
user to understand the administrative rules and prevents a user from inappropriately
modifying these rules (and possibly rendering the system inoperable due to these
changes).

To create a configuration using multiple rulesets and nested decision functions, create
two decision functions and add one to the other. A good naming scheme is to suffix
the nested inner decision function with the name Core. The user specified rulesets can
be added to the inner Core decision function. For example, DecisionFunction_1 can
be defined to run the DecisionPointDictionary.Preprocessing decision function, the
DecisionFunction_1Core decision function, and the
DecisionPointDictionary.Postprocessing decision function. For this example,
DecisionFunction_1Core contains the core business logic rulesets.

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-9

It is also common for the input of a Decision Point to be an ADF Business Components
fact type that is the root of a tree of ADF Business Components objects. However, the
user might only write business rules that match on a subset of the types found in the
tree. In this case, it is a good practice to define the inputs of the nested decision
functions to be only the types which are actually matched in the contained rulesets.
For example, consider a Decision Point calling a decision function whose input is an
Employee fact type with the Tree option selected; if this decision function includes a
nested decision function with rulesets that only matched on the Department fact
type. In this case, the nested decision function could either have as its input specified
as an Employee fact type with the Tree option selected, or a Department fact type
with the List option selected. For this example, the Tree option causes the children of
the Employee instances, including the Department instances to be asserted (due to
the one-to-many relationship between these types). If Employee is an input to the
outer decision function and the Tree option is selected, the then Department fact type
instances are asserted, and you can identify the signature on the inner decision
function as a list of Department instances (these are the exact types which are being
matched on for this decision function).

10.3 Creating a Business Rules Application with ADF Business
Components Facts

The ADF Business Components sample application shows the use of ADF Business
Component fact types.

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

10.3.1 How to Create an Application That Uses ADF Business Components Facts
To work with Oracle Business Rules with ADF Business Components facts, you first
need to create an application and a project in Oracle JDeveloper.

To create an application that uses ADF Business Components facts:
1. Start Oracle JDeveloper. This displays the Oracle JDeveloper start page.

2. In the Application Navigator, in the application menu click New Application....

3. In the Name your application page enter the name and location for the new
application:

a. In the Application Name field, enter an application name. For example, enter
Chapter10.

b. In the Directory field, enter or browse for a directory name or accept the
default.

c. In the Application Package Prefix field, enter an application package prefix.
For example, enter com.example.

This should be a globally unique prefix and is commonly a domain name
owned by your company. The prefix, followed by a period, applies to objects
created in the initial project of an application.

In this sample, use the prefix com.example.

Creating a Business Rules Application with ADF Business Components Facts

10-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

d. In the Application Template field, select Fusion Web Application (ADF).

4. Click Finish.

10.3.2 How to Add the Chapter10 Generic Project
You need to add a new project named Chapter10.

Add a new project:
1. In the Chapter10 application, select the Application Menu.

2. In the Application Menu dropdown list, select New Project....

3. In the New Gallery, in the Items area select Generic Project.

4. Click OK.

5. On the Name your project page, in the Project Name field enter Chapter10.

6. Click Finish.

10.3.3 How to Create ADF Business Components Application for Business Rules
You need to add ADF Business Components from a database table. For this example
we use the standard HR database tables.

To add ADF Business Components:
1. In the Application Navigator, select the Chapter10 project.

2. Right-click and from the menu select New....

3. In the New Gallery, in the Categories area expand Business Tier and select ADF
Business Components.

4. In the Items area select Business Components from Tables.

5. Click OK.

6. In the Initialize Business Components Project dialog, enter the required connection
information to add a connection.

7. Click OK. This displays the Create Business Components from Tables wizard.

8. In the Entity Objects page, select the desired objects by moving objects from the
Available box to the Selected box. You may need to click Query to see the
complete list. For example, select DEPARTMENTS and EMPLOYEES, as shown
in Figure 10–2.

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-11

Figure 10–2 Selecting Entity Objects for Sample Application

9. Click Next. This displays the Updatable View Objects page.

10. In the Updatable View Objects page select Departments and Employees, as
shown in Figure 10–3.

Figure 10–3 Adding Updatable View Objects for Sample Application

11. Click Next. This displays the Read-Only View Objects page.

12. Click Next. This displays the Application Module page.

Creating a Business Rules Application with ADF Business Components Facts

10-12 Oracle Fusion Middleware User's Guide for Oracle Business Rules

13. Click Finish.

10.3.4 How to Update View Object Tuning for Business Rules Sample Application
You should tune the ViewObject to meet the performance requirements of your
application.

To set tuning options for EmployeesView:
1. In the Application Navigator, double-click EmployeesView.

2. In the General navigation tab, expand Tuning.

3. In the Tuning area, select All Rows.

4. In the Tuning area, in the Batches of: field, enter 128.

5. In the Tuning area, select All at Once.

To set tuning options for DepartmentsView:
1. In the Application Navigator, double-click DepartmentsView.

2. In the General navigation tab, expand Tuning.

3. In the Tuning area, select All Rows.

4. In the Tuning area, in the Batches of: field, enter 128.

5. In the Tuning area, select All at Once.

10.3.5 How to Create a Dictionary for Oracle Business Rules
You use Oracle JDeveloper to create an Oracle Business Rules dictionary.

To create a dictionary:
1. In the Application Navigator, select the Chapter10 project.

2. Right-click, and from the dropdown list select New....

3. In the New Gallery, select the All Technologies tab and in the Categories area
expand Business Tier and select Business Rules.

4. In the New Gallery, in the Items area select Business Rules.

5. Click OK.

6. In the Create Business Rules dialog enter the dictionary name and package, as
shown in Figure 10–4:

■ For example, in the Name field enter Chapter10Rules.

■ For example, in the Package field enter com.example.

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-13

Figure 10–4 Create Business Rules for Chapter10Rules Dictionary

7. Click OK.

JDeveloper creates the dictionary and opens the Chapter10Rules.rules file in
Rules Designer, as shown in Figure 10–5.

Figure 10–5 Adding the Rules Dictionary

10.3.6 How to Add Decision Point Dictionary Links
You need to add a dictionary links to the Oracle Business Rules supplied Decision
Point Dictionary. This dictionary supports features for working with the Decision
Point interface with ADF Business Components objects.

Add decision point dictionary links:
1. In the Rules Designer, click the Links navigation tab.

Creating a Business Rules Application with ADF Business Components Facts

10-14 Oracle Fusion Middleware User's Guide for Oracle Business Rules

2. From the dropdown menu next to the Create icon, select Decision Point
Dictionary. This operation can take awhile to complete. After waiting, Rules
Designer adds a link to the Decision Point Dictionary as shown in Figure 10–6.

Figure 10–6 Adding a Dictionary Link to Decision Point Dictionary

10.3.7 How to Import the ADF Business Components Facts
You import ADF Business Components facts with Rules Designer to make these
objects available when you create rules.

Import the ADF Business Components facts:
1. In Rules Designer, select the Facts navigation tab.

2. Select the ADF-BC Facts tab.

3. Click the Create... icon. This displays the ADF Business Components Fact page.

4. In the Connection field, from the dropdown list select the connection which your
ADF Business Components objects use. The Search Classpath area shows a list of
classpaths.

5. In the View Definition field, select the name of the view object to import. For
example, select com.example.EmployeesView.

6. Click OK. This displays the Facts navigation tab, as shown in Figure 10–7.

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-15

Figure 10–7 ADF Business Components Facts in Rules Designer

ADF Business Components Facts can include a circular reference, as indicated with the
validation warning:

RUL-05037: A circular definition exists in the data model

When this warning is shown in the Business Rule validation log, you need to manually
resolve the circular reference. To do this you deselect the Visible checkbox for one of
the properties that is involved in the circular reference.

To mark a property as non-visible:
1. Select the Facts navigation tab and select the ADF Business Components Facts tab.

2. Double-click the icon in the DepartmentsView row.

3. In the Properties table, in the EmployeesView row deselect the Visible checkbox.

4. Click OK.

To set alias for DepartmentsView and EmployeesView:
1. Select the Facts navigation tab and select the ADF Business Components Facts tab.

2. In the Alias column, replace EmployeesView with Employee.

3. In the Alias column, replace DepartmentsView with Department.

10.3.8 How to Add and Run the Outside Manager Ruleset
The sample code that runs the outside manager ruleset invokes the Decision Point
with the view object set using the setInputs method. This invokes the decision
function once, with all of the view object rows loaded in a List. Note that invoking
the Decision Point this way is not scalable, because all of the view object rows must be
loaded into memory at the same time, which can lead to OutOfMemory exceptions.
Only use this invocation style when there are a small and known number of view
object rows. You can also use a Decision Point with setViewObject. For more
information, see Section 10.2.1, "How to Call a Decision Point with ADF Business
Components Facts".

Creating a Business Rules Application with ADF Business Components Facts

10-16 Oracle Fusion Middleware User's Guide for Oracle Business Rules

10.3.8.1 How to Add the Outside Manager Ruleset and Add a Decision Function
After the view objects are imported as facts, you can rename the ruleset and create the
decision function for the application.

To rename the ruleset:
1. In Rules Designer, select the Ruleset_1 navigation tab.

2. Select the ruleset name and enter Outside Manager Ruleset to rename the
ruleset.

To add a decision function:
1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Edit the decision function fields as follows, as shown in Figure 10–8.

■ Enter Name value FindOutsideManagers.

■ In the Inputs area, click the Add Input icon and edit the input information as
follows:

– Click the Fact Type field and select Employee from the dropdown list.

– Select the List checkbox.

In this decision function you do not define any outputs because you use the
ActionType API for taking action rather than producing output. For more
information, see Section 10.1.2, "Understanding Oracle Business Rules
Decision Point Action Type".

■ In the Rulesets & Decision Functions area move the following items from the
Available area to the Selected area, in the specified order:

– DecisionPointDictionary.Preprocessing

– Outside Manager Ruleset

– DecisionPointDictionary.Postprocessing

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-17

Figure 10–8 Adding the Find Outside Managers Decision Function

4. Ensure that the items in the Selected area are in the order shown in Figure 10–8.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

Several warnings appear. These warnings are removed in later steps when you add
rules to the ruleset.

10.3.8.2 How to Create the ActionType Java Implementation Class
To create the sample application and to modify the view object in a rule, you need to
create a Java implementation class for abstract class
oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of
ActionType must implement the abstract exec method.

To create the ActionType Java implementation class:
1. In Oracle JDeveloper, select the project named Chapter10.

2. In the Application Navigator, select the Application Sources folder.

3. Right-click and from the dropdown list select New....

Creating a Business Rules Application with ADF Business Components Facts

10-18 Oracle Fusion Middleware User's Guide for Oracle Business Rules

4. In the New Gallery, in the Categories area select General.

5. In the New Gallery, in the Items area select Java Class.

6. Click OK.

7. In the Create Java Class dialog, configure the following properties as shown in
Figure 10–9:

■ Enter the Name value MessageAction.

■ Enter the Package value com.example.

■ Enter the Extends value
oracle.rules.sdk2.decisionpoint.ActionType.

Figure 10–9 Creating the Message Action Type Java Class

8. Click OK.

Oracle JDeveloper displays the Java Class.

9. Replace this code with the code shown in Example 10–4.

Example 10–4 ActionType Java Implementation

package com.example;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class MessageAction extends ActionType {
 public MessageAction() {
 super();
 }

 public void exec(DecisionPointInstance decisionPointInstance) {
 System.out.println(message);
 }

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-19

 private String message = null;

 public void setMessage(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
}

10. In the Application Navigator, right click the MessageAction.java and from the
dropdown list select Make.

10.3.8.3 How to Import the Message Action Java Fact
You just created a new Java class and you need to add this class as a Java fact type in
Rules Designer to use later when you create rules.

To create the Java fact type:
1. In Rules Designer, click the Facts navigation tab.

2. Select the Java Facts tab.

3. Click Create....

4. In the Create Java Fact dialog, in the Classes area navigate in the tree and expand
com and example to display the MessageAction checkbox.

5. Select the MessageAction checkbox, as shown in Figure 10–10.

Figure 10–10 Create Java Fact with Message Action Type

6. Click OK.

This adds the fact to the table, as shown in Figure 10–11.

Creating a Business Rules Application with ADF Business Components Facts

10-20 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 10–11 Adding the Message Action Type Java Fact

10.3.8.4 How to Add the Find Managers Rule
You add the rule to find the managers that are in a different departments than their
employees.

To add the find managers in different departments rule:
1. In Rules Designer, select the Outside Manager Ruleset tab.

2. Click Add and from the dropdown list select Create Rule.

3. Rename the rule by selecting the default rule name Rule_1. This displays a text
entry area. You enter a name. For example, enter Find managers in different
department. Press Enter to apply the name.

4. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

5. In the rule select Advanced Mode, as shown in Figure 10–12.

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-21

Figure 10–12 Adding the Find Managers in Different Departments Rule

6. Enter the rule as shown in Figure 10–13. The action for the rule shown in the
THEN area is too long to show in the figure. The complete action that you build
includes the following items:

"Employee " + Employee.FirstName + " " + Employee.LastName + "(" +
 Employee.EmployeeId + ")"+ " in dept " + Employee.DepartmentId + " has
 manager outside of department, " + Manager.FirstName + " " + Manager.LastName
 + "(" + Manager.EmployeeId + ")" + " in dept " + Manager.DepartmentId

Figure 10–13 Find Managers in Different Departments Rule

Creating a Business Rules Application with ADF Business Components Facts

10-22 Oracle Fusion Middleware User's Guide for Oracle Business Rules

10.3.8.5 How to Add the Outside Manager Finder Class
Add the outside manager finder class. This uses the Decision Point to execute a
decision function.

To add the Outside Manager Finder Class:
1. Select the Chapter10 project.

2. Right-click and select New....

3. In the New Gallery, in the Categories area select General.

4. In the New Gallery, in the Items area select Java Class.

5. Click OK.

6. In the Name field, enter OutsideManagerFinder.

7. Click OK.

8. Replace the contents of this class with the code shown in Example 10–5.

Example 10–5 Outside Manager Finder Java Class with Decision Point

package com.example;

import java.util.ArrayList;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class OutsideManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private static final String DF_NAME = "FindOutsideManagers";

 private DecisionPoint dp = null;

 public OutsideManagerFinder() {
 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-23

 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();
 point.setInputs(new ArrayList<Object>(){{ add(vo); }});
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public static void main(String[] args) {
 OutsideManagerFinder omf = new OutsideManagerFinder();
 omf.run();
 }

}

10.3.8.6 How to Update ADF META INF for Local Dictionary Access
You need to update the ADF-META-INF file with MDS information for accessing the
dictionary. You can use a local file with MDS to access the Oracle Business Rules
dictionary. However, this procedure is not the usual dictionary access method with
Oracle Business Rules in a production environment. For information on using a
Decision Point to access a dictionary with MDS in a production environment, see
Section 7.5, "What You Need to Know About Using Decision Point in a Production
Environment".

Update ADF-META-INF:
1. In the Application Navigator, expand Application Resources.

2. Expand Descriptors and ADF META-INF folders.

3. Double-click adf-config.xml to open this file.

4. Click the Source tab to view the adf-config.xml source.

5. Add the MDS information to adf-config.xml, before the closing
</adf-config> tag, as shown in Example 10–6.

Example 10–6 Adding MDS Elements to adf-config.xml for Local Dictionary Access

 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="mstore-usage_1" path="/"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mstore-usage_1">
 <metadata-store
class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
 <property name="metadata-path"
 value="C:\jdevinstance\mywork\Chapter10\.adf\"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>

Creating a Business Rules Application with ADF Business Components Facts

10-24 Oracle Fusion Middleware User's Guide for Oracle Business Rules

 </persistence-config>
 </mds-config>
 </adf-mds-config>

6. In the <property> element with the attribute metadata-path, change the path
to match .adf directory in the application on your system.

Copy definitions to MDS accessible location:
1. In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10

application, and in the Chapter10 project, in the src folder select and copy the com
folder.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the com folder to this directory.

Copy dictionary to MDS accessible location:
1. In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10

application and in the Chapter10 project, copy the oracle directory that contains
the Oracle Business Rules dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the oracle folder to this directory.

10.3.8.7 How to Build and Run the Project to Check the Outside Manager Finder
You can build and test the project by running the find managers with employees in
different departments rule.

Build the OutsideManagerFinder configuration:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter a name. For example, enter
OutsideManagerFinder.

4. Click OK.

5. With OutsideManagerFinder selected, click Edit....

6. In the Default Run Target field, click Browse....

7. Select OutsideManagerFinder.java from the src\com\example folder.

8. Click Open.

9. In the Edit Run Configuration dialog, click OK.

10. In the Project Properties dialog, click OK.

Run the project:
1. In the dropdown menu next to the Run project icon, select

OutsideManagerFinder.

2. Running this configuration generates output, as shown in Example 10–7.

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-25

Example 10–7 Running the OutsideManagerFinder Ruleset

Emp Shelley Higgins(205) in dept 110 manager outside of department, Neena Kochhar(101) in dept 90
Emp Hermann Baer(204) in dept 70 manager outside of department, Neena Kochhar(101) in dept 90
Emp Susan Mavris(203) in dept 40 manager outside of department, Neena Kochhar(101) in dept 90
Emp Michael Hartstein(201) in dept 20 manager outside of department, Steven King(100) in dept 90
Emp Jennifer Whalen(200) in dept 10 manager outside of department, Neena Kochhar(101) in dept 90
Emp Kimberely Grant(178) in dept null manager outside of department, Eleni Zlotkey(149) in dept 80
Emp Eleni Zlotkey(149) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Gerald Cambrault(148) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Alberto Errazuriz(147) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Karen Partners(146) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp John Russell(145) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Kevin Mourgos(124) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Shanta Vollman(123) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Payam Kaufling(122) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Adam Fripp(121) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Matthew Weiss(120) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Den Raphaely(114) in dept 30 manager outside of department, Steven King(100) in dept 90
Emp Nancy Greenberg(108) in dept 100 manager outside of department, Neena Kochhar(101) in dept 90
Emp Alexander Hunold(103) in dept 60 manager outside of department, Lex De Haan(102) in dept 90

10.3.9 How to Add and Run the Department Manager Ruleset
The sample code that runs the department manager ruleset invokes the Decision Point
with the view object set using the setViewObject method. This invokes the decision
function once for each row in the view object. All decision function calls occur in the
same RuleSession. Between decision function calls, the RuleSession preserves all state
from the previous decision function call. Thus, any objects asserted during the
previous call remain in working memory for the next call unless they are explicitly
retracted by rulesets that you supply. When the state is maintained, you can retract all
facts or selectively retract facts between calls by running a ruleset with rules that use
the retract action. This ruleset is run as part of the same decision function that you use
with the Decision Point. The retract all employees ruleset demonstrates retracting
these facts, as shown in Figure 10–15. For more information, see Section 10.2.1, "How
to Call a Decision Point with ADF Business Components Facts".

10.3.9.1 How to Add the Department Manager Finder Ruleset
You now add the department manager finder ruleset.

To add the department manager finder ruleset:
1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Department Manager
Finder Ruleset.

3. Click OK.

10.3.9.2 How to Add the Find Rule in the Department Manager Finder Ruleset
Next you add the Find rule to find department managers. This rule demonstrates the
use of Tree Mode rules with Oracle ADF Business Components fact types.

Add department manager finder rule:
1. In Rules Designer select the Department Manager Finder Ruleset.

2. In the dropdown menu next to the Add icon, click Create Rule.

3. Change the rule name by selecting the name Rule_1, and entering Find.

Creating a Business Rules Application with ADF Business Components Facts

10-26 Oracle Fusion Middleware User's Guide for Oracle Business Rules

4. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

5. In the rule, select Tree Mode.

6. Enter the Find rule tests and actions, as shown in Figure 10–14. The THEN area
includes the assert that is too wide for the figure. The following shows the
complete text of this rule, which is missing in Figure 10–14:

Employee.FirstName + " " + Employee.LastName + " is the manager of dept " +
Employee/DepartmentsView.DepartmentName

Figure 10–14 Adding the Find Rule to the Department Manager Finder Ruleset

10.3.9.3 How to Add Retract Employees Ruleset
You add a ruleset to retract the employee fact type instances. This ensures that the
Employee fact type is removed between invocations of the decision function.

To add the retract employee ruleset:
1. Add the Retract Employees Ruleset.

2. In the Retract Employees Ruleset, add a rule and name it Retract all employees, as
shown in Figure 10–15.

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-27

Figure 10–15 Adding the Retract All Employees Rule

10.3.9.4 How to Add the Find Department Managers Decision Function
Now you create the decision function for the department manager finder ruleset. You
use this decision function to execute the ruleset from a Decision Point.

To add a decision function for department manager finder ruleset:
1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Update the decision function fields as follows, as shown in Figure 10–16.

■ Enter Name value FindDepartmentManagers.

■ In the Inputs area, click the Add Input and edit the input information as
follows:

– Click the Fact Type field and select Employee from the dropdown list.

– Select the Tree checkbox.

In this decision function you do not define any outputs, because you use the
ActionType API for taking action rather than producing output.

■ In the Rulesets & Decision Functions area, move the following items from the
Available area to the Selected area, in the specified order:

– DecisionPointDictionary.Preprocessing

– Department Manager Finder Ruleset

– Retract Employees

– DecisionPointDictionary.Postprocessing

Creating a Business Rules Application with ADF Business Components Facts

10-28 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 10–16 Adding the Find Department Managers Decision Function

4. Ensure that the items in the Selected area are in the order shown in Figure 10–16.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

10.3.9.5 How to Add the Department Manager Finder Java Class
Add the department manager finder class. This class include the code with the
Decision Point that executes the decision function.

Add the department manager finder class:
1. In the Application Navigator, select the Chapter10 project.

2. Right-click and select New....

3. In the New Gallery, in the Categories area select General.

4. In the New Gallery, in the Items area, select Java Class.

5. Click OK.

6. In the Name field, enter DeptManagerFinder.

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-29

7. Click OK.

8. Replace the contents of this class with the code shown in Example 10–8.

Example 10–8 Department Manager Finder Class

package com.example;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class DeptManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final String DF_NAME = "FindDepartmentManagers";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private DecisionPoint dp = null;

 public DeptManagerFinder() {

 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

Creating a Business Rules Application with ADF Business Components Facts

10-30 Oracle Fusion Middleware User's Guide for Oracle Business Rules

 public static void main(String[] args) {
 new DeptManagerFinder().run();
 }
}

10.3.9.6 How to Copy the Dictionary to an MDS Accessible Location
Copy the updated dictionary to an MDS accessible location.

Copy dictionary to MDS accessible location:
1. In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10

application, and project and copy the oracle directory that contains the dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the oracle folder to this directory.

10.3.9.7 How to Build and Run the Project to Check the Find Managers Rule
You can build and test the project to execute the department manager finder ruleset.

Build the project:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter the name. For example, enter
DeptManagerFinder.

4. In the Copy Settings From field, enter Default.

5. Click OK.

6. With DeptManagerFinder selected, click Edit....

7. In the Default Run Target field, click Browse....

8. Select DeptManagerFinder.java from the src\com\example directory.

9. Click Open.

10. In the Edit Run Configuration dialog, click OK.

11. In the Project Properties dialog, click OK.

Run the project:
1. In the dropdown menu next to the Run project icon, select DeptManager Finder.

2. Running the decision point generates output, as shown in Example 10–9.

Example 10–9 Output from Department Manager Finder Ruleset

Michael Hartstein is the manager of dept Marketing
John Russell is the manager of dept Sales
Adam Fripp is the manager of dept Shipping
Den Raphaely is the manager of dept Purchasing
Alexander Hunold is the manager of dept IT
Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-31

Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Steven King is the manager of dept Executive
Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Alexander Hunold is the manager of dept IT
Alexander Hunold is the manager of dept IT
Nancy Greenberg is the manager of dept Finance
Den Raphaely is the manager of dept Purchasing
Adam Fripp is the manager of dept Shipping
John Russell is the manager of dept Sales
Jennifer Whalen is the manager of dept Administration
Michael Hartstein is the manager of dept Marketing
Susan Mavris is the manager of dept Human Resources
Hermann Baer is the manager of dept Public Relations
Shelley Higgins is the manager of dept Accounting

When you see duplicate entries in the output, when working with tree mode rules in
this example, the duplicate entries are due to multiple rule firings on the same data in
a different part of the view object graph.

10.3.10 How to Add and Run the Raises and Retract Employees Rulesets
The sample code that runs the raises ruleset invokes the Decision Point by specifying
the view object using the setViewObject method. This invokes the decision function
once for each row in the view object. The retract employees ruleset retracts all
instances of Employee asserted for each call, so that they do not remain in working
memory between calls to the decision function. The action type shown in
Example 10–10 shows how to change the ViewRowImpl attribute values with a
ActionType. For more information, see Section 10.2.1, "How to Call a Decision Point
with ADF Business Components Facts".

10.3.10.1 How to Add the Raises Ruleset
You now add the raises ruleset.

To add the raises ruleset:
1. In Rules Designer, click Create Ruleset....

2. In the Create Ruleset dialog, in the Name field enter Raises Ruleset.

3. Click OK.

10.3.10.2 How to Create the Raise ActionType Java Implementation Class
To create this part of the sample application and to modify the view object in the raises
rule, you need to create a Java implementation class for the abstract class
oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of
ActionType must implement the abstract exec method.

To create the raise ActionType Java implementation class:
1. In Oracle JDeveloper, select the project named Chapter10.

2. In the Application Navigator, select the Application Sources folder.

3. Right-click and from the dropdown list select New....

Creating a Business Rules Application with ADF Business Components Facts

10-32 Oracle Fusion Middleware User's Guide for Oracle Business Rules

4. In the New Gallery, in the Categories area select General.

5. In the New Gallery, in the Items area select Java Class.

6. Click OK.

7. In the Create Java Class dialog, configure the following properties as shown in
Figure 10–17:

■ Enter the Name value RaiseAction.

■ Enter the Package value com.example.

■ Enter the Extends value
oracle.rules.sdk2.decisionpoint.ActionType.

Figure 10–17 Creating the Raise ActionType Java Class

8. Click OK.

Oracle JDeveloper displays the Java Class.

9. Replace this code with the code shown in Example 10–10.

Example 10–10 ActionType Java Implementation

package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
 private double raisePercent;

 public void exec(DecisionPointInstance dpi) {
 Number salary = (Number)getViewRowImpl().getAttribute("Salary");
 salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-33

boolean[]{false});
 dpi.addResult("raise for " + this.getViewRowImpl().getAttribute("EmployeeId"),
 getRaisePercent() + "=>" + salary);
 getViewRowImpl().setAttribute("Salary", salary);
 }

 public void setRaisePercent(double raisePercent) {
 this.raisePercent = raisePercent;
 }

 public double getRaisePercent() {
 return raisePercent;
 }
}

10. In the Application Navigator, right click the RaiseAction.java and from the
dropdown list select Make.

10.3.10.3 How to Import the Raise Action Java Fact
You just created a new Java class. You import this class as a Java fact type in Rules
Designer to use later when you create rules.

To create the Java fact type:
1. In Rules Designer, select the ManagerRules.rules dictionary.

2. Click the Facts navigation tab and select the Java Facts tab.

3. Click Create....

4. In the Create Java Fact dialog, in the Classes area navigate in the tree and expand
com and example to display the RaiseAction checkbox.

5. Select the RaiseAction checkbox as shown in Figure 10–18.

Figure 10–18 Create Java Fact from Raise Action Class

6. Click OK.

This adds the Raise Action fact type to the Java Facts table.

Creating a Business Rules Application with ADF Business Components Facts

10-34 Oracle Fusion Middleware User's Guide for Oracle Business Rules

10.3.10.4 How to Add the 12 Year Raise Rule
This rule shows how to use action types to update database entries.

To add 12 year raise rule:
1. In Rules Designer in the Raises Ruleset, click Create Rule.

2. Change the rule name by selecting Rule_1 and entering the value: Longer than
12 years.

3. Click Show Advanced Settings. For more information, see Section 4.5.1, "How to
Show and Hide Advanced Settings in a Rule or Decision Table".

4. Select Advanced Mode.

5. Enter the 12 year raise rules, as shown in Figure 10–19.

Figure 10–19 Adding the Longer Than 12 Years Rule to the Raises Ruleset

10.3.10.5 How to Add the Employee Raises Decision Function
Now create the decision function for the employee raises and the retract all employees
rulesets.

To add a decision function:
1. Click the Decision Functions navigation tab.

2. In the Decision Functions area, click Create.... This displays the Edit Decision
Function dialog.

3. Update the decision function fields as shown in Figure 10–20.

■ Enter Name value EmployeeRaises.

■ In the Inputs area, click the Add Input and edit the input information as
follows:

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-35

– Click the Fact Type field and select Employee from the dropdown list.

In this decision function you do not define any outputs, because you use the
ActionType API for taking action rather than producing output.

■ In the Rulesets & Decision Functions area, move the following items from the
Available area to the Selected area, in the specified order.

– DecisionPointDictionary.Preprocessing

– Raises Ruleset

– Retract Employees Ruleset

– DecisionPointDictionary.Postprocessing

Figure 10–20 Adding the Employee Raises Decision Function

4. Ensure that the items in the Selected area are in the order shown in Figure 10–20.

If they are not, select an item and use the Move Up and Move Down buttons to
correct the order.

5. Click OK.

Creating a Business Rules Application with ADF Business Components Facts

10-36 Oracle Fusion Middleware User's Guide for Oracle Business Rules

10.3.10.6 How to Add the Employee Raises Java Class
Add the employee raises class. This executes the decision function.

To add the employee raises class:
1. Select the Chapter10 project.

2. Right-click and select New....

3. In the New Gallery, in the Categories area select General.

4. In the New Gallery, in the Items area, select Java Class.

5. Click OK.

6. In the Name field, enter EmployeeRaises.

7. Click OK.

8. Replace the contents of this class with the code shown in Example 10–11.

Example 10–11 DeptManagerFinder Class

package com.example;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class EmployeeRaises {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";
 private static final String DF_NAME = "EmployeeRaises";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private DecisionPoint dp = null;

 public EmployeeRaises() {

 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =

Creating a Business Rules Application with ADF Business Components Facts

Working with Oracle Business Rules and ADF Business Components 10-37

 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }

 for (DecisionPoint.NamedValue result : point.getResults()){
 System.out.println(result.getName() + " " + result.getValue());
 }

 }

 public static void main(String[] args) {
 new EmployeeRaises().run();
 }
}

10.3.10.7 How to Copy Dictionary
Copy the updated dictionary to the MDS accessible location.

Copy dictionary to MDS accessible location:
1. In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10

folder and the Chapter10 project and copy the oracle directory that contains the
dictionary.

2. In the application directory for Chapter10, above the Chapter10 project, navigate
to the .adf directory.

3. Copy the oracle folder to this directory.

10.3.10.8 How to Build and Run the Project to Check the Raises Rule
You can build and test the project by running employee raises ruleset.

Build the project:
1. From the dropdown menu next to Run icon, select Manage Run Configurations....

2. In the Project Properties dialog, click New....

3. In the Create Run Configuration dialog, enter the name. For example, enter
EmployeeRaises.

4. In the Copy Settings From field, enter Default.

5. Click OK.

6. With EmployeeRaises selected, click Edit....

7. In the Default Run Target field, click Browse....

8. Select EmployeeRaises.java from the src\com\example folder.

Creating a Business Rules Application with ADF Business Components Facts

10-38 Oracle Fusion Middleware User's Guide for Oracle Business Rules

9. Click Open.

10. In the Edit Run Configuration dialog, click OK.

11. In the Project Properties dialog, click OK.

Run the project:
1. In the dropdown menu next to the Run project icon, select EmployeeRaises.

2. Oracle JDeveloper displays the output as shown in Example 10–12.

Example 10–12 Output from Raises Ruleset

raise for 100 0.03=>81.7
raise for 101 0.03=>1872.46
raise for 102 0.03=>60596.78
raise for 103 0.03=>31146.26
raise for 104 0.03=>20159.43
raise for 108 0.03=>35822.68
raise for 109 0.03=>26084.5
raise for 114 0.03=>27500.92
raise for 115 0.03=>7524.5
raise for 120 0.03=>16262.34
raise for 121 0.03=>16183.41
raise for 122 0.03=>15591.35
raise for 131 0.03=>3671.33
raise for 133 0.03=>4567.98
raise for 137 0.03=>4838.1
raise for 141 0.03=>4703.71
raise for 142 0.03=>4044.79
raise for 145 0.03=>17734.79
raise for 146 0.03=>17101.39
raise for 147 0.03=>15201.23
raise for 150 0.03=>12667.7
raise for 151 0.03=>12034.32
raise for 156 0.03=>13047.73
raise for 157 0.03=>12395.35
raise for 158 0.03=>11400.93
raise for 159 0.03=>10134.16
raise for 168 0.03=>14567.86
raise for 174 0.03=>13934.48
raise for 175 0.03=>11147.58
raise for 184 0.03=>5480.03
raise for 185 0.03=>5193.76
raise for 192 0.03=>5219.1
raise for 193 0.03=>4940.41
raise for 200 0.03=>5740.99
raise for 201 0.03=>16962.05
raise for 203 0.03=>8481.03
raise for 204 0.03=>13047.73
raise for 205 0.03=>15657.27
raise for 206 0.03=>10829.62

11

Working with Decision Components in SOA Applications 11-1

11Working with Decision Components in SOA
Applications

Oracle SOA Suite provides support for Decision components that support Oracle
Business Rules. A Decision component is a mechanism for publishing rules and
rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is a SCA component that can be used within a composite and
wired to a BPEL component. Apart from that, Decision Components are used for
dynamic routing capability of Mediator and Advanced Routing Rules in Human
Workflow.

This chapter includes the following sections:

■ Section 11.1, "Introduction to Decision Components"

■ Section 11.2, "Working with a Decision Component"

■ Section 11.3, "Decision Service Architecture"

11.1 Introduction to Decision Components
A Decision component is a Web service that wraps a rule session to the underlying
decision function.

A Decision component consists of the following:

■ Rules or Decision Tables that are evaluated using the Rules Engine. These are
defined using Rules Designer and stored in a business rules dictionary.

■ Metadata that describes facts required for specific rules to be evaluated. Each
ruleset that contains rules or Decision Tables is exposed as a service with facts that
are input and output. These facts must be exposed through XSD definitions.

For example, a credit rating ruleset may expect a customer ID and previous loan
history as facts, but a pension payment ruleset may expect a value with the years
of employee service, salary, and age as facts.

For more information, see Section 11.2.1, "Working with Decision Component
Metadata".

■ A Web service wraps the input, output, and the call to the underlying rule engine.

This service lets business processes assert and retract facts as part of the process.
In some cases, all facts can be asserted from the business process as one unit. In
other cases, the business process can incrementally assert facts and eventually
consult the rule engine for inferences. Therefore, the service has to support both
stateless and stateful interactions.

Working with a Decision Component

11-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

You can create a variety of such business rules service components.

For more information, see Oracle Fusion Middleware Developer's Guide for Oracle
SOA Suite.

11.2 Working with a Decision Component
Using Oracle JDeveloper with Rules Designer these tools automatically generate all
required metadata and WSDL operations. The Decision component can be integrated
into an SOA composite application in the following ways:

■ Create a Decision component as a standalone component in the SOA Composite
Editor. In this scenario, the Decision Service is exposed on the composite level and
thus can be invoked from any Web service client.

For more information, see "Using the Business Rule Service Component" in the
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

■ Create a Decision component in the SOA Composite Editor that you later associate
with a BPEL process. In this scenario the Decision Service is not exposed on the
composite level. However it can be wired to any other component within the
composite, such as BPEL, Oracle Mediator, and Oracle Human Workflow.

For more information, see "Using the Business Rule Service Component" in the
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

■ Create a Decision component within the Human Task editor of a human task
component.

This integration provides the following benefits:

■ Dynamic processing: provides for intelligent routing, validation of policies within
a process, and constraint checks.

■ Integration with ad hoc human tasks: provides policy-based task assignment,
various escalation policies, and load balancing of tasks.

11.2.1 Working with Decision Component Metadata
A Decision component is defined by the following files:

■ Decision Service Metadata (.decs) File

■ SCA Component Type (.componentType) File

■ Decision Component Entry in composite.xml

Typically, Oracle JDeveloper generates and maintains these files.

11.2.1.1 Decision Service Metadata (.decs) File
Every Decision component within a composite comprises one business rule metadata
file. The business rule metadata file provides information about the location of the
component business rule dictionary and the Decision Services exposed by the Decision
component.

One Decision component might expose one or more Decision Services. For example a
CreditRating Decision component might expose two services, CheckEligibility and
CalculateCreditRating.

In Oracle Fusion Middleware 11g Release 1 (11.1.1), the Decision Service metadata
comprises the decision function name that is being exposed as a Web service. For
projects that are migrated from older releases of Oracle SOA Suite, the Decision

Working with a Decision Component

Working with Decision Components in SOA Applications 11-3

Service metadata typically has more information depending on the interaction pattern
used in 10.1.3.x.

The business rule metadata file (business_rule_name.decs) defines the contract
between the components involved in the interaction of the business rule with the
design time and back-end Oracle Rules Engine.

This file is in the SOA Content area of the Application Navigator in Oracle JDeveloper
for your SOA composite application. Table 11–1 describes the top-level elements in the
Decision service .decs file.

Table 11–1 Decision Metadata File (.decs) Top-level Elements

Element Description

ruleEngineProvider The business_rule_name.decs file ruleEngineProvider element includes
details about the rule dictionary to use:

<ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
 <repository type="SCA-Archive">
 <path>AutoLoanComposite/oracle/rules/AutoLoanRules.rules</path>
 </repository>
</ruleEngineProvider>

The repository type is set to SCA-Archive for Decision components. This indicates
that the rule dictionary is located in the service component architecture archive. The
path is relative and interpreted differently by the following:

■ Design time — The path is prefixed with Oramds:/. Metadata service (MDS)
APIs open the rule dictionary. Therefore, the full path to the dictionary is as
follows:

Oramds:/AutoLoanComposite/oracle/rules/AutoLoanRules.rules

■ Runtime (business rule service engine) — The business rule service engine uses
the Oracle Business Rules SDK RuleRepository API to open the rule
dictionary located in MDS. The composite name prefix, for example
(AutoLoanComposite) is removed from the path and the metadata manager
assumes the existence of oracle/rules/AutoLoanRules.rules relative to
the composite home directory.

decisionService A Decision service is a Web service (or SOA) enabler of business rules. It is a service
in the sense of a Web service, thus opening the world of business rules to
service-oriented architectures (SOA). In 11g Release 1 (11.1.1), a Decision service
consists of metadata and a WSDL contract for the service.

The business_rule_name.decs file decisionService element defines the
metadata that describes business rules exposed as a Web service.

In general, a Decision service includes the following elements:

■ Target namespace

■ Reference to the back-end Oracle Rules Engine (this is the link to the rule
dictionary). Note that OracleRulesSDK is the reference name that matches the
name of the Oracle Rules Engine provider in ruleEngineProvider element.

■ Name (CreditRatingService in the following example)

■ Additional information about the dictionary name and ruleset to use

■ List of supported operations (patterns)

Apart from the operations (patterns), the parameter types (or fact types) of operations
are specified (and validated later at runtime). Therefore, every Decision service
exposes a strongly-typed contract.

Working with a Decision Component

11-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

11.2.1.2 SCA Component Type (.componentType) File
An SCA business_rule_name.componentType file is included with each
Decision component. This file lists the services exposed by the business rules service
component. In the following sample, two services are exposed:
CreditRatingService and LoanAdvisorService.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [5/24/07 9:27 AM]. -->
<componentType xmlns="http://xmlns.oracle.com/sca/1.0">
 <service name="CreditRatingService">
 <interface.wsdl
interface="http://xmlns.oracle.com/creditrating/Rating#wsdl.interface(IDecisionSer
vice)"/>
 </service>
 <service name="LoanAdvisorService">
 <interface.wsdl
interface="http://xmlns.oracle.com/loanoffer/Advisor#wsdl.interface(IDecisionServi
ce)"/>
 </service>
</componentType>

11.2.1.3 Decision Component Entry in composite.xml
An entry in composite.xml is created for a decision component. For example,

<component name="OracleRules1">
 <implementation.decision src="OracleRules1.decs"/>
</component>

The business rules service engine uses the information from this implementation type
to process requests for the Service Engine. From an SCA perspective, a Decision
Component is a new "implementation type".

11.2.2 Working with Decision Components that Expose a Decision Function
You can use a Decision service to expose an Oracle Business Rules Decision Function
as a service. A decision function is a function that is configured declaratively, without
using RL Language programming that you use to call rules from a Java EE application
or from a BPEL process.

Example 11–1 shows a business_rule_name.decs file decisionServices
element that defines the metadata for an Oracle Business Rules Decision Function
exposed as a service.

Example 11–1 decisionService for Decision Function Execution

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules" name="PurchaseItems">

<ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
<repository type="SCA-Archive">

<path>PurchasingSampleProject/oracle/rules/com/example/PurchaseItems.rules</path>
</repository>

</ruleEngineProvider>
<decisionService targetNamespace="http://xmlns.oracle.com/PurchaseItems/PurchaseItems_

DecisionService_ValidatePurchasesDF"
ruleEngineProviderReference="OracleRulesSDK" name="PurchaseItems_DecisionService_
ValidatePurchasesDF">

<catalog>PurchaseItems</catalog>
<pattern name="CallFunctionStateless">

<arguments>
<call>com.example.PurchaseItems.ValidatePurchasesDF</call>

</arguments>
</pattern>

Decision Service Architecture

Working with Decision Components in SOA Applications 11-5

<pattern name="CallFunctionStateful">
<arguments>

<call>com.example.PurchaseItems.ValidatePurchasesDF</call>
</arguments>

</pattern>
</decisionService>

</decisionServices>

In this case, the decision function ValidatePurchasesDF itself is specified entirely
in the PurchaseItems.rules file.

For more information, see, Chapter 6, "Working with Decision Functions".

11.2.3 Using Stateful Interactions with a Decision Component
To provide a stateful Decision service you create a decision function and specify that
the decision function is not stateless. To do so you deselect the Stateless checkbox in a
decision function.

Note the following details about stateful interactions with a decision component (also
see Figure 11–2):

■ Rule sessions from the cache and those from the pool are mutually exclusive:

– The rule session pool is for simple, stateless interactions only

– The rule session cache keeps the state of a rule session across Decision service
requests

11.2.4 What You Need to Know About Stateful Interactions with Decision Components
A Decision Component running in a Business Rules service engine supports either
stateful or stateless operation. The Reset Session (stateless) checkbox in the Create
Business Rules dialog provides support for these two modes of operation.

When the Reset Session (stateless) checkbox selected, this indicates stateless
operation.

When Reset Session (stateless) checkbox is unselected, the underlying Oracle Business
Rules object is kept in memory of the Business Rules service engine at a separate
location (so that it is not given back to the Rule Session Pool when the operation is
finished). Only use stateful operation if you know you need this option (some errors
can occur at runtime when using stateful operation and these errors could use a
significant amount of service engine memory).

When Reset Session (stateless) checkbox is unselected, a subsequent use of the
Decision component reuses the cached RuleSession object, with all its state
information from the callFunctionStateful invocation, and then releases it back
to the Rule Session pool after the callFunctionStateless operation is finished.

11.3 Decision Service Architecture
A Decision service consists only of the service description. All other artifacts are
shared within a decision component as shown in Figure 11–1.

Decision Service Architecture

11-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure 11–1 Decision Service Architecture

The heart of runtime is the Decision service cache, which is organized in a tree
structure. Every decision component owns a subtree of that cache (depending on the
composite distinguished name (DN), component, and service name). In this regard,
Decision services of a decision component share the following data:

■ Metadata of the decision component

– Fact type metadata

– Function metadata

– Ruleset metadata

■ Rule session pool

– One rule session pool is created per decision component

– The rule sessions in the pool are pre-initialized with the data model Oracle RL
and the ruleset Oracle RL already executed

– New rule sessions are created on demand

– Rule sessions can be reused for a configurable number of times

– The initial size of the rule session pool is configurable

■ Stateful rule session cache

– A special cache is maintained for stateful rule sessions.

For more information, see Section 11.2.3, "Using Stateful Interactions with a
Decision Component".

■ Deployment artifacts

– Decision component deployment can end up in class generation for JAXB fact
types. The classes can be shared across the composite.

Figure 11–2 shows how both stateless and stateful rule sessions interact with the rule
session pool and how stateful rule sessions interact with the stateful rule session cache
during a Decision service request.

Decision Service Architecture

Working with Decision Components in SOA Applications 11-7

Figure 11–2 Stateless and Stateful Rule Session Usage for a Decision Service Request

Decision Service Architecture

11-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

A

Oracle Business Rules Files and Limitations A-1

A Oracle Business Rules Files and Limitations

This appendix lists known naming constraints for Rules Designer files and names, and
certain Rules SDK limitations.

This appendix includes the following sections:

■ Section A.1, "Rules Designer Naming Conventions"

A.1 Rules Designer Naming Conventions
This section covers Rules Designer naming conventions.

A.1.1 Ruleset Naming
Rules Designer enforces a limitation for ruleset names; a ruleset name must start with
a letter and contain only letters, numbers, or the following characters: ".", "-", "_","",
":", "/", and single spaces. Letters include the characters (a to z and A to Z) and
numbers (0 to 9).

A.1.2 Dictionary Naming
Rules Designer dictionary names can contain only the following characters, upper and
lowercase letters (a to z and A to Z), numbers (0 to 9), and the underscore (_). Special
characters are not valid in a dictionary name.

Rules Designer dictionary names are case preserving but case-insensitive. For
example, the dictionary names Dictionary and DICT are both valid. If you create a
dictionary named Test, then you can create another dictionary named TEST only if
you first delete the dictionary named Test.

A.1.3 Alias Naming
Rules Designer alias names must begin with a letter and contain only letters, numbers,
".", "-", "_","", ":", "/", and single spaces.

A.1.4 XML Schema Target Package Naming
The Target Package Name that you specify for an XMLFact on the XML Schema
Selector page is limited to ASCII characters, digits, and the underscore character.

Rules Designer Naming Conventions

A-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

B

Rules Extension Methods B-1

BRules Extension Methods

This appendix lists the extension methods. This appendix includes the following
sections:

■ Section B.1, "Duration Extension Methods (oracle.rules.rl.extensions.Duration)"

■ Section B.2, "JavaDate Extension Methods (oracle.rules.rl.extensions.JavaDate)"

■ Section B.3, "XMLDate Extension Methods (oracle.rules.rl.extensions.XMLDate)"

■ Section B.4, "OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate)"

■ Section B.5, "OracleDuration Methods
(oracle.rules.sdk2.extensions.OracleDuration)"

B.1 Duration Extension Methods (oracle.rules.rl.extensions.Duration)
Table B–1 lists the Duration methods.

Use the Duration methods to calculate a duration between two dates. The Duration
methods all take two date arguments. The Duration methods are overloaded so that
the first argument is one of, java.util.Calendar or
javax.xml.datatype.XMLGregorianCalendar, and the second argument is one
of java.util.Calendar or javax.xml.datatype.XMLGregorianCalendar.

Rules Designer lists the arguments and valid types for each method in the list.

Table B–1 Oracle Business Rules Duration Methods

Method Returns Description

compare int Compares two dates and returns an int value of 0 if they are
equal, less than 0 if date1 represents a point in time before date2,
greater than 0 if date1 represents a point in time after date2.

daysBetween int Returns the difference between the two dates in days.

hoursBetween long Returns the difference between the two dates in hours.

millisecondsBetween long Returns the difference between the two dates in milliseconds.

minutesBetween long Returns the difference between the two dates in minutes.

monthsBetween int Returns the difference between the two dates in months.

secondsBetween long Returns the difference between the two dates in seconds.

weeksBetween int Returns the difference between the two dates in weeks.

yearsBetween int Returns the difference between the two dates in years.

JavaDate Extension Methods (oracle.rules.rl.extensions.JavaDate)

B-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

B.2 JavaDate Extension Methods (oracle.rules.rl.extensions.JavaDate)
Table B–2 lists the JavaDate add and subtract methods. Table B–3 lists the JavaDate to
and from string methods. For details see the ISO 8601 numeric representation of dates
and times, at

http://www.iso.org/iso/support/faqs/faqs_widely_used_
standards/widely_used_standards_other/date_and_time_format.htm.

Use the JavaDate add and subtract methods to return an updated calendar. Each
method in Table B–2 returns a java.util.Calendar. Each method takes a first
argument of java.util.Calendar, and a second argument that is either an int or
a long, depending on the method.

Table B–2 JavaDate Add To and Subtract From Calendar Methods

Method Arguments Description

addDaysTo Calendar,int Returns a new Calendar that is the result of adding the specified
number of days to the specified date.

addHoursTo Calendar,long Returns a new Calendar that is the result of adding the specified
number of hours to the specified date.

addMillisecondsTo Calendar,long Returns a new Calendar that is the result of adding the specified
number of milliseconds to the specified date.

addMinutesTo Calendar,long Returns a new Calendar that is the result of adding the specified
number of minutes to the specified date.

addMonthsTo Calendar,int Returns a new Calendar that is the result of adding the specified
number of months to the specified date.

addSecondsTo Calendar,long Returns a new Calendar that is the result of adding the specified
number of seconds to the specified date.

addWeeksTo Calendar,int Returns a new Calendar that is the result of adding the specified
number of weeks to the specified date.

addYearsTo Calendar,int Returns a new Calendar that is the result of adding the specified
number of years to the specified date.

subtractDaysFrom Calendar,int Returns a new Calendar that is the result of subtracting the
specified number of days from the specified date.

subtractHoursFrom Calendar,long Returns a new Calendar that is the result of subtracting the
specified number of hours from the specified date.

subtractMilliseconds
From

Calendar,long Returns a new Calendar that is the result of subtracting the
specified number of milliseconds from the specified date.

subtractMinutesFrom Calendar,long Returns a new Calendar that is the result of subtracting the
specified number of minutes from the specified date.

subtractMonthsFrom Calendar,int Returns a new Calendar that is the result of subtracting the
specified number of months from the date.

subtractSecondsFrom Calendar,long Returns a new Calendar that is the result of subtracting the
specified number of seconds from the specified date.

subtractWeeksFrom Calendar,int Returns a new Calendar that is the result of subtracting the
specified number of weeks from the specified date.

subtractYearsFrom Calendar,int Returns a new Calendar that is the result of subtracting the
specified number of years from the specified date.

XMLDate Extension Methods (oracle.rules.rl.extensions.XMLDate)

Rules Extension Methods B-3

B.3 XMLDate Extension Methods (oracle.rules.rl.extensions.XMLDate)
Table B–4 lists the XMLDate add and subtract methods. Table B–5 lists the XMLDate to
and from string methods. For details see the ISO 8601 numeric representation of dates
and times, at

http://www.iso.org/iso/support/faqs/faqs_widely_used_
standards/widely_used_standards_other/date_and_time_format.htm.

Use the XMLDate add and subtract methods to return an updated
XMLGregorianCalendar. Each method in Table B–4 returns a
javax.xml.datatype.XMLGregorianCalendar. Each method takes a first
argument of javax.xml.datatype.XMLGregorianCalendar, and a second
argument that is either an int or a long, depending on the method.

Table B–3 JavaDate Date and Time String Methods

Method Returns Description

fromDateString Calendar Creates a Calendar instance for the specified ISO 8601 date.
The argument is a String.

fromDateTimeString Calendar Creates a Calendar instance for the specified ISO 8601 date
and time. The argument is a String.

fromTimeString Calendar Creates a Calendar instance for the specified ISO 8601 time.
The argument is a String.

toDateString String Return the ISO 8601 representation of the specified date. The
argument is a Calendar.

toDateTimeString String Return the ISO 8601 representation of the specified date and
time. The argument is a Calendar.

toTimeString String Return the ISO 8601 representation of the specified time. The
argument is a Calendar.

Table B–4 XMLDate Add To and Subtract From Methods

Method Arguments Description

addDaysTo XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of adding the specified number of days to the specified
XMLGregorianCalendar.

addHoursTo XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of adding the specified number of hours to the specified
XMLGregorianCalendar.

addMillisecondsTo XMLGregorianCalendar,
long

Returns a new XMLGregorianCalendar that is the result
of adding the specified number of milliseconds to the
specified XMLGregorianCalendar.

addMinutesTo XMLGregorianCalendar,
long

Returns a new XMLGregorianCalendar that is the result
of adding the specified number of minutes to the
specified XMLGregorianCalendar.

addMonthsTo XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of adding the specified number of months to the
specified XMLGregorianCalendar.

addSecondsTo XMLGregorianCalendar,
long

Returns a new XMLGregorianCalendar that is the result
of adding the specified number of seconds to the
specified XMLGregorianCalendar.

addWeeksTo XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of adding the specified number of weeks to the specified
XMLGregorianCalendar.

OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate)

B-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

B.4 OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate)
Table B–6 lists the OracleDate add and subtract methods. Table B–7 lists the
OracleDate to and from string methods. For details see the ISO 8601 numeric
representation of dates and times, at
http://www.iso.org/iso/support/faqs/faqs_widely_used_
standards/widely_used_standards_other/date_and_time_format.htm.

Use the OracleDate add and subtract methods to return an updated Timestamp. Each
method in Table B–6 returns an oracle.jbo.domain.Timestamp. Each method
takes a first argument of oracle.jbo.domain.Timestamp, and a second argument
that is either an int or a long, depending on the method.

addYearsTo XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of adding the specified number of years to the specified
XMLGregorianCalendar.

subtractDaysFrom XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of subtracting the specified number of days from the
specified XMLGregorianCalendar.

subtractHoursFrom XMLGregorianCalendar,
long

Returns a new XMLGregorianCalendar that is the result
of subtracting the specified number of hours from the
specified XMLGregorianCalendar.

subtractMillisecond
sFrom

XMLGregorianCalendar,
long

Returns a new XMLGregorianCalendar that is the result
of subtracting the specified number of milliseconds from
the specified XMLGregorianCalendar.

subtractMinutesFrom XMLGregorianCalendar,
long

Returns a new XMLGregorianCalendar that is the result
of subtracting the specified number of minutes from the
specified XMLGregorianCalendar.

subtractMonthsFrom XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of subtracting the specified number of months from the
specified XMLGregorianCalendar.

subtractSecondsFrom XMLGregorianCalendar,
long

Returns a new XMLGregorianCalendar that is the result
of subtracting the specified number of seconds from the
specified XMLGregorianCalendar.

subtractWeeksFrom XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of subtracting the specified number of weeks from the
specified XMLGregorianCalendar.

subtractYearsFrom XMLGregorianCalendar,
int

Returns a new XMLGregorianCalendar that is the result
of subtracting the specified number of years from the
specified XMLGregorianCalendar.

Table B–5 XMLDate To and From String Methods

Method Returns Description

fromString XMLGregorianCalendar Creates an XMLGregorianCalendar instance from specified ISO
8601 date, datetime or time. Takes a single String argument.

toString String Return the ISO 8601 representation of the specified
XMLGregorianCalendar.Takes a single
XMLGregorianCalendar argument.

Table B–4 (Cont.) XMLDate Add To and Subtract From Methods

Method Arguments Description

OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate)

Rules Extension Methods B-5

Table B–6 OracleDate Add To and Subtract From Methods

Method/Arguments Description

addDaysTo
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of adding the
specified number of days to the specified Timestamp instance.

addHoursTo
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of adding the
specified number of hours to the specified Timestamp instance.

addMillisecondsTo
oracle.jbo.domain.Timestamp, int

Returns a Timestamp instance that is the result of adding the
specified number of milliseconds to the Timestamp instance.

addMinutesTo
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of adding the
specified number of minutes to the specified Timestamp instance.

addMonthsTo
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of adding the
specified number of months to the specified Timestamp instance.

addSecondsTo
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of adding the
specified number of seconds to the specified Timestamp instance.

addWeeksTo
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of adding the
specified number of weeks to the specified Timestamp instance.

addYearsTo
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of adding the
specified number of years to the specified Timestamp instance.

subtractDaysFrom
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of subtracting the
specified number of days from the specified Timestamp instance.

subtractHoursFrom
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of subtracting the
specified number of hours from the specified Timestamp instance.

subtractMillisecondsFrom
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of subtracting the
specified number of milliseconds from the Timestamp instance.

subtractMinutesFrom
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of subtracting the
specified number of minutes from the specified Timestamp instance.

subtractMonthsFrom
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of subtracting the
specified number of months from the date.

subtractSecondsFrom
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of subtracting the
specified number of seconds from the specified Timestamp instance.

subtractWeeksFrom
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of subtracting the
specified number of weeks from the specified Timestamp instance.

subtractYearsFrom
oracle.jbo.domain.Timestamp, int

Returns a new Timestamp instance that is the result of subtracting the
specified number of years from the specified Timestamp instance.

Table B–7 OracleDate To String and From String Methods

Method Returns Description

fromString oracle.jbo.domain.Time
stamp

Creates a Timestamp instance for the specified ISO
8601 date and time string. Takes a single String
argument.

toGregorianCalendar java.util.GregorianCal
endar

Return a GregorianCalendar representing the
specified Timestamp. Takes a single
oracle.jbo.domain.Timestamp argument.

toString java.lang.String Return the ISO 8601 representation of the specified
Timestamp instance. Takes a single
oracle.jbo.domain.Timestamp argument.

OracleDuration Methods (oracle.rules.sdk2.extensions.OracleDuration)

B-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

B.5 OracleDuration Methods
(oracle.rules.sdk2.extensions.OracleDuration)

Use the Duration methods to calculate a duration between two dates. The Duration
methods all take two date arguments. The Duration methods are overloaded so that
the first argument is one of, java.util.Calendar,
oracle.jbo.domain.Timestamp,
javax.xml.datatype.XMLGregorianCalendar, and the second argument is one
of java.util.Calendar, oracle.jbo.domain.Timestamp, or
javax.xml.datatype.XMLGregorianCalendar. Note that one argument for the
methods must be a Timestamp (oracle.jbo.domain.Timestamp).

Rules Designer lists the arguments and valid types for each method in the list.

Table B–8 lists the OracleDuration methods.

Table B–8 OracleDuration Methods

Method Returns Description

compare() int Compares two dates and returns an int value of 0 if they are
equal, less than 0 if date1 represents a point in time before date2,
greater than 0 if date1 represents a point in time after date2.

daysBetween() int Returns the difference between the two dates in days.

hoursBetween() long Returns the difference between the two dates in hours.

millisecondsBetween() long Returns the difference between the two dates in milliseconds.

minutesBetween() long Returns the difference between the two dates in minutes

monthsBetween() int Returns the difference between the two dates in months.

secondsBetween() long Returns the difference between the two dates in seconds.

weeksBetween() int Returns the difference between the two dates in weeks.

yearsBetween() int Returns the difference between the two dates in years.

C

Oracle Business Rules Frequently Asked Questions C-1

C Oracle Business Rules Frequently Asked
Questions

This appendix contains frequently asked questions about Oracle Business Rules.

■ Section C.1, "Why Do Rules Not Fire When A Java Object is Asserted as a Fact and
Then Changed Without Using the Modify Action?"

■ Section C.2, "What are the Differences Between Oracle Business Rules RL
Language and Java?"

■ Section C.3, "How Does a RuleSession Handle Concurrency and Synchronization?"

■ Section C.4, "How Do I Correctly Express a Self-Join?"

■ Section C.5, "How Do I Use a Property Change Listener in Oracle Business Rules?"

■ Section C.6, "What Are the Limitations on a Decision Service with Oracle Business
Rules?"

■ Section C.7, "How Do I Change the Name of a Dictionary or Dictionary Package?"

■ Section C.8, "How Do I Put Java Code in a Rule?"

■ Section C.9, "Can I Use Java Based Facts in a Decision Service with BPEL?"

■ Section C.10, "How Do I Enable Debugging in a BPEL Decision Service?"

■ Section C.11, "How Do I Support Versioning with Oracle Business Rules?"

■ Section C.12, "What is the Priority Order Using Priorities with Rules and
Rulesets?"

■ Section C.13, "Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?"

■ Section C.14, "Why Are Changes to My Java Classes Not Reflected in the Data
Model?"

■ Section C.15, "How Do I Use Rules SDK to Include a null in an Expression?"

■ Section C.16, "Is WebDAV Supported as a Repository to Store a Dictionary?"

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and
Then Changed Without Using the Modify Action?

When a Java object has been asserted and then the object is changed without using the
modify action, the object must be re-asserted in the Rules Engine. Therefore, if a rule
associated with the changed Java object does not fire, this means that the Rules Engine
did not re-evaluate any rule conditions and did not activate any rules. Thus, when a

What are the Differences Between Oracle Business Rules RL Language and Java?

C-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Java object changes without using the modify action, the object must be re-asserted in
the Rules Engine.

C.2 What are the Differences Between Oracle Business Rules RL
Language and Java?

For more information on the differences between Oracle Business Rules RL Language
and Java, see Appendix A in Oracle Fusion Middleware Language Reference Guide for
Oracle Business Rules.

C.3 How Does a RuleSession Handle Concurrency and Synchronization?
Method calls on an Oracle Business Rules RuleSession object are thread-safe such that
calls by multiple threads do not cause exceptions at the RuleSession level. However,
there are no exclusivity or transactional guarantees on the execution of methods. The
lowest-level run method in the Rules Engine is synchronized, so two threads with a
shared RuleSession cannot both simultaneously execute run. One call to run must
wait for the other to finish.

Oracle Business Rules functions are not synchronized by default. Like Java methods,
Oracle Business Rules functions can execute concurrently and it is the programmer's
responsibility to use synchronized blocks to protect access to shared data (for instance,
a HashMap containing results data).

Any set of actions that a user wants to be executed as in a transaction-like form must
synchronize around the shared object. Users should not synchronize around a
RuleSession object because exceptions thrown when calling RuleSession
methods may require the RuleSession object to be discarded.

For most uses of a RuleSession object in Oracle Business Rules, each thread or
servlet instance should create and use a local RuleSession object. This usage pattern
is roughly analogous to using a JDBC connection in this manner.

The following examples demonstrate how to use a shared RuleSession object.

For the case where Thread-1 includes the following:

ruleSession.callFunctionWithArgument("assert", singleFact1);
ruleSession.callFunctionWithArgument("assert", singleFact2);

and Thread-2 includes the following:

ruleSession.callFunction("run");
ruleSession.callFunction("clear");

In this case, the execution of the two threads might proceed as shown in Example C–1.

Example C–1 Using a Shared RuleSession Object in Oracle Business Rules

Thread-1: ruleSession.callFunctionWithArgument("assert", singleFact1);
Thread-2: ruleSession.callFunction("run");
Thread-2: ruleSession.callFunction("clear");
Thread-1: ruleSession.callFunctionWithArgument("assert", singleFact2);

In Example C–1, the two facts Thread-1 asserted are never both in the RuleSession
during a call to run. Notice also that only one thread calls the run method. If you use
a design where multiple threads can call run on a shared RuleSession, this can
create extremely hard to find bugs and there is usually no gain in performance.

How Do I Correctly Express a Self-Join?

Oracle Business Rules Frequently Asked Questions C-3

All accesses to a shared RuleSession object must be synchronized to ensure the
intended behavior. However, a RuleSession instance may throw an exception and
not be recoverable, so do not use this object as the synchronization object. Instead, use
another shared object as the synchronization point.

One can envision a shared server process producer-consumer model for
RuleSession use. In this model, multiple threads assert facts to a shared
RuleSession and one thread periodically calls run, reads any results, and outputs
them. This ensures that thread conflicts cannot occur, because the two code segments
must be executed serially and cannot be intermingled. For example, the code with
shared objects, producer code, and consumer code in Example C–2, Example C–3, and
Example C–4.

Example C–2 RuleSession Shared Objects

RuleSession ruleSession;
Object ruleSessionLock = new Object();

Example C–3 RuleSession Producer Code

public String addFacts(FactTypeA fa, FactTypeB fb, FactTypeC fc){
 String status = "";
 synchronized(ruleSessionLock){
 try {
 ruleSession.callFunctionWithArgument("assert", fa);
 ruleSession.callFunctionWithArgument("assert", fb);
 status = "success";
 } catch (Exception e) {
 // a method that creates a new RuleSession loads it with rules
 initializeRuleSession();
 status = "failure";
 }
 return status;
}

Example C–4 RuleSession Consumer Code

public List exec(){
 synchronized(ruleSessionLock){
 try {
 ruleSession.callFunction("run");
 List results = (List)ruleSession.callFunction("getResults");
 ruleSession.callFunction("clearResults");
 return results;
 } catch (Exception e) {
 // a method that creates a new RuleSession loads it with rules
 initializeRuleSession();
 return null;
 }
 }
}

C.4 How Do I Correctly Express a Self-Join?
When working with facts, there are cases where the runtime behavior of Oracle RL
may produce surprising results.

Note: When multiple threads are sharing a RuleSession object, if
more than one of the threads calls the run method, this can create
extremely hard to find bugs and there is usually no gain in
performance.

How Do I Correctly Express a Self-Join?

C-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Consider the Oracle RL code in Example C–5.

Example C–5 Self-Join Using Fact F

class F {int i; };
rule r1 {
if (fact F f1 && fact F f2) {
println("Results: " + f1.i + ", " + f2.i);

}
}
assert(new F(i:1));
assert(new F(i:2));
run();

How many lines print in the Example C–5 output? The answer is 4 lines because the
same fact instance can match for both f1 and f2.

Thus, Example C–5 gives the following output:

Results: 2, 2
Results: 2, 1
Results: 1, 2
Results: 1, 1

Using the same example with a third F, for example (assert(new F(i:3));) then
nine lines are printed and if, at the same time, a third term && fact F F3 is added
then 27 lines are printed.

If you are attempting to find all combinations and orders of distinct facts, you need an
additional term to in the test, as shown in Example C–6.

Example C–6 Find All Combinations of Fact F

rule r1 {
if (fact F F1 && fact F F2 && F1 != F2) {
println("Results: " + F1.i + ", " + F2.i);

}
}

The code in Example C–6 gives the following output:

Results: 2, 1
Results: 1, 2

The simplest, although not the fastest way to find all combinations of facts, regardless
of their order, is to use the code shown in Example C–7.

Example C–7 Finding Combinations of Fact F

rule r1 {
if (fact F F1 && fact F F2 && id(F1) < id(F2)) {
println("Results: " + F1.i + ", " + F2.i);

}
}

Because the function id() shown in Example C–7 takes longer to execute in a test
pattern than a direct comparison, the fastest method is to test on a unique value in
each object. For example, you could add an integer value property "oid" to your class
that is assigned a unique value for each instance of the class.

Example C–8 shows the same rule using the oid value.

Example C–8 Fast Complete Comparison

rule r1 {

How Do I Use a Property Change Listener in Oracle Business Rules?

Oracle Business Rules Frequently Asked Questions C-5

if (fact F F1 && fact F F2 && F1.oid < F2.oid) {
println("Results: " + F1.i + ", " + F2.i);

}
}

This problem may also arise if you attempt to remove all duplicate facts from the
Oracle Rules Engine, using a function as shown Example C–9.

Example C–9 Retracting Duplicate Facts Incorrect Sample

rule rRemoveDups {
if (fact F F1 && fact F F2 && F1.i == F2.i) {
retract(F2);

}
}

However, this rule removes all facts of type F, not just the duplicates because F1 and
F2 may be the same fact instance. Example C–10 shows the correct version of this rule.

Example C–10 Retracting Duplicate Facts Corrected Sample

rule rRemoveDups {
if (fact F F1 && fact F F2 && F1 != F2 && F1.i == F2.i) {
retract(F2);

}
}

C.5 How Do I Use a Property Change Listener in Oracle Business Rules?
The Oracle Rules Engine supports the Java PropertyChangeListener design
pattern. This allows an instance of a Java fact that uses the
PropertyChangeSupport class to automatically notify the Oracle Rules Engine
when property values have changed. Java facts are not required to implement this
pattern to be used by Oracle Rules Engine.

Typically, changes made to values of a property of a Java object that has previously
been asserted to the Oracle Rules Engine requires that the object be re-asserted in
order for rules to be reevaluated with the new property value. For properties that fire
PropertyChangeEvent, changing the value of those properties both changes the
value and re-asserts the fact to the Oracle Rules Engine.

To implement the PropertyChangeListener design pattern in a class, do the
following:

1. Import this package in the class:

import java.beans.PropertyChangeSupport;

2. Add a private member variable to the class:

private PropertyChangeSupport m_pcs = null;

3. In the constructor, create a new PropertyChangeSupport object:

m_pcs = new PropertyChangeSupport(this);

4. Then for each setter, add the call to firePropertyChange:

public void setName(String name){
String oldVal = m_name;
m_name = name;
m_pcs.firePropertyChange("name", oldVal, m_name);

What Are the Limitations on a Decision Service with Oracle Business Rules?

C-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

}

5. Implement addPropertyChangeListener method (delegate to m_pcs):

public void addPropertyChangeListener(PropertyChangeListener pcl){
m_pcs.addPropertyChangeListener(pcl);

}

6. Implement removePropertyChangeListener method (delegate to m_pcs):

public removePropertyChangeListener(PropertyChangeListener pcl){
m_pcs.removePropertyChangeListener(pcl);

}

When deciding whether to design your application to always explicitly re-assert
modified objects or implement the PropertyChangeListener design pattern,
consider the following:

■ Explicitly re-asserting modified objects allows a user to group several property
changes and making them visible to the rules all at once. This is most useful when
a concurrent thread is executing rules, and the rules should see only a complete
group of property changes.

■ Explicit assert reduces the computational cost of rule re-evaluation when multiple
properties are changed. If multiple properties are changed at the same time, this
results in multiple re-evaluations of rule conditions that reference the fact type.
This occurs because each property change event results in a re-assertion of the
object. Using an explicit assert instead of the PropertyChangeListener pattern
eliminates this extra computational cost.

■ Explicit assert is required when a rule modifies a fact that is also tested in its
condition, but the automatic reassert triggered by the
PropertyChangeListener before a guard condition property is set would
cause the rule to refire itself endlessly.

■ Explicit assert must be used when modifying Oracle RL facts and XML facts,
because these cannot be defined to support the PropertyChangeListener
design pattern.

■ PropertyChangeListener-enabled facts allow a Java application to
communicate property changes to the rule engine without having to change the
application to perform explicit asserts. This also means that code that modifies a
property of an object does not need to have a reference to the RuleSession object
in scope.

■ PropertyChangeListener support prevents the common error of neglecting to
re-assert a fact after changing its properties.

C.6 What Are the Limitations on a Decision Service with Oracle Business
Rules?

There are some limitations for using Business Rules with a BPEL process, including
the following:

■ Only visible XML fact types may be specified as the input for a decision service.

■ Only visible XML fact types may be specified as the output of a decision service.

For an additional restriction, see Appendix D.9, "How Are Decision Service Inputs and
Outputs Restricted?".

How Do I Support Versioning with Oracle Business Rules?

Oracle Business Rules Frequently Asked Questions C-7

For information on setting XML fact type visible option, see Section 3.2, "Working with
XML Facts".

C.7 How Do I Change the Name of a Dictionary or Dictionary Package?
To change the name of a dictionary or a dictionary package name, you use JDeveloper
option File > Rename. Do not use Refactor > Rename. The refactor option does not
apply to dictionaries or dictionary packages.

For more information, see Section 2.2.5, "How to Rename a Dictionary or Rename a
Dictionary Package" and Section D.3, "Renaming a Dictionary or Dictionary Package".

C.8 How Do I Put Java Code in a Rule?
You do not actually put Java code in a rule. However, you can invoke a Java method
from a rule condition or action.

C.9 Can I Use Java Based Facts in a Decision Service with BPEL?
Oracle BPEL PM can invoke only decision functions exposed as a decision service, and
this means that the decision function inputs and outputs must be XML fact types.

 You can use an existing ruleset or decision function that uses Java fact types if you
convert the input XML facts to Java facts. For example, you could create some rules in
a ruleset, named convertFromXML, and put this ruleset before the Java ruleset in the
decision function ruleflow. Similarly, you could create a ruleset to convert from Java
facts to output XML facts and put this ruleset after the Java ruleset in the decision
function ruleflow.

Alternatively, if your rules use only properties, and no methods or fields, from the
Java fact types you can replace the Java fact types with XML fact types as follows:

1. Delete the Java fact types (first making careful note of the aliases of the fact types
and properties).

2. Import similar XML fact types and edit the aliases of the fact types and properties
to be the same as the deleted Java fact types and properties.

C.10 How Do I Enable Debugging in a BPEL Decision Service?
To enable debugging output during ruleset execution for a BPEL Decision Service, you
enable the SOA rules logger. When the SOA rules logger is set to TRACE level then the
output of watchAll is logged to the SOA diagnostic log. When you change the
logging level using Fusion Middleware Control Console, you do not need to redeploy
the application to use the specified level.

For information on using the SOA oracle.soa.service.rules and
oracle.soa.services.rules.obrtrace loggers, see Oracle Fusion Middleware Administrator's
Guide for Oracle SOA Suite.

C.11 How Do I Support Versioning with Oracle Business Rules?
Versioning is supported in Oracle Business Rules in two ways:

■ At design time, the dictionary is stored as an XML file in a JDeveloper project. The
dictionary can be versioned in a source control system in the same way as any
other source file.

What is the Priority Order Using Priorities with Rules and Rulesets?

C-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ At runtime, the dictionary is stored in MDS. If MDS is database backed then
versioning is supported using MDS.

Note: It is possible for a server application to respond to dictionary changes as they are
made visible to the application in MDS. The rule service engine (decision service) does
this automatically. For non-SCA application, this can be done using the
RuleRepository interface. At this time, they way to support an "in-draft" version is by
using the sandbox feature of MDS. The Oracle Business Rules RuleRepository interface
supports this.

C.12 What is the Priority Order Using Priorities with Rules and Rulesets?
The priority is highest to lowest, with the higher priority rule or ruleset executing first.
For example, if you create rules with priorities 1-4 they would be executed in the
execution priority order 4,3,2,1.

Note, however, you should try to avoid priorities as much as possible since they break
the purely declarative model of rules. If you find yourself using a lot of priorities, then
generally it is best to try to restructure your rules to use guard clauses for representing
dependencies between rules and divide the rules into multiple rulesets if they are
intended to be run in a certain order. For more information, see Section 4.5.5, "How to
Set a Priority for a Rule".

C.13 Why do XML Schema with xsd:string Typed Elements Import as
Type JAXBElement?

According to the JAXB 2.0 spec, the default type mapping for elements that have
minOccurs="0" and nillable="true" is JAXBElement<T>, where T is the
default mapping of the type defined for the element. For example, xsd:string maps
to JAXBElement<String>, xsd:int maps to JAXBElement<Integer>, and
xsd:integer maps to JAXBElement<BigInteger>. This is because
nillable="true" means the user has defined a semantic difference between a
element not being defined in a document, with minOccurs=0, it does not have to be
defined, and an element being defined but having the attribute nil="true". This is a
subtle difference and is often used to define the difference between an unknown value
and a value known to be "no value".

To use the JAXBElement-typed property in a rule, the property must be first checked
for non-null, and then the "value" property or getValue() method can be used
retrieve a value of the underlying type:

fact FactType1 &&
 FactType1.prop1 != null &&
 FactType1.prop1.value == "abc"

Alternatively, you may want to define a customized JAXB binding so nillable elements
are mapped to type T rather than JAXBElement<T>. However, this is a lossy
conversion, as you no longer are able to determine the difference between a
non-existent element and a nil one. This does make the nillable attribute less useful,
but it does allow you to explicitly define an element as nil in your document, similarly
to how in Java an Object-typed field is initialized to null by default or you can
explicitly initialize it to null.

There are several ways to do this. In both cases, add these attributes to the toplevel
xsd:schema element start tag:

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0"

Is WebDAV Supported as a Repository to Store a Dictionary?

Oracle Business Rules Frequently Asked Questions C-9

1. To specify ALL properties to use the binding, add this immediately inside the
xsd:schema opening tag:

<xsd:annotation>
 <xsd:appinfo>
 <jaxb:globalBindings generateElementProperty="false"/>
 </xsd:appinfo>
</xsd:annotation>

2. To specify only specific properties use the binding, add an annotation like this to
each desired element:

<xsd:element name="stringElement2" type="xsd:string" minOccurs="0"
nillable="true">
 <xsd:annotation>
 <xsd:appinfo>
 <jaxb:property generateElementProperty="false" />
 </xsd:appinfo>
 </xsd:annotation>
</xsd:element>

3. Add the definitions to an external customizations file and pass it as an argument
when adding the schema to the datamodel. This can only be done when
programmatically calling the SchemaBrowser class and is not exposed in Rule
Designer.

C.14 Why Are Changes to My Java Classes Not Reflected in the Data
Model?

Do not import classes that have been compiled into the "SCA-INF/classes" directory.
Classes in this directory cannot be reloaded into the datamodel when they change.

C.15 How Do I Use Rules SDK to Include a null in an Expression?
You can use the following Rules SDK code to include a null value:

SimpleTest test = pattern.getSimpleTestTable().add();

test.getLeft().setValue(attr);
test.setOperator(Util.TESTOP_NE);
test.getRight().setValue("null");

C.16 Is WebDAV Supported as a Repository to Store a Dictionary?
The Web Distributed Authoring and Versioning (WebDAV) repository is not
supported to store a dictionary in Oracle Fusion Middleware 11g Release 1 (11.1.1)
Oracle Business Rules. Oracle Business Rules supports using an MDS (file backed or
Database backed) repository for storing dictionaries.

Is WebDAV Supported as a Repository to Store a Dictionary?

C-10 Oracle Fusion Middleware User's Guide for Oracle Business Rules

D

Oracle Business Rules Troubleshooting D-1

D Oracle Business Rules Troubleshooting

This appendix contains workarounds and solutions for issues you may encounter
when using Oracle Business Rules. The following topics are covered:

■ Section D.1, "Getter and Setter Methods are not Visible"

■ Section D.2, "Java Class with Only a Property Setter"

■ Section D.3, "Renaming a Dictionary or Dictionary Package"

■ Section D.4, "Runtime NoClassDefFound Error"

■ Section D.5, "RL Specific Keyword Naming Conflict Errors"

■ Section D.6, "java.lang.IllegalAccessError from Business Rules Service Runtime"

■ Section D.7, "JAXB 1.0 Dictionaries and RL MultipleInheritanceException"

■ Section D.8, "Why Does XML Schema with Underscores Fail JAXB Compilation?"

■ Section D.9, "How Are Decision Service Inputs and Outputs Restricted?"

D.1 Getter and Setter Methods are not Visible
Rules Designer does not list the methods supporting a Java bean property in choice
lists; only the bean properties are visible. For example, a Java bean with a property
named Y must have at least a getter method getY() and may also have a setter
method setY(y-type-param). All of properties and methods (including getter and
setter that compose the properties) are displayed when viewing the Java FactType.
Only the properties of Java Classes (not the getter and setter methods) are displayed in
choice lists. When attempting to control the visibility of the property it is best to use
the properties visibility flag. Marking a getter or a setter method as not visible may not
remove the properties from choice lists.

D.2 Java Class with Only a Property Setter
In Java the Java Bean introspector includes write-only properties. Oracle RL does not
include such properties as Beans, because they cannot be reasoned on in a rule. Thus,
in order for Java fact type bean properties to be properly accessed in Oracle RL they
must have both a getter and setter. Properties which have a setter but not a getter, that
is write-only properties, are not allowed in the Oracle RL "new" syntax.

For example, if a bean Foo only has the method setProp1(int i), then you cannot
use the following in Oracle RL:

Foo f = new Foo(prop1: 0)

Renaming a Dictionary or Dictionary Package

D-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

D.3 Renaming a Dictionary or Dictionary Package
When renaming a dictionary or dictionary package, using JDeveloper Refactor >
Rename has no affect on the dictionary or dictionary package name. To change the
name of a dictionary or a dictionary package name, you use File > Rename. Do not
use Refactor > Rename. The refactor option does not apply to dictionaries or
dictionary packages.

Note that this the rename operation changes the name of the dictionary but not the
alias. The alias can be changed through the Dictionary Settings dialog. In general,
these should be set to the same value. For more information, see Section 2.2.4, "How to
View and Edit Dictionary Settings".

For more information, see Section 2.2.5, "How to Rename a Dictionary or Rename a
Dictionary Package".

To rename a dictionary that is part of a composite application that uses a Business
Rules component, as part of a non-BPEL composite, you can rename a dictionary with
the following steps.

To rename a dictionary in a composite application that does not use BPEL, do the
following:

To rename a dictionary that is in a composite application with business rules:
1. Select the dictionary file and then select File > Rename to rename the dictionary

file.

2. Open the dictionary and change the alias to match the dictionary name, using the
Dictionary Settings dialog. For more information, see Section 2.2.4, "How to View
and Edit Dictionary Settings".

3. In the project, rename the dictionaryName.decs file to correspond with the new
dictionary name.

4. In the project, open the dictionaryName.decs file and change the <path> element
value to match the renamed dictionary name.

5. In the project, rename the dictionaryName.componentType file to correspond
with the new dictionary name.

6. In the project, open composite.xml, select the Source tab and edit the
<component> element name attribute to match the renamed dictionary.

7. In the composite.xml file, edit the <implementation.decision> element
src attribute to match the renamed dictionary name, with a .decs extension.

D.4 Runtime NoClassDefFound Error
Sometimes when working with XML facts, you might receive an error of the form:

Exception in thread "main" java.lang.NoClassDefFoundError:

The java.lang.NoClassDefFoundError is very likely due to required classes not
in classpath. Try checking the following:

■ Add xml.jar to your classpath when executing.

■ Add the directory where the generated and compiled JAXB classes are placed to
the classpath.

java.lang.IllegalAccessError from Business Rules Service Runtime

Oracle Business Rules Troubleshooting D-3

D.5 RL Specific Keyword Naming Conflict Errors
Oracle Business Rules escapes RL specific keywords when generating RL from Rules
Designer. In most cases, RL specific keywords can be used without causing errors. One
exception is using a keyword as the name of a class. This is unlikely for Java classes
because by convention they start with an upper case letter and RL specific keywords
are all lowercase. For more information, see Oracle Fusion Middleware Language
Reference Guide for Oracle Business Rules.

D.6 java.lang.IllegalAccessError from Business Rules Service Runtime
Problem: I receive an error such as the following:

java.lang.IllegalAccessError: tried to access class
com.sun.xml.bind.v2.runtime.reflect.opt.Const from class:...

Reason: This can be due to JAXB 2.1.6 issue 490, caused when unmarshalling incorrect,
for example letter characters when float is expected, data as described at the following
site,

https://jaxb.dev.java.net/issues/show_bug.cgi?id=490

Workaround: the workaround for this problem is to assign a value to the appropriate
element, as shown in Figure D–1 and Figure D–2 where approvalRequired is
assigned a default value false().

Figure D–1 Adding an Expression to Initialize a Value for a Business Rules Service Input

JAXB 1.0 Dictionaries and RL MultipleInheritanceException

D-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure D–2 Expression Assigned to Input Variable for Business Rules Service

D.7 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
Dictionaries which have been migrated from 10.1.3 use JAXB 1.0 instead of JAXB 2.0,
which is the default for Oracle Fusion Middleware 11g Release 1 (11.1.1) dictionaries.
Because of this use of JAXB 1.0, the migrated dictionaries may contain Element types.
If your dictionary has Element types marked as visible, generated RL may throw
MultipleInheritanceException.

The solution to this issue is to mark the Element fact types non-visible or remove them
from the datamodel. Only the Type classes generated by JAXB should be used to write
rules, so there is no functionality loss from deleting the Element types.

D.8 Why Does XML Schema with Underscores Fail JAXB Compilation?
The defined behavior of JAXB is to fail when a name of the form '_' + number is
found. In this case JAXB cannot generate an "obvious" Java class name from this string.
The default behavior of JAXB for '_' + char is to treat it as a word boundary
(underscoreBinding="asWordSeparator"), which means the underscore is
stripped and the char is UpperCamelCased. For example, _fooBar is mapped to
FooBar.

To fix this problem, you need to provide a schema customization to direct JAXB to
generate the names differently. The default value for underscoreBinding is
specified as "asWordSeparator", which does not allow an underscore to be used at
the beginning of a name.

The global annotation underscoreBinding="asCharInWord" causes the '_' to be
preserved in the classname and UpperCamelCase after the number:

<xsd:annotation><xsd:appinfo>
 <jaxb:globalBindings underscoreBinding="asCharInWord" />

How Are Decision Service Inputs and Outputs Restricted?

Oracle Business Rules Troubleshooting D-5

</xsd:appinfo></xsd:annotation>

 With this global annotation, the mapping for _1foo_bar_baz is _1Foo_Bar_Baz.

D.9 How Are Decision Service Inputs and Outputs Restricted?
Using the Decision Service to run business rules with XML schema defining the input,
for any given complexType "tFoo" in an XML-Schema file Foo.xsd there can only be
one XML-Schema element "foo" of type "tFoo". The Decision Service does not allow
you to use two elements "foo" and "bar" of the same type "tFoo.

How Are Decision Service Inputs and Outputs Restricted?

D-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

E

Working with Oracle Business Rules and JSR-94 Execution Sets E-1

EWorking with Oracle Business Rules and
JSR-94 Execution Sets

The specification for the Java Rule Engine API (JSR-94) defines a standard Java
runtime API to access a rule engine from a Java SE or Java EE client. You can access
Oracle Business Rules using JSR-94.

This chapter includes the following sections:

■ Section E.1, "Introduction to Oracle Business Rules and JSR-94 Execution Sets"

■ Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets"

■ Section E.3, "Using the JSR-94 Interface with Oracle Business Rules"

For more information, see:

■ http://jcp.org/en/jsr/detail?id=94

■ http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.h
tml

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
Oracle Business Rules provides JSR-94 support. This allows you to create more
portable rule-enabled applications.

You can create JSR-94 execution sets from Oracle Business Rules rulesets and you can
create JSR-94 rule sessions from these execution sets. For more information, see
Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets".

You can access Oracle Business Rules rulesets and execute them against the Oracle
Business Rules Engine using the JSR-94 API. For more information, see Section E.3,
"Using the JSR-94 Interface with Oracle Business Rules".

Oracle Business Rules also provides extensions to the JSR-94 API that you may find
useful. For more information, see Section E.3.4, "Using Oracle Business Rules JSR-94
Extensions".

E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules
Rulesets

To use JSR-94 with rules in RL Language text, you must map the rules to a JSR-94 rule
execution set.

Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

E-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

A JSR-94 rule execution set (rule execution set) is a collection of rules that are intended
to be executed together. You also must register a rule execution set before running it.
A registration associates a rule execution set with a URI; using the URI, you can create
a JSR-94 rule session.

For more information, see Section E.3.1, "Creating a Rule Execution Set with
createRuleExecutionSet".

E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text
You can use JSR-94 with RL Language rulesets saved as text, where the Oracle RL text
is directly included in the rule execution set. For more information, see "Using the
Extended createRuleExecutionSet to Create a Rule Execution Set" on page E-6 for
information about JSR-94 extensions that assist you in including RL Language text.

To create a rule execution set from Oracle Business Rules Oracle RL language
text:
1. Specify the RL Language mapping information in an XML document. Table E–1

shows the mapping elements required to construct a rule execution set.
Example E–1 shows a sample XML document for mapping RL Language text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Example E–1 XML Mapping File for Rulesets Defined in an Oracle RL Program

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">

<name>CarRentalDemo</name>
<description>The Car Rental Demo</description>
<rule-source>

<rl-text>
 ruleset DM {

Note: In Oracle Business Rules, a JSR-94 rule execution set
registration is not persistent. Thus, you must register a rule execution
set programmatically using a JSR-94 RuleExecutionSetProvider
interface.

Table E–1 Oracle Business Rules Oracle RL Language Text XML Mapping Elements for
JSR-94

Element Description

<rule-source> Includes an <rl-text> tag containing explicit RL Language
text containing an Oracle Business Rules ruleset. Multiple
<rule-source> tags can be used to specify multiple rulesets
(specified in the order in which they are interpreted).

<ruleset-stack> Specifies a list of rulesets that form the initial ruleset stack. The
order of the rulesets in the list is from the top of the stack to the
bottom of the stack.

Note: In the <rl-text> element the contents must escape XML
predefined entities. This includes the characters '&', '>', '<', '"', and '\''.

Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

Working with Oracle Business Rules and JSR-94 Execution Sets E-3

fact class carrental.Driver {
hide property ableToDrive, driverLicNum, licIssueDate, licenceType,
llicIssueDate, numPreAccidents, numPreConvictions,
numYearsSinceLicIssued, vehicleType;

};

final String DeclineMessage = "Rental declined ";

public class Decision supports xpath {
public String driverName;
public String type;
public String message;

}

function assertXPath(String package,
java.lang.Object element, String xpath) {

//RL literal statement
main.assertXPath(package, element, xpath);

}

function println(String message) {
//RL literal statement
main.println(message);

}

function showDecision(DM.Decision decision) {
//RL literal statement
DM.println("Rental decision is " + decision.type +

" for driver " + decision.driverName +
" for reason " + decision.message);

}
 }
</rl-text>

</rule-source>
<rule-source>

<rl-text>
ruleset vehicleRent {

rule UnderAge {
priority = 0;
if ((fact carrental.Driver v0_Driver &&

(v0_Driver.age < 19))) {
DM.println("Rental declined: " + v0_Driver.name +
" Under age, age is: " + v0_Driver.age);
retract(v0_Driver);

}
}

}
</rl-text>

</rule-source>
<ruleset-stack>

<ruleset-name>vehicleRent</ruleset-name>
</ruleset-stack>

</rule-execution-set>

E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
You can use JSR-94 with Oracle RL rulesets specified using a URL. For more
information, see "Using the Extended createRuleExecutionSet to Create a Rule
Execution Set" on page E-6 for information about JSR-94 extensions that assist you in
specifying a URL.

Using the JSR-94 Interface with Oracle Business Rules

E-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

To create a rule execution set from Oracle RL text specified in a URL:
1. Specify the Oracle RL mapping information in an XML document. Table E–2

shows the mapping elements required to construct a rule execution set.
Example E–2 shows a sample XML document for mapping Oracle RL text to a
JSR-94 rule execution set.

2. You then use the XML document with the JSR-94 administration APIs to create a
rule execution set. The resulting rule execution set is registered with a JSR-94
runtime (using a RuleAdministration instance).

Example E–2 XMP Mapping File for Rulesets Defined in a URL

<?xml version="1.0" encoding="UTF-8"?>
<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">

<name>CarRentalDemo</name>
<description>The Car Rental Demo</description>
<rule-source>

<rl-url>
file:rl/DM.r1

</rl-url>
</rule-source>
<rule-source>

<rl-url>
file:r1/VehicleRent.r1

</rl-url>
</rule-source>
<ruleset-stack>

<ruleset-name>vehicleRent</ruleset-name>
</ruleset-stack>

</rule-execution-set>

E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources
A rule execution set may contain rules that are derived from multiple sources and the
sources may be a mix of Rules Designer defined rulesets and RL Language rulesets. In
this case, the XML element <rule-execution-set> set contains multiple
<rule-source> elements, one for each source of rules. You must list each
<rule-source> in the order in which they are to be interpreted in Rules Engine.

E.3 Using the JSR-94 Interface with Oracle Business Rules
This section describes some Oracle Business Rules specific details for JSR-94 interfaces.

Table E–2 Oracle Business Rules Oracle RL URL XML Mapping Elements for JSR-94

Element Description

<rule-source> Includes an <rl-url> tag containing a URL that specifies the
location of RL Language text. Multiple <rule-source> tags
can be used to specify multiple rulesets (in the order in which
they are interpreted).

<ruleset-stack> Specifies a list of rulesets that form the initial ruleset stack. The
order of the rulesets in the list is from the top of the stack to the
bottom of the stack.

Note: For this Oracle Business Rules release, a JSR-94 rule execution
set can only reference one Rules Designer dictionary.

Using the JSR-94 Interface with Oracle Business Rules

Working with Oracle Business Rules and JSR-94 Execution Sets E-5

E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
The RuleExecutionSetProvider and LocalRuleExecutionSetProvider
interfaces in javax.rules.admin include the createRuleExecutionSet to
create a RuleExecutionSet object.

For the remaining createRuleExecutionSet methods, the first argument is
interpreted as shown in Table E–3.

The second argument to the createRuleExecutionSet methods is a
java.util.Map of vendor-specific properties.

E.3.2 Creating a Rule Session with createRuleSession
Clients create a JSR-94 rule session using the createRuleSession method in the
RuleRuntime class. This method takes a java.util.Map argument of
vendor-specific properties. This argument can be used to pass in any of the properties
defined for the Oracle Business Rules oracle.rules.rl.RuleSession. If a rule
execution set contains URL or repository rule sources, the rules from those sources are
fetched on the creation of each new RuleSession.

E.3.3 Working with JSR-94 Metadata
JSR-94 allows for metadata for rule execution sets and rules within a rule execution set.
The Oracle Business Rules implementation does not add any additional metadata
beyond what is in the JSR-94 specification. The rule execution set description is an
optional item and thus may not be present. If it is not present, the empty string is
returned. For rules, only the rule name is available and the description is initialized
with an empty string.

Table E–3 First Argument Types for createRuleExecutionSet Method

Argument Description

org.w3c.dom.Element Specifies an instance of the <rule-execution-set> element
from the configuration schema.

java.lang.String Specifies a URL that specifies the location of an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.InputStream Specifies an input stream that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

java.io.Reader Specifies a character reader that is used to read an XML document
that is an instance of the <rule-execution-set> element from
the configuration schema.

Note: JSR-94 also includes createRuleExecutionSet methods
that take a java.lang.Object argument, which is intended to be an
abstract syntax tree for the rule execution set. In Oracle Business Rules
for Oracle Fusion Middleware 11g Release 1 (11.1.1), using these
methods with this argument is not supported. Invoking these
methods with a java.lang.Object argument gives a
RuleExecutionSetCreateException exception.

Using the JSR-94 Interface with Oracle Business Rules

E-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

E.3.4 Using Oracle Business Rules JSR-94 Extensions
This section covers the following extensions provided in the JSR-94 implementation
classes.

■ Using the Extended createRuleExecutionSet to Create a Rule Execution Set

■ Invoking an RL Language Function in JSR-94

E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
Oracle Business Rules provides a helper function to facilitate creating the XML control
file required as input to create a RuleExecutionSet.

The helper method createRuleExecutionSet is available in the
RLLocalRuleExecutionSetProvider class. The createRuleExecutionSet
method has the following signature:

RuleExecutionSet createRuleExecutionSet(String name,
 String description,
 RuleSource[] sources,
 String[] rulesetStack,
 Map properties)

Table E–4 describes the createRuleExecutionSet arguments.

E.3.4.2 Invoking an RL Language Function in JSR-94
In a stateful interaction with a JSR-94 rule session, a user may want the ability to
invoke an arbitrary RL Language function. The class that implements the JSR-94
StatefulRuleSession interface provides access to the callFunction methods in
the oracle.rules.rl.RuleSession class.

Example E–3 shows how you can to invoke an RL Language function with no
arguments in a JSR-94 StatefulRuleSession.

Example E–3 Using CallFunction with a StatefulRuleSession

import javax.rules.*;
...
StatefulRuleSession session;
...
((oracle.rules.jsr94.RLStatefulRuleSession) session).callFunction("myFunction");

Table E–4 createRuleExecutionSet Arguments

Argument Description

name Specifies the name of the rule execution set.

description Specifies the description of the rule execution set.

sources Specifies an array of specifications for the sources of rules. The
RuleSource is an interface that the following classes implement:

■ RLTextSource: RL Language text for RL Language text.

■ RLUrlSource: RL Language URL for a URL to RL Language text.

For more information, see the oracle.rules.jsr94.admin package in
Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

rulesetstack Specifies the initial contents of the RL Language ruleset stack to be set
before each time the rules are executed. The contents of the array should
be ordered from the top of stack (0th element) to the bottom of stack (last
element).

properties Oracle specific properties.

F

Working with Rule Reporter F-1

FWorking with Rule Reporter

This appendix includes the following sections:

■ Section F.1, "Introduction to Working with Rule Reporter"

■ Section F.2, "Using Rule Reporter Command Line Interface"

■ Section F.3, "Using Rule Reporter with Java"

F.1 Introduction to Working with Rule Reporter
As the size and complexity of an Oracle Business Rules dictionary grows,
documenting the dictionary and communicating with others about the contents of the
rules dictionary can be important. Using the RuleReporter class you can create lists
or reports of the contents of a rules dictionary. You can use these reports to document
your design and to communicate about the dictionary contents.

There are two ways to use Rule Reporter:

■ Execute RuleReporter on the command line

■ Create custom reports using the RuleReporter API in a Java program

Rule Reporter is written in the Groovy programming language using the
MarkupBuilder class, making it easy to create custom reporters whether you simply
want to have differently formatted HTML or use an entirely different markup
language. Groovy is a Java-like dynamic language which runs on the JVM and
interacts seamlessly with Java objects.

F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets
The JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_
11.1.1/reporter.jar file contains style sheet
oracle/rules/tools/reporter/style.css. When you place this file in the
same directory as the HTML output file that Rule Reporter generates, this provides
definitions to render the page. You can modify the style sheet to change the HTML
layout.

F.1.2 What You Need to Know About RuleReporter API
For complete details on the RuleReporter API, see the Oracle Fusion Middleware Java
API Reference for Oracle Business Rules.

Using Rule Reporter Command Line Interface

F-2 Oracle Fusion Middleware User's Guide for Oracle Business Rules

F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files
The command-line or Java API use of Rule Reporter needs to have the classpath
include all required JAR files.

F.2 Using Rule Reporter Command Line Interface
You can execute a command line script to use Rule Report to list the contents of a
dictionary.

F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line
You can execute a command line script to use Rule Report to list the contents of a
dictionary.

To list the contents of a dictionary with Rule Reporter using the command line:
1. Open a terminal shell window on your system.

2. Update your classpath to include RuleReporter dependencies as Example F–1
shows.

For more information, see Section F.1.3, "What You Need to Know About Rule
Reporter Dependent Jar Files".

3. Run RuleReporter with the following command line as Example F–1 shows:

java oracle.rules.tools.reporter.RuleReporter DICT-NAME
DEST-FILE LINK-PATHS

Where:

■ DICT-NAME: the name of the rules dictionary you want to generate a report
on.

For example:
C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\O
racleRules1.rules.

■ DEST-FILE: the name of the destination file for the generated Rule Reporter
output, usually suffixed with .html.

For example: C:\Temp\report.html.

■ LINK-PATHS: a list of the locations on the file system which may contain
dictionaries that DICT-NAME links to.

For example: C:\Temp.

If DICT-NAME does not link to any dictionaries, you must still specify at least
one path.

Example F–1 shows how to generate a report for a dictionary.

Example F–1 Executing RuleReporter on the Command Line

C:\> set CLASSPATH=%CLASSPATH%;C:\Oracle\Middleware\jdeveloper\modules\oracle.adf.model_
11.1.1\adfm.jar;C:\Oracle\Middleware\jdeveloper\modules\oracle.adf.model_
11.1.1\groovy-all-1.5.4.jar;C:\Oracle\Middleware\wlserver_
10.3\server\lib\ojdbc6.jar;C:\Oracle\Middleware\jdeveloper\soa\modules\oracle.rules_
11.1.1\rules.jar;C:\Oracle\Middleware\jdeveloper\modules\oracle.xdk_11.1.1\xmlparserv2.jar

C:\> java oracle.rules.tools.reporter.RuleReporter
C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\OracleRules1.rules
C:\Temp\report.html C:\Temp

Using Rule Reporter with Java

Working with Rule Reporter F-3

4. Optionally, copy the JDEV_
INSTALL/jdeveloper/soa/modules/oracle.rules_
11.1.1\reporter.jar file oracle/rules/tools/reporter/style.css

to the same directory as the HTML output file. In this example, copy the
style.css file to C:/Temp.

This causes a web browser to use the definitions to render the page. You can
modify the style sheet to change the visual layout of the HTML as shown in
Figure F–1.

Figure F–1 RuleReporter report.html with style.css

F.3 Using Rule Reporter with Java
You can quickly and easily create a basic report of the contents of a dictionary using a
Java application with the oracle.rules.tools.reporter.RuleReporter class.

F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java
You can use the RuleReporter class to list the contents of a dictionary. This class,
oracle.rules.tools.reporter.RuleReporter takes several arguments, as
shown:

RuleReporter ruleReporter = new RuleReporter(
DICT-NAME,
DEST-FILE,
LINK-PATHS
);

Using Rule Reporter with Java

F-4 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Where:

■ DICT-NAME: the name of the rules dictionary you want to generate a report on.

For example:
C:\\JDeveloper\\mywork\\GradeApp\\Grades\\oracle\\rules\\grad
es\\OracleRules1.rules.

■ DEST-FILE: the name of the destination file for the generated Rule Reporter
output, usually suffixed with .html.

For example: C:\\Temp\\report.html.

■ LINK-PATHS: a list of the locations on the file system which may contain
dictionaries that DICT-NAME links to.

For example: new ArrayList<String>(Arrays.asList("C:\\Temp")).

If DICT-NAME does not link to any dictionaries, you must still specify at least one
path.

When you supply these arguments and call the RuleReporter.report() method,
this produces a dictionary report for the specified dictionary.

To list the contents of a dictionary using rule reporter with Java:
1. Start Oracle JDeveloper, this displays the Oracle JDeveloper start page.

2. In the Application Navigator, click New Application if no applications have been
created, or if applications have been created, click Applications and from the
dropdown list choose New Application.

3. In the Create Application wizard, enter the name and location for the application:

a. In the Application Name field, enter an application name. For example, enter
ReportApplication.

b. Enter or browse for a directory name, or accept the default.

c. Enter an application package prefix or accept the default, no prefix.

This should be a globally unique prefix and commonly uses a domain name
owned by your company. The prefix, followed by a period, applies to objects
created in the initial project of an application.

In this sample, you use the prefix com.example.

d. For this Oracle Business Rules project, select Generic Application for the
application template, as shown in Figure F–2.

Using Rule Reporter with Java

Working with Rule Reporter F-5

Figure F–2 Adding the Report Application

4. Click Next.

5. In the Create Generic Application wizard - Name your Generic project page, enter
the name and location for the project as shown in Figure F–3:

■ In the Project Name field, enter an application name. For example, enter
ReportProject.

■ Enter or browse for a directory name, or accept the default.

■ On the Project Technologies tab, in the Available list, select Java and click Add
to add it to the Selected area.

Using Rule Reporter with Java

F-6 Oracle Fusion Middleware User's Guide for Oracle Business Rules

Figure F–3 Specifying Technologies in a Project

6. Click Finish.

7. In Oracle JDeveloper, select the project named ReportProject.

8. Right-click and from the dropdown list select Project Properties.

9. Select the Libraries and Classpath item.

10. Add the libraries Adfm Designtime API, JAXB, ADF Model Runtime, Oracle
XML Parser v2, Oracle JDBC, and Oracle Rules.

11. Click OK.

12. In Oracle JDeveloper, select the project named ReportProject.

13. Right-click and from the dropdown list select New.

14. In the New Gallery, in the Categories area, select General.

15. In the New Gallery, in the Items area, select Java Class.

16. Click OK.

17. In the Create Java Class window, configure the following properties as shown in
Figure F–4:

■ Enter the Name value Report.

■ Check the following checkboxes:

– Public

– Main Method

Using Rule Reporter with Java

Working with Rule Reporter F-7

Figure F–4 Creating the Report.java Class

18. Click OK.

Oracle JDeveloper displays the Java Class, as shown in Example F–2.

Example F–2 Code Created for New Report.java Class

package com.example;

public class Report {
public static void main(String[] args) {

Report report = new Report();
}

}

19. Use the RuleReporter class as shown in Example F–3. Replace the first
argument to the RuleReporter constructor with the location of your dictionary.

Example F–3 Report.java Completed

package com.example;

import java.util.List;
import java.util.Arrays;
import java.util.ArrayList;

import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.tools.reporter.RuleReporter;

public class Report {
public Report() throws SDKException {
try {

RuleReporter ruleReporter = new RuleReporter(
"C:\\JDeveloper\\mywork\\GradeApp\\Grades\\oracle\\rules\\grades\\OracleRules1.rules",
"C:\\Temp\\report.html",
Arrays.asList("C:\\Temp")

Using Rule Reporter with Java

F-8 Oracle Fusion Middleware User's Guide for Oracle Business Rules

);

ruleReporter.report();

} catch (Exception e) {
System.out.println(e);

}
}

public static void main(String[] args) throws SDKException {
Report report = new Report();

}
}

20. In the Application Navigator, right-click ReportProject and select Make.

21. In the Application Navigator, right-click Report.java and select Run.

In this example, the Report.java class generates the report in
C:\Temp\report.html

22. Optionally, copy the JDEV_
INSTALL/jdeveloper/soa/modules/oracle.rules_
11.1.1\reporter.jar file oracle/rules/tools/reporter/style.css
style sheet to the same directory as the HTML output file. In this example, copy
the style.css file to C:/Temp.

This causes a web browser to use the definitions to render the page. You can
modify the style sheet to change the visual layout of the HTML as shown in
Figure F–5.

Figure F–5 RuleReporter report.html with style.css

Index-1

Index

A
actions

advanced, 4-34
area, 5-4
cell, 5-4
decision table, 5-4
definition, 4-16
do nothing value, 5-7
fact type, 10-3

active option, 4-25
addDaysTo JavaDate function, B-2
addDaysTo XMLDate function, B-3
addHoursTo JavaDate function, B-2
addHoursTo XMLDate function, B-3
addMillisecondsTo JavaDate function, B-2
addMillisecondsTo XMLDate function, B-3
addMinutesTo JavaDate function, B-2
addMinutesTo XMLDate function, B-3
addMonthsTo JavaDate function, B-2
addMonthsTo XMLDate function, B-3
addSecondsTo JavaDate function, B-2
addSecondsTo XMLDate function, B-3
addWeeksTo JavaDate function, B-2
addWeeksTo XMLDate function, B-3
addYearsTo JavaDate function, B-2
addYearsTo XMLDate function, B-4
ADF Business Components Fact

action fact type, 10-3
creating, 10-9
definition, 10-1
importing, 3-15
key_values, 3-16, 10-2
types, 3-14

ADF Business Components Fact ViewRowImpl, 3-14
advanced actions, 4-34
advanced mode, 4-24
advanced settings, 4-22
aggregates

average, 4-35
collection, 4-35
count, 4-35
maximum, 4-35
minimum, 4-35
sum, 4-35

aliases, A-1

allow gaps option, 5-17, 5-22
application-specific dictionary, 2-2
auto conflict resolution

setting option, 5-23
average aggregate, 4-35

B
batch invocation, 10-7
BPEL

decision functions, 6-6
Human Tasks, 11-2
java.lang.IllegalAccessError, D-3
service component, 11-2

bucketsets
adding Enum type, 3-22
adding list of ranges (Range), 3-20
adding list of values (LOV), 3-18
allowed in actions field, 3-28
associating with facts, 3-29
creating, 3-17
definition, 1-4, 3-1
duplicate bucket value, 3-27
global, 3-17
Include Disallowed Buckets in Tests field, 3-28
list of values (LOV) adding, 3-18
local, 3-17

built-in dictionary, 2-2
business rules

activity, 6-6
decision function, 6-6
definition, 1-1
deployment and runtime, 9-22
dictionary, 1-5
in a Java EE application, 9-1
RL Language, 1-6

C
calendar type

with CurrentDate fact, 4-53
check rule flow option, 6-3
classpath

Java facts, 3-7
Rule Reporter, F-2

collection aggregate, 4-35

Index-2

combined dictionary, 2-2
compare duration function, B-1, B-6
com.sun.xml.bind.v2.runtime.reflect.opt.

Const errors, D-3
condition expressions

cell, 5-3
definition, 5-3

conflict analysis
decision table, 5-22

constant option for globals, 2-12
count aggregate, 4-35
CurrentDate fact, 4-53

D
data model

definition, 2-1
sharing, 2-9

data types
bucketset, 1-3
fact properties, 1-3

dates
reasoning with CurrentDate fact, 4-53

daysBetween duration function, B-1, B-6
decision functions, 6-1, 6-5

adding, 6-1
adding to a dictionary, 6-1
as decision service, 11-4
BPEL, 6-6
Business Rule activity, 6-6
calling with Java decision point interface, 10-7
check rule flow option, 6-3
definition, 1-4
rule firing limit option, 6-5
stateless option, 6-4
understanding, 6-1
Web service, 6-1, 6-3, 6-6

decision point API
batch invocation, 10-7
definition, 1-5
production dictionary, 7-15
rules SDK, 7-1
runtime properties, 10-5
transaction, 10-5
with MDS repository, 7-15

decision service
decision function, 11-4

decision table
action cell, 5-4

do nothing value, 5-7
actions, advanced, 4-34
active option, 4-25
adding a rule, 5-12
adding actions, 5-10
adding condition expressions, 5-9
advanced mode, 4-24
advanced settings, 4-22
aggregates, 4-35
allow gaps option, 5-17, 5-22
auto conflict resolution, 5-23

cell values, 5-7
condition expression, 5-3
condition expression cell, 5-3
conflict analysis, 5-22
creating, 5-8
decision tree, 5-5
definition, 1-4
do not care values, 5-7
effective dates, 4-27
expression builder, 4-57
find gaps, 5-17, 5-22
gap analysis, 5-17, 5-22
logical option, 4-25
move operation, 5-15
priority, 4-26
rules, 5-5
sibling cell, 5-13
understanding, 5-1
validation, 4-21

decision tree, 5-5
DecisionPoint class, 7-2
DecisionPointBuilder class, 7-2
DecisionPointInstance class, 7-2
.decs file, 11-3
deployment

EAR file, 9-30
MAR file, 9-27

dictionary
application-specific, 2-2
built-in, 2-2
combined, 2-2
data model sharing, 2-9
decision function, 6-1, 6-5
definition, 1-5, 2-1
globals, 2-10
link, 2-2
main, 2-2
naming conventions, 2-9, A-1
package, 2-9
renaming, 2-6, D-2
validation, 4-19, 4-20, 4-22
viewing and editing settings, 2-5

dictionary links
updating, 2-9

do nothing value, 5-7
duplicate bucket values, 3-27
duration

compare function, B-1, B-6
daysBetween function, B-1, B-6
hoursBetween function, B-1, B-6
millisecondsBetween function, B-1, B-6
minutesBetween function, B-1, B-6
monthsBetween function, B-1, B-6
secondsBetween function, B-1, B-6
yearsBetween function, B-1, B-6

E
EAR file, 9-30
effective dates, 4-2, 4-27

Index-3

expression
constant, 2-12

expression builder
about, 4-57

F
fact type

ADF Business Components, 3-14
Java, 3-7
RL, 3-11
XML, 3-3

facts
and working memory, 1-9
associating with bucketsets, 3-29
definition, 1-4, 3-1

filtering rules, 4-3
final option for globals, 2-12
forward-chaining system, 1-8
frequently asked questions, C-1
fromDateString JavaDate function, B-3
fromDateTimeString JavaDate function, B-3
fromString XMLDate function, B-4
fromTimeString JavaDate function, B-3
functions

decision, 6-5
oracle business rules, 2-13
testing, 8-1

G
gap analysis, 5-17, 5-22
global bucketset, 3-17
globals

constant option, 2-12
defined, 2-10
final option, 2-12

H
hoursBetween duration function, B-1, B-6
Human Tasks, 11-2

I
importing XML schema, 3-6
Include Disallowed Buckets in Tests option, 3-28
inference cycle, 1-8

J
Java EE application

with business rules, 9-1
Java Fact

adding, 3-7
getter method visibility, D-1
setter method visibility, D-1
support XPath assertion, 3-10
types, 3-7
using a Property Change Listener with, C-5
XPath, 3-10

JavaDate
addDaysTo function, B-2
addHoursTo function, B-2
addMillisecondsTo function, B-2
addMinutesTo function, B-2
addMonthsTo function, B-2
addSecondsTo function, B-2
addWeeksTo function, B-2
addYearsTo function, B-2
fromDateString function, B-3
fromDateTimeString function, B-3
fromTimeString function, B-3
subtractDaysFrom function, B-2
subtractHoursFrom function, B-2
subtractMillisecondsFrom function, B-2
subtractMinutesFrom function, B-2
subtractMonthsFrom function, B-2
subtractYearsFrom function, B-2, B-3
toDateTimeString function, B-3
toTimeString function, B-3

java.lang.IllegalAccessError, D-3
java.lang.NoClassDefFoundError, D-2
JAXB

generated classes, 3-3
issue 490 troubleshooting, D-3
limitations with XML facts, 3-6
with XML facts, 3-2

JSR-94
definition, E-1
extensions, E-6
rule execution set, E-1
with RL Language text, E-2
with URL, E-3

K
key_values, 3-16, 10-2

L
links

dictionary, 2-2
to a dictionary in the same application, 2-7

list tests, 4-40
local bucketset, 3-17
logical option, 4-25

M
main dictionary, 2-2
MAR file, 9-27
matched fact naming, 4-31
maximum aggregate, 4-35
metadata

.decs file, 11-3
EAR file, 9-30
MAR file, 9-27
service component, 11-1, 11-3

millisecondsBetween duration function, B-1, B-6
minimum aggregate, 4-35
minutesBetween duration function, B-1, B-6

Index-4

monthsBetween duration function, B-1, B-6
move operation, 5-15

N
named priority, 4-26
naming conventions

alias, A-1
dictionary, 2-9, A-1
matched fact, 4-31
RL Language keywords, D-3
Rule Designer, A-1
rulesets, A-1
XML schema target package name, A-1

nested tests, 4-27
numeric priority, 4-26

O
Oracle Business Rules Function, 2-13

testing, 8-1
Oracle Business Rules function

creating, 2-13
Oracle Business Rules RL Language. See RL Language
Oracle Business Rules Rules Engine. See Rules Engine
Oracle Business Rules SDK2. See SDK
Oracle Business Rules service component. See service

component

P
pattern binding variable, 4-31
pattern matching, 4-29
priority

default, 4-26
definition, 4-26
high, 4-26
higher, 4-26
highest, 4-26
integer value, 4-26
low, 4-26
lower, 4-26
lowest, 4-26
medium, 4-26
named, 4-26
numeric, 4-26
order, C-8

Property Change Listener, C-5
prototying

rules, 3-11

R
range tests, 4-10
reload XML facts from updated schemas, 3-6
renaming

dictionary, 2-6
Rete algorithm, 1-8
RL Fact

adding, 3-11
types, 3-11

RL Language
definition, 1-6
self-join, C-3

rule language. See RL Language
Rule Reporter

classpath, command line, F-2
command line, F-2

rules
actions, 1-3, 4-16
active option, 4-25
adding actions, 4-16
advanced mode, 4-24

actions, 4-34
aggregates, 4-35
matched fact naming, 4-31
pattern matching, 4-29
setting, 4-39
simple tree mode, 4-43
tree mode, 4-40

advanced settings, 4-22
aggregate, 4-29
creating, 4-7
data driven, 1-8
definition, 1-1, 4-1
effective dates, 4-27
engine, 1-5, 1-6
expression builder, 4-57
filtering, 4-3
firing, 1-8
for each case where, 4-29
forward-chaining, 1-8
generating reports with SDK, F-1
list tests, 4-40
logical option, 4-25
nested tests, 4-27
pattern binding variable, 4-31
pattern block, 4-30
priority, 4-26, C-8
prototyping, 3-11
range tests, 4-10
reporter, F-1
rule actions, 1-2
rule conditions, 1-2, 1-3
SDK, 1-6
service component, 11-1
set tests, 4-13
testing, 8-1
tests, 4-7
there is a case where, 4-29
there is no case where, 4-29
tree mode, 4-40
validation, 4-20

Rules Designer
introduction, 1-7
rule actions, 1-3
rule conditions, 1-3
rules, 1-2
service component metadata, 11-2
WSDL, 11-2

Rules Engine

Index-5

architecture, 1-7
definition, 1-5, 1-6

rules SDK
decision point API, 7-1
definition, 1-6

rulesets
creating, 4-2
definition, 1-4, 4-1
effective dates, 4-2
filtering, 4-3
naming, A-1

S
SDK

definition, 1-6
generating reports, F-1
rule reporter, F-1

secondsBetween duration function, B-1, B-6
self-join in Oracle RL, C-3
service component

BPEL, 11-2
definition, 1-5, 11-1
Human Tasks, 11-2
metadata, 11-1, 11-3
rules, 11-1
SOA composite application integration, 11-2
standalone component, 11-2
Web service, 11-1

set tests, 4-13
simple tree mode, 4-43
stateless option

decision functions, 6-4
subtractDaysFrom JavaDate function, B-2
subtractDaysFrom XMLDate function, B-4
subtractHoursFrom JavaDate function, B-2
subtractHoursFrom XMLDate function, B-4
subtractMillisecondsFrom JavaDate function, B-2
subtractMillisecondsFrom XMLDate function, B-4
subtractMinutesFrom JavaDate function, B-2
subtractMinutesFrom XMLDate function, B-4
subtractMonthsFrom JavaDate function, B-2
subtractMonthsFrom XMLDate function, B-4
subtractSecondsFrom JavaDate function, B-2
subtractSecondsFrom XMLDate function, B-4
subtractWeeksFrom JavaDate function, B-2
subtractWeeksFrom XMLDate Function, B-4
subtractYearsFrom JavaDate function, B-2
subtractYearsFrom XMLDate function, B-4
sum aggregate, 4-35

T
testing

rules, 8-1
with a test function, 8-1

tests
in rules, 4-7
list, 4-40
range, 4-10

set, 4-13
toDateString JavaDate function, B-3
toDateTimeString JavaDate function, B-3
toTimeString JavaDate function, B-3
transactions, 10-5
tree mode

creating tree mode rules, 4-45
simple, 4-43
with decision tables, 4-40
with rules, 4-40

troubleshooting, D-1
getter method visibility, D-1
java.lang.IllegalAccessError, D-3
java.lang.NoClassDefFoundError, D-2
renaming dictionary, D-2
setter method visibility, D-1

U
updated XML schema with XML facts, 3-6

V
validation

data model, 4-20
decision table, 4-21
dictionaries, 4-19, 4-20, 4-22
rules, 4-20

variable, 4-31
visibility

getter methods, D-1
setter methods, D-1

W
Web service

decision function, and, 6-1, 6-3, 6-6
service component, 11-1
WSDL, 11-1, 11-2

WebDAV repository support, C-9
weeksBetween duration function

duration
weeksBetween function, B-1, B-6

working memory, 1-9
WSDL

Rules Designer, 11-2
service component metadata, 11-1

X
XML Fact

adding, 3-3
java.lang.NoClassDefFoundError, D-2
JAXB-generated classes, 3-3
reload XML facts from updated schemas, 3-6
support XPath assertion, 3-6
XPath, 3-6

XMLDate
addDaysTo function, B-3
addMillisecondsTo function, B-3
addMinutesTo function, B-3

Index-6

addMonthsTo function, B-3
addSecondsTo function, B-3
addWeeksTo function, B-3
addYearsTo function, B-4
fromString function, B-4
subtractDaysFrom function, B-4
subtractHoursFrom function, B-4
subtractMillisecondsFrom function, B-4
subtractMinutesFrom function, B-4
subtractMonthsFrom function, B-4
subtractSecondsFrom function, B-4
subtractWeeksFrom function, B-4
subtractYearsFrom function, B-4

XMLDate addHoursTo function, B-3
XPath, 4-44

Java Fact, 3-10
RL program, E-3
support assertion, 3-6, 3-10
XML Fact, 3-6

Y
yearsBetween duration function, B-1, B-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Overview of Oracle Business Rules
	1.1 What are Business Rules?
	1.1.1 What Are Rule Conditions?
	1.1.2 What Are Rule Actions?
	1.1.3 What Are Decision Tables?
	1.1.4 What Are Facts and Bucketsets?
	1.1.5 What Are Rulesets?
	1.1.6 What Are Decision Functions?
	1.1.7 What Are Decision Points?
	1.1.8 What Are Dictionaries?

	1.2 Oracle Business Rules Runtime and Design Time Elements
	1.2.1 Decision Component (Business Rules) in an SOA Composite Application
	1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application
	1.2.3 Oracle Business Rules RL Language
	1.2.4 Oracle Business Rules SDK
	1.2.5 Rules Designer

	1.3 Oracle Business Rules Engine Architecture
	1.3.1 Declarative Rules
	1.3.2 The RETE Algorithm
	1.3.3 What Is Working Memory?
	1.3.4 Rule Firing and Rule Sessions

	2 Working with Data Model Elements
	2.1 Introduction to Working with Data Model Elements
	2.2 Working with a Dictionary and Dictionary Links
	2.2.1 Introduction to Dictionaries and Dictionary Links
	2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer
	2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer
	2.2.4 How to View and Edit Dictionary Settings
	2.2.5 How to Rename a Dictionary or Rename a Dictionary Package
	2.2.6 How to Link to a Dictionary
	2.2.7 How to Update a Linked Dictionary
	2.2.8 What You Need to Know About Dictionary Linking
	2.2.9 What You Need to Know About Dictionary Linking and Dictionary Copies
	2.2.10 What You Need to Know About Dictionary Linking to a Deployed Dictionary
	2.2.11 What You Need to Know About Business Rules Inputs and Outputs with BPEL

	2.3 Working with Oracle Business Rules Globals
	2.3.1 How to Add Oracle Business Rules Globals
	2.3.2 How to Edit Oracle Business Rules Globals
	2.3.3 What You Need to Know About the Final and Constant Options

	2.4 Working with Decision Functions
	2.5 Working with Oracle Business Rules Functions
	2.5.1 Introduction to Oracle Business Rules Functions
	2.5.2 How to Add an Oracle Business Rules Function

	3 Working with Facts and Bucketsets
	3.1 Introduction to Working with Facts and Bucketsets
	3.2 Working with XML Facts
	3.2.1 How to Import XML Schema and Add XML Facts
	3.2.2 How to Display and Edit XML Facts
	3.2.3 How to Reload XML Facts with Updated Schema
	3.2.4 What You Need to Know About XML Facts

	3.3 Working with Java Facts
	3.3.1 How to Import Java Classes and Define Java Facts
	3.3.2 How to Display and Edit Java Facts
	3.3.3 What You Need to Know About Java Facts

	3.4 Working with RL Facts
	3.4.1 How to Define RL Facts
	3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
	3.4.3 What You Need to Know About RL Facts

	3.5 Working with ADF Business Components Facts
	3.5.1 How to Import and Define ADF Business Components Facts
	3.5.2 What You Need to Know About ADF Business Components Fact Classpaths
	3.5.3 What You Need to Know About ADF Business Components Circular References
	3.5.4 What You Need to Know About ADF Business Components Facts

	3.6 Working with Bucketsets
	3.6.1 How to Define a List of Values Global Bucketset
	3.6.2 How to Define a List of Ranges Global Bucketset
	3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types
	3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types
	3.6.5 What You Need to Know About List of Values Bucketsets
	3.6.6 What You Need to Know About Range Bucketsets
	3.6.7 What You Need to Know About Bucketset Allowed in Actions Option
	3.6.8 What You Need to Know About Bucket Values

	3.7 Associating a Bucketset with Facts and Functions
	3.7.1 How to Associate a Bucketset with a Fact Property
	3.7.2 How to Associate a Bucketset with Functions or Function Arguments

	4 Working with Rulesets and Rules
	4.1 Introduction to Working with Rulesets and Rules
	4.2 Working with Rulesets
	4.2.1 How to Create a Ruleset
	4.2.2 How to Set the Effective Date for a Ruleset
	4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset

	4.3 Working with Rules
	4.3.1 How to Add Rules
	4.3.2 How to Define a Test in a Rule
	4.3.3 How to Define Range Tests in Rules
	4.3.4 How to Define Set Tests in Rules
	4.3.5 How to Define Actions in Rules
	4.3.6 What You Need to Know About Rule Actions

	4.4 Validating Dictionaries
	4.4.1 Understanding Data Model Validation
	4.4.2 Understanding Rule Validation
	4.4.3 Understanding Decision Table Validation
	4.4.4 How to Validate a Dictionary

	4.5 Using Advanced Settings with Rules and Decision Tables
	4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
	4.5.2 How to Select the Advanced Mode Option
	4.5.3 How to Select the Active Option
	4.5.4 How to Select the Logical Option
	4.5.5 How to Set a Priority for a Rule
	4.5.6 How to Specify Effective Dates

	4.6 Working with Nested Tests
	4.6.1 How to Use Nested Tests

	4.7 Working with Advanced Mode Rules
	4.7.1 How to Use Advanced Mode Pattern Matching Options
	4.7.2 How to Use Advanced Mode Matched Fact Naming
	4.7.3 How to Use Advanced Mode Action Forms
	4.7.4 How to Use Advanced Mode Aggregate Conditions
	4.7.5 What You Need to Know About Advanced Mode Rules

	4.8 Working with Tree Mode Rules
	4.8.1 Introduction to Tree Mode Rules
	4.8.2 How to Create Simple Tree Mode Rules
	4.8.3 How to Create Advanced Tree Mode Rules
	4.8.4 What You Need to Know About Tree Mode Rules

	4.9 Using Date Facts, Date Functions, and Specifying Effective Dates
	4.9.1 How to Use the Current Date Fact
	4.9.2 How to Set the Effective Date for a Rule
	4.9.3 What You Need to Know About Effective Dates
	4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

	4.10 Working with Expression Builder
	4.10.1 Introduction to the Expression Builder
	4.10.2 How to Use the Expression Builder

	4.11 Using Bucketsets as Constraints for Options Values in Rules
	4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Fact Property
	4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property
	4.11.3 How to Use Bucketsets to Provide Options for Test Expressions

	5 Working with Decision Tables
	5.1 Introduction to Working with Decision Tables
	5.1.1 What is a Decision Table?
	5.1.2 Understanding Decision Table Values
	5.1.3 What You Need to Know About Decision Table Loops

	5.2 Creating Decision Tables
	5.2.1 How to Create a Decision Table
	5.2.2 How to Add Condition Rows to a Decision Table
	5.2.3 How to Add Actions to a Decision Table
	5.2.4 How to Add a Rule to a Decision Table

	5.3 Performing Operations on Decision Tables
	5.3.1 Introduction to Decision Table Operations
	5.3.2 How to Compact or Split a Decision Table
	5.3.3 How to Merge or Split Conditions in a Decision Table
	5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells
	5.3.5 How to Perform Decision Table Gap Analysis
	5.3.6 How to Perform Decision Table Conflict Analysis
	5.3.7 How to Select the Auto Conflict Resolution Option

	5.4 Creating and Running an Oracle Business Rules Decision Table Application
	5.4.1 How to Obtain the Source Files for the Order Approval Application
	5.4.2 How to Create an Application for Order Approval
	5.4.3 How to Create a Business Rule Service Component for Order Approval
	5.4.4 How to View Data Model Elements for Order Approval
	5.4.5 How to Add Bucketsets to the Data Model for Order Approval
	5.4.6 How to Associate Bucketsets with Order and CreditScore Properties
	5.4.7 How to Add a Decision Table for Order Approval
	5.4.8 How to Check the Business Rule Validation Log for Order Approval
	5.4.9 How to Deploy the Order Approval Application
	5.4.10 How to Test the Order Approval Application

	6 Working with Decision Functions
	6.1 Introduction to Decision Functions
	6.2 Working with Decision Functions
	6.2.1 How to Add or Edit a Decision Function

	6.3 What You Need to Know About Decision Functions
	6.3.1 What You Need to Know About Using Undo Operation with Decision Functions
	6.3.2 What You Need to Know About Rule Firing Limit Option for Debugging Rules
	6.3.3 What You Need to Know to About Decision Function Arguments
	6.3.4 What You Need to Know About the Will Be Invoked As Web Service Option
	6.3.5 What You Need to Know About the Decision Function Stateless Option

	7 Working with Rules SDK Decision Point API
	7.1 Introduction to Rules SDK and the Car Rental Sample Application
	7.1.1 Introduction to Decision Point API
	7.1.2 How to Obtain the Car Rental Sample Application
	7.1.3 How to Open the Car Rental Sample Application and Project

	7.2 Creating a Dictionary for Use with a Decision Point
	7.2.1 How to Create Data Model Elements for Use with a Decision Point
	7.2.2 How to View a Decision Function to Call from the Decision Point
	7.2.3 How to Create Rules or Decision Tables for the Decision Function
	7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table

	7.3 Creating a Java Application Using Rules SDK Decision Point
	7.3.1 How to Add a Decision Point Using Decision Point Builder
	7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary
	7.3.3 How to Use Executor Service to Run Threads with Decision Point
	7.3.4 How to Create and Use Decision Point Instances

	7.4 Running the Car Rental Sample
	7.5 What You Need to Know About Using Decision Point in a Production Environment

	8 Testing Business Rules
	8.1 Testing Oracle Business Rules at Design Time
	8.1.1 How to Test Rules Using a Test Function in Rules Designer
	8.1.2 What You Need to Know About Testing Using an Oracle Business Rules Function
	8.1.3 How to Test a Decision Function Using an Oracle Business Rules Function
	8.1.4 What You Need to Know About Testing Decision Functions

	8.2 Testing Oracle Business Rules at Runtime

	9 Creating a Rule-enabled Non-SOA Java EE Application
	9.1 Introduction to the Grades Sample Application
	9.2 Creating an Application and a Project for Grades Sample Application
	9.2.1 How to Create a Fusion Web Application for the Grades Sample Application
	9.2.2 How to Create the Grades Project
	9.2.3 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
	9.2.4 How to Create an Oracle Business Rules Dictionary in the Grades Project

	9.3 Creating Data Model Elements and Rules for the Grades Sample Application
	9.3.1 How to Create Bucketsets for Grades Sample Application
	9.3.2 How to Add a Decision Table for Grades Sample Application
	9.3.3 How to Add Actions in the Decision Table for Grades Sample Application
	9.3.4 How to Rename the Decision Function for Grades Sample Application

	9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
	9.4.1 How to Add a Servlet to the Grades Project

	9.5 Adding an HTML Test Page for Grades Sample Application
	9.5.1 How to Add an HTML Test Page to the Grades Project

	9.6 Preparing the Grades Sample Application for Deployment
	9.6.1 How to Create the WAR File for the Grades Sample Application
	9.6.2 How to Add the Rules Library to the Grades Sample Application
	9.6.3 How to Add the MDS Deployment File to the Grades Sample Application
	9.6.4 How to Add the EAR File to the Grades Sample Application

	9.7 Deploying and Running the Grades Sample Application
	9.7.1 How to Deploy to Grades Sample Application
	9.7.2 How to Run the Grades Sample Application

	10 Working with Oracle Business Rules and ADF Business Components
	10.1 Introduction to Using Business Rules with ADF Business Components
	10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types
	10.1.2 Understanding Oracle Business Rules Decision Point Action Type

	10.2 Using Decision Points with ADF Business Components Facts
	10.2.1 How to Call a Decision Point with ADF Business Components Facts
	10.2.2 How to Call a Decision Function with Java Decision Point Interface
	10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

	10.3 Creating a Business Rules Application with ADF Business Components Facts
	10.3.1 How to Create an Application That Uses ADF Business Components Facts
	10.3.2 How to Add the Chapter10 Generic Project
	10.3.3 How to Create ADF Business Components Application for Business Rules
	10.3.4 How to Update View Object Tuning for Business Rules Sample Application
	10.3.5 How to Create a Dictionary for Oracle Business Rules
	10.3.6 How to Add Decision Point Dictionary Links
	10.3.7 How to Import the ADF Business Components Facts
	10.3.8 How to Add and Run the Outside Manager Ruleset
	10.3.9 How to Add and Run the Department Manager Ruleset
	10.3.10 How to Add and Run the Raises and Retract Employees Rulesets

	11 Working with Decision Components in SOA Applications
	11.1 Introduction to Decision Components
	11.2 Working with a Decision Component
	11.2.1 Working with Decision Component Metadata
	11.2.1.1 Decision Service Metadata (.decs) File
	11.2.1.2 SCA Component Type (.componentType) File
	11.2.1.3 Decision Component Entry in composite.xml

	11.2.2 Working with Decision Components that Expose a Decision Function
	11.2.3 Using Stateful Interactions with a Decision Component
	11.2.4 What You Need to Know About Stateful Interactions with Decision Components

	11.3 Decision Service Architecture

	A Oracle Business Rules Files and Limitations
	A.1 Rules Designer Naming Conventions
	A.1.1 Ruleset Naming
	A.1.2 Dictionary Naming
	A.1.3 Alias Naming
	A.1.4 XML Schema Target Package Naming

	B Rules Extension Methods
	B.1 Duration Extension Methods (oracle.rules.rl.extensions.Duration)
	B.2 JavaDate Extension Methods (oracle.rules.rl.extensions.JavaDate)
	B.3 XMLDate Extension Methods (oracle.rules.rl.extensions.XMLDate)
	B.4 OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate)
	B.5 OracleDuration Methods (oracle.rules.sdk2.extensions.OracleDuration)

	C Oracle Business Rules Frequently Asked Questions
	C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?
	C.2 What are the Differences Between Oracle Business Rules RL Language and Java?
	C.3 How Does a RuleSession Handle Concurrency and Synchronization?
	C.4 How Do I Correctly Express a Self-Join?
	C.5 How Do I Use a Property Change Listener in Oracle Business Rules?
	C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?
	C.7 How Do I Change the Name of a Dictionary or Dictionary Package?
	C.8 How Do I Put Java Code in a Rule?
	C.9 Can I Use Java Based Facts in a Decision Service with BPEL?
	C.10 How Do I Enable Debugging in a BPEL Decision Service?
	C.11 How Do I Support Versioning with Oracle Business Rules?
	C.12 What is the Priority Order Using Priorities with Rules and Rulesets?
	C.13 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?
	C.14 Why Are Changes to My Java Classes Not Reflected in the Data Model?
	C.15 How Do I Use Rules SDK to Include a null in an Expression?
	C.16 Is WebDAV Supported as a Repository to Store a Dictionary?

	D Oracle Business Rules Troubleshooting
	D.1 Getter and Setter Methods are not Visible
	D.2 Java Class with Only a Property Setter
	D.3 Renaming a Dictionary or Dictionary Package
	D.4 Runtime NoClassDefFound Error
	D.5 RL Specific Keyword Naming Conflict Errors
	D.6 java.lang.IllegalAccessError from Business Rules Service Runtime
	D.7 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
	D.8 Why Does XML Schema with Underscores Fail JAXB Compilation?
	D.9 How Are Decision Service Inputs and Outputs Restricted?

	E Working with Oracle Business Rules and JSR-94 Execution Sets
	E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
	E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets
	E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text
	E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
	E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

	E.3 Using the JSR-94 Interface with Oracle Business Rules
	E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
	E.3.2 Creating a Rule Session with createRuleSession
	E.3.3 Working with JSR-94 Metadata
	E.3.4 Using Oracle Business Rules JSR-94 Extensions
	E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
	E.3.4.2 Invoking an RL Language Function in JSR-94

	F Working with Rule Reporter
	F.1 Introduction to Working with Rule Reporter
	F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets
	F.1.2 What You Need to Know About RuleReporter API
	F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files

	F.2 Using Rule Reporter Command Line Interface
	F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line

	F.3 Using Rule Reporter with Java
	F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

