
Oracle® Database Lite
Developer's Guide

10g (10.3.0)

B28923-01

April 2007

Oracle Database Lite Developer’s Guide 10g (10.3.0)

B28923-01

Copyright © 1997, 2007, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xxi

Audience... xxi
Documentation Accessibility ... xxi
Send Us Your Comments ... xxii

1 Overview

1.1 Introduction ... 1-1
1.2 Supported Technologies for Application Development ... 1-3
1.2.1 Native Applications... 1-3
1.2.2 Standalone Java Applications .. 1-4
1.2.3 Web Applications .. 1-4
1.3 Oracle Database Lite Application Model and Architecture ... 1-4
1.3.1 Oracle Database Lite RDBMS... 1-6
1.3.2 Mobile Sync .. 1-6
1.3.3 Mobile Server ... 1-6
1.3.4 Message Generator and Processor (MGP) ... 1-7
1.3.5 Mobile Server Repository ... 1-8
1.4 Execution Models for Oracle Lite Database .. 1-8
1.4.1 Embedded Application in Single Process .. 1-9
1.4.2 Multiple Processes Accessing the Same Database .. 1-9
1.4.3 Multiple Embedded Application Clients Accessing Remote Database.................... 1-10
1.4.4 Embedded Mobile Client in Single Process .. 1-10
1.4.5 Multiple Clients Accessing Remote Database .. 1-11
1.5 Mobile Development Kit (MDK) ... 1-12
1.5.1 Mobile SQL (mSQL) ... 1-13
1.5.2 Using the Mobile Database Workbence .. 1-14
1.5.3 Using the Packaging Wizard... 1-14
1.6 Java Support ... 1-14
1.7 Data Source Name ... 1-14

2 The Oracle Database Lite RDBMS

2.1 Oracle Lite Database Overview .. 2-1
2.2 Creating and Managing the Database for a Mobile Client ... 2-2
2.3 Creating and Managing the Database in an Embedded Application 2-3
2.3.1 Install Oracle Database Lite Runtime ... 2-3

iv

2.3.2 Creating the Default Starter Oracle Lite Database for an Embedded Application.... 2-3
2.3.3 Creating a Unique Oracle Lite Database for an Embedded Application 2-3
2.3.3.1 Creating a Data Source Name with ODBC Administrator..................................... 2-3
2.3.3.1.1 Creating DSN on a Windows System... 2-4
2.3.3.1.2 Creating DSN on a LINUX System... 2-4
2.3.3.2 Creating a New Oracle Lite Database for the Embedded Application................. 2-6
2.3.3.3 Connecting to Your New Oracle Lite Database ... 2-7
2.3.4 Creating Users for Your Embedded Oracle Lite Database .. 2-7
2.3.4.1 Pre-Defined Roles ... 2-8
2.3.4.2 Building and Populating Demo Tables ... 2-8
2.3.5 Packaging Your Embedded Application With the Oracle Database Lite Runtime ... 2-9
2.4 Data Access APIs ... 2-10
2.4.1 JDBC.. 2-10
2.4.2 ODBC.. 2-11
2.4.3 ADO.NET... 2-11
2.4.4 SODA.. 2-11
2.5 Oracle Database Lite Multi-User Service.. 2-12
2.5.1 Accessing the Multi-User Oracle Database Lite Database Service 2-12
2.5.1.1 Administration for the Multi-User Service on the Windows Platform 2-13
2.5.1.1.1 Installation and Configuration on Windows ... 2-13
2.5.1.1.2 Starting the Multi-User Service on Windows .. 2-14
2.5.1.1.3 Stopping the Multi-User Service on Windows .. 2-15
2.5.1.1.4 Querying the Multi-User Service on Windows ... 2-15
2.5.1.2 Administration for the Multi-User Service on the Linux Platform.................... 2-16
2.5.1.2.1 Starting and Stopping the Multi-User Service on Linux 2-16
2.5.1.2.2 Querying the Multi-User Service on Linux .. 2-16
2.5.1.3 Debugging the Multi-User Service.. 2-17
2.5.1.4 Creating DSNs ... 2-17
2.5.1.5 Accessing the Database... 2-18
2.5.1.6 Verifying the Connection Using mSQL.. 2-18
2.6 Move Your Client Data Between an Oracle Lite Database and an External File 2-18
2.6.1 Move Data Between an Oracle Lite Database and an External File Using Programmatic

APIs ... 2-18
2.6.2 Oracle Database Lite Load Utility (OLLOAD) ... 2-18
2.7 Backing Up an Oracle Lite Database... 2-19
2.8 Encrypting a Database .. 2-19
2.9 Discover Oracle Lite Database Version Number .. 2-19
2.10 Support for Linguistic Sort ... 2-19
2.10.1 Creating Linguistic Sort Enabled Databases... 2-20
2.10.2 How Collation Works .. 2-20
2.10.3 Collation Element Examples ... 2-20
2.10.3.1 Sorting Normal Characters .. 2-20
2.10.3.2 Reverse Sorting of French Accents.. 2-21
2.10.3.3 Sorting Contracting Characters ... 2-21
2.10.3.4 Sorting Expanding Characters... 2-21
2.10.3.5 Sorting Numeric Characters .. 2-21
2.11 Using Oracle Database Lite Samples... 2-21
2.11.1 Executing the Visual Basic Sample Application... 2-22

v

2.11.1.1 Open Visual Basic.. 2-22
2.11.1.2 View the Sample Application Tables and Data .. 2-23
2.11.1.3 Open the Sample Application.. 2-23
2.11.1.4 View and Manipulate the Data in the EMP Table .. 2-23
2.11.2 Executing the ODBC Examples .. 2-23
2.11.2.1 ODBCTBL ... 2-24
2.11.2.2 ODBCVIEW.. 2-24
2.11.2.3 ODBCFUNC ... 2-24
2.11.2.4 ODBCTYPE... 2-24
2.11.2.5 LONG .. 2-24
2.12 Limitations of the Oracle Database Lite Engine .. 2-25

3 Synchronization

3.1 How Does Synchronization Work? .. 3-2
3.1.1 Synchronization Overview... 3-2
3.1.2 Automatic or Manual Synchronization ... 3-3
3.1.3 How Updates Are Propagated to the Back-End Database .. 3-4
3.2 Automatic Synchronization Overview .. 3-5
3.2.1 Enable Automatic Synchronization at the Publication Item Level............................... 3-6
3.2.2 Enable/Disable Automatic Synchronization... 3-7
3.2.2.1 POLITE.INI Configuration to Enable/Disable Automatic Synchronization....... 3-7
3.2.2.2 Overview of the Start/Stop Methods from the Sync Control API. 3-8
3.2.2.3 C/C++ Sync Control APIs to Start/Stop Automatic Synchronization................. 3-8
3.2.2.4 C# Sync Control APIs to Start/Stop Automatic Synchronization......................... 3-8
3.2.2.5 JAVA Sync Control APIs to Start/Stop Automatic Synchronization 3-8
3.2.3 Define the Rules Under Which the Automatic Synchronization Starts....................... 3-8
3.2.3.1 Configure Publication-Level Automatic Synchronization Rules 3-9
3.2.3.2 Configure Platform-Level Automatic Synchronization Rules 3-10
3.2.3.2.1 Event Rules for Platforms ... 3-10
3.2.3.2.2 Condition Rules for Platforms.. 3-11
3.2.3.2.3 Network Configuration for the Client Platform .. 3-11
3.2.4 Enable the Server to Notify the Client to Initiate a Synchronization to Download Data .

.. 3-12
3.2.5 Notify Application on Completion of Automatic Synchronization Cycle 3-12
3.2.6 Request Status for Automatic Synchronization Cycle .. 3-15
3.3 What is The Process for Setting Up a User For Synchronization? 3-17
3.3.1 Creating a Snapshot Definition Declaratively .. 3-18
3.3.1.1 Manage Snapshots... 3-18
3.3.1.1.1 Read-only Snapshots.. 3-18
3.3.1.1.2 Updatable Snapshots ... 3-19
3.3.1.1.3 Refresh a Snapshot ... 3-19
3.3.1.1.4 Snapshot Template Variables ... 3-19
3.3.2 Creating the Snapshot Definition Programmatically .. 3-20
3.4 Creating Publications Using Oracle Database Lite APIs.. 3-21
3.4.1 Defining a Publication With Java Consolidator Manager APIs................................. 3-22
3.4.1.1 Create the Mobile Server User... 3-23
3.4.1.1.1 Change Password... 3-24

vi

3.4.1.2 Create Publications.. 3-24
3.4.1.3 Create Publication Items... 3-24
3.4.1.3.1 Defining Publication Items for Updatable Multi-Table Views.................... 3-26
3.4.1.4 Define Publication-Level Automatic Synchronization Rules 3-27
3.4.1.4.1 Retrieve All Publications Associated with a Rule ... 3-29
3.4.1.4.2 Retrieve Rule Text ... 3-29
3.4.1.4.3 Check if Rule is Modified.. 3-29
3.4.1.4.4 Remove Rule ... 3-29
3.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications.... 3-29
3.4.1.6 Create Publication Item Indexes.. 3-30
3.4.1.6.1 Define Client Indexes... 3-30
3.4.1.7 Adding Publication Items to Publications ... 3-30
3.4.1.7.1 Defining Conflict Rules ... 3-31
3.4.1.7.2 Using Table Weight.. 3-31
3.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot......................... 3-31
3.4.1.8.1 Specifying Sequence Threshold for Window Management......................... 3-32
3.4.1.8.2 Description of Sequence Support... 3-32
3.4.1.9 Subscribing Users to a Publication.. 3-33
3.4.1.10 Instantiate the Subscription.. 3-33
3.4.1.11 Bringing the Data From the Subscription Down to the Client............................ 3-33
3.4.1.12 Modifying a Publication Item ... 3-34
3.4.1.13 Callback Customization for DML Operations .. 3-35
3.4.1.13.1 DML Procedure Example.. 3-35
3.4.1.14 Restricting Predicate ... 3-36
3.5 Client Device Database DDL Operations ... 3-37
3.6 Customize the Compose Phase Using MyCompose .. 3-37
3.6.1 Create a Class That Extends MyCompose to Perform the Compose........................ 3-37
3.6.2 Implement the Extended MyCompose Methods in the User-Defined Class........... 3-38
3.6.2.1 Implement the needCompose Method .. 3-38
3.6.2.2 Implement the doCompose Method... 3-39
3.6.2.3 Implement the init Method .. 3-40
3.6.2.4 Implement the destroy Method... 3-40
3.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose

Class .. 3-40
3.6.3.1 Retrieve the Publication Name With the getPublication Method 3-41
3.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method..... 3-41
3.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method

... 3-41
3.6.3.4 Retrieve the Primary Key With the getPubItemPK Method 3-41
3.6.3.5 Retrieve All Base Tables With the getBaseTables Method 3-41
3.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method 3-42
3.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method........... 3-42
3.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName

Method .. 3-42
3.6.3.9 Retrieve View of the Map Table With the getMapView Method....................... 3-43
3.6.4 Register the User-Defined Class With the Publication Item 3-43
3.7 Customize What Occurs Before and After Synchronization Phases 3-43
3.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization . 3-43

vii

3.7.1.1 NullSync.. 3-44
3.7.1.2 BeforeProcessApply .. 3-44
3.7.1.3 AfterProcessApply .. 3-44
3.7.1.4 BeforeProcessCompose... 3-45
3.7.1.5 AfterProcessCompose... 3-45
3.7.1.6 BeforeProcessLogs... 3-45
3.7.1.7 AfterProcessLogs ... 3-45
3.7.1.8 BeforeClientCompose ... 3-45
3.7.1.9 AfterClientCompose ... 3-45
3.7.1.10 Example Using the Customize Package... 3-45
3.7.1.11 Error Handling For CUSTOMIZE Package ... 3-46
3.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single

Publication Item .. 3-46
3.8 Initiating Client Synchronization With Synchronization APIs ... 3-49
3.8.1 Starting Synchronization Upload and Download Phases With C or C++ Applications...

.. 3-49
3.8.2 Starting Synchronization Upload and Download Phases With Java Applications 3-49
3.8.3 Starting Synchronization Upload and Download Phases With the ADO.NET Provider .

.. 3-49
3.9 Understanding Your Refresh Options ... 3-49
3.9.1 Fast Refresh.. 3-50
3.9.2 Complete Refresh for Views ... 3-51
3.9.3 Queue-Based Refresh ... 3-51
3.9.4 Forced Refresh... 3-52
3.10 Resuming an Interrupted Synchronization.. 3-52
3.10.1 Defining Temporary Storage Location for Client Data ... 3-52
3.10.2 Controlling Server Load .. 3-53
3.10.3 Client Configuration... 3-53
3.11 Synchronizing With Database Constraints .. 3-53
3.11.1 Synchronization And Database Constraints... 3-54
3.11.2 Primary Key is Unique... 3-54
3.11.3 Foreign Key Constraints .. 3-54
3.11.3.1 Set Update Order for Tables With Weights ... 3-55
3.11.3.2 Defer Constraint Checking Until After All Transactions Are Applied 3-55
3.11.4 Unique Key Constraint .. 3-56
3.11.5 Not Null Constraint.. 3-56
3.11.6 Generating Constraints on the Mobile Client... 3-56
3.11.6.1 The assignWeights Method.. 3-57
3.12 Parent Tables Needed for Updateable Views .. 3-57
3.12.1 Creating a Parent Hint ... 3-58
3.12.2 INSTEAD OF Triggers ... 3-58
3.13 Resolving Conflict Resolution with Winning Rules ... 3-58
3.13.1 Resolving Errors and Conflicts Using the Error Queue.. 3-59
3.13.2 Customizing Synchronization Conflict Resolution Outcomes 3-59
3.14 Manipulating Application Tables.. 3-60
3.14.1 Creating Secondary Indexes on Client Device ... 3-60
3.14.2 Virtual Primary Key ... 3-60

viii

3.15 Facilitating Schema Evolution.. 3-60
3.16 Set DBA or Operational Privileges for the Mobile Server.. 3-61
3.17 Create a Synonym for Remote Database Link Support For a Publication Item 3-62
3.17.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem........... 3-63
3.17.2 Creating or Removing a Dependency Hint ... 3-63
3.18 Using the Sync Discovery API to Retrieve Statistics .. 3-63
3.18.1 getDownloadInfo Method... 3-64
3.18.2 DownloadInfo Class Access Methods ... 3-64
3.18.3 PublicationSize Class.. 3-65
3.19 Customizing Replication With Your Own Queues... 3-67
3.19.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based

Publication Item ... 3-69
3.19.1.1 Queue Creation .. 3-70
3.19.1.2 Queue-Based PL/SQL Procedure for UPLOAD_COMPLETE and DOWNLOAD_

INIT Callouts .. 3-73
3.19.1.2.1 In Queue Apply Phase Processing... 3-74
3.19.1.2.2 Out Queue Compose Phase Processing .. 3-75
3.19.1.3 Create a Publication Item as a Queue... 3-76
3.19.1.4 Register the PL/SQL Package Outside the Repository.. 3-76
3.19.2 Creating Data Collection Queues for Uploading Client Collected Data 3-77
3.19.2.1 Creating a Data Collection Queue .. 3-78
3.19.3 Selecting How/When to Notify Clients of Composed Data 3-79
3.20 Deleting a Client Device.. 3-81
3.21 Synchronization Performance.. 3-81
3.22 Troubleshooting Synchronization Errors ... 3-81
3.22.1 Foreign Key Constraints in Updatable Publication Items .. 3-81
3.22.1.1 Foreign Key Constraint Violation Example... 3-81
3.22.1.2 Avoiding Constraint Violations with Table Weights... 3-82
3.22.1.3 Avoiding Constraint Violations with BeforeApply and After Apply 3-82
3.23 Datatype Conversion Between the Oracle Server and Client Oracle Lite Database 3-82

4 Invoking Synchronization APIs from Applications

4.1 Synchronization APIs For C or C++ Applications ... 4-1
4.1.1 Overview of Synchronization API .. 4-1
4.1.2 Initializing the Environment With ocSessionInit .. 4-2
4.1.3 Managing the C/C++ Data Structures ... 4-3
4.1.3.1 ocEnv Data Structure ... 4-3
4.1.3.2 ocTransportEnv Data Structure.. 4-6
4.1.4 Retrieving Publication Information With ocGetPublication ... 4-7
4.1.5 Managing User Settings With ocSaveUserInfo ... 4-8
4.1.6 Manage What Tables Are Synchronized With ocSetTableSyncFlag 4-9
4.1.7 Configure Proxy Information.. 4-10
4.1.8 Start the Synchronization With the ocDoSynchronize Method 4-10
4.1.8.1 See Progress of Synchronization with Progress Listening 4-11
4.1.9 Clear the Synchronization Environment Using ocSessionTerm................................ 4-12
4.1.10 Retrieve Synchronization Error Message with ocGetLastError 4-12
4.2 Synchronization API for Java Applications ... 4-12

ix

4.2.1 Overview.. 4-13
4.2.2 Sync Class .. 4-13
4.2.3 SyncException Class... 4-14
4.2.4 SyncOption Class .. 4-15
4.2.5 Java Interface SyncParam Settings ... 4-17
4.2.6 Java Interface TransportParam Parameters .. 4-18
4.2.7 Manage What Tables Are Synchronized With Selective Sync 4-18
4.2.8 SyncProgress Listener Service .. 4-19
4.3 msync/OCAPIs/mSyncCom ... 4-21

5 Using Mobile Database Workbench to Create Publications

5.1 Use MDW to Create Publications ... 5-1
5.1.1 Set Access Privileges to SYSTEM Tables for Your Application Schema 5-2
5.1.2 Launch MDW ... 5-2
5.2 Create a Project.. 5-2
5.3 Use the Quick Wizard to Create Your Publication .. 5-4
5.4 Create a Publication Item... 5-9
5.4.1 Create SQL Statement for Publication Item .. 5-12
5.4.2 Create a Dependency Hint .. 5-12
5.4.3 Specify Parent Table and Primary Key Hints ... 5-13
5.5 Define the Rules Under Which the Automatic Synchronization Starts 5-13
5.5.1 Configure Publication-Level Automatic Synchronization Rules 5-14
5.5.2 Configure Platform-Level Automatic Synchronization Rules 5-15
5.5.2.1 Define System Event Rules for the Platform ... 5-15
5.5.2.2 Define Automatic Synchronization Conditions for the Platform 5-16
5.6 Create a Sequence .. 5-16
5.7 Create and Load a Script Into The Project.. 5-18
5.7.1 Writing SQL Scripts.. 5-18
5.7.2 Test SQL Scripts .. 5-18
5.7.2.1 Connect to the Database ... 5-19
5.7.2.2 Load and Execute SQL Scripts... 5-19
5.7.3 Load the Script Into the Project .. 5-19
5.8 Load a Resource Into the Project ... 5-20
5.9 Create a Publication... 5-20
5.9.1 General Tab Configures Publication Name .. 5-21
5.9.2 Publication Item Tab Associates Publication Items With the Publication 5-21
5.9.2.1 Associating a Publication Item to this Publication ... 5-21
5.9.3 Sequence Tab Associates Existing Sequences With the Publication 5-24
5.9.4 Script Tab Associates Existing Scripts With the Publication...................................... 5-24
5.9.5 Resource Tab Associates Existing Resources With the Publication 5-24
5.9.6 Event Tab Configures Automatic Synchronization Rules for this Publication 5-24
5.10 Import Existing Publications and Objects from Repository .. 5-25
5.10.1 Import Existing Publication from Repository .. 5-25
5.10.2 Import Existing Publication Item From the Repository.. 5-25
5.10.3 Import Existing Sequence From the Repository... 5-26
5.10.4 Import Existing Resource From the Repository ... 5-26
5.10.5 Import an Existing Script From the Repository ... 5-27

x

5.11 Create a Virtual Primary Key... 5-27
5.12 Test a Publication by Performing a Synchronization ... 5-28
5.13 Deploy the Publications in the Project to the Repository... 5-29

6 Developing Mobile Web-to-Go Applications

6.1 Choose the Type of Web-to-Go Mobile Client to Use ... 6-1
6.2 Developing and Testing the Application .. 6-1
6.2.1 Building Web-to-Go Applications... 6-2
6.2.1.1 Static Components.. 6-3
6.2.1.2 Dynamic Components ... 6-3
6.2.1.3 Database Components ... 6-3
6.2.1.4 Database Connections.. 6-3
6.2.2 Application Roles... 6-3
6.2.3 Developing JavaServer Pages .. 6-3
6.2.3.1 Mobile Server or Mobile Development Kit Web Server ... 6-4
6.2.3.2 Mobile Client for Web-to-Go .. 6-4
6.2.4 Developing Java Servlets for Web-to-Go ... 6-4
6.2.4.1 Limitations... 6-4
6.2.4.2 Accessing Applications on the Mobile Development Kit for Web-to-Go 6-5
6.2.4.3 Creating a Servlet ... 6-5
6.2.4.3.1 Packages.. 6-6
6.2.4.3.2 Web-to-Go User Context .. 6-6
6.2.4.3.3 Database Connectivity in Java Code .. 6-7
6.2.4.3.4 Accessing the Mobile Server Repository.. 6-7
6.2.4.4 Running a Servlet ... 6-7
6.2.4.4.1 Registering Servlets Using runwtgpack.bat .. 6-7
6.2.4.4.2 The webtogo.ora File... 6-9
6.2.4.4.3 Using wtgdebug.exe ... 6-9
6.2.4.5 Accessing the Schema Directly in Oracle Database Lite...................................... 6-10
6.2.5 Using Web-to-Go Applets ... 6-10
6.2.5.1 Creating the Web-to-Go Applet .. 6-10
6.2.5.2 Creating the HTML Page for the Applet.. 6-11
6.2.5.2.1 Static HTML Page... 6-11
6.2.5.2.2 HTML Page Generated from a Servlet .. 6-11
6.2.6 Developing Applet JDBC Communication... 6-12
6.2.6.1 getConnection().. 6-12
6.2.6.2 Design Issue.. 6-13
6.2.7 Developing Applet Servlet Communication .. 6-13
6.2.7.1 Creating the Web-to-Go Servlet .. 6-13
6.2.7.1.1 getResultObject() .. 6-13
6.2.7.1.2 setSessionID().. 6-14
6.2.7.1.3 showDocument() .. 6-14
6.2.8 Debugging Web-to-Go Applications ... 6-15
6.2.8.1 Running Sample 1 Using Oracle9i JDeveloper.. 6-15
6.2.8.1.1 Creating a Debug Project... 6-15
6.2.8.1.2 Creating a Library .. 6-16
6.2.8.1.3 Adding Files to the Project.. 6-17

xi

6.2.8.1.4 Running and Debugging... 6-17
6.2.8.1.5 Troubleshooting.. 6-17
6.2.9 Customizing the Workspace Application ... 6-18
6.2.9.1 Web-to-Go Parameters.. 6-19
6.2.9.2 Sample Workspace .. 6-19
6.2.10 Using the Mobile Server Admin API ... 6-20

7 Using the Packaging Wizard

7.1 Using the Packaging Wizard... 7-1
7.1.1 Starting the Packaging Wizard .. 7-2
7.1.2 Specifying New Application Definition Details.. 7-4
7.1.3 Listing Application Files... 7-7
7.1.3.1 Compile JSP (For Web-to-Go Applications Only) ... 7-8
7.1.3.2 Filters .. 7-9
7.1.4 Adding Servlets (For OC4J and Web-to-Go Applications Only).................................. 7-9
7.1.5 Entering Database Information .. 7-10
7.1.6 Defining Application Roles ... 7-11
7.1.7 Defining Snapshots for Replication ... 7-12
7.1.7.1 Creating New Snapshots .. 7-14
7.1.7.2 Creating Indexes for Snapshots... 7-15
7.1.7.3 Importing Snapshots ... 7-17
7.1.7.4 Editing Snapshots .. 7-18
7.1.8 Defining Sequences for Replication ... 7-19
7.1.8.1 Importing Sequences... 7-20
7.1.9 Defining Application DDLs .. 7-22
7.1.9.1 Importing Views and Index Definitions .. 7-24
7.1.10 Editing Application Definition ... 7-24
7.1.11 Troubleshooting.. 7-25
7.2 Packaging Wizard Synchronization Support... 7-25

8 Native Application Development

8.1 Supported APIs for Oracle Database Lite ... 8-1
8.2 Data Source Name .. 8-2

9 Java Application Development

9.1 Java Support for Applications... 9-1
9.1.1 JDBC Drivers .. 9-2
9.2 Oracle Database Lite Java Development Environment... 9-2
9.2.1 Setting Variables for the JDK ... 9-3
9.3 Java Development Tools .. 9-3

10 JDBC Programming

10.1 JDBC Compliance .. 10-1
10.2 JDBC Environment Setup ... 10-1
10.3 JDBC Drivers to Use When Connecting to Oracle Database Lite 10-2

xii

10.3.1 Type 2 Driver... 10-2
10.3.2 Type4 (Pure Java) Driver Connection URL Syntax.. 10-4
10.4 DataSource Connection... 10-4
10.5 Java Datatypes and JDBC Extensions ... 10-5
10.5.1 Mapping Datatypes Between Java and Oracle ... 10-5
10.5.2 Datatype Extensions... 10-6
10.5.3 Data Access Extensions.. 10-7
10.5.3.1 Reading from a BLOB Sample Program.. 10-8
10.5.3.2 Writing to a CLOB Sample Program .. 10-8
10.6 Limitations .. 10-8
10.7 New JDBC 2.0 Features ... 10-9
10.7.1 Interface Connection .. 10-9
10.7.1.1 Methods .. 10-9
10.7.2 Interface Statement ... 10-10
10.7.3 Interface ResultSet .. 10-10
10.7.3.1 Fields ... 10-10
10.7.3.2 Methods .. 10-11
10.7.3.3 Methods that Return False ... 10-13
10.7.4 Interface Database MetaData .. 10-14
10.7.4.1 Methods .. 10-14
10.7.4.2 Methods that Return False ... 10-14
10.7.5 Interface ResultMetaData .. 10-15
10.7.5.1 Methods .. 10-15
10.7.6 Interface PreparedStatement... 10-15
10.7.6.1 Methods .. 10-16
10.7.6.1.1 Limitation .. 10-16
10.8 J2ME Support.. 10-16
10.8.1 JDBC Drivers for J2ME CDC and CLDC... 10-16
10.8.1.1 JDBC Driver for J2ME CDC .. 10-16
10.8.1.2 JDBC Driver for J2ME CLDC .. 10-17
10.8.2 J2ME Support for Windows CE.. 10-19
10.8.2.1 Using IBM J9... 10-19
10.8.2.2 Using Creme 4.1... 10-19

11 Stored Procedures and Triggers

11.1 Java Stored Procedure Features in Oracle Database Lite ... 11-1
11.2 Overview of Java Stored Procedures and Triggers... 11-2
11.2.1 Creating Java Stored Procedures.. 11-2
11.3 Creating Java Stored Procedures ... 11-3
11.3.1 Using the Load and Publish Stored Procedure Development Model....................... 11-3
11.3.1.1 Loading Java Stored Procedure Classes Into the Oracle Lite Database............. 11-4
11.3.1.1.1 loadjava.. 11-4
11.3.1.1.2 Using CREATE JAVA.. 11-6
11.3.1.2 Publishing Stored Procedures to SQL .. 11-7
11.3.1.3 Calling Published Stored Procedures ... 11-8
11.3.1.4 Dropping Published Stored Procedures .. 11-9
11.3.1.4.1 Using dropjava.. 11-9

xiii

11.3.1.4.2 Using SQL Commands .. 11-10
11.3.1.5 Example Using the Load and Publish Model.. 11-10
11.3.2 Using the Attached Stored Procedure Development Model.................................... 11-12
11.3.2.1 Attaching a Java Class to a Table .. 11-12
11.3.2.2 Table-Level Stored Procedures.. 11-13
11.3.2.3 Row-Level Stored Procedures ... 11-13
11.3.2.4 Calling Attached Stored Procedures... 11-13
11.3.2.5 Dropping Attached Stored Procedures .. 11-14
11.3.2.6 Example of An Attached Java Stored Procedure .. 11-14
11.3.3 Calling Java Stored Procedures From a Multithreaded C or C++ Application..... 11-15
11.4 Converting Datatypes Between Java and SQL For Stored Procedures.......................... 11-16
11.4.1 Declaring Parameters for Java Stored Procedures ... 11-17
11.4.2 Using Stored Procedures to Return Multiple Rows .. 11-17
11.4.2.1 Returning Multiple Rows in ODBC.. 11-18
11.4.2.2 Example... 11-18
11.5 Using Triggers With Java Stored Procedures .. 11-18
11.5.1 Statement-Level vs. Row-Level Triggers... 11-19
11.5.2 Creating Triggers .. 11-19
11.5.2.1 Enabling and Disabling Triggers... 11-20
11.5.3 Dropping Triggers .. 11-20
11.5.4 Trigger Example.. 11-20
11.5.5 Trigger Arguments ... 11-21
11.5.6 Trigger Arguments Example .. 11-22
11.6 Creating a Java Stored Procedure That Is Invoked With a Trigger 11-23
11.6.1 Start mSQL... 11-24
11.6.2 Create a Table .. 11-24
11.6.3 Create a Java Class.. 11-24
11.6.4 Load the Java Class File .. 11-26
11.6.5 Publish the Stored Procedure ... 11-26
11.6.6 Populate the Database.. 11-26
11.6.7 Execute the Procedure.. 11-26
11.6.8 Verify the Email Address .. 11-27
11.6.9 Create a Trigger... 11-27
11.6.9.1 Testing the Trigger .. 11-27
11.6.9.2 Verify the Email Address ... 11-27
11.6.10 Commit or Roll Back .. 11-27
11.7 Executing Java Stored Procedures from JDBC .. 11-27
11.7.1 Using the executeQuery Method.. 11-27
11.7.2 Using a Callable Statement.. 11-28
11.8 Using C++ Stored Procedures.. 11-29
11.8.1 Creating C++ Stored Procedures.. 11-29
11.8.1.1 C++ Stored Procedure Include File and Procedure Definition 11-29
11.8.1.2 Access SODA Objects Within Your C++ Stored Procedure 11-30
11.8.2 Building Your C++ Stored Procedures .. 11-30
11.8.2.1 Linking in Appropriate Libraries.. 11-31
11.8.2.2 Automatically Build Your Stored Procedure .. 11-31
11.8.2.3 Manually Building Your Stored Procedure ... 11-31

xiv

11.8.3 Publish Your C++ Stored Procedure.. 11-32
11.8.4 C++ Stored Procedure Example ... 11-33
11.8.4.1 C++ Stored Procedure and Trigger Example One.. 11-33
11.8.4.2 C++ Stored Procedure and Trigger Example Two ... 11-33
11.8.4.3 JDBC Calling a C++ Stored Procedure Example .. 11-34
11.9 Using .Net Stored Procedures .. 11-34
11.9.1 Creating the .Net Source for Your Stored Procedure .. 11-35
11.9.1.1 Defining Methods, Imports and Namespace .. 11-35
11.9.1.2 Access and Modify Database Using .Net Extension Classes In Stored Procedures ...

... 11-36
11.9.1.2.1 OracleData... 11-36
11.9.1.2.2 OracleDataRow... 11-37
11.9.1.3 Access and Modify Database Using OracleSPManager Inside Triggers......... 11-37
11.9.2 Building Your .Net Stored Procedures .. 11-38
11.9.3 Publish Your .Net Stored Procedure.. 11-38
11.9.3.1 Create the .Net Class Object in the Oracle Lite Database 11-39
11.9.3.2 Publish Methods With a Call Specification ... 11-39
11.9.4 Dropping .Net Stored Procedures.. 11-40
11.9.5 .Net Stored Procedure Example ... 11-40
11.9.5.1 .Net Stored Procedure and Trigger Example One.. 11-40
11.9.5.2 .Net Stored Procedure and Trigger Example Two ... 11-41

12 Using Simple Object Data Access (SODA) for PocketPC Platforms

12.1 Getting Started With SODA ... 12-2
12.1.1 Overview of the SODA Classes .. 12-2
12.1.2 Demonstrating Frequently-Used SODA Classes ... 12-2
12.2 Using SQL Queries in SODA Code for PocketPC Platforms... 12-3
12.3 Virtual Columns and Object-Relational Mapping .. 12-4
12.4 Behavior of Reference-Counted and Copy-By-Assignment Objects 12-5
12.5 Another Library for Exceptions (ALE) ... 12-6
12.5.1 Decorating Classes With ALE... 12-6
12.5.2 New Operator and ALE... 12-8
12.5.3 Global Variables.. 12-8
12.5.4 Exceptions and Inheritance ... 12-9
12.5.5 Using ALE with PocketPC ARM Compilers .. 12-9
12.5.6 Troubleshooting ALE Runtime Errors... 12-9
12.5.7 Compiling Your Program With ALE ... 12-9
12.5.8 ALE Code on Systems That Support Exceptions ... 12-9
12.6 Building a SODA Forms Application ... 12-10
12.6.1 Development Environment Requirements ... 12-10
12.6.2 Develop Your GUI Using the SODA Forms Library ... 12-10
12.6.2.1 Traditional Way to Develop Native Data Entry Applications.......................... 12-10
12.6.2.2 Trimming Your PocketPC UI Code With SODA Forms.................................... 12-11
12.6.3 Designing the UI for PocketPC... 12-13
12.6.4 Customizing the Database Schema .. 12-15
12.6.5 Binding UI to Data in the PocketPC Environment .. 12-15
12.6.6 Setting List Choices for Status Contol on PocketPC.. 12-16

xv

12.6.7 Customizing the Table in OrderForm ... 12-16
12.6.8 Monitoring the Logic.. 12-17
12.6.9 Compiling Your SODA Application .. 12-17
12.7 SODA Forms Edit Modes ... 12-18
12.7.1 Editing a Single Object ... 12-18
12.7.2 Editing a List of Objects ... 12-18
12.7.3 Creating a New Object ... 12-19
12.7.4 Popping Up A Dialog... 12-20
12.7.5 Custom Queries for PocketPC Environment .. 12-20
12.8 Customizing Your SODA Forms Application ... 12-21
12.8.1 Customizing Help Messages... 12-21
12.8.2 Menus ... 12-21
12.9 Displaying a List Of Objects in a Table... 12-22
12.10 SODA Forms UI Controls ... 12-22

13 Oracle Database Lite ADO.NET Provider

13.1 Discussion of the Classes That Support the ADO.NET Provider 13-1
13.1.1 Establish Connections With the OracleConnection Class... 13-1
13.1.2 Transaction Management .. 13-2
13.1.3 Create Commands With the OracleCommand Class .. 13-3
13.1.4 Maximize Performance Using Prepared Statements With the OracleParameter Class

.. 13-3
13.1.4.1 SQL String Parameter Syntax .. 13-3
13.1.5 Large Object Support With the OracleBlob Class .. 13-3
13.1.5.1 Using BLOB Objects in Parameterized SQL Statements...................................... 13-4
13.1.5.2 Query Tables With BLOB Columns.. 13-4
13.1.5.3 Read and Write Data to BLOB Objects ... 13-4
13.1.6 Data Synchronization With the OracleSync Class ... 13-4
13.1.6.1 Using the OracleSync Class to Synchronize .. 13-5
13.1.6.2 Using the OracleEngine to Synchronize... 13-6
13.1.6.2.1 Launch the msync Tool for User Input ... 13-6
13.1.6.2.2 Set the Environment and Synchronize With the OracleEngine................... 13-6
13.1.7 Creating a Database for Testing.. 13-7
13.2 Limitations for the ADO.NET Provider ... 13-7
13.2.1 Partial Data Returned with GetSchemaTable... 13-7
13.2.2 Creating Multiple DataReader Objects Can Invalidate Each Other.......................... 13-8
13.2.3 Calling DataReader.GetString Twice Results in a DbNull Object............................. 13-8
13.2.4 Thread Safety... 13-8
13.3 Developing an ADO.NET Application on WinCE.. 13-8

14 Using Symbian Devices

14.1 Support Symbian Devices in Oracle Database Lite... 14-1
14.2 Invoke Synchronization from Applications on Symbian Devices 14-1
14.2.1 How To Write A Program Using Oracle Database Lite 10g....................................... 14-1
14.2.2 Prepare Your Application for Synchronization.. 14-2
14.2.3 How to Use the Synchronization API for Symbian Devices 14-2

xvi

14.3 Using a JDBC Driver for J2ME CLDC to Connect to the Database 14-3
14.4 Use the Utility Tools on Symbian Devices ... 14-3

15 Oracle Database Lite Transaction Support

15.1 Locking .. 15-1
15.2 What Are the Transaction Isolation Levels? .. 15-1
15.3 Configuring the Isolation Level ... 15-3
15.4 Supported Combinations of Isolation Levels and Cursor Types...................................... 15-3

16 Oracle Database Lite Security

16.1 Authenticating Users With Your Own User Management System.................................. 16-1
16.1.1 Implementing Your External Authenticator... 16-1
16.1.1.1 The Initialization Method for the External Authenticator................................... 16-2
16.1.1.2 The Destruction Method for the External Authenticator 16-2
16.1.1.3 The Authentication Method for the External Authenticator............................... 16-2
16.1.1.4 The User Instantiation Method for the External Authenticator 16-2
16.1.1.5 Retrieve the User Name or the User Global Unique ID....................................... 16-2
16.1.1.6 Log Off User ... 16-2
16.1.1.7 Change User Password... 16-3
16.1.2 Registering External Authenticator.. 16-3
16.1.3 User Initialization Scripts .. 16-3
16.2 Providing Your Own Encryption Module for the Client Oracle Lite Database 16-4
16.2.1 Encryption Module APIs ... 16-4
16.2.1.1 Initialize the Encryption Module .. 16-4
16.2.1.2 Delete Encryption Context ... 16-5
16.2.1.3 Create the Encryption Key ... 16-5
16.2.1.4 Encrypt Data... 16-5
16.2.1.5 Decrypt Data .. 16-5
16.2.2 Plug-In Custom Encryption Module ... 16-6

17 Tutorial for Building Mobile Web-to-Go Applications

17.1 Develop the Application ... 17-2
17.1.1 Create Database Objects in the Oracle Server... 17-2
17.1.1.1 Create the Table Owner Account .. 17-3
17.1.1.2 Create the Database Objects in the Oracle Database .. 17-3
17.1.2 Compile the Application.. 17-4
17.2 Create Publication for Application.. 17-4
17.2.1 Create a Project.. 17-5
17.2.2 Create Publication Items.. 17-5
17.2.2.1 Create Publication Item .. 17-5
17.2.2.2 Create Sequence... 17-6
17.2.3 Create Publication... 17-6
17.3 Package the Application Using the Packaging Wizard.. 17-7
17.4 Administer the Application.. 17-13
17.4.1 Start the Mobile Server and the Mobile Manager .. 17-13
17.4.2 Using the Mobile Manager to Create a New User ... 17-14

xvii

17.4.3 Setting Application Properties.. 17-16
17.4.4 Granting User Access to the Application .. 17-17
17.4.5 Defining Snapshot Template Values for the User.. 17-17
17.5 Execute the Application on the Mobile Client for Web-to-Go .. 17-18
17.5.1 Install the Mobile Client for Web-to-Go.. 17-18
17.5.2 Log into the Mobile Client for Web-to-Go .. 17-20
17.5.3 Manually Synchronize the Mobile Client for Web-to-Go... 17-21

18 Tutorial for Building Mobile Web Applications Using ADF/BC4J

18.1 Overview... 18-1
18.1.1 Before You Start .. 18-2
18.2 Creating a Database Connection.. 18-2
18.2.1 Creating a Database Connection to Oracle Database .. 18-2
18.2.2 Specify The Connection To The Oracle Lite Database .. 18-5
18.3 Develop the ADF/BC4J Application... 18-9
18.3.1 Building the Data Model with ADF Business Components....................................... 18-9
18.3.1.1 Create a New Application and Projects ... 18-9
18.3.1.2 Create Business Components .. 18-11
18.3.2 Customize the Business Components Views.. 18-17
18.3.3 Creating a Master-Detail JavaServer Faces Page.. 18-19
18.3.4 Running the JSF Page ... 18-27
18.3.5 Configure the ADF/BC4J Application for the Oracle Database Lite Environment...........

.. 18-29
18.3.6 Deploy the Application as WAR file.. 18-30
18.4 Package the ADF/BC4J Application... 18-30
18.4.1 Include the ADF Runtime Libraries with the ADF/BC4J Application................... 18-30
18.4.2 Package the Application from the Packaging Wizard .. 18-31
18.5 Publish and Configure the ADF/BC4J Application from the Mobile Manager........... 18-32
18.6 Test the ADF/BC4J Application .. 18-32
18.7 Run the ADF/BC4J Application on the Mobile Client for Oracle Lite WEB OC4J 18-33

19 Tutorial for Building Mobile Applications for Win32

19.1 Plan the Mobile Application Demo for Win32 .. 19-1
19.2 Description of Tasks for Win32 Demo.. 19-2
19.2.1 Create TASK Table on the Server Database.. 19-3
19.2.2 Create Publication for Application .. 19-3
19.2.2.1 Create a Project .. 19-3
19.2.2.2 Create Publication Item .. 19-4
19.2.2.3 Create Publication ... 19-5
19.2.3 Package the Application Using the Packaging Wizard... 19-5
19.3 Administer the Application.. 19-9
19.3.1 Start the Mobile Server and the Mobile Manager .. 19-10
19.3.2 Using the Mobile Manager to Create New Users for the Task Application 19-11
19.3.3 Setting Application Properties.. 19-12
19.3.4 Granting User Access to the Application .. 19-13
19.3.5 Defining Snapshot Template Values for the User.. 19-13

xviii

19.4 Execute the Application on the Mobile Client for Web-to-Go .. 19-14
19.4.1 Install the Mobile Client on the Win32 Device... 19-14
19.4.2 Browse the TASK Snapshot and Update a Row... 19-16
19.4.3 Develop your Mobile Field Service Application Using Oracle Database Lite....... 19-16
19.4.4 Republish the Application with the Application Program....................................... 19-17

20 Tutorial for Building Mobile Applications for Windows CE

20.1 Overview of the WinCE Sample Application .. 20-1
20.1.1 Before You Start .. 20-1
20.1.1.1 Application Development Computer Requirements ... 20-2
20.1.1.2 Client Device Requirements... 20-2
20.2 Develop the Application ... 20-2
20.2.1 Create Database Objects in the Oracle Server... 20-2
20.2.1.1 The WinCE Transport Application Database Objects.. 20-2
20.2.2 Write the Application Code .. 20-4
20.2.2.1 Transport Module (Transport.vb) ... 20-4
20.2.2.2 Main Form (frmMain.vb) ... 20-5
20.2.2.3 View Packages (frmView.vb)... 20-5
20.2.2.4 Create Package (frmNew.vb)... 20-6
20.2.3 Compile the Application.. 20-7
20.2.3.1 Create CAB Files .. 20-7
20.2.3.2 Install the Application from the CAB File ... 20-7
20.3 Create Publication for Application.. 20-7
20.3.1 Create a Project.. 20-8
20.3.2 Create Publication Items.. 20-8
20.3.2.1 Create Packages Publication Item ... 20-8
20.3.2.2 Create Routes Publication Item ... 20-8
20.3.2.3 Create Trucks Publication Item ... 20-9
20.3.3 Create Publication... 20-9
20.4 Package and Publish the Application ... 20-10
20.4.1 Define the Application Using the Packaging Wizard ... 20-10
20.4.1.1 Create a New Application.. 20-10
20.4.2 Publish the Application ... 20-12
20.5 Administer the Application.. 20-13
20.5.1 Start the Mobile Server... 20-13
20.5.2 Launch the Mobile Manager ... 20-13
20.5.3 Create a New User.. 20-14
20.5.4 Set the Application Properties .. 20-15
20.5.5 Grant User Access to the Application.. 20-15
20.6 Run the Application on the Windows Mobile/Pocket PC Device 20-16
20.6.1 Install the Oracle Database Lite Mobile client for Pocket PC................................... 20-16
20.6.2 Install and Synchronize the Transport Application and Data 20-17

A Oracle Lite Database Utilities

A.1 The mSQL Tool .. A-1
A.1.1 The mSQL Tool for Windows 32 .. A-2
A.1.1.1 Starting mSQL.. A-2

xix

A.1.1.2 Populating your Database Using mSQL .. A-2
A.1.1.3 SET TERM {ON|OFF}... A-2
A.1.1.4 SET TIMING {ON|OFF}... A-3
A.1.1.5 SET VERIFY {ON|OFF}.. A-3
A.1.2 The mSQL Tool for Windows CE... A-3
A.1.2.1 The mSQL GUI Tool.. A-3
A.1.2.1.1 Connect to the Oracle Lite Database.. A-3
A.1.2.1.2 Execute SQL Statement Against Oracle Lite Database A-4
A.1.2.1.3 Create or Encrypt the Oracle Lite Database ... A-4
A.1.2.1.4 Table Contents of the Oracle Lite Database.. A-5
A.1.2.1.5 Views of the Oracle Lite Database ... A-6
A.1.2.1.6 Sequences of the Oracle Lite Database.. A-6
A.1.2.2 The Command-Line Version of the mSQL Tool for Windows CE....................... A-7
A.1.2.2.1 Starting mSQL... A-7
A.1.2.2.2 Manage Snapshots Using mSQL.. A-7
A.2 CREATEDB... A-7
A.3 REMOVEDB.. A-9
A.4 ENCRYPDB... A-10
A.5 DECRYPDB... A-12
A.6 BACKUPDB .. A-13
A.7 ODBC Administrator and the Oracle Database Lite ODBC Driver A-14
A.7.1 Adding a DSN Using the ODBC Administrator .. A-16
A.7.2 Adding a DSN which points to Read-Only Media (CD-ROM) A-16
A.8 ODBINFO.. A-16
A.9 VALIDATEDB .. A-18
A.10 Transferring Data Between a Database and an External File .. A-19
A.10.1 OLLOAD.. A-19
A.10.1.1 Syntax .. A-20
A.10.1.2 Keywords and Parameters ... A-20
A.10.1.2.1 Options... A-21
A.10.2 Oracle Database Lite Load Application Programming Interfaces (APIs) A-22
A.10.2.1 Overview .. A-22
A.10.2.2 Oracle Database Lite Load APIs.. A-22
A.10.2.2.1 Connecting to the Database: olConnect .. A-23
A.10.2.2.2 Disconnecting from the Database: olDisconnect ... A-23
A.10.2.2.3 Deleting All Rows from a Table: olTruncate .. A-24
A.10.2.2.4 Setting Parameters for Load and Dump Operations: olSet.......................... A-24
A.10.2.2.5 Loading Data: olLoad .. A-24
A.10.2.2.6 Dumping Data: olDump.. A-25
A.10.2.2.7 Compiling.. A-25
A.10.2.2.8 Linking ... A-25
A.10.2.3 File Format.. A-26
A.10.2.3.1 Header Format.. A-26
A.10.2.3.2 Parameters ... A-26
A.10.2.3.3 Data Format... A-27
A.10.2.4 Limitations.. A-29

xx

Glossary

Index

xxi

Preface

This preface introduces you to the Oracle Database Lite Developer’s Guide, discussing the
intended audience, documentation accessibility, and structure of this document.

Audience
This manual is intended for application developers as the primary audience and for
database administrators who are interested in application development as the
secondary audience.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

xxii

Send Us Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: olitedoc_us@oracle.com

■ FAX: (650) 506-7355. Attn: Oracle Database Lite

■ Postal service:

Oracle Corporation
Oracle Database Lite Documentation
500 Oracle Parkway, Mailstop 1op2
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Overview 1-1

1
Overview

This chapter provides an introduction to Oracle Database Lite and presents an
overview of the application development process, using the Mobile Development Kit
and its components. This chapter discusses the following topics.

■ Section 1.1, "Introduction"

■ Section 1.2, "Supported Technologies for Application Development"

■ Section 1.3, "Oracle Database Lite Application Model and Architecture"

■ Section 1.4, "Execution Models for Oracle Lite Database"

■ Section 1.5, "Mobile Development Kit (MDK)"

■ Section 1.6, "Java Support"

■ Section 1.7, "Data Source Name"

1.1 Introduction
Oracle Database Lite facilitates the development, deployment, and management of
Mobile database applications for a large number of Mobile users. A Mobile application
is an application that can run on Mobile devices without requiring constant
connectivity to the server. An Oracle Lite database application requires a local
database on the Mobile device, whose content is a subset of data that is stored in the
enterprise data server. Modifications made to the local database by the application are
occasionally reconciled with the server data. The technology used for reconciling
changes between the Mobile database and the enterprise database is known as data
synchronization.

Mobile database applications can be developed in many ways, as follows:

■ The most common way is to develop native C or C++ applications for specific
Mobile platforms. C++ applications can access the Oracle Database Lite database
using the Simple Object Data Access API (SODA), an easy-to-use C++ interface
that is optimized for the object-oriented and SQL functionality of Oracle Database
Lite. For more information about SODA, refer the SODA API documentation,
which is installed as part of the Mobile Development Kit.

■ Applications that need a standard interface and work with multiple database
engines can use either the Open Database Connectivity (ODBC) interface, Active
Data Object (ADO) interface, or some other interface built on top of ODBC.
ADO.NET can be used on Win32 and Windows CE. Another way to develop a
Mobile database application is to use Java and the Java Database Connectivity
(JDBC) interface. Oracle Database Lite also offers a third way to develop Mobile
database applications using the servlet based Web model called Web-to-Go.

Introduction

1-2 Oracle Database Lite Developer’s Guide

■ Web-to-Go applications can be built using Web technologies, such as servlet, Java
Sever Pages (JSP), applet, HTML, and JDBC.

■ Symbian applications that need a standard interface and work with multiple
database engines can use either the Open Database Connectivity (ODBC) interface
or some other interface built on top of ODBC.

Once the application has been developed, it has to be deployed. Deployment of
applications is concerned with setting up the server system so that end users can easily
install and use the applications. The nerve center of the server system for Oracle
Database Lite applications is the Mobile Server which is where the Mobile applications
are deployed. Deployment consists of five major steps:

1. Designing the server system to achieve the required level of performance,
scalability, security, availability, and connectivity. Oracle Database Lite provides
tools such as the "Consperf" utility to tune the performance of data
synchronization. It also provides benchmark data that can be used for capacity
planning for scalability. Security measures such as authentication, authorization,
and encryption are supported using the appropriate standards. Availability and
scalability are also supported by means of load balancing, caching, and the
transparent switch-over technologies of the Oracle Application Server (Oracle AS)
and the Oracle database server.

2. Publishing the application to the server. This refers to installing all the components
for an application on the Mobile Server. Oracle Database Lite provides a tool
called the Packaging Wizard that can be used to publish applications to the Mobile
Server.

3. Provisioning the applications to the Mobile users. This phase includes determining
user accesses to applications with a specified subset of data. Oracle Database Lite
provides a tool called the Mobile Manager to create users, grant privileges to
execute applications, and define the data subsets for them, among others. You can
also use the Java API to provision applications.

4. Testing for functionality and performance in a real deployment environment. A
Mobile application system is a complex system involving many Mobile device
client technologies (such as, operating systems, form factors, and so on), many
connectivity options (such as, LAN, Wireless LAN, cellular, wireless data, and
other technologies), and many server configuration options. Nothing can
substitute for the real life testing and performance tuning of the system before it is
rolled out. Particular attention should be paid to tuning the performance of the
data subsetting queries, as it is the most frequent cause of performance problems.

5. Determining the method of initial installation of applications on Mobile devices
(application delivery). Initial installation involves installing the Oracle Database
Lite client, the application code, and the initial database. The volume of data
required to install applications on a Mobile device for the first time could be quite
high, necessitating the use of either a high-speed reliable connection between the
Mobile device and the server, or using a technique known as offline instantiation.
In offline instantiation, everything needed to install an application on a Mobile
device is put on a CD or a floppy disk and physically mailed to the user. The user
then uses this media to install the application on the device by means of a desktop
machine. Oracle Database Lite provides a tool for offline instantiation.

After deployment, both the application and the data schema may change because of
enhancements or defect resolution. The Oracle Database Lite Mobile Server takes care
of managing application updates and data schema evolution. The only requirement is
that the administrator must republish the application and the schema. The Mobile

Supported Technologies for Application Development

Overview 1-3

Server automatically updates the Mobile clients that have older version of the
application or the data.

Oracle Database Lite installation provides you with an option to install the Mobile
Server or the Mobile Development Kit. For application development, you will need to
install the Mobile Development Kit on your development machine. However, as
discussed later in this document, the development examples require the Mobile Server
to be running. Hence, if you intend to recreate the sample applications on your system,
you must install the Mobile Server, preferably on a different machine. The installation
of the Mobile Server requires an Oracle database instance to be running. You can use
an existing test database as well. The Mobile Server stores its metadata in this
database.

1.2 Supported Technologies for Application Development
Oracle Database Lite is an integrated framework that simplifies the development,
management, and deployment of mobile applications on the following mobile
platforms, operating systems, and hardware:

Oracle Database Lite provides the Mobile Development Kit, which includes facilities,
tools, APIs, and sample code for you to develop your applications. There are three
application models:

■ Section 1.2.1, "Native Applications"

■ Section 1.2.2, "Standalone Java Applications"

■ Section 1.2.3, "Web Applications"

1.2.1 Native Applications
Native applications are built using C, C++, Visual C++, Visual Basic, Embedded Visual
tools, ActiveX Data Objects (ADO), and MetroWerks CodeWarrior. The application

Platform Programming Languages Operating System Hardware

Win32 on a laptop
or notebook

When you develop on a laptop, you
are using one of the Windows
operating systems. You can use any of
the languages mentioned in this book.
However, C, C++ are better for
creating applications with a good user
interface.

The languages available are C, C++,
C#, Java, Visual Basic, JSPs and
Servlets.

You can use Visual Studio 2003 for
development.

Windows 2000 Pentium
processor

PocketPC C, C++, Visual Basic, Java applications
(no Servlet or JSP support), SODA,
ADO.NET.

You can use Visual Studio 2005 for
development.

Windows CE
(WinCE)

ARM

Linux Java, C, C++ Linux Redhat 3.0 X86

Symbian OS on
Nokia and
Motorola

C, C++ Symbian OS versions
7.0 and 8.0

ARM

Oracle Database Lite Application Model and Architecture

1-4 Oracle Database Lite Developer’s Guide

must be compiled against the mobile device operating system, such as the Windows
CE platform.

Use ODBC to access the Oracle Lite database on the client. Alternatively, you could use
JDBC to access the local client database. See Section 2.4.1, "JDBC" and Section 2.4.2,
"ODBC" for more information on accessing the database with either of these interfaces.

See Chapter 8, "Native Application Development" for more information on C and C++.

1.2.2 Standalone Java Applications
Standalone Java applications do not include Web and J2EE technology—such as
Servlets and JSPs. Instead, Java applications revolve around using JDBC driver to
access the Oracle Lite database on the client platform, and use AWT and SWING
classes to build the application UI. In addition, the database supports Java stored
procedures and triggers.

Your Java/JDBC application must be compiled for the particular mobile device JVM
environment, which can be different across various client devices. Thus, when you are
developing your Java application, do the following:

1. Check the environment: Verify that the olite40.jar, which is located in OLITE_
HOME/bin, is in your CLASSPATH, which should have been modified during
installation.

2. Load the JDBC driver in to your applications. The following is an example:

Class.forName("oracle.lite.poljdbc.POLJDBCDriver");

3. Connect to the Oracle Lite database installed on the client. If your database is on
the same machine as the JDBC application, connect using the native driver
connection URL syntax, as follows:

jdbc:polite:dsn

Or if not local, connect as follows:

jdbc:polite@[hostname]:[port]:dsn

See Chapter 9, "Java Application Development" and Chapter 10, "JDBC Programming"
for more information.

1.2.3 Web Applications
You can execute existing Web applications using the J2EE Java technologies, such as
servlets and JSPs, in a disconnected mode without modifying the code base.
Web-to-Go is a development option for Web applications, and can be executed on
laptops using Windows 2000. Web-to-Go applications use Java servlets and JSPs that
may invoke JDBC to access the database, as opposed to using application APIs, such as
C or C++.

For more information, see Chapter 6, "Developing Mobile Web-to-Go Applications".

1.3 Oracle Database Lite Application Model and Architecture
In the Oracle Database Lite application model, each application defines its data
requirements using a publication. A publication is akin to a database schema and it
contains one or more publication items. A publication item is like a parameterized
view definition and defines a subset of data, using a SQL query with bind variables in
it. These bind variables are called subscription parameters or template variables.

Oracle Database Lite Application Model and Architecture

Overview 1-5

A subscription defines the relationship between a user and a publication. This is
analogous to a newspaper or magazine subscription. Accordingly, once you subscribe
to a particular publication, you begin to receive information associated with that
publication. With a newspaper you receive the daily paper or the Sunday paper, or
both. With Oracle Lite you receive snapshots, and, depending on your subscription
parameter values, those snapshots are partitioned with data tailored for you.

When a user synchronizes the Mobile client for the first time, the Mobile client creates
an Oracle Database Lite database on the client machine for each subscription that is
provisioned to the user. The Mobile client then creates a snapshot in this database for
each publication item contained in the subscription, and populates it with data
retrieved from the server database by running the SQL query (with all the variables
bound) associated with the publication item. Once installed, Oracle Database Lite is
transparent to the end user; it requires minimal tuning or administration.

As the user accesses and uses the application, changes made to Oracle Database Lite
are captured by the snapshots. At a certain time when the connection to the Mobile
Server is available, the user may synchronize the changes with the Mobile Server.
Synchronization may be initiated by the user using the Oracle Database Lite Mobile
Synchronization application (msync) directly, by programmatically calling the Mobile
Synchronization API from the application, or in the case of Web applications, the
synchronization option can be used from the Web-to-Go workspace to synchronize the
data. The Mobile Synchronization application communicates with the Mobile Server
and uploads the changes made in the client machine. It then downloads the changes
for the client that are already prepared by the Mobile Server.

A background process called the Message Generator and Processor (MGP), which runs
in the same tier as the Mobile Server, periodically collects all the uploaded changes
from many Mobile users and then applies them to the server database. Next, MGP
prepares changes that need to be sent to each Mobile user. This step is essential
because the next time the Mobile user synchronizes with the Mobile Server, these
changes can be downloaded to the client and applied to the client database.

Figure 1–1 illustrates the architecture of Oracle Database Lite applications.

Figure 1–1 Oracle Database Lite Architecture

Note: Web-to-Go clients have one additional component, a light
weight HTTP listener that is not shown in the diagram.

Oracle Lite
Database

(ODB)

Mobile
Server

E1

E2

E3

Message Generator
and Processor (MGP

Mobile Server
Repository

Middle Tier Oracle Database
 Server

Mobile
Application

Mobile
Synchronization

Module

Oracle Lite
RDBMS

Client System

Oracle Database Lite Application Model and Architecture

1-6 Oracle Database Lite Developer’s Guide

1.3.1 Oracle Database Lite RDBMS
The Oracle Database Lite RDBMS is a small footprint, Java-enabled, secure, relational
database management system created specifically for laptop computers, handheld
computers, PDAs, and information appliances. The Oracle Database Lite RDBMS runs
on Windows 2000/XP, Windows CE/Windows Mobile, Linux, and Symbian. Oracle
Database Lite RDBMS provides JDBC, ODBC, and SODA interfaces to build database
applications from a variety of programming languages such as Java, C/C++, and
Visual Basic. These database applications can be used while the user is disconnected
from the Oracle database server.

When you install the Mobile Development Kit, the Oracle Database Lite RDBMS and
all the utilities listed in Appendix C are installed on your development machine. In a
production system, when the Mobile Server installs Oracle Database Lite applications,
only the RDBMS, the Mobile Sync, and Mobile SQL applications are installed on the
client machine.

1.3.2 Mobile Sync
Mobile Sync (msync) is a small footprint application that resides on the Mobile device.
Mobile Sync enables you to synchronize data between handheld devices, desktop and
laptop computers and Oracle databases. Mobile Sync runs on Windows 2000/XP,
Windows CE/Windows Mobile, and Linux.

Mobile Sync synchronizes the snapshots in Oracle Database Lite with the data in
corresponding Oracle data server. These snapshots are created by the Mobile Server
for each user from the publication items associated with a Mobile application. The
Mobile Server also coordinates the synchronization process.

The Mobile Sync application communicates with the Mobile Server using any of the
supported protocols (e.g., HTTP or HTTPS). When called by the Mobile user, the
Mobile Sync application first collects the user information and authenticates the users
with the Mobile Server. It then collects the changes made to Oracle Database Lite (from
the snapshot change logs) and uploads them to the Mobile Server. It then downloads
the changes for the user from the Mobile Server and applies them to the Oracle
Database Lite.

In addition to this basic function, the Mobile Sync application can also encrypt,
decrypt, and compress transmitted data.

When you install the Mobile Development Kit, the Mobile Sync application is also
installed on your development machine. The Mobile Server also installs the Mobile
Sync on the client machine as part of application installation.

Unlike base tables and views, snapshots cannot be created in Oracle Database Lite by
using SQL statements. They can only be created by the Mobile Server based on
subscriptions which are derived from publication items associated with an application.
This point is discussed further later in this chapter and in Chapter 4.

1.3.3 Mobile Server
The Mobile Server is a mid-tier server that provides the following features.

■ Application Publishing

■ Application Provisioning

■ Application Installation and Update

■ Data Synchronization

Oracle Database Lite Application Model and Architecture

Overview 1-7

The Mobile Server has two major modules called the Resource Manager and the
Consolidator Manager. The Resource Manager is responsible for application
publishing, application provisioning, and application installation. The Consolidator
Manager is responsible for data and application synchronization.

Application publishing refers to uploading your application to the Mobile Server so
that it can be provisioned to the Mobile users. Once you have finished developing
your application, you can publish it to the Mobile Server by using the development
tool called the Packaging Wizard.

Application provisioning is concerned with creating subscriptions for users and
assigning application execution privilege to them. Application provisioning can also
be done in one of two ways.

■ Using the administration tool called the Mobile Manager, you can create users and
groups, create subscriptions for users by assigning values to subscription
parameters, and give users or groups privileges to use the application.

■ Using the Resource Manager API, you can programmatically perform the above
tasks.

End users install Mobile applications in two steps.

1. As the Mobile user, browse the setup page on the Mobile Server and choose the
setup program for the platform you want to use. The setup program only runs on
Windows 32 platforms. For Windows 32 based client systems, you can download
the setup program directly to the Windows 32 system and execute it to set up the
Oracle Database Lite client. For Windows CE devices, you must download the
setup program to your Windows 32 desktop first and execute it there. Then you
must use ActiveSync for Windows CE to install the Oracle Database Lite client on
the device.

2. Run the Mobile Sync (msync) command on your Mobile device, which prompts
for the user name and password. The Mobile Sync application communicates with
the Consolidator Manager module of the Mobile Server and downloads the
applications and the data provisioning for the user.

After the installation of the applications and data, you can start using the application.
Periodically, use Mobile Sync or a custom command to synchronize your local
database with the server database. This synchronization updates all applications that
have changed.

1.3.4 Message Generator and Processor (MGP)
The Consolidator Manager module of the Mobile Server uploads the changes from the
client database to the server, and it downloads the relevant server changes to the
client. But it does not reconcile the changes. The reconciliation of changes and the
resolution of any conflicts arising from the changes are handled by MGP. MGP runs as
a background process which can be controlled to start its cycle at certain intervals.

Each cycle of MGP consists of two phases: Apply and Compose.

The Apply Phase
In the apply phase, MGP collects the changes that were uploaded by the users since
the last apply phase and applies them to the server database. For each user that has
uploaded his changes, the MGP applies the changes for each subscription in a single
transaction. If the transaction fails, MGP will log the reason in the log file and stores
the changes in the error file.

Execution Models for Oracle Lite Database

1-8 Oracle Database Lite Developer’s Guide

The Compose Phase
When the apply phase is finished, MGP goes into the compose phase, where it starts
preparing the changes that need to be downloaded for each client.

Applying Changes to the Server Database
Because of the asynchronous nature of data synchronization, the Mobile user may
sometimes get an unexpected result. A typical case is when the user updates a record
that is also updated by someone else on the server. After a round of synchronization,
the user may not get the server changes.

This happens because the user's changes have not been reconciled with the server
database changes yet. In the next cycle of MGP, the changes will be reconciled with the
server database, and any conflicts arising from the reconciliation will be resolved.
Then a new record will be prepared for downloading the changes to the client. When
the user synchronizes again (the second time), the user will get the record that reflects
the server changes. If there is a conflict between the server changes and the client
changes, the user will get the record that reflects either the server changes or the client
changes, depending on how the conflict resolution policy is defined.

1.3.5 Mobile Server Repository
The Mobile Server repository contains all the information needed to run the Mobile
Server. The information is usually stored in the same database where the application
data reside. The only exception to this is in cases where the application data resides in
a remote instance and there is a synonym defined in the Mobile Server to this remote
instance.

Changes to the repository should only be made using the Mobile Server Mobile
Manager or the Resource Manager API.

1.4 Execution Models for Oracle Lite Database
How your application integrates with the Oracle Lite database depends on how you
design the execution model, as described in the following sections:

1. Do you want to use the Oracle Lite database to store data solely for a single
application? Yes; use the embedded application option. See Section 1.4.1,
"Embedded Application in Single Process" for more information.

■ Do you want to have multiple applications access the same database? See
Section 1.4.2, "Multiple Processes Accessing the Same Database" for more
information.

■ Do you want your application to access the database remotely? See
Section 1.4.3, "Multiple Embedded Application Clients Accessing Remote
Database" for more information.

2. Do you want to use the Oracle Lite database to store changes that will be
synchronized with a back-end Mobile Server repository? Yes; use the Mobile client
option. See Section 1.4.4, "Embedded Mobile Client in Single Process" for more
details.

■ Do you want your application to access the database remotely? See
Section 1.4.5, "Multiple Clients Accessing Remote Database" for more
information.

Execution Models for Oracle Lite Database

Overview 1-9

1.4.1 Embedded Application in Single Process
As demonstrated in Figure 1–2, if you chose to build a standalone application with the
Oracle Lite database embedded in the application, then when the application is
launched, the Oracle Lite database libraries are loaded into the same process as the
application.

Figure 1–2 Embedded Application With ODB Libraries in Single Process

See Section 2.3, "Creating and Managing the Database in an Embedded Application"
for more information on how to embed an Oracle Lite database into a standalone
application.

1.4.2 Multiple Processes Accessing the Same Database
You can configure your application processes to share the same database. Thus, when
each application is launched, each application exists in its own process and can access
the same database independently. In this scenario, Oracle Database Lite libraries use
shared memory to coordinate locking between both processes.

Local
Database
ODB file

PROCESS

Embedded
Application

Oracle Lite
 Driver

Oracle Lite
 Engine

Shared
Memory

Execution Models for Oracle Lite Database

1-10 Oracle Database Lite Developer’s Guide

Figure 1–3 Applications in Multiple Processes Accessing Single Database

1.4.3 Multiple Embedded Application Clients Accessing Remote Database
If you are embedding a database into your application software, but you want the
applications to exist remotely from the data, then use the client/server embedded
approach with the multi-user service, as described in Section 2.5, "Oracle Database Lite
Multi-User Service".

1.4.4 Embedded Mobile Client in Single Process
If you chose to install the Mobile client and synchronized your user on a single device,
then when you launch your application, the Oracle Lite database libraries are loaded
into the same process as your application. This is the default scenario and is
demonstrated in Figure 1–4.

Local
Database
ODB file

PROCESS

Embedded
application

Oracle Lite
 Driver

Oracle Lite
 Engine

PROCESS

Embedded
application

Oracle Lite
 Driver

Oracle Lite
 Engine

Shared
Memory

Execution Models for Oracle Lite Database

Overview 1-11

Figure 1–4 Diagram of Mobile Client and ODB Libraries in SIngle Process

For details of how to package an embedded Oracle Lite database in your application,
see Section 2.2, "Creating and Managing the Database for a Mobile Client".

1.4.5 Multiple Clients Accessing Remote Database
If you have several remote clients accessing the same data, you can use Branch Office
to facilitate the remote applications. Figure 1–5 demonstrates how multiple remote
Branch Office clients access the data through the Branch Office machine to the Mobile
Server and finally accessing the back-end Oracle database.

The Branch Office machine contains the Branch Office executables and the local Oracle
Lite database, which all clients access for their information. When a synchronization is
requested, information is communicated between the Branch Office and the back-end
database through the Mobile Server.

Note: Oracle Database Lite is not identical to the Oracle database;
thus, for large amounts of transferred data, use the Oracle Standard
Edition Database.

Local
Database
ODB file

PROCESS

Mobile
Client

Mobile Server

Oracle Lite
 Driver

Oracle Lite
 Engine

Oracle
Database

Mobile Development Kit (MDK)

1-12 Oracle Database Lite Developer’s Guide

Figure 1–5 Using Branch Office for Managing Multiple Clients that Access a Remote
Database

See Chapter 10, "Manage Your Branch Office" in the Oracle Database Lite Administration
and Deployment Guide for more information.

1.5 Mobile Development Kit (MDK)
Before you develop an application using Oracle Database Lite, you should install the
Oracle Database Lite Mobile Development Kit (MDK) on the machine on which you
intend to develop your application. For instructions on how to install the Mobile
Development Kit, see Section 2.3, "Installing Oracle Databse Lite" in the Oracle Database
Lite Getting Started Guide.

The Oracle Database Lite Mobile Development Kit includes the following components.

■ Oracle Database Lite RDBMS—A lightweight, object-relational database
management system

■ Mobile Database Workbence (MDW)—A development tool for creating a
publication.

■ Packaging Wizard—A tool to publish applications to the Mobile Server

■ Mobile Sync—A transactional synchronization engine

■ mSQL—An interactive tool to create, access, and manipulate Oracle Database Lite
on laptops and handheld devices

Using any C, C++, or Java development tool in conjunction with the Mobile
Development Kit for Windows, you can develop your Mobile applications for
Windows against Oracle Database Lite, and then publish the applications to the
Mobile Server by using the Packaging Wizard. See Section 2.3, "Installing Oracle
Databse Lite" in the Oracle Database Lite Getting Started Guide for instructions on how to
install the Mobile Server.

Once you have published the applications to the Mobile Server, you can use the
Mobile Manager to provision the applications to the Mobile users. Provisioning
involves specifying the values of the subscription parameters used for subsetting the
data needed by the application for a particular user. A user to whom an application
has been provisioned can then log in to the Mobile Server and request it to set up
everything the user needs to run the applications on the user's device.

The Mobile Development Kit is installed in <ORACLE_HOME>\Mobile\Sdk. The bin
directory contains, among other things:

Local
Database
ODB file

Branch
Office

Branch Office
machine

Database
Server

Mobile
Server

Branch Office
 Client

Branch Office
 Client

Branch Office
 Client

Branch Office
 Client

Mobile Development Kit (MDK)

Overview 1-13

■ The Oracle Database Lite RDBMS and its components, including Mobile SQL
(msql.exe). Mobile SQL is written in Java. It requires the Java runtime
environment JRE 1.4.2 or higher to be installed on your system before you can use
it. If you have installed JDK 1.4.2 or higher, the JRE is already installed in your
machine.

■ Mobile Sync (msync), the executable (msync.exe) and the Java wrapper for it.

■ Packaging Wizard (runwtgpack.bat)

■ Mobile Database Workbench (MDW)

The Samples directory <ORACLE_HOME>\Mobile\Sdk\Samples directory contains
some sample applications. Section 2.11, "Using Oracle Database Lite Samples"
describes the sample programs and explains how to run them. You should familiarize
yourself with the various Oracle Database Lite features by perusing the source code
and running the samples.

When you install the MDK, it installs a starter database file in the <ORACLE_
HOME>\Mobile\Sdk\OLDB40 directory named polite.odb.

When you install the Mobile Development Kit, the installer sets the PATH environment
variable to include the bin directory of the Mobile Development Kit. You can use the
Command Prompt on your Windows 32 machine to do the following quick test.

At the command prompt, enter the following.

msql system/manager@jdbc:polite:polite
...
SQL>create table test (c1 int, c2 int);
Table created
SQL>insert into test values(1,2)
1 row(s) created
SQL>select * from test;

 C1 | C2
 ----+----
 1 | 2
SQL>rollback;
Rollback completed
SQL>exit

1.5.1 Mobile SQL (mSQL)
Mobile SQL is an interactive tool that allows you to create, access, and manipulate
Oracle Database Lite on laptops and handheld devices. The mSQL installations on
laptops cannot be used to create a database, but can create a database on hand-held
devices. Using mSQL, you can perform the following actions.

■ Create database objects such as tables and views

■ View tables

■ Execute SQL statements

Note: The polite.odb starter database is not the name of the
Mobile client database. For information on what Oracle Lite database
(ODB) files are installed on the client, see Section 2.2, "Synchronizing
or Executing Applications on the Mobile Client" in the Oracle Database
Lite Administration and Deployment Guide.

Java Support

1-14 Oracle Database Lite Developer’s Guide

The mSQL tool is installed with the Mobile Development Kit installation. It is also
installed by the Mobile Server as part of application installation. The mSQL tool for the
Windows 32 platform is a command line tool that is similar to the Oracle SQL*Plus
tool, but does not provide compatibility with SQL*Plus. The mSQL tool for Windows
CE supports a graphical user interface. See Appendix A.1, "The mSQL Tool" for details.

1.5.2 Using the Mobile Database Workbence
The Mobile Database Workbench (MDW) is a new tool that enables you to iteratively
create and test publications—testing each object as you add it to a publication.
Publications are stored within a project, which can be saved and restored from your
file system, so that you can continue to add and modify any of the contained objects
within it.

All work is created within a project, which can be saved to the file system and
retrieved for further modifications later. Once you create the project, start creating the
publication items, sequences, scripts and resources that are to be associated with the
publication. You can create the publication and associated objects in any order, but you
always associate an existing object with the publication. Thus, it saves time to start
with creating the objects first and associating it with the publication afterwards.

For detailed information on how to use MDW, see Chapter 5, "Using Mobile Database
Workbench to Create Publications".

1.5.3 Using the Packaging Wizard
The Packaging Wizard is a graphical tool that enables you to perform the following
tasks.

1. Create a new Mobile application.

2. Edit an existing Mobile application.

3. Publish an application to the Mobile Server.

When you create a new Mobile application, you must define its components and files.
In some cases, you may want to edit the definition of an existing Mobile application's
components. For example, if you develop a new version of your application, you can
use the Packaging Wizard to update your application definition. The Packaging
Wizard also enables you to package application components in a JAR file which can be
published using the Mobile Manager. The Packaging Wizard also enables you to create
SQL scripts which can be used to execute any SQL statements in the Oracle database.

For detailed information on how to use the Packaging Wizard, see Chapter 7, "Using
the Packaging Wizard".

1.6 Java Support
For more information, refer Chapter 9.1, "Java Support for Applications".

1.7 Data Source Name
For full details, refer to Chapter 8.2, "Data Source Name".

Note: UTF8 SQL Scripts are not supported in mSQL.

The Oracle Database Lite RDBMS 2-1

2
The Oracle Database Lite RDBMS

This chapter presents the Oracle Database Lite Relational Database Management
System (RDBMS). It discusses the following topics:

■ Section 2.1, "Oracle Lite Database Overview"

■ Section 2.2, "Creating and Managing the Database for a Mobile Client"

■ Section 2.3, "Creating and Managing the Database in an Embedded Application"

■ Section 2.4, "Data Access APIs"

■ Section 2.5, "Oracle Database Lite Multi-User Service"

■ Section 2.6, "Move Your Client Data Between an Oracle Lite Database and an
External File"

■ Section 2.7, "Backing Up an Oracle Lite Database"

■ Section 2.8, "Encrypting a Database"

■ Section 2.9, "Discover Oracle Lite Database Version Number"

■ Section 2.10, "Support for Linguistic Sort"

■ Section 2.11, "Using Oracle Database Lite Samples"

■ Section 2.12, "Limitations of the Oracle Database Lite Engine"

2.1 Oracle Lite Database Overview
The Oracle Lite database is compliant to the SQL92 standard and compatible to Oracle
databases. In addition, it is compliant to the ACID requirements for transaction
support. Because it is a small database specifically designed for a client device, it has a
small footprint and easy to administer. The Oracle Lite database can be installed on the
following platforms: Linux, UNIX, Windows (Win32) and WinCE platforms.

You can use the Oracle Lite database either with the Mobile client and use
synchronization to replicate data between the client and the Oracle database or you
can embed the Oracle Lite database within an independent application of your own
design. Either way, you use a small database that contains the client data—known as
the Oracle Lite database. Most of the data is stored in a file with an ODB extension;
any BLOB objects—either binary or character—and the indexes are stored in a file with
an OBS extension. The Oracle Lite database exists solely to store and retrieve the user
data specific to this device. It is not a replication of the entire Oracle database.

Because BLOB data and indexes are stored in an OBS file, there is no limit for BLOB
data or indexes. The limitation for BLOB data and indexes is the space limitations of
the operating system or 16 terabytes. There still exists a 4 GB limitation for the ODB

Creating and Managing the Database for a Mobile Client

2-2 Oracle Database Lite Developer’s Guide

file; however, this is not as much of an issue now that BLOB data can be stored in the
OBS files.

Oracle Database Lite creates all ODB and OBS files with an automatic name and
assigns a data source name (DSN). The DSN is used to connect to the database using
ODBC, JDBC or ADO.NET APIs. In order to make the connection, you must know the
DSN name for your ODB file. When you install the Mobile Development Kit, a default
database is installed with database name of polite.odb and DSN name of polite.
However, when you synchronize, an Oracle Lite database is created for each
publication (under a directory named after each user). For details on the name and
location of the client Oracle Lite database, see Section 2.2, "Synchronizing or Executing
Applications on the Mobile Client" in the Oracle Database Lite Administration and
Deployment Guide. The DSN for these ODB files is a combination of the username
followed by the ODB name.

The Oracle Lite database is an RDBMS that supports ODBC, JDBC, ADO.NET and
SODA interfaces. SODA is an Oracle Database Lite specific C++ object API created to
access the Oracle Lite database. SODA provides access to SQL as well as
object-oriented functionality. See Section 2.4, "Data Access APIs" for more information
on each language.

2.2 Creating and Managing the Database for a Mobile Client
When you use the Mobile client and Mobile Server to replicate data between the
back-end Oracle database and your Mobile device, a small Oracle Lite database (ODB
file) is created on your Mobile device to contain the data—that is stored in tables
known as snapshots. The snapshot tables are used to track the modifications that the
client makes on the data, which is then replicated during the synchronization process
to the back-end database. All of this activity is transparent to the client. Your
application queries and modifies data using SQL as if interacting with any Oracle
database.

The Oracle Lite database for the Mobile client is automatically created on the first
synchronization request. In addition, the data is replicated and updated with the data
on the Oracle database automatically for you. See Section 3.3, "What is The Process for
Setting Up a User For Synchronization?" for techniques that can be used to create
publication items on the Mobile Server, which then automatically creates snapshots on
the client when you synchronize with the database.

Note: If you have been using the Oracle Lite database prior to the
10.3 release, you can upgrade your database to remove all BLOB data
from within it and transfer the BLOB objects to OBS files by using the
defragdb utility, which is documented in Section 3.6,
"Defragmentation and Reducing Size of the Client Database" in the
Oracle Database Lite Administration and Deployment Guide.

Note: For details on the name and location of the Oracle Lite
database for the Mobile client, see Section 2.2, "Synchronizing or
Executing Applications on the Mobile Client" in the Oracle Database
Lite Administration and Deployment Guide.

Creating and Managing the Database in an Embedded Application

The Oracle Database Lite RDBMS 2-3

2.3 Creating and Managing the Database in an Embedded Application
When you want to create your own application that does not use the formal Mobile
client model and is installed on its own, with an embedded Oracle Lite database as the
storage vehicle for your application, perform the following:

■ Section 2.3.1, "Install Oracle Database Lite Runtime"

■ Section 2.3.2, "Creating the Default Starter Oracle Lite Database for an Embedded
Application"

■ Section 2.3.3, "Creating a Unique Oracle Lite Database for an Embedded
Application"

■ Section 2.3.4, "Creating Users for Your Embedded Oracle Lite Database"

■ Section 2.3.5, "Packaging Your Embedded Application With the Oracle Database
Lite Runtime"

2.3.1 Install Oracle Database Lite Runtime
In order to create the Oracle Lite database and embed it into your application, you
must include not only the Oracle Lite database, but certain DLLs in your application.
In order to develop applications, you must install the Mobile Development Kit. See
Section 2.3, "Installing Oracle Database Lite" in the Oracle Database Lite Getting Started
Guide for full details.

2.3.2 Creating the Default Starter Oracle Lite Database for an Embedded Application
If you want to create an application that uses a small file-based database, you can
develop your application around an Oracle Lite database. When you installed the
Mobile Development Kit, the following was created automatically for you:

1. An ODBC data source name (DSN) POLITE and a starter database called
POLITE.ODB are created. The location of the new database for the DSN POLITE is
<ORACLE_HOME>\Mobile\Sdk\oldb40.

2. A default user named SYSTEM is created when the starter database is created. This
user contains all database privileges and has a password of MANAGER.

You can develop your application to store and retrieve any information in the database
using any of the APIs listed in Section 2.4, "Data Access APIs".

2.3.3 Creating a Unique Oracle Lite Database for an Embedded Application
If you do not want to use the default Oracle Lite database, described in Section 2.3.2,
"Creating the Default Starter Oracle Lite Database for an Embedded Application", then
you can create your own database file. First, create a data source name (DSN) for the
database and then create the database itself, as described in the following sections:

■ Section 2.3.3.1, "Creating a Data Source Name with ODBC Administrator"

■ Section 2.3.3.2, "Creating a New Oracle Lite Database for the Embedded
Application"

■ Section 2.3.3.3, "Connecting to Your New Oracle Lite Database"

2.3.3.1 Creating a Data Source Name with ODBC Administrator
The data source name (DSN) points to the physical location of the ODB file. The DSN
is used when creating the Oracle Lite database (ODB) file. How you create the DSN is
platform-dependent, as described in the following sections:

Creating and Managing the Database in an Embedded Application

2-4 Oracle Database Lite Developer’s Guide

■ Section 2.3.3.1.1, "Creating DSN on a Windows System"

■ Section 2.3.3.1.2, "Creating DSN on a LINUX System"

2.3.3.1.1 Creating DSN on a Windows System Create the DSN on a Windows system
through the Microsoft ODBC Administrator, which is a tool that manages the
ODBC.INI file and associated registry entries in Windows 2000/XP. Within this tool,
add the data source name for your ODB file and specify the database file you want to
dedicate as the default for the data source name.

The ODBC.INI file is available in Windows under %WINDIR% and in Linux under
$OLITE_HOME/bin. For the Linux platform, you must have write permissions on the
directory where this is located to be able to modify them.

For more information on DSN properties, see Table 2–1 and Table 2–2.

2.3.3.1.2 Creating DSN on a LINUX System In order to create a DSN on a LINUX platform,
add the DSN in the ODBC.INI file. In this file, add the DSN in its own section, where
the section name is the DSN name.

The ODBC.INI file is available in Windows under %WINDIR% and in Linux under
$OLITE_HOME/bin. For the Linux platform, you must have write permissions on the
directory where this is located to be able to modify them.

For example, the following ODBC.INI example contains two DSN configurations:

■ The Polite DSN configuration is for a single Oracle Lite database installed on the
Mobile client.

■ The Politecl DSN configuration describes a multi-user service DSN, as shown
with the ServerHostName and ServerPortNumber elements. This service is
described further in Section 2.5, "Oracle Database Lite Multi-User Service".

[Polite]
Description=Oracle Lite 40 Data Source
Data_Directory=/home/olite
Database=polite
IsolationLevel=Read Committed
Autocommit=Off
CursorType=Forward Only

[Politecl]
Description=Oracle Lite 40 Data Source
Data_Directory=/home/olite
ServerHostName=localhost
ServerPortNumber=1160
Database=polite
IsolationLevel=Read Committed
Autocommit=Off
CursorType=Static

The default port number is 1160.

Note: The name of the ODB file is used in the next step:
Section 2.3.3.2, "Creating a New Oracle Lite Database for the
Embedded Application". For more information on the ODBC
Administrator, and for instructions on creating a data source name
using the tool, refer to Appendix A.7, "ODBC Administrator and the
Oracle Database Lite ODBC Driver".

Creating and Managing the Database in an Embedded Application

The Oracle Database Lite RDBMS 2-5

The parameters that you can use are listed in Table 2–1:

Table 2–1 POLITE.INI DSN Parameters

DSN Parameter Description

Description An optional description for the data source. Use only for Windows
environment.

Data Directory The path to the data directory where the database resides. This is an
existing path.

Database Oracle Database Lite database name to be created. Do not include
the .ODB extension.

Default Isolation
Level

Determines the degree to which operations in different transactions
are visible to each other. For more information on the supported
isolation levels, refer to Section 15.2, "What Are the Transaction
Isolation Levels?" for more information. The default level is Read
Committed. Other options are Repeatable Read, Single
User, and Serializable.

Autocommit Commits every database update operation in a transaction when
that operation is performed. Auto-commit values are Off and On.
The default value is Off.

■ On: DML and DDLs are automatically committed.

■ Off: An application has to explicitly issue the transaction
commit or rollback commands.

Note: In the Microsoft ODBC SDK, the ODBC driver defaults to
auto-commit mode. However, the default for Oracle Database Lite
is manual-commit mode. In this environment, if you execute
SQLEndTrans / SQLTransact call with SQL_COMMIT option using
the ODBC driver, you receive a SQL_SUCCESS, because ODBC
believes that auto-commit is on. However, no commit actually
occurs, because ODBC transfers the transaction to Oracle Database
Lite, whose default is manual-commit. You must configure the
Microsoft ODBC Driver Manager to transfer control of the
SQLEndTrans / SQLTransact API call to Oracle Database Lite by
explicitly setting autocommit to OFF in ODBC. When you do this,
ODBC does not try to autocommit, but gives control of the
transaction to Oracle Database Lite.

To set auto-commit to off, execute either the SQLSetConnectAtrr
or SQLSetConnectOption method with SQL_AUTOCOMMIT_OFF
as the value of the SQL_AUTOCOMMIT option. Then, the
SQLEndTrans / SQLTransact calls will commit as defaulted
within Oracle Database Lite. Thus, if you want auto-commit on,
turn it on only within Oracle Database Lite.

Creating and Managing the Database in an Embedded Application

2-6 Oracle Database Lite Developer’s Guide

If your DSN connects to a multi-user service—see Section 2.5, "Oracle Database Lite
Multi-User Service"—then the DSN entries have the following additional parameters:

2.3.3.2 Creating a New Oracle Lite Database for the Embedded Application
To create a new Oracle Lite database, use the CREATEDB command-line utility
providing the DSN name, the database name, and the system user password, as
follows:

CREATEDB myDSN myDBname sysPwd

For example, if the name of the DSN is POLITE, the ODB name is myDB, and the
system user password is MANAGER:

CREATEDB polite mydb manager

See Section A.2, "CREATEDB" for more information.

The new database file is located in the <ORACLE_HOME>\Mobile\Sdk\oldb40
directory. For ease of maintenance, it is recommended that you use one database
directory for all of your Oracle Lite databases.

Cursor Type ■ Forward Only: Default. A non-scrollable cursor which only
moves forward but not backward through the result set. As a
result, the cursor cannot go back to previously fetched rows.

■ Dynamic: Capable of detecting changes to the membership,
order, or values of a result set after the cursor is opened. If a
dynamic cursor fetches rows that are subsequently deleted or
updated by another application, it detects those changes when
it fetches those rows again.

■ Keyset Driven: Does not detect change to the membership or
order of a result set, but detects changes to the values of rows
in the result set.

■ Static: Does not detect changes to the membership, order or
values of a result set after the cursor is opened. If a static cursor
fetches a row that is subsequently updated by another
application, it does not detect the changes even if it fetches the
row again.

See Section 15.4, "Supported Combinations of Isolation Levels and
Cursor Types" for details on the restrictions when combining cursor
types and isolation levels.

Table 2–2 DSN Configuration Parameters for Multi-User Service on LINUX

Parameter Description

ServerHostName Provide the server machine hostname or IP address where the
database service is running.

ServerPortNumber The port number where the database service is listening for
incoming requests. The default port number is 1160.

ServerDSN The server-side DSN. Thus, the client DSN name on the client
machine can be different from the DSN on the server mahcine.
This is required only if the client and server machines are not the
same and the Database Directory and Database
parameters are not required.

Table 2–1 (Cont.) POLITE.INI DSN Parameters

DSN Parameter Description

Creating and Managing the Database in an Embedded Application

The Oracle Database Lite RDBMS 2-7

2.3.3.3 Connecting to Your New Oracle Lite Database
Connect to the file-based Oracle Lite starter database using your application or mSQL,
which is a command line interface. See Section A.1, "The mSQL Tool" for full details.

When connecting to the starter database from an ODBC application, use the default
ODBC DSN POLITE. To connect to the POLITE database using mSQL with SYSTEM
user, MANAGER password, and the mydsn data source name, perform the following:

C:>msql system/manager@jdbc:polite:mydsn

You can replace mydsn with a previously defined ODBC data source name. To connect
to the default DSN POLITE, the mSQL statement would be as follows:

C:>msql system/manager@jdbc:polite:polite

2.3.4 Creating Users for Your Embedded Oracle Lite Database
A user is not a schema. When you create a user, Oracle Database Lite creates a schema
with the same name and automatically assigns it to that user as the default schema.
You can access database objects in the default schema without prefixing them with the
schema name.

Users with the appropriate privileges can create additional schemas by using the
CREATE SCHEMA command, but only the user can connect to the database. You cannot
connect to the database using the schema name. These schemas are owned by the user
who created them and require the schema name prefix in order to access their objects.

When you create a database using the CREATEDB utility or the CREATE DATABASE
command, Oracle Database Lite creates a special user called SYSTEM, which has all
database privileges.

To access data and perform operations in another user schema, a user must grant you
DBA or ADMIN privileges. Alternatively, the user can access data with the user name
SYSTEM, as this username automatically holds DBA and ADMIN privileges.

You can create multiple users in your Oracle Lite database for your embedded
application with the CREATE USER command. See the Oracle Database Lite SQL
Reference for information on how to manage your user through SQL commands.
However, if you are using Branch Office, then create the users with the Branch Office
Admin Tool, as described in Section 10.4.3, "Managing Branch Office Users" in the
Oracle Database Lite Administration and Deployment Guide.

Note: On WinCE, the mSQL utility is a GUI installed on your
platform.

Note: Review the Oracle Database Lite SQL Reference before using
the starter database to understand the SQL used to manage
information in Oracle Database Lite.

Note: For more information on the CREATEDB utility, see Section A.2,
"CREATEDB".

Note: Both username and passwords are limited to a maximum of 28
characters.

Creating and Managing the Database in an Embedded Application

2-8 Oracle Database Lite Developer’s Guide

While most information you need to understand about SQL and your Oracle Lite
database can be gathered from the Oracle Database manuals and the Oracle Database
Lite SQL Reference, the following sections help you understand concepts related
specifically to the Oracle Lite database.

■ Section 2.3.4.1, "Pre-Defined Roles"

■ Section 2.3.4.2, "Building and Populating Demo Tables"

2.3.4.1 Pre-Defined Roles
Oracle Database Lite combines some privileges into pre-defined roles for convenience.
In many cases it is easier to grant a user a pre-defined role than to grant specific
privileges in another schema. Oracle Database Lite does not support creating or
dropping roles. Following is a list of Oracle Database Lite pre-defined roles:

2.3.4.2 Building and Populating Demo Tables
Oracle Database Lite comes with a script called POLDEMO.SQL, which enables you to
build the same tables that are in your Oracle Lite default starter database
(POLITE.ODB).

You can use SQL scripts to create tables and schema, and to insert data into tables. A
SQL script is a text file, generally with a .SQL extension, that contains SQL commands.
You can run the following SQL script from the Mobile SQL prompt.

SQL> @<ORACLE_HOME>Mobile\DBS\Poldemo.sql

You can also enter:

SQL> START Poldemo.sql

Table 2–3 Pre-Defined Roles

Role Name Privileges Granted To Role

ADMIN Enables the user to create other users and grant privileges other than DBA
and ADMIN on any object in the schema:

CREATE SCHEMA, CREATE USER, ALTER USER, DROP USER, DROP
SCHEMA, GRANT, REVOKE

DBA Enables the user to issue the following DDL statements which otherwise can
only be issued by SYSTEM:

All ADMIN privileges, CREATE TABLE, CREATE ANY TABLE, CREATE
VIEW, CREATE ANY VIEW, CREATE INDEX, CREATE ANY INDEX, ALTER
TABLE, ALTER VIEW, DROP TABLE, DROP VIEW, and DROP INDEX.

RESOURCE The RESOURCE role grants the same level of control as the DBA role, but only
over the user’s own schema. The user can execute any of the following
commands in a SQL statement:

CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE CONSTRAINT,
ALTER TABLE, ALTER VIEW, ALTER INDEX, ALTER CONSTRAINT, DROP
TABLE, DROP VIEW, DROP INDEX, DROP CONSTRAINT, and GRANT or
REVOKE privileges on any object under a user's own schema.

General Note: Unlike the Oracle database server, Oracle Database
Lite does not commit data definition language (DDL) commands
until you explicitly issue the COMMIT command.

Creating and Managing the Database in an Embedded Application

The Oracle Database Lite RDBMS 2-9

2.3.5 Packaging Your Embedded Application With the Oracle Database Lite Runtime
In order to use the Oracle Lite database and embed it into your application, you must
include not only the Oracle Lite database, but certain DLLs in your application.
Perform the following:

1. Copy the following files from the Mobile Development Kit library, which is
located in ORACLE_HOME/Mobile/Sdk, into the directory in your PATH where
your application DLLs are located.

■ olite40.msb: Oracle Database Lite message file

■ oljdbc40.dll: JDBC JNI library

■ olobj40.dll: Oracle Database Lite object kernel

■ olod2040.dll: Oracle Database Lite ODBC driver

■ olsql40.dll: Oracle Database Lite SQL runtime library

■ olstddll.dll: Oracle Lite Common library

2. If you are using the Multi-User Service, copy olsv2040.exe and olsvmsg.dll
into your PATH where your application DLLs are located.

3. To use any Java program with Oracle Database Lite, make sure that the
olite40.jar file, which is installed in OLITE_HOME/bin, is in the application
CLASSPATH. If the Java program uses the multi-user service, also place this JAR
file in the SYSTEM CLASSPATH. This JAR file contains the JDBC driver for Oracle
Database Lite. Your environment must provide a Java Runtime Environment from
Sun, version JDK 1.4.2 version or higher.

4. If you want to support the mSQL command-line tool for querying and managing
the Oracle Lite database, then you must place the following files in the PATH:

■ msql.dll

■ msql.exe

■ msql.jar

5. Manage ODBC for creating the DSN and registering the ODBC driver. On Linux,
modify the ODBC.INI file. On Windows, perform the following:

a. To use Microsoft ODBC for the ODBC environment—including DSN creation
support—or to create and manage DSN names programmatically, place the
olad2040.dll in the PATH. This DLL provides a plug-in to
programmatically access the ODBC administration tool—odbcad32—that is
used to create DSNs.

b. Register the ODBC driver for the product in the Windows Registry, as follows:

KEY:HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI\Oracle Lite 40 ODBC
Driver
VALUE:32Bit = 1
VALUE:ApiLevel = 0
VALUE:ConnectFunctions = YYN
VALUE:Driver = <path to olod2040.dll>
VALUE:DriverODBCVer = 02.00
VALUE:SQLLevel = 0

Note: You do not need to include the .SQL file extension when
running the script.

Data Access APIs

2-10 Oracle Database Lite Developer’s Guide

VALUE:Setup = <path_to_olad2040.dll>
KEY:HKEY_LOCAL_MACHINE\Software\ODBC\ODBCINST.INI\ODBC DRIVERS
VALUE:Oracle Lite 40 ODBC Driver = Installed

6. Configure the POLITE.INI file and place it in the system Windows directory,
such as c:\winnt, as follows:

[All Databases]
NLS_LANGUAGE=ENGLISH
NLS_LOCALE=ENGLISH
DB_CHAR_ENCODING=Native
DATA_DIRECTORY=<default_directory_to_create_database_files>

2.4 Data Access APIs
To access the data within the ODB file from your application through one of the
following APIs:

■ For relational database development:

■ JDBC—See Section 2.4.1, "JDBC" for more information.

■ ODBC—See Section 2.4.2, "ODBC" for more information.

■ ADO.NET—See Section 2.4.3, "ADO.NET" for more information.

Any interface that supports ODBC or JDBC data sources, such as ADO.Net,
can also be used to access Oracle Database Lite. The interfaces can be used
either independently or in combination.

■ For object and relational database development:

■ Simple Object Data Access (SODA)—See Section 2.4.4, "SODA" for more
information.

The following sections describe the different development interfaces that you can use
to store and retrieve data from the file-based Oracle Lite database:

■ Section 2.4.1, "JDBC"

■ Section 2.4.2, "ODBC"

■ Section 2.4.3, "ADO.NET"

■ Section 2.4.4, "SODA"

2.4.1 JDBC
The Java Database Connectivity (JDBC) interface specifies a set of Java classes that
provide an ODBC-like interface to SQL databases for Java applications. JDBC, part of
the JDK core, provides an object interface to relational databases. Oracle Database Lite
conforms to the JDBC 1.2 API specification standard.

Oracle Database Lite supports JDBC through an Oracle Database Lite Type 2 and Type
4 JDBC drivers that interpret the JDBC calls and pass them to Oracle Database Lite.
The Type 4 JDBC driver can only be used for the multi-user service only, as described
in Section 2.5, "Oracle Database Lite Multi-User Service".

Note: See Appendix G, "POLITE.INI Parameters" in the Oracle
Database Lite Administration and Deployment Guide for more
information on how to configure the POLITE.INI file.

Data Access APIs

The Oracle Database Lite RDBMS 2-11

For Mobile clients, all JDBC drivers are provided for you to use within the Oracle
Database Lite binaries. However, for embedded applications, you must include the
correct binaries when you package the application, as described in Section 2.3.5,
"Packaging Your Embedded Application With the Oracle Database Lite Runtime".

See Chapter 10, "JDBC Programming" for more information on using JDBC.

2.4.2 ODBC
The Microsoft Open Database Connectivity (ODBC) interface is a procedural, call-level
interface for accessing any SQL database, and is supported by most database vendors.
It specifies a set of functions that allow applications to connect to the database, prepare
and execute SQL statements at runtime, and retrieve query results.

Oracle Database Lite supports Level 3 compliant ODBC 2.0 and the ODBC 3.5 drivers
through Oracle Database Lite ODBC drivers.

For more information on ODBC, see the following:

■ Microsoft ODBC documentation.

■ The Oracle Database Lite ODBC sample application, as described in Section 2.11,
"Using Oracle Database Lite Samples".

■ Section 11.4.2.1, "Returning Multiple Rows in ODBC".

2.4.3 ADO.NET
The Oracle Database Lite ADO.NET Provider implements the Microsoft ADO.NET
specification. Use this programming interface to access Oracle Database Lite and
trigger data synchronization in .NET applications. The Oracle Database Lite ADO.NET
data provider supports both .NET and Compact .NET frameworks.

See Chapter 13, "Oracle Database Lite ADO.NET Provider" for a full description.

2.4.4 SODA
SODA is an interface for Oracle Database Lite development using C++. It provides
object-oriented data access using method calls, relational access using SQL and
object-relational mapping to bridge the gap between the two.

Object functionality is about three times faster than ODBC for simple operations. It
allows rich datatypes—such as arrays, object pointers, and standard SQL columns. A
programmer can store any data structure in the database and not worry about
relational design or performing joins.

A C++ developer can use the interface for executing SQL statements. The resulting
code is shorter and clearer than ODBC code. SQL queries can return objects, which can
be examined and modified directly through the object-oriented layer without calling
any additional SQL statements.

Finally, object-relational mapping enables the application to access relational data as if
it was an object hierarchy. This is essential for replicating rich data types or object
pointers to the Oracle database server.

For more information, see Chapter 12, "Using Simple Object Data Access (SODA) for
PocketPC Platforms".

Oracle Database Lite Multi-User Service

2-12 Oracle Database Lite Developer’s Guide

2.5 Oracle Database Lite Multi-User Service
If you want to have multiple users accessing a single entry point for the Oracle Lite
database, then use one of the following multi-user services:

■ For multiple clients accessing a single Mobile client that synchronizes with a
Mobile Server, use the Branch Office service. See Chapter 9, "Manage Your Branch
Office" in the Oracle Database Lite Administration and Deployment Guide for full
details.

■ For multiple clients executing an application that accesses the same database, set
up a listener to receive requests from each of these clients. See Section 2.5.1,
"Accessing the Multi-User Oracle Database Lite Database Service" for full details.

2.5.1 Accessing the Multi-User Oracle Database Lite Database Service
When you are using the embedded application approach, there may be a time when
you want to protect all of your data on a centralized machine and only allowing the
clients to access the information remotely. Figure 2–1 demonstrates centralizing your
Oracle Lite databases (ODB files) by installing them on a Windows or Linux host
machine. The Oracle Database Lite Multi-User Service facilitates the communication
between the remote application clients by starting the multi-user service, which opens
the designated ports, and then translates the DSNs to the appropriate database.

Figure 2–1 Diagram of Multi-User Service

ODB file:
Oracle Lite
Database

ODB file:
Oracle Lite
Database

ODB file:
Oracle Lite
Database

Oracle Database Lite
Multi-User Service

TCP/IP port opened
 by the MU listener

Windows or Linux
machine that hosts the

Multi-User Service

ClientClientClientClient

Client applications
use one of the

Oracle Lite drivers:
Type 2 MU or Type 4 JDBC

drivers or the client
ODBC driver

Oracle Database Lite Engine

Application

Oracle Lite
Driver

Application

Oracle Lite
Driver

Application

Oracle Lite
Driver

Application

Oracle Lite
Driver

Oracle Database Lite Multi-User Service

The Oracle Database Lite RDBMS 2-13

The Multi-User Service enables you to use up to sixty-four concurrent client
connections, each of which can connect to up to five ODB database files on the remote
machine. All clients and server must install the same binary with the same NLS. The
server machine with the Multi-User Service and each of the clients can be installed on
either Windows or Linux platforms.

When you implement the remote data access for your embedded application, the flow
of events is as follows:

1. Remote client sends the connect request to the multi-user service.

The client connection can use the ODBC 2.0 client driver, the JDBC Type 2 MU
driver, or the JDBC Type 4 driver. In addition, the client provides the following in
the connection string: remote host and port where the multi-user service is
listening for incoming calls and the DSN of the Oracle Lite database (ODB file)
where the data is stored. The default port number is 1160.

2. Multi-user service receives incoming call with the DSN from the remote client.

3. The multi-user service parses the DSN name and completes the request by
connecting to the Oracle Lite database that maps to the DSN name.

The following sections describe how to set up the multi-user Oracle Database Lite
database service:

■ Section 2.5.1.1, "Administration for the Multi-User Service on the Windows
Platform"

■ Section 2.5.1.2, "Administration for the Multi-User Service on the Linux Platform"

■ Section 2.5.1.3, "Debugging the Multi-User Service"

■ Section 2.5.1.4, "Creating DSNs"

■ Section 2.5.1.5, "Accessing the Database"

■ Section 2.5.1.6, "Verifying the Connection Using mSQL"

2.5.1.1 Administration for the Multi-User Service on the Windows Platform
The following sections describe how to install, start, stop and query the multi-user
service on Windows:

■ Section 2.5.1.1.1, "Installation and Configuration on Windows"

■ Section 2.5.1.1.2, "Starting the Multi-User Service on Windows"

■ Section 2.5.1.1.3, "Stopping the Multi-User Service on Windows"

■ Section 2.5.1.1.4, "Querying the Multi-User Service on Windows"

2.5.1.1.1 Installation and Configuration on Windows To install and configure the Oracle
Database Lite multi-user service, perform the following steps:

1. Ensure that you install the olsv2040.exe in the following directory.

<OLITE_HOME>\Mobile\Sdk\bin

If not already available, re-install the MDK to retrieve the component. A sample
<OLITE_HOME> location is C:\Olite.

Note: This directory must also be included in your system PATH.

Oracle Database Lite Multi-User Service

2-14 Oracle Database Lite Developer’s Guide

2. To install the service, start the Command Prompt and enter the following
command.

olsv2040.exe /install [/account=AccountName][/password=ValidPassword]
 [/wdir=WorkingDirectory] [/port=ServicePort]

where the optional parameters can be as follows:

■ AccountName: Provide either the DomainName\UserName or .\UserName.

■ ValidPassword: If you specify an account, but don't want to give out the
password in command prompt during service installation. You can provide
the password to the "Log On" page of "Oracle Lite Multiuser Service
Properties" dialog box which can be found in Services.

■ WorkingDirectory: If you use ’.’ in SQL scripts that load Java classes, you
must specify a working directory.

■ ServicePort: The default port number is 1160.

3. If you are using Java Stored Procedures, then perform the following to set up the
environment for Java Stored Procedures:

a. If you have JDK, which should be a minimum of version 1.4.2, installed on
your PC, ensure that the system PATH variable includes the following:

<JDK_HOME>\bin
<JDK_HOME>\jre\bin
<JDK_HOME>\jre\bin\hotspot

For example, the <JDK_HOME> directory could be C:\jdk1.4.2.

b. If you have JRE, which should be a minimum of version 1.4.2, installed on
your PC, ensure that the system PATH variable includes the following:

<JRE_HOME>\bin
<JRE_HOME>\bin\hotspot

For example, the <JRE_HOME> directory could be C:\Program
Files\JavaSoft\JRE\1.4.2

c. Ensure that your system CLASSPATH variable includes the following:

<OLITE_HOME>\bin\Olite40.jar and '.'

4. You may change the startup type from the Windows NT service console. Highlight
the Oracle Database Lite Multi-User Service and select Properties. When required,
change the startup type to manual. The property also contains startup parameters,
but has not been tested.

5. Reboot your PC.

2.5.1.1.2 Starting the Multi-User Service on Windows The Oracle Database Lite Multi-User
Service can be started in many ways. By default, the service property "Startup Type" is
automatic; thus, the service is started every time you reboot the machine. If you
modify the "Startup Type" to "Manual", then you start Oracle Lite multi-user service by
entering any one of the following startup commands from the Command Prompt:

Note: JRE does not include the Java compiler. Therefore, other
attempts to load a Java source into the database such as the CREATE
JAVA SOURCE command and the loadjava utility will fail.

Oracle Database Lite Multi-User Service

The Oracle Database Lite RDBMS 2-15

■ olsv2040.exe /start

■ net start "Oracle Lite Multiuser Service"

2.5.1.1.3 Stopping the Multi-User Service on Windows To stop the multi-user service, use
one of the following commands:

■ olsv2040.exe /stop

■ net stop "Oracle Lite Multiuser Service"

2.5.1.1.4 Querying the Multi-User Service on Windows You can query the multi-user status
for the following details:

■ current status

■ current startup parameters

■ configuration

■ installed startup parameters

Issue the following command to see these details:

olsv2040.exe /query

The results of this command are as follows:

OliteService reports the following status:
 The service is running...
 port= 1160
 wdir = C:\WINDOWS\SYSTEM32

The current status of Oracle Lite Multiuser Service:
 Current State : SERVICE_RUNNING
 Acceptable Control Code : (0x1) SERVICE_ACCEPT_STOP

The configuration of Oracle Lite Multiuser Service:
 Service Type : (0x10) SERVICE_WIN32_OWN_PROCESS
 Start Type : SERVICE_AUTO_START
 Error Control : SERVICE_ERROR_NORMAL
 Binary Path : C:\Oracle\product\Mobile\Sdk\bin\olsv2040.exe
 Display Name : Oracle Lite Multiuser Service
 Start Name : LocalSystem

Installed Service startup parameters
 port = 1160
 wdir = \%WINDIR%\SYSTEM32

where the port number is 1160 and the working directory is C:\WINDOWS\SYSTEM32.
The service is installed under the LocalSystem account, where the startup
parameters for installation are port = 1160 and working directory =
\%WINDIR%\SYSTEM32. In addition, the Start Type is SERVICE_AUTO_START and
the binary path as C:\Oracle\product\Mobile\Sdk\bin\olsv2040.exe,
which is where you installed the Oracle Lite Multi-User Service.

You can also set the default for the service port and working directory by modifying
the SERVICE_PORT and SERVICE_WDIR parameters in the polite.ini file.
However, if you do so, then it overrides any of the command-line options for port and
working directory.

Oracle Database Lite Multi-User Service

2-16 Oracle Database Lite Developer’s Guide

2.5.1.2 Administration for the Multi-User Service on the Linux Platform
The following sections describe how to start, stop and query the multi-user service on
Linux:

■ Section 2.5.1.2.1, "Starting and Stopping the Multi-User Service on Linux"

■ Section 2.5.1.2.2, "Querying the Multi-User Service on Linux"

2.5.1.2.1 Starting and Stopping the Multi-User Service on Linux The Oracle Database Lite
Multi-User Service can be started or stopped with the olsv executable. To see all of
the options, execute olsv -help, which displays the following:

$ olsv -h
Usage: olsv [option]
Options are:
-start start the server as daemon
-stop | -s stop the server
-debug | -d start the server as console app for debugging
-query | -q get the server status
-kill | -k equivalent to kill -s SIGKILL PID
-port | -p PORT execute the server on the specified port——default port is 10000
-wdir | -w DIR run/debug the server in the specified dir
-help | -h display this message
if no option specified, -start by default

To stop the multi-user service, use the following command:

olsv -stop

2.5.1.2.2 Querying the Multi-User Service on Linux You can query the multi-user status
with olsv -query which provides the following information:

■ process id (PID)

■ environment variables

■ current status

Issue the following command to see these details:

olsv -query

The results of this command are as follows:

Oracle Lite Multiuser Server is running, PID = 2619
--
Environment:
TERM=xterm
SHELL=/bin/csh
OLITE_HOME=/scratch/myuser/oracle/OraHome/mobile/sdk

Note: When you execute the Multi-User Service with the /debug
option, then the result of the current status from the /query shows
that the service is stopped. Since the /debug option is executed in a
console, the Service Control Manager does not know that the service is
running.

Note: There is no need to install this service on Linux.

Oracle Database Lite Multi-User Service

The Oracle Database Lite RDBMS 2-17

JDKDIR=/usr/local/packages/jdk14
MOBILE_CLIENT=/scratch/myuser/mobileclient
USER=myuser
LD_LIBRARY_
PATH=/usr/local/packages/jdk14/jre/lib/i386:/usr/local/packages/jdk14/jre/lib/i386
/server:/scratch/myuser/olite/lib
HOSTTYPE=i386-linux
JAVA_HOME=/usr/local/packages/jdk14
LANG=en_US.UTF-8
HOME=/home/myuser
OSTYPE=linux
LOCAL_PACK=/usr/local/packages/icc_remote
JAVA13_HOME=/usr/local/packages/jdk14
VENDOR=intel
MACHTYPE=i386
ORACLE_HOME=/scratch/user/oracle/OraHome
CLASSPATH=.:/scratch
--
Status Summary:
Database Version: 10.3.0
Time Started: 11-27-2006 17:58:15
Listening Port: 10000
Total Connections: 0
Current Connections: 0
No errors encountered

You can also set the default for the service port and working directory by modifying
the SERVICE_PORT and SERVICE_WDIR parameters in the polite.ini file.
However, if you do so, then it overrides any of the command-line options for port and
working directory.

2.5.1.3 Debugging the Multi-User Service
If the service the does not start, debug the service using the following method:

1. Edit the POLITE.INI file, which is available in Windows under
%WINDIR%\POLITE.INI and in Linux under $OLITE_HOME/bin, to add the
following entries in the [ALL_DATABASES] section:

■ OLITE_SERVER_TRACE=TRUE

■ OLITE_SERVER_LOG=<filename>. This is used for the LINUX platform
only.

2. Should the service fail, the Multi-User Service generates the olsv.log file in the
current working directory. Ensure that the PATH and CLASSPATH variables are
accurate and that the PATH includes the directory that contains jvm.dll.

3. Correct the cause and retry.

2.5.1.4 Creating DSNs
To access the database using an ODBC or VB application, you must create the DSN
enabled from the embedded connection. When you add a DSN using the ODBC
Administration tool, choose the Oracle Lite 40 ODBC Driver(Client), which creates a
client DSN. If you are executing the service on the same machine where the client
application is running, leave the Database Host Name, Database Port Number, and
Database Host DSN value empty. The remaining values must be included in the same
manner as the 'Oracle Lite ODBC Driver' DSN. If you start the service on a port other
than 1160, then you must specify the Database Port Number.

Move Your Client Data Between an Oracle Lite Database and an External File

2-18 Oracle Database Lite Developer’s Guide

2.5.1.5 Accessing the Database
To access the database, you need not make any changes to the ODBC or VisualBasic
application. The DSN automatically routes the request to the service through the
ODBC driver olcl2040.dll. For a JDBC application, change the URL for the connect
string, which is similar to the one used while connecting to the database using mSQL.

2.5.1.6 Verifying the Connection Using mSQL
Using the Command Prompt, verify the connection to the multi-user service in the
following ways:

Connect to A-DSN on a Windows local host on port 1160.

msql system/passwd@jdbc:polite@::a-dsn

Connect to A-DSN on the local host on port 1000.

msql system/passwd@jdbc:polite@:1000:a-dsn

Connect to A-DSN on a Windows local host on port 1160 using the Type4 JDBC driver.

msql system/passwd@jdbc:polite4@::a-dsn

For more information on JDBC and Oracle Database Lite, see Chapter 10, "JDBC
Programming". For details on mSQL, see Section A.1, "The mSQL Tool".

2.6 Move Your Client Data Between an Oracle Lite Database and an
External File

You can move data between an Oracle Lite database and an external file either through
programmatic APIs or the Load Utility (OLLOAD). The following sections describe both
methods:

■ Section 2.6.1, "Move Data Between an Oracle Lite Database and an External File
Using Programmatic APIs"

■ Section 2.6.2, "Oracle Database Lite Load Utility (OLLOAD)"

2.6.1 Move Data Between an Oracle Lite Database and an External File Using
Programmatic APIs

Using the Oracle Database Lite Load APIs, you can develop applications to load data
from an external file into a table in Oracle Database Lite, or to unload (dump) data
from a table in Oracle Database Lite to an external file. The details of the APIs and file
formats are provided in Appendix A.10.2, "Oracle Database Lite Load Application
Programming Interfaces (APIs)".

2.6.2 Oracle Database Lite Load Utility (OLLOAD)
The Oracle Database Lite Load Utility enables you to load data from an external file
into a table in Oracle Database Lite, or to unload (dump) data from a table in Oracle
Database Lite to an external file. For more information on the OLLOAD utility, see
Appendix A.10.1, "OLLOAD".

Note: Oracle Database Lite supports Type2 and Type4 JDBC drivers.
Type4 is a pure Java JDBC driver that communicates with the service
in the Oracle Database Lite network protocol.

Support for Linguistic Sort

The Oracle Database Lite RDBMS 2-19

2.7 Backing Up an Oracle Lite Database
For either the Mobile client or embedded solutions, you can back up the Oracle Lite
database either by using the backupdb utility or by copying the files to another
location.

Oracle Database Lite uses the ODB and OBS files with dependent log files that can be
backed up by copying to another location. Before any files can be copied, disconnect
all applications that access the database and shut down the multi-user service, if
running. Once that has been accomplished, execute the backupdb utility, which copies
the *.odb, *.obs, *.opw, and *.plg files to the filename of your choice to make a
backup of the database.

backupdb DSN|NONE DBName backup_filename

For full details, see Section A.6, "BACKUPDB".

2.8 Encrypting a Database
For either the Mobile client of embedded solutions, you can encrypt the Oracle Lite
database. Once encrypted, the data stored in the database files cannot be interpreted
by examining the files. A password is used to derive a 128-bit encryption key. Oracle
Database Lite uses the Advanced Encryption Standard (AES) encryption.

If you do not want to use AES encryption, then you can insert your own encryption
module to supplant AES; see Section 16.2, "Providing Your Own Encryption Module
for the Client Oracle Lite Database" for complete details.

For information on encrypting the database used by the Mobile client, see the
ENCRYPT_DB parameter in Appendix G, "POLITE.INI Parameters" in the Oracle
Database Lite Administration and Deployment Guide; for information on encrypting the
database used by an embedded application, see Section A.6, "BACKUPDB".

2.9 Discover Oracle Lite Database Version Number
Use the ODBINFO utility to discover the version number and volume identifier of the
Oracle Lite database. See Section A.7, "ODBC Administrator and the Oracle Database
Lite ODBC Driver" for full details.

2.10 Support for Linguistic Sort
Linguistic sort is a feature for the ASCII version of the Oracle Lite database. It
produces culturally acceptable order of strings for a specified language or collation
sequence. The ASCII version supports several code pages defined by single-byte 8-bit
encoding schemes. Each of these code pages is a super set of 7-bit ASCII, and the
additional accented characters necessary to support certain European languages are
included in the upper 128 bytes.

A new string comparison mechanism is provided that produces strings in a
linguistically correct order by mapping each collation element of a string to the
corresponding 8-bit value of the supported code page.

The only supported languages for linguistic sort are French, German, Czech and
XCzech. The collation sequence for these Oracle Lite databases are defined when you
specify the language in downloading the Mobile client in using the setup.exe. You can
also specify this with the NLS_SORT parameter.

Support for Linguistic Sort

2-20 Oracle Database Lite Developer’s Guide

All other languages use the BINARY collation sequence, which does not enable
linguistic sort.

2.10.1 Creating Linguistic Sort Enabled Databases
The linguistic sort capability must be enabled when the database is created using the
CREATEDB command line utility with the <collation_sequence> enabled.

The behavior of the ORDER_BY clause and the WHERE condition are determined by
how the NLS_SORT parameter is implemented. Binary sorting is the default setting,
and is used unless the <collation_sequence> parameter is set to use the linguistic
sort ordering rules.

NLSRT is not supported in the current version of Oracle Database Lite. Therefore,
NCHAR data type is not yet available.

2.10.2 How Collation Works
Collation refers to ordering of strings into a culturally acceptable sequence. A collation
sequence is a sequence of all collation elements from an alphabet from smallest
collation order to the largest. Once a collation sequence is given, orders of all strings
from the same alphabet are fixed. As such, the collation sequence encodes the
linguistic requirements on collation. A collation element is the smallest sub-string that
can be used by the comparison function to determine the order of two strings.

2.10.3 Collation Element Examples
Normally, a collation element is just one character. In binary sorting, only one
property, the code value that represents a character, is used. But in linguistic sorting,
usually three properties. The primary level of difference is the base character. The
secondary level of difference is for diacritical marks on a given base character. The
tertiary level of difference is for the case of a given character. Punctuation can function
as a fourth level of difference, but comparisons for punctuation occur last and are
made at the binary rather than the linguistic level. These are used for each collation
element. The following sections contain examples that demonstrate sorting priorities.

2.10.3.1 Sorting Normal Characters
This section lists a set of examples that describe how to sort normal characters.

Example 1
'a' < 'b'. There is a primary difference between them on the character level.

Example 2
'À' > 'a'. This difference occurs on the secondary level. Note that 'À'and 'a' are
considered "equal" on the primary level.

Example 3
'À' < 'à' in FRENCH but 'À' > 'à' in GERMAN. This difference on the tertiary level.
Note that 'À' and 'à' are considered being "equal" on the primary and secondary level.
Also note that the case convention may be different for different language.

Note: For more information on the CREATEDB utility, see Section A.2,
"CREATEDB".

Using Oracle Database Lite Samples

The Oracle Database Lite RDBMS 2-21

Example 4
'às' < 'at'. This is a difference on the primary level. This example shows the role of
difference levels: the lower level differences are ignored if there is a primary level
difference anywhere in the strings.

Example 5
'+data' < '-data' <'data' <'data-'. If strings are compared and present no
difference on the primary, secondary, or tertiary levels, they are compared for
punctuation.

2.10.3.2 Reverse Sorting of French Accents
Some languages, particularly French, require words to be ordered on the secondary
level according to the last accent difference. This behavior is known as French
secondary sorting or French accent ordering.

Example
'côte' < 'coté' in FRENCH but 'coté' < 'côte' in GERMAN. Note that the secondary
difference of 'e' and 'é' occurred later than those of 'ô' and 'o'.

2.10.3.3 Sorting Contracting Characters
There are some special cases where two or more characters in a group can function as a
single collation element. These types of collation elements are called 'contracting
characters' or 'group characters'. In these cases each of these characters properties are
assigned appropriate values.

Example
'h' < 'ch' < 'i' in XCZECH. Here 'ch' is assigned a primary property value which
differentiates it from 'h' and 'i', such that 'h' < 'ch' < 'i'. Note that 'ch' is treated as a
single character.

2.10.3.4 Sorting Expanding Characters
If a letter sorts as if it were a sequence of more than one letter, it is called an 'expanding
character'. For example, in German the sharp s (ß) is treated as if it were a string of two
characters 'ss' when comparing with other letters.

2.10.3.5 Sorting Numeric Characters
Only sorting of single digit characters from '0' to '9' is currently supported. For the
supported European languages a digit character is always sorted as greater than any
alphabetic character. For other languages this may be not the same. Other numeric
characters such as Roman numeric characters and counting sequences, such as "one",
"two", "three", are not supported at this time.

Example
'1' > 'z' in any European language, '1' < 'a' in LATVIAN. Note that this difference
occurs on the primary level.

2.11 Using Oracle Database Lite Samples
After you perform a complete installation of Oracle Database Lite, the samples are
available in your <ORACLE_HOME>\Mobile\Sdk directory. The tools, locations for
samples, and descriptions are listed in Table 2–4.

Using Oracle Database Lite Samples

2-22 Oracle Database Lite Developer’s Guide

The following sections provide instructions on how to use Oracle Database Lite
samples.

■ Section 2.11.1, "Executing the Visual Basic Sample Application"

■ Section 2.11.2, "Executing the ODBC Examples"

2.11.1 Executing the Visual Basic Sample Application
The Visual Basic Sample application example uses Visual Basic 5.0 or higher and
demonstrates how to develop a Visual Basic application with Oracle Database Lite. It
uses the ODBC DSN, POLITE. To use the AddNew, Update, and Delete macros, you
need a unique EMPNO column of the EMP table. This is the default condition when you
connect to the default database.

The following instructions for installing and running the Visual Basic sample
application assume that you have already installed Oracle Database Lite and Visual
Basic.

1. Section 2.11.1.1, "Open Visual Basic"

2. Section 2.11.1.2, "View the Sample Application Tables and Data"

3. Section 2.11.1.3, "Open the Sample Application"

4. Section 2.11.1.4, "View and Manipulate the Data in the EMP Table"

2.11.1.1 Open Visual Basic
Double-click the Visual Basic icon in your Visual Basic program group to open Visual
Basic.

Table 2–4 Sample File Directory

Tool Location of Sample Applications Description

Java <ORACLE_
HOME>\Mobile\Sdk\samples\jdbc

Demonstrates programming with JDBC.
See Chapter 10, "JDBC Programming"
for more information.

ODBC <ORACLE_
HOME>\Mobile\Sdk\samples\odbc
\win32\c_samples

Provides ODBC programs written in C.

Visual
Basic

<ORACLE_
HOME>\Mobile\Sdk\samples\odbc
\win32\update

Demonstrates the ease of querying tables
in Oracle Database Lite with Visual Basic
tools. See Section 2.11.1, "Executing the
Visual Basic Sample Application" for
more information.

MFS <ORACLE_
HOME>\Mobile\Sdk\samples\odbc
\win32\mfs

The MFS sample was documented as a
tutorial. See the MFS example used in
Chapter 19, "Tutorial for Building Mobile
Applications for Win32".

Note: Most examples use the data source name (DSN) POLITE. If
you need to drop and recreate, use the REMOVEDB and CREATEDB
utilities, which are documented in Section A.2, "CREATEDB" and
Section A.3, "REMOVEDB".

Using Oracle Database Lite Samples

The Oracle Database Lite RDBMS 2-23

2.11.1.2 View the Sample Application Tables and Data
Use the Visual Data Manager, which is available only with Visual Basic 5.0. If you are
using an earlier version of Visual Basic, then skip to Step 3.

1. From the Add-Ins menu, select Visual Data Manager.

2. In the VisData window, select Open Database from the File menu.

3. Select ODBC.

4. In the ODBC Logon dialog, enter values as described in Table 2–5.

5. Click OK. The Oracle Database Lite tables are displayed in the database window.
You can highlight a table and right click to open the table and display the records.

2.11.1.3 Open the Sample Application
1. To open the sample application, select Open Project from the File menu.

2. In the dialog box, navigate to the <ORACLE_
HOME>\Mobile\Sdk\samples\odbc\win32\update directory.

3. Select update.vbproj, and click Open.

4. Follow the instructions in readMe.txt in the same location to execute the
sample.

2.11.1.4 View and Manipulate the Data in the EMP Table
1. To view data in the EMP table:

■ Click Show to show the EMP table data.

■ Click Next to show the next record.

■ Click Previous to show the previous record.

2. To manipulate data in the EMP table, use the Add, Update, and Delete features.

2.11.2 Executing the ODBC Examples
The ODBC examples are located in <ORACLE_HOME>\Mobile\Sdk\Samples and
must be compiled using a C++ complier. To build them, use nmake.

There are five ODBC examples: odbctbl, odbcview, odbcfunc, odbctype, and
long. You use the POLITE DSN to execute these examples. The POLITE DSN is
automatically created during the Mobile Development Kit installation.

The first four examples have their own output windows listing the activity log.
Closing the current example window causes the next example to be run. The output
displayed in the example windows is also printed in the following log files:
odbctbl.log, odbcview.log, odbcfunc.log, odbctype.log. The long
example output is collected in the output file: long.out.

Table 2–5 ODBC Logon Dialog Description

Field Name Value

DSN POLITE

UID SYSTEM

PW Enter at least one character

Database POLITE

Using Oracle Database Lite Samples

2-24 Oracle Database Lite Developer’s Guide

The following sections describe the functionality of the samples:

■ Section 2.11.2.1, "ODBCTBL"

■ Section 2.11.2.2, "ODBCVIEW"

■ Section 2.11.2.3, "ODBCFUNC"

■ Section 2.11.2.4, "ODBCTYPE"

■ Section 2.11.2.5, "LONG"

2.11.2.1 ODBCTBL
This is an ODBC SQL table example, which shows how to manipulate tables using the
ODBC API. It creates the EMP table with columns ID, NAME, START_DATE, SALARY.
After creation, it populates this table with data, performs an update on the salary
column, selectively deletes some rows, then selects from the resulting table and shows
the results of the fetch operation. At the end, the EMP table is dropped.

2.11.2.2 ODBCVIEW
This is an ODBC SQL view example, which demonstrates how to manipulate views
using the ODBC API. It creates the EMP table and the HIGH_PAID_EMP view, selecting
the full name (using the CONCAT scalar function), HIRE_DATE and SALARY from the
EMP table. Then, the example populates the EMP table and selects from the HIGH_
PAID_EMP view to show the populated data. The salary column of EMP is updated,
some rows are delete, and a select from HIGH_PAID_EMP is issued to demonstrate
how the changes are reflected in the view. Finally, the view and the table are dropped.

2.11.2.3 ODBCFUNC
This is an ODBC SQL scalar functions example, which shows you how to use scalar
functions in the ODBC API. It creates table EMP, populates it with the data, then
performs a select on ID, FULL_NAME from EMP. When it calculates the full name, it
uses the ODBC scalar function CONCAT—with last and first names as arguments. The
example updates the table, converting the last name to uppercase and first name to
lowercase for IDs less than three using ODBC scalar functions UCASE and LCASE. The
new data is selected and displayed again. Finally, the table EMP is dropped.

2.11.2.4 ODBCTYPE
This is ODBC SQL types example, which shows you how to manipulate different data
types using the ODBC API. This test creates the EMP table, populates it with data,
selects all the rows and displays the result. However, the columns are bound
differently from the previous tests. First, it calls SQLNumResultCols to find the
number of result columns. Then, for each result column, it calls SQLDescribeCol to
retrieve all of the information about that column, such as column name, column name
length, column type, column length, column scale, and so on. This information is used
to bind the column. Thus, you can see how you can retrieve the type information from
the database using the ODBC API.

2.11.2.5 LONG
This example exercises the basic read/write functions of SQL LONG VARCHAR. It first
drops, then creates the LONG_DATA table with one LONG VARCHAR column and inserts
the data into the table. For each row the data is put in frames, where each frame
represents a buffer of long varchar data (of length 4096). The example uses
SQLParamData and SQLPutData to send each frame to populate the row. Then,
issues a select to fetch the rows and read long varchar data from the table. For each

Limitations of the Oracle Database Lite Engine

The Oracle Database Lite RDBMS 2-25

row, the data is also read in frames, using SQLGetData until SQL_NO_DATA_FOUND is
returned. These actions are logged into the long.out file.

2.12 Limitations of the Oracle Database Lite Engine
Currently, the Oracle Database Lite engine cannot sort any row that exceeds 4040 bytes
in length. If the selected columns exceed this length, then the database engine issues
an error. Therefore, you cannot recover queries that use the UNION operation where
both select clauses sort intermediate results, where the returned results are long rows
with size greater than 4040 bytes.

Limitations of the Oracle Database Lite Engine

2-26 Oracle Database Lite Developer’s Guide

Synchronization 3-1

3
Synchronization

The Oracle Lite database contains a subset of data stored in the Oracle database. This
subset is stored in snapshots in the Oracle Lite database. Unlike a base table, a
snapshot keeps track of changes made to it in a change log. Users can make changes in
the Oracle Lite database and can synchronize them with the Oracle database.

The following sections describe how synchronization functions between Oracle
Database Lite and an Oracle database using the Mobile Server. This chapter discusses
how you can programmatically initiate the synchronization both from the client or the
server side.

■ Section 3.1, "How Does Synchronization Work?"

■ Section 3.2, "Automatic Synchronization Overview"

■ Section 3.3, "What is The Process for Setting Up a User For Synchronization?"

■ Section 3.4, "Creating Publications Using Oracle Database Lite APIs"

■ Section 3.5, "Client Device Database DDL Operations"

■ Section 3.6, "Customize the Compose Phase Using MyCompose"

■ Section 3.7, "Customize What Occurs Before and After Synchronization Phases"

■ Section 3.8, "Initiating Client Synchronization With Synchronization APIs"

■ Section 3.9, "Understanding Your Refresh Options"

■ Section 3.10, "Resuming an Interrupted Synchronization"

■ Section 3.11, "Synchronizing With Database Constraints"

■ Section 3.12, "Parent Tables Needed for Updateable Views"

■ Section 3.13, "Resolving Conflict Resolution with Winning Rules"

■ Section 3.14, "Manipulating Application Tables"

■ Section 3.15, "Facilitating Schema Evolution"

■ Section 3.16, "Set DBA or Operational Privileges for the Mobile Server"

■ Section 3.17, "Create a Synonym for Remote Database Link Support For a
Publication Item"

■ Section 3.18, "Using the Sync Discovery API to Retrieve Statistics"

■ Section 3.19, "Customizing Replication With Your Own Queues"

■ Section 3.20, "Deleting a Client Device"

■ Section 3.21, "Synchronization Performance"

How Does Synchronization Work?

3-2 Oracle Database Lite Developer’s Guide

■ Section 3.22, "Troubleshooting Synchronization Errors"

■ Section 3.23, "Datatype Conversion Between the Oracle Server and Client Oracle
Lite Database"

3.1 How Does Synchronization Work?
The following sections describe how synchronization works for Oracle Database Lite:

■ Section 3.1.1, "Synchronization Overview"

■ Section 3.1.2, "Automatic or Manual Synchronization"

■ Section 3.1.3, "How Updates Are Propagated to the Back-End Database"

3.1.1 Synchronization Overview
The full description of how synchronization works is in the "Managing
Synchronization" chapter in the Oracle Database Lite Administration and Deployment
Guide. Each component and its function is described in the administration guide. The
following graphic depicts these components for your reference:

Figure 3–1 Synchronization Architecture

1. A synchronization is initiated on the Mobile client either by the user or from
automatic synchronization. Note that the Mobile client may be a Windows
platform client or a PDA.

2. Mobile client software gathers all of the client changes into a transaction and the
Sync Client uploads the transaction to the Sync Server on the Mobile Server.

3. Sync Server places the transaction into the In-Queue.

Note: When packaging your application, you can specify if the
transaction is to be applied at the same time as the synchronization. If
you set this option, then the transaction is immediately applied to the
application tables. However, note that this may not be scaleable and
you should only do this if the application of the transaction
immediately is important and you have enough resources to handle
the load.

In Queue

Database

Error Queue

Out Queue

Mobile Client

1. Synchronize
Client

Database (ODB)
Sync
Client

Sync
Server

Mobile Server

2. Upload
changes

E1

E2

E3

MGP

3. Place client
transaction in
the In Queue

7. MGP executes,
grabs the client

transaction 8. MGP applies
client

transaction to
application tables

9. MGP composes
updates destined

for the client

10. Updates for client
placed in Out Queue

**Any errors during
steps 7-10 are

placed in the
error queue.

4. Grab transaction
for client ODB

5. Download
changes

6. Execute changes
 against ODB

Steps 1 through 6 occur between
the Mobile Server and the client

Steps 7-10 occur between
the Mobile Server
and the Database

when the MGP executes

How Does Synchronization Work?

Synchronization 3-3

4. Sync Server gathers all transactions destined for the Mobile client from the
Out-Queue.

5. Sync client downloads all changes for client Oracle Lite database.

6. Mobile client applies all changes for client Oracle Lite database. If this is the first
synchronization, the Oracle Lite database is created.

7. All transactions compiled from all Mobile clients are gathered by the MGP out of
the In-Queue.

8. The MGP executes the apply phase by applying all transactions for the Mobile
clients to their respective application tables to the back-end Oracle database. The
MGP commits after processing each publication.

9. MGP executes the compose phase by gathering the client data into outgoing
transactions for Mobile clients.

10. MGP places the composed data for Mobile clients into the Out-Queue, waiting for
the next client synchronization for the Sync Server to gather the updates to the
client.

When we discuss how to perform the tasks associated with synchronization, refer back
to this graphic to discover what part of the synchronization process that we are
discussing.

3.1.2 Automatic or Manual Synchronization
In the past, all that was available was manual synchronization. That is, a client
manually requests a synchronization either through an application program executing
an API or by a user manually pushing the Sync button.

Currently, you can configure for synchronization to automatically occur under specific
circumstances and conditions. When these conditions are met, then Oracle Database
Lite automatically performs the synchronization for you without locking your
database, so you can continue to work while the synchronization happens in the
background. This way, synchronization can happen seamlessly without the client’s
knowledge.

For example, you may choose to enable automatic synchronization for the following
scenarios:

■ If you have a user who changes data on their handheld device, but does not sync
as often as you would prefer.

■ If you have multiple users who all sync at the same time and overload your
system.

Note: For information on what Oracle Lite database (ODB) files are
installed on the client, see Section 2.2, "Synchronizing or Executing
Applications on the Mobile Client" in the Oracle Database Lite
Administration and Deployment Guide.

Note: Within a publication, you can have one or more publication
items. You can define both manual and automatic publication items
within the same publication.

How Does Synchronization Work?

3-4 Oracle Database Lite Developer’s Guide

These are just a few examples of how automatic synchronization can make managing
your data easier, be more timely, and occur at the moment you need it to be uploaded.

The differences between the two types of synchronization are as follows:

Automatic synchronization is based on a different model than manual
synchronization. Automatic synchronization operates on a transactional basis. Thus,
when the conditions are correct, any new data transactions are uploaded to the server,
in the order of the specified priority for the data. In the manual synchronization
model, you can synchronize all data or use the selective sync option, where you can
detail only certain portions of the data to be synchronized. The selective sync option is
not supported in automatic synchronization, since we are no longer concerned with
synchronization of only a subset of data.

For more information on Automatic Synchronization, see Section 3.2, "Automatic
Synchronization Overview".

3.1.3 How Updates Are Propagated to the Back-End Database
The synchronization process applies client operations to the tables in the back-end
database, as follows:

1. The operations for each publication item are processed according to table weight.
The publication creator assigns the table weight to publication items within a
specific publication. This value can be an integer between 1 and 1023. For example,
a publication can have more than one publication item of weight "2" which would

Note: When a manual synchronization is requested by the client,
ALL publication items are synchronized at that time—including those
defined as manual and automatic synchronization. However, if an
automatic synchronization is currently executing, the manual
synchronization request is delayed until the automatic
synchronization completes. You can stop the automatic
synchronization to allow the manual synchronization to occur. After
the manual synchronization is finished, re-start the automatic
synchronization.

Table 3–1 Difference Between Automatic and Manual Synchronization

Manual Synchronization Automatic Synchronization

Initiation After the snapshot is set up, you can
initiate either by the user initiating
mSync or by an application invoking
one of the synchronization APIs.

All of the set up for automatic
synchronization is configured. Once
configured, it happens automatically,
so there is no synchronization API.

Configuration for automatic
synchronization can be defined
when you create the publication
item, publication or the platform.

Controlling
synchronization

Synchronization occurs exactly when
the user/application requests it.

Synchronization occurs without the
user being aware of it occuring. You
may have to manage
synchronization through the Sync
Control API if you have publications
that contain both manual and
automatic synchronization
publication items.

Automatic Synchronization Overview

Synchronization 3-5

have INSERT operations performed after those for any publication item of a lower
weight within the same publication. You define the order weight for tables when
you add a publication item to the publication. See Section 3.4.1.7.2, "Using Table
Weight" for more information.

2. Within each publication item being processed, the SQL operations are processed as
follows:

a. Client INSERT operations are executed first, from lowest to highest table
weight order.

b. Client DELETE operations are executed next, from highest to lowest table
weight order.

c. Client UPDATE operations are executed last, from highest to lowest table
weight order.

For details and an example of exactly how the weights and SQL operations are
processed, see Section 3.4.1.7.2, "Using Table Weight".

In addition, the order in which SQL statements are executed against the client Oracle
Lite database is not the same as how synchronization propagates these modifications.
Instead, synchronization captures the end result of all SQL modifications as follows:

1. Insert an employee record 4 with name of Joe Judson.

2. Update employee record 4 with address.

3. Update employee record 4 with salary.

4. Update employee record 4 with office number

5. Update employee record 4 with work email address.

When synchronization occurs, all modifications are captured and only a single insert is
performed on the back-end database. The insert contains the primary key, name,
address, salary, office number and email address. Even though the data was created
with multiple updates, the Synch Server only takes the final result and makes a single
insert.

3.2 Automatic Synchronization Overview
Automatic synchronization occurs in the background, so that the user does not have to
perform a synchronization; thus, the client appears continually connected to the
back-end database without user interaction. All modifications to each record are saved
in a log within the client Oracle Lite database. When you requested synchronization
manually, Oracle Database Lite locked the database while processing your request.
However, with automatic synchronization, it could be occurring while you are
performing other tasks to the Oracle Lite database.

When synchronization occurs, all of the modified records stored in the log are
uploaded to the server. In addition, any modified records from the server are
downloaded into the client Oracle Lite database. This occurs in the same manner as
manual synchronization. The only difference is when the synchronization is executed
and how the modified records are stored.

Note: This order of executing operations can cause constraint
violations. See Section 3.11, "Synchronizing With Database
Constraints" for more information.

Automatic Synchronization Overview

3-6 Oracle Database Lite Developer’s Guide

The following are details about automatic synchronization:

The following sections detail how you can configure for automatic synchronization:

■ Section 3.2.1, "Enable Automatic Synchronization at the Publication Item Level"

■ Section 3.2.2, "Enable/Disable Automatic Synchronization"

■ Section 3.2.3, "Define the Rules Under Which the Automatic Synchronization
Starts"

■ Section 3.2.4, "Enable the Server to Notify the Client to Initiate a Synchronization
to Download Data"

■ Section 3.2.5, "Notify Application on Completion of Automatic Synchronization
Cycle"

3.2.1 Enable Automatic Synchronization at the Publication Item Level
Automatic synchronization can be enabled at publication item level. It is only the
"enabled" publication items within a snapshot that can have automatic
synchronization. All other publication items use manual synchronization. See
Section 5.4, "Create a Publication Item" for details of how to enable synchronization in
a publication item using MDW or Section 3.4.1.3, "Create Publication Items" using the
API.

Within a publication, you can have one or more publication items. You can define both
manual and automatic synchronization publication items within the same publication.
However, if you have automatic synchronization enabled, then an automatic sync may
be occurring when the client asks for a manual synchronization. In this case, the
manual synchronization stops the automatic synchronization so that all snapshots are
synchronized. Automatic synchronization is restarted after the manual
synchronization completes.

If you want the manual synchronization to occur at that moment, you can stop the
automatic synchronization to allow the manual synchronization to occur. After the
manual synchronization is finished, re-start the automatic synchronization. You can
start and stop automatic synchronization either programmatically or through the client
Workspace. See Section 3.2.2, "Enable/Disable Automatic Synchronization" for full
details.

Table 3–2 Automatic Synchronization

Steps for Automatic Synchronization See the Following for Details

The developer enables the publication item to
use automatic synchronization.

Section 3.2.1, "Enable Automatic
Synchronization at the Publication Item Level"

The client can disable and enable automatic
synchronization through the client Workspace
or with the Sync Control API.

Section 3.2.2, "Enable/Disable Automatic
Synchronization"

You can configure under what rules the
automatic synchronization occurs.

Section 3.2.3, "Define the Rules Under Which
the Automatic Synchronization Starts"

The server can notify the client of data
waiting for download.

Section 3.19.3, "Selecting How/When to Notify
Clients of Composed Data"

The client application can request status of the
outcome of an automatic synchronization.

Section 3.2.5, "Notify Application on
Completion of Automatic Synchronization
Cycle"

Automatic Synchronization Overview

Synchronization 3-7

3.2.2 Enable/Disable Automatic Synchronization
Automatic synchronization is enabled by default if a publication is enabled for
automated synchronization. However, there may be a situation where you want to
disable this automated ability, as follows:

■ Enable/Disable—If you decide to disable the automatic synchronization; then,
even if you restart the client, automatic synchronization will not occur. Use
enable/disable for permanently disabling automatic synchronization.

■ Start/Stop—If you decide to stop automatic synchronization; then, if you restart
the client, automatic synchronization is restarted. Use start/stop for temporarily
stopping automatic synchronization while a manual synchronization occurs.

If you are using the mSync GUI to initiate a synchronization, the underlying code
performs the following for you:

1. Stops the automatic synchronization with the Sync Control API.

2. Initiates a manual synchronization with the programmatic API.

3. Starts the automatic synchronization with the Sync Control API.

However, if you are performing the synchronization programmatically with the
doSynchronize method, then you may need to perform the stop/start methods in your
application to ensure that automatic synchronization is not executing.

The following control APIs can be used to manage the automatic synchronization or
enable/disable automatic synchronization:

■ Section 3.2.2.1, "POLITE.INI Configuration to Enable/Disable Automatic
Synchronization"

■ Section 3.2.2.2, "Overview of the Start/Stop Methods from the Sync Control API."

■ Section 3.2.2.3, "C/C++ Sync Control APIs to Start/Stop Automatic
Synchronization"

■ Section 3.2.2.4, "C# Sync Control APIs to Start/Stop Automatic Synchronization"

■ Section 3.2.2.5, "JAVA Sync Control APIs to Start/Stop Automatic
Synchronization"

3.2.2.1 POLITE.INI Configuration to Enable/Disable Automatic Synchronization
The start and stop methods only control the automatic synchronization temporarily. To
fully disable automatic synchronization, so that it is not restarted when a device is
powered on, perform one of the following:

■ Enable/disable automatic synchronization using the Client Workspace. For details,
see Section 2.3.1.1.2 "Configuration Tab" in the Oracle Database Lite Administration
and Deployment Guide.

■ Enable/disable automatic synchronization in the polite.ini file. Set the
ENABLE parameter, which is a part of the SYNC_AGENT section, in the
polite.ini to Yes to enable and No to disable. This can also be accomplished
through the syncagent.exe UI. See the following sections for details: Section
F.3.2.14, "SYNC_AGENT" or Section 5.4.2, "Start, Stop, or Get Status for Automatic
Synchronization," which are located in the Oracle Database Lite Administration and
Deployment Guide.

Automatic Synchronization Overview

3-8 Oracle Database Lite Developer’s Guide

3.2.2.2 Overview of the Start/Stop Methods from the Sync Control API.
Stop/start automatic synchronization using the Sync Control API. The stop API has
one parameter for input, which is a timeout. You can supply one of the following
values for the timeout, which is a long that specifies a time in milliseconds to wait for
any current activity in the automatic synchronization to complete.

■ BG_STOP_TIMEOUT: A value in seconds that allows the automatic
synchronization process to complete before stopping the service. By default, this is
set to 5 seconds.

■ BG_KILL_AGENT: A value of -1 that makes the automatic synchronization service
stop immediately, even if it is in the middle of a synchronization. If an automatic
synchronization is in process, it will be terminated. NO errors or messages are
returned.

■ Any long value in milliseconds: If the automatic synchronization does not stop
within the time designated, then the method returns with an error of BG_ERROR_
TIMEOUT. At this point, you reissue the stop method to terminate the automatic
synchronization immediately by supplying BG_KILL_AGENT or -1 as the input
value.

3.2.2.3 C/C++ Sync Control APIs to Start/Stop Automatic Synchronization
Use the control APIs for starting and stopping automatic synchronization. These APIs
are as follows:

olError olStartSyncAgent() ;
olError olStopSyncAgent(long timeout);

3.2.2.4 C# Sync Control APIs to Start/Stop Automatic Synchronization
public class BGSyncControl
{
 public void start();
 public void stop(int timeout);
}
All methods throw an OracleException in case of failure.

3.2.2.5 JAVA Sync Control APIs to Start/Stop Automatic Synchronization
package oracle.lite.msync;
class BGSyncControl {
 public void start() throws SyncException;
 public void stop(long timeout) throws SyncException;
}

3.2.3 Define the Rules Under Which the Automatic Synchronization Starts
You can configure under what circumstances a synchronization should occur and then
Oracle Database Lite performs the synchronization for you automatically. The
circumstances under which an automatic synchronization occurs is defined within the
synchronization rules, which includes the following:

■ Events—An event is variable, as follows:

Note: There is also a GUI for starting, stopping the automatic
synchronization process. See Section 5.3.1, "Start, Stop, or Get Status
for Automatic Synchronization" in the Oracle Database Lite
Administration and Deployment Guide for more details.

Automatic Synchronization Overview

Synchronization 3-9

■ Data events: For example, you can specify that a synchronization occurs when
there are a certain number of modified records in the client database.

■ System events: For example, you can specify that if the battery drops below a
predefined minimum, you want to synchronize before the battery is depleted.

■ Conditions—A condition is an aspect of the client that needs to be present for a
synchronization to occur. This includes conditions such as battery life or network
availability.

The relationship between events and conditions when evaluating if an automatic
synchronization occurs is as follows:

when EVENT and if (CONDITIONS), then SYNC

For example, if the event for new data inserted and the condition specified is that the
network must be available, then a synchronization only occurs when the network is
available and there is new data.

You can define the rules for automatic synchronization within certain parts of the
normal snapshot setup and platform configuration, as follows:

■ Publication level: Within the publication, you specify the rules under which the
synchronization occurs for all publication items in that publication.

■ Platform level: Some of the rules are specific to the platform of the client, such as
battery life, network bandwidth, and so on. These rules apply to all enabled
publication items that exist on this particular platform, such as WinCE.

The following sections detail all of the rules you can configure for automatic
synchronization:

■ Section 3.2.3.1, "Configure Publication-Level Automatic Synchronization Rules"

■ Section 3.2.3.2, "Configure Platform-Level Automatic Synchronization Rules"

3.2.3.1 Configure Publication-Level Automatic Synchronization Rules
Within the publication, you specify the rules under which the synchronization occurs
for all publication items in that publication. These rules are defined when you create
the publication either using MDW or programmatically with the APIs. To create this
through MDW, see Section 5.5, "Define the Rules Under Which the Automatic
Synchronization Starts" ; to add publication-level automatic synchronization rules
with the API, see Section 3.4.1.4, "Define Publication-Level Automatic Synchronization
Rules".

When you are creating the publication, you can define events that will cause an
automatic synchronization. Although these are defined at the publication level, they
enable only the publication items within this publication that has automatic
synchronization enabled.

Table 3–3 describes the publication level events for automatic synchronization. The
lowest value that can be provided is 1.

Table 3–3 Automatic Events for the Publication

Events Description

Client commit Upon commit to the Oracle Lite database, the Mobile client detects the total
number of record changes in the automatic synchronization log. If the number
of modifications is equal to or greater than your pre-defined number,
automatic synchronization occurs. This rule is on by default and set to start an
automatic synchronization if only one record is changed.

Automatic Synchronization Overview

3-10 Oracle Database Lite Developer’s Guide

3.2.3.2 Configure Platform-Level Automatic Synchronization Rules
Some of the rules are specific to the platform of the client, such as battery life, network
bandwidth, and so on. These rules apply to all enabled publication items that exist on
this particular platform, such as WinCE. You configure these rules through Mobile
Manager or MDW. This section describes Mobile Manager.

The platform-level synchronization rules apply to a selected client platform and all
publications that exist on that platform. You can specify both platform events and
conditions using the Mobile Manager.

To assign platform-level automatic synchronization rules, perform the following in
Mobile Manager:

1. Click Data Synchronization.

2. Click Platform Settings, which brings up a page with the list of all the platforms
that support automatic synchronization.

3. Click on the desired platform.

4. You can modify the following for each platform:

■ Event Rules—See Section 3.2.3.2.1, "Event Rules for Platforms".

■ Conditions—See Section 3.2.3.2.2, "Condition Rules for Platforms".

■ Network settings—See Section 3.2.3.2.3, "Network Configuration for the Client
Platform".

3.2.3.2.1 Event Rules for Platforms Table 3–4 shows the platform events for automatic
synchronization.

Server MGP
compose

If after the MGP compose cycle, the number of modified records for a user is
equal to or greater than your pre-defined number, then an automatic
synchronization occurs. Thus, if there are a certain number of records
contained in an Out Queue destined for a client on the server, these
modifications are synchronized to the client.

Note: If you want to modify the publication-level automatic
synchronization rules after you publish the appliation, you can do so
through the Mobile Manager, as follows:

1. Click Data Synchronization.

2. Click Repository.

3. Click Publications.

4. Select the publication and click Automatic Synchronization Rules.

Table 3–4 Automatic Event Rules for the Client Platform

Event Description

Network
bandwidth

If the Mobile client detects that it is connected to a network with a
pre-defined minimum bandwidth, then automatic synchronization occurs.

Battery life If the battery life drops below a pre-defined minimum, then synchronization
is automatically triggered.

Table 3–3 (Cont.) Automatic Events for the Publication

Events Description

Automatic Synchronization Overview

Synchronization 3-11

3.2.3.2.2 Condition Rules for Platforms Table 3–5 shows the platform conditions for
automatic synchronization.

3.2.3.2.3 Network Configuration for the Client Platform You can set proxy information for
your network provider, if required for accessing the internet.

You could have two types of networks, as follows:

■ Always-on: Define the proxy and port number. Click Apply when finished.

■ Dial-up:

– Click Add Dial-up Network to add a a new entry for dial-up configuration.

– To edit an existing configuration, select the name of the existing configuration.

– To delete an existing configuration, select the checkbox next to the desired
configuration and click Delete.

If the platform has an always-on network, then this network is always tried first for
the connection. If this network is not available, then the dial-up networks are tried in

AC Power As soon as AC power is detected, then synchronization is automatically
triggered.

Time Synchronize at a specific time or time interval. You can configure an
automatic synchronization to occur at a specific time each day or as an
interval.

■ Select Specify Time if you want to automatically synchronize at a
specific hour, such as 8:00 AM, everyday.

■ Select Specify Time Interval if you want to synchronize at a specific
interval. For example, if you want to synchronize every hour, then
specify how long to wait in-between synchronization attempts.

Table 3–5 Automatic Condition Rules for Client Platform

Condition Description

Battery level Specify the minimum battery level required in order for an
automatic synchronization to start. The battery level is specified
as a percentage.

Network conditions Network quality can be specified using several properties. This
condition enables you to specify a minimum value for the
following network properties:

■ Minimum network bandwidth, which is measured in bits
per second.

■ Maximum ping delay, which is measured in milliseconds.

■ Data priority, which is either high or regular. You can
specify the priority of your data in the table row.

For example, you can define a rule where all high priority data is
automatically synchronized at a specified network bandwidth.
The ping delay is optional. If not specified, the ping is not
calculated.

Note: If you are not using a proxy, then you do not need to define
proxy information on this page.

Table 3–4 (Cont.) Automatic Event Rules for the Client Platform

Event Description

Automatic Synchronization Overview

3-12 Oracle Database Lite Developer’s Guide

the order specified. You can rearrange the order of the dial-up networks by selecting
one of the networks and clicking the up or down button.

3.2.4 Enable the Server to Notify the Client to Initiate a Synchronization to Download
Data

If you have designed the compose yourself—that is, you do not use the MGP—then,
you can notify the client if any data exists on the server that can be downloaded to the
client through enqueue notification APIs. You can also use these APIs to manage the
automatic synchronization schedule for your clients.

For more information on enqueue notification APIs, see Section 3.19.3, "Selecting
How/When to Notify Clients of Composed Data".

3.2.5 Notify Application on Completion of Automatic Synchronization Cycle
You can develop your client application to be notified when an automatic
synchronization cycle occurs. The application is notified from the Sync Agent when
the automatic synchronization completes as well as when a critical event occurs in the
client device. For example, when the device battery runs critically low, Oracle
Database Lite can notify the application.

In the client application, create a procedure that executes one of the following message
APIs. When your application calls the get message API, it blocks until an event occurs
within an automatic synchronization. It returns a structure that describes this event.

The following sections provide implementation details for each development
language:

■ Automatic Synchronization Notification for C/C++ Application

■ Automatic Synchronization Notification for C# Application

■ Automatic Synchronization Notification for Java Application

■ Input Parameters for Automatic Synchronization Notification

Automatic Synchronization Notification for C/C++ Application
Use the olGetSyncMsg method in your client application to receive the automatic
synchronization notification when implementing for C/C++ applications. In order to
block for the status, you need to perform the following:

1. Start the application messaging service with the olStartSyncMsg method,
providing a queue handle of type olAppMsgQ. This message starts the messaging
service and returns the queue handle in the olAppMsgQ.

2. Execute the olGetSyncMsg with the olAppMsgQ message handle and the
defined olSyncMsg structure for the returned automatic synchronization
information.

The following provides the method definitions:

typedef void *olAppMsgQ
/* start application messaging, get queue handle */
olError olStartSyncMsg(olAppMsgQ *q);
/*Provide the queue handle and block to retrieve automatic sync event */
olError olGetSyncMsg(olAppMsgQ q, olSyncMsg *m);

The olGetSyncMsg method blocks until an event occurs, then the Sync Agent returns
the olSyncMsg class, which you provide as an input parameter, with the information
on what happened, as follows:

Automatic Synchronization Overview

Synchronization 3-13

typedef struct _olSyncMsg {
 ol2B type;
 ol2B id;
 char msg[BG_MAX_MSG];
} olSyncMsg;

See "Input Parameters for Automatic Synchronization Notification" for a description of
the input parameters in the structure.

The C/C++ application performs in a different manner than the Java and C# versions
in that this creates a message service with its own message queue. Thus, when finished
you must perform some cleanup to ensure that the message queue handle is released.
Use the olStopSyncMsg method to stop the messaging service and release the
handle. This must be performed for every message queue that is opened with the
olStartSyncMsg method.

olError olStopSyncMsg(olAppMsgQ q);

If you want to force an existing olGetSyncMsg to return, use the olCancelSyncMsg
from another thread in the application. This causes the olGetSyncMsg to return with
the BG_ERR_APP_MSG_CANCEL error.

olError olCancelSyncMsg(olAppMsgQ q);

Automatic Synchronization Notification for C# Application
Use the GetMessage method in your client application to receive the automatic
synchronization notification when implementing for C# applications, as follows:

public BGSyncMsg GetMessage();

This method blocks until an event occurs, then the Sync Agent returns the BGSyncMsg
class with the information on what happened, as follows:

public class BGSyncMsg
{
 public int Type;
 public int Id;
 public string Msg;
}

See "Input Parameters for Automatic Synchronization Notification" for a description of
the input parameters in the class.

Automatic Synchronization Notification for Java Application
Use the getMessage method in your client application to receive the automatic
synchronization notification when implementing for Java applications, as follows:

public class BGSyncControl
{
 public BGSyncMsg getMessage() throws SyncException;
}
This method blocks until an event occurs, then the Sync Agent returns the BGSyncMsg
class with the information on what happened, as follows:

public class BGSyncMsg{
 public int type;
 public int id;
 public String msg;
}

Automatic Synchronization Overview

3-14 Oracle Database Lite Developer’s Guide

See "Input Parameters for Automatic Synchronization Notification" for a description of
the input parameters in the class.

Input Parameters for Automatic Synchronization Notification
The input parameters in the input structure/class are as follows:

Table 3–6 The Sync Message Variables

Variable Description

Event type The event can be of three types, each of which indicate the level
of severity of this notification:

■ INFO

■ ERROR

■ WARNING

Event identifier for INFO
types:

The INFO event identifer describes what occurred, as follows:

■ SYNC_STARTED: The Sync Agent has started the
synchronization task.

■ SYNC_SUCCEEDED: Data synchronization completed
successfully.

■ APPLY_STARTED: The Sync Agent has started the apply
task.

■ APPLY_SUCCEEDED: The apply phase completed
successfully.

■ SVR_NOTIF: The Sync Agent has received a server
notification. The message contains information about the
server notification, such as publication name, number of
modified records and the record priority (high priority or
normal).

■ NETWORK_CHANGE: Device has moved into a different
network

■ AGENT_STARTED: The Sync Agent started.

■ AGENT_STOPPED: The Sync Agent stopped.

Event identifier for the
WARNING type:

The WARNING event identifier describes in more detail what
occurred, as follows:

■ BATTERY_LOW: Device’s battery is running low

■ MEMORY_LOW: Device’s memory is running low

Event identifier for the
ERROR type:

The ERROR event identifier describes in more detail what
occurred, as follows:

■ APPLY_FAILED: The apply failed. In this case, ‘message'
contains the reason for failure.

■ SYNC_FAILED: Data synchronization failed. In this case,
‘message' contains the reason for failure.

■ AGENT_ERROR: An internal error condition occurred. The
message contains the actual error message. Examples would
be failure to load a rule, failure to process server
notification, failure to evaluate system power, and so on. In
spite of this error, the Sync Agent continues to execute. Fatal
errors are written to the olSyncAgent.err file.

Event Message String message that expounds on the information provided by
the event type and identifier.

Automatic Synchronization Overview

Synchronization 3-15

3.2.6 Request Status for Automatic Synchronization Cycle
If you want to know at what stage the automatic synchronization cycle is, you can
request status from the Sync Agent. In the client application, execute the get status
API, which will return immediately with at what stage the automatic synchronization
cycle is executing. This is different from the notification message API, which only
returns when an event is completed within the synchronization cycle.

The get status API returns a structure that describes this event.

The following sections provide implementation details for each development
language:

■ Retrieving Status for C/C++ Application

■ Retrieving Status for C# Application

■ Retrieving Status for Java Application

■ Input Parameters for Retrieving Messages

Retrieving Status for C/C++ Application
Use the olGetSyncStatus method in your C/C++ client application to retrieve
status on the automatic synchronization, as follows:

olError olGetSyncStatus(olSyncStatus *s);

The Sync Agent returns the olSyncStatus class, which you provide as an input
parameter, with the information on what happened, as follows:

typedef struct _olSyncStatus {
 char clientId[BG_MAX_USERNAME];
 ol2B syncState;
 ol2B syncProgress;
 char syncStateStr[BG_MAX_STATUS_STR];
 olError lastSyncError;
 ol2B lastSyncType;
 ol8B lastSyncTime;
 ol2B applyState;
 ol2B applyProgress;
 char applyStateStr[BG_MAX_STATUS_STR];
 olError lastApplyError;
 olU2B _reserved;
 ol8B lastApplyTime;
 char networkName[BG_MAX_STATUS_STR];
 ol4B networkSpeed;
 ol4B batteryPower;
} olSyncStatus;

See "Input Parameters for Retrieving Messages" for a description of the input
parameters in the structure.

Retrieving Status for C# Application
Use the GetStatus method in your C/C++ client application to retrieve status on the
automatic synchronization, as follows:

public BGSyncStatus GetStatus();

This method returns the BGSyncStatus class with the status information on the
automatic synchronization, as follows:

public class BGSyncStatus

Automatic Synchronization Overview

3-16 Oracle Database Lite Developer’s Guide

{
 public string clientId;
 public short syncState;
 public string syncStateStr;
 public short syncProgress;
 public short lastSyncError;
 public short lastSyncType;
 public long lastSyncTime;
 public short applyState;
 public string applyStateStr;
 public short applyProgress;
 public short lastApplyError;
 public ushort _reserved;
 public long lastApplyTime;
 public string networkName;
 public int networkSpeed;
 public int batteryPower;
}

See "Input Parameters for Retrieving Messages" for a description of the input
parameters in the structure.

Retrieving Status for Java Application
Use the getStatus method in your Java client application to retrieve status on the
automatic synchronization, as follows:

public BGSyncStatus getStatus() throws SyncException

This method returns the BGSyncStatus class with the status information on the
automatic synchronization, as follows:

public class BGSyncStatus
{
 public String clientId;
 public short syncState;
 public String syncStateStr;
 public short syncProgress;
 public short lastSyncError;
 public short lastSyncType;
 public Date lastSyncTime;

 public short applyState;
 public String applyStateStr;
 public short applyProgress;
 public short lastApplyError;
 public Date lastApplyTime;

 public String networkName;
 public int networkSpeed;
 public int batteryPower;
}

See "Input Parameters for Retrieving Messages" for a description of the input
parameters in the structure.

Input Parameters for Retrieving Messages
The input parameters in the input structure/class are as follows:

What is The Process for Setting Up a User For Synchronization?

Synchronization 3-17

3.3 What is The Process for Setting Up a User For Synchronization?
Before you can perform the synchronization, the publication must be created, the user
created and granted access to the publication, and optionally, the publication packaged
up with an application and published to the Mobile Server. This is referred to as the
publish and subscribe model, which can be implemented in one of two ways:

■ Declaratively, using MDW to create the publication and the Packaging Wizard to
package and publish the applications. This is the recommended method. See
Section 3.3.1, "Creating a Snapshot Definition Declaratively" for details.

■ Programmatically, using the Resource Manager and the Consolidator Manager
APIs to invoke certain advanced features or customize an implementation. This
technique is recommended for advanced users requiring specialized functionality.
See Section 3.3.2, "Creating the Snapshot Definition Programmatically" for details.

Once created and subscribed, the user can be synchronized, as follows:

■ Using manual synchronization where the user initiates it from the device or
programmatically from within an application. This chapter discusses how to start
the synchronization programmatically in Section 3.8, "Initiating Client
Synchronization With Synchronization APIs".

■ Using automatic synchronization which is enabled within the publication item
itself or the platform configuration.

Table 3–7 Status Class Fields

Field Description

clientId Username

syncState A numeric value that denotes the current synchronization stage,
such as compose, send, or receive.

syncStateStr String describing the state, as denoted in the syncState, for the
automatic synchronization.

syncProgress A percentage that indicates the current progress for the
automatic synchronization.

lastSyncError If an error occurred in the last synchronization, this is the error
code. If no error, this value is zero.

lastSyncType The priority of the data for the last synchronization. If 1, then
high priority data; if 0, then regular priority data was
synchronized.

lastSyncTime Time of the last automatic synchronization.

applyState Code that indicates the state for the apply phase.

applyStateStr String describing the state for the apply phase, as denoted in the
applyState variable.

applyProgress A percentage that indicates the current progress for the apply
phase.

lastApplyError If an error occurred in the last apply phase, this is the error code.
If no error, this value is zero.

lastApplyTime Time of the last apply phase.

networkName The network name assigned to this network.

networkSpeed Current bandwidth of the network.

batteryPower Current battery power percentage.

What is The Process for Setting Up a User For Synchronization?

3-18 Oracle Database Lite Developer’s Guide

On the back-end of the synchronization process, you have the option to customize
how the apply and compose phase are executed. See Section 3.6, "Customize the
Compose Phase Using MyCompose".

3.3.1 Creating a Snapshot Definition Declaratively
Use the Mobile Database Workbench (MDW), a GUI based tool of Oracle Database
Lite—described fully in Chapter 5, "Using Mobile Database Workbench to Create
Publications"—to create snapshots declaratively. The convenience of a graphical tool is
a safer and less error prone technique for developers to create a Mobile application.
Before actual application programming begins, the following steps must be executed:

1. Verify that the base tables exist on the server database; if not, create the base table.

2. Use MDW to define an application and the snapshot with the necessary
publicatino and its publication items. See Chapter 5, "Using Mobile Database
Workbench to Create Publications" for details.

3. Use the Packaging Wizard to publish the application to the Mobile Server. This
creates the publication items associated with the application. See Chapter 7, "Using
the Packaging Wizard" for details.

4. Use the Mobile Manager to create a subscription for a given user.

5. Install the application on the development machine.

6. If using manual synchronization, then initiate synchronization for the Mobile
client with the Mobile Server to create the client-side snapshots, which creates the
Mobile client Oracle Lite database automatically.

3.3.1.1 Manage Snapshots
The Mobile Server administrator can manage a snapshot, which is a full set or a subset
of rows of a table or view. Create the snapshot by executing a SQL query against the
base table. Snapshots are either read-only or updatable.

The following sections describes how to manage snapshots using MDW:

■ Section 3.3.1.1.1, "Read-only Snapshots"

■ Section 3.3.1.1.2, "Updatable Snapshots"

■ Section 3.3.1.1.3, "Refresh a Snapshot"

■ Section 3.3.1.1.4, "Snapshot Template Variables"

3.3.1.1.1 Read-only Snapshots Read-only snapshots are used for querying purposes
only. The data is downloaded from the Oracle server to the client; no data on the client
is ever uploaded to the server. Any data added on the client in a read-only snapshot
can be lost, since it is never uploaded to the server. Changes made to the master table
in the back-end Oracle database server are replicated to the Mobile client. See
Section 5.9.2, "Publication Item Tab Associates Publication Items With the Publication"
for instructions on how to define the publication item as read-only.

Note: A subscription created as complete refresh and read-only is
light weight; thus, to keep the subscription light weight, the primary
keys are not included in the replication. If you want to include
primary keys, then create them with the
createPublicationItemIndex API.

What is The Process for Setting Up a User For Synchronization?

Synchronization 3-19

3.3.1.1.2 Updatable Snapshots When you define a snapshot as updatable, then the data
propagated within a synchronization is bi-directional. That is, any modifications made
on the client are uploaded to the server; any modifications made on the back-end
Oracle server are downloaded to the client. See Section 5.9.2, "Publication Item Tab
Associates Publication Items With the Publication" for instructions on how to define
the publication item as updatable.

A snapshot can only be updated when all the base tables that the snapshot is based on
have a primary key or virtual primary key. If the base tables do not have a primary
key, a snapshot cannot be updated and becomes read-only. Table 3–8 shows each
refresh method type and whether it is updatable or read-only depending on primary
key or virtual primary key:

3.3.1.1.3 Refresh a Snapshot Your snapshot definition determines whether an
updatable snapshot uses the complete or fast refresh method.

■ The complete refresh method recreates the snapshot every time it is refreshed.
Note that when it recreates the snapshot, all of the data on the client Oracle Lite
database is erased and then the snapshot for this user on the back-end Oracle
database is brought down to the client.

■ The fast refresh method refreshes only the modified data within the snapshot
definition on both the client and server. In general, the simpler your snapshot
definition, the faster it is updated. All fast refresh methods require a primary key
or a virtual primary key.

See Section 5.4, "Create a Publication Item" and Section 3.9, "Understanding Your
Refresh Options"

3.3.1.1.4 Snapshot Template Variables Snapshots are application-based. In some cases,
you may quantify the data that your application downloads for each user by
specifying all of the returned data match a predicate. You can accomplish this by using
snapshot templates.

A snapshot template is an SQL query that contains data subsetting parameters. A data
subsetting parameter is a colon (:), followed by an identifier name, as follows:

:var1

Table 3–8 Which Refresh Methods Can Be Updatable or Read-Only

Fast Complete Queue-Based

Table Uses a Primary
Key

Updatable or
Read-Only

Updatable or
Read-Only

Updatable or
Read-Only

Table Uses a Virtual
Primary Key

Updatable or
Read-Only

Updatable or
Read-Only

Updatable or
Read-Only

No Primary Key or
Virtual Primary Key
Used

Not applicable since
all Fast Refresh tables
use a primary or
virtual primary key.

Read-Only Read-Only

Note: If the subsetting parameter is on a CHAR column of a
specified length, then you should either preset all characters to spaces
before setting the value or pad for the length of the column with
spaces after setting the parameter.

What is The Process for Setting Up a User For Synchronization?

3-20 Oracle Database Lite Developer’s Guide

When the Mobile client creates snapshots on the client machine, the Mobile Server
replaces the snapshot variables with user-specific values. By specifying different
values for different users, you can control the data returned by the query for each user.

You can use MDW to specify a snapshot template variable in the same way that you
create a snapshot definition for any platform.

Data subsetting parameters are bind variables and so should not be enclosed in
quotation marks (’). If you want to specify a string as the value of the data subsetting
parameter, then the string contains single quotation marks. You can specify the values
for the template variables within the Mobile Manager.

The following examples specify a different value for every user. By specifying a
different value for every user, the administrator controls the behavior and output of
the snapshot template.

select * from emp where deptno = :dno

You define this select statement in your publication item. See Section 5.4.1, "Create
SQL Statement for Publication Item" for instructions. Then, modify the user in the
Mobile Manager to add the value for :dno. Then, when the user synchronizes, the
value defined for the user is replaced in the select script. See Section 5.3, "Managing
Application Parameter Input (Data Subsetting)" in the Oracle Database Lite
Administration and Deployment Guide for information on how to define the value of the
variable. This value can only be defined after the application is published and the user
is associated with it.

Table 3–9 provides a sample set of snapshot query values specified for separate users.

select * from emp where ename = :ename

Table 3–10 provides another sample snapshot query value.

3.3.2 Creating the Snapshot Definition Programmatically
You can use the Resource Manager or Consolidator Manager APIs to
programmatically create the publication items on the Mobile Server. Create publication
items from views and customize code to construct snapshots.

Table 3–9 Snapshot Query Values for Separate Users

User Value Snapshot Query

John 10 select * from emp where deptno = 10

Jane 20 select * from emp where deptno = 20

Table 3–10 Snapshot Query Value for User Names

User Value Snapshot Query

John ’KING’ select * from emp where ename = ’KING’

Creating Publications Using Oracle Database Lite APIs

Synchronization 3-21

The base tables must exist before the Consolidator Manager API can be invoked. The
following steps are required to create a a subscription:

■ Create a publication

■ Create a publication item and add it to the publication

■ Create a user

■ Creating a subscription for the user based on the publication

The details of how to create a publication are documented in Chapter 5, "Using Mobile
Database Workbench to Create Publications". Anything that you can do with the
MDW tool, you can also perform programmatically using the Consolidator Manager
API. Refer to the Javadoc for the syntax.

3.4 Creating Publications Using Oracle Database Lite APIs
Mobile Server uses a publish and subscribe model to centrally manage data
distribution between Oracle database servers and Oracle Database Lite clients. Basic
functions, such as creating publication items and publications, can be implemented
easily using the Mobile Development Workspace (MDW). See Chapter 5, "Using
Mobile Database Workbench to Create Publications" for more information.

These functions can also be performed using the Consolidator Manager or Resource
Manager APIs by writing Java programs to customize the functions as needed. Some
of the advanced functionality can only be enabled programmatically using the
Consolidator Manager or Resource Manager APIs.

The publish and subscribe model can be implemented one of two ways:

■ Declaratively, using MDW to create the publication and the Packaging Wizard to
package and publish the applications. This is the recommended method. This
method is described fully in Chapter 5, "Using Mobile Database Workbench to
Create Publications" and Chapter 7, "Using the Packaging Wizard".

■ Programmatically, using the Consolidator Manager or Resource Manager APIs to
invoke certain advanced features or customize an implementation. This technique
is recommended for advanced users requiring specialized functionality.

■ Publications created with the Consolidator Manager API cannot be packaged
with an application. See Section 3.4.1, "Defining a Publication With Java
Consolidator Manager APIs".

■ Use the Resource Manager APIs to create the publication, package it with an
application, and publish it to the Mobile Server. See the
oracle.mobile.admin.MobileResourceManager Javadoc in the API

Note: The Consolidator Manager API can only create a publication,
which cannot be packaged with an application. In addition, a
publication created with the Consolidator Manager API cannot be
packaged with an application. See Section 3.4, "Creating Publications
Using Oracle Database Lite APIs" for information on the Consolidator
Manager API. Use the Resource Manager APIs to create the
publication, package it with an application, and publish it to the
Mobile Server. See the oracle.mobile.admin.ResourceManager
Javadoc in the Oracle Database Lite API Specification, which you can link
to off the ORACLE_HOME/Mobile/index.htm page.

Creating Publications Using Oracle Database Lite APIs

3-22 Oracle Database Lite Developer’s Guide

Specification section, which is located off the
ORACLE_HOME/Mobile/index.htm page.

3.4.1 Defining a Publication With Java Consolidator Manager APIs
While we recommend that you use MDW (see Chapter 5, "Using Mobile Database
Workbench to Create Publications") or the Packaging Wizard (see Chapter 7, "Using
the Packaging Wizard") for creating your publications, you can also create them,
including the publication items and the user, with the Consolidator Manager API.
Choose this option if you are performing more advanced techniques with your
publications.

After creating the database tables in the back-end database, create the Resource
Manager and Consolidator Manager objects to facilitate the creation of your
publication:

■ The Resource Manager object enables you to create users to associate with the
subscription.

■ The Consolidator Manager object enables you to create the subscription.

The order of creating the elements in the publication is the same as if you were using
MDW. You must create a publication first and then add the publication items and
other elements to it. Once the publications are created, subscribe users to them. See the
Javadoc for full details on each method. See Chapter 5, "Using Mobile Database
Workbench to Create Publications" for more details on the order of creating each
element.

1. Section 3.4.1.1, "Create the Mobile Server User"

2. Section 3.4.1.2, "Create Publications"

3. Section 3.4.1.3, "Create Publication Items"

4. Section 3.4.1.4, "Define Publication-Level Automatic Synchronization Rules"

5. Section 3.4.1.5, "Data Subsetting: Defining Client Subscription Parameters for
Publications"

6. Section 3.4.1.6, "Create Publication Item Indexes"

7. Section 3.4.1.7, "Adding Publication Items to Publications"

8. Section 3.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot"

9. Section 3.4.1.9, "Subscribing Users to a Publication"

10. Section 3.4.1.10, "Instantiate the Subscription"

11. Section 3.4.1.11, "Bringing the Data From the Subscription Down to the Client"

12. Section 3.4.1.12, "Modifying a Publication Item"

Note: The following sections use the sample11.java sample to
demonstrate the Resource Manager and Consolidator Manager
methods used to create the publication and the users for the
publication. The full source code for this sample can be found in the
following directories:

On UNIX: <ORACLE_HOME>/mobile/server/samples

On Windows: <ORACLE_HOME>\Mobile\Server\Samples

Creating Publications Using Oracle Database Lite APIs

Synchronization 3-23

13. Section 3.4.1.13, "Callback Customization for DML Operations"

14. Section 3.4.1.14, "Restricting Predicate"

3.4.1.1 Create the Mobile Server User
Use the createUser method of the MobileResourceManager object to create the
user for the publication.

1. Create the MobileResourceManager object. A connection is opened to the
Mobile Server. Provide the schema name, password, and JDBC URL for the
database the contains the schema (the repository).

2. Create one or more users with the createUser method. Provide the user name,
password, the user's real name, and privilege, which can be one of the one of the
following: "O" for publishing an application, "U" for connecting to Web-to-Go as
user, or "A" for administrating the Web-to-Go. If NULL, no privilege is assigned.

3. Commit the transaction, which was opened when you created the
MobileResourceManager object, and close the connection.

MobileResourceManager mobileResourceManager =
 new MobileResourceManager(CONS_SCHEMA, DEFAULT_PASSWORD, JDBC_URL);
mobileResourceManager.createUser("S11U1", "manager", "S11U1", "U");
mobileResourceManager.commitTransaction();
mobileResourceManager.closeConnection();

Note: To call the Publish and Subscribe methods, the following JAR
files must be specified in your CLASSPATH.

■ <ORACLE_HOME>\jdbc\lib\ojdbc14.jar

■ <ORACLE_HOME>\Mobile\classes\consolidator.jar

■ <ORACLE_HOME>\Mobile\classes\classgen.jar

■ <ORACLE_HOME>\Mobile\classes\servlet.jar

■ <ORACLE_HOME>\Mobile\classes\xmlparserv2.jar

■ <ORACLE_HOME>\Mobile\classes\jssl-1_2.jar

■ <ORACLE_HOME>\Mobile\classes\javax-ssl-1_2.jar

■ <ORACLE_HOME>\Mobile\Server\bin\devmgr.jar

■ <ORACLE_HOME>\Mobile\classes\share.jar

■ <ORACLE_HOME>\Mobile\classes\oracle_ice.jar

■ <ORACLE_HOME>\Mobile\classes\phaos.jar

■ <ORACLE_HOME>\Mobile\classes\jewt4.jar

■ <ORACLE_HOME>\Mobile\classes\jewt4-nls.jar

■ <ORACLE_HOME>\Mobile\classes\wtgpack.jar

■ <ORACLE_HOME>\Mobile\classes\jzlib.jar

■ <ORACLE_HOME>\Mobile\Server\bin\webtogo.jar

Note: Always request a drop user before you execute a create, in case
this user already exists.

Creating Publications Using Oracle Database Lite APIs

3-24 Oracle Database Lite Developer’s Guide

3.4.1.1.1 Change Password You can change passwords for Mobile Server users with the
setPassword method, which has the following syntax:

public static void setPassword
 (String userName,
 String newpwd) throws Throwable

Execute the setPassword method before you commit the transaction and release the
connection. The following example changes the password for the user MOBILE:

mobileResourceManager.setPassword("MOBILE","MOBILENEW");

3.4.1.2 Create Publications
A subscription is a combination of publications and the users who access the
information gathered by the publications. Create any publication through the
ConsolidatorManager object.

1. Create the ConsolidatorManager object.

2. Connect to the database using the openConnection method. Provide the schema
name, password, and JDBC URL for the database the contains the schema (the
repository).

3. Create the publication with the createPublication method, which creates an
empty publication.

ConsolidatorManager consolidatorManager = new ConsolidatorManager();
consolidatorManager.openConnection(CONS_SCHEMA, DEFAULT_PASSWORD, JDBC_URL);
consolidatorManager.createPublication("T_SAMPLE11",
 Consolidator.OKPI_CREATOR_ID, "OrdersODB.%s", null);

3.4.1.3 Create Publication Items
An empty publication does not have anything that is helpful until a publication item is
added to it. Thus, after creating the publication, it is necessary to create the publication
item, which defines the snapshot of the base tables that is downloaded for your user.

When you create each publication item, you can specify the following:

■ Automatic or Manual Synchronization: Whether the publication item is to be
synchronization automatically or manually.

Note: If you do not want to create any users, you do not need to
create the MobileResourceManager object.

Note: Both username and passwords are limited to a maximum of 28
characters.

Note: Always request a drop publication before you execute a create,
in case this publication already exists.

Note: Special characters including spaces are supported in
publication names. The publication name is case-sensitive.

Creating Publications Using Oracle Database Lite APIs

Synchronization 3-25

■ Refresh Mode: The refresh mode of the publication item is specified during
creation to be either fast, complete-refresh, or queue-based.

■ Data-Subsetting Parameters: You can also establish the data-subsetting parameters
when creating the publication item, which provides a finer degree of control on the
data requirements for a given client.

Publication item names are limited to twenty-six characters and must be unique across
all publications. The publication item name is case-sensitive. The following examples
create a publication item named P_SAMPLE11-M.

The following example uses the createPublicationItem method, which creates a
manual synchronization publication item P_SAMPLE11-M based on the
ORD_MASTER database table with fast refresh. Use the addPublicationItem
method to add this publication item to the publication.

consolidatorManager.createPublicationItem("P_SAMPLE11-M", "MASTER",
 "ORD_MASTER", "F", "SELECT * FROM MASTER.ORD_MASTER", null, null);

When you create a publication item that uses automatic synchronization through the
createPublicationItem method, you can also define the following:

■ Automatic Synchronization: Set the publication to use automatic synchronization
by setting the isLogBased flag to true.

■ Server-initiated change notifications: If you set the doChangeNtf flag to true,
then the Mobile Server sends a notification to the client if any changes are made on
the server for this publication item.

■ Set what constraints are replicated to the client: If you set the
setDfltColOptions flag to true, then the default values and not null
constraints are replicated to the client.

■ Create a client sub-query to return unique client ids in the cl2log_rec_stmt
parameter. The client sub-query correlates the primary key of the changed records
in the log table with the Consolidator client id. The log table contains the changes
for the table and is named clg$<tablename>.

Note: Always drop the publication item in case an item with the
same name already exists.

Note: For full details on the method parameters, see the Javadoc.

Creating Publications Using Oracle Database Lite APIs

3-26 Oracle Database Lite Developer’s Guide

For example, if the publication item SQL query is as follows:

SELECT * FROM scott.emp a
 WHERE deptno in
 (select deptno from scott.emp b
 where b.empno = :empno)

Assuming that the Consolidator client id is empno and the snapshot table is emp,
then the client sub-query queries for data changes in the clg$emp log table as
follows:

SELECT empno as clid$$cs FROM scott.clg$emp
 UNION SELECT empno as clid$$cs FROM scott.emp
 WHERE deptno in (select deptno from scott.clg$dept)

The following example uses the automatic synchronization version of
createPublicationItem method, which uses the PubItemProps class to define
all publication item definitions, including automatic synchronization, as follows:

PubItemProps pi_props = new PubItemProps();
pi_props.owner = "MASTER"; // owner schema
pi_props.store = STORES[i][0]; // store
pi_props.refresh_mode = "F"; //default // uses fast refresh
pi_props.select_stmt = // specify select statement for snapshot
 "SELECT * FROM "+"MASTER"+"."+STORES[i][0]+ " WHERE C1 =:CLIENTID";
pi_props.cl2log_rec_stmt = "SELECT base.C1 FROM " // client sub-query to
 + "MASTER"+"."+STORES[i][0] + " base," // return unique clientids
 + "MASTER"+".CLG$"+STORES[i][0] + " log"
 + " WHERE base.ID = log.ID";
// Setting "isLogBased" to True enables automatic sync for this pub item.
pi_props.isLogBased = true;
// If doChangeNtf is true, automatic publication item sends notifications
// from server about new/modified records
pi_props.doChangeNtf = true;

cm.createPublicationItem(PUBITEMS[i], pi_props);
cm.addPublicationItem(PUB,PUBITEMS[i],null,null,"S",null,null);

3.4.1.3.1 Defining Publication Items for Updatable Multi-Table Views Publication items can be
defined for both tables and views. When publishing updatable multi-table views, the
following restrictions apply:

Notes:

■ If you are creating a fast refresh publication item on a table with a
composite primary key, the snapshot query must match the
primary key columns in the order that they are present in the table
definition. This automatically happens during the column
selection when MDW is used or when a SELECT * query is used.
Note that the order of the primary key columns in the table
definition may be different from those in the primary key
constraint definition.

■ A subscription created as complete refresh and read only is light
weight; thus, to keep the subscription light weight, the primary
keys are not included in the replication. If you want to include a
primary key, then you can create it with the
createPublicationItemIndex API.

Creating Publications Using Oracle Database Lite APIs

Synchronization 3-27

■ The view must contain a parent table with a primary key defined.

■ INSTEAD OF triggers must be defined for data manipulation language (DML)
operations on the view. See Section 3.9, "Understanding Your Refresh Options" for
more information.

■ All base tables of the view must be published.

3.4.1.4 Define Publication-Level Automatic Synchronization Rules
Once the publication is created, you can create and add automatic synchronization
rules that apply to all enabled publication items in this publication. Perform the
following to add a rule to a publication:

1. The rule is made up of a rule name and a String that contains the rule definition.
The rules can be created using the Rules classes and RuleInfo objects.

a. Define the rule and convert it to a String using the RuleInfo object and the
setSyncRuleParams method.

RuleInfo ri = Rules.RULE_MAX_DB_REC_ri;
ri.params.put(Rules.PARAM_NREC,"5");
String ruleText = cm.setSyncRuleParams(ri.type,ri.params);

There are RuleInfo objects for all of the main automatic synchronization
rules. So, in order to specify a rule, you obtain the appropriate RuleInfo
object from the Rules class and then define the variable. Table 3–11,
" Automatic Synchronization Rule Info Objects" describe the different types of
rules you can specify for triggering automatic synchronization:

Note: See the Javadoc for examples and the parameters that you
need to set for each rule.

Table 3–11 Automatic Synchronization Rule Info Objects

Rule Info Object Description

RULE_MAX_DB_REC_ri Synchronize if the client database for all publication
items on the client contains more than NREC modified
records, where you specify the NREC of modifed records
in the client database to trigger an automatic
synchronization.

RULE_NOTIFY_MAX_PUB_REC_ri Synchronize if the out queue contains more than NREC
modified records, where you specify the NREC of
modifed records in the server database to trigger an
automatic synchronization.

RULE_MAX_PI_REC_ri Client automatically synchronizes if the number of
modified records for a publication item is greater than
NREC.

RULE_HIGH_BANDWIDTH_ri Synchronize when the network bandwidth is greater
than <number> bits/second. Where <number> is an
integer that indicates the bandwidth bits/seconds.
When the bandwidth is at this value, the
synchronization occurs.

RULE_LOW_PWR_ri Synchronize when the battery level drops to
<number>%, where <number> is a percentage. Often
you may wish to synchronize before you lose battery
power.

Creating Publications Using Oracle Database Lite APIs

3-28 Oracle Database Lite Developer’s Guide

b. Define a name for the rule, which should be a name not attached to any
particular publication, so you can use the rule for several publications.

2. Create the rule with the createSyncRule method, which creates the rule with
the name, the String containing the rule, and a boolean on whether to replace the
rule if it already exists. Once completed, then this rule can be associated with any
publication.

boolean replace = true;
cm.createSyncRule (ruleName, ruleText, replace);

3. Associate the rule with the desired publication or platform using the
addSyncRule method. This method can add any existing rule to a designated
publication. To add to a publication, use the publication name as the first
parameter, as follows:

cm.addSyncRule(PUB, ruleName);

To add a rule to a client platform—Win32 or WINCE platform—perform the
following:

cm.addSyncRule(Consolidator.DEFAULT_TEMPLATE_WIN32, rulename);

Where the platform name is a constant defined in the Consolidator class as either
DEFAULT_TEMPLATE_WIN32 or DEFAULT_TEMPLATE_WCE.

You can also perform the following:

■ Section 3.4.1.4.1, "Retrieve All Publications Associated with a Rule"

■ Section 3.4.1.4.2, "Retrieve Rule Text"

RULE_AC_PWR_ri Synchronize when the AC power is detected; that is,
when the device is plugged in.

RULE_MIN_MEM_ri Specify the minimum battery level required in order for
an automatic synchronization to start. The battery level
is specified as a percentage.

RULE_NET_PRIORITY_ri Network conditions can be specified using the following
properties: data priority, ping delay and network
bandwidth.

RULE_MIN_PWR_ri If the battery life drops below a pre-defined minimum,
then synchronization is automatically triggered.

NET_CONFIG_ri Configure network parameters (currently only the
network specific proxy configuration is supported) The
configuration rule contains a vector of hashtables with a
hashtable representing properties of each individual
network.

RULE_TIME_INTERVAL_ri Schedule sync at a given time of day with a certain
frequency (interval).

Specify the time (PARAM_START_TIME) for an
automatic synchronization to start. The format of time is
standard date string: H24:MI:SS e.g. 00:00:00 or 23:59:00
The time is GMT. If not set, the synchronization starts
when the Sync Agent starts and all other conditions are
satisfied Set the period (PARAM_PERIOD), in seconds, to
specify the frequency of scheduled synchronization
events.

Table 3–11 (Cont.) Automatic Synchronization Rule Info Objects

Rule Info Object Description

Creating Publications Using Oracle Database Lite APIs

Synchronization 3-29

■ Section 3.4.1.4.3, "Check if Rule is Modified"

■ Section 3.4.1.4.4, "Remove Rule"

3.4.1.4.1 Retrieve All Publications Associated with a Rule Just as you can with resources,
scripts and sequences that are associated with publications, you can retrieve all
publications that are associated with a rule with the getPublicationNames method.
The following retrieves all publications that are associated with the rule within the
ruleName variable. The object type is defined as Consolidator.RULES_OBJECT.

String[] pubs = cm.getPublicationNames (ruleName , Consolidator.RULES_OBJECT);

3.4.1.4.2 Retrieve Rule Text You can retrieve the text of the rule using the
getSyncRule and providing the rule name. This is useful if you are not sure what the
rule is and need to discover the text before associating it with another publication.

String retStr = cm.getSyncRule (ruleName);

3.4.1.4.3 Check if Rule is Modified You can compare the rule within the repository with a
provided string to see if the rule has been modified with the isSyncRuleModified
method. A boolean value of true is returned if the provided ruleText is different
from what exists in the repository.

boolean ismod = cm.isSyncRuleModified (ruleName, ruleText);

3.4.1.4.4 Remove Rule You can remove the association of a rule from a publication by
using the removeSyncRule method. You can delete the entire rule from the
repository by using the dropSyncRule method. If you drop the rule and it is still
associated with one or more publications, the rule is automatically unassociated from
these publications.

3.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications
Data subsetting is the ability to create specific subsets of data and assign them to a
parameter name that can be assigned to a subscribing user. When creating publication
items, a parameterized Select statement can be defined. Subscription parameters
must be specified at the time the publication item is created, and are used during
synchronization to control the data published to a specific client.

Creating a Data Subset Example
consolidatorManager.createPublicationItem("CORP_DIR1",
 "DIRECTORY1", "ADDRLRL4P", "F" ,
 "SELECT LastName, FirstName, company, phone1, phone2, phone3, phone4,
 phone5, phone1id, phone2id, phone3id, displayphone, address, city, state,
 zipcode, country, title, custom1, custom2, custom3, note
 FROM directory1.addrlrl4p WHERE company = :COMPANY", null, null);

In this sample statement, data is being retrieved from a publication named CORP_
DIR1, and is subset by the variable COMPANY.

When a publication uses data subsetting parameters, set the parameters for each
subscription to the publication. For example, in the previous example, the parameter
COMPANY was used as an input variable to describe what data is returned to the client.
You can set the value for this parameter with the setSubscriptionParameter

Note: Within the select statement, the parameter name for the
data subset must be prefixed with a colon, for example:COMPANY.

Creating Publications Using Oracle Database Lite APIs

3-30 Oracle Database Lite Developer’s Guide

method. The following example sets the subscription parameter COMPANY for the
client DAVIDL in the CORP_DIR1 publication to DAVECO:

consolidatorManager.setSubscriptionParameter("CORP_DIR1", "DAVIDL",
 "COMPANY", "'DAVECO'");

3.4.1.6 Create Publication Item Indexes
The Mobile Server supports automatic deployment of indexes in Oracle Database Lite
on clients. The Mobile Server automatically replicates primary key indexes from the
server database. The Consolidator Manager API provides calls to explicitly deploy
unique, regular, and primary key indexes to clients as well.

By default, the primary key index of a table is automatically replicated from the server.
You can create secondary indexes on a publication item. If you do not want the
primary index, you must explicitly drop it from the publication items.

If you want to create other indexes on any columns in your application tables, then use
the createPublicationItemIndex method. The following demonstrates how to
set up indexes on the name field in our publication item P_SAMPLE11-M:

consolidatorManager.createPublicationItemIndex("P_SAMPLE11M-I3",
 "P_SAMPLE11-M", "I", "NAME");

An index can contain more than one column. You can define an index with multiple
columns, as follows:

consolidatorManager.createPublicationItemIndex("P_SAMPLE11D-I1", "P_SAMPLE11-D",
 "I", "KEY,NAME");

3.4.1.6.1 Define Client Indexes Client-side indexes can be defined for existing
publication items. There are three types of indexes that can be specified:

■ P - Primary key

■ U - Unique

■ I - Regular

3.4.1.7 Adding Publication Items to Publications
Once you create a publication item, you must associate it with a publication using the
addPublicationItem method, as follows:

consolidatorManager.addPublicationItem("T_SAMPLE11", "P_SAMPLE11-M",
 null, null, "S", null, null);

See Section 3.4.1.12, "Modifying a Publication Item" for details on how to change the
definition.

Note: This method should only be used on publications created
using the Consolidator Manager API. To create template variables,
a similar technique is possible using MDW.

Note: When an index of type 'U' or 'P' is defined on a publication
item, there is no check for duplicate keys on the server. If the same
constraints do not exist on the base object of the publication item,
synchronization may fail with a duplicate key violation. See the Oracle
Database Lite API Specification for more information.

Creating Publications Using Oracle Database Lite APIs

Synchronization 3-31

3.4.1.7.1 Defining Conflict Rules When adding a publication item to a publication, the
user can specify winning rules to resolve synchronization conflicts in favor of either
the client or the server. See Section 3.13, "Resolving Conflict Resolution with Winning
Rules" for more information.

3.4.1.7.2 Using Table Weight Table weight is an integer associated with publication
items that determines in what order the transactions for all publications are processed.
For example, if three publication items exist—emp, dept, mgr, you can define the
order in which the transactions associated with each publication item are executed. In
our example, assign table weight of 1 to dept, table weight of 2 to mgr, and table
weight of 3 to emp. In doing this, you ensure that the master table dept is always
updated first, followed by mgr, and lastly by emp.

The insert, update, and delete client operations are executed in the following order:

1. Client INSERT operations are executed first, from lowest to highest table weight
order. This ensures that the master table entries are added before the details table
entries.

2. Client DELETE operations are executed next, from highest to lowest table weight
order. Processing the delete operations ensures that the details table entries are
removed before the master table entries.

3. Client UPDATE operations are executed last, from highest to lowest table weight
order.

In our example with dept, mgr, and emp tables, the execution order would be as
follows:

1. All insert operations for dept are processed.

2. All insert operations for mgr are processed.

3. All insert operations for emp are processed.

4. All delete operations for emp are processed.

5. All delete operations for mgr are processed.

6. All delete operations for dept are processed.

7. All update operations for emp are processed.

8. All update operations for mgr are processed.

9. All update operations for dept are processed.

Table weight is applied to publication items within a specific publication; for example,
a publication can have more than one publication item of weight 2. In this case, it does
not matter which publication is executed first.

Define the order weight for tables when you add a publication item to the publication.

3.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot
A sequence is a database schema object that generates sequential numbers. After
creating a sequence, you can use it to generate unique sequence numbers for
transaction processing. These unique integers can include primary key values. If a
transaction generates a sequence number, the sequence is incremented immediately
whether you commit or roll back the transaction.

If you have more than a single client, you want to assign who gets which sequence
numbers, so that when you synchronize, none of the records have duplicate sequence

Creating Publications Using Oracle Database Lite APIs

3-32 Oracle Database Lite Developer’s Guide

numbers. Thus, if you have multiple clients, then specify a distinct range of numbers
for each client, so that they are not using the same numbers.

■ Specify a range of values for each client. In our example, client A would be
assigned sequence numbers 1 through 100, client B would be assigned sequence
numbers 101 to 200, and client C would be assigned sequence numbers 201
through 300. If they ran out of sequence numbers, they are assigned another 100,
which is the defined window size in our example, during the next
synchronization. Since none of the clients checked to generate server-side
sequence, the database, in order to never collide with the sequence numbers, starts
its sequence number at -1 and decrements for each subsequent sequence number.

■ You could specify that all clients are allowed to have only odd numbers and the
database has all even numbers. That is, you could start the client at 1 and
increment by 2 for all of its sequence numbers. This enables you to avoid having
negative numbers for your sequence numbers. The clients still have a window
size, which in this example is 100, but they start with an odd number within that
window and always increment by 2 to avoid any positive numbers. Thus, client A
would still have the window of 1 to 100, but the sequence numbers would be 1, 3,
5, and so on up to 99.

Thus, for each client that uses sequences, you must define what numbers each client
can use through the Consolidator Manager API, which allow you to manage the
sequences with methods that create/drop a sequence, add/remove a sequence from a
publication, modify a sequence, and advance a sequence window for each user.

Once you have created the sequence, you place it into the publication with the
publication item to which it applies.

See the Oracle Database Lite API Specification (included on the CD) for a complete listing
of the APIs to define and administrate sequences.

3.4.1.8.1 Specifying Sequence Threshold for Window Management Oracle Database Lite also
allows you to set a threshold. If you know that you need a minimum number of
records between synchronizations to perform your work, set this number as the
threshold. That way, if you have less than this number available to you, Oracle
Database Lite provides the client with a new window to work from.

For example, if a client has a window of 100 and retrieves the first window of 1-100. If
the sequence numbers retrieved is currently at record number 97, then—if no
threshold is set—the Oracle Database Lite does not provide a new window since this
window is not complete. However, if you state that you need at least 20 records to
perform your duties, Oracle Database Lite would notice that there are less than 20
records left in the window and assigsn the client the next window, which in this case
would be sequence numbers 101-200.

3.4.1.8.2 Description of Sequence Support The following sequence support is available:

Note: The sequence name is case-sensitive.

Note: If the sequences do not work properly, check your parent
publications. All parent publications must have at least one
publication item. If you do not have any publication items for the
parent publication, then create a dummy publication item within the
parent.

Creating Publications Using Oracle Database Lite APIs

Synchronization 3-33

■ True sequence support on the client—The Sync Server supports replication of
true sequence objects to the client.

■ Clear association with a publication—In a manner similar to publication items,
adding sequences to a publication propagates the corresponding sequence objects
to all subscribing users. Note that a publication and a sequence have a
one-to-many relationship. This means a publication can contain many different
sequences, but a single sequence cannot exist in more than one publication.

■ Offline and Online—There are two types of sequences, as follows:

■ Offline: The developer specifies the increment value of the sequence used by
the client. The sequence exists solely for the client.

■ Online: An online sequence is designed to support online Web-to-Go
applications. This is accomplished by creating the same sequence object on
both the server and the client. The paired sequences are incremented by two
and started with staggered values; one starts with an even number and one
starts with an odd number. By using an odd/even window model such as the
one described above, the Consolidator Manager ensures
uniqueness—regardless of whether the application is running while connected
to the back-end Oracle database or not.

■ Sequence management - Once the sequences have been defined and associated
with a publication, the Sync Server manages all aspects of administration for
sequences, including allocation of new windows.

3.4.1.9 Subscribing Users to a Publication
Subscribe the users to a publication using the createSubscription function. The
following creates a subscription between the S11U1 user and the T_SAMPLE11
publication:

consolidatorManager.createSubscription("T_SAMPLE11", "S11U1");

3.4.1.10 Instantiate the Subscription
After you subscribe a user to a publication, you complete the subscription process by
instantiating the subscription, which associates the user with the publication in the
back-end database. The next time that the user synchronizes, the data snapshot from
the publication is provided to the user.

consolidatorManager.instantiateSubscription("T_SAMPLE11", "S11U1");

//Close the connection.
consolidatorManager.closeConnection();

3.4.1.11 Bringing the Data From the Subscription Down to the Client
You can perform the synchronization and bring down the data from the subscription
you just created. The client executes SQL queries against the client ODB to retrieve any
information. This subscription is not associated with any application, as it was created
using the low-level Consolidator Manager APIs.

Note: If you need to set subscription parameters for data
subsetting, this must be completed before instantiating the
subscription. See Section 3.4.1.5, "Data Subsetting: Defining Client
Subscription Parameters for Publications" for more information.

Creating Publications Using Oracle Database Lite APIs

3-34 Oracle Database Lite Developer’s Guide

3.4.1.12 Modifying a Publication Item
You can add additional columns to existing publication items. These new columns are
pushed to all subscribing clients the next time they synchronize. This is accomplished
through a complete refresh of all changed publication items.

■ An administrator can add multiple columns, modify the WHERE clause, add new
parameters, and change data type.

■ This feature is supported for all Mobile client platforms.

■ The client does not upload snapshot information to the server. This also means the
client cannot change snapshots directly on the client database, for example, you
could not alter a table using Mobile SQL.

■ Publication item upgrades will be deferred during high priority synchronizations.
This is necessary for low bandwidth networks, such as wireless, because all
publication item upgrades require a complete refresh of changed publication
items. While the high priority flag is set, high priority clients will continue to
receive the old publication item format.

■ The server needs to support a maximum of two versions of the publication item
which has been altered.

To change the definition, use one of the following:

■ If the publication item is read-only, then modify the publication item either with
the reCreatePublicationItem method or by dropping and creating the
publication item with the dropPublicationItem and
createPublicationItem APIs.

■ If the publication item is updatable, then you can use the
alterPublicationItem method. This method enables a smooth transition of
changing any table structure on both the client and the server for updatable
publications.

If you use the alterPublicationItem method, you must follow it up by
executing the resetCache method. The metadata cache should be reset every
time a change is made to the publication or publication items. If you make the
change though Mobile Manager, then the Mobile Manager calls the resetCache
method. You can reset the metadata cache from the Mobile Manager or execute the
resetCache method, part of the ConsolidatorManager class.

You may use the alterPublicationItem method for schema evolution to add
columns to an existing publication item. The WHERE clause may also be altered. If
additional parameters are added to the WHERE clause, then these parameters
must be set before the alter occurs. See the setSubscriptionParams method.
However, if you are creating a fast refresh publication item on a table with a
composite primary key, the snapshot query must match the primary key columns
in the order that they are present in the table definition. This automatically
happens during the column selection when MDW is used or when a SELECT *
query is used. Note that the order of the primary key columns in the table
definition may be different from those in the primary key constraint definition.

consolidatorManager.alterPublicationItem("P_SAMEPLE1", "select * from EMP");

Note: If the select statement does not change, then the call to the
alterPublicationItem() method has no effect.

Creating Publications Using Oracle Database Lite APIs

Synchronization 3-35

See Section 3.15, "Facilitating Schema Evolution" and the
alterPublicationItem method definition in the Oracle Database Lite API
Specification for more information.

3.4.1.13 Callback Customization for DML Operations
Once a publication item has been created, a user can use the Consolidator Manager
API to specify a customized PL/SQL procedure that is stored in the Mobile Server
repository to be called in place of all DML operations for that publication item. There
can be only one Mobile DML procedure for each publication item. The procedure
should be created as follows:

AnySchema.AnyPackage.AnyName(DML in CHAR(1), COL1 in TYPE, COL2 in TYPE, COLn..,
PK1 in TYPE, PK2 in TYPE, PKn..)

The parameters for customizing a DML operation are listed in Table 3–12:

The following defines a DML procedure for publication item exp:

select A,B,C from publication_item_exp_table

Assuming A is the primary key column for exp, then your DML procedure would
have the following signature:

any_schema.any_package.any_name(DML in CHAR(1), A in TYPE, B in TYPE, C
 in TYPE,A_OLD in TYPE)

During runtime, this procedure is invoked with 'I', 'U', or 'D' as the DML type. For
insert and delete operations, A_OLD will be null. In the case of updates, it will be set to
the primary key of the row that is being updated. Once the PL/SQL procedure is
defined, it can be attached to the publication item through the following API call:

consolidatorManager.addMobileDmlProcedure("PUB_exp","exp",
 "any_schema.any_package.any_name")

where exp is the publication item name and PUB_exp is the publication name.

Refer to the Oracle Database Lite API Specification for more information.

3.4.1.13.1 DML Procedure Example The following piece of PL/SQL code defines an
actual DML procedure for a publication item in one of the sample publications. As
described below, the ORD_MASTER table. The query was defined as:

SELECT * FROM "ord_master", where ord_master has a single column primary key
 on "ID"

Table 3–12 Mobile DML Operation Parameters

Parameter Description

DML DML operation for each row. Values can be "D" for DELETE, "I" for
INSERT, or "U" for UPDATE.

COL1 ... COLn List of columns defined in the publication item. The column names
must be specified in the same order that they appear n the publication
item query. If the publication item was created with "SELECT * FROM
exp", the column order must be the same as they appear in the table
"exp".

PK1 ... PKn List of primary key columns. The column names must be specified in
the same order that they appear in the base or parent table.

Creating Publications Using Oracle Database Lite APIs

3-36 Oracle Database Lite Developer’s Guide

ord_master Table
SQL> desc ord_master
Name Null? Type
--- -------- -------------
ID NOT NULL NUMBER(9)
DDATE DATE
STATUS NUMBER(9)
NAME VARCHAR2(20)
DESCRIPTION VARCHAR2(20)

Code Example
CREATE OR REPLACE PACKAGE "SAMPLE11"."ORD_UPDATE_PKG" AS
 procedure UPDATE_ORD_MASTER(DML CHAR,ID NUMBER,DDATE DATE,STATUS
NUMBER,NAME VARCHAR2,DESCRIPTION VARCHAR2, ID_OLD NUMBER);
END ORD_UPDATE_PKG;
/
CREATE OR REPLACE PACKAGE BODY "SAMPLE11"."ORD_UPDATE_PKG" as
 procedure UPDATE_ORD_MASTER(DML CHAR,ID NUMBER,DDATE DATE,STATUS
NUMBER,NAME VARCHAR2,DESCRIPTION VARCHAR2, ID_OLD NUMBER) is
 begin
 if DML = 'U' then
 execute immediate 'update ord_master set id = :id, ddate = :ddate,
status = :status, name = :name, description = '||''''||'from
ord_update_pkg'||''''||' where id = :id_old'
 using id,ddate,status,name,id_old;
 end if;
 if DML = 'I' then
 begin
 execute immediate 'insert into ord_master values(:id, :ddate,
:status, :name, '||''''||'from ord_update_pkg'||''''||')'
 using id,ddate,status,name;
 exception
 when others then
 null;
 end;
 end if;
 if DML = 'D' then
 execute immediate 'delete from ord_master where id = :id'
 using id;
 end if;
 end UPDATE_ORD_MASTER;
end ORD_UPDATE_PKG;
/

The API call to add this DML procedure is as follows:

consolidatorManager.addMobileDMLProcedure("T_SAMPLE11",
 "P_SAMPLE11-M","SAMPLE11.ORD_UPDATE_PKG.UPDATE_ORD_MASTER")

where T_SAMPLE11 is the publication name and P_SAMPLE11-M is the publication
item name.

3.4.1.14 Restricting Predicate
A restricting predicate can be assigned to a publication item as it is added to a
publication.The predicate is used to limit data downloaded to the client. The
parameter, which is for advanced use, can be null. When using a restricting predicate,
the synchronization uses the high priority replication mode. For using a restricting

Customize the Compose Phase Using MyCompose

Synchronization 3-37

predicate, see Section 1.2.5 "Priority-Based Replication" in the Oracle Database Lite
Troubleshooting and Tuning Guide.

3.5 Client Device Database DDL Operations
The first time a client synchronizes, Oracle Database Lite automatically creates the
Oracle Lite database with the snapshot tables for the user subscriptions on the Mobile
client. If you would like to execute additional DDL statements on the database, then
add the DDL statements as part of your publication. Oracle Database Lite executes
these DDL statements when the user synchronizes.

This is typically used for adding constraints and check values.

For example, you can add a foreign key constraint to a publication item. In this
instance, if the Oracle Database Lite created snapshots S1 and S2 during the initial
synchronization, where the definition of S1 and S2 are as follows:

S1 (C1 NUMBER PRIMARY KEY, C2 VARCHAR2(100), C3 NUMBER);
S2 (C1 NUMBER PRIMARY KEY, C2 VARCHAR2(100), C3 NUMBER);

If you would like to create a foreign key constraint between C3 on S2 and the primary
key of S1 , then add the following DDL statement to your publication item:

ALTER TABLE S2
 ADD CONSTRAINT S2_FK FOREIGN KEY (C3)
 REFERENCES S1 (C1);

Then, Oracle Database Lite executes any DDL statements after the snapshot creation
or, if the snapshot has already been created, after the next synchronization.

See the Oracle Database Lite API Specification for more information on these APIs.

3.6 Customize the Compose Phase Using MyCompose
The compose phase takes a query for one or more server-side base tables and puts the
generated DML operations for the publication item into the Out Queue to be
downloaded into the client. The Consolidator Manager manages all DML operations
using the physical DML logs on the server-side base tables. This can be resource
intensive if the DML operations are complex—for example, if there are complex
data-subsetting queries being used. The tools to customize this process include an
extendable MyCompose with compose methods which can be overridden, and
additional Consolidator Manager APIs to register and load the customized class.

When you want to customize the compose phase of the synchronization process, you
must perform the following:

1. Section 3.6.1, "Create a Class That Extends MyCompose to Perform the Compose"

2. Section 3.6.2, "Implement the Extended MyCompose Methods in the User-Defined
Class"

3. Section 3.6.3, "Use Get Methods to Retrieve Information You Need in the
User-Defined Compose Class"

4. Section 3.6.4, "Register the User-Defined Class With the Publication Item"

3.6.1 Create a Class That Extends MyCompose to Perform the Compose
The MyCompose class is an abstract class, which serves as the super-class for creating a
user-written sub-class, as follows:

Customize the Compose Phase Using MyCompose

3-38 Oracle Database Lite Developer’s Guide

public class ItemACompose extends oracle.lite.sync.MyCompose
{
...
}

All user-written classes—such as ItemACompose—produce publication item DML
operations to be sent to a client device by interpreting the base table DML logs. The
sub-class is registered with the publication item, and takes over all compose phase
operations for that publication item. The sub-class can be registered with more than
one publication item—if it is generic—however, internally the Composer makes each
instance of the extended class unique within each publication item.

3.6.2 Implement the Extended MyCompose Methods in the User-Defined Class
The MyCompose class includes the following methods—needCompose, doCompose,
init, and destroy—which are used to customize the compose phase. One or more
of these methods can be overridden in the sub-class to customize compose phase
operations. Most users customize the compose phase for a single client. In this case,
only implement the doCompose and needCompose methods. The init and
destroy methods are only used when a process is performed for all clients, either
before or after individual client processing.

The following sections describe how to implement these methods:

■ Section 3.6.2.1, "Implement the needCompose Method"

■ Section 3.6.2.2, "Implement the doCompose Method"

■ Section 3.6.2.3, "Implement the init Method"

■ Section 3.6.2.4, "Implement the destroy Method"

3.6.2.1 Implement the needCompose Method
The needCompose method to identifies a client that has changes to a specific
publication item that is to be downloaded. Use this method as a way to trigger the
doCompose method.

public int needCompose(Connection conn,
 String clientid) throws Throwable

The parameters for the needCompose method are listed in Table 3–13:

The following example examines a client base table for changes—in this case, the
presence of dirty records. If there are changes, then the method returns
MyCompose.YES, which triggers the doCompose method.

 public int needCompose(String clientid) throws Throwable{

Note: To retrieve information, use the methods described in
Section 3.6.3, "Use Get Methods to Retrieve Information You Need in
the User-Defined Compose Class".

Table 3–13 needCompose Parameters

Parameter Definition

conn Database connection to the Mobile Server repository.

clientid Specifies the client that is connecting to the database.

Customize the Compose Phase Using MyCompose

Synchronization 3-39

 boolean baseDirty = false;
 String [][] baseTables = this.getBaseTables();

 for(int i = 0; i < baseTables.length; i++){
 if(this.baseTableDirty(baseTables[i][0], baseTables[i][1])){
 baseDirty = true;
 break;
 }
 }

 if(baseDirty){
 return MyCompose.YES;
 }else{
 return MyCompose.NO;
 }
 }

This sample uses subsidiary methods discussed in Section 3.6.3, "Use Get Methods to
Retrieve Information You Need in the User-Defined Compose Class" to check if the
publication item has any tables with changes that need to be sent to the client. In this
example, the base tables are retrieved, then checked for changed, or dirty, records. If
the result of that test is true, a value of Yes is returned, which triggers the call for the
doCompose method.

3.6.2.2 Implement the doCompose Method
The doCompose method populates the DML log table for a specific publication item,
which is subscribed to by a client.

public int doCompose(Connection conn,
 String clientid) throws Throwable

The parameters for the doCompose method are listed in Table 3–14:

The following example contains a publication item with only one base table where a
DML (Insert, Update, or Delete) operation on the base table is performed on the
publication item. This method is called for each client subscribed to the publication
item.

 public int doCompose(Connection conn, String clientid) throws Throwable {
 int rowCount = 0;

 String [][] baseTables = this.getBaseTables();
 String baseTableDMLLogName =
 this.getBaseTableDMLLogName(baseTables[0][0], baseTables[0][1]);
 String baseTablePK =
 this.getBaseTablePK(baseTables[0][0],baseTables[0][1]);
 String pubItemDMLTableName = this.getPubItemDMLTableName();

 String sql = "INSERT INTO " + pubItemDMLTableName
 + " SELECT " + baseTablePK + ", DMLTYPE$$ FROM " +
 baseTableDMLLogName;

Table 3–14 doCompose Parameters

Parameter Definition

conn Database connection to the Mobile Server repository.

clientid Specifies the client that is connecting to the database.

Customize the Compose Phase Using MyCompose

3-40 Oracle Database Lite Developer’s Guide

 Statement st = conn.createStatement();
 rowCount = st.executeUpdate(sql);
 st.close();
 return rowCount;
 }

This code uses subsidiary methods discussed in Section 3.6.3, "Use Get Methods to
Retrieve Information You Need in the User-Defined Compose Class" to create a SQL
statement. The MyCompose method retrieves the base table, the base table primary
key, the base table DML log name and the publication item DML table name using the
appropriate get methods. You can use the table names and other information
returned by these methods to create a dynamic SQL statement, which performs an
insert into the publication item DML table of the contents of the base table primary
key and DML operation from the base table DML log.

3.6.2.3 Implement the init Method
The init method provides the framework for user-created compose preparation
processes. The init method is called once for all clients prior to the individual client
compose phase. The default implementation has no effect.

public void init(Connection conn)

The parameter for the init method is described in Table 3–15:

3.6.2.4 Implement the destroy Method
The destroy method provides the framework for compose cleanup processes. The
destroy method is called once for all clients after to the individual client compose
phase. The default implementation has no effect.

public void destroy(Connection conn)

The parameter for the destroy method is described in Table 3–16:

3.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose
Class

The following methods return information for use by primary MyCompose methods.

■ Section 3.6.3.1, "Retrieve the Publication Name With the getPublication Method"

■ Section 3.6.3.2, "Retrieve the Publication Item Name With the getPublicationItem
Method"

■ Section 3.6.3.3, "Retrieve the DML Table Name With the
getPubItemDMLTableName Method"

■ Section 3.6.3.4, "Retrieve the Primary Key With the getPubItemPK Method"

Table 3–15 init Parameters

Parameter Definition

conn Database connection to the Mobile Server repository.

Table 3–16 destroy Parameters

Parameter Definition

conn Database connection to the Mobile Server repository.

Customize the Compose Phase Using MyCompose

Synchronization 3-41

■ Section 3.6.3.5, "Retrieve All Base Tables With the getBaseTables Method"

■ Section 3.6.3.6, "Retrieve the Primary Key With the getBaseTablePK Method"

■ Section 3.6.3.7, "Discover If Base Table Has Changed With the baseTableDirty
Method"

■ Section 3.6.3.8, "Retrieve the Name for DML Log Table With the
getBaseTableDMLLogName Method"

■ Section 3.6.3.9, "Retrieve View of the Map Table With the getMapView Method"

3.6.3.1 Retrieve the Publication Name With the getPublication Method
The getPublication method returns the name of the publication.

public String getPublication()

3.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method
The getPublicationItem method returns the publication item name.

public String getPublicationItem()

3.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method
The getPubItemDMLTableName method returns the name of the DML table or DML
table view, including schema name, which the doCompose or init methods are
supposed to insert into.

public String getPubItemDMLTableName()

You can embed the returned value into dynamic SQL statements. The table or view
structure is as follows:

<PubItem PK> DMLTYPE$$

The parameters for getPubItemDMLTableName are listed in Table 3–17:

3.6.3.4 Retrieve the Primary Key With the getPubItemPK Method
Returns the primary key for the listed publication in comma separated format in the
form of <col1>,<col2>,<col3>.

public String getPubItemPK() throws Throwable

3.6.3.5 Retrieve All Base Tables With the getBaseTables Method
Returns all the base tables for the publication item in an array of two-string arrays.
Each two-string array contains the base table schema and name. The parent table is
always the first base table returned, in other words, baseTables[0].

public string [][] getBaseTables() throws Throwable

Table 3–17 getPubItemDMLTableName View Structure Parameters

Parameter Definition

PubItemPK The value returned by getPubItemPK()

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for Update.

Customize the Compose Phase Using MyCompose

3-42 Oracle Database Lite Developer’s Guide

3.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method
Returns the primary key for the listed base table in comma separated format, in the
form of <col1>, col2>,<col3>.

public String getBaseTablePK (String owner, String baseTable) throws Throwable

The parameters for getBaseTablePK are listed in Table 3–18:

3.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method
Returns the a boolean value for whether or not the base table has changes to be
synchronized.

public boolean baseTableDirty(String owner, String store)

The parameters for baseTableDirty are listed in Table 3–19:

3.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName
Method
Returns the name for the physical DML log table or DML log table view for a base
table.

public string getBaseTableDMLLogName(String owner, String baseTable)

The parameters for getBaseTableDMLLogName are listed in Table 3–20:

You can embed the returned value into dynamic SQL statements. There may be
multiple physical logs if the publication item has multiple base tables. The parent base
table physical primary key corresponds to the primary key of the publication item. The
structure of the log is as follows:

<Base Table PK> DMLTYPE$$

The parameters for getBaseTableDMLLogName view structure are listed in
Table 3–21:

Table 3–18 getBaseTablePK Parameters

Parameter Definition

owner The schema name of the base table owner.

baseTable The base table name.

Table 3–19 baseTableDirty Parameters

Parameter Definition

owner The schema name of the base table.

store The base table name.

Table 3–20 getBaseTableDMLLogName Parameters

Parameter Definition

owner The schema name of the base table owner.

baseTable The base table name.

Customize What Occurs Before and After Synchronization Phases

Synchronization 3-43

3.6.3.9 Retrieve View of the Map Table With the getMapView Method
Returns a view of the map table which can be used in a dynamic SQL statement and
contains a primary key list for each client device. The view can be an inline view.

public String getMapView() throws Throwable

The structure of the map table view is as follows:

CLID$$CS <Pub Item PK> DMLTYPE$$

The parameters of the map table view are listed in Table 3–22:

3.6.4 Register the User-Defined Class With the Publication Item
Once you have created your sub-class, it must be registered with a publication item.
The Consolidator Manager API now has two methods registerMyCompose and
deRegisterMyCompose to permit adding and removing the sub-class from a
publication item.

■ The registerMyCompose method registers the sub-class and loads it into the
Mobile Server repository, including the class byte code. By loading the code into
the repository, the sub-class can be used without having to be loaded at runtime.

■ The deRegisterMyCompose method removes the sub-class from the Mobile
Server repository.

3.7 Customize What Occurs Before and After Synchronization Phases
You can customize what happens before and after certain synchronization processes
by creating one or more PL/SQL packages. The following sections detail the different
options you have for customization:

■ Section 3.7.1, "Customize What Occurs Before and After Every Phase of Each
Synchronization"

■ Section 3.7.2, "Customize What Occurs Before and After Compose/Apply Phases
for a Single Publication Item"

3.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization
You can customize the MGP phase of the synchronization process through a set of
predefined callback methods that add functionality to be executed before or after
certain phases of the synchronization process. These callback methods are defined in

Table 3–21 getBaseTableDMLLogName View Structure Parameters

Parameter Definition

Base Table PK The primary key of the parent base table.

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for Update.

Table 3–22 getMapView View Structure Parameters

Parameter Definition

CLID$$CS This is the client ID column.

Base Table PK The primary key columns of the publication item.

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for
Update.

Customize What Occurs Before and After Synchronization Phases

3-44 Oracle Database Lite Developer’s Guide

the CUSTOMIZE PL/SQL package. Note that these callback methods are called before
or after the defined phase for every publication item.

Manually create this package in the Mobile Server repository. The methods and their
respective calling sequence are as follows:

■ Section 3.7.1.1, "NullSync"

■ Section 3.7.1.2, "BeforeProcessApply"

■ Section 3.7.1.3, "AfterProcessApply"

■ Section 3.7.1.4, "BeforeProcessCompose"

■ Section 3.7.1.5, "AfterProcessCompose"

■ Section 3.7.1.6, "BeforeProcessLogs"

■ Section 3.7.1.7, "AfterProcessLogs"

■ Section 3.7.1.8, "BeforeClientCompose"

■ Section 3.7.1.9, "AfterClientCompose"

■ Section 3.7.1.10, "Example Using the Customize Package"

■ Section 3.7.1.11, "Error Handling For CUSTOMIZE Package"

3.7.1.1 NullSync
The NullSync procedure is called at the beginning of every synchronization session.
It can be used to determine whether or not a particular user is uploading data.

procedure NullSync (clientid varchar2, isNullSync boolean);

3.7.1.2 BeforeProcessApply
The BeforeProcessApply procedure is called before the entire apply phase of the
MGP process.

procedure BeforeProcessApply;

3.7.1.3 AfterProcessApply
The AfterProcessApply procedure is called after the entire apply phase of the MGP
process.

procedure AfterProcessApply;

Note: If you want to customize certain activity for only a specific
publication item, see Section 3.7.2, "Customize What Occurs Before
and After Compose/Apply Phases for a Single Publication Item" for
more information.

Note: Some of the procedures in the package are invoked for each
client defined in your Mobile Server, such as the
BeforeClientCompose and AfterClientCompose methods.

Customize What Occurs Before and After Synchronization Phases

Synchronization 3-45

3.7.1.4 BeforeProcessCompose
The BeforeProcessCompose procedure is called before the entire compose phase of
the MGP process.

procedure BeforeProcessCompose;

3.7.1.5 AfterProcessCompose
The AfterProcessCompose procedure is called after the entire compose phase of the
MGP process.

procedure AfterProcessCompose;

3.7.1.6 BeforeProcessLogs
The BeforeProcessLogs procedure is called before the database log tables (CLG$)
are generated for the compose phase of the MGP process. This log tables capture
changes for MGP and should not be confused with the trace logs.

procedure BeforeProcessLogs;

3.7.1.7 AfterProcessLogs
The AfterProcessLogs procedure is called after the database log tables (CLG$) are
generated for the compose phase of the MGP process. This log tables capture changes
for MGP and should not be confused with the trace logs.

procedure AfterProcessLogs;

3.7.1.8 BeforeClientCompose
The BeforeClientCompose procedure is called before each user is composed during
the compose phase of the MGP process.

procedure BeforeClientCompose (clientid varchar2);

3.7.1.9 AfterClientCompose
The AfterClientCompose procedure is called after each user is composed during
the compose phase of the MGP process.

procedure AfterClientCompose (clientid varchar2);

3.7.1.10 Example Using the Customize Package
If a developer wants to use any of the procedures listed above, perform the following:

■ Manually create the CUSTOMIZE package in the Mobile Server schema.

■ Define all of the methods with the following specification:

create or replace package CUSTOMIZE as
 procedure NullSync (clientid varchar2, isNullSync boolean);
 procedure BeforeProcessApply ;
 procedure AfterProcessApply ;
 procedure BeforeProcessCompose ;
 procedure AfterProcessCompose ;
 procedure BeforeProcessLogs ;
 procedure AfterProcessLogs ;
 procedure BeforeClientCompose(clientid varchar2);
 procedure AfterClientCompose(clientid varchar2);
 end CUSTOMIZE;

Customize What Occurs Before and After Synchronization Phases

3-46 Oracle Database Lite Developer’s Guide

3.7.1.11 Error Handling For CUSTOMIZE Package
Errors are logged for the CUSTOMIZE package only if logging is enabled for the MGP
component for the finest level for all event types. Thus, you should set the logging
level to ALL and the type to ALL.

If any errors occur due to an invalid CUSTOMIZE package, they are logged only on the
first MGP cycle after the Mobile Server restarts. On subsequent synchronizations, the
errors are not re-written to the logs, sine the MGP does not attempt to re-execute the
CUSTOMIZE package until the Mobile Server is restarted.

To locate these errors easily within the MGP_<x>.log files, search for the
MGP.callBoundCallBack method. Another option is to restart the Mobile Server
and check the MGP log right after the next synchronization.

3.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single
Publication Item

When creating publication items, the user can define a customizable PL/SQL package
that MGP calls during the Apply and Compose phase of the MGP background process
for that particular publication item. To customize the compose/apply phases for a
publication item, perform the following:

1. Create the PL/SQL package with the customized before/after procedures.

2. Register this PL/SQL package with the publication item.

Then when the publication item is being processed, MGP calls the appropriate
procedures from your package.

Client data is accumulated in the in queue prior to being processed by the MGP. Once
processed by the MGP, data is accumulated in the out queue before being pulled to the
client by Mobile Sync.

You can implement the following PL/SQL procedures to incorporate customized code
into the MGP process. The clientname and tranid are passed to allow for
customization at the user and transaction level.

■ The BeforeApply method is invoked before the client data is applied:

procedure BeforeApply(clientname varchar2)

■ The AfterApply method is invoked after all client data is applied.

procedure AfterApply(clientname varchar2)

■ The BeforeTranApply method is invoked before the client data with tranid is
applied.

procedure BeforeTranApply(tranid number)

WARNING: It is the developer’s responsibility to ensure that the
package is defined properly and that the logic contained does not
jeopardize the integrity of the synchronization process.

Note: One requirement is that the CUSTOMIZE package can only be
executed as user mobileadmin.

Customize What Occurs Before and After Synchronization Phases

Synchronization 3-47

■ The AfterTranApply method is invoked after all client data with tranid is
applied.

procedure AfterTranApply(tranid number)

■ The BeforeCompose method is invoked before the out queue is composed.

procedure BeforeCompose(clientname varchar2)

■ The AfterCompose method is invoked after the out queue is composed.

procedure AfterCompose(clientname varchar2)

The following is a PL/SQL example that creates a callback package and registers it
when creating the P_SAMPLE3 publication item. The BeforeApply procedure
disables constraints before the apply phase; the AfterApply procedure enables these
constraints. Even though you are only creating procedures for the before and after
apply phase of the MGP process, you still have to provide empty procedures for the
other parts of the MGP process.

1. Create PL/SQL package declaration with callback owner/schema name of
SAMPLE3 and callback package name of SAMP3_PKG.

2. Create the package definition, with all MGP process procedures with callback
owner.callback package name of SAMPLE3.SAMP3_PKG. Provide a null procedure
for any procedure you do not want to modify.

3. Register the package as the callback package for the SAMPLE3 publication item. If
you are creating the publication item, provide the callback schema/owner and the
callback package names as input parameters to the createPublicationItem method.
If you want to add the callback package to an existing publication item, do the
following:

a. Retrieve the template metadata with getTemplateItemMetaData for the
publication item.

b. Modify the attributes that specify the callback owner/schema (cbk_owner)
and the callback package (cbk_name).

c. Register the package by executing the setTemplateItemMetaData method.

// create package declaration
 stmt.executeUpdate("CREATE OR REPLACE PACKAGE SAMPLE3.SAMP3_PKG as"
 + " procedure BeforeCompose(clientname varchar2);"
 + " procedure AfterCompose(clientname varchar2);"
 + " procedure BeforeApply(clientname varchar2);"
 + " procedure AfterApply(clientname varchar2);"
 + " procedure BeforeTranApply(tranid number);"
 + " procedure AfterTranApply(tranid number);"
 + " end;"
);
// create package definition
 stmt.executeUpdate("CREATE OR REPLACE PACKAGE body SAMPLE3.SAMP3_PKG as"
 + " procedure BeforeTranApply(tranid number) is"
 + " begin"
 + " null;"
 + " end;"
 + " procedure AfterTranApply(tranid number) is"
 + " begin"
 + " null;"
 + " end;"
 + " procedure BeforeCompose(clientname varchar2) is"
 + " begin"

Customize What Occurs Before and After Synchronization Phases

3-48 Oracle Database Lite Developer’s Guide

 + " null;"
 + " end;"
 + " procedure AfterCompose(clientname varchar2) is"
 + " begin"
 + " null;"
 + " end;"
 + " procedure BeforeApply(clientname varchar2) is"
 + " cur integer;"
 + " ign integer;"
 + " begin"
 + " cur := dbms_sql.open_cursor;"
 + " dbms_sql.parse(cur,'SET CONSTRAINT SAMPLE3.address14_fk DEFERRED',
 dbms_sql.native);"
 + " ign := dbms_sql.execute(cur);"
 + " dbms_sql.close_cursor(cur);"
 + " end;"
 + " procedure AfterApply(clientname varchar2) is"
 + " cur integer;"
 + " ign integer;"
 + " begin"
 + " cur := dbms_sql.open_cursor;"
 + " dbms_sql.parse(cur, 'SET CONSTRAINT SAMPLE3.address14_fk IMMEDIATE',
 dbms_sql.native);"
 + " ign := dbms_sql.execute(cur);"
 + " dbms_sql.close_cursor(cur);"
 + " end;"
 + " end;"
);

Then, register the callback package with the createPublicationItem method call,
as follows:

// register SAMPLE3.SAMP3_PKG as the callback for MGP processing of
// P_SAMPLE3 publication item.

cm.createPublicationItem("P_SAMPLE3","SAMPLE3","ADDRESS", "F",
 "SELECT * FROM SAMPLE3.ADDRESS", "SAMPLE3", "SAMP3_PKG");

In the previous code example, the following is required:

■ stmt, which is used when creating the package definition, is an instance of
java.sql.Statement

■ cm, which is used when registering the callback package, is an instance of
oracle.lite.sync.ConsolidatorManager

■ The callback package must have the following procedures defined:

■ BeforeCompose (clientname varchar2);

■ AfterCompose (clientname varchar2);

■ BeforeApply (clientname varchar2);

■ AfterApply (clientname varchar2);

■ BeforeTranApply (tranid number);

■ AfterTranApply (tranid number);

Understanding Your Refresh Options

Synchronization 3-49

3.8 Initiating Client Synchronization With Synchronization APIs
You can modify the client-side application to start the synchronization
programmatically. This section describes how to perform the synchronization upload
and download phases for the client using the Synchronization APIs.

To execute the upload portion of synchronization from the client (see steps 1 and 2 in
Figure 3–1) from within your C, C++, or Java application, perform the following steps:

1. Initialize the synchronization parameters.

2. Set up the transport parameters.

3. Initialize the synchronization options and environment, such as username,
password, and selective synchronization.

4. Perform the synchronization.

The following sections demonstrates how you can perform these steps in each of the
allowed programming languages:

■ Section 3.8.1, "Starting Synchronization Upload and Download Phases With C or
C++ Applications"

■ Section 3.8.2, "Starting Synchronization Upload and Download Phases With Java
Applications"

■ Section 3.8.3, "Starting Synchronization Upload and Download Phases With the
ADO.NET Provider"

3.8.1 Starting Synchronization Upload and Download Phases With C or C++
Applications

You can initiate and monitor synchronization from a C or C++ client application. The
synchronization methods for the C/C++ interface are contained in ocapi.h and
ocapi.dll, which are located in the <ORACLE_HOME>\Mobile\bin directory. See
Section 4.1, "Synchronization APIs For C or C++ Applications" for full details.

3.8.2 Starting Synchronization Upload and Download Phases With Java Applications
You can initiate and monitor synchronization from a Java client application. See
Section 4.2, "Synchronization API for Java Applications" for more information.

3.8.3 Starting Synchronization Upload and Download Phases With the ADO.NET
Provider

You can initiate and monitor synchronization from an ADO.NET provider application.
See Section 13.1.6, "Data Synchronization With the OracleSync Class" for full details.

3.9 Understanding Your Refresh Options
The Mobile Server supports several refresh options. During a fast refresh, incremental
changes are synchronized. However, during a complete refresh, all data is refreshed
with current data. The refresh mode is established when you create the publication

Note: Currently, there are no APIs to perform the upload activity on
the UNIX platforms.

Understanding Your Refresh Options

3-50 Oracle Database Lite Developer’s Guide

item using the createPublicationItem API call. In order to change the refresh
mode, first drop the publication item and recreate it with the appropriate mode.

The following sections describe the types of refresh for your publication item that can
be used to define how to synchronize:

■ Fast Refresh: The most common method of synchronization is a fast refresh
publication item where changes are uploaded by the client, and changes for the
client are downloaded. Meanwhile, the MGP periodically collects the changes
uploaded by all clients and applies them to database tables. It then composes new
data, ready to be downloaded to each client during the next synchronization,
based on predefined subscriptions.

■ Complete Refresh: During a complete refresh, all data for a publication is
downloaded to the client. For example, during the very first synchronization
session, all data on the client is refreshed from the Oracle database. This form of
synchronization takes longer because all rows that qualify for a subscription are
transferred to the client device, regardless of existing client data.

■ Queue-Based: The developer creates their own queues to handle the
synchronization data transfer. This can be considered the most basic form of
publication item, for the simple reason that there is no synchronization logic
created with it. The synchronization logic is left entirely in the hands of the
developer. A queue-based publication item is ideally suited for scenarios that do
not require actual synchronization but require something somewhere in between.
For instance, data collection on the client. With data collection, there is no need to
worry about conflict detection, client state information, or server-side updates.
Therefore, there is no need to add the additional overhead normally associated
with a fast refresh or complete refresh publication item.

■ Forced Refresh: This is actually NOT a refresh option; however, we discuss it here
in order to inform you of the consequences of performing a forced refresh. When a
Forced Refresh is initiated all data on the client is removed. The client will then
bring down an accurate copy of the client data from the enterprise database to
start fresh with exactly what is currently stored in the enterprise data store.

The following sections describe the refresh options in more detail:

■ Section 3.9.1, "Fast Refresh"

■ Section 3.9.2, "Complete Refresh for Views"

■ Section 3.9.3, "Queue-Based Refresh"

■ Section 3.9.4, "Forced Refresh"

3.9.1 Fast Refresh
Publication items are created for fast refresh by default. Under fast refresh, only
incremental changes are replicated. The advantages of fast refresh are reduced
overhead and increased speed when replicating data stores with large amounts of data
where there are limited changes between synchronization sessions.

The Mobile Server performs a fast refresh of a view if the view meets the following
criteria:

■ Each of the view base tables must have a primary key.

■ All primary keys from all base tables must be included in the view column list.

Understanding Your Refresh Options

Synchronization 3-51

■ If the item is a view, and the item predicate involves multiple tables, then all tables
contained in the predicate definition must have primary keys and must have
corresponding publication items.

The view requires only a unique primary key for the parent table. The primary keys of
other tables may be duplicated. For each base table primary key column, you must
provide the Mobile Server with a hint about the column name in the view. You can
accomplish this by using the primaryKeyHint method of the Consolidator Manager
object. See the Javadoc in the Oracle Database Lite API Specification for more
information.

3.9.2 Complete Refresh for Views
A complete refresh is simply a complete execution of the snapshot query. When
application synchronization performance is slow, tune the snapshot query. Complete
refresh is not optimized for performance. Therefore, to improve performance, use the
fast refresh option. The Consperf utility analyzes only fast refresh publication items.

Publication items can be created for complete refresh using the C refresh mode in the
createPublicationItem API from the Consolidator Manager API. When this
mode is specified, client data is completely refreshed with current data from the server
after every sync. An administrator can force a complete refresh for an entire
publication through an API call. This function forces complete refresh of a publication
for a given client.

See the Javadoc in the Oracle Database Lite API Specification for more information.

The following lists what can cause a complete refresh, ordered from most likely to
least likely:

1. The same Mobile user synching from multiple devices on the same platform, or
synching from different platforms when the publications are not platform specific.

2. Republishing the application.

3. An unexpected server apply condition, such as constraint violations, unresolved
conflicts, and other database exceptions.

4. Modifying the application, such as changing subsetting parameters or
adding/altering publication items. This refresh only affects the publication items.

5. A force refresh requested by server administrator or a force refresh requested by
the client.

6. Restoring an old Oracle Lite database (ODB file).

7. Two separate applications using the same backend store.

8. An unexpected client apply conditions, such as a moved or deleted database,
database corruption, memory corruption, other general system failures.

9. Loss of transaction integrity between the server and client. The server fails post
processing after completing the download and disconnects from the client.

10. Data transport corruptions.

3.9.3 Queue-Based Refresh
You can create your own queue. Mobile Server uploads and downloads changes from
the user. Perform customized apply/compose modifications to the back-end database
with your own implementation. See the Section 3.19, "Customizing Replication With
Your Own Queues" for more information.

Resuming an Interrupted Synchronization

3-52 Oracle Database Lite Developer’s Guide

3.9.4 Forced Refresh
This is actually NOT a refresh option; however, we discuss it here in order to inform
you of the consequences of performing a forced refresh. Out of all the different
synchronization options, the Forced Refresh synchronization architecture is probably
the most misunderstood synchronization type. This option is commonly confused
with the Complete Refresh synchronization. This confusion may result in tragic
consequences and the loss of critical data on the client.

The Forced Refresh option is an emergency only synchronization option. This option is
for when a client is so corrupt or malfunctioning so severely that the determination is
made to replace the Mobile client data with a fresh copy of data from the enterprise
data store. When this option is selected, any data transactions that have been made on
the client are lost.

When a Forced Refresh is initiated all data on the client is removed. The client will
then bring down an accurate copy of the client data from the enterprise database to
start fresh with exactly what is currently stored in the enterprise data store.

3.10 Resuming an Interrupted Synchronization
With client/server networking, communication may be interrupted by unreliable
network conditions, physical disconnections, limited transport bandwidth, and so on.
To efficiently cope with these conditions, the transport protocol between the client and
server resumes a synchronization session from the last acknowledged byte. For
example, the client starts to upload 10 MB of data and the connection fails after
sending 9MB of the data. In this instance, the client does not resend the 9MB that was
acknowledged, but resumes the synchronization by uploading the last 1 MB of data.
The resume feature works the same for both the upload and download phases of the
transport.

Configure the resume feature parameters, as follows:

■ Section 3.10.1, "Defining Temporary Storage Location for Client Data"

■ Section 3.10.2, "Controlling Server Load"

■ Section 3.10.3, "Client Configuration."

3.10.1 Defining Temporary Storage Location for Client Data
By default, the client data is buffered in memory and maximum of 16MB is allocated
for the buffering. If more space is needed, new clients are blocked until space is freed.
Alternatively, you can configure where the client data is temporarily stored and how
much space to allocate with the RESUME_FILE and RESUME_FILE_SIZE parameters
in the CONSOLIDATOR section of the webtogo.ora file on the Mobile Server, as
follows:

RESUME_FILE=d:\path\file
RESUME_FILE_SIZE =NNN (MB)

Setting the RESUME_FILE_SIZE parameter configures the amount of memory
allocated for the buffering. Setting RESUME_FILE allows using a disk file instead of
RAM, which is more efficient if JDK1.4 or later is installed and memory mapping can
be used.

If there are multiple disks available on the Mobile Server host, one spool file should be
created per disk to optimize performance. You can specify several spool files with
multiple RESUME_FILE and RESUME_FILE_SIZE parameters, each designated with a
unique suffix, as follow: RESUME_FILE_2, RESUME_FILE_SIZE_2.

Synchronizing With Database Constraints

Synchronization 3-53

Normally, 64KB blocks are used to buffer client data. Resume block size can be
specified in KB, with the RESUME_BLOCKSIZE parameter. If you are using disk files to
minimize fragmentation, then the block size should be specified as a larger number.

3.10.2 Controlling Server Load
If too many clients connect to a Mobile Server at once, it can become overloaded, run
out of memory, or have poor performance when responding to the clients. The
RESUME_MAXACTIVE parameter controls the maximum number of connections that
the Mobile Server handles at a single time. If more clients try to connect, they are
queued until existing connections complete. The default is 100 connections.

The RESUME_TIMEOUT parameter indicates how long to keep client data while the
client is not connected. The default is 0, which means that resume is disabled and after
disconnection, the client data is discarded. A short timeout, such as 15 minutes, is
suitable to resume any accidentally dropped connections. A longer timeout may be
needed if users explicitly pause and resume synchronization to switch networks or use
a dialup connection for another purpose.

The RESUME_MAXCHUNK parameter causes the server to drop the connection after
sending the specified data size, in KB. This forces the client to reconnect and inform
the server on how much data it already has. The server can the discard all data before
that offset. The fault value is 1024 KB.

These parameters are all configured within the webtogo.ora file on the Mobile
Server.

3.10.3 Client Configuration.
Configure the client-side parameters for timeout and maximum data size in the
CONSOLIDATOR section of the polite.ini file on the client, as follows:

■ The RESUME_CLIENT_TIMEOUT parameter is the number of seconds that the
client should use to timeout network operations. The default is 60 seconds.

■ The RESUME_CLIENT_MAXSEND parameter is the maximum data size, in KB, that
the client should send in a single POST request. This is used in cases where there is
a proxy with a small limit on the data size in one request. Specifying a reasonable
value, such as 256 KB, can also help clients with limited storage space, as they can
free the chunks that have already been transmitted and acknowledged. The
default is 1024 KB.

3.11 Synchronizing With Database Constraints
When you have database constraints on your table, you must develop your application
in a certain way to facilitate the synchronization of the data and keeping the database
constraints. The following sections detail each constraint and what issues you must
take into account:

■ Section 3.11.1, "Synchronization And Database Constraints"

■ Section 3.11.2, "Primary Key is Unique"

■ Section 3.11.3, "Foreign Key Constraints"

■ Section 3.11.4, "Unique Key Constraint"

■ Section 3.11.5, "Not Null Constraint"

■ Section 3.11.6, "Generating Constraints on the Mobile Client"

Synchronizing With Database Constraints

3-54 Oracle Database Lite Developer’s Guide

3.11.1 Synchronization And Database Constraints
Oracle Database Lite does not keep a record of the SQL operations executed against
the database; instead, only the final changes are saved and synchronized to the
back-end database.

For example, if you have a client with a unique key constraint, where the following is
executed against the client Oracle Lite database:

1. Record with primary key of one and unique field of ABC is deleted.

2. Record with primary key of 4 and unique field of ABC is inserted.

When this is synchronized, according the Section 3.4.1.7.2, "Using Table Weight"
discussion, the insert is performed before the delete. This would add a duplicate field
for ABC and cause a unique key constraint violation. In order to avoid this, you
should defer all constraint checking until after all transactions are applied. See
Section 3.11.3.2, "Defer Constraint Checking Until After All Transactions Are Applied".

Another example of how synchronization captures the end result of all SQL
modifications is as follows:

1. Insert an employee record 4 with name of Joe Judson.

2. Update employee record 4 with address.

3. Update employee record 4 with salary.

4. Update employee record 4 with office number

5. Update employee record 4 with work email address.

When synchronization occurs, all modifications are captured and only a single insert is
performed on the back-end database. The insert contains the primary key, name,
address, salary, office number and email address. Even though the data was created
with multiple updates, the Synch Server only takes the final result and makes a single
insert.

3.11.2 Primary Key is Unique
When you have multiple clients, each updating the same table, you must have a
method for guaranteeing that the primary key is unique across all clients. Oracle
Database Lite provides you a sequence number that you can use as the primary key,
which is guaranteed to be unique across all Oracle Database Lite clients.

For more information on the sequence number, see Section 3.4.1.8, "Creating
Client-Side Sequences for the Downloaded Snapshot".

3.11.3 Foreign Key Constraints
A foreign key exists in a details table and points to a row in the master table. Thus,
before a client adds a record to the details table, the master table must first exist.

For example, two tables EMP and DEPT have referential integrity constraints and are an
example of a master-detail relationship. The DEPT table is the master table; the EMP
table is the details table. The DeptNo field (department number) in the EMP table is a
foreign key that points to the DeptNo field in the DEPT table. The DeptNo value for
each employee in the EMP table must be a valid DeptNo value in the DEPT table.

Note: If you want these constraints to apply on the Mobile client, see
Section 3.11.6, "Generating Constraints on the Mobile Client".

Synchronizing With Database Constraints

Synchronization 3-55

When a user adds a new employee, first the employee’s department must exist in the
DEPT table. If it does not exist, then the user first adds the department in the DEPT
table, and then adds a new employee to this department in the EMP table. The
transaction first updates DEPT and then updates the EMP table. However, Oracle
Database Lite does not store the sequence in which these operations were executed.

Oracle Database Lite does not keep a record of the SQL operations executed against
the database; instead, only the final changes are saved and synchronized to the
back-end database. For our employee example, when the user replicates with the
Mobile Server, the Mobile Server could initiate the updates the EMP table first. If this
occurs, then it attempts to create a new record in EMP with an invalid foreign key value
for DeptNo. Oracle database detects a referential integrity violation. The Mobile Server
rolls back the transaction and places the transaction data in the Mobile Server error
queue. In this case, the foreign key constraint violation occurred because the
operations within the transaction are performed out of their original sequence.

In order to avoid this violation, you can do one of two things:

■ Section 3.11.3.1, "Set Update Order for Tables With Weights"

■ Section 3.11.3.2, "Defer Constraint Checking Until After All Transactions Are
Applied"

3.11.3.1 Set Update Order for Tables With Weights
Set the order in which tables are updated on the back-end Oracle database with
weights. To avoid integrity constraints with a master-details relationship, the master
table must always be updated first in order to guarantee that it exists before any
records are added to a details table. In our example, you must set the DEPT table with
a lower weight than the EMP table to ensure that all records are added to the DEPT
table first.

You define the order weight for tables when you add a publication item to the
publication. For more information on weights, see Section 3.4.1.7.2, "Using Table
Weight".

3.11.3.2 Defer Constraint Checking Until After All Transactions Are Applied
You can use a PL/SQL procedure avoid foreign key constraint violations based on
out-of-sequence operations by using DEFERRABLE constraints in conjunction with the
BeforeApply and AfterApply functions. DEFERRABLE constraints can be either
INITIALLY IMMEDIATE or INITIALLY DEFERRED. The behavior of DEFERRABLE
INITIALLY IMMEDIATE foreign key constraints is identical to regular immediate
constraints. They can be applied interchangeably to applications without impacting
functionality.

The Mobile Server calls the BeforeApply function before it applies client transactions
to the server and calls the AfterApply function after it applies the transactions.
Using the BeforeApply function, you can set constraints to DEFFERED to delay
referential integrity checks. After the transaction is applied, call the AfterApply
function to set constraints to IMMEDIATE. At this point, if a client transaction violates
referential integrity, it is rolled back and moved into the error queues.

To prevent foreign key constraint violations using DEFERRABLE constraints:

1. Drop all foreign key constraints and then recreate them as DEFERRABLE
constraints.

2. Bind user-defined PL/SQL procedures to publications that contain tables with
referential integrity constraints.

Synchronizing With Database Constraints

3-56 Oracle Database Lite Developer’s Guide

3. The PL/SQL procedure should set constraints to DEFERRED in the BeforeApply
function and IMMEDIATE in the AfterApply function as in the following
example featuring a table named SAMPLE3 and a constraint named address.14_
fk:

 procedure BeforeApply(clientname varchar2) is
 cur integer;
 begin
 cur := dbms_sql.open_cursor;
 dbms_sql.parse(cur,'SET CONSTRAINT SAMPLE3.address14_fk
 DEFERRED', dbms_sql.native);
 dbms_sql.close_cursor(cur);
 end;
 procedure AfterApply(clientname varchar2) is
 cur integer;
 begin
 cur := dbms_sql.open_cursor;
 dbms_sql.parse(cur, 'SET CONSTRAINT SAMPLE3.address14_fk
 IMMEDIATE', dbms_sql.native);
 dbms_sql.close_cursor(cur);
 end;

3.11.4 Unique Key Constraint
A unique key constraint enforces uniqueness of data. However, you may have
multiple clients across multiple devices updating the same table. Thus, a record may
be unique on a single client, but not across all clients. Enforcing uniqueness is the
customer’s reponsibility and depends on the data.

How do you guarantee that the records added on separate clients are unique? You can
use the sequence numbers generated on the client by Oracle Database Lite. See
Section 3.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot" for
more information.

3.11.5 Not Null Constraint
When you have a not null constraint on the client or on the server, you must ensure
that this constraint is set on both sides.

■ On the server—Create a NOT NULL constraint on the back-end server table using
the Oracle database commands.

■ For the client—Set a column as NOT NULL by executing the
setPubItemColOption method in the ConsolidatorManager API. Provide
Consolidator.NOT_NULL as the input parameter for nullType. The constraint
is then enforced on the table in the client Oracle Lite database.

3.11.6 Generating Constraints on the Mobile Client
The Primary Key, Foreign Key, Not Null and Default Value constraints can be
synchronized to the Mobile client; the Unique constraints cannot be synchronized. For
foreign key constraints, you decide if you want the foreign key on the Mobile client.
That is, when you create a foreign key constraint on a table on the back-end server, you
may or may not want this constraint to exist on the Mobile client.

■ Each publication that is defined is specific to a certain usage. For example, if you
have a foreign key constraint between two tables, such as department and
employee, your publication may only specify that information from the employee

Parent Tables Needed for Updateable Views

Synchronization 3-57

table is downloaded. In this situation, you would not want the foreign constraint
between the employee and department table to be enforced on the client.

■ If you do have a master-detail relationship or other constraint relationships
synchronized down to the client, then you would want to have the constraint
generated on the client.

In order to generate the constraints on theMobile client, perform the following:

1. Within the process for creating or modifying an existing publication using the
APIs, invoke the assignWeights method of the ConsolidatorManager object,
which does the following tasks:

a. Calculates a weight for each of the publication items included in the
publication.

b. Creates a script that, when invoked on the client, generates the constraints on
the client. This script is automatically added to the publication.

2. On the Mobile client, perform a synchronization for the user, which brings down
the snapshot and the constraint script. The script is automatically executed on the
Mobile client.

Once executed on the client, all constraints on the server for this publication are also
enforced on the Mobile client.

3.11.6.1 The assignWeights Method
The assignWeights method automatically calculates weights for all publication
items belonging to a publication. If a new publication item is added or if there is a
change in the referential relationships, the API should be called again.

The following defines the assignWeights method and its parameters:

public void assignWeights(java.lang.String pub, boolean createScripts)
 throws ConsolidatorException

Where:

■ pub - Publication name

■ createScripts - If true, creates refrential constraints scripts and adds them to
the publication to be propagated to subscribed clients.

3.12 Parent Tables Needed for Updateable Views
For a view to be updatable, it must have a parent table. A parent table can be any one
of the view base tables in which a primary key is included in the view column list and
is unique in the view row set. If you want to make a view updatable, provide the
Mobile Server with the appropriate hint and the view parent table before you create a
publication item on the view.

To make publication items based on a updatable view, use the following two
mechanisms:

■ Parent table hints

■ INSTEAD OF triggers or DML procedure callouts

Resolving Conflict Resolution with Winning Rules

3-58 Oracle Database Lite Developer’s Guide

3.12.1 Creating a Parent Hint
Parent table hints define the parent table for a given view. Parent table hints are
provided through the parentHint method of the Consolidator Manager object, as
follows:

consolidatorManager.parentHint("SAMPLE3","ADDROLRL4P","SAMPLE3","ADDRESS");

See the Javadoc in the Oracle Database Lite API Specification for more information.

3.12.2 INSTEAD OF Triggers
INSTEAD OF triggers are used to execute INSTEAD OF INSERT, INSTEAD OF
UPDATE, or INSTEAD OF DELETE commands. INSTEAD OF triggers also map these
DML commands into operations that are performed against the view base tables.
INSTEAD OF triggers are a function of the Oracle database. See the Oracle database
documentation for details on INSTEAD OF triggers.

3.13 Resolving Conflict Resolution with Winning Rules
■ Client wins—When the client wins, the Mobile Server automatically applies client

changes to the server. And if you have a record that is set for INSERT, yet a record
already exists, the Mobile Server automatically modifies it to be an UPDATE.

■ Server wins—If the server wins, the client updates are not applied to the
application tables. Instead, the Mobile Server automatically composes changes for
the client. The client updates are placed into the error queue, just in case you still
want these changes to be applied to the server—even though the winning rules
state that the server wins.

The Mobile Server uses internal versioning to detect synchronization conflicts. A
separate version number is maintained for each client and server record. When the
client updates are applied to the server, then the Mobile Server checks the version
numbers of the client against the version numbers on the server. If the version does not
match, then the conflict resolves according to the defined winning rules—such as
client wins or server wins, as follows:

The Mobile Server does not automatically resolve synchronization errors. Instead, the
Mobile Server rolls back the corresponding transactions, and moves the transaction
operations into the Mobile Server error queue. It is up to the administrator to view the
error queue and determine if the correct action occurred. If not, the administrator must
correct and re-execute the transaction. If it did execute correctly, then purge the
transaction from the error queue.

One type of error is a synchronization conflict, which is detected in any of the
following situations:

■ The client and the server update the same row.

■ The client deletes the same row that the server updates.

■ The client updates a row at the same time that the server deletes it when the
"server wins" conflict rule is specified. This is considered a synchronization error
for compatibility with Oracle database advanced replication.

■ Both the client and server create rows with the same primary key values.

■ For systems with delayed data processing, where the client data is not directly
applied to the base table—for instance, in a three-tiered architecture—a situation
could occur when a client inserts a row and then updates the same row, while the
row has not yet been inserted into the base table. In that case, if the DEF_APPLY

Resolving Conflict Resolution with Winning Rules

Synchronization 3-59

parameter in C$ALL_CONFIG is set to TRUE, an INSERT operation is performed,
instead of the UPDATE. It is up to the application developer to resolve the resulting
primary key conflict. If, however, DEF_APPLY is not set, a "NO DATA FOUND"
exception is thrown.

All the other errors, including nullity violations and foreign key constraint violations
are synchronization errors. See Section 3.11, "Synchronizing With Database
Constraints" for more information.

All synchronization errors are placed into the error queue. For each publication item
created, a separate and corresponding error queue is created. The purpose of this
queue is to store transactions that fail due to unresolved conflicts. The administrator
can attempt to resolve the conflicts, either by modifying the error queue data or that of
the server, and then attempt to re-apply the transaction.

The administrator can change the transaction operations and re-execute or purge
transactions from the error queue from either of the following:

■ The Mobile Manager GUI—See Chapter 6, "Managing Synchronization" in the
Oracle Database Lite Administration and Deployment Guide on how to update the
client transaction in the error queue and re-execute the statement using the Mobile
Manager GUI.

■ The Consolidator Manager API and accessing the Mobile Server error queue tables
directly and customize the conflict rules, as described in the following sections:

■ Section 3.13.1, "Resolving Errors and Conflicts Using the Error Queue"

■ Section 3.13.2, "Customizing Synchronization Conflict Resolution Outcomes"

3.13.1 Resolving Errors and Conflicts Using the Error Queue
The error queue stores transactions that fail due to synchronization errors or
unresolved conflicts. For unresolved conflicts, only the "Server Wins" conflicts are
reported. If you have set your conflict rules to "Client Wins", then these are not
reported. The administrator can do one of the following:

■ Attempt to correct the error by modifying the error queue data or that of the
server, and re-apply the transaction through the executeTransaction method
of the Consolidator Manager object.

■ If a conflict was reported and resolved to your satisfaction, then you can purge the
transaction from the error queue with the purgeTransaction method of the
Consolidator Manager object. Otherwise, you can override the default conflict
resolution by modifying the error queue data and re-apply the transaction.

View the error queue through the Mobile Manager GUI, where you can see what the
conflict was. You can fix the problem and reapply the data by modifying the DML
operation appropriately and then re-executing. See Section 5.9.4.3 "Viewing
Transactions in the Error Queue" in the Oracle Database Lite Administration and
Deployment Guide for directions.

3.13.2 Customizing Synchronization Conflict Resolution Outcomes
You can customize synchronization conflict resolution by performing the following:

1. Configure the winning rule to Client Wins.

2. Attach BEFORE INSERT, UPDATE, and DELETE triggers to database tables.

3. Create a custom DML procedure.

Manipulating Application Tables

3-60 Oracle Database Lite Developer’s Guide

The triggers in the database compare old and new row values and resolve client
changes, as you specify in the triggers.

3.14 Manipulating Application Tables
If you need to manipulate the application tables to create a secondary index or a
virtual primary key, you can use ConsolidatorManager methods to
programmatically perform these tasks in your application, as described in the
following sections:

■ Section 3.14.1, "Creating Secondary Indexes on Client Device"

■ Section 3.14.2, "Virtual Primary Key"

3.14.1 Creating Secondary Indexes on Client Device
The first time a client synchronizes, the Mobile Server automatically enables a Mobile
client to create the database objects on the client in the form of snapshots. By default,
the primary key index of a table is automatically replicated from the server. You can
create secondary indexes on a publication item through the Consolidator Manager
APIs. See the Oracle Database Lite API Javadoc for specific API information. See
Section 3.4.1.6, "Create Publication Item Indexes" for an example.

3.14.2 Virtual Primary Key
You can specify a virtual primary key for publication items where the base object does
not have a primary key defined. This is useful if you want to create a fast refresh
publication item on a table that does not have a primary key.

A virtual primary key must be unique and not null. You can create a virtual primary
key for more than one column, but the API must be called separately for each column
that you wish to assign a virtual primary key. The following methods create and drop
a virtual primary key.

Use the createVirtualPKColumn method to create a virtual primary key column.

consolidatorManager.createVirtualPKColumn("SAMPLE1", "DEPT", "DEPT_ID");

Use the dropVirtualPKColumns method to drop a virtual primary key.

consolidatorManager.dropVirtualPKColumns("SAMPLE1", "DEPT");

3.15 Facilitating Schema Evolution
You can use schema evolution when adding or altering a column in the application
tables for updatable publication items. You do not use schema evolution for read-only
publication items.

If you do alter the schema, then the client receives a complete refresh on the modified
publication item, but not for the entire publication.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Note: You should stop all synchronization events and MGP activity
during a schema evolution.

Set DBA or Operational Privileges for the Mobile Server

Synchronization 3-61

The following types of schema modifications is supported:

■ Add new columns

■ Change the type of a column—You can only modify the type of a column in
accordance to the Oracle Database limitations. In addition, you CANNOT modify
a primary key or virtual primary key column

■ Increase the width of a column

For facilitating schema evolution, perform the following:

1. If necessary, modify the table in the back-end Oracle database.

2. Modify the publication item directly on the production Mobile repository through
MDW or the alterPublicationItem API. Modifying the SQL query of the
publication item causes the schema evolution to occur.

A schema evolution only occurs if the SQL query is modified. If the SQL query
does not change, then the evolution does not occur. If your modification only
touched the table, then you must modify the SQL query by adding an additional
space to force the schema evolution to occur.

3. Once you alter the SQL query, then either use Mobile Manager to refresh the
metadata cache or restart the Mobile Server. To refresh the metadata cache through
the Mobile Server, select Data Synchronization->Administration->Reset Metadata
Cache or execute the resetCache method of the ConsolidatorManager class.

When you modify the table in the Mobile repository, the client snapshot is no longer.
Thus—by default—a complete refresh occurs the next time you synchronize, because a
new snapshot must be created on the client.

3.16 Set DBA or Operational Privileges for the Mobile Server
You can set either DBA or operational privileges for the Mobile Server with the
following Consolidator Manager API:

void setMobilePrivileges(String dba_schema, String dba_pass, int type)
 throws ConsolidatorException

where the input parameter are as follows:

■ dba_schema—The DBA schema name

■ dba_pass—The DBA password

Note: You cannot modify the definition of any primary key or
virtual primary key.

Note: If you decide to republish the application to a different Mobile
repository, then update the publication definition in the packaging
wizard.

Note: Use of the high priority flag during sync will override any
schema evolution, as a result, the new table definition will not come to
the client.

Create a Synonym for Remote Database Link Support For a Publication Item

3-62 Oracle Database Lite Developer’s Guide

■ type—Define the user by setting this parameter to either Consolidator.DBA or
Consolidator.OPER

If you specify Consolidator.DBA, then the privileges needed are those necessary for
granting DBA privileges that are required for publish/subscribe functions of the
Mobile Server.

If you specify Consolidator.OPER type, then the privileges needed are those
necessary for executing the Mobile Server without any schema modifications. The
OPER is given DML and select access to publication item base objects, version, log,
and error queue tables.

The Mobile Server privileges are modified using the C$MOBILE_PRIVILEGES
PL/SQL package, which is created for you automatically after the first time you use
the setMobilePrivileges procedure. After the package is created, the Mobile
Server privileges can be administered from SQL or from this Java API.

3.17 Create a Synonym for Remote Database Link Support For a
Publication Item

Publication items can be defined for database objects existing on remote database
instances outside of the Mobile Server repository. Local private synonyms of the
remote objects should be created in the Oracle database. Execute the following SQL
script located in the <ORACLE_HOME>\Mobile\server\admin\consolidator_
rmt.sql directory on the remote schema in order to create Consolidator Manager
logging objects.

The synonyms should then be published using the createPublicationItem
method of the ConsolidatorManager object. If the remote object is a view that
needs to be published in updatable mode and/or fast-refresh mode, the remote parent
table must also be published locally. Parent hints should be provided for the synonym
of the remote view similar those used for local, updatable and/or fast refreshable
views.

Two additional methods have been created, dependencyHint and
removeDependencyHint, to deal with non-apparent dependencies introduced by
publication of remote objects.

Remote links to the Oracle database must be established prior to attempting remote
linking procedures, please refer to the Oracle SQL Reference for this information.

The following sections describe how to manage remote links:

■ Section 3.17.1, "Publishing Synonyms for the Remote Object Using
CreatePublicationItem"

■ Section 3.17.2, "Creating or Removing a Dependency Hint"

3.17.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem
The createPublicationItem method creates a new, stand-alone publication item
as a remote database object. If the URL string is used, the remote connection is

Note: The performance of synchronization from remote databases
is subject to network throughput and the performance of remote
query processing. Because of this, remote data synchronization is
best used for simple views or tables with limited amount of data.

Using the Sync Discovery API to Retrieve Statistics

Synchronization 3-63

established and closed automatically. If the connection is null or cannot be established,
an exception is thrown. The remote connection information is used to create logging
objects on the linked database and to extract metadata.

consolidatorManager.createPublicationItem(
 "jdbc:oracle:oci8:@oracle.world",
 "P_SAMPLE1",
 "SAMPLE1",
 "PAYROLL_SYN",
 "F"
 "SELECT * FROM sample1.PAYROLL_SYN"+"WHERE SALARY >:CAP", null, null);

3.17.2 Creating or Removing a Dependency Hint
Use the dependencyHint method to create a hint for a non-apparent dependency.

Given remote view definition
 create payroll_view as
 select p.pid, e.name
 from payroll p, emp e
 where p.emp_id = e.emp_id;

Execute locally
 create synonym v_payroll_syn for payroll_view@<remote_link_address>;
 create synonym t_emp_syn for emp@<remote_link_address>;

Where <remote_link_address> is the link established on the Oracle database. Use
dependencyHint to indicate that the local synonym v_payroll_syn depends on
the local synonym t_emp_syn:

consolidatorManager.dependencyHint("SAMPLE1","V_PAYROLL_SYN","SAMPLE1","T_EMP_
SYN");

Use the removeDependencyHint method to remove a hint for a non-apparent
dependency.

3.18 Using the Sync Discovery API to Retrieve Statistics
The sync discovery feature is used to request an estimate of the size of the download
for a specific client, based on historical data. The following statistics are gathered to
maintain the historical data:

■ The total number of rows send for each publication item.

■ The total data size for these rows.

■ The compressed data size for these rows.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Note: Within the select statement, the parameter name for the
data subset must be prefixed with a colon, for example :CAP.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Using the Sync Discovery API to Retrieve Statistics

3-64 Oracle Database Lite Developer’s Guide

The following sections contain methods that can be used to gather statistics:

■ Section 3.18.1, "getDownloadInfo Method"

■ Section 3.18.2, "DownloadInfo Class Access Methods"

■ Section 3.18.3, "PublicationSize Class"

3.18.1 getDownloadInfo Method
The getDownloadInfo method returns the DownloadInfo object. The
DownloadInfo object contains a set of PublicationSize objects and access
methods. The PublicationSize objects carry the size information of a publication
item. The method Iterator iterator() can then be used to view each
PublicationSize object in the DownloadInfo object.

DownloadInfo dl = consolidatorManager.getDownloadInfo("S11U1", true, true);

3.18.2 DownloadInfo Class Access Methods
The access methods provided by the DownloadInfo class are listed in Table 3–23:

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Table 3–23 DownloadInfo Class Access Methods

Method Definition

iterator Returns an Iterator object so that the user can traverse through
the all the PublicationSize objects that are contained inside
the DownloadInfo object.

getTotalSize Returns the size information of all PublicationSize objects
in bytes, and by extension, the size of all publication items
subscribed to by that user. If no historical information is
available for those publication items, the value returned is '-1'.

getPubSize Returns the size of all publication items that belong to the
publication referred to by the string pubName. If no historical
information is available for those publication items, the value
returned is '-1'.

getPubRecCount Returns the number of all records of all the publication items
that belong to the publication referred by the string pubName,
that will be synchronization during the next synchronization.

getPubItemSize Returns the size of a particular publication item referred by
pubItemName. It follows the following rules in order.

1. If the publication item is empty, it will return '0'.

2. If no historical information is available for those
publication items, it will return '-1'.

getPubItemRecCount Returns the number of records of the publication item referred
by pubItemName that will be synced in the next
synchronization.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Using the Sync Discovery API to Retrieve Statistics

Synchronization 3-65

3.18.3 PublicationSize Class
The access methods provided by the PublicationSize class are listed inTable 3–24:

Sample Code
import java.sql.*;
import java.util.Iterator;
import java.util.HashSet;

import oracle.lite.sync.ConsolidatorManager;
import oracle.lite.sync.DownloadInfo;
import oracle.lite.sync.PublicationSize;

public class TestGetDownloadInfo
{

 public static void main(String argv[]) throws Throwable
 {
// Open Consolidator Manager connection
 try
 {
// Create a ConsolidatorManager object
 ConsolidatorManager cm = new ConsolidatorManager ();
// Open a Consolidator Manager connection
 cm.openConnection ("MOBILEADMIN", "MANAGER",
 "jdbc:oracle:thin:@server:1521:orcl", System.out);
// Call getDownloadInfo
 DownloadInfo dlInfo = cm.getDownloadInfo ("S11U1", true, true);
// Call iterator for the Iterator object and then we can use that to transverse
// through the set of PublicationSize objects.
 Iterator it = dlInfo.iterator ();
// A temporary holder for the PublicationSize object.
 PublicationSize ps = null;
// A temporary holder for the name of all the Publications in a HashSet object.
 HashSet pubNames = new HashSet ();
// A temporary holder for the name of all the Publication Items in a HashSet
// object.
 HashSet pubItemNames = new HashSet ();
// Traverse through the set.
 while (it.hasNext ())
 {

Table 3–24 PublicationSize Class Access Methods

Parameter Definition

getPubName Returns the name of the publication containing the publication
item.

getPubItemName Returns the name of the publication item referred to by the
PublicationSize object.

getSize Returns the total size of the publication item referred to by the
PublicationSize object.

getNumOfRows Returns the number of rows of the publication item that will be
synchronized in the next synchronization.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Using the Sync Discovery API to Retrieve Statistics

3-66 Oracle Database Lite Developer’s Guide

// Obtain the next PublicationSize object by calling next ().
 ps = (PublicationSize)it.next ();

// Obtain the name of the Publication this PublicationSize object is associated
// with by calling getPubName ().
 pubName = ps.getPubName ();
 System.out.println ("Publication: " + pubName);

// We save pubName for later use.
 pubNames.add (pubName);

// Obtain the Publication name of it by calling getPubName ().
 pubItemName = ps.getPubItemName ();
 System.out.println ("Publication Item Name: " + pubItemName);

// We save pubItemName for later use.
 pubItemNames.add (pubItemName);

// Obtain the size of it by calling getSize ().
 size = ps.getSize ();
 System.out.println ("Size of the Publication: " + size);

// Obtain the number of rows by calling getNumOfRows ().
 numOfRows = ps.getNumOfRows ();
 System.out.println ("Number of rows in the Publication: "
 + numOfRows);
 }

// Obtain the size of all the Publications contained in the
// DownloadInfo objects.
 long totalSize = dlInfo.getTotalSize ();
 System.out.println ("Total size of all Publications: " + totalSize);

// A temporary holder for the Publication size.
 long pubSize = 0;

// A temporary holder for the Publication number of rows.
 long pubRecCount = 0;

// A temporary holder for the name of the Publication.
 String tmpPubName = null;

// Transverse through the Publication names that we saved earlier.
 it = pubNames.iterator ();
 while (it.hasNext ())
 {
// Obtain the saved name.
 tmpPubName = (String) it.next ();

// Obtain the size of the Publication.
 pubSize = dlInfo.getPubSize (tmpPubName);
 System.out.println ("Size of " + tmpPubName + ": " + pubSize);

// Obtain the number of rows of the Publication.
 pubRecCount = dlInfo.getPubRecCount (tmpPubName);
 System.out.println ("Number of rows in " + tmpPubName + ": "
 + pubRecCount);
 }

// A temporary holder for the Publication Item size.

Customizing Replication With Your Own Queues

Synchronization 3-67

 long pubItemSize = 0;

// A temporary holder for the Publication Item number of rows.
 long pubItemRecCount = 0;

// A temporary holder for the name of the Publication Item.
 String tmpPubItemName = null;

// Traverse through the Publication Item names that we saved earlier.
 it = pubItemNames.iterator ();
 while (it.hasNext ())
 {
// Obtain the saved name.
 tmpPubItemName = (String) it.next ();

// Obtain the size of the Publication Item.
 pubItemSize = dlInfo.getPubItemSize (tmpPubItemName);
 System.out.println ("Size of " + pubItemSize + ": " + pubItemSize);

// Obtain the number of rows of the Publication Item.
 pubItemRecCount = dlInfo.getPubItemRecCount (tmpPubItemName);
 System.out.println ("Number of rows in " + tmpPubItemName + ": "
 + pubItemRecCount);
 }
 System.out.println ();

// Close the connection
 cm.closeConnection ();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

3.19 Customizing Replication With Your Own Queues
Application developers can manage the replication process programmatically by using
queue-based publication items. By default on the server-side, the MGP manages both
the in queues and the out queues by gathering all updates posted to the in queue,
applying these updates to the relevant tables, and then composing all new updates
created on the server that are destined for the client and posting it to the out queue.
This is described in Section 3.1, "How Does Synchronization Work?".

However, you can bypass the MGP and provide your own solution for the apply and
compose phases on the server-side for selected publication items. You may wish to
bypass the MGP for the publication item if one or more of the following are true:

■ If you want to facilitate synchronous data exchange, use queue-based publication
items.

■ If you have complex business rules for data subsetting, in how you decide what
data each user receives, then use queue-based publication items. You can
incorporate these business rules into generation of the client’s queue data. This is
especially true if the rules are dynamically evaluated during runtime.

■ If your client collects large amounts of data only for upload to the server, never
receives data from the server, and it does not require conflict resolution, then use
the data collection queues.

Customizing Replication With Your Own Queues

3-68 Oracle Database Lite Developer’s Guide

Figure 3–2 shows how the Sync Server invokes the UPLOAD_COMPLETE PL/SQL
procedure when the client upload is complete. And before it downloads all composed
updates to the client, the Sync Server invokes the DOWNLOAD_INIT PL/SQL
procedure.

Figure 3–2 Queue-Based Synchronization Architecture

To bypass the MGP, do the following:

1. Define your publication item as queue-based or data collection. Then, the MGP is
not aware of the queues associated with this publication item. You can do this
when creating the publication item either through MDW or Consolidator APIs.

2. If queue-based, then create a package, either PL/SQL or Java, that implements the
queue interface callback methods. This includes the following callback methods:

■ UPLOAD_COMPLETE to process the incoming updates from the client.

■ DOWNLOAD_INIT to complete the compose phase.

■ DOWNLOAD_COMPLETE if you have any processing to perform after the
compose phase.

3. Create the queues. The in queue, CFM$<publication_item_name> is created
by default for you. Create the out queue as CTM$<publication_item_name>.

This section describes two methods for customizing the server-side apply/compose
phases, as follows:

■ Section 3.19.1, "Customizing Apply/Compose Phase of Synchronization with a
Queue-Based Publication Item"—You can define both the apply and compose
phases using queue-based publication items.

■ Section 3.19.2, "Creating Data Collection Queues for Uploading Client Collected
Data"—You can only use the data collection queue for the upload phase. The
queues are optimized for when a client collects data to upload to the server and
never receives data from the server.

■ Section 3.19.3, "Selecting How/When to Notify Clients of Composed Data"—You
can notify a client that there is new data on the server ready to be downloaded to
initiate a synchronization.

Mobile Client

1. Synchronize
Client

Database (ODB)
Sync
Client

Sync
Server

Mobile Server

2. Upload
changes

3. Place client
transaction in
the In Queue

4. PL/SQL procedure
UPLOAD_COMPLETE

executed when
data is

available.

6. PL/SQL procedure
DOWNLOAD_INIT
executed when

SyncServer
looks for

composed data

9. Grab transaction
for client ODB

10. Download
changes

11. Execute changes
 against ODB

Steps 1-3 and 9-11 occur between
the Mobile Server and the client

Steps 4-8 occur between
the Mobile Server
and the Database

when the Sync Server
invokes the PL/SQL package

8. PL/SQL procedure
DOWNLOAD_COMPLETE
executed after compose

phase is complete

In Queue
Database

Out Queue

 5. PL/SQL procedure
 applies client
transaction to

application tables

7. PL/SQL procedure
composes

updates destined
for the client

Customizing Replication With Your Own Queues

Synchronization 3-69

3.19.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based
Publication Item

When you want to substitute your own logic for the apply/compose phase of the
synchronization process, use a queue-based publication item. The following briefly
gives an overview of how the process works internally when using a queue-based
publication item:

■ When data arrives from the client it is placed in the publication item in queues.
The Sync Server calls UPLOAD_COMPLETE, after which the data is committed. All
records in the current synchronization session are given the same transaction
identifier. The Queue Control Table (C$INQ) indicates which publication item In
Queues have received new transactions with the unique transaction identifier.
Thus, this table shows which queues need processing.

■ If you have a queue-based publication item, you must implement the compose
phase, if you have one. The MGP is unaware of queue-based publication items and
so will not be able to perform any action for this publication item. When you
implement your own compose logic, you decide when and how the compose logic
is invoked. For example, you could do the following:

– You could have a script execute your compose logic at a certain time of the
day.

– You could schedule the compose procedure as a job in the Job Scheduler.

– You could include the compose logic as part of the DOWNLOAD_INIT function,
so that it executes before the client downloads.

Before the Sync Server begins the download phase of the synchronization session,
it calls DOWNLOAD_INIT. In this procedure, you can customize the compose or
develop any pre-download logic for the client. The Sync Server finds a list of the
publication items, which can be downloaded based on the client's subscription. A
list of publication items and their refresh mode, ('Y' for complete refresh, 'N' for
fast refresh) is inserted into a temporary table (C$PUB_LIST_Q). Items can be
deleted or the refresh status can be modified in this table since the Sync Server
refers to C$PUB_LIST_Q to determine the items that are downloaded to the client.

Similar to the In Queue, every record in the Out Queue should be associated with it a
transaction identifier (TRANID$$). The Sync Server passes the last_tran parameter
to indicate the last transaction that the client has successfully applied. New out queue
records that have not been downloaded to the client are be marked with the value of
curr_tran parameter. The value of curr_tran is always greater than that of last_
tran, though not sequential. The Sync Server downloads records from the Out

Note: The sample for queue-based publication items is located in
<OLITE_HOME>/Mobile/Sdk/samples/Sync/win32/QBasedPI.

Note: If you decide to implement the compose phase independent of
the DOWNLOAD_INIT function; then once the compose is finished, you
may want the client to receive the data as soon as possible. In this
case, invoke the EN_QUEUE_NOTIFICATION function to start an
automatic synchronization from the client. For more information on
this function, see Section 3.19.3, "Selecting How/When to Notify
Clients of Composed Data".

Customizing Replication With Your Own Queues

3-70 Oracle Database Lite Developer’s Guide

Queues when the value of TRANID$$ is greater than last_tran. When the data is
downloaded, the Sync Server calls DOWNLOAD_COMPLETE.

When you decide to use queue-based publication items, you need to do the following:

1. Create both the In and Out Queues used in the apply and compose phases.

■ You can use the default In Queue, which is named CFM$<publication_
item_name>. Alternatively, you can create the queue of this name manually.
For example, if you wanted the In Queue to be a view, then you would create
the In Queue manually.

■ Create the Out Queue for the compose phase as CTM$<publication_item_
name>.

2. Create the publication item and define it as a queue-based publication item. This
can be done either through MDW or the Consolidator APIs.

3. Create the PL/SQL or Java callback methods for performing the apply and
compose phases. Since the MGP has nothing to do with the queues used for these
phases, when you are finished processing the data, you must manage the queues
by deleting any rows that have completed the necessary processing.

4. Register the package to be used for all of the queue processing for a particular
publication item.

3.19.1.1 Queue Creation
If a queue-based publication item is created, it will always use a queue by the name of
CFM$<publication_item_name>. However, if you want to customize how the In
Queue is defined—for example, by defining certain rules, making it a view or
designating the location of the queue—then you can create your own In Queue. The
Out Queue is never defined for you, so you must create an Out Queue named
CTM$<publication_item_name> in the Mobile Server repository manually using
SQL.

These queues are created based upon the publication item tables. For example, the
following table ACTIVESTATEMENT has five columns, as follows:

create table ACTIVESTATEMENT(
 StatementName varchar2(50) primary key,
 TestSuiteName varchar2(50),
 TestCaseName varchar2(50),
 CurrLine varchar2(4000),
 ASOrder integer) nologging;

The application stores its data in these five columns. When synchronization occurs,
this data must be uploaded and downloaded. However, there is also meta-information
necessary for facilitating the synchronization phases. Therefore, the Out Queue that
you create contains the meta-information in the CLID$$CS, TRANID$$ and
DMLTYPE$$ columns, as well as the columns from the ACTIVESTATEMENT table, as
follows:

create table CTM$AUTOTS_PUBITEM(
CLID$$CS VARCHAR2 (30),
StatementName varchar2(50) primary key,
TestSuiteName varchar2(50),
TestCaseName varchar2(50),
CurrLine varchar2(4000),
ASOrder integer,
TRANID$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'))) nologging;

Customizing Replication With Your Own Queues

Synchronization 3-71

Thus, before you can create the queues, you must already know the structure of the
tables for the publication item, as well as the publication item name.

The following shows the structure and creation of the queues:

■ In queue

■ Out queue

■ Queue Control Table

■ Temporary Table

In queue
All In Queues are named CFM$<name> where name is the publication item name. It
contains the application publication item table columns, as well as the fields listed in
Table 3–25:

The following designates the structure when creating the In Queue:

create table 'CFM$'+name
(
CLID$$CS VARCHAR2 (30),
TRANID$$ NUMBER (10),
SEQNO$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'),
publication item column definitions
)

Out queue
All Out Queues are named CTM$<name> where name is the publication item name. It
contains the application publication item table columns, as well as the fields listed in
Table 3–26:

Table 3–25 In Queue Interface Creation Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

SEQNO$$ A unique number for every DML language operation per transaction in the
inqueue (CFM$) only.

DMLTYPE$$ Checks the type of DML instruction:

■ 'I' - Insert

■ 'D' - Delete

■ 'U' - Update

Note: You must have the parameters in the same order as shown
above for the In Queue. It is different than the ordering in the Out
Queue.

Table 3–26 Out Queue Interface Creation Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

Customizing Replication With Your Own Queues

3-72 Oracle Database Lite Developer’s Guide

The following designates the structure when creating the In Queue:

create table 'CTM$'+name
(
CLID$$CS VARCHAR2 (30),
publication item column definitions
TRANID$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'),
)

Another example of creating an Out Queue is in the FServ example, which uses the
default In Queue of CFM$PI_FSERV_TASKS and creates the CTM$PI_FSERV_TASKS
Out Queue for the PI_FSERV_TASKS publication item, as follows:

create table CTM$PI_FSERV_TASKS(
 CLID$$CS varchar2(30),
 ID number,
 EMP_ID number,
 CUST_ID number,
 STAT_ID number,
 NOTES varchar2(255)
 TRANID$$ number(10),
 DMLTYPE$$ char(1) check(DMLTYPE$$ in ('I','U','D')),
);

Queue Control Table
The Sync Server automatically creates a queue control table, C$INQ, and a temporary
table, C$PUB_LIST_Q. You will process the information in the queue control table in
the PL/SQL or Java callout methods to determine which publication items have
received new transactions.

The parameters for the control table queue are listed in Table 3–27:

TRANID$$ A unique number identifying the transaction.

DMLTYPE$$ Checks the type of DML instruction:

■ 'I' - Insert

■ 'D' - Delete

■ 'U' - Update

Note: You must have the parameters in the same order as shown
above for the Out Queue. It is different than the ordering in the In
Queue.

Note: The application publication item table for the FServ example
contains columns for ID, EMP_ID, CUST_ID, STAT_ID, and NOTES.

Table 3–27 Queue Control Table Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

Table 3–26 (Cont.) Out Queue Interface Creation Parameters

Parameter Description

Customizing Replication With Your Own Queues

Synchronization 3-73

The control table has the following structure:

'C$INQ'
(
CLIENTID VARCHAR2 (30),
TRANID$$ NUMBER,
STORE VARCHAR2 (30),

)

Temporary Table
The DOWNLOAD_INIT procedure uses the Temporary Table C$PUB_LIST_Q for
determining what publication items to download in the compose phase.

'C$PUB_LIST_Q'
(
NAME VARCHAR2 (30),
COMP_REF CHAR(1),
CHECK(COMP_REF IN('Y','N'))
)

The parameters for the manually created queues are listed in Table 3–28:

3.19.1.2 Queue-Based PL/SQL Procedure for UPLOAD_COMPLETE and
DOWNLOAD_INIT Callouts
The PL/SQL package for the queue-based publication callouts is in a package where
both the UPLOAD_COMPLETE and DOWNLOAD_INIT procedures are defined. The
signatures for both callout procedures are as follows:

CREATE OR REPLACE PACKAGE CONS_QPKG AS
/*
 * notifies that In Queue has a new transaction by providing the client
 * identifier and the transaction identifier.
*/
PROCEDURE UPLOAD_COMPLETE(
 CLIENTID IN VARCHAR2,
 TRAN_ID IN NUMBER -- IN queue tranid
);
/*
 * initializes client data for download. provides the compose phase for the
 * client. The input data for this procedure is the client id, the last
 * and current transaction markers and the priority.
*/
PROCEDURE DOWNLOAD_INIT(
 CLIENTID IN VARCHAR2,
 LAST_TRAN IN NUMBER,

STORE Represents the publication item name in the queue control table.

Table 3–28 Queue Interface Creation Parameters

Parameter Description

NAME The publication item name that is to be downloaded from the
repository to the Out Queue.

COMP_REF This value is 'Y' for complete refresh.

Table 3–27 (Cont.) Queue Control Table Parameters

Parameter Description

Customizing Replication With Your Own Queues

3-74 Oracle Database Lite Developer’s Guide

 CURR_TRAN IN NUMBER,
 HIGH_PRTY IN VARCHAR2
);
/*
 * notifies when all the client's data is sent
*/
PROCEDURE DOWNLOAD_COMPLETE(
 CLIENTID IN VARCHAR2
);

END CONS_QPKG;
/

3.19.1.2.1 In Queue Apply Phase Processing Within the UPLOAD_COMPLETE procedure,
you should develop a method of applying all changes from the client to the correct
tables in the repository. The FServ example performs the following:

1. From the Master Table C$INQ, locates the rows for the designated client and
transaction identifiers that have been marked for update.

2. Retrieves the application publication item data and the DMLTYPE$$ from the In
Queue, based on the client and transaction identifiers.

3. Performs insert, update, or delete (determined by the value in DMLTYPE$$) for
updates in the application tables in the repository.

4. After updates are complete, delete the rows in the C$INQ and the In Queue that
you just processed.

PROCEDURE UPLOAD_COMPLETE(CLIENTID IN VARCHAR2, TRAN_ID IN NUMBER) IS
/*create cursors for execution later */
/* PI_CUR locates the rows for the client out of the master table */
CURSOR PI_CUR(C_CLIENTID VARCHAR2, C_TRAN_ID NUMBER) IS
 SELECT STORE FROM C$INQ
 WHERE CLID$$CS = C_CLIENTID AND TRANID$$ = C_TRAN_ID FOR UPDATE;
/* TASKS_CUR retrieves the values for the client data to be updated */
/* from the In Queue */
CURSOR TASKS_CUR(C_CLIENTID varchar2, C_TRAN_ID number) IS
 SELECT ID, EMP_ID, STAT_ID, NOTES, DMLTYPE$$ FROM CFM$PI_FSERV_TASKS
 WHERE CLID$$CS = C_CLIENTID AND TRANID$$ = C_TRAN_ID FOR UPDATE;
/* create variables */
TASK_OBJ TASKS_CUR%ROWTYPE;
PI_OBJ PI_CUR%ROWTYPE;
INSERT_NOT_ALLOWED EXCEPTION;
DELETE_NOT_ALLOWED EXCEPTION;
UNKNOWN_DMLTYPE EXCEPTION;

BEGIN

 OPEN PI_CUR(CLIENTID, TRAN_ID);
 /* C$INQ is used to find out which publication items have received data
 from clients. The publication item name is available in the STORE column
 */
 LOOP
 FETCH PI_CUR INTO PI_OBJ;
 EXIT WHEN PI_CUR%NOTFOUND;

 /* Locate the updates for the publication item PI_FSERV_TASKS */
 IF PI_OBJ.STORE = 'PI_FSERV_TASKS' THEN
 OPEN TASKS_CUR(CLIENTID, TRAN_ID);
 LOOP

Customizing Replication With Your Own Queues

Synchronization 3-75

 /* Process the in queue for PI_FSERV_TASKS */
 FETCH TASKS_CUR INTO TASK_OBJ;
 EXIT WHEN TASKS_CUR%NOTFOUND;

 /* Discover the DML command requested. For this publication, only
 updates are allowed.
 IF TASK_OBJ.DMLTYPE$$ = 'I' THEN
 RAISE INSERT_NOT_ALLOWED;
 ELSIF TASK_OBJ.DMLTYPE$$ = 'U' THEN
 FSERV_TASKS.UPDATE_TASK(TASK_OBJ.ID, TASK_OBJ.EMP_ID,
 TASK_OBJ.STAT_ID, TASK_OBJ.NOTES);
 ELSIF TASK_OBJ.DMLTYPE$$ = 'D' THEN
 RAISE DELETE_NOT_ALLOWED;
 ELSE
 RAISE UNKNOWN_DMLTYPE;
 END IF;

 /* after processing, delete the update request from the in queue */
 DELETE FROM CFM$PI_FSERV_TASKS WHERE CURRENT OF TASKS_CUR;
 END LOOP;
 close TASKS_CUR;
 END IF;

 /* after completing all updates for the client apply phase, delete from
 master queue */
 DELETE FROM C$INQ WHERE CURRENT OF PI_CUR;
 END LOOP;
END;

3.19.1.2.2 Out Queue Compose Phase Processing Within the DOWNLOAD_INIT procedure,
develop a method of composing all changes from the server that are destined for the
client from the publication item tables in the repository. The FServ example performs
the following:

1. From the Temporary Table C$PUB_LIST_Q, discover the publication items that
you should download data for the user using the client id, current and last
transaction.

2. Retrieves the application publication item data into the Out Queue. This example
always uses complete refresh.

PROCEDURE DOWNLOAD_INIT(CLIENTID IN VARCHAR2,
 LAST_TRAN IN NUMBER,
 CURR_TRAN IN NUMBER,
 HIGH_PRTY IN VARCHAR2) IS
/*create cursor used later in procedure which retrieves the publication name
 from the temporary table to perform compose phase.*/
CURSOR PI_CUR IS SELECT NAME from C$PUB_LIST_Q;
/*create variables*/
PI_NAME VARCHAR2(50);
STATID_CLOSE NUMBER;

BEGIN

 OPEN PI_CUR;
 /* C$PUB_LIST_Q (the temporary table) is used to find out which pub items
 have data to download to clients through the publication item out queue.
 The publication item name is available in the NAME column
 */
 LOOP
 FETCH PI_CUR INTO PI_NAME;

Customizing Replication With Your Own Queues

3-76 Oracle Database Lite Developer’s Guide

 EXIT WHEN PI_CUR%NOTFOUND;

 /* Populate the out queue of pub item PI_FSERV_TASKS with all
 unclosed tasks for the employee with this CLIENTID using a complete
 refresh. COMP_REF is always reset to Y since partial refresh has
 not been implemented.
 */
 /* if the PI_FSERV_TASKS publication item has data ready for the client,
 then perform a complete refresh and place all data in the out queue */
 IF PI_NAME = 'PI_FSERV_TASKS' THEN
 UPDATE C$PUB_LIST_Q SET COMP_REF='Y' where NAME = 'PI_FSERV_TASKS';
 SELECT ID INTO STATID_CLOSE FROM MASTER.TASK_STATUS
 WHERE DESCRIPTION='CLOSED';
 INSERT INTO CTM$PI_FSERV_TASKS(CLID$$CS, ID, EMP_ID, CUST_ID,
 STAT_ID, NOTES, TRANID$$, DMLTYPE$$)
 SELECT CLIENTID, a.ID, a.EMP_ID, a.CUST_ID, a.STAT_ID, a.NOTES,
 CURR_TRAN, 'I' FROM MASTER.TASKS a, MASTER.EMPLOYEES b
 WHERE a.STAT_ID < STATID_CLOSE AND b.CLIENTID = CLIENTID
 AND a.EMP_ID = b.ID;
 END IF;
 END LOOP;
END;

If, however, you want to perform another type of refresh than a complete refresh, such
as an incremental refresh, then do the following:

1. Read the value of COMP_REF

2. If the value is N, insert only the new data into the Out Queue.

In this situation, the LAST_TRAN parameter becomes useful.

3.19.1.3 Create a Publication Item as a Queue
You create the publication item as you would normally, with one change: define the
publication item as queue-based. See Section 5.4, "Create a Publication Item" for
directions on how to define the publication item as queue-based when using MDW.

If you are using the Consolidator APIs, then the createQueuePublicationItem
method creates a publication item in the form of a queue. This API call registers the
publication item and creates CFM$<name> table as an In Queue, if one does not exist.

You must provide the Consolidator Manager with the primary key, owner and name of
the base table or view in order to create a queue that can be updated or refreshed with
fast-refresh. If the base table or view name has no primary key, one can be specified in
the primary key columns parameter. If primary key columns parameter is null, then
Consolidator Manager uses the primary key of the base table.

3.19.1.4 Register the PL/SQL Package Outside the Repository
Once you finish developing the PL/SQL package, register it using the
registerQueuePkg method. This method registers the package separately from the
Mobile Server repository; although it refers to the in queues, out queues, queue control
table and temporary table that are defined in the repository.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Customizing Replication With Your Own Queues

Synchronization 3-77

The following methods register or remove a procedure, or retrieve the procedure
name.

■ The registerQueuePkg method registers the string pkg as the current
procedure. The following registers the FServ package.

 /* Register the queue package for this publication */
 consolidatorManager.registerQueuePkg(QPKG_NAME, PUB_FSERV);

■ The getQueuePkg method returns the name of the currently registered
procedure.

■ The unRegisterQueuePkg method removes the currently registered procedure.

3.19.2 Creating Data Collection Queues for Uploading Client Collected Data
If you have an application where all it does it collect data, such as taking inventory or
uploading collection on any meter (for example, a parking meter), then you can use
data collection queues to improve the performance of uploading the data collected to
the server. Since the data only flows from the client to the server, then synchronous
communication is the best method for uploading massive amounts of data.

The Data Collection Queue is lightweight and simple to create. You can customize
whether the data is implicitly applied or not. This queue does not require the MGP to
apply the changes. It does not create objects in the application schema or map data.

Data Collection Queues are also easier to implement than a Queue-Based publication
item. There is no need to create a package with callback methods, as Oracle Database
Lite takes care of automatically uploading any new data from the client. In addition,
you configure how Oracle Database Lite handles if there is any data to be downloaded
or if you want the data on the client to be erased when it is uploaded to the server.

When you create the Data Collection Queue, the following is performed for you:

■ Automatically generates the in-queue when the publication item is created, which
is named as follows: CFM$<publication_item_name>.

■ Optionally, enables the developer to choose automatic removal of client data once
captured to the server. This is specified when you create the publication item.

■ Optionally, if you need an out-queue, then the developer can specify the
out-queue or to have Oracle Database Lite automatically generate an out-queue,
which would be named as follows: CTM$<publication_item_name>.

Note: The developer used Consolidator Manager APIs to create the
subscription, so this was included in the Java application that created
the subscription.

Note: See the Javadoc in the Oracle Database Lite API Specification for
more information.

Note: If you are collecting data on the client, but still need updates
from the server, you can use the default method for synchronization
or create your own queues. See Section 3.19.1, "Customizing
Apply/Compose Phase of Synchronization with a Queue-Based
Publication Item" for more information.

Customizing Replication With Your Own Queues

3-78 Oracle Database Lite Developer’s Guide

3.19.2.1 Creating a Data Collection Queue
When you create a data collection queue, you perform the following:

1. Create the table(s) for the data that the queue updates on the back-end Oracle
database.

2. Create the data collection queue and its publication item using the
ConsolidatorManager createDataCollectionQueue method, where the
input parameters are as follows:

■ name—A character string specifying a new publication item name.

■ owner—A string specifying the base schema object owner.

■ store—A string specifying the table name that it is based on.

■ inq_cols—A string specifigying columns in the order in which to replicate
them. If null, then defaults to *, which makes the SQL statement, select *
from <table>.

■ pk_columns—A string specifying the primary keys.

■ client_data—If true, removes client data from the Mobile device when
uploaded to the server.

■ isOutView—If true, then creates out queue as an empty view, otherwise
creates out queue as a table.

The following creates the PI_CUSTOMERS data collection queue:

cm.createDataCollectionQueue("PI_CUSTOMERS", /* Publication Item name */
 MYSCHEMA, /* Schema owner */
 "CUSTOMERS", /* store */
 null, /* inqueue_columns
 null, /* null selects all pk_columns
 true, /* removes old data after sync
 true); /* isOutView */

3. Create the publication that is to be used by the data collection queue. Use the
ConsolidatorManager createPublication method. The following creates
the PUB_CUSTOMERS publication that is used by the PI_CUSTOMERS data
collection queue:

cm.createPublication("PUB_CUSTOMERS",0, "sales.%s", null);

4. Add the publication item created within step 1 within this publication with the
ConsolidatorManager addPublicationItem method. The following adds a
publication item to the publication:

cm.addPublicationItem("PUB_CUSTOMERS", "PI_CUSTOMERS", null, null,
 "S", null, null);

5. If you want to have data download from the server to the Mobile client, create an
Out Queue with a name that consists of CTM$<publication_item_name>. The
following replaces the default out queue view for CUSTOMER with a view that
selects all customers assigned to the EMP_ID associated with current sync session.

Note: All ConsolidatorManager methods are fully documented
in the Oracle Database Lite API Javadoc. This section provides context
of the order in which to execute these methods.

Customizing Replication With Your Own Queues

Synchronization 3-79

stmt.executeUpdate(
 "CREATE OR REPLACE VIEW CTM$"+pubIs[0]+" (CLID$$CS, TRANID$$,
 DMLTYPE$$,"+" CUST_ID, CNAME, CCOMPANY, CPHONE, CCONTACT_DATE)"+"\n
 AS SELECT CONS_EXT.GET_CURR_CLIENT, 999999999, 'I',cust.*
 FROM CUSTOMERS cust "+"\n
 WHERE cust.CUST_ID IN (SELECT CUST_ID
 FROM CUSTOMER_ASSIGNMENT WHERE EMP_ID IN "+"\n
 (SELECT EMP_ID FROM SESSION_EMP
 WHERE SESSION_ID = DBMS_SESSION.UNIQUE_SESSION_ID))"
);

3.19.3 Selecting How/When to Notify Clients of Composed Data
If you have created your own compose logic, such as in the queue-based publications,
then you may want the server to notify the client that there is data to be downloaded.
You can take control of starting an automatic synchronization from the server using
the enqueue notification APIs.

There are other situations where you may want to control how and when clients are
notified of compose data from the synchronization process. For example, if you have
so many clients that to notify all of them of the data waiting for them would overload
your system, you may want to control the process by notifying clients in batches.

In the normal synchronization process, when the compose phase is completed, all
clients that have data in the out queue are notified to download the data. If, for
example, you have 2000 clients, having all 2000 clients request a download at the same
time could overrun your server and cause a performance issue. In this scenario, you
could take control of the notification process and notify 100 clients at a time over the
span of a couple of hours. This way, all of the clients receive the data in a timely
fashion and your server is not overrun.

You can use the enqueue notification functionality, as follows:

■ If you implement queue-based publications for the compose phase, you can notify
the clients with the EN_QUEUE_NOTIFICATION function within the Queue-based
DOWNLOAD_INIT function.

■ If you write your own compose function, use the enQueueNotification
method to notify the client that there is data to download.

This starts an automatic synchronization process for the intended client.

The enqueue notification APIs enable the server to tell the client that there is data to be
downloaded and what type of data is waiting. Notifying the client of what type of
data is waiting enables the client to evaluate whether it conforms to any automatic
synchronization rules. For example, if the server has 10 records of low priority data,
but the client has set the Server MGP Compose rule to only start an automatic
synchronization if 20 records of low priority data exist, then the automatic
synchronization is not started. So, the notification API input parameters include
parameters that enable the server to describe the data that exists on the server.

A notification API is provided for you in both PL/SQL and Java, as follows:

■ Java: the ConsolidatorManager enQueueNotification method

Note: See the Oracle Database Lite samples page for the full data
collection queue example from which these snippets were taken. The
example demonstrates both a regular queue and a data collection
queue.

Customizing Replication With Your Own Queues

3-80 Oracle Database Lite Developer’s Guide

public long enQueueNotification(java.lang.String clientid,
 java.lang.String publication,
 java.lang.String pubItems,
 int recordCount,
 int dataSize,
 int priority)
 throws ConsolidatorException

■ PL/SQL: the EN_QUEUE_NOTIFICATION function

FUNCTION EN_QUEUE_NOTIFICATION(
 CLIENTID IN VARCHAR2,
 PUBLICATION IN VARCHAR2,
 PUB_ITEMS IN VARCHAR2,
 RECORD_COUNT IN NUMBER,
 DATA_SIZE IN NUMBER,
 PRIORITY IN NUMBER)
RETURN NUMBER;

Where the parameters for the above are as follows:

The enqueue notification API returns a unique notification ID, which can be used to
query notification status in the isNotificationSent method, which is as follows:

■ JAVA

public boolean isNotificationSent(long notificationId)
 throws ConsolidatorException

■ PL/SQL

FUNCTION NOTIFICATION_SENT(
 NOTIFICATION_ID IN NUMBER)
RETURN BOOLEAN;

If the notification has been sent, a boolean value of TRUE is returned.

Table 3–29 Enqueue Notification Parameters

Parameters Description

clientid Consolidator client id, which is normally the username on the
client device. This identifies the client to be notified. If the client
does not have any automatic synchronization rules, this is the
only required paramter for an automatic synchronization to
start.

publication Name of the publication for which you want notification control.
This tells the client for which publication the data is destined.

pubItems One or more publication items for which you want notification.
Separate multiple publication items with a comma. This notifies
the clients for which publication items the data applies.

recordCount This notifies the client how many records exist on the server for
the download.

dataSize Reserved for future expansion.

priority This notifies the client of the priority of the data that exists on
the server. The value is 0 for high and 1 for low.

Troubleshooting Synchronization Errors

Synchronization 3-81

3.20 Deleting a Client Device
If you want to delete a device, use the delete method from the Device class. To
retrieve the Device object, use either the getDevice or getDeviceByName
methods, as demonstrated below.

If the device id is available, the following can be directly used:

if (oracle.lite.resource.ResourceManager.getInstance() == null)
oracle.lite.resource.ResourceManager.initialize(JDBC_URL, USER, PASSWORD);

oracle.lite.resource.Device d =
 oracle.lite.resource.ResourceManager.getInstance().getDevice(deviceId);

d.delete();

If the device id is not available, then you can provide the device name, which is shown
on the Mobile Manager UI in the
oracle.lite.resource.User.getDeviceByName(deviceName) method. Once
retrieved, use the delete method of the Device object as demonstrated above.

3.21 Synchronization Performance
There are certain optimizations you can do to increase performance. See Section 1.2
"Increasing Synchronization Performance" in the Oracle Database Lite Troubleshooting
and Tuning Guide for a full description.

3.22 Troubleshooting Synchronization Errors
The following section can assist you in troubleshooting any synchronization errors:

■ Section 3.22.1, "Foreign Key Constraints in Updatable Publication Items"

3.22.1 Foreign Key Constraints in Updatable Publication Items
Replicating tables between Oracle database and clients in updatable mode can result in
foreign key constraint violations if the tables have referential integrity constraints.
When a foreign key constraint violation occurs, the server rejects the client transaction.

■ Section 3.22.1.1, "Foreign Key Constraint Violation Example"

■ Section 3.22.1.2, "Avoiding Constraint Violations with Table Weights"

■ Section 3.22.1.3, "Avoiding Constraint Violations with BeforeApply and After
Apply"

3.22.1.1 Foreign Key Constraint Violation Example
For example, two tables EMP and DEPT have referential integrity constraints. The
DeptNo (department number) attribute in the DEPT table is a foreign key in the EMP
table. The DeptNo value for each employee in the EMP table must be a valid DeptNo
value in the DEPT table.

A Mobile Server user adds a new department to the DEPT table, and then adds a new
employee to this department in the EMP table. The transaction first updates DEPT and
then updates the EMP table. However, the database application does not store the
sequence in which these operations were executed.

When the user replicates with the Mobile Server, the Mobile Server updates the EMP
table first. In doing so, it attempts to create a new record in EMP with an invalid foreign

Datatype Conversion Between the Oracle Server and Client Oracle Lite Database

3-82 Oracle Database Lite Developer’s Guide

key value for DeptNo. Oracle database detects a referential integrity violation. The
Mobile Server rolls back the transaction and places the transaction data in the Mobile
Server error queue. In this case, the foreign key constraint violation occurred because
the operations within the transaction are performed out of their original sequence.

Avoid this violation by setting table weights to each of the tables in the master-detail
relationship. See Section 3.22.1.2, "Avoiding Constraint Violations with Table Weights"
for more information.

3.22.1.2 Avoiding Constraint Violations with Table Weights
Mobile Server uses table weight to determine in which order to apply client operations
to master tables. Table weight is expressed as an integer and are implemented as
follows:

1. Client INSERT operations are executed first, from lowest to highest table weight
order.

2. Client DELETE operations are executed next, from highest to lowest table weight
order.

3. Client UPDATE operations are executed last, from lowest to highest table weight
order.

In the example listed in Section 3.22.1.1, "Foreign Key Constraint Violation Example", a
constraint violation error could be resolved by assigning DEPT a lower table weight
than EMP. For example:

(DEPT weight=1, EMP weight=2)

You define the order weight for tables when you add a publication item to the
publication. For more information on setting table weights in the publication item, see
Section 3.4.1.7.2, "Using Table Weight".

3.22.1.3 Avoiding Constraint Violations with BeforeApply and After Apply
You can use a PL/SQL procedure avoid foreign key constraint violations based on
out-of-sequence operations by using DEFERRABLE constraints in conjunction with the
BeforeApply and AfterApply functions. See Section 3.11.3.2, "Defer Constraint
Checking Until After All Transactions Are Applied" for more information.

3.23 Datatype Conversion Between the Oracle Server and Client Oracle
Lite Database

Before you publish your application, you create the tables for your applications in the
Oracle database. Thus, when the first synchronization occurs, Oracle Database Lite
takes the Oracle database datatypes and converts them to corresponding allowed
datatypes in the Oracle Lite database on the client. Table 3–30 lists the Oracle database
datatypes in the left column and displays how the datatype can be mapped to the
Oracle Lite database datatypes across the top row.

Note: For Oracle Database Lite Datatypes, see Appendix D, "Oracle
Database Lite Datatypes" in the Oracle Database Lite SQL Reference.

Datatype Conversion Between the Oracle Server and Client Oracle Lite Database

Synchronization 3-83

"X" indicates that the datatype can be mapped to this Oracle Lite database datatype. To
save on space, signed 1 byte represents TINYINT, signed 2 byte represents
SMALLINT, and signed 4 byte represents INTEGER.

For conversion of the NUMBER datatype, if the precision is less than 5, then the
number maps to a signed 2 byte (SMALLINT) datatype. If the precision is less than 10,
then it maps to a signed 4 bytes (INTEGER) datatype. Even though the numbers are
not equivalent on the client and the server, we still guarantee that valid numbers from
the server will transfer to the client, and invalid numbers from the client are rejected
by the server.

While the TIMESTAMP data type is supported; the TIMESTAMP WITH TIME ZONE is
not supported for publication items.

Table 3–30 Conversion of Oracle Database Datatypes to Oracle Database Lite Datatypes

Oracle
Database
Lite
Datatypes 1 B 2 B 4 B Float Double Number

Date
Time

Long
Var
Binary Varchar Char BLOB CLOB

INTEGER X

VARCHAR2 X

VARCHAR X

CHAR X

SMALLINT X

FLOAT X

DOUBLE
PRECISION

X

NUMBER X X X

DATE X

LONG RAW X

LONG X

BLOB X

CLOB X

Note: Oracle Database Lite does not support creating publication
items for synchronization on a table with object type columns, even if
the publication item query does not include any of the object type
columns. However, it is possible to define a view which selects only
columns of supported data types and then create a publication item
using the view definition.

Datatype Conversion Between the Oracle Server and Client Oracle Lite Database

3-84 Oracle Database Lite Developer’s Guide

Invoking Synchronization APIs from Applications 4-1

4
Invoking Synchronization APIs from

Applications

The following sections describe the APIs available to start synchronization
programmatically within your application, whether the application is C, C++, or Java:

■ Section 4.1, "Synchronization APIs For C or C++ Applications"

■ Section 4.2, "Synchronization API for Java Applications"

■ Section 4.3, "msync/OCAPIs/mSyncCom"

4.1 Synchronization APIs For C or C++ Applications
You can initiate and monitor synchronization from a C or C++ client application. The
synchronization methods for the C/C++ interface are contained in ocapi.h and
ocapi.dll, which are located in the <ORACLE_HOME>\Mobile\bin directory.

A C++ example is provided in the <ORACLE_
HOME>\Mobile\Sdk\Samples\sync\msync\src directory. The source code is
contained in SimpleSync.cpp. The executable—SimpleSync.exe—is in the
<ORACLE_HOME>\Mobile\Sdk\Samples\sync\msync\bin directory.

The functions available for setting up and initiating the synchronization are as follows:

1. Section 4.1.1, "Overview of Synchronization API"

2. Section 4.1.2, "Initializing the Environment With ocSessionInit"

3. Section 4.1.3, "Managing the C/C++ Data Structures"

4. Section 4.1.4, "Retrieving Publication Information With ocGetPublication"

5. Section 4.1.5, "Managing User Settings With ocSaveUserInfo"

6. Section 4.1.6, "Manage What Tables Are Synchronized With ocSetTableSyncFlag"

7. Section 4.1.7, "Configure Proxy Information"

8. Section 4.1.8, "Start the Synchronization With the ocDoSynchronize Method"

9. Section 4.1.9, "Clear the Synchronization Environment Using ocSessionTerm"

10. Section 4.1.10, "Retrieve Synchronization Error Message with ocGetLastError"

4.1.1 Overview of Synchronization API
The Synchronization API does not run under the eshell.exe. For starting
synchronization, the application performs the following:

Synchronization APIs For C or C++ Applications

4-2 Oracle Database Lite Developer’s Guide

1. Create, memset, and initialize the ocEnv structure.

2. Set any optional fields in the ocEnv structure before you execute the ocSessionInit
method. Additionally, you can set proxy information in the ocSetSyncOption
method, or optionally specify synchronization type for each table with the
ocSetTableSyncFlag function.

3. Invoke the ocSessionInit() method.

4. If you want to update the ocEnv structure after the ocSessionInit, you can perform
the ocSaveUserInfo method.

5. Invoke the ocDoSynchronize() method, which returns after the
synchronization completes, an error occurs, or the user interrupts the process.
While executing, the ocDoSynchronize function invokes any callback function
set in the ocEnv.fnProgress field. The callback function must not call any
blocking functions, as this process is not reentrant or threaded.

6. Once synchronization completes, then invoke the ocSessionTerm() method to
clear the ocEnv data structure.

7. If synchronization failed, then use the ocGetLastError function to retrieve the
error message.

For an example, see the msync.cpp sample code.

4.1.2 Initializing the Environment With ocSessionInit
The ocSessionInit function initializes the synchronization environment—which is
contained in the ocEnv structure or was created with ocSaveUserInfo. For more
information, see Section 4.1.5, "Managing User Settings With ocSaveUserInfo".

Syntax
int ocSessionInit(ocEnv env);

Table 4–1 lists the ocSessioninit parameter and its description.

This call initializes the ocEnv structure—which holds context information for the
synchronization engine—and restores any user settings that were saved in the last
ocSaveUserInfo call, such as username and password (See Section 4.1.5, "Managing
User Settings With ocSaveUserInfo"). An ocEnv structure is passed as the input
parameter. Perform the following to prepare the ocEnv variable:

1. Create the ocEnv by allocating a variable the size of ocEnv.

2. Memset the ocEnv variable before invoking the ocSessionInit function. If you
do not perform a memset on the ocEnv variable, then the ocSessionInit
function will not perform correctly.

Note: Every time you invoke the ocSessionInit function, you
must also clean up with ocSessionTerm. These functions should
always be called in pairs. See Section 4.1.9, "Clear the Synchronization
Environment Using ocSessionTerm" for more information.

Table 4–1 ocSessionInit Parameters

Name Description

env An ocEnv class, which contains the synchronization environment.

Synchronization APIs For C or C++ Applications

Invoking Synchronization APIs from Applications 4-3

3. Set all required fields in the ocEnv structure before passing it to ocSessionInit.
If the caller wants to overwrite user preference information after the
ocSessionInit() call, it can be done by calling ocSaveUserInfo.

For a full description of ocEnv, see Section 4.1.3.1, "ocEnv Data Structure".

The following example allocates a new ocEnv, which is then passed into the
ocSessionInit call.

env = new ocEnv;
// Reset ocenv
memset(env, 0, sizeof(ocEnv));

// init OCAPI
ocError rc = ocSessionInit(env);

4.1.3 Managing the C/C++ Data Structures
Two data structures—ocEnv Data Structure and ocTransportEnv Data Structure—are
used for certain functions in the Mobile Sync API.

4.1.3.1 ocEnv Data Structure
The ocEnv data structure holds internal memory buffers and state information. Before
using this structure, the application initializes it by passing it to the ocSessionInit
method.

Table 4–2 lists the field name, type, usage, and corresponding description of the ocEnv
structure parameters.

■ Required—If the usage is required, then you either set before calling the
ocSessionInit function or you have saved these parameters previously with
the ocSaveUserInfo function.

■ Optional—If the usage is optional, then optionally set after calling the
ocSessionInit function and before the ocDoSynchronize function.

■ Read Only.

Table 4–2 ocEnv Structure Field Parameters

Field Type Usage Description

username char[32] Required. Name of the user to authenticate. This name
is limited to 28 characters, because of other
parts of the product.

password char[32] Required. User password (clear text). This name is
limited to 28 characters, because of other
parts of the product.

trType Enum Required. If set to 0 (OC_BUILDIN_HTTP), then use
HTTP built-in transport driver. This is the
default.
If set to OC_USER_METHOD, then use user
provided transport functions.

newPassword char[32] Optional. If first character of this string is not null—in
otherwords (char) 0—this string is sent to the
server to change the user password; the
password change is effective on the next
synchronization session.

Synchronization APIs For C or C++ Applications

4-4 Oracle Database Lite Developer’s Guide

savePassword Short Optional. If set to 1, the password is saved locally and
is loaded the next time ocSessionInit is
called.

appRoot char[32] Optional. Directory to where the application will be
copied. If first character is null, then it uses
the default directory.

priority Short Optional. 0= OFF (default)

1= ON; Only high priority table or rows are
synchronized when turned on.

secure Short Optional. If set to 0, then AES is used on the transport.
If set to OC_SSL_ENCRYPTION, use SSL
synchronization (SSL-enabled device only).

syncDirection Enum Optional. If set to 0 (OC_SENDRECEIVE), then sync is
bi-directional (default).

If set to OC_SENDONLY, then push changes
only to the server. This stops the sync after
the local changes are collected and sent. User
must write own transport method (like
floppy bases) when using this method.

If set to OC_RECEIVEONLY, then send no
changes and only receive update from
server. This only performs the receive and
allow changes function to local database
stages.

exError ocError Read-only. Extended error code - either OS or OKAPI
error code.

transportEnv ocTransportEnv Transport buffer. See Section 4.1.3.2,
"ocTransportEnv Data Structure".

progressProc fnProgress Optional. If not null, points to the callback for progress
listening. See Section 4.1.8.1, "See Progress of
Synchronization with Progress Listening".

totalSendDataLen Long Reserved

totalRecieveDataLen Long Reserved

userContext Void* Optional. Can be set to anything by the caller for
context information (such as progress dialog
handle, renderer object pointer, and so on.

ocContext Void* Reserved.

logged Short Reserved.

bufferSize Long Reserved (for Wireless/Nettech only).

pushOnly Short Optional. If set to 1, then only push changes to the
server.

syncApps Short Optional. Set to 1 (by default), performs application
deployment.
If set to 0, then no applications will be
received from the server.

Table 4–2 (Cont.) ocEnv Structure Field Parameters

Field Type Usage Description

Synchronization APIs For C or C++ Applications

Invoking Synchronization APIs from Applications 4-5

The environment structure contains fields that the caller can update to change the way
Mobile Sync module works. The following example demonstrates how to set the fields
within the ocEnv structure.

typedef struct ocEnv_s {
 // User info
char username[MAX_USERNAME]; // Mobile Sync Client id, limited to 28 characters
char password[MAX_USERNAME]; // Mobile Sync Client password for
 // authentication during sync, limited to 28 chars
char newPassword[MAX_USERNAME]; // resetting Mobile Sync Client password
 // on server side if this field is not blank
short savePassword; // if set to 1, save password
char appRoot[MAX_PATHNAME]; // dir path on client device for deploying files
short priority; // High priority table only or not
short secure; // if set to 1, data encrypted over the wire
enum {
OC_SENDRECEIVE = 0, // full step of synchronize

syncNewPublications Short Optional. If set to 1 (default), receives any new
publication created from the server since last
synchronization.
If set to 0, only synchronizes existing
publications (useful for slow transports like
wireless).

clientDbMode Enum Optional. If set to OC_DBMODE_EMBEDDED (default), it
uses local Oracle Database Lite ODBC driver.
If set to OC_DBMODE_CLIENT, it uses the
Branch Office driver.

syncTimeLog Short Optional. If set to 1, log sync start time is recorded in
the conscli.odb file.

updateLog Short Optional. Debug only. If set to 1, logs server-side insert
and update row information to the
publication odb.

options Short Optional. Debug only. A bitset of the following flags:

■ OCAPI_OPT_SENDMETADATA

Sends meta-info to the server.

■ or OCAPI_OPT_DEBUG

Enables debugging messages.

■ OCAPI_OPT_DEBUG_F

Saves all bytes sent and received for
debugging.

■ OCAPI_OPT_NOCOMP

Disables compression.

■ OCAPI_OPT_ABORT

If set, OCAPI will try to abort the
current sync session.

■ OCAPI_OPT_FULLREFRESH

Forces OCAPI to purge all existing data
and do a full refresh.

cancel Short Caller can set to 1 on next operation.
ocDoSyncrhonize returns with -9032.

Table 4–2 (Cont.) ocEnv Structure Field Parameters

Field Type Usage Description

Synchronization APIs For C or C++ Applications

4-6 Oracle Database Lite Developer’s Guide

OC_SENDONLY, // send phase only
OC_RECEIVEONLY, // receive phase only
OC_SENDTOFILE, // send into local file | pdb
OC_RECEIVEFROMFILE // receive from local file | pdb
}syncDirection; // synchronize direction

enum {
OC_BUILDIN_HTTP = 0, // Use build-in HTTP transport method
OC_USER_METHOD // Use user defined transport method
}trType; // type of transport

ocError exError; // extra error code

ocTransportEnv transportEnv; // transport control information

 // GUI related function entry
progressProc fnProgress; // callback to track progress; this is optional

 // Values used for Progress Bar. If 0, progress bar won't show.
long totalSendDataLen; // set by Mobile Sync API informing transport total number
 // of bytes to send; set before the first fnSend() is called
long totalReceiveDataLen; // to be set by transport informing Mobile Sync API
 // total number of bytes to receive;
 // should be set at first fnReceive() call.
void* userContext; // user defined context
void* ocContext; // internal use only
short logged; // internal use only
long bufferSize; // send/receive buffer size, default is 0
short pushOnly; // Push only flag
short syncApps; // Application deployment flag
short cancel; // cancel
} ocEnv;

4.1.3.2 ocTransportEnv Data Structure
You can configure the HTTP URL, proxy, proxy port number and other HTTP-specific
transport definitions in the ocTrHttp structure. This structure is an HTTP public
structure defined in octrhttp.h.

You access the ocTrHttp structure from within the ocTransportEnv data structure,
which is provided as part of the ocEnv data structure. The following demonstrates the
fields within the ocTransportEnv structure:

typedef struct ocTransportEnv_s {
void* ocTrInfo; // transport internal context

The ocTrInfo is a pointer that points to the HTTP parameters in the ocTrHttp
structure. The following code example retrieves the ocTrInfo pointer to the HTTP
parameters and then modifies the URL, proxy, and proxy port number to the input
arguments:

ocTrHttp* http_params = (ocTrHttp*)(env->transportEnv.ocTrInfo);
// set server_name
strcpy(http_params->url, argv[3]);
// set proxy
strcpy(http_params->proxy, argv[4]);
// set proxy port
http_params->proxyPort = atoi(argv[5])

Synchronization APIs For C or C++ Applications

Invoking Synchronization APIs from Applications 4-7

4.1.4 Retrieving Publication Information With ocGetPublication
This function gets the publication name on the client from the Web-to-Go application
name. The Web-to-Go user knows only the application name, which happens when the
Packaging Wizard is used to package an application before publishing it. If the
Web-to-Go application needs the publication name in order to interact with the
database, then this function is used to retrieve that name, given the application name.

Syntax
ocError ocGetPublication(ocEnv* env, const char* application_name,
 char* buf, int buf_len);

The parameters for the ocGetPublication function are listed in Table 4–3 below.

Return value of 0 indicates that the function has been executed successfully. Any other
value is an error code.

The following code example demonstrates how to get the publication name.

void sync()
{
 ocEnv env;
 int rc;

 // Clean up ocenv
 memset(&env 0, sizeof(env));

 // init OCAPI
 rc = ocSessionInit(&env);

 strcpy(env.username, "john");
 strcpy(env.password, "john");

 // We use transportEnv as HTTP paramters
 ocTrHttp* http_params = (ocTrHttp*)(env.transportEnv.ocTrInfo);
 strcpy(http_params->url, "your_host");

 // Do not sync webtogo applicaton "Sample3"
 char buf[32];
 rc = ocGetPublication(&env, "Sample3", buf, sizeof(buf));
 rc = ocSetTableSyncFlag(&env, buf, NULL, 0);

 // call sync
 rc = ocDoSynchronize(&env);
 if (rc < 0)
 fprintf(stderr, "ocDoSynchronize failed with %d:%d\n",
 rc, env.exError);
 else

Table 4–3 ocGetPublication Parameters

Name Description

ocEnv* env Pointer to an ocEnv structure buffer to hold the return
synchronization environment.

const char* application_
name(in)

The name of the application.

char* buf(out) The buffer where the publication name is returned.

int buf_len(in) The buffer length, which must be at least 32 bytes.

Synchronization APIs For C or C++ Applications

4-8 Oracle Database Lite Developer’s Guide

 printf("Sync compeleted\n");

 // close OCAPI session
 rc = ocSessionTerm(&env);
 return 0;
}

4.1.5 Managing User Settings With ocSaveUserInfo
Saves user settings for the ocEnv structure. These settings can be used for the current
session or used by the ocSessionInit function to initialize the environment when
next invoked.

Syntax
int ocSaveUserInfo(ocEnv *env);

Table 4–4 lists the ocSaveUserInfo parameter and its description.

This saves or overwrites the user settings into a file or database on the client side. The
following information provided in the environment structure is saved:

■ username

■ password

■ savePassword

■ newPassword

■ priority

■ secure

■ pushOnly

■ syncApps

■ syncNewPublications

If you use the HTTP default transport set in the ocTransportEnv structure, then the
following is also saved:

■ url

■ useProxy

■ proxy

■ proxyPort

For more information on how to use these fields, see Section 4.1.3, "Managing the
C/C++ Data Structures".

Table 4–4 ocSaveUserInfo Parameters

Name Description

env Pointer to the synchronization environment.

Note: See Section 4.1.3.1, "ocEnv Data Structure" or Section 4.1.3.2,
"ocTransportEnv Data Structure" for more information.

Synchronization APIs For C or C++ Applications

Invoking Synchronization APIs from Applications 4-9

4.1.6 Manage What Tables Are Synchronized With ocSetTableSyncFlag
Update the table flags for selective sync. Call this for each table to specify whether it
should be synchronized(1) or not (0) for the next session. Selective sync only works if
you have first performed at least one synchronization for the client. Then, set the flag
so that on the next synchronize—that is, before the next invocation of the
ocDoSynchronize method—a selective sync occurs.

The default sync_flag setting for ocSetTableSyncFlag is TRUE (1) for all the
tables; that is, all tables are flagged to be synchronized. If you want to selectively
synchronize specific tables, you must first disable the default setting for all tables and
then enable the synchronization for only the specific tables that you want to
synchronize.

Syntax
ocSetTableSyncFlag(ocEnv *env, const char* publication_name,
 const char* table_name, short sync_flag)

Table 4–5 lists the name and description of parameters for the ocSetTableSyncFlag
function.

This function allows client applications to select the way specific tables are
synchronized.

Set sync_flag for each table or each publication. If sync_flag = 0, the table is not
synchronized.

To synchronize specific tables only, you must perform the following steps:

1. Disable the default setting, which is set to 1 (TRUE) for all the tables.

Note: Automatic synchronization is based on a different model than
manual synchronization. Automatic synchronization operates on a
transactional basis. Thus, the selective sync option is not supported
when you use automatic synchronization for a publication, since we
are no longer concerned with synchronization of only a subset of data.

Table 4–5 ocSetTableSyncFlag Parameters

Name Description

env Pointer to the synchronization environment.

publication_name The name of the publication which is being synchronized. If the
value for the publication_name is NULL, it means all
publications in the database. This string is the same as the client_
name_template parameter of the Consolidator Manager
CreatePublication method. In most cases, you will use NULL
for this parameter. For more information, see Section 3.4, "Creating
Publications Using Oracle Database Lite APIs".

table_name This is the name of the snapshot. It is the same as the name of the
store, the third parameter of CreatePublicationItem(). For
more information, see Section 3.4, "Creating Publications Using
Oracle Database Lite APIs".

sync_flag If the sync_flag is set to 1, you must synchronize the publication.
If the sync_flag is set to 0, then do not synchronize. The value for
the sync_flag is not stored persistently. Each time before
ocDoSynchronize(), you must call ocSetTableSyncFlag().

Synchronization APIs For C or C++ Applications

4-10 Oracle Database Lite Developer’s Guide

Example:

ocSetTableSyncFlag(&env, <publication_name>,null,0)

Where <publication_name> must be replaced by the actual name of your
publication, and where the value null is specified to mean all the tables for that
publication without exception.

2. Enable the selective sync for specific tables.

Example:

ocSetTableSyncFlag(&env, <publication_name>,<table_name>,1)

4.1.7 Configure Proxy Information
If you are using a firewall and need to configure proxy information, perform the
following before you execute the ocDoSynchronize method:

1. Configure the proxy URL, IP address and/or port number through the
ocSaveUserInfo function. See Section 4.1.5, "Managing User Settings With
ocSaveUserInfo" for more information.

2. If required, configure the proxy username and password. To configure the proxy
username and password, use the ocSetSyncOption and provide the following:

ocSetSyncOption(env, "HTTPUSER=<username>;HTTPPASS=<password>");

Where the ocSetSyncOption syntax is as follows:

int ocSetSyncOption(ocEnv *env, const char *str);

You can set one or more name/value pairs searated by a semi-colon in the string. The
previous example shows the HTTPUSER and HTTPPASS name/value pairs. You can
also set the URL string as follows: URL=www.myhost.com.

4.1.8 Start the Synchronization With the ocDoSynchronize Method
Starts the synchronization process.

Syntax
int ocDoSynchronize(ocEnv *env);

Table 4–6 lists the name and description of the ocDoSynchronize parameter.

This starts the synchronization cycle. A round trip synchronization is activated if
syncDirection is OC_SENDRECEIVE (default). If syncDirection is OC_
SENDONLY or OC_RECEIVEONLY, then the developer must implement a custom
transport. If the developer wishes to upload only changes, then set pushonly=1. You
cannot only download changes under the existing synchronization architecture.

Note: The username and password are limited to 28 characters.

Table 4–6 ocDoSynchronize Parameters

Name Description

env Pointer to the synchronization environment.

Synchronization APIs For C or C++ Applications

Invoking Synchronization APIs from Applications 4-11

This method returns when the synchronize completes. A return value of 0 indicates
that the function has been executed successfully. If an error occurred, local errors are
returned by ocDoSynchronize, which are defined in ocerror.h. For errors
returned by the server, see the ol_sync.log error log file, which is written into the
working directory of the application. Each line in the error file has the following
format:

<type>, <code>, <date>, <message>

Where:

■ <type>: The type of the message, which can either be set to ERROR or SUCCESS.

■ <code>: Error code of the last operation of the synchronization.

■ <date>: Date and timestamp for when the synchronization completes. This is in
the format of dd/mm/yyyy hh:mm:ss.

■ <message>: A readable message text.

4.1.8.1 See Progress of Synchronization with Progress Listening
If you create and set the progress callback function, then Oracle Database Lite invokes
this callback function at different times while the ocDoSynchronize method is
executing. Create the callback function, as follows:

void myProgressProc (void *env, int stage, int present);

When the ocDoSynchronize invokes your myProgressProc function, it provides
the following information as input to your function:

■ env—A pointer to the environment (ocEnv structure) for the synchronization
session. This provides the function to retrieve the userContext pointer.

■ stage—A number that denotes the stage in the synchronization process, which is
one of the following values, where these values are defined in ocapi.h:

Table 4–7 Description of the Stage Values

Stage Value Description

OC_PREPARE_START Start of the prepare stage, which collects all internal data from
the database and prepares to send the data to the server.

OC_PREPARING Progress in the prepare stage.

OC_PREPARE_FINISH Prepare stage is completed.

OC_SEND_START Starting to send the data to the server.

OC_SENDING Sending the data.

OC_SEND_FINISH Completed sending the data.

OC_RECEIVE_START Starting to receive data.

OC_RECEIVING Receiving data from the server.

OC_RECEIVE_FINISH Completed receiving data from the server.

OC_PROCESS_START Starting to process received data.

OC_PROCESSING Processing received data.

OC_PROCESS_FINISH Completed processing. Synchronization is finished.

Synchronization API for Java Applications

4-12 Oracle Database Lite Developer’s Guide

■ present—The percentage completed in the particular stage that synchronization
is in from 0 to 100.

If the function is a member of a class, then it must be defined as static.

After you create the callback function, set the function pointer in the
ocEnv.fnProgress (Table 4–2) to the address of your callback function. Save this
with the ocSaveUserInfo or ocSessionInit methods.

4.1.9 Clear the Synchronization Environment Using ocSessionTerm
Clears and performs a cleanup of the synchronization environment and buffers. This
function must be invoked for every ocSessionInit, even if the ocDoSynchronize
function is not performed.

Syntax
int ocSessionTerm(ocEnv *env);

Table 4–8 lists the ocSessionTerm parameter and its description.

De-initializes all the structures and memory created by the ocSessionInit() call.
Users must ensure that they are always called in pairs.

4.1.10 Retrieve Synchronization Error Message with ocGetLastError
Retrieves the synchronization error message and code.

Syntax
int ocGetLastError(ocEnv *env, char *buf, int buf_size);

Table 4–9 lists the ocGetLastError parameters.

4.2 Synchronization API for Java Applications
The following sections describe how you can use Java on a WinCE device to build
your own client synchronization initiation:

■ Section 4.2.1, "Overview"

■ Section 4.2.2, "Sync Class"

■ Section 4.2.3, "SyncException Class"

Table 4–8 ocSessionTerm Parameters

Name Description

env Pointer to the environment structure returned by
ocSessionInit.

Table 4–9 ocGet Parameters

Name Description

env Pointer to the environment structure returned by
ocSessionInit.

buf A string with the error message.

buf_size The size of the error message string.

Synchronization API for Java Applications

Invoking Synchronization APIs from Applications 4-13

■ Section 4.2.4, "SyncOption Class"

■ Section 4.2.5, "Java Interface SyncParam Settings"

■ Section 4.2.6, "Java Interface TransportParam Parameters"

■ Section 4.2.7, "Manage What Tables Are Synchronized With Selective Sync"

■ Section 4.2.8, "SyncProgress Listener Service"

4.2.1 Overview
Using the Java interface for Mobile Sync client-side synchronization tasks, programs
written in Java can use the functionality provided by the OCAPI library. The Java
interface resides in the oracle.lite.msync package.

The Java interface provides for the following functions:

■ Setting client side user profiles containing data such as user name, password, and
server

■ Starting the synchronization process

■ Tracking the progress of the synchronization process

The Java interface consists of two files, olite40.jar and msync_java.dll. To use
the Java interface, the olite40.jar file must be included in the CLASSPATH. The
olite40.jar file is located in the following directory.

<ORACLE_HOME>\Mobile\classes

The msync_java.dll file is located in the following directory.

<ORACLE_HOME>\Mobile\bin

There are four parts to the Java interface. They are:

■ Sync Class

■ SyncException Class

■ SyncOption Class

■ SyncProgressListener Interface

The following sections describe the Java interface.

4.2.2 Sync Class
This class initiates synchronization by using the provided synchronization options.
The parameters for the constructor are listed in Table 4–10.

Constructors
Sync(SyncOption option)

Public Methods
To monitor the progress of the synchronization process, the public method
SyncProgressListener adds a progress listener to the object.

Table 4–10 Sync Class Constructor

Parameter Description

option Instance of the SyncOption Class. This contains all the parameters
needed to perform synchronization.

Synchronization API for Java Applications

4-14 Oracle Database Lite Developer’s Guide

SyncProgressListener add(ProgressListener listener)

The parameters for the SyncProgressListener method are described in Table 4–11.

The following code demonstrates how to start a session using the default settings.

try
{
 Sync mySync = new Sync(new SyncOption());
 mySync.doSync();
}
catch (SyncException e)
{
 System.err.println("Sync Error:"+e.getMessage());
}

4.2.3 SyncException Class
This class signals a non-recoverable error during the synchronization process. The
SyncException() class constructs a clear object. The parameters for the
constructor are listed inTable 4–12:

Constructors
SyncException()

SyncException(int errorCode, string errorMessage)

Public Methods
The methods for the SyncException are listed in Table 4–13.

Table 4–11 Sync Class Public Method

Parameter Description

listener An object that implements the ProgressListener interface. The
synchronization object calls the progress() function of this object
to notify it of the synchronization progress.

void doSync () Starts a synchronization session and blocks that thread until
synchronization is complete.

void abort () Aborts the synchronization session.

Table 4–12 syncException Constructor Parameter Description

Parameter Description

errorCode The error. Refer the Oracle Database Lite Message Reference.

errorMessage A readable text message that provides extra information.

Table 4–13 SyncExceptionClass Public Methods

Parameters Description

int getErrorCode() Gets the error code.

String getErrorMessage Gets the error message.

Synchronization API for Java Applications

Invoking Synchronization APIs from Applications 4-15

4.2.4 SyncOption Class
The SyncOption class is used to define the parameters for the synchronization
process. It can either be constructed manually, or can save or load data from the user
profile.

Constructors
SyncOption()

SyncOption
 (String user,
 String password,
 String syncParam,
 String transportDriver,
 String transportParam)

The parameters for the SyncOption constructor are listed in Table 4–14:

Public Methods
These methods load and save the user profile. The parameters of the public methods
are listed in Table 4–15:

Table 4–14 SyncOption Constructors

Parameter Description

user A string containing the name used for authentication by the
Mobile Server.

password A string containing the user password.

syncParam A string which defines an optional list of parameters for the
synchronization session. See Section 4.2.5, "Java Interface
SyncParam Settings" for more information.

transportDriver A string containing the name of the transport driver. Currently,
only "HTTP" is supported.

transportParam A string containing all the parameters needed for the specified
driver to operate. See Section 4.2.6, "Java Interface
TransportParam Parameters" for more information.

priority A boolean value which limits synchronization to server tables
flagged as high priority, otherwise all tables are synchronized.

pushOnly A boolean value which makes synchronization push only.

Table 4–15 Sync Option Public Method Parameters

Parameter Description

void load(String username) This loads the profile for the specified user name.
If the user name is left null, the profile is loaded
for the last user to synchronize.

void save() This saves the settings to the profile for the active
user.

void setUser(String username) This is used to set and get the current user.

String getuser()

void setPassword(String
password)

String getPassword()

This is used to set and get the password.

Synchronization API for Java Applications

4-16 Oracle Database Lite Developer’s Guide

Example 1
The following code example demonstrates how to start a synchronization session
using the default settings:

SyncOption opt = new SyncOption

("sam","lion","pushonly","HTTP","server=server1;proxy=www-proxy.us.oracle.com;prox
yPort=80");

opt.save();

Example 2
The following example is of a client that creates the SyncOption class and then
performs the synchronization with the doSync method.

import oracle.lite.mSync.*;

public class JavaSyncClient{
 String user = "SALES1";
 String password = "MANAGER";
 //Set the Sync params
 //Set syncParam to fullrefresh
 String syncParam = "";//fullrefresh;
 // Set the Transport params
 String transportDriver = "HTTP";
 String trasportParam = "server=localhost";

 /**
 * Constructor
 */
 public JavaSyncClient() throws Exception{
 //Create the SyncOption class
 SyncOption syncOpt = new SyncOption(user, password,
 syncParam, transportDriver, trasportParam);
 syncOpt.setSyncFlag("MYORDERS", "", (short) 0);
 //Save the options before the sync
 syncOpt.save();
 //Create the Sync class
 Sync mySync = new Sync(syncOpt);
 //Perform the synchronization
 mySync.doSync();
 }

 /**

void setSyncParam(String
syncParam)

string getSyncParam()

This is used to set and get the synchronization
parameters.

void setTransportDriver(String
driverName)

String getTransportDriver()

This is used to set and get the driver name. Release
5.0.2 supports the "HTTP" driver.

void setTransportParam(String
transportParam)

String getTransportParam()

Set and get the transport parameters.

Table 4–15 (Cont.) Sync Option Public Method Parameters

Parameter Description

Synchronization API for Java Applications

Invoking Synchronization APIs from Applications 4-17

 * main
 */
 public static void main(String[] args) throws Exception {
 JavaSyncClient JavaSyncClient = new JavaSyncClient();
 }
}

4.2.5 Java Interface SyncParam Settings
The syncParam is a string that can be passed when creating the SyncOption object.
It allows support parameters to be specified to the synchronization session. The string
is constructed of name-and-value pairs. For example:

"name=value;name2=value2;name3=value3, ...;"

The names are not case sensitive, but the values are. The field names which can be
used are listed in Table 4–16.

Example 1
The first example enables SSL security and disables application deployment for the
current synchronization session:

"security=SSL; noapps;"

Table 4–16 Java Interface SyncParamSettings

Name Value/Options Description

"reset" N/A Clear all entries in the environment before
applying any remaining settings.

"security" SSL or AES Use the appropriate selection to choose either
SSL or AES stream encryption.

"push only" N/A Use this setting to upload changes from the
client to the server only, do not download. This
is useful when data transfer is one way, client
to server.

"noapps" N/A Do not download any new or updated
applications. This is useful when synchronizing
over slow connection or on a slow network.

"syncDirection" "sendonly"
"receiveonly"

"SendOnly" is the same as "pushonly".

"ReceiveOnly" allows no changes to be posted
to the server.

"noNewPubs" N/A This setting prevents any new publications
created since the last synchronization from
being sent, and only synchronizes data from
the current publications.

"tableFlag" "enable" The "enable" setting allows [Publication.Item]
to be synchronized, "disable" prevents
synchronization.

[Publication.Item] "disable"

"fullrefresh" N/A Forces a complete refresh.

"clientDBMode" "EMBEDDED" or
"CLIENT"

If set to "EMBEDDED", access to the database is
by conventional ODBC, if set to "CLIENT"
access is by multi-client ODBC.

Synchronization API for Java Applications

4-18 Oracle Database Lite Developer’s Guide

Example 2
The second example resets all previous settings, activates upload for the "Dept" table
only:

"reset;pushOnly;tableFlag[TestApp.Emp]=disable;tableFlag[TestApp.Dept]=enable;"

4.2.6 Java Interface TransportParam Parameters
The format of the TransportParam string is used to set specific parameters using a
string of name-and-value pairs, for example:

"name=value;name2=value2;name3=value3, ...;"

The names are not case sensitive, but the values are. The field names which can be
used are listed in Table 4–17.

Example
The example directs the Mobile Sync engine to use the server at "test.oracle.com"
through the proxy "proxy.oracle.com" at port 8080:

"server=test.oracle.com;proxy=proxy.oracle.com;proxyPort=8080;"

4.2.7 Manage What Tables Are Synchronized With Selective Sync
Update the table flags for selective sync. Call this for each table to specify whether it
should be synchronized(1) or not (0) for the next session. Selective sync only works if
you have first performed at least one synchronization for the client. Then, set the flag
so that on the next synchronize—that is, before the next invocation of the
doSynchronize method—a selective sync occurs.

The default setting is TRUE (1) for all the tables; that is, all tables are flagged to be
synchronized. If you want to selectively synchronize specific tables, you must first
disable the default setting for all tables and then enable the synchronization for only
the specific tables that you want to synchronize.

Syntax
public void setSyncFlag(java.lang.String publication_name,

Table 4–17 TransportParam Parameters

Name Value Description

"reset" N/A Clear all entries in the environment before applying the rest
of the settings.

"server" server hostname The hostname or IP address of the Mobile Server.

"proxy" proxy server
hostname

The hostname or IP address of the proxy server.

"proxyPort" port number The port number of the proxy server.

"cookie" cookie string The cookie to be used for transport.

Note: Automatic synchronization is based on a different model than
manual synchronization. Automatic synchronization operates on a
transactional basis. Thus, the selective sync option is not supported
when you use automatic synchronization for a publication, since we
are no longer concerned with synchronization of only a subset of data.

Synchronization API for Java Applications

Invoking Synchronization APIs from Applications 4-19

 java.lang.String table_name,
 short sync_flag) throws SyncException

Table 4–5 lists the name and description of parameters for the setSyncFlag function.

This function allows client applications to select the way specific tables are
synchronized.

Set sync_flag for each table or each publication. If sync_flag = 0, the table is not
synchronized. To synchronize specific tables only, you must perform the following
steps:

1. Disable the default setting, which is set to 1 (TRUE) for all the tables.

Example:

setSyncFlag(<publication_name>,null,0)

Where <publication_name> must be replaced by the actual name of your
publication, and where the value null is specified to mean all the tables for that
publication without exception.

2. Enable the selective sync for specific tables.

Example:

setSyncFlag(<publication_name>,<table_name>,1)

Alternatively, see the following code snippet on how to enable the selective sync flag
for EVERY table EXCEPT the OrdersODB.TEST table.

SyncOption op = new SyncOption(user, passwd,
 "noNewPubs","HTTP",server.toString());
op.setSyncFlag("","",(short)1); //turn on sync flag for all the tables
op.setSyncFlag("","OrdersODB.TEST",(short)0);
 //turn off sync flag for OrdersODB.TEST

4.2.8 SyncProgress Listener Service
The SyncProgressListener is an interface that allows progress updates to be trapped
during synchronization.

Table 4–18 setSyncFlag Parameters

Name Description

publication_name The name of the publication which is being synchronized. If the
value for the publication_name is NULL, it means all
publications in the database. This string is the same as the client_
name_template parameter of the Consolidator Manager
createPublication method. In most cases, you will use NULL
for this parameter. For more information, see Section 3.4, "Creating
Publications Using Oracle Database Lite APIs".

table_name This is the name of the snapshot. It is the same as the name of the
store, the third parameter of createPublicationItem(). For
more information, see Section 3.4, "Creating Publications Using
Oracle Database Lite APIs".

sync_flag If the sync_flag is set to 1, you must synchronize the publication.
If the sync_flag is set to 0, then do not synchronize. The value for
the sync_flag is not stored persistently. Each time before
doSynchronize(), you must call setSyncFlag().

Synchronization API for Java Applications

4-20 Oracle Database Lite Developer’s Guide

This class initiates synchronization by using the provided synchronization options.
The parameters for the method are listed in Table 4–19:

Method
void progress

 (int progressType,
 int completed);

The names of the constants which report the synchronization progress are listed in
Table 4–20.

Example
This simple class implements the SyncProgressListener.

class myProgressTracker implements SyncProgress Listener;

{
 public void progress
 (int progressType,
 int completed)
 {
 System.out.println("Status: "+progressType+"="+ completed+"%");
 } //progress
 }

Table 4–19 SyncProgressListener Abstract Method

Parameter Description

progressType This is set to one of the constants listed in Table 4–20.

completed This is the percentage of completion for specific progressType.

Table 4–20 SyncProgressListener Interface Constants

Constant Name Progress Type

PT_INT States that the synchronization engine is in the initializing stage.
The current and total counts are set to 0.

PT_PREPARE_SEND States that the synchronization engine is preparing local data to
be sent to the server. This includes getting locally modified data.
For streaming implementations this takes a shorter amount of
time.

PT_SEND States that the synchronization engine is sending data to the
network.

The total count equals the number of bytes to be sent, and the
current count equals the byte count being sent currently.

PT_RECV States that the synchronization engine is receiving data from the
server.

The total count equals the number of bytes to be received, and
the current count equals the byte count being received currently.

PT_PROCESS_RECV States that the synchronization engine is applying the newly
received data from the server to the local data stores.

PT_COMPLETE States that the synchronization engine has completed the
synchronization process.

msync/OCAPIs/mSyncCom

Invoking Synchronization APIs from Applications 4-21

4.3 msync/OCAPIs/mSyncCom
For more information, refer to the Oracle Database Lite API Specification.

msync/OCAPIs/mSyncCom

4-22 Oracle Database Lite Developer’s Guide

Using Mobile Database Workbench to Create Publications 5-1

5
Using Mobile Database Workbench to Create

Publications

The following sections describe how to use the Mobile Database Workbench (MDW) to
create publications. When using MDW, you first create a project and then create the
other objects contained within a publication.

■ Section 5.1, "Use MDW to Create Publications"

■ Section 5.2, "Create a Project"

■ Section 5.3, "Use the Quick Wizard to Create Your Publication"

■ Section 5.4, "Create a Publication Item"

■ Section 5.5, "Define the Rules Under Which the Automatic Synchronization Starts"

■ Section 5.6, "Create a Sequence"

■ Section 5.7, "Create and Load a Script Into The Project"

■ Section 5.8, "Load a Resource Into the Project"

■ Section 5.9, "Create a Publication"

■ Section 5.10, "Import Existing Publications and Objects from Repository"

■ Section 5.11, "Create a Virtual Primary Key"

■ Section 5.12, "Test a Publication by Performing a Synchronization"

■ Section 5.13, "Deploy the Publications in the Project to the Repository"

5.1 Use MDW to Create Publications
The Mobile Database Workbench (MDW) is a new tool that enables you to iteratively
create and test publications—testing each object as you add it to a publication.
Publications are stored within a project, which can be saved and restored from your
file system, so that you can continue to add and modify any of the contained objects
within it.

All work is created within a project, which can be saved to the file system and
retrieved for further modifications later. Once you create the project, start creating the
publication items, sequences, scripts and resources that are to be associated with the
publication. You can create the publication and associated objects in any order, but you
always associate an existing object with the publication. Thus, it saves time to start
with creating the objects first and associating it with the publication afterwards.

The following describes how to launch MDW:

Create a Project

5-2 Oracle Database Lite Developer’s Guide

■ Section 5.1.1, "Set Access Privileges to SYSTEM Tables for Your Application
Schema"

■ Section 5.1.2, "Launch MDW"

5.1.1 Set Access Privileges to SYSTEM Tables for Your Application Schema
Before you start up MDW, ensure that the application schema has the correct
privileges to the following SYSTEM tables:

■ all_views

■ all_objects

■ all_synonyms

■ all_tables

■ all_constraints

■ all_dependencies

When you create a SQL statement in a publication item using MDW, then MDW
checks the dependencies using the SYSTEM tables. So, if you have not set the
privileges for the application schema to the SYSTEM tables, you may receive the
ORA-1031 "Insufficient privileges" error message.

5.1.2 Launch MDW
To launch MDW, execute oramdw, which is located in $ORACLE_
HOME\Mobile\Sdk\bin.

5.2 Create a Project
Create a new project with the Project Wizard. The project is the vehicle that contains
your iterative approach to defining publications, publication items, sequences, scripts
and resources. The project can be saved and restored from your file system, so that you
can continue to modify any of the contained objects within it.

You cannot perform any action on developing your publications without first creating
the project.

You must have access to the back-end database with the Oracle Mobile Repository and
already defined the tables and schema that you are going to be using in your
publication items before entering the project wizard.

Perform the following to create the project:

1. Click File->New->Project to start the Project Wizard.

2. An Introductory screen appears. If you do not want this introductory screen to
display each time you start a new project, check the "Skip This Page Next Time"
box.

3. Define the project name. Enter the project name and location for your new project,
as follows:

■ Project name: This name can be any valid Java identifier. The name cannot
contain any spaces. For example, your project name may be something like
MY_NEW_PROJECT.

Create a Project

Using Mobile Database Workbench to Create Publications 5-3

■ Project location: Enter a valid location in the directory on your machine that
has write permission to store the project. On a Windows machine, you could
enter the location as c:\myprojects. To browse for a directory, click Browse.

Click Next to move to the next step in the wizard.

4. Provide the Mobile Repository access information. Because you are interacting
with the repository to create and manipulate synchronization objects, including
the SQL scripts for the publication items, you need access to the Mobile
Repository. Enter the following access information:

■ User name and password: Specify the Mobile Server repository user name and
password (with administrator privilege). This is the same user name and
password with which the repository was originally created. For example, the
default Mobile Server repository user name and password is
mobileadmin/manager.

The administrator username and password are used to connect to the
back-end database, create the schema and assign database privileges for the
Mobile Server. In order to perform these actions, the administrator user must
have the following privileges:

– The following privileges are required with the Admin option:

ALTER ANY TABLE, ALTER SESSION, ALTER SYSTEM, CREATE
SESSION, CREATE ANY SEQUENCE, CREATE ANY VIEW, CREATE
ANY TRIGGER, CREATE ANY INDEX, CREATE ANY TABLE, CRE-
ATE ANY SYNONYM, CREATE ANY PROCEDURE, CREATE PROCE-
DURE, CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE,
CREATE VIEW, CREATE INDEXTYPE, DELETE ANY TABLE, DROP
ANY SEQUENCE, DROP ANY PROCEDURE, DROP ANY VIEW, INSERT
ANY TABLE, DROP ANY SYNONYM, DROP ANY TRIGGER, DROP ANY
INDEX, DROP ANY TABLE, SELECT ANY TABLE , SELECT ANY
DICTIONARY, UPDATE ANY TABLE

Lastly, the SELECT_CATALOG_ROLE role is required with the Admin
option.

■ JDBC driver type: Select the JDBC driver that is used to connect to the Oracle
database that hosts the Mobile Server repository. At this time, the only driver
that you can choose is the Oracle Thin driver.

■ Host name or IP address, port number, and SID: Enter the location, port, and
SID of the database that contains the Mobile Server Repository. For the
location, you can either enter the host name or the IP address. The port and
SID are configured within the definition of the Oracle database and are used to
access the database. For example, the host, port and SID could be my-pc1,
1521, and orcl.

Click Next to move to the next step in the wizard. Once you click Next, the wizard
verifies that the database connection information is correct. If incorrect, the wizard
prompts you to re-enter the information. You can only advance if you enter the
correct information where the Mobile Server Repository is located.

5. Specify schema username and password, each of which are limited to 28
characters. Enter the user and password of the schema owner for the schema that
you are using for the Mobile application. The Mobile application schema contains
all database tables, views, synonyms used to build the snapshots for the
application.

Use the Quick Wizard to Create Your Publication

5-4 Oracle Database Lite Developer’s Guide

Click Next to move on to the last screen in the Project Wizard. As you click Next,
MDW verifies that the username and password that you entered are valid for
connecting to the application schema in the back-end database. If these are not
valid, you cannot advance until you supply a valid username and password.

6. A summary page appears. Once the creation of the project is completed, this page
displays all of the information about your new project.

■ Click Back to modify any of the information supplied.

■ Click Finish to complete the project creation.

■ Click Cancel to abort creation of this project.

At this point, you can create your publication within this project.

5.3 Use the Quick Wizard to Create Your Publication
The Quick Start Wizard enables you to create a simple publication in just a few steps. It
generates the publication items within your publication by assuming that you want
the default settings. In addition, the snapshot defaults to select all items within the
table. For example, if the table selected is EMP, then the select statement defaults to
select * from emp.

You can associate a publication item in a publication, which is then associated in an
application. The publication item is the vehicle that defines the SQL to retrieve data
from the database for the application users. When you execute the quick wizard, it
creates a publication item for each table you wish to include in the publication. In
addition, the wizard defaults the SQL statement used to define the data subset for each
table as select * from <table_name>.

The publication item name defaults to the following: <table_name>_PI<number>
where <number> is sequential between 1 and 9. For example, the first publication item
created on table EMP would be named EMP_PI1. If, in a separate publication, you have
already defined a publication item for EMP_PI1, then the next time you execute the
wizard for the table EMP, it will be named EMP_PI2.

After creating this publication item, this wizard enables you to test it immediately.
When the wizard completes, you can always return to the main menu and modify any
of the default settings or specify a more specific data subset with your own SQL
statement.

For each of the screens in the wizard, click Next to advance to the next screen.

1. To start the quick wizard, select the Quick Wizard button.

Note: All schema objects for an application exist in the same
back-end repository, which is why the Oracle database host, port and
SID are only read-only on this screen.

Note: Since this tool is a quick wizard, it associates a single
publication item for each table you include in the publication. In order
to create a more complex snapshot—such as one that enables
automatic synchronization, creates multiple publication items based
on the same table or a more complex SQL statement—see Section 5.4,
"Create a Publication Item".

Use the Quick Wizard to Create Your Publication

Using Mobile Database Workbench to Create Publications 5-5

2. An introductory screen appears. If you do not want this introductory screen to
display each time you start a new project, check the "Skip This Page Next Time"
box.

Figure 5–1 Welcome Screen for Quick Wizard to Create a Publication

3. Provide a name for the client Oracle Lite database. This is the database that exists
on the device to contain the downloaded snapshot information. The name that you
choose will also be used as the name of the publication.

When this publication is finished, a client database is created on your device and
the first synchronization to retrieve the snapshot from the back-end Oracle
database is initiated.

Use the Quick Wizard to Create Your Publication

5-6 Oracle Database Lite Developer’s Guide

Figure 5–2 Define Client Oracle Lite Database Name

4. Select the table(s) to be included in the publication item, as follows:

Figure 5–3 Define the Tables to Include in the Publication

■ Choose the application schema to associate with this publication item: The
application schema is the schema from which the publication item retrieves
data. All available schemas in the database are listed in the pull-down list. You
must have created the schema prior to starting this wizard.

Use the Quick Wizard to Create Your Publication

Using Mobile Database Workbench to Create Publications 5-7

■ Click Search to display all tables within this schema in the Available column.
To search for a specific table or tables, enter the name or partial name with
wild charaters in the Object Filter field and then click Search. You can use any
of the standard Oracle wild card characters.

■ Select the table(s) that you want in the publication item and click the arrow
buttons to move one or all tables into the Selected column. You can move these
tables back and forth using the arrow buttons.

■ When you are satisfied with the list of the tables in this publication item, then
click Next.

5. Once the creation of the publication item is completed, a Summary page displays
the defaults used for each table included in this publication item, as follows:

Figure 5–4 Modify the Table Properties for Synchronization

■ Table name: Displays the schema and name of the table included in this
publication item.

■ Updatable: This is checked if the table is listed as updatable. You can toggle
this item to read-only by double-clicking on the field. However, if it is
unchecked, you should only enable it if the table has a virtual primary key.

For more information on Read-Only or Updatable options, see Section 3.3.1.1,
"Manage Snapshots".

Note: If the schema you want is not in this list, cancel the wizard,
create the schema in the back-end database, and then re-start this
wizard.

Note: If you do not see the object that you expect to see, verify that
you created the table in this schema in the back-end Oracle database.

Use the Quick Wizard to Create Your Publication

5-8 Oracle Database Lite Developer’s Guide

■ Refresh Type: By default, all tables use fast refresh. If the table does not have a
primary key, then the table uses complete refresh. Double-click on this field to
change the refresh type.

For more information on Fast or Complete refresh types, see Section 3.9,
"Understanding Your Refresh Options".

■ Virtual Primary Key: This field displays the virtual primary key for the table.
If you want to have the table be updatable or use the fast refresh type, then the
table must have a virtual primary key. If the table does not have a primary key,
but it does contain a field with UNIQUE constraints, then you can specify this
field as the virtual primary key to be able to use fast refresh or updatable.

To specify a column in the table as your virtual primary key, double-click on
the Virtual Primary Key field to list all of the UNIQUE fields. If you select one
of them to be the virtual primary key, then you can use the Updatable or fast
refresh options for this table.

6. Decide if you want to test this publication.

Figure 5–5 Decide to Test the Publication

You can specify that you want to test this publication as soon as the wizard exits.
By default, Yes is selected. This provides a test of the publication against the
back-end Oracle database.

In order to perform this test, a valid client username must be provided. From the
drop-down list, select the client username that you would like to use. You will be
prompted for the password during synchronization.

7. You can end the wizard by performing one of the following:

■ Click Back to modify any of the information supplied.

Note: Any virtual primary key added must be unique and not null.

Create a Publication Item

Using Mobile Database Workbench to Create Publications 5-9

■ Click Finish to complete the project creation.

■ Click Cancel to abort creation of this project.

8. If you clicked Yes for testing the publication, then the Test Publication screen is
brought up. Click the Synchronize button to start the test.

This creates a basic publication, which you can now view in the project in the MDW
main screen. You can modify this publication in any way.

5.4 Create a Publication Item
The Publication Item Wizard steps you through the process of creating a publication
item in the project. A publication item encapsulates a snapshot definition. It can be
based on a table, view or synonym in the Master Application schema in the back-end
database. If you use a synonym for a remote object to build a publication item, then
you are required to provide the JDBC connection information to the remote database
where the remote object resides.

After you create the publication items in the project, then you can associate multiple
publication items with a publication, which is then associated with an application. See
Section 5.9.2, "Publication Item Tab Associates Publication Items With the Publication"
for details.

You can create a publication item through the publication item wizard by clicking
File->New->Publication Item.

1. The publication item wizard introduction appears. If you do not want this
introductory screen to display each time you start a new project, check the "Skip
This Page Next Time" box.

Click Next to advance to the next screen.

2. Define name, refresh type, and automatic synchronization, as follows:

■ Publication item name: This name can be any valid Java identifier. The name
cannot contain any spaces. Publication item names are limited to twenty-six
characters and must be unique across all publications. For example, your
publication item name may be something like MY_PUBLICATION_ITEM.

■ Refresh type: The refresh mode of the publication item is specified during
creation to be either fast or complete refresh. See the Section 3.9,
"Understanding Your Refresh Options" for more information.

From the drop-down list choose one of the following refresh types:

– Complete: All data is refreshed with current data. Everytime you
synchronize, all data in the snapshot is retrieved. This can be performance
intensive.

– Fast: This is the recommended mode. Only incremental changes are
synchronized. Thus, you are not downloading the complete data snapshot
each time a synchronization is requested. The advantages of fast refresh
are reduced overhead and increased speed when replicating data stores
with large amounts of data where there are limited changes between
synchronization sessions.

– Queue-based: You can create your own queue. Mobile Server will upload
and download changes from the user. You perform the activity of the MGP
and apply/compose the modifications to the back-end database. See the
Section 3.19, "Customizing Replication With Your Own Queues" for more
information.

Create a Publication Item

5-10 Oracle Database Lite Developer’s Guide

Once you create the publication item with a particular refresh type, the only
way to modify the publication item to have a different refresh type is to delete
is and recreate it with the desired refresh type.

■ Enable Automatic Synchronization checkbox: This defines the publication item
to use Automatic Synchronization, where synchronization for this publication
item occurs automatically and in the background. That is, you do not have to
manually press the Sync button as it occurs automatically. You can have
several publication items in a single publication where some use automatic
synchronization and others require the user to manually request
synchronization.

If you have multiple publication items within a publication, you can specify
which are to be automatically synchronized within each publication item.

Step 7 shows you how to specify—with a SQL statement—which users receive
the automatic synchronization. Section 5.5, "Define the Rules Under Which the
Automatic Synchronization Starts" shows you how to define automatic
synchronization rules that will apply to this publication item.

3. Designate the publication item object with the appropriate schema, as follows:

■ Choose the application schema to associate with this publication item: The
application schema is the schema from which the publication item retrieves
data. All available schemas in the database are listed in the pull-down list. You
must have created the schema prior to creating the publication item.

If the schema you want is not in this list, cancel this publication item, create
the schema in the back-end database, and then associate the schema with the
publication item.

■ Designate the object type as a table, view, or synonym.

■ To choose the table, view or synonym from within the schema that you wish to
base this publication item on, click Search on the Object Filter. This brings up
several items in the Object List. Select the object that you are interested in and
click Next.

4. Choose columns to add to the publication item. When you are adding columns to
the publication item, you should first verify what data types are supported and
how others are modified when brought down to the Oracle Lite database. For
example, the TIMESTAMP data type is supported, but the TIMESTAMP WITH
TIME ZONE data type is not. For details, see Section 3.23, "Datatype Conversion
Between the Oracle Server and Client Oracle Lite Database".

There are two tabs to enable you to structure your publication item, as follows:

■ Column Selection: Choose the columns from within the object that you will
use to retrieve information for the application. To choose the appropriate
columns, select the column name and click the left or right arrow buttons to
move between the Available and Selected windows. To move all columns, use
the double arrows.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter is
case-sensitive; use upper-case characters.

Create a Publication Item

Using Mobile Database Workbench to Create Publications 5-11

■ Structure: If you are not sure what columns you want, you can see the entire
table structure by clicking this tab.

If you have specified a fast refresh, you must provide a primary key. If you have
specified a table or view that does not have a primary key, exit out of this wizard
and create a virtual primary key specifying one of the columns in the table or view.
If you do not create a virtual primary key before specifying this publication item,
then any future synchronization of this primary key will fail.

5. Modify the SQL statement for the publication item. From the columns that you
selected in the previous screen, this simple SQL statement is available as a
template for you to modify. You can add any qualifiers and complexity to this base
statement. To view the structure of the schema object, select the Structure tab.

■ Perform Iterative Modifications

See Section 5.4.1, "Create SQL Statement for Publication Item" for directions on
how to edit and execute the SQL statement for this publication item.

■ Apply/Compose Callbacks

When creating publication items, the user can specify a customizable package
to be called during the Apply and Compose phase of the MGP background
process. Client data is accumulated in the in queue prior to being processed by
the MGP. Once processed by the MGP, data is accumulated in the out queue
before being pulled to the client by Mobile Sync. See Section 3.7.2, "Customize
What Occurs Before and After Compose/Apply Phases for a Single
Publication Item" for more information on how to create the callbacks.

Provide the schema and package names for any apply/compose callbacks.

■ Dependency Hint

Click Add to add a dependency hint. All existing dependency hints are shown
in the window. See Section 5.4.2, "Create a Dependency Hint" for more
information.

6. If you specified a view, then you may need to define parent table and primary key
hints. See Section 5.4.3, "Specify Parent Table and Primary Key Hints" for
directions on how to define these hints.

Note: The primary key defaults to being in the Selected window, as it
is required if you are using Fast Refresh and Updateable option. Since
most publication items use these options, MDW places the primary
key as Selected. You can move it back to the Available window.

Note: Oracle Database Lite does not support creating publication
items for a table with object type columns, even if the publication item
query does not include any of the object type columns. However, it is
possible to define a view which selects only columns of supported
data types and then create a publication item using the view
definition.

Note: Any virtual primary key must be unique and not null.

Create a Publication Item

5-12 Oracle Database Lite Developer’s Guide

7. If you specified automatic synchronization for this publication item, then the
Automatic Synchronization Query page is shown, which includes the following:

■ By default, all users are included in the Compose, which means that all users
receive the data that is being retrieved from the server and brought down to
the Mobile clients. If you want to specify that only certain users that subscribe
to this application receive the application data, then check this box.

■ If you clicked the checkbox, then specify which users are to receive the
Compose data with a SQL query.

For example, if you only want MADAUSER within the mobileadmin schema to
receive the Compose data, then type in select name from
mobileadmin.users where name =’MADAUSER’. Click Run to verify
that the SQL query returns what you want; click Next to advance to the next
page.

8. Summary page provides an overview of the publication item that you just created.
To view any dependency hints, click Advanced. If you have used a view as the
base for your publication item and you created Parent Table or Primary Key hints,
click Hint to view these hints. The Parent Table and Primary Key hints are only
valid on views.

To modify any part of the publication item, click Back to return to the previous
screens.

Click Finish if you are satisfied with the publication item. Click Cancel to
eliminate all work in creating this publication item.

5.4.1 Create SQL Statement for Publication Item
You can compose your SQL statement through iterative steps to ensure that you are
creating a valid statement. You have the following options:

■ Modify the query by clicking Edit.

■ Execute the statement against the schema in the back-end database by clicking
Run. You will be notified directly if the statement fails or view the data from the
schema object is retrieved for you to view.

When you click Run, then the query of the publication item is validated by
executing the query against the back-end database. A dialog is displayed with the
returned snapshot that this publication item would generate. If there is more than
one page, then click Previous and Next to move between the pages. Click Close to
return to the publication item screen.

If the publication item SQL statement requireds an input value, then a dialog
appears for you to input the value for the SQL query. You can modify this value or
the SQL query until you receive the results that you desire.

■ To return the query to the original statement, click Reset.

■ When finished, click Next.

5.4.2 Create a Dependency Hint
If the updates to this publication item effects another table, use the dependency hint to
notify the synchronization engine to update the other table. For example, if the
publication item updates the employee table, and these updates should also apply to
the department table, add a dependency hint notifying the synchronization engine of
the relationship with the department table.

Define the Rules Under Which the Automatic Synchronization Starts

Using Mobile Database Workbench to Create Publications 5-13

For your dependency hint, specify whether the hint is based upon a table or synonym.
Then, use the pulldown lists to select the schema and table/synonym names. Click OK
to save the hint or Cancel to return to the Advanced screen.

For more information on dependency hints, see Section 3.17.2, "Creating or Removing
a Dependency Hint".

5.4.3 Specify Parent Table and Primary Key Hints
When you use a view, you may need to specify a parent table and primary key hints. A
view can be composed of one or more tables joined together. If you have specified fast
refresh, then you must specify which table is the parent table and which column is the
primary key.

■ To create a parent table hint, select the base table from the Base Table(s)
drop-down list and check the Parent Table Hint checkbox.

■ To create a primary key hint, click Add. Identify the primary key hint for this view,
as follows:

1. From the View Columns drop-down list, select the view column that you want
to be the primary key. This column name may be an alias of the actual
table.column name.

2. From the Base Tables drop-down list, select the base table where the actual
column exists that is to be the primary key.

3. From the Primary Key Columns drop-down list, all primary key columns from
the base table are shown, select the appropriate column for the primary key. If
you have a composite primary key, iteratively add each column within the
composite primary key.

Click OK to accept this primary key hint.

5.5 Define the Rules Under Which the Automatic Synchronization Starts
Once you have enabled a publication item to use automatic synchronization, you must
define the rules under which the automatic synchronization executes. The
circumstances under which an automatic synchronization occurs is defined within the
synchronization rules. There are two types of automatic synchronization rules: events
and conditions. If an event is true, it starts a synchronization; however, the
synchronization cannot occur unless all conditions are true, as well. This evaluates as
follows:

when EVENT and if (CONDITIONS) then sync;

Note: If you do not check the Parent Table Hint checkbox, then the
hint is not created when you click Next.

Note: If you do not provide accurate details in regards to the view,
base table, and primary key to which the view column maps, the
publication item may save, but the execution of the publication item
will fail. For example, if you choose a view column which does not
map to the primary key column, MDW will allow the action, but any
execution of the publication item will result in failure.

Define the Rules Under Which the Automatic Synchronization Starts

5-14 Oracle Database Lite Developer’s Guide

If an event is true, then a synchronization can start—but only if all conditions are true.

Thus, event and condition rules are as follows:

■ Events—An event is variable, as follows:

■ Data events: For example, you can specify that a synchronization occurs when
there are a certain number of modified records in the client database.

■ System events: For example, you can specify that if the battery drops below a
predefined minimum, you want to synchronize before the battery is depleted.

■ Conditions—A condition is an aspect of the client that needs to be present for a
synchronization to occur. This includes conditions such as battery life or network
availability.

For example, if the event for new data inserted and the condition specified is that the
network must be available, then a synchronization only occurs when the network is
available and there is new data.

When you define the rules for the synchronization, you can define them in two places:

■ Publication level: You specify the rules under which the synchronization occurs at
the publication level for all publication items in that publication.

■ Platform level: Some of the rules are very specific to the platform of the client,
such as battery life, network bandwidth, and so on.

The following sections detail all of the rules you can configure for automatic
synchronization:

■ Section 5.5.1, "Configure Publication-Level Automatic Synchronization Rules"

■ Section 5.5.2, "Configure Platform-Level Automatic Synchronization Rules"

5.5.1 Configure Publication-Level Automatic Synchronization Rules
When you are creating the publication, you can define data events that will cause an
automatic synchronization. Although these are defined at the publication level, they
apply only to the publication items within this publication that have automatic
synchronization enabled.

For full details of how to configure these data events, see Section 5.9.6, "Event Tab
Configures Automatic Synchronization Rules for this Publication".

Table 5–1 describes the publication level data events that trigger automatic
synchronization. The lowest value you can specify is 1.

Note: This section describes how to do this through MDW; see
Section 3.2.3, "Define the Rules Under Which the Automatic
Synchronization Starts" for directions on how to perform this
programmatically.

Table 5–1 Automatic Events for the Publication

Events Description

Client commit Upon commit to the Oracle Lite database, the Mobile client detects the total
number of record changes in the automatic synchronization log. If the number
of modifications is equal to or greater than your pre-defined number,
automatic synchronization occurs.

Define the Rules Under Which the Automatic Synchronization Starts

Using Mobile Database Workbench to Create Publications 5-15

5.5.2 Configure Platform-Level Automatic Synchronization Rules
The platform-level synchronization rules apply to a selected client platform and all
publications that exist on that platform. You can specify both platform events and
conditions using either MDW or the Mobile Manager. This section describes MDW; see
Section 5.4.1, "Specifying Platform Rules for Automatic Synchronization" in the Oracle
Database Lite Administration and Deployment Guide for directions on how to define these
rules using Mobile Manager.

To assign platform-level automatic synchronization rules, perform the following in
MDW:

1. Click Platform.

2. Select either the Win32 or WINCE platform, which brings up a page with two tabs:
Events and Conditions. These rules will apply to all publications for this platform.

3. You can modify the following for each platform:

■ Event Rules—See Section 5.5.2.1, "Define System Event Rules for the
Platform".

■ Conditions—See Section 5.5.2.2, "Define Automatic Synchronization
Conditions for the Platform".

5.5.2.1 Define System Event Rules for the Platform
When you choose the Event tab, select the checkbox for each event that you want to
enable. If the event requires a value, enter the value you desire. This initiates the
automatic synchronization the first time the event occurs. For example, if the battery
runs below the percentage you specified, the automatic synchronization occurs. As the
battery continues to deplete, you will not trigger another synchronization.

The following system events will trigger an automatic synchronization if true.

Server MGP
compose

If after the MGP compose cycle, the number of modified records for a user is
equal to or greater than your pre-defined number, then an automatic
synchronization occurs. Thus, if there are a certain number of records
contained in an Out Queue destined for a client on the server, these
modifications are synchronized to the client.

Note: If you want to modify the publication-level automatic
synchronization rules after you publish the appliation, you can do so
through the Mobile Manager, as follows:

1. Click Data Synchronization.

2. Click Repository.

3. Click Publications.

4. Select the publication and click Automatic Synchronization Rules.

Note: You can only modify the network settings for the platform
using Mobile Manager, see Section 5.4.1, "Specifying Platform Rules
for Automatic Synchronization" in the Oracle Database Lite
Administration and Deployment Guide for more information.

Table 5–1 (Cont.) Automatic Events for the Publication

Events Description

Create a Sequence

5-16 Oracle Database Lite Developer’s Guide

■ Network Bandwidth: Synchronize when the network bandwidth is greater than
<number> bits/second. Where <number> is an integer that indicates the
bandwidth bits/seconds. When the bandwidth is at this value, the
synchronization occurs.

■ Battery Life: Synchronize when the battery level drops to <number>%, where
<number> is a percentage. Often you may wish to synchronize before you lose
battery power. Set this to the percentage of battery left, when you want the
synchronization to automatically occur.

■ AC Power: Synchronize when the AC power is detected. Select this checkbox if
you want the synchronization to occur when the device is plugged in.

5.5.2.2 Define Automatic Synchronization Conditions for the Platform
When you choose the Condition tab, you can set under what conditions the automatic
synchronization is allowed or disallowed, as follows:

■ Battery Level: Specify the minimum battery level required in order for an
automatic synchronization to start. The battery level is specified as a percentage.

■ Network Availability: Network quality can be specified using several properties.
For example, if you have a very low network bandwidth and a high ping delay,
you may only want to synchronize your high priority data. To add network
quality condition for a specified data priority, click the Add button, which brings
up a screen where you can specify a minimum value for the following network
properties:

– Data Priority: You could have defined records in the snapshot with a data
priority number. Use this condition to specify under what conditions the
different data priority records are synchronized. Data priority can be either
one or zero, where zero is high priority. By default, all records are entered with
a value of NULL, which is the lowest priority.

– Minimum Network Bandwidth (bits/sec): Configure the minimum bandwidth
(bits/second) in which the automatic synchronization can occur for records
with this data priority.

– Maximum Ping Delay (ms): Configure the maximum ping delay
(milliseconds) in which the automatic synchronization can occur for records
with this data priority.

– Include Dial-up Networks?: The always-on network is used if available.
However, if this network is not available, select YES if you want to use any of
the dial-up networks for this data priority.

5.6 Create a Sequence
A sequence is a database schema object that generates sequential numbers for new
records into a table. After creating a sequence, you can use it to generate unique
sequence numbers for transaction processing. These unique integers can include
primary key values. If a transaction generates a sequence number, the sequence is
incremented immediately whether you commit or roll back the transaction.

Create a sequence by clicking File->New->Sequence.

However, when you have Oracle Database Lite, you must consider how you allow the
generation of sequence numbers. If you want the client only to use the sequence, you
have a native sequence, which does not involve the server-side. However, if you want

Create a Sequence

Using Mobile Database Workbench to Create Publications 5-17

the server and client to share a sequence, you have to specify a server-side sequence
and allow for both the client and server to be using numbers within the same range.

For example, if you have a single back-end database and a Mobile client, where both
are allowed to add records to the application tables, then you have to check the
checkbox to generate the server-side sequence and allow at least two as the increment
value, since the client will use one and the server will use the other.

If you have more than a single client, you want to assign who gets which sequence
numbers, so that when you synchronize, none of the records have duplicate sequence
numbers. Thus, if you have multiple clients, then specify a specific range of numbers
for each client, so that they are not using the same numbers.

■ Specify a range of values for each client. In our example, client A would be
assigned sequence numbers 1 through 100, client B would be assigned sequence
numbers 101 to 200, and client C would be assigned sequence numbers 201
through 300. If they ran out of sequence numbers, they are assigned another 100,
which is the defined window size in our example, during the next
synchronization. Since none of the clients checked to generate server-side
sequence, the database, in order to never collide with the sequence numbers, starts
its sequence number at -1.

■ You could specify that all clients are allowed to have only odd numbers and the
database has all even numbers. That is, you could start the client at 1 and
increment by 2 for all of its sequence numbers. This enables you to avoid having
negative numbers for your sequence numbers. The clients still have a window
size, which in this example is 100, but they start with an odd number within that
window and always increment by 2 to avoid any positive numbers. Thus, client A
would still have the window of 1 to 100, but the sequence numbers would be 1, 3,
5, and so on up to 99.

To create a sequence, provide the following information:

■ Name: This name must be a valid Java identifier.

■ Starts With: Enter the number with which you want this sequence to start.

■ Increment: Specify the increment from the starting value for the next value in the
sequence.

■ Window Size: The range of numbers given to the client when the threshold is
reached.

■ Threshold: Defining the amount of sequence numbers necessary to be assigned in
order for operations to continue smoothly.

■ Description: A description of the sequence.

■ Generate server-side sequence: If you want the client and the server-sides to share
a sequence, where one side has all even numbers and the other has the odd
numbers, check this box. If unchecked, then the sequence is created solely for the
client.

Note: If you have checked the Generate server-side sequence
checkbox and set the increment value to 1, then this value is ignored
and is set to 2. When you specify the server-side sequence, then both
the client and the server use every other number in the sequence.
Thus, you cannot increment by 1 on the client.

Create and Load a Script Into The Project

5-18 Oracle Database Lite Developer’s Guide

Once you create a sequence in the project, you can associate it with a publication. See
Section 5.9.3, "Sequence Tab Associates Existing Sequences With the Publication" for
details.

See the Section 3.4.1.8, "Creating Client-Side Sequences for the Downloaded Snapshot"
for more information on sequences.

5.7 Create and Load a Script Into The Project
You can add a script to this project. Create the script on your file system and then
upload it to MDW. Before you add the script to the project, you can use MDW to test
the script. See the following sections for more information:

■ Section 5.7.1, "Writing SQL Scripts"

■ Section 5.7.2, "Test SQL Scripts"

■ Section 5.7.3, "Load the Script Into the Project"

5.7.1 Writing SQL Scripts
When you write and upload a SQL script to the project, each script is executed
independently by Oracle Database Lite in no specified order. Therefore, if you have
dependencies and need the DDL statements to be executed in a certain order, include
all statements in the correct order in a single script, where each DDL statement is
separated by a semicolon (";").

Alternatively, you can specify the weight for the script when loading them to specify
the order in which each script is executed on the client. See Section 5.7.3, "Load the
Script Into the Project" for more details.

If a SQL script fails upon execution, Oracle Database Lite will execute it once more, in
case the failure was due to a dependency of a later script. However, if you have a
script with a dependency on another script, you could effect your performance while
Oracle Database Lite re-executes all of the scripts to resolve dependencies.

5.7.2 Test SQL Scripts
You can test a SQL script that resides on your file system by selecting Tool->SQL
Window. Through the SQL Wizard, perform the following:

1. Connect to the correct database—whether it is an Oracle database or a device
Oracle Lite database.

2. Load the SQL script from your file system.

3. Execute the script. You can execute the current script or re-execute scripts that are
on the history page. You can choose to have the results displayed on the screen or
spooled to a file.

The following sections describe how to accomplish these tasks:

■ Section 5.7.2.1, "Connect to the Database"

■ Section 5.7.2.2, "Load and Execute SQL Scripts"

Note: If you upload scripts using one of the Consolidator APIs, you
must also ensure that the order of execution for these scripts does not
matter. Include all dependent DDL statements in a single script and in
the order necessary for clean resolution.

Create and Load a Script Into The Project

Using Mobile Database Workbench to Create Publications 5-19

5.7.2.1 Connect to the Database
1. Select type of database—Select the radio button next to the type of database to

which you are connecting—an Oracle database or the client Oracle Lite database.
If you selected the client Oracle Lite database, you must also specify the Mobile
client platform and protocol with the drop-down lists. Only currently installed
platforms and protocols are displayed in these drop-down lists.

2. Specify database authentication and destination connection information—Part of
the information necessary for completing the database connection is the
authentication user name and password and the database destination information,
which can include either the DSN of the Mobile client Oracle Lite database or the
host, port, and SID for the Oracle database.

3. Review database connection values—The final screen displays a summary of all of
the configured values for the database connection. Verify that the information is
correct and then click Finish. You can return to any page to modify the
information by clicking Back.

5.7.2.2 Load and Execute SQL Scripts
You can test any SQL scripts against the database defined in the previous portion of
this wizard.

■ Click Load Script to browse your file system for the script that you want to test.
Define if you want this script to be spooled or auto-committed.

■ Click Execute to run the script on the destination database. The results show up in
the bottom results screen.

If you want, you can spool the results to a file by checking the spool checkbox
before you click Execute. When you check Spool, a dialog appears for you to
define the location and name of the file to receive the output from the script.
Check the Overwrite checkbox if you want this file overwritten each time that the
script is executed.

Check the Autocommit checkbox if you want the SQL committed automatically
after the script completes.

The Results and History tabs show the current results and all past results respectively.
Clear the Results screen by either clicking Clear Results or by checking the Auto Clear
checkbox. Clear the historical information by clicking the Clear History button on the
History page.

5.7.3 Load the Script Into the Project
Define the script on your machine. Once defined, perform the following:

1. Bring the script into the project by clicking File->New->Script.

2. Provide a user-defined name to identify the script and browse for the script in
your file system.

3. Specify the weight, if necessary. You can specify the weight for the script when
loading them to specify the order in which each script is executed on the client. For
example, when creating a master detail table on the client, you must create first the
master table and then the detail table. The client does not know which script

Note: Any SQL on the History page can be executed by selecting the
corresponding row and clicking Execute.

Load a Resource Into the Project

5-20 Oracle Database Lite Developer’s Guide

should be executed first, unless you specify a weight to let the client know the
order in which to execute the scripts.

4. Click OK to accept the definition and Cancel to return to the previous screen.

Once you include a script in the project, you can associate it with a publication. See
Section 5.9.4, "Script Tab Associates Existing Scripts With the Publication" for more
information.

5.8 Load a Resource Into the Project
You can load a JAR file that contains Java class files as a resource in a project. Once
loaded as a resource, the JAR file is downloaded to the client on the first
synchronization. In addition, if this resource is modified, it will be sent down on the
next synchronization.

To specify an existing resource, click File->New->Resource.

Provide the JAR file on your machine. Specify a user-defined name to identify the
resource and browse for the JAR file in your file system. Click OK to accept the
definition and Cancel to return to the previous screen.

Once you include a resource in the project, you can associate it with a publication. See
Section 5.9.5, "Resource Tab Associates Existing Resources With the Publication" for
more information.

5.9 Create a Publication
Create a publication by clicking File->New->Publication. You can create the
publication at any time. This starts the dialog for creating a publication.

There are six tabs included for configuring information about the new publication. On
configures general information about the publication, one defines event rules for
automatic synchronization, and the others enable you to associate different objects
with the publication.

If you click OK, then you can associate the objects by selecting the publication name
and then selecting the appropriate tab.

When you are finished creating the publication, click File->Save to save the
publication.

■ Section 5.9.1, "General Tab Configures Publication Name"

■ Section 5.9.2, "Publication Item Tab Associates Publication Items With the
Publication"

■ Section 5.9.3, "Sequence Tab Associates Existing Sequences With the Publication"

■ Section 5.9.4, "Script Tab Associates Existing Scripts With the Publication"

■ Section 5.9.5, "Resource Tab Associates Existing Resources With the Publication"

■ Section 5.9.6, "Event Tab Configures Automatic Synchronization Rules for this
Publication"

Note: You can only load JAR files as resources, not individual class
files. Once you load a JAR file, the only way you can replace it is by
dropping the JAR and then loading the new JAR file.

Create a Publication

Using Mobile Database Workbench to Create Publications 5-21

5.9.1 General Tab Configures Publication Name
The General tab provides the following information about your new publication
within your project:

■ Publication name: Enter a valid Java identifier for the publication name. The name
cannot contain any spaces or special characters.

■ Optional description: You can add a description to remind you of the content of
this publication.

■ Client database name: This defaults to the same name as the publication name.
However, you can modify it. The purpose of this name is to specify the name of
the client Mobile database, which is created during the first synchronization.

5.9.2 Publication Item Tab Associates Publication Items With the Publication
Selecting the Publication Item tab from within the publication enables you to associate
any existing publication item to this publication.

Manage Publication Items In This Publication
■ To add an existing publication item to this publication, Click Add.

■ To remove a publication item from this publication, select the desire publication
item from the list and click Remove.

■ To edit the details of the association for the publication item, select the desired
publication item and click Edit.

To accept the current changes, click OK.

5.9.2.1 Associating a Publication Item to this Publication
To associate any publication item to this publication, the publication item must first
exist. Thus, all of the information requested on this screen is about existing publication
items.

Provide the following information to identify the publication item to associate to this
publication:

Identify Existing Publication Item
From the Name drop-down list, select the name of the publication item.

Updatable or Read-Only Snapshot
Select if the snapshot is updatable or read-only. See Section 3.3.1.1, "Manage
Snapshots" for more details.

■ Read-only snapshots are used for querying purposes. Changes made to the master
table are replicated to the snapshot by the Mobile client.

■ Updatable snapshots provide updatable copies of a master table. You can define
updatable snapshots to contain a full copy of a master table or a subset of rows in
the master table that satisfy a value-based selection criteria. You can make changes
to the snapshot which the Mobile Sync propagates back to the master table.

A snapshot can only be updated when all the base tables that the snapshot is
based on have a primary key. If the base tables do not have a primary key, a
snapshot cannot be updated and becomes read-only.

Create a Publication

5-22 Oracle Database Lite Developer’s Guide

Conflict Resolution
When adding a publication item to a publication, the user can specify winning rules to
resolve synchronization conflicts in favor of either the client or the server. A Mobile
Server synchronization conflict is detected under any of the following situations:

■ The same row was updated on the client and on the server.

■ Both the client and server created rows with equal primary keys.

■ The client deleted a row and the server updated the same row.

■ The client updated a row and the server deleted the same row. This is considered a
synchronization error for compatibility with Oracle database advanced replication.

■ For systems with delayed data processing, where a client's data is not directly
applied to the base table (for instance in a three tier architecture) a situation could
occur when first a client inserts a row and then updates the same row, while the
row has not yet been inserted into the base table. In that case, if the DEF_APPLY
parameter in C$ALL_CONFIG is set to TRUE, an INSERT operation is performed,
instead of the UPDATE. It is up to the application developer to resolve the resulting
primary key conflict. If, however, DEF_APPLY is not set, a "NO DATA FOUND"
exception is thrown (see below for the synchronization error handling).

■ All the other errors including nullity violations and foreign key constraint
violations are synchronization errors.

■ If synchronization errors are not automatically resolved, the corresponding
transactions are rolled back and the transaction operations are moved into Mobile
Server error queue in C$EQ, while the data is stored in CEQ$. Mobile Server
database administrators can change these transaction operations and re-execute or
purge transactions from the error queue.

Choose the type of conflict resolution you want for this publication item, as follows:

■ Client wins—When the client wins, the Mobile Server automatically applies client
changes to the server. And if you have a record that is set for INSERT, yet a record
already exists, the Mobile Server automatically modifies it to be an UPDATE.

■ Server wins—If the server wins, the client updates are not applied to the
application tables. Instead, the Mobile Server automatically composes changes for
the client. The client updates are placed into the error queue, just in case you still
want these changes to be applied to the server—even though the winning rules
state that the server wins.

■ Custom—You have created your own callbacks to resolve the conflict resolution.

All synchronization errors are placed into the error queue. For each publication item
created, a separate and corresponding error queue is created. The purpose of this
queue is to store transactions that fail due to unresolved conflicts. The administrator
can attempt to resolve the conflicts, either by modifying the error queue data or that of
the server, and then attempt to re-apply the transaction.

See Section 3.13, "Resolving Conflict Resolution with Winning Rules" for more
information.

DML Callback
A user can use Java to specify a customized PL/SQL procedure which is stored in the
Mobile Server repository to be called in place of all DML operations for this
publication item. There can be only one mobile DML procedure for each publication
item. See Section 3.4.1.13, "Callback Customization for DML Operations" for more
information on how to specify a DML Callback.

Create a Publication

Using Mobile Database Workbench to Create Publications 5-23

Enter a string for the schema and package of the DML callback, such as
schema.package_name.

Grouping Function
If you know that two tables should share a map, but Oracle Database Lite would not
normally associate these tables, provide a grouping function that denotes the shared
publication item data between the tables.

The grouping function is a PL/SQL function with the following signature.

(
CLIENT in VARCHAR2,
PUBLICATION in VARCHAR2,
ITEM in VARCHAR2
) return VARCHAR2.

The returned value must uniquely identify the client's group.

In this field, provide the PL/SQL grouping function fully-qualified, either with
schema.package.function_name or schema.function_name.

See the Section 1.2.4 "Shared Maps" in the Oracle Database Lite Troubleshooting and
Tuning Guide for more information.

Priority Condition
Provide a string that is to be added to the publication item query statement to limit
what is returned based on priority. For example,

For example, if you have a snapshot with the following statement:

select * from projects where prio_level in (1,2,3,4)

The projects table has a column named prio_level, where the values can be 1 to 4. If
you wanted to limit what data was returned, you could limit the statement specific to
this publication item in this publication by adding a string that would be added to the
SQL statement preceded by an AND.

For example, to restrict the snapshot from the projects table, you could define the
priority condition string to be prio_level = 1. This would generate the following
statement:

SELECT * FROM projects where prio_level in (1,2,3,4) AND prio_level = 1;

In this case, only projects with level =1 are replicated to the client. You can make this
statement to be anything you wish to restrict what is returned to the client.

See Section 1.2.5 "Priority-Based Replication" in the Oracle Database Lite Troubleshooting
and Tuning Guide for more information.

MyCompose Class
Provide a string with the full path and classname of the location and name of the
MyCompose Class. See Section 3.6, "Customize the Compose Phase Using
MyCompose" for more information on this class.

Note: The Mobile Server schema owner needs to be granted execute
privilege on the defined grouping function.

Create a Publication

5-24 Oracle Database Lite Developer’s Guide

Weight
You can rate the order in which each publication item in this publication is executed by
specifying the weight. This should be a number. Each publication item must have a
unique number in ascending order. The first publication item executed is the one with
the weight of one.

5.9.3 Sequence Tab Associates Existing Sequences With the Publication
You can only associate an existing sequence with the publication on this screen. To add
an existing sequence, click Add.

Click on the drop-down list and select one of the existing sequences to add to the
publication. Click OK to add the sequence; click Cancel to go back to the previous
screen.

5.9.4 Script Tab Associates Existing Scripts With the Publication
You can only associate an existing script with the publication on this screen. To add an
existing script, click Add.

Click on the drop-down list and select one of the existing scripts to add to the
publication. Click OK to add the script; click Cancel to go back to the previous screen.

It is important that all scripts follow the instructions listed in Section 5.7.1, "Writing
SQL Scripts".

5.9.5 Resource Tab Associates Existing Resources With the Publication
You can only associate an existing resource with the publication on this screen. To add
an existing resource, click Add.

Click on the drop-down list and select one of the existing resources to add to the
publication. Click OK to add the resource; click Cancel to go back to the previous
screen.

5.9.6 Event Tab Configures Automatic Synchronization Rules for this Publication
When you select the Event Tab, you can configure data event rules for this publication,
which apply to all automatic synchronization enabled publication items associated in
this publication.

Data events define when an automatic synchronization is triggered.

Note: You can create a sequence through the File->New->Sequence
screen.

Note: You can import a script through the File->New->Script screen.

Note: You can import a resource through the File->New->Resource
screen.

Import Existing Publications and Objects from Repository

Using Mobile Database Workbench to Create Publications 5-25

■ Client Data Events—Synchronize if the client database contains more than
<number> modified records, where you specify the <number> of modifed records
in the client database to trigger an automatic synchronization.

■ Server Data Events—Synchronize if the out queue contains more than <number>
modified records, where you specify the <number> of modifed records in the
client database to trigger an automatic synchronization.

The lowest value that can be provided in these fields is 1. Specify a high value if you
want the synchronization to occur based upon other rules. Click Apply when finished.

5.10 Import Existing Publications and Objects from Repository
You can import existing publications, publication items, sequences, scripts or resources
that already exist within the repository by choosing the Project->Add From
Repository option, as described in the following sections:

■ Section 5.10.1, "Import Existing Publication from Repository"

■ Section 5.10.2, "Import Existing Publication Item From the Repository"

■ Section 5.10.3, "Import Existing Sequence From the Repository"

■ Section 5.10.4, "Import Existing Resource From the Repository"

■ Section 5.10.5, "Import an Existing Script From the Repository"

5.10.1 Import Existing Publication from Repository
You can add an existing publication that already exists in the repository to this project
by selecting Project->Add From Repository->Publication. All associated
objects—publication items, sequences, scripts, resources—are also pulled into the
project with the publication.

To view all publications in the repository, click Search. All publications are shown in
the left-hand screen. To limit the displayed publications to only those with a certain
string as part of the name, provide this string in the Filter and then click Search. Only
those publications that match the filter are shown.

Select the desired publications and either double-click or select the right arrow to
move them to the right window. Once all desired publications are in the right window,
click OK to move these publications into the project.

5.10.2 Import Existing Publication Item From the Repository
You can add an existing publication item that already exists in the repository to this
project by selecting Project->Add From Repository->Publication Item.

To view all publication items in the repository, click Search. All publication items are
shown in the left-hand screen. To limit the displayed publication items to only those
with a certain string as part of the name, provide this string in the Filter and then click
Search. Only those publication items that match the filter are shown.

Note: In the Search Filter, you can use the same pattern matching
characters in a valid SQL WHERE clause. The filter is case-sensitive;
use upper-case characters.

Import Existing Publications and Objects from Repository

5-26 Oracle Database Lite Developer’s Guide

Select the desired publication items and either double-click or select the right arrow to
move them to the right window. Once all desired publication items are in the right
window, click OK to move these publication items into the project.

Once added into the project, you still must associate them with the publication if you
want to test the synchronization of the publication item. See Section 5.9.2, "Publication
Item Tab Associates Publication Items With the Publication" for more information.

5.10.3 Import Existing Sequence From the Repository
You can add an existing sequence that already exists in the repository to this project by
selecting Project->Add From Repository->Sequence.

To view all sequences in the repository, click Search. All sequences are shown in the
left-hand screen. To limit the displayed sequences to only those with a certain string as
part of the name, provide this string in the Filter and then click Search. Only those
sequences that match the filter are shown.

Select the desired sequences and either double-click or select the right arrow to move
them to the right window. Once all desired sequences are in the right window, click
OK to move these sequences into the project.

Once added into the project, you still must associate them with a publication if you
want to test it with a synchronization. See Section 5.9.3, "Sequence Tab Associates
Existing Sequences With the Publication" for more information.

5.10.4 Import Existing Resource From the Repository
You can add an existing resource that already exists in the repository to this project by
selecting Project->Add From Repository->.

To view all resources in the repository, click Search. All resources are shown in the
left-hand screen. To limit the displayed resources to only those with a certain string as
part of the name, provide this string in the Filter and then click Search. Only those
resources that match the filter are shown.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter
is case-sensitive; use upper-case characters.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter is
case-sensitive; use upper-case characters.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter
is case-sensitive; use upper-case characters.

Create a Virtual Primary Key

Using Mobile Database Workbench to Create Publications 5-27

Select the desired resources and either double-click or select the right arrow to move
them to the right window. Once all desired resources are in the right window, click OK
to move these resources into the project.

Once added into the project, you still must associate them with a publication if you
want to test it with a synchronization. See Section 5.9.5, "Resource Tab Associates
Existing Resources With the Publication" for more information.

5.10.5 Import an Existing Script From the Repository
You can add an existing script that already exists in the repository to this project by
selecting Project->Add From Repository->Script.

To view all scripts in the repository, click Search. All scripts are shown in the left-hand
screen. To limit the displayed scripts to only those with a certain string as part of the
name, provide this string in the Filter and then click Search. Only those scripts that
match the filter are shown.

Select the desired scripts and either double-click or select the right arrow to move
them to the right window. Once all desired scripts are in the right window, click OK to
move these scripts into the project.

Once added into the project, you still must associate them with a publication if you
want to test it with a synchronization. See Section 5.9.4, "Script Tab Associates Existing
Scripts With the Publication" for more information.

5.11 Create a Virtual Primary Key
For fast refresh, you must have a primary key. If the table, view, or synonym does not
currently have a primary key, you can designate one of the columns as the virtual
primary key through this screen, as follows:

1. Using the drop-down lists, choose the following:

■ Schema name

■ Object type: table, view or synonym type

■ Any string that exists within the object name, if desired

2. Click Search, which brings up a list of available objects.

3. From the object list, choose the appropriate table, view, or synonym. Once chosen,
the available columns are listed.

Note: To search only for objects that match a condition, designate the
condition in the Filter box and click Search. You can use the same
pattern matching characters in a valid SQL WHERE clause. The filter
is case-sensitive; use upper-case characters.

Note: All scripts added to the project must follow the guidelines as
described in Section 5.7.1, "Writing SQL Scripts".

Note: Any virtual primary key must be unique and not null.

Test a Publication by Performing a Synchronization

5-28 Oracle Database Lite Developer’s Guide

4. Select the column(s) that you wish to be the primary key and click OK.

If you have a composite primary key, iteratively add each column within the
composite primary key.

5.12 Test a Publication by Performing a Synchronization
You can create a test to perform a synchronization of the designated publication. Click
Project->Test Publication. When you create the test, MDW automatically creates the
subscription for the user.

1. Click Create to design the test and provide the following information:

■ Name: If the test is remote, then the user name is populated with the
registered owner of the remote target device. If the test is local, then the user
name should be a valid Mobile user in the repository.

■ Publication: From the drop-down list, select one of the available publications
in this project for this test.

■ Client type: Designate if the client is local or remote. Default is local. If Active
Sync is not installed, the remote option is not available.

■ Specify a user that is defined in Mobile Manager.

Click OK to save the test; click Cancel to revert back to the previous screen.

2. Once created, click Synchronize to perform a synchronization for the designated
publication. On the pop-up dialog, provide the password for the given username
and the URL of the Mobile Server. The URL for the Mobile Server should be the
hostname/webtogo.

Click Option to specify priority of the publication items, as follows:

■ High Priority: Limits synchronization to server tables flagged as high priority,
otherwise all tables are synchronized.

■ Push Only: Upload changes from the client to the server only, do not
download. This is useful when data transfer is one way, client to server.

■ Complete Refresh: All data is refreshed from the server to the client.

■ Debug: Turn on debugging when synchronizing.

■ Selective Synchronization: Determine which publication and publication items
are allowed to synchronize. When you click this option, move the publication
items that you want to synchronize from the left window to the right window
using the arrow buttons. For details on how selective synchronization
performs, see Section 4.1.6, "Manage What Tables Are Synchronized With
ocSetTableSyncFlag" and Section 4.2.7, "Manage What Tables Are
Synchronized With Selective Sync".

Click OK to save the synchronization options or Cancel to return to the previous
screen.

Note: To remove any tests, select the test and click Remove.

Deploy the Publications in the Project to the Repository

Using Mobile Database Workbench to Create Publications 5-29

5.13 Deploy the Publications in the Project to the Repository
You can deploy one or more of the publications in the current project from the
development/test Mobile Server repository to a target production Mobile Server
repository by clicking File->Deploy. You should adequately test all publications
before deploying to the production Mobile Server repository.

All available publications are displayed in the project publications section. To limit the
displayed publications to only those with a certain string as part of the name, provide
this string in the Filter and then click Search. Only those publications that match the
filter are shown.

Select the desired publications and click OK to deploy these publications into the
repository. A dialog appears where you specify the remote database connection
information, as follows:

■ User name and password for database connection authentication.

■ JDBC Driver type: Based on the type of the JDBC driver, different information is
required. At this time, you can only use the JDBC Thin driver. Provide the host
name, port, and SID for the remote database.

Click OK to accept the input values for the remote database; click Cancel to return to
the previous screen.

Note: In the Search Filter, you can use the same pattern matching
characters in a valid SQL WHERE clause. The filter is case-sensitive;
use upper-case characters.

Deploy the Publications in the Project to the Repository

5-30 Oracle Database Lite Developer’s Guide

Developing Mobile Web-to-Go Applications 6-1

6
Developing Mobile Web-to-Go Applications

The following sections describe how to develop and test Web-to-Go applications:

■ Section 6.1, "Choose the Type of Web-to-Go Mobile Client to Use"

■ Section 6.2, "Developing and Testing the Application"

6.1 Choose the Type of Web-to-Go Mobile Client to Use
To install and set up the Mobile Client, see Section 17.5.1, "Install the Mobile Client for
Web-to-Go".

There are two types of Web-to-Go applications:

■ The original Oracle Database Lite Web-to-Go application that uses an Oracle
Database Lite Servlet stack. You can still use this type of application, but the
Oracle Database Lite Server stack is not J2EE 1.3 compatible.

■ A Web-to-Go application built upon the OracleAS OC4J stack. Since the OC4J
product is continually updated, then building your Web-to-Go application using
the J2EE standards is better if you want to use future J2EE standards. This
application is known as the OC4J Web-to-Go application.

To build the OC4J Web-to-Go application, follow the J2EE standards specified by
Sun Microsystems and then create the snapshot with MDW and publish the
application with the EAR or WAR file within the Packaging Wizard.

6.2 Developing and Testing the Application
Web-to-Go provides a high level Java API that provides easy-to-use functionality to
developers of Mobile applications. Using this API, developers no longer need to write
code for such functions as replication of database tables, database connections,
security, directory locations, or deployment of applications to client devices.

In addition, the Mobile Development Kit allows developers to develop and debug
Web-to-Go applications that contain Java applets, Java servlets, and JavaServer Pages
(JSP).

Figure 6–1 displays the development architecture of the Mobile Server and the Oracle
database.

6-2 Oracle Database Lite Developer’s Guide

Figure 6–1 Development Architecture

The following sections provide a discussion on how to develop Mobile applications for
Web-to-Go. Topics include:

■ Section 6.2.1, "Building Web-to-Go Applications"

■ Section 6.2.2, "Application Roles"

■ Section 6.2.3, "Developing JavaServer Pages"

■ Section 6.2.4, "Developing Java Servlets for Web-to-Go"

■ Section 6.2.5, "Using Web-to-Go Applets"

■ Section 6.2.6, "Developing Applet JDBC Communication"

■ Section 6.2.7, "Developing Applet Servlet Communication"

■ Section 6.2.8, "Debugging Web-to-Go Applications"

■ Section 6.2.9, "Customizing the Workspace Application"

■ Section 6.2.10, "Using the Mobile Server Admin API"

6.2.1 Building Web-to-Go Applications
Web-to-Go applications adhere to Web standards and use browsers to display user
interface elements in a graphical user interface. Generally, Web-to-Go applications
access and manipulate data stored in databases. These applications contain static,
dynamic, and database components. You can create static and dynamic components
using development tools and use the Packaging Wizard to store them in the Mobile
Server Repository. You can create and store the application's database components in
an object relational database (Oracle Database Lite or Oracle). The following table
provides examples of each component type.

Table 6–1 provides examples of each database component type.

Table 6–1 Database Component Types

Component Type Example

static HTML files, image files (such as GIF and JPG), HTML templates

dynamic Java servlets, Java applets and JavaServer pages

database tables, snapshots, and sequences

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-3

6.2.1.1 Static Components
Static components are HTML files that do not change, such as graphical elements (GIF
files and JPG files), and textual elements (HTML files and templates).

6.2.1.2 Dynamic Components
Java Applets, Java Servlets, and JavaServer Pages (JSP) are dynamic components that
create dynamic Web pages. Java applets, create a rich graphical user interface, while
Java servlets and JSPs extend server side functionality.

6.2.1.3 Database Components
Snapshots and sequences are the two database components that Web-to-Go supports.
On the Mobile Server, the snapshot definition incorporates information about the table
whose snapshot was taken. Web-to-Go also executes custom DDLs (Data Definition
Language) statements, enabling the creation of such database objects as views and
indexes.

6.2.1.4 Database Connections
Database connections are both application based and session based. For a given
session, Web-to-Go maintains a separate connection for each application. If an
application runs multiple servlets simultaneously, they use the same connection object.
This may occur if the application uses multiple frames or if a user accesses the
application with two separate browser windows.

6.2.2 Application Roles
It is common for applications to display different functionality depending on the type
of user who is running the application. For example, an application may show
different menu items depending on whether manufacturing managers or shipping
clerks are running the application.

You can accomplish this in Web-to-Go by defining application roles. The application
behavior then changes depending on whether or not a user has a specific role.

In the above example, you can define the application role MANAGER. In your
application code, where you generate the menu, you must check if the user has the
role MANAGER, and display the correct menu items.

You will use the Packaging Wizard to define application roles in Web-to-Go. You can
assign roles to users and groups through the Mobile Manager. However, it is up to the
application developer to determine and implement application behavior, if the user
has a specific role.

You can query the Web-to-Go user context to retrieve a list of roles that are created for
users.

6.2.3 Developing JavaServer Pages
Web-to-Go handles HTTP requests for JavaServer Pages (JSP) using the Mobile client
Web Server, Mobile Server, and Mobile Client for Web-to-Go.

Note: DDLs are only supported on Windows32 and WindowsCE
platforms.

6-4 Oracle Database Lite Developer’s Guide

6.2.3.1 Mobile Server or Mobile Development Kit Web Server
After the Mobile Server receives an HTTP request for a JSP, it checks if the JSP source
file and corresponding class file exist. If the class file exists and is newer than the JSP
source file, the Mobile Server loads the Java class and executes the servlet.

If the class file does not exist, or is older than the JSP source file, the Mobile Server
automatically converts the JSP source file into a Java source file and compiles it into a
Java class under the APP_HOME/_pages. After the JSP has been converted and
compiled, the Mobile Server (or the Mobile Development Kit Web Server) loads the
Java class and executes the servlet.

6.2.3.2 Mobile Client for Web-to-Go
After the Mobile Client for Web-to-Go receives the HTTP request for a JavaServer
page, the corresponding Java class is loaded from the APP_HOME/_pages directory
and is executed. Since the Mobile Client for Web-to-Go assumes that the
corresponding class file exists, you must convert the JSP source file into a class file.
While deploying the application using the Packaging Wizard, you must include both
the JSP source file and the corresponding class file. You can create the class files using
the Packaging Wizard tool or manually, using the Oracle JSP (OJSP) command line
translator.

List your JSP files in the Files panel of the Packaging Wizard and click Compile under
the Files tab. The Packaging Wizard automatically locates all the JSP files that you
have listed and automatically compiles all of them. The Packaging Wizard adds the
compile class to the application package.

6.2.4 Developing Java Servlets for Web-to-Go
You develop Web-to-Go Java servlets with the Mobile Development Kit. The Mobile
Development Kit for Web-to-Go simplifies the process of writing Mobile Server
servlets. Before using the Mobile Development Kit for Web-to-Go, you must first
install it on the development client. The Mobile Development Kit for Web-to-Go
contains a Web server called the Mobile client Web Server that executes Java servlets.
You can use the Mobile client Web Server to run and debug Java servlets.

■ Section 6.2.4.1, "Limitations"

■ Section 6.2.4.2, "Accessing Applications on the Mobile Development Kit for
Web-to-Go"

■ Section 6.2.4.3, "Creating a Servlet"

■ Section 6.2.4.4, "Running a Servlet"

■ Section 6.2.4.5, "Accessing the Schema Directly in Oracle Database Lite"

6.2.4.1 Limitations
The Mobile Development Kit for Web-to-Go Web server is a scaled down version of
the Mobile Server and has the following limitations.

■ It contains no application repository. As a result, the Mobile Development Kit for
Web-to-Go Web server loads all files and classes directly from the file system.

■ Security and access control are disabled.

■ Clients that connect to the Mobile Development Kit for Web-to-Go Web server
cannot go off-line.

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-5

■ It provides connection management only to Oracle Database Lite. It connects the
user to the schema SYSTEM in the Oracle Database Lite named webtogo.

6.2.4.2 Accessing Applications on the Mobile Development Kit for Web-to-Go
You can access applications on the Mobile Development Kit for Web-to-Go Web server
by performing the following steps.

1. To launch the Mobile Development Kit for Web-to-Go Web server, start the
Command Prompt and enter the following.

cd <ORACLE_HOME>\mobile\sdk\bin
wtgdebug.exe

2. Use your browser to connect to the Mobile Development Kit for Web-to-Go Web
server using the following URL.

http://machine_name:7070/

The Mobile Development Kit for Web-to-Go page displays icons that represent an
application in the Mobile client Web Server. Note that port 7070 is the default port
for debugging Web-to-Go. For more information, see the file webtogo.ora
under the following location.

<ORACLE_HOME>\mobile\sdk\bin\webtogo.ora

3. Click the icon of the application that you want to access.

6.2.4.3 Creating a Servlet
Web-to-Go uses servlets to handle HTTP client requests. Servlets handle HTTP client
requests by performing one of the following tasks.

■ Creating dynamic HTML content and returning it to the browser.

■ Processing and submitting HTML forms using an HTTP POST request.

Servlets must extend the HttpServlet abstract class defined in the Java Servlet API.
The following is a servlet example.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorld extends HttpServlet
{
 /**
 * Process the HTTP POST method
 */

 public void doPost (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 writeOutput("doPost", request, response);
 }

 /**
 * Process the HTTP GET method
 */
 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 writeOutput("doGet", request, response);

6-6 Oracle Database Lite Developer’s Guide

 }

 /**
 * Write the actual output
 */

 public void writeOutput (String method, HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 PrintWriter out;

 // set content type
 response.setContentType("text/html");

 // Write the response
 out = response.getWriter();

 out.println("<HTML><HEAD><TITLE>");
 out.println("Hello World");
 out.println("</TITLE></HEAD><BODY>");
 out.println("<P>This is output from HelloWorld "+method+"().");
 out.println("</BODY></HTML>");
 out.close();
 }
}

6.2.4.3.1 Packages Web-to-Go provides the following Java package:

oracle.lite.web.applet

This package contains the classes to be used with Web-to-Go applets. It contains the
AppletProxy class which is used as a proxy for Web-to-Go applets requiring JDBC
connections or communicating with a servlet on the Mobile Server. It also contains a
few more classes which are used by the AppletProxy class to communicate with the
Mobile Server. For more information, see the oracle.lite.web.applet package as
documented in the Oracle Database Lite API Specification.

6.2.4.3.2 Web-to-Go User Context Web-to-Go creates a user context (or user profile) for
every user who logs in to Web-to-Go. Web-to-Go applications always run within the
user's specific context. Servlets, which are always part of an application, can use the
user context (in which it is running) to access the services provided by Web-to-Go. The
user context can then be used to obtain the following information.

■ Name of the user

■ Application that a user is accessing

■ The database connection

■ Roles that the user has for this application

■ Name or value pairs stored in the registry for the user

Servlets can access the user profile through the standard named
java.security.Principal obtained through the getUserPrincipal method of
the javax.servlet.http.HttpServletRequest class.

This object can also be obtained from the HttpSession object. For example,

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-7

{

 // Retrieve the database connection from the User Profile,
 // which can be accessed from the HttpRequest
 HttpSession session = request.getSession(true);
 OraUserProfile profile =
(OraUserProfile)session.getAttribute("x-mobileserver-user");
 .
 .
 .
}

6.2.4.3.3 Database Connectivity in Java Code Servlets can obtain a connection to the
Oracle database, using the following statement.

HttpSession sess = request.getSession();
WTGUser user = (WTGUser)sess.getAttribute("x-mobileserver-user");
Connection conn = user.getConnection() ;

6.2.4.3.4 Accessing the Mobile Server Repository Servlets can open or create a new file in
the application repository. Access to the Mobile Server Repository is provided through
the servlet context, which can be obtained by calling the getServletContext()
from within the servlet. For example:

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
 // Retrieve the servlet context
 ServletContext ctxt = getServletContext();

 // Open an input stream to the file input.html in the Mobile Server Repository
 // All file names are relative to the application's repository directory
 InputStream in = ctx.getResourceAsStream("input.html");

 // Open an output stream to the file output.html in the Mobile Server Repository
 // All file names are relative to the application's repository directory
 URL url = ctxt.getResource ("output.html");
 URLConnection conn = url.openConnection();
 OutputStream out = conn.getOutputStream();
 ...
}

6.2.4.4 Running a Servlet
Before you can execute the servlet, perform the following:

■ Section 6.2.4.4.1, "Registering Servlets Using runwtgpack.bat"

■ Section 6.2.4.4.2, "The webtogo.ora File"

■ Section 6.2.4.4.3, "Using wtgdebug.exe"

6.2.4.4.1 Registering Servlets Using runwtgpack.bat Before you can access servlets from
the browser, you need to register them with the Mobile client Web Server. To register
servlets, you must first register the application and then add the servlets to it. As
Web-to-Go enables you to register multiple applications, it displays a list of all
registered applications.

The Mobile Development Kit for Web-to-Go includes the Packaging Wizard, a tool for
registering applications and servlets. You can invoke the Packaging Wizard by
entering the following at the command line.

6-8 Oracle Database Lite Developer’s Guide

C:\> runwtgpack -d

Initially, you select whether to create a new application or to continue work on an
existing application.

Figure 6–2 displays the Make a Selection dialog.

Figure 6–2 Make a Selection Panel

After you make your selection and click OK, the Applications dialog appears.

Figure 6–3 displays the Applications dialog.

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-9

Figure 6–3 Applications Panel

For detailed instructions on how to use the Packaging Wizard, see Chapter 17,
"Tutorial for Building Mobile Web-to-Go Applications".

6.2.4.4.2 The webtogo.ora File The configuration information for the Web server and the
Packaging Wizard is stored in the webtogo.ora file.

Table 6–2 describes webtogo.ora parameters.

For more information, refer the discussion of initialization parameters in the Oracle
Database Lite Administration and Deployment Guide.

6.2.4.4.3 Using wtgdebug.exe Perform the following to debug your application with the
wtgdebug executable:

1. Using the Command Prompt, enter wtgdebug.exe.

Table 6–2 Webtogo.ora Parameters

Parameter Name Description

ROOT_DIR The Mobile Server expands all file paths that are relative to its
root directory. You can change the root directory by modifying
the value of the parameter named ROOT_DIR in the
webtogo.ora file. The default parameter value is given
below.

<ORACLE_HOME>\mobile\sdk\wtgsdk\root

PORT The port on which the Web server listens. The default value is
80. The default value for the Mobile client Web Server is 7070.

XMLFILE The XML file that contains the application information. The
Packaging Wizard creates and maintains the XML file. You can
modify the XML file using the Packaging Wizard.

6-10 Oracle Database Lite Developer’s Guide

2. Use a browser to connect to the Mobile client Web Server located at the following
URL.

http://machine_name:port

This Mobile client Web Server displays the list of applications that are currently
known to the Mobile client Web Server. The Mobile client Web Server retrieves this
list from the XML file. By default, this list includes the sample applications
Servlet Runner and Sample.

3. Select the application to debug. This action launches a new browser window
which you can use to step through the application.

6.2.4.5 Accessing the Schema Directly in Oracle Database Lite
The Mobile Development Kit for Web-to-Go automatically creates a database
connection to Oracle Database Lite. This database connection connects to the database
schema SYSTEM. Within your servlet code, you can obtain this connection from the
HTTP request. You can also connect to Oracle Database Lite directly using ODBC.
Connecting to Oracle Database Lite directly by using ODBC is helpful for performing
the following tasks.

■ Creating schema objects such as tables, view and sequences

■ Manually checking the contents table

To connect to Oracle Database Lite, launch msql using the Command Prompt.

msql system/manager@jdbc:polite:webtogo

6.2.5 Using Web-to-Go Applets
Web-to-Go supports Java applets. For security reasons, Web-to-Go applets must
communicate with the Mobile Server or the Oracle database by using a proxy class.
The AppletProxy class acts as a proxy for Web-to-Go applets and provides the applet
with the required methods for communicating with the Web-to-Go servlet or for
making a JDBC connection. An instance of the AppletProxy should be created while
instantiating the applet. Once the instance of the AppletProxy class is created, the
AppletProxy object communicates with the Mobile Server and derives all the
requisite information to connect to the server or to make a JDBC connection to the
Oracle database.

6.2.5.1 Creating the Web-to-Go Applet
The Web-to-Go applet extends the java.applet.Applet. When the init()
method initializes the Web-to-Go applet, it creates an instance of the AppletProxy
class by passing the Applet reference as the parameter. Once you create an instance of
the AppletProxy class, you can use different methods of the AppletProxy class for
communicating with the servlet or for establishing a JDBC connection with the Oracle
database. For example,

import oracle.lite.web.applet.*;
public class AppApplet extends Applet
{

 public void init()

Note: If you change and recompile your servlet, you need to restart
the Web server. You can stop the Web server by pressing Control+C.

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-11

 {
 ..
 ..
 // Create Instance and pass Reference of applet as parameter
 proxy = new AppletProxy(this);
 }
 AppletProxy proxy;
}
The applet can use the following methods to communicate with the servlet. Each
method requires an instance of the AppletProxy class.

■ getResultObject()

■ setSessionId()

■ showDocument()

The applet can use the getConnection() method to establish a JDBC connection
with the database.

6.2.5.2 Creating the HTML Page for the Applet
The Web-to-Go applet is launched from an HTML page that contains the following
tags.

<html>
<body>
<applet ARCHIVE="/webtogo/wtgapplet.jar" CODE="MyApplet.class" WIDTH=200
HEIGHT=100>
<PARAM NAME="ORACLE_LITE_WEB_SESSION_ID" VALUE="123">
</applet>
</body>
</html>

The AppletProxy class uses the value of the ORACLE_LITE_WEB_SESSION_ID
parameter to obtain the SessionID from the Mobile Server. The SessionID is
subsequently added to every request an applet makes to a servlet. You can write the
HTML code in a static HTML page or you can generate it from a servlet.

6.2.5.2.1 Static HTML Page Web-to-Go can automatically add the parameter to any static
page containing the APPLET tag. For this option, you must change the HTML page's
extension to .ahtml as demonstrated in the following syntax.

page_name.ahtml

When the client accesses the HTML page, a Web-to-Go system servlet adds the
required <PARAM> tag for the ORACLE_LITE_WEB_SESSION_ID parameter, to the
HTML output. For example,

<PARAM NAME="ORACLE_LITE_WEB_SESSION_ID" VALUE="123">

The Web-to-Go system servlet sets the VALUE attribute to your Web-to-Go
SessionID.

6.2.5.2.2 HTML Page Generated from a Servlet You can also dynamically generate the
HTML page that contains the <APPLET> tag. When you generate the HTML page
dynamically, you must add the SessionID parameter manually. You can retrieve the
SessionID information from the oraUserProfile as follows.

import oracle.lite.web.html.*;
import oracle.lite.web.servlet.*;

6-12 Oracle Database Lite Developer’s Guide

public class AppServlet extends HttpServlet
{
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 {
 PrintWriter out = new PrintWriter(resp.getOutputStream());
 out.println("<HTML>");
 out.println("<BODY>");
 out.println("<APPLET ARCHIVE="/webtogo/wtgapplet.jar"
 CODE='MyApplet.class' WIDTH=200 HEIGHT=100>");
 // Add these lines to add one more PARAM tag in html page
 // This code should be added in-between <APPLET> and </APPLET> tag
 OraHttpServletRequest ora_request = (OraHttpServletRequest) req;
 OraUserProfile oraUserProfile = ora_request.getUserProfile();
 out.println(" <PARAM NAME=\"ORACLE_LITE_WEB_SESSION_ID\" VALUE=\""
 +oraUserProfile.getAppletSessionId(req)+"\"> ");
 out.println("</APPLET>");
 out.println("</BODY>");
 out.println("</HTML>");
 out.close();
 }
}

6.2.6 Developing Applet JDBC Communication
You can develop Java applets that access the database using a JDBC connection. Once
you create an instance of the AppletProxy class, you must use the getConnection
method of the AppletProxy class to obtain a JDBC connection. The getConnection
method returns the JDBCConnection object.

6.2.6.1 getConnection()
You can use the getConnection method to obtain a JDBCConnection. The
getConnection method determines whether the connection is connected or
disconnected and provides access to the Oracle database, if connected, or to the Oracle
Database Lite, if disconnected, to the user.

Example
import oracle.lite.web.applet.*;
public class AppApplet extends Applet
{
 public void init()
 {
 ...
 // Create Instance and pass Reference of applet as parameter
 proxy = new AppletProxy(this);
 }
 public java.sql.Connection getDataBaseConnection()
 {
 java.sql.Connection dBConnection = proxy.getConnection();
 return dBConnection;
 }
 AppletProxy proxy;
}

Note: The AppletProxy class is described in Section 6.2.5.1,
"Creating the Web-to-Go Applet".

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-13

6.2.6.2 Design Issue
The Web-to-Go applet holds the database connection even after the user exits
Web-to-Go. The applet maintains the connection even if the user types a new URL in
the browser or clicks the Back button. Web-to-Go application designers must ensure
that their applications explicitly close the database connection when the user exits
Web-to-Go.

Example
You can close the connection by calling the following statement.

dBConnection.close()

6.2.7 Developing Applet Servlet Communication
You can develop Java applets that communicate with Java servlets in the Web-to-Go
environment. When a client first connects to the Mobile Server, the server generates a
SessionID and sends it back to the client. Each subsequent client request to the
server contains this SessionID. The Mobile Server authenticates the SessionID
before executing the client's request. When applets communicate with Web-to-Go
servlets, each applet request must also contain this SessionID. The setSessionId
method in the AppletProxy class can be used to add the SessionID to each applet
request. The AppletProxy class also contains other methods that provide
communication between applets and servlets.

6.2.7.1 Creating the Web-to-Go Servlet
Servlets must extend the HttpServlet abstract class defined in the Java Servlet API.
The following example creates a servlet called HelloWorld that extends the
HttpServlet class. The servlet sends the Hello World string to the applet that
calls it as an object.

Example
public class HelloWorld extends HttpServlet
{
 public void doGet (HttpServletRequest request, HttpServletResponse response)
 {
 ObjectOutputStream out = new ObjectOutputStream (resp.getOutputStream());
 Object obj = (Object) "Hello World" ;
 out.writeObject(obj);
 out.close();
 }
}

6.2.7.1.1 getResultObject() The Web-to-Go applet uses the getResultObject()
method to communicate with the Web-to-Go servlet by passing the servlet URL and
the ServletParameter object as parameters. The servlet responds to the applet
request with a text string. The ServletParameter object can be either an object that
can be serialized or a string containing name/value pairs. If the servlet accepts
parameters, you can call the getResultObject method and pass the servlet
parameters as one of the arguments.

Note: The getResultObject and showDocument methods can
be used to communicate with the Java servlet. Use the
setSessionID method if you want to create your own URL
connection object.

6-14 Oracle Database Lite Developer’s Guide

Example
public Object getResult()
{
 java.net.URL url = new URL("http://www.foo.com/EmpServlet");
 String ServletParameter = "empname=John";
 Object resultObject = proxy.getResultObject(url, ServletParameter);
 return resultObject;
}

6.2.7.1.2 setSessionID() You can use the setSessionID method for adding a
SessionID to an existing URLConnection object. When you write the applet-servlet
communication mechanism, call setSessionID (URLConnection) at the end of the
method. The method adds a SessionID to the passed URLConnection object and
then returns the URLConnection object.

Example
public void YourMethod()
{
 java.net.URL url = new URL("http://www.foo.com/MyServlet");
 java.net.URLConnection con = url.URLConnection();
 ...
 // pass the URLConnection to the method setSessionId
 con = proxy.setSessionID(con);
 // Do whatever you want to do with this URLConnection object
 ObjectOutputStream out = new ObjectOutputStream(con.getOutputStream());
 out.writeObject(obj);
 out.flush();
 out.close();
}

6.2.7.1.3 showDocument() The showDocument method displays any static document
including those with a suffix of .html, .doc, .xls, or any other one defined by the
user. The showDocument method retrieves these documents from the Mobile Server
and displays them in the client browser. To display documents, a user must have
access permissions for the document and must have the correct MIME type set in the
Mobile Server. The showDocument (String relativeDocUrl, String winName)
method displays the document in a different browser window identified by a window
name that is passed in the winName parameter. The following method launches the
help file from the server in a browser window named 'helpwin'.

Example
public void showHelp()
{
 String relativeDocUrl = "Help/HelpIndex.html";
 proxy.showDocument (url, helpWin);
}

To show the document in the same browser window as your applet, use call
showDocument(url) as given below.

public void showHelp()
{
 String relativeDocUrl = "Help/HelpIndex.html";
 proxy.showDocument (url);
}

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-15

6.2.8 Debugging Web-to-Go Applications
You can run Web-to-Go applications inside a Java debugger if you have already
installed the Mobile Development Kit for Web-to-Go and a Java debugger, such as the
Oracle9i JDeveloper, Borland's JBuilder, or Visual J++. The example in this section
assumes you are using Oracle9i JDeveloper. However, most of the information
provided is also relevant to other debuggers.

6.2.8.1 Running Sample 1 Using Oracle9i JDeveloper
This section discusses how to configure the Oracle9i JDeveloper to run the Sample 1
application that is bundled with the Mobile Development Kit for Web-to-Go. For
detailed information and full documentation on how to use Oracle9i JDeveloper,
consult the online help in Oracle9i JDeveloper and Oracle9i JDeveloper's
documentation.

6.2.8.1.1 Creating a Debug Project To create a new debug project in Oracle9i JDeveloper,
perform the following steps.

1. Start JDeveloper.

2. To create a new project in JDeveloper, click File, then click New (assuming you
have defined a workspace in JDeveloper).

3. From the Directories menu in the left panel, select Projects, as displayed in
Figure 6–4, then select Empty Project.

Figure 6–4 Creating a New Project

4. Set the Project Settings for your new project. Right click on Project to retrieve
Project Settings. In the Project Settings dialog, expand Common in the left panel
and select Input Paths. In the right panel, enter the following information in the
Java Source Path field, as displayed in Figure 6–5.

<ORACLE_HOME>\mobile\sdk\wtgsdk\src\sample1\servlets

6-16 Oracle Database Lite Developer’s Guide

Leave the Default Package field blank. Do not change the default HTML Root
Directory.

Figure 6–5 Project Settings - Input Paths

5. Expand Configurations and then Development in the left panel. Select Paths,
which appears below Development in the left panel. In the Output Directory field,
in the right panel, enter the following information.

<ORACLE_HOME>\mobile\sdk\wtgsdk\root\sample1\servlets

6.2.8.1.2 Creating a Library Oracle9i JDeveloper makes it easier to manage sets of JAR
files by using libraries instead of CLASSPATH settings.

Files for the WTGSDK Library
Create a WTGSDK library with the following JAR files and add this library to your
project.

<ORACLE_HOME>\mobile\classes\ojsp.jar

<OLITE_HOME>\bin\olite40.jar

<ORACLE_HOME>\mobile\sdk\bin\webtogo.jar

<ORACLE_HOME>\mobile\classes\servlet.jar

<ORACLE_HOME>\mobile\classes\xmlparser.jar

<ORACLE_HOME>\mobile\classes\classgen.jar

<ORACLE_HOME>\mobile\classes\wtgpack.jar

Creating a WTGSDK Library
Perform the following steps to create a WTGSDK library.

1. Select Libraries in the left panel, then click New in the right panel.

2. The New Library dialog appears, as illustrated in Figure 6–6. In the Library Name
field, enter WTGSDK.

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-17

Figure 6–6 The New Library Dialog

3. Click Edit... next to the Class Path field. The File dialog appears.

4. From the appropriate directory, select the six .jar files that are listed above.

5. To add the files, click OK.

6.2.8.1.3 Adding Files to the Project To add the Sample1 files to your project, perform
the following steps.

1. Click the green plus-sign in the Oracle9i JDeveloper System-Navigator to add the
Java sources to the project. The File dialog appears.

2. Select the Java source file Helloworld.java in the directory <ORACLE_
HOME>\mobile\sdk\wtgsdk\src\sample1\servlets, and click Open.

3. Also, add the file RunWebServer.java, which is located in the directory
<ORACLE_HOME>\mobile\sdk\wtgsdk\src, to the project.

4. A dialog appears prompting you to update the project source path. Click No.

6.2.8.1.4 Running and Debugging Set one or more breakpoints in your code by
right-clicking at the statement where you want to break. Select Toggle breakpoint. The
background of the statement becomes red, indicating the breakpoint.

1. Select the file RunWebServer.java in the System-Navigator window.

2. Choose Debug by right clicking on the file that you selected to start the Mobile
Server inside the debugger.

The Mobile Server is now ready for use. You can access it through your Web browser,
by accessing the following URL.

http://<machine_name>

Where <machine_name> is the host name of the computer on which you are running
Oracle9i JDeveloper.

6.2.8.1.5 Troubleshooting This section describes troubleshooting options that you can
implement.

6-18 Oracle Database Lite Developer’s Guide

Improving Performance
When you run the Mobile Server inside the Java debugger and access it using a Web
browser, performance may decrease. To improve performance, perform the following
tasks.

1. Run the Web browser on a different machine.

2. Using the Task Manager, set the priority of the Web browser process to LOW after
you start the Web browser.

6.2.9 Customizing the Workspace Application
The Mobile Development Kit for Web-to-Go includes a set of APIs that contain a basic
Web-to-Go workspace application. Developers can use these APIs to replace the
standard Web-to-Go workspace application with a customized version with the
following restrictions:

■ This can only be customized for the Web-to-Go client only. This is not supported
for the Web-to-Go OC4J client.

■ You cannot customize the workspace if both the Web-to-Go client and Web-to-Go
OC4J client are used.

■ The customized workspace is part of the Windows version of the MDK only.

■ The Mobile Server and MDK must be installed in the same <ORACLE_HOME>.

These APIs provide the following functionality.

■ Login

■ Logoff

■ Synchronize

■ List User Applications

■ Change User's Password

For more information on the APIs used to build a customized Web-to-Go workspace
application, see the Oracle Database Lite API Specification, which you can view off the
main documentation index, which is located at the following:

<ORACLE_HOME>\mobile\index.htm

1. Develop the customized Web-to-Go workspace application using the Web-to-Go
APIs.

2. Create an Oracle Database Lite database called webtogo and load the new
Web-to-Go workspace application into it. The database acts as the Mobile Server
Repository in the Mobile Client for Web-to-Go. For more information, refer to the
file crclient.bat, which is included in the sample Web-to-Go workspace
application.

3. Create a webtogo.ora file for the Mobile Client for Web-to-Go, which instructs
the Mobile Server to use the customized Web-to-Go workspace application. For
the correct parameter settings in the webtogo.ora file, refer the section,
Section 6.2.9.1, "Web-to-Go Parameters".

4. Load the webtogo.odb file, which is created by the Mobile Client for Web-to-Go,
the webtogo.ora file for the Mobile Client for Web-to-Go, and the Web-to-Go
workspace into the Mobile Server Repository. For more information, refer to the
file crserver.bat, which is included in the sample Web-to-Go workspace
application.

Developing and Testing the Application

Developing Mobile Web-to-Go Applications 6-19

5. Instruct the Mobile Server to use the new Web-to-Go workspace application by
modifying the webtogo.ora file on the server. For the correct parameter settings
in the webtogo.ora, refer the section Section 6.2.9.1, "Web-to-Go Parameters".

6.2.9.1 Web-to-Go Parameters
To instruct Web-to-Go to use a customized Web-to-Go workspace application, you
must set the following parameters in the [WEBTOGO] section of the webtogo.ora file.

Table 6–3 describes webtogo.ora parameter settings.

6.2.9.2 Sample Workspace
The Mobile Development Kit for Web-to-Go includes a sample Web-to-Go workspace
application that illustrates how to use the Web-to-Go workspace API. Developers can
use this sample application as a starting point when developing their Web-to-Go
workspace applications. The sample Web-to-Go workspace application is written
using JavaServer Pages (JSP) and .html files. The JSP files are located in the
myworkspace/out directory in the Mobile Development Kit for Web-to-Go. These
files are compiled into class files that are copied into myworkspace/out directory.
This directory also contains all .html files and image files that are used by the sample
Web-to-Go workspace application.

The Mobile Development Kit for Web-to-Go includes the following scripts that
compile the JSP files, create the Oracle Database Lite named webtogo for the Mobile
Client for Web-to-Go, and load all necessary files into the Mobile Server Repository.

Table 6–4 describes scripts available for JSP compilation.

Table 6–3 Setting webtogo.ora Parameters

Parameter Setting

CUSTOM_WORKSPACE YES

CUSTOM_DIRECTORY Repository directory of the Web-to-Go workspace application. For
example, /myworkspace.

DEFAULT_PAGE The entry point of the Web-to-Go workspace application. For
example, myfirstpage.html.

CUSTOM_FIRSTSERVLET The name of the servlet that you want to use in your customized
workspace. For example, CUSTOM_
FIRSTSERVLET=HelloWorld;/hello

Note: Web-to-Go supports only one workspace application per
Mobile Server.

Table 6–4 Scripts for JSP Compilation

Script Name Description

compile.bat Compiles .jsp files and copies the class files to the
myworkspace/out directory.

crclient.bat Copies all files in the myworkspace/out directory into
the webtogo.odb file.

crserver.bat Copies all files in the myworkspace/webtogo
directory to the Mobile Server Repository, including the
webtogo.odb and webtogo.ora files.

6-20 Oracle Database Lite Developer’s Guide

6.2.10 Using the Mobile Server Admin API
The Mobile Server Admin API enables an administrator to manage the application
resources programmatically. Using the Mobile Server Admin API set, administrators
can potentially create their own customized Mobile Manager application to perform
the following functions.

■ Creating and modifying users and user groups

■ Including users and excluding users from group level access to applications

■ Assigning snapshot variables to the user

■ Suspending and resuming applications

■ Publishing a pre-packaged Web-to-Go application

■ Customizing an application's underlying database connections

For more information on using the API to build the Mobile Manager, see the Oracle
Database Lite API Specification, which you can link to off the following Web page:

<ORACLE_HOME>\mobile\index.htm

Note: Administrators cannot use the open API set to change the
basic properties of an application, such as snapshot definitions or
servlets. This can only be done through the Packaging Wizard. For
more information, see Chapter 6, "Using the Packaging Wizard" in the
Oracle Database Lite Developer’s Guide.

Using the Packaging Wizard 7-1

7
Using the Packaging Wizard

The following sections enable you to package and publish your Mobile application
definitions using the Packaging Wizard.

■ Section 7.1, "Using the Packaging Wizard"

■ Section 7.2, "Packaging Wizard Synchronization Support"

7.1 Using the Packaging Wizard
After you have completed the code implementation for your application, you need to
define the SQL commands that retrieve the data for the user snapshot—also known as
a publication. MDW (as described in Chapter 5, "Using Mobile Database Workbench to
Create Publications") is a graphical tool that enables you to define the publications for
your application. Then, use the Packaging Wizard to package the application and
publish the final application product to the Mobile Server to complete the
subscription.

In general, you can create a publication—or components of a publication—using the
following methods:

■ SQL on the back-end Oracle database

■ Consolidator APIs

■ MDW

■ Packaging Wizard

■ mSQL on the Mobile Client against the Oracle Lite database

If you create the publication using any method other than the Packaging Wizard, you
can import the definition into the Packaging Wizard. However, these tools and the
Packaging Wizard are separate. Thus, once the publication is published by the
Packaging Wizard, you can only modify it through the Packaging Wizard.

Important: If you modify the publication or any component of the publication using
any method other than the Packaging Wizard, then it will not show up in your
published application.

The following is the recommended method for creating the publication for the
application:

■ Create a new Mobile application definition—An application definition is more
than the code that you have implemented. It consists of the implementation, the
publication with its publication items, and other components. Use the Mobile
Database Workbence (MDW) tool (as described in Chapter 5, "Using Mobile

Using the Packaging Wizard

7-2 Oracle Database Lite Developer’s Guide

Database Workbench to Create Publications" for performing an iterative approach
to defining your publications.

■ Edit an existing Mobile application definition within the Packaging Wizard—You
can always go back and edit an existing Mobile application definition for tuning
purposes, to modify the publication, or other reasons.

■ Package a Mobile application definition for easy deployment within the Packaging
Wizard—Once the application is finished with development, you need to package
the components into either a WAR or JAR file before you can publish the
application definition.

■ Publish an application definition to the Mobile Server—You can either publish
your application definition to the Mobile Server with the Packaging Wizard or
through the Mobile Manager.

The following sections describe how to use the Packaging Wizard tool:

■ Section 7.1.1, "Starting the Packaging Wizard"

■ Section 7.1.2, "Specifying New Application Definition Details"

■ Section 7.1.3, "Listing Application Files"

■ Section 7.1.4, "Adding Servlets (For OC4J and Web-to-Go Applications Only)"

■ Section 7.1.5, "Entering Database Information"

■ Section 7.1.6, "Defining Application Roles"

■ Section 7.1.7, "Defining Snapshots for Replication"

■ Section 7.1.8, "Defining Sequences for Replication"

■ Section 7.1.9, "Defining Application DDLs"

■ Section 7.1.10, "Editing Application Definition"

■ Section 7.1.11, "Troubleshooting"

7.1.1 Starting the Packaging Wizard
To launch the Packaging Wizard, enter the following using a Command Prompt
window.

runwtgpack

Figure 7–1 shows the Welcome screen for the Packaging Wizard, which enables you to
create, edit, or remove the Mobile application definition as described fully in Table 7–1.

Using the Packaging Wizard

Using the Packaging Wizard 7-3

Figure 7–1 Packaging Wizard - Make A Selection Dialog

Using the ’Select a Platform’ dialog, select the platform for which you want to package
your application definition. As Figure 7–2 displays, this dialog enables you to specify a
platform. If you are packaging a WAR file, this dialog only displays Web based
platforms.

Table 7–1 Make a Selection Dialog

Feature Description

Create a new
application
definition

Define a new Mobile application definition with the application
implementation, publication items, and so on.

Edit an existing
application
definition

Edit an existing Mobile application definition. When selected, all existing
application definitions are presented in a drop-down box. Users can
select the desired Mobile application definition from the list.

All applications listed in this list have been created or published using
the Packaging Wizard. Any application definition created by MDW will
not appear in this list.

Remove an existing
application
definition

Remove an existing Mobile application definition. When selected, all
existing application definitions are presented in a drop-down box. Users
can select the desired Mobile application definition from the list.

This option removes the application definition from the Packaging
Wizard; it does not delete the application from within the Mobile Server.

Creating a new
application
definition using a
WAR file

Create an application definition using a Web Application Archive (WAR)
file. You can enter the name of the WAR file or locate it using the
’Browse’ button.

Open a Packaged
application
definition

Select an application definition that has been packaged a JAR file. You
can enter the name of the packaged application or locate it using the
’Browse’ button.

Using the Packaging Wizard

7-4 Oracle Database Lite Developer’s Guide

Figure 7–2 Select a Platform Dialog

7.1.2 Specifying New Application Definition Details
Using the Application dialog, you can name a new application and specify its storage
location on the Mobile Server. As Figure 7–3 displays, the Application dialog includes
the following fields.

Using the Packaging Wizard

Using the Packaging Wizard 7-5

Figure 7–3 Application Dialog

Table 7–2 describes the Application dialog.

Table 7–2 Application Dialog Description

Field Name Description Required

Application Name The name of the new Mobile application definition.

When packaging a WAR file, the application name must
be set to the value of the element <display-name>,
which can be found under the main element <web-app>
in the file web.xml.

Yes

Using the Packaging Wizard

7-6 Oracle Database Lite Developer’s Guide

Virtual Path A path that is mapped from the root directory of the server
repository to the Mobile application itself. The virtual path
eliminates the need to refer to the application entire
directory structure. It indicates that all of the
subdirectories and all of the files that are in the virtual
path will be uploaded exactly as they are in the directory
structure to the Mobile Server Repository when the
application is published. It also provides the application
with a unique identity.

Application Root Directory

As Figure 7–3 displays, the name /tutorial indicates
the virtual path of the application. The name that you
enter as the virtual path of the application becomes the
application root directory within the Mobile Server
Repository, when the application is published.
Consequently, you can specify the application root
directory by the name that you enter in the virtual path
field. This name can be different from the application
name, but should not contain spaces. For example, your
application name can be ’Sales Office’ and your virtual
path ’/Admin’. In this case, ’/Admin’ becomes the name
of the application root directory within the Mobile Server
Repository. The application root directory is the location
where the actual application files are stored within the
Mobile Server Repository.

When the administrator publishes the application, the
Packaging Wizard automatically uses the name that you
entered in the virtual path as the name of the application
root directory in the Mobile Server Repository. However,
the administrator can change the name of the application
root directory in the Mobile Server Repository by entering
a different name for it when the administrator publishes
the application.

Yes

Description A brief description of the Mobile application.

When packaging a WAR file, the description must be set to
the value of the element <description> found under
the main element <web-app> in the web.xml file.

Yes

Table 7–2 (Cont.) Application Dialog Description

Field Name Description Required

Using the Packaging Wizard

Using the Packaging Wizard 7-7

7.1.3 Listing Application Files
Use the Files panel to list your application files and to specify their location on the
local machine. The Packaging Wizard analyzes the contents of the Local Application

Application
Classpath

[OC4J and
Web-to-Go
Applications Only]

The application classpath specifies where the classes
(servlets, beans) for the application are located. The
default application classpath is always the application root
directory. To specify additional locations that the Mobile
Server can search for application classes, add other
directories or JAR and ZIP files to the application
classpath for Web applications.

Entries must be separated by semicolons (;)

In addition, Web-to-Go automatically appends the
following to the application classpath:

1. Application root directory

2. Classpath as specified in the ’Application’ dialog in
the Packaging Wizard

3. Classes located under WEB-INF/classes

4. All JAR and ZIP files located in the directory
WEB-INF/lib

5. Classes located under the directory
/shared/WEB-INF/classes

6. All jar and zip files located in the directory
/shared/WEB-INF/lib

7. SYSTEM classpath

No

Default Page

[Web Applications
Only]

The server location of the Web page that functions as the
Mobile application's entry point. This is a relative path to
the repository directory. For example, if the server
directory is /apps and the default page is index.htm,
the Default Page is /apps/index.htm. The default page
can be a servlet. A generic page is issued if the user does
not specify a default page.

When packaging a WAR file, the default page must be set
to the value of the element <welcome-file-list> in
the web.xml file.

Yes

Local Application
Directory

The directory on the local machine that contains all
components of the application. You can type this location
or locate it using the ’Browse’ button.

During development, the application root directory is set
to the local application directory.

Yes

Icon

[Web Applications
Only]

The GIF image of the Mobile application is used as the
application icon in the Mobile workspace. Users may enter
the icon name in the corresponding field or locate it using
the ’Browse’ button.

When packaging a WAR file, the description field must be
set to the value of the element <large-icon> as a
primary choice or <small-icon> as a secondary choice
found under the main element <web-app> in the
web.xml file.

Publication Name Publication name of an existing application in the Mobile
Server repository. You can enter the publication name or
locate it using the Browse button.

No

Table 7–2 (Cont.) Application Dialog Description

Field Name Description Required

Using the Packaging Wizard

7-8 Oracle Database Lite Developer’s Guide

Directory and displays each file's local path. As Table 7–3 describes, the Files tab
contains the following field.

Figure 7–4 displays the Files tab.

Figure 7–4 Files Tab

You can add, remove, load, or compile any of the files that are listed in the ’Files’
dialog. If you are creating a new application, the Packaging Wizard automatically
analyzes and loads all files listed under the local directory when you proceed to the
’Files’ dialog. If you are editing an existing application, upload your individual
application files using the ’Load’ button.

If you are importing a WAR file into an existing application, click the Import WAR
File button on the ’Files’ tab. Once you have specified the location of the WAR file, the
’Files’ tab displays content of the WAR file.

7.1.3.1 Compile JSP (For Web-to-Go Applications Only)
The ’Compile JSP’ button enables you to compile your JSP files for deployment. If you
click the ’Compile JSP’ button, the following ’Compile JSP’ dialog appears with
detailed compilation information. If there are any errors, you should correct the JSP
files before proceeding.

Figure 7–5 displays the Compile JSP Dialog.

Table 7–3 Files Tab Description

Field Description Required

Local Path The absolute path of each Mobile application file.
Each entry on the list includes the complete path
of the individual file or directory.

Yes

Using the Packaging Wizard

Using the Packaging Wizard 7-9

Figure 7–5 Compile JSP Dialog

You can sort the files by their extensions or by the directory in which they are located.
To sort files, click the ’By Extension’ or ’By Directory’ options.

7.1.3.2 Filters
When you click the ’Load’ button, the ’Input’ dialog appears. You can use the ’Input’
dialog to create a comma-separated list of filters that either include or exclude
application files from the upload process. To exclude a file, type a preceding minus
sign (-) before the file name. For example, to load all files but exclude files with the
.bak and .java suffixes, enter the following.

,-.bak,-*.java

Figure 7–6 displays the Input dialog.

Figure 7–6 Input Dialog

7.1.4 Adding Servlets (For OC4J and Web-to-Go Applications Only)
The Packaging Wizard analyzes servlets in the File tab and defines them on the Mobile
Server. As displayed in Figure 7–7, you can view your application's servlets in the
Servlets tab.

Using the Packaging Wizard

7-10 Oracle Database Lite Developer’s Guide

Figure 7–7 Servlets Tab

As described in Table 7–4, the ’Servlets’ tab includes the following fields.

Using the ’Servlets’ tab, you can add, remove, or load any servlets that are listed under
the ’Servlets’ tab. If you are creating a new application, the Packaging Wizard
automatically lists all ’Servlets’ based on files that are listed in the ’Files’ tab. If you are
editing an existing application, use the ’Load’ button to locate and load individual
servlets.

7.1.5 Entering Database Information
Using the Database tab, you can provide connection information and specify how the
Mobile application user connects to the replication master groups on the Oracle server.

Figure 7–8 displays the Database tab.

Table 7–4 Servlets Tab Description

Field Description Required

Servlet Name The servlet's name. For example: DeleteDetail. You will then
refer the servlet as:

application_virtualpath/servlet name

Yes

Servlet Class The fully qualified class of the servlets to be added. Yes

Using the Packaging Wizard

Using the Packaging Wizard 7-11

Figure 7–8 Database Tab

Enter the database name that you want to create on the client side. For example, a
native Windows 32 application accesses the client database with this name. However,
this is not required for Web applications.

7.1.6 Defining Application Roles
Use the ’Roles’ tab to define the Mobile Server application's roles. Developers create
roles in the application's code and the Packaging Wizard re-declares them for the
Oracle database. After you publish the application to the Mobile Server, you can
assign roles to users and groups, using the Mobile Manager.

Figure 7–9 displays the Roles tab.

Using the Packaging Wizard

7-12 Oracle Database Lite Developer’s Guide

Figure 7–9 Roles Tab

As described in Table 7–5, the Roles tab includes the following field.

All Web-to-Go/Mobile Server applications contain a default role. You can add or
remove roles from the Roles dialog using the ’New’ or ’Delete’ button.

7.1.7 Defining Snapshots for Replication
If you did not use MDW to create a subscription, then you can use the Snapshots tab to
create replication snapshots for your application. A snapshot must have the same
name as the database object such as a table or view. It must be unique across all
applications. However, you must ensure that you use unique names when creating
database objects. The Packaging Wizard enables you to create snapshots for the chosen
platform. When you specify a view as the base object type, the Packaging Wizard
enables you to specify the Parent Hint, Virtual Primary Hint, and the Primary Key
Hint. For Web-to-Go, use the Windows 32 platform.

Figure 7–10 displays the Snapshots tab.

Table 7–5 Roles Tab Description

Field Description

Roles Assigns roles to the Web-to-Go/Mobile Server application.

Using the Packaging Wizard

Using the Packaging Wizard 7-13

Figure 7–10 Snapshots Tab

Table 7–6 describes the Snapshots tab.

You can add or remove snapshots from the Snapshots tab using the ’New’ or ’Delete’
button. You can also import or edit snapshots using the ’Import’ or ’Edit’ button.

Note: Once you have specified a database connection, it is used for
the remainder of your Packaging Wizard session. If you need to
switch between an Oracle database and Oracle Database Lite, but have
already established a connection, you must quit the Packaging Wizard
application completely and run runwtgpack.bat again.

Table 7–6 Snapshots Tab Description

Field Description Required

Name The name(s) of the snapshot(s) associated with the
Web-to-Go/Mobile Server application. It must be the same
name as the underlining database object.

Yes

Template Lists available snapshot templates. The template is a SQL
statement that is used to create the snapshot. The template
may contain variables. After you publish the template to the
Mobile Server, you can specify user-specific template
variables using the Mobile Manager. However, you cannot
modify snapshots in the Mobile Manager.

Yes

Weight This is the order of tables to be replicated. For tables with a
master-detail relationship, the master table needs to be
replicated first and therefore should have a lower weight.

No

Using the Packaging Wizard

7-14 Oracle Database Lite Developer’s Guide

7.1.7.1 Creating New Snapshots
To create new snapshots, click ’New’. The ’New Snapshots’ dialog appears. As
Figure 7–11 displays, if you click the Server tab, the Server dialog appears, which
contains fields for snapshot name, weight, owner, and SQL, as well as a check box for
generating SQL.

Figure 7–11 New Snapshots Dialog - Server Tab

For a description of Weight, see Section 7.1.7, "Defining Snapshots for Replication".

By default, Generate SQL is enabled, which automatically generates the SQL statement
for you. Use the Win32 tab for the Mobile Client for Web-to-Go.

If you click the Win32 tab, the following dialog appears.

Note: You can import multiple snapshots from the Snapshots tab or
import one when you create a new table from the ’New Table Dialog’.

Using the Packaging Wizard

Using the Packaging Wizard 7-15

Figure 7–12 Edit Snapshots Dialog - Win32 Tab

Create a new snapshot on the Mobile Client for Web-to-Go by modifying the following
features in the New Snapshots dialog.

As Figure 7–7 describes, the New Snapshots dialog displays the following information.

7.1.7.2 Creating Indexes for Snapshots
To create an index for a snapshot using the Packaging Wizard, use the following
procedure.

Table 7–7 New Snapshots Dialog Description

Field Description

Updatable When selected, this check box creates an updatable snapshot of the named
table.

Template Displays the snapshot template for the named table. You can modify the
snapshot template. Administrators can instantiate variables for different users
to this template using the Mobile Manager. For more information about
template variables, see Section 7.1.7, "Defining Snapshots for Replication".

Using the Packaging Wizard

7-16 Oracle Database Lite Developer’s Guide

1. From the Snapshots dialog, select the Edit button to create an index from an
existing snapshot, or the New button for creating a new snapshot and new index.

2. Select the platform tab on the dialog which appears, for example Win 32. The SQL
statement which defines your snapshot appears in the ’Template’ field. Below that
is an ’Indices’ table; to create a new index, select the ’New’ button beneath this
table.

As Table 7–8 describes, enter values in the Win32 tab of the Edit Snapshots dialog.

3. There are three columns in the ’Indices’ table:

a. Name - This is the name of the index.

b. Type - Indexes can be Regular, Primary, or Unique. There is a drop down
menu to select this.

c. Columns - Enter the column name which the index uses.

7.1.7.3 Importing Snapshots
To import snapshots from an Oracle database or from Oracle Database Lite, click the
’Import’ button. As Figure 7–13 describes, the database connection window appears if
you have not specified a connection.

Table 7–8 Win32 Tab - Edit Snapshots Dialog

Field Description

Create on Client If selected, creates the snapshot on the client machine.

Updatable If selected, creates an updatable snapshot of the specified table or
view.

Base Object Type Select Table to include a table as the base object type.

or

Select View to include a view as the base object type.

Conflict Resolution Select Server Wins to specify conflict resolution in favour of the server.

or

Select Client Wins to specify conflict resolution in favour of the client.

DML Procedure To specify the DML procedure, enter the name of the Callout Package
for DML operation.

Refresh Type Select Fast Refresh to specify a quick refresh of the snapshot.

or

Select Complete Refresh to specify a complete refresh of the snapshot.

Parent Hint To specify the parent hint, enter the Parent Table Name.

Virtual Primary Hint To specify the virtual primary hint, enter the Base Object Name and
Base Object Column in the corresponding fields.

Template Displays the snapshot template for the named table. You can modify
the snapshot template. Administrators can instantiate variables for
different users to this template using the Mobile Manager. For more
information about template variables, see Section 7.1.7, "Defining
Snapshots for Replication".

Primary Key Hint This section displays the table name, column name, and mapping
column name of the snapshot.

Indices This section displays the name, type, and column name of indices
used in a snapshot.

Using the Packaging Wizard

Using the Packaging Wizard 7-17

Figure 7–13 Connect to Database Dialog

Enter the user name, password, and database URL for the Oracle database, or Oracle
Database Lite from which you are importing your snapshot(s). The Tables window
appears.

Figure 7–14 displays the Tables dialog.

Figure 7–14 Tables Dialog

Click the Schema list and choose the required schema from the list displayed. The
Tables dialog displays views associated with the chosen schema. Select the view that
you need to import. Click Add and click Close.

7.1.7.4 Editing Snapshots
To edit a snapshot, select the snapshot from the Snapshots dialog and click Edit. As
displayed in Figure 7–15, the Edit Snapshots dialog appears.

Note: Use the following format when entering the database URL for
an Oracle database: jdbc:oracle:thin:@<MOBILESERVER_JDBC_
URL>. For Oracle Database Lite, use jdbc:polite:webtogo.

Using the Packaging Wizard

7-18 Oracle Database Lite Developer’s Guide

Figure 7–15 Edit Snapshots Dialog - Win32 Tab

As described in Table 7–9, edit the snapshot by modifying the following features of the
Edit Table window:

Table 7–9 Edit Snapshots Dialog - Win32 Tab Description

Feature Description

Create on Client When selected, the checkbox allows you to edit the snapshot on
the Mobile Client for Web-to-Go.

Updatable When selected, this check box creates an updatable snapshot of
the named table.

Template Displays the snapshot template for the named table. You can
modify the snapshot template. Administrators can instantiate
variables for different users to this template using the Mobile
Manager.

Using the Packaging Wizard

Using the Packaging Wizard 7-19

7.1.8 Defining Sequences for Replication
Use the Sequences dialog to define sequence support for the Web-to-Go application.
Web-to-Go uses sequences to assign unique primary key values to an application
before it disconnects from the back-end Oracle database. These unique primary key
values are used for replication when the client goes back online. Sequences are
important because they eliminate replication conflicts by preventing duplicate primary
key values across disconnected applications. All sequences must have a unique name.
You can accomplish this by modifying your sequence names by preceding them with
your application name.

Figure 7–16 displays the Sequences tab.

Figure 7–16 Sequences Tab

As described in Table 7–10, the Sequences dialog includes the following fields.

Table 7–10 Sequences Dialog Description

Field Description Required

Name The name of the sequence used by the Web-to-Go
application in disconnected mode.

Yes

Type The type of sequence used by the Web-to-Go
application in disconnected mode.

Window. The window sequence assigns a unique
range of values to each client. Window sequences are
unique to each client and never overlap with those of
other clients. When a client uses all the values in its
sequence range, Web-to-Go recreates the sequence
with a new, unique range of values the next time the
client disconnects from the back-end Oracle database.

Yes

Using the Packaging Wizard

7-20 Oracle Database Lite Developer’s Guide

You can add or remove sequences from the Sequences dialog by clicking the Add or
Remove button.

7.1.8.1 Importing Sequences
To import sequences from an Oracle database, click the Import button. As Figure 7–17
displays, the Sequences dialog appears.

Figure 7–17 Sequences Dialog

Select the sequence you want to import, click Add, and then click Close.

Start Value The sequence's start value on the Mobile Client for
Web-to-Go. The sequence begins at this number and
then increments according to the increment number
you define.

Yes

Increment The number by which the sequence increments on the
Mobile Client for Web-to-Go, beginning at its start
value.

Yes

Window Size Defines the range of numbers in a window sequence. Yes

Threshold Defines the minimum range of required numbers in a
window sequence. Web-to-Go creates a new sequence
when the existing one reaches this range and when
the client disconnects from the back-end database.

Yes

Server Start The sequence's start value on the Oracle database. The
sequence begins at this number and then increments
according to the increment number you define. This
number must be different from the sequence start
value on the Mobile Client for Web-to-Go.

No

Server Increment The number by which the sequence increments on the
Oracle database, beginning at its start value.

No

Server Minimum The minimum start value for an ascending sequence
on the Oracle database. For example, an ascending
sequence could start at 1 and continue on in ascending
order.

No

Server Maximum The maximum start value for a descending sequence
on the Oracle database. For example, a descending
sequence could start at -1 and continue in descending
order.

No

Table 7–10 (Cont.) Sequences Dialog Description

Field Description Required

Using the Packaging Wizard

Using the Packaging Wizard 7-21

To edit a sequence, select the sequence from the Sequences dialog and click Edit. As
Figure 7–18 displays, the Edit Sequences dialog appears.

Figure 7–18 Edit Sequences Dialog

As Table 7–11 describes, edit the sequence by modifying the following features of the
Edit Sequences dialog.

Table 7–11 Edit Sequences Dialog Description

Feature Description

Name The name of the sequence.

Create on Server When selected, this check box enables the options for creating a
sequence on the Oracle database. Information entered by the
user is used to generate a SQL script to create the sequence on
the Oracle server.

Start Value The start value of the sequence on the Oracle database.

Increment The increment of the sequence on the Oracle database,
beginning with its start value.

Minimum The minimum start value for an ascending sequence on the
Oracle database. For example, an ascending sequence could start
at 1 and continue in ascending order.

Maximum The maximum start value for a descending sequence on the
Oracle database. For example, a descending sequence could start
at -1 and continue in descending order.

Create on Client When selected, this check box enables the options for creating a
sequence on the Mobile Client for Web-to-Go.

Type Defines the type of sequence on the Mobile Client for
Web-to-Go. Options include the window and leapfrog
sequences.

Start Value The sequence start value on the Mobile Client for Web-to-Go.

Increment The increment of the sequence on the Mobile Client for
Web-to-Go, beginning with its start value.

Window Size The range of numbers that constitute a window sequence on the
Mobile Client for Web-to-Go. This information is not used by the
leapfrog sequence.

Using the Packaging Wizard

7-22 Oracle Database Lite Developer’s Guide

7.1.9 Defining Application DDLs
Use the DDLs dialog to define any DDL (Data Definition Language) statements that
the Web-to-Go application can execute. DDLs are only supported on Windows 32 and
Windows CE platforms. All DDL statements must have a unique name and the weight
must be specified for every DDL. One way to accomplish this is to modify your DDL
names by preceding them with your application name. After you publish the
application to the Mobile Server, you can create additional DDL statements using the
Mobile Manager.

Figure 7–19 displays the DDLs dialog.

Figure 7–19 DDLs Dialog

As described in Table 7–12, the DDLs dialog includes the following fields.

Threshold The minimum range of required numbers in a window
sequence. Web-to-Go creates a new sequence when the existing
one reaches this range and when the client disconnects from the
back-end Oracle database. This information is not used by the
leapfrog sequence.

Table 7–12 DDLs Dialog Description

Field Description

Name The DDL name.

DDL Statement Defines DDL statements with the Web-to-Go application. These
DDL statements will be executed when the Web-to-Go
application runs on the client.

Table 7–11 (Cont.) Edit Sequences Dialog Description

Feature Description

Using the Packaging Wizard

Using the Packaging Wizard 7-23

You can add or remove DDLs from the DDLs dialog by clicking the Add or Remove
button. When you click the ADD button, the New DDL dialog appears, as described in
Figure 7–20.

Figure 7–20 New DDL Dialog

7.1.9.1 Importing Views and Index Definitions
To import views and index definitions from an Oracle database, click the Import
button. As displayed in Table 7–21, the Import DDLs dialog appears.

Figure 7–21 Import DDLs Dialog

To import an index definition, click the Indexes tab and then click the schema from
which you want to import an index. Select the index you want to import, click Add,
and then click Close.

Weight The order of DDLs to be executed on the Mobile Client.

Table 7–12 (Cont.) DDLs Dialog Description

Field Description

Packaging Wizard Synchronization Support

7-24 Oracle Database Lite Developer’s Guide

To import a view definition, click the Views tab and then click the schema from which
you want to import a view. Select the view you want to import, click Add, and then
click Close.

7.1.10 Editing Application Definition
You can edit application definitions by launching the Packaging Wizard and selecting
"Edit an existing application definition."

7.1.11 Troubleshooting
The Packaging Wizard also supports development mode. In this mode, the Packaging
Wizard only enables you to define Web application information, list the application
files, compile JSPs, add servlets, and make registry changes. Since the application is
packaged to your local machine, it requires neither connectivity nor database
information.

To launch the Packaging Wizard in development mode, enter the following using the
Command Prompt.

runwtgpack -d

7.2 Packaging Wizard Synchronization Support
The Packaging Wizard and the Mobile Manager provide the ability to perform the
most commonly used functions of the publish and subscribe model, package and
publish applications, create or drop users, and create or drop subscriptions. More
sophisticated functionality is provided by the Consolidator Manager and Resource
Manager APIs. Table 7–13 describes basic features.

Table 7–13 Packaging Wizard Synchronization Support

Function Packaging Wizard
Mobile
Manager API

Open Connection No No Yes

Create User No Yes Yes

Drop User No Yes Yes

Create Publication Yes No Yes

Create Publication Item Yes No Yes

Create Publication Item Index Yes No Yes

Drop Publication No Yes Yes

Drop Publication Item Special - See the Packaging
Wizard documentation for
more details.

No Yes

Drop Publication Item Index Yes No Yes

Create Sequence Yes No Yes

Create Sequence Partition Yes No Yes

Drop Sequence Yes No Yes

Drop Sequence Partition Yes No Yes

Add Publication Item Yes No Yes

Remove Publication Item No No Yes

Packaging Wizard Synchronization Support

Using the Packaging Wizard 7-25

More advanced features of Data Synchronization are only generally available by using
the Consolidator Manager and Resource Manager APIs. Table 7–14 describes these
features.

Create Subscription No Yes Yes

Deinstantiate Subscription No No Yes

Set Subscription Parameter No Yes Yes

Drop Subscription No Yes Yes

Commit Transaction No No Yes

Rollback Transaction No No Yes

Close Connection No No Yes

Table 7–14 Data Synchronization Advanced Function Description

Function Packaging Wizard
Mobile
Manager API

Create Virtual Primary Key Column Yes No Yes

Drop Virtual Primary Key Column Yes No Yes

Add Mobile DML Procedure Yes No Yes

Remove Mobile DML Procedure Yes No Yes

Reinstantiate Publication Item No No Yes

Parent Hint Yes No Yes

Dependency Hint Yes No Yes

Remove Dependency Hint Yes No Yes

Enable Publication Item Query Cache No No Yes

Disable Publication Item Query Cache No No Yes

Primary Key Hint Yes No Yes

Purge Transaction No No Yes

Execute Transaction No No Yes

Complete Refresh Yes Yes Yes

Execute Statement No No Yes

Generate Metadata No No Yes

Reset Cache No No Yes

Cache Dependencies No No Yes

Remove Cache Dependencies No No Yes

Get Current Time No No Yes

Authenticate No Yes Yes

Set Restricting Predicate No No Yes

Alter Publication Yes No Yes

Table 7–13 (Cont.) Packaging Wizard Synchronization Support

Function Packaging Wizard
Mobile
Manager API

Packaging Wizard Synchronization Support

7-26 Oracle Database Lite Developer’s Guide

Native Application Development 8-1

8
Native Application Development

This document discusses Mobile application development for native platforms. The
discussion covers the following topics:

■ Section 8.1, "Supported APIs for Oracle Database Lite"

■ Section 8.2, "Data Source Name"

8.1 Supported APIs for Oracle Database Lite
The following lists the supported APIs for Oracle Database Lite:

In addition, you can use the following APIs for accessing database.

Table 8–1 Supported Native APIs

Native API Description

C, C++, C# Can use ODBC to access database. Use Oracle-specific APIs for
programmatic synchronization. See Section 4.1,
"Synchronization APIs For C or C++ Applications" for more
information.

Table 8–2 Supported APIs

Native API Description

JDBC Use JDBC to access the database. See Oracle Database JDBC
manuals and Chapter 10, "JDBC Programming" for instructions
on how to use this API.

ODBC Use ODBC to access the database. See Microsoft ODBC manuals
for instructions on how to use this API.

.NET environment Use the ADO.NET API. You can use Oracle-specific APIs for
connecting to the database, programmatic synchronization, and
other functions. See Section 13.1, "Discussion of the Classes That
Support the ADO.NET Provider" for more information.

SODA See Chapter 12, "Using Simple Object Data Access (SODA) for
PocketPC Platforms" for more information.

Visual Basic Use ODBC to access database.

.NET environment Use the ADO.NET API. You can use Oracle-specific APIs for
connecting to the database, programmatic synchronization, and
other functions. See Section 13.1, "Discussion of the Classes That
Support the ADO.NET Provider" for more information.

Data Source Name

8-2 Oracle Database Lite Developer’s Guide

8.2 Data Source Name
When you create a data source name using the ODBC Manager, you should use the
following conventions:

■ In Windows 32, the data source name is automatically created as <username_
dbname> after the first synchronization, where both the username and database
name are taken from within the publication.

■ In Windows CE, the data source name is simply the database name; that is,
<dbname>.

It is helpful to create a data source name to contain all of the properties of your
connection to the database.

Java There are several specifications for Java applications. See
Chapter 9, "Java Application Development" for the Java
application support.

Table 8–2 (Cont.) Supported APIs

Native API Description

Java Application Development 9-1

9
Java Application Development

The following sections describe how to develop and test Java applications:

■ Section 9.1, "Java Support for Applications"

■ Section 9.2, "Oracle Database Lite Java Development Environment"

■ Section 9.3, "Java Development Tools"

9.1 Java Support for Applications
Table 9–1 lists the Java support provided for each platform in Oracle Database Lite.

Table 9–1 Java Support

Category
Web-to-Go
(both Windows and Linux)

Windows
32 Native Windows CE Linux Native

For More
Information...

JDBC Yes

Oracle Database Lite offer
three JDBC drivers. Refer to
Section 9.1.1, "JDBC Drivers".

Yes Yes Yes

On Linux,
only JDBC
and ODBC
access is
supported.

Chapter 10, "JDBC
Programming"

Java Stored
Procedures
/Triggers

Yes

Java Stored
Procedures/Triggers are not
supported in the Web-to-Go
application model. However
Java Stored Procedures can be
replicated using the
Consolidator Manager API.

Yes N/A Yes Chapter 11, "Stored
Procedures and
Triggers"

Java Server
Pages

1.1 N/A N/A N/A Section 6.2.3,
"Developing
JavaServer Pages"

Oracle Database Lite Java Development Environment

9-2 Oracle Database Lite Developer’s Guide

For programmatically synchronizing from a Java application, see Chapter 3,
"Synchronization".

9.1.1 JDBC Drivers
The Oracle Database Lite JDBC driver is JDBC 1.2 compliant. Oracle Lite provides a
limited number of extensions specified by JDBC 2.0. These extensions are compatible
with the Oracle Database JDBC implementation.

Oracle Database Lite offers the following JDBC drivers:

■ Type 2 driver: There are two types of type 2 driver: one provides an embedded,
direct connnection. This driver allows Java applications to communicate directly
with the Oracle Lite database. The other type 2 driver provides a remote
connection and requires Multi-User service support.

■ Type 4 driver : 100% Java implementation. Requires the multi-user database
version.

9.2 Oracle Database Lite Java Development Environment
To develop Java applications, you need to set up your development environment to
create Oracle Database Lite applications, as follows:

■ You must have the Sun Microsystems Java Development Kit (JDK), version 1.4.2
(or higher).

■ To enable Oracle Database Lite to work with the JDK, set your PATH and
CLASSPATH environment variables after you install Oracle Database Lite. See
Section 9.2.1, "Setting Variables for the JDK" for full details.

Java Servlet 2.2 N/A N/A N/A Section 6.2.4,
"Developing Java
Servlets for
Web-to-Go" and
Section 6.2.7,
"Developing Applet
Servlet
Communication"

BC4J Yes

Latest version of Oracle
JDeveloper 10g.

N/A N/A N/A

Struts Yes N/A N/A N/A

Note: If your environment includes a CLASSPATH user variable
before you install Oracle Database Lite and the user variable does not
include the CLASSPATH system variable (is not specified as
CLASSPATH=...;%CLASSPATH%), then you must modify the
CLASSPATH user variable to include the olite40.jar file in the
OLITE_HOME\bin directory.

Table 9–1 (Cont.) Java Support

Category
Web-to-Go
(both Windows and Linux)

Windows
32 Native Windows CE Linux Native

For More
Information...

Java Development Tools

Java Application Development 9-3

9.2.1 Setting Variables for the JDK
The directory with the JDK 1.4.2 or 5.0 Java compiler (javac.exe) should be in the
PATH variable before any other directories that contain other Java compilers.

Add the directory that contains the Classic Java Virtual Machine (JVM) shared library,
jvm.dll, to the PATH. jvm.dll should be in your JDK_Home\jre\bin\classic
directory.

For example,

set PATH=C:\JDK_Home\bin;c:\JDK_Home\jre\bin\classic
set CLASSPATH=c:\JDK_Home\jrc\lib\rt.jar;c:\OLITE_HOME\bin\olite40.jar

As an alternative to using the Classic JVM, you can use the HotSpot JVM. HotSpot is a
JDK add on module provided by Sun Microsystems. HotSpot is available from the Sun
Microsystems Web site.

After installing HotSpot, set your PATH as given below.

set PATH=c:\jdk\bin;c:\jdk\jre\bin\hotspot;%PATH%

In the example above, your installation of the JDK and HotSpot is on Drive C:\. Verify
the location of your installation before amending your PATH statement. To test
whether your system is set up correctly, run the Java examples in the <ORACLE_
HOME>\Mobile\Sdk\Samples\JDBC directory.

9.3 Java Development Tools
To write and debug Java programs, you can use any Java development tool. However,
you must ensure that you set the CLASSPATH and PATH correctly.

Note: All command prompt windows must be closed and
reopened to reflect changes made to your CLASSPATH.

Java Development Tools

9-4 Oracle Database Lite Developer’s Guide

JDBC Programming 10-1

10
JDBC Programming

This chapter discusses the Oracle Database Lite support for JDBC programming. It
includes the following topics:

■ Section 10.1, "JDBC Compliance"

■ Section 10.2, "JDBC Environment Setup"

■ Section 10.3, "JDBC Drivers to Use When Connecting to Oracle Database Lite"

■ Section 10.4, "DataSource Connection"

■ Section 10.5, "Java Datatypes and JDBC Extensions"

■ Section 10.6, "Limitations"

■ Section 10.7, "New JDBC 2.0 Features"

■ Section 10.8, "J2ME Support"

10.1 JDBC Compliance
Oracle Database Lite provides a native JDBC driver that allows Java applications to
communicate directly with the Oracle Database Lite object relational database engine.
The Oracle Database Lite implementation of JDBC complies with JDBC 1.2. In
addition, Oracle Database Lite provides certain extensions specified by JDBC 2.0,
which are compatible with the Oracle database JDBC implementation. For a complete
JDBC reference, see the Sun Microsystems Web site.

10.2 JDBC Environment Setup
For your Java applications using the client/server model, include the olite40.jar,
which is located in OLITE_HOME/bin, in the system CLASSPATH on the server
machine and in the user CLASSPATH on the client machine.

When using the Oracle Lite JDBC driver in your OC4J application, use the default
classloader instead of a per-application classloader, which many J2EE containers use.
Ensure that the olite40.jar is in the OC4J CLASSPATH when OC4J initiates and not
in the /lib subdirectory of your application WAR file.

Note: For more information on how to start the Multiuser Oracle
Database Lite Database Service, see Section 2.5, "Oracle Database Lite
Multi-User Service".

JDBC Drivers to Use When Connecting to Oracle Database Lite

10-2 Oracle Database Lite Developer’s Guide

10.3 JDBC Drivers to Use When Connecting to Oracle Database Lite

Oracle Database Lite supports Type 2 and Type 4 drivers.

■ The Type 2 driver uses native code on the client side through which it interfaces
with the Oracle Database Lite ODBC driver.

■ The Type 4 JDBC driver is a pure Java driver and uses the Oracle Database Lite
network protocol to communicate with the Oracle Database Lite service. Before
using this driver, ensure that you start Oracle Database Lite. Any Java applet can
use the Type 4 JDBC driver.

The supported Type 2 and Type 4 drivers are described in the following sections:

■ Section 10.3.1, "Type 2 Driver"

■ Section 10.3.2, "Type4 (Pure Java) Driver Connection URL Syntax"

10.3.1 Type 2 Driver
For most applications, use the type 2 driver for connecting to the database. You can
use the type 2 driver to connect either to the local Oracle Lite database or to the server
where a Multi-User Service is managing the Oracle Lite databases.

■ To connect to the local Oracle Lite database, use the following URL syntax:

jdbc:polite[:uid / pwd]:localDSN[;key=value]*

where the localDSN is the DSN name for the local Oracle Lite database (the ODB
file on the local machine) and the optional key=value pairs are listed in Table 10–1.

The following example retrieves a connection to the local Oracle Lite database,
where the DSN name is polite:

DriverManager.getConnection("jdbc:polite:polite","system","admin");

■ To access the Oracle Lite database on a remote host where a Multi-User Service or
Branch Office is located, use the following URL syntax:

jdbc:polite[:uid / pwd]@[host]:[port]:serverDSN [;key=value]*

where the host, port, and serverDSN identify the host, port and DSN of the remote
host where the Oracle Lite database (the ODB file on the local machine) and the
multi-user service is located. The optional key=value pairs are listed in Table 10–1.

For more information on how to install and start the Multiuser Oracle Database
Lite Service, refer to Section 2.5, "Oracle Database Lite Multi-User Service".

You can provide additional configuration information in the JDBC driver URL within
key-value pairs, as specified in Table 10–1, each of which are separated by a
semi-colon. The information specified within the key-value pairs always overrides the
information that is specified in the URL.

Note: JDK 1.4.2 or 5.0 is required to connect to Oracle Database Lite.

Table 10–1 Key/Value Pairs for JDBC Connect URL

Argument Description

jdbc Identifies the protocol as JDBC.

polite Identifies the subprotocol as polite.

JDBC Drivers to Use When Connecting to Oracle Database Lite

JDBC Programming 10-3

Example of Using JDBC Type 2 Connection for Local Oracle Lite Database
String ConnectMe=("jdbc:polite:SCOTT/tiger:polite;
Data_Directory=<ORACLE_HOME>;Database=polite;IsolationLevel=SINGLE USER;
Autocommit=ON;CursorType=DYNAMIC")

try
 {Class.forName("oracle.lite.poljdbc.POLJDBCDriver")
 Connection conn = DriverManager.getConnection(ConnectMe)
 }
catch (SQLException e)
{
...

uid / pwd The optional user ID and password for Oracle Database Lite, each of
which are limited to 28 characters. If specified, this overrides the
specification of a username and password defined in the UID and
PWD arguments. If the database is encrypted, you must include the
password in the key-value pair.

host The name of the machine that hosts the Multi-User Service or Branch
Office and on which the Oracle Database Lite service olsv2040.exe
runs. This host name is optional. If omitted, it defaults to the local
machine on which the JDBC application runs.

port The port number at which the Multi-User or Branch Office service
listens. The port number is optional. If omitted, the port number
defaults to port 1160.

dsn Identifies the data source name (DSN) entry in the odbc.ini file. This
entry contains all the necessary information to complete the
connection to the server.

Note: For a JDBC program, you need not create a DSN if you have
supplied all the necessary values for the data directory and database
through key=value pairs.

On the windows platform, you can use the ODBC administrator to
create a DSN. For more information, see Section 2.5.1.4, "Creating
DSNs".

Data_Directory= Directory in which the .odb file resides.

Database= Name of database as given during its creation.

IsolationLevel= Transaction isolation level: READ COMMITTED, REPEATABLE
READ, SERIALIZABLE or SINGLE USER. For more information on
isolation levels, see Section 15.2, "What Are the Transaction Isolation
Levels?".

Note: If you are retrieving a large object, such as a BLOB, within a
READ COMMITTED transaction, see Section 4.3.46.10 "Select
Statement Behavior When Retrieving BLOBs in a READ
COMMMITTED transaction" section in the Oracle Database Lite
SQL Reference.

Autocommit= Commit behavior, either ON or OFF.

CursorType= Cursor behavior: DYNAMIC, FORWARD ONLY, KEYSET DRIVEN or
STATIC. For more information on cursor types, see Section 15.4,
"Supported Combinations of Isolation Levels and Cursor Types".

UID= User name

PWD= Password

Table 10–1 (Cont.) Key/Value Pairs for JDBC Connect URL

Argument Description

DataSource Connection

10-4 Oracle Database Lite Developer’s Guide

}

Example of Using Type 2 in Multi-User Service Situation
An example of this type of connection is given below.

try {
Connection conn = DriverManager.getConnection(
 "jdbc:polite@yourhostname
 ;Data_Directory=<ORACLE_HOME>
 ;Database=polite
 ;IsolationLevel=SINGLE USER
 ;Autocommit=ON
 ;CursorType=DYNAMIC", "Scott", "tiger")
}
catch (SQLException e)
{
}

10.3.2 Type4 (Pure Java) Driver Connection URL Syntax
Use the JDBC Type 4 driver for any pure Java application that uses the Multi-User or
Branch office services. The URL syntax for the type 4 driver as follows:

jdbc:polite4[:uid/pwd]@[host]:[port]:serverDSN[;key=value]*

The parameter polite4 indicates that the JDBC type 4 driver is being used. For the
rest of the parameters, see the definitions of those parameters for the type 2 driver, as
described in Table 10–1.

10.4 DataSource Connection
In JDBC 2.0, the DataSource object is an alternative to the DriverManager facility.
The DataSource object is the preferred method for retrieving a connection and is
typically registered with a naming service based on the JNDI API. A driver that is
accessed through a DataSource object does not register itself with the
DriverManager.

The Oracle Database Lite JDBC driver contains the basic DataSource implementation
to produce a standard Connection object. The retrieved connection is identical to a
connection obtained through the DriverManager.

Oracle Database Lite implements javax.sql.DataSource interface with the
POLJDBCDataSource class in the oracle.lite.poljdbc package.

As with any class that implements the DataSource interface, the
POLJDBCDataSource object defines properties for connecting to a specific database.
In addition to the standard DataSource properties, the POLJDBCDataSource class has
one additional property, which is a String to define the URL of the database
connection string, as described in Section 10.3.1, "Type 2 Driver" and Section 10.3.2,
"Type4 (Pure Java) Driver Connection URL Syntax".

■ The URL can include username and password, which then overrides any previous
individual property settings. The following URL specifies a username and
password of system/manager:

jdbc:polite4:system/manager@::polite

Note: The URL works with the Oracle Database Lite service only.

Java Datatypes and JDBC Extensions

JDBC Programming 10-5

■ You must have a username and password defined either in the URL or in the
getConnection method. If defined in both places, then the username and
password in the getConnection takes precedence over the URL definitions.

See the JDBC example—JDBCEXJSR169—on the CD for how to use the
POLJDBCDataSource object.

10.5 Java Datatypes and JDBC Extensions
The Oracle Database Lite JDBC driver supports JDBC 1.2 and provides extensions that
support certain features defined in JDBC 2.0. The extensions include support for BLOB
(large binary object) and CLOB (large character object) datatypes and scrollable result
sets. The Oracle Database Lite JDBC extensions are compatible with the Oracle
database JDBC implementation. However, Oracle Database Lite does not support the
following Oracle database JDBC datatype extensions: Array, Struct, or REF.

The following sections list and describe the Oracle Database Lite datatypes and data
access extensions. For details regarding function syntax and call parameters, see the
Sun Microsystems Java 2 specification at the Sun Microsystems Web site.

■ Section 10.5.1, "Mapping Datatypes Between Java and Oracle"

■ Section 10.5.2, "Datatype Extensions"

■ Section 10.5.3, "Data Access Extensions"

10.5.1 Mapping Datatypes Between Java and Oracle
Oracle Database Lite performs type conversions between Java and Oracle datatypes as
indicated by the following table. Table 10–2 lists the Java datatypes and the
corresponding SQL datatypes that result from the type conversion.

Table 10–2 Datatype Conversions

Java Datatype SQL Datatype

byte[], byte[][], Byte[] BINARY, RAW, VARBINARY, BLOB

boolean, Boolean BIT

String, String[] CHAR, VARCHAR, VARCHAR2,
CLOB

short, short[], short[][], Short, Short[] SMALLINT

int,int[], int[][], Integer, Integer[] INT

float, float[], float[][], Float, Float[] REAL

double, double[], double[][], Double,
Double[]

DOUBLE, NUMBER (without
precision)

BigDecimal, BigDecimal[] NUMBER(n)

java.sql.Date, java.sql.Date[] DATE

java.sql.Time, java.sql.Time[] TIME

java.sql.Timestamp, java.sql.Timestamp[] TIMESTAMP

java.sql.Connection Default JDBC connection to database

Java Datatypes and JDBC Extensions

10-6 Oracle Database Lite Developer’s Guide

10.5.2 Datatype Extensions
BLOBs and CLOBs store data items that are too large to store directly in a database
table. Rather than storing the data, the database table stores a locator that points to the
location of the actual data. BLOBs contain a large amount of unstructured binary data
items and CLOBs contain a large amount of fixed-width character data items
(characters that require a fixed number of bytes per character).

You can select a BLOB or CLOB locator from the database using a standard SELECT
statement. When you select a BLOB or CLOB locator using SELECT, you acquire only
the locator for the large object, not the data itself. Once you have the locator, however,
you can read data from or write data to the large object using access functions.

Note: If you are retrieving a large object, such as a BLOB, within a READ
COMMITTED transaction, see the "Select Statement Behavior When Retrieving BLOBs
in a READ COMMMITTED transaction" section in the Oracle Database Lite SQL
Reference.

Table 10–3 lists the methods included in the Oracle Database Lite BLOB class and their
descriptions:

Table 10–4 lists the methods included in the Oracle Database Lite CLOB class and their
descriptions.

Table 10–3 Methods in the Oracle Database Lite BLOB Class

Function Description

length Returns the length of a BLOB in bytes.

getBinaryOutputStream Returns BLOB data.

getBinaryStream Returns a BLOB instance as a stream of bytes.

getBytes Reads BLOB data, starting at a specified point, into a buffer.

getConnection Returns the current connection.

isConvertibleTo Determines if a BLOB can be converted to a particular class.

putBytes Writes bytes to a specified point in the BLOB data.

makeJdbcArray Returns the JDBC array representation of a BLOB.

toJdbc Converts a BLOB to a JDBC class.

trim Trims to length.

Table 10–4 Methods in the Oracle Database Lite CLOB Class

Function Description

length Returns the length of a CLOB in bytes.

getSubString Retrieves a substring from a specified point in the CLOB data.

getCharacterStream Returns CLOB data as a stream of Unicode characters.

getAsciiStream Returns a CLOB instance as an ASCII stream.

getChars Retrieves characters from a specified point in the CLOB data
into a character array.

getCharacterOutputSt
ream

Writes CLOB data from a Unicode stream.

getAsciiOutputStream Writes CLOB data from an ASCII stream.

Java Datatypes and JDBC Extensions

JDBC Programming 10-7

10.5.3 Data Access Extensions
Oracle Database Lite provides access functions to set and return values of the CLOB
and BLOB datatypes. In addition, stream classes provide functions that enable
stream-format access to large objects.

The large object access functions are located in the OraclePreparedStatement, the
OracleCallableStatement, and the OracleResultSet class.

Table 10–5 lists the data access functions included in the OracleResultSet class.

The stream format access classes are POLLobInputStream, POLLobOutputStream,
POLClobReader, and POLClobWriter.

The POLLobInputStream class includes the following data access function.

The POLLobOutputStream class includes this data access function.

The POLClobReader class extends the class java.io.reader. It includes these data
access functions.

getConnection Returns the current connection.

putChars Writes characters from a character array to a specified point in
the CLOB data.

putString Writes a string to a specified point in the CLOB data.

toJdbc Converts a CLOB to a JDBC class.

isConvertibleTo Determines if a CLOB can be converted to a particular class.

makeJdbcArray Returns a JDBC array representation of a CLOB.

trim Trims to length.

Table 10–5 Data Access Functions in the OracleResultSet Class

Function Description

getBLOB Returns a locator to BLOB data.

getCLOB Returns a locator to CLOB data.

Function Description

read Reads from a large object into an array.

Function Description

write Writes from an output stream into a large object.

Function Description

read Reads characters from a CLOB into a portion of an array.

ready Indicates whether a stream is ready to read.

close Closes a stream.

Table 10–4 (Cont.) Methods in the Oracle Database Lite CLOB Class

Function Description

Limitations

10-8 Oracle Database Lite Developer’s Guide

The POLClobWriter class extends the class java.io.writer. It includes these data
access functions:

10.5.3.1 Reading from a BLOB Sample Program
The following sample uses the getBinaryStream method to read BLOB data into a
byte stream. It then reads the byte stream into a byte array, and returns the number of
bytes read.

// Read BLOB data from BLOB locator.
InputStream byte_stream = my_blob.getBinaryStream();
byte [] byte_array = new byte [10];
int bytes_read = byte_stream.read(byte_array);

10.5.3.2 Writing to a CLOB Sample Program
The following sample reads data into a character array, then uses the
getCharacterOutputStream method to write the array of characters to a CLOB.

java.io.Writer writer;
char[] data = {'0','1','2','3','4','5','6','7','8','9'};

// write the array of character data to a CLOB
writer = ((CLOB)my_clob).getCharacterOutputStream();
writer.write(data);
writer.flush();
writer.close();

10.6 Limitations
If data truncation occurs during a write, a SQL data truncation exception is thrown. A
SQL data truncation warning results if data truncation occurs during a read.

The Oracle Database Lite JDBC classes and the JDBC 2.0 classes use the same name for
certain datatypes (for example, oracle.sql.Blob and java.sql.Blob). If your
program imports both oracle.sql.* and java.sql.*, attempts to access the
overlapping classes without fully qualifying their names may result in compiler errors.
To avoid this problem, use one of the following steps:

1. Use fully qualified names for BLOB, CLOB, and data classes.

markSupported Indicates whether the stream supports the mark operation.

mark Marks the current position in the stream. Subsequent calls to the
reset function reposition the stream to the marked location.

reset Resets the current position in the stream to the marked location.
If the stream has not been marked, this function attempts to reset
the stream in a way appropriate to the particular stream, such as
by repositioning it at its starting point.

skip Skips characters in the stream.

Function Description

write Writes an array of characters to the output stream.

flush Writes any characters in a buffer to their intended destination.

close Flushes and closes the stream.

Function Description

New JDBC 2.0 Features

JDBC Programming 10-9

2. Import the class explicitly (for example, import oracle.sql.Blob).

Class files always contain fully qualified class names, so the overlapping datatype
names do not cause conflicts at runtime.

10.7 New JDBC 2.0 Features
This section describes JDBC 2.0 methods or interfaces that are supported by the Oracle
Database Lite JDBC driver. Topics include:

■ Section 10.7.1, "Interface Connection"

■ Section 10.7.2, "Interface Statement"

■ Section 10.7.3, "Interface ResultSet"

■ Section 10.7.4, "Interface Database MetaData"

■ Section 10.7.5, "Interface ResultMetaData"

■ Section 10.7.6, "Interface PreparedStatement"

10.7.1 Interface Connection
This section describes the JDBC 2.0 Interface methods that are implemented by the
Oracle Database Lite JDBC driver.

10.7.1.1 Methods

Statement
createStatement(int resultSetType, int resultSetConcurrency)

Creates a statement object that generates ResultSet objects with the given type and
concurrency.

Map
getTypeMap()

Gets the TypeMap object associated with this connection.

CallableStatement
prepareCall(String sql, int resultSetType, int
resultSetConcurrency)

Creates a CallableStatement object that generates ResultSet objects with the given type
and concurrency.

PreparedStatement
prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

Creates a PreparedStatement object that generates ResultSet objects with the
given type and concurrency.

void
setTypeMap(Map map)

Installs the given type map as the type map for this connection.

New JDBC 2.0 Features

10-10 Oracle Database Lite Developer’s Guide

10.7.2 Interface Statement
This section describes the JDBC 2.0 Interface Statement methods that are implemented
by the Oracle Database Lite JDBC driver.

Connection
getConnection()

Returns the Connection object that produced this Statement object.

int
getFetchDirection()

Retrieves the direction for fetching rows from database tables that is the default for
result sets generated from this Statement object. Only FETCH_FORWARD is
supported for now.

int
getFetchSize()

Retrieves the number of result set rows that is the default fetch size for result sets
generated from this Statement object. Only fetch size = 1 is supported for now.

int
getResultSetConcurrency()

Retrieves the result set concurrency. Only CONCUR_READ_ONLY is supported for
now.

int
getResultSetType()

Determine the result set type. Only TYPE_FORWARD_ONLY and TYPE_SCROLL_
INSENSITIVE are supported for now.

void
setFetchDirection(int direction)

Gives the driver a hint as to the direction in which the rows in a result set will be
processed.

void
setFetchSize(int rows)

Gives the JDBC driver a hint as to the number of rows that should be fetched from the
database when more rows are needed.

10.7.3 Interface ResultSet
This section describes the JDBC 2.0 Interface ResultSet methods that are implemented
by the Oracle Database Lite JDBC driver.

10.7.3.1 Fields
The following fields can be used to implement the Interface ResultSet feature.

New JDBC 2.0 Features

JDBC Programming 10-11

static int
CONCUR_READ_ONLY

The concurrency mode for a ResultSet object that may NOT be updated.

static int
CONCUR_UPDATABLE

The concurrency mode for a ResultSet object that may be updated. Not supported for
now.

static int
FETCH_FORWARD

The rows in a result set will be processed in a forward direction; first-to-last.

static int
FETCH_REVERSE

The rows in a result set will be processed in a reverse direction; last-to-first. Not
supported for now.

static int
FETCH_UNKNOWN

The order in which rows in a result set will be processed is unknown.

static int
TYPE_FORWARD_ONLY

The type for a ResultSet object whose cursor may move only forward.

static int
TYPE_SCROLL_INSENSITIVE

The type for a ResultSet object that is scrollable but generally not sensitive to changes
made by others.

static int
TYPE_SCROLL_SENSITIVE

The type for a ResultSet object that is scrollable and generally sensitive to changes
made by others. Not supported for now.

10.7.3.2 Methods
This section describes the JDBC 2.0 ResultSet method implemented by the Oracle
Database Lite JDBC driver.

boolean
absolute(int row)

Moves the cursor to the given row number in the result set.

void
afterLast()

New JDBC 2.0 Features

10-12 Oracle Database Lite Developer’s Guide

Moves the cursor to the end of the result set, just after the last row.

void
beforeFirst()

Moves the cursor to the front of the result set, just before the first row.

boolean
first()

Moves the cursor to the first row in the result set.

Array
getArray(String colName)

Gets an SQL ARRAY value in the current row of this ResultSet object.

BigDecimal
getBigDecimal(int columnIndex)

Gets the value of a column in the current row as a java.math.BigDecimal object with
full precision.

BigDecimal
getBigDecimal(String columnName)

Gets the value of a column in the current row as a java.math.BigDecimal object with
full precision.

int
getConcurrency()

Returns the concurrency mode of this result set.

Date
getDate(int columnIndex, Calendar cal)

Gets the value of a column in the current row as a java.sql.Date object.

int
getFetchDirection()

Returns the fetch direction for this result set.

int
getFetchSize()

Returns the fetch size for this result set.

int
getRow()

Retrieves the current row number.

Statement
getStatement()

New JDBC 2.0 Features

JDBC Programming 10-13

Returns the Statement that produced this ResultSet object.

int
getType()

Returns the type of this result set.

boolean
isAfterLast()

boolean
isBeforeFirst()

boolean
isFirst()

boolean
isLast()

boolean
last()

Moves the cursor to the last row in the result set.

boolean
previous()

Moves the cursor to the previous row in the result set.

void
refreshRow()

Refreshes the current row with its most recent value in the database. Currently does
nothing.

boolean
relative(int rows)

Moves the cursor a relative number of rows, either positive or negative.

10.7.3.3 Methods that Return False
The following three methods always return false because this release does not support
deletes, inserts, or updates.

boolean
rowDeleted()

Indicates whether a row has been deleted.

boolean
rowInserted()

Indicates whether the current row has had an insertion.

New JDBC 2.0 Features

10-14 Oracle Database Lite Developer’s Guide

boolean
rowUpdated()

Indicates whether the current row has been updated.

void
setFetchDirection(int direction)

Gives a hint as to the direction in which the rows in this result set will be processed.

void
setFetchSize(int rows)

Gives the JDBC driver a hint as to the number of rows that should be fetched from the
database when more rows are needed for this result set.

10.7.4 Interface Database MetaData
This section describes the JDBC 2.0 Interface Database MetaData methods that are
implemented by the Oracle Database Lite JDBC driver.

10.7.4.1 Methods
The following methods can be used to implement the Interface Database MetaData
feature.

Connection
getConnection()

Retrieves the connection that produced this metadata object.

boolean
supportsResultSetConcurrecny(int type, int concurrency)

Supports the concurrency type in combination with the given result set type.

boolean
supportsResultSetType(int Type)

Supports the given result set type.

10.7.4.2 Methods that Return False
The following methods return false, because this release does not support deletes or
updates.

boolean
deletesAreDetected(int Type)

Indicates whether or not a visible row delete can be detected by calling
ResultSet.rowDeleted().

boolean
insertsAreDetected(int Type)

Indicates whether or not a visible row insert can be detected by calling
ResultSet.rowInserted().

New JDBC 2.0 Features

JDBC Programming 10-15

boolean
othersDeletesAreVisible(int Type)

Indicates whether deletes made by others are visible.

boolean
othersInsertsAreVisible(int Type)

Indicates whether inserts made by others are visible.

boolean
othersUpdatesAreVisible(int Type)

Indicates whether updates made by others are visible.

boolean
ownDeletesAreVisible(int Type)

Indicates whether a result set's own deletes are visible.

boolean
ownInsertsAreVisible(int Type)

Indicates whether a result set's own inserts are visible.

boolean
ownUpdatesAreVisisble(int Type)

Indicates whether a result set's own updates are visible.

boolean
updatesAreDetected(int Type)

Indicates whether or not a visible row update can be detected by calling the method
ResultSet.rowUpdated.

10.7.5 Interface ResultMetaData
This section lists methods that can be implemented using the Interface ResultMetaData
feature.

10.7.5.1 Methods
The following method can be used to implement the Interface ResultMetaData feature.

String
getColumnClassName(int column)

Returns the fully-qualified name of the Java class whose instances are manufactured if
the method ResultSet.getObject is called to retrieve a value from the column.

10.7.6 Interface PreparedStatement
This section describes methods that can be implemented using the Interface
PreparedStatement feature.

J2ME Support

10-16 Oracle Database Lite Developer’s Guide

10.7.6.1 Methods
The following methods can be used to implement the Interface PreparedStatement
feature.

Result
SetMetaDatagetMetaData()

Gets the number, types and properties of a ResultSet's columns.

void
setDate(int parameter Index, Date x, Calendar cal)

Sets the designated parameter to a java.sql.Date value, using the given Calendar
object.

void
setTime(int parameterIndex, Time x, Calendar cal)

Sets the designated parameter to a java.sql.Time value, using the given Calendar
object.

void
setTimestamp(int parameter Index, Timestamp x, Calendar cal)

Sets the designated parameter to a java.sql.Timestamp value, using the given
Calendar object.

10.7.6.1.1 Limitation currently, the option setQueryTimeOut is not supported.

10.8 J2ME Support
The following sections describe what Oracle Database Lite supports for J2ME:

■ Section 10.8.1, "JDBC Drivers for J2ME CDC and CLDC"

■ Section 10.8.2, "J2ME Support for Windows CE"

10.8.1 JDBC Drivers for J2ME CDC and CLDC
Oracle Database Lite JDBC drivers for J2ME are supported in a limited capacity. The
following sections describe what are supported in Oracle Database Lite JDBC/J2ME
drivers:

■ Section 10.8.1.1, "JDBC Driver for J2ME CDC"

■ Section 10.8.1.2, "JDBC Driver for J2ME CLDC"

10.8.1.1 JDBC Driver for J2ME CDC
You can use the olite40.jar file for JDBC J2ME CDC application development.
However, the Oracle Database Lite JDBC driver for J2ME CDC does not implement all
classes and methods of the Sun Microsystems "JSR-000169 JDBC Optional Package for
CDC/Foundation Profile".

The JDBC definition classes (java.sql.*) are an optional package for
CDC/Foundation profile based JVMs, as defined by the Javasoft JSR 169 specification.
Obtain these classes from your JVM vendor. If your JVM vendor does not supply these

J2ME Support

JDBC Programming 10-17

classes, then use the sample implementation provided with Oracle Database Lite,
which can be found in the <OLITE_HOME>\Mobile\Sdk\samples\j2me directory.

See Section 10.1, "JDBC Compliance" and Section 10.5, "Java Datatypes and JDBC
Extensions" for what is supported in this JAR file for the JDBC driver on J2ME CDC.

10.8.1.2 JDBC Driver for J2ME CLDC
Oracle Database Lite provides the JDBC driver for J2ME CLDC application
development. Only a subset of the JDBC APIs are available. The JDBC APIs for J2ME
CLDC are provided in the oracle.lite.jdbc package, which is included in the
olitejdbccldc.jar file. You must include this JAR file in your application to use
JDBC for J2ME CLDC. The interface is a subset of features available in the Oracle Lite
JDBC driver.

See Section 10.1, "JDBC Compliance" and Section 10.5, "Java Datatypes and JDBC
Extensions" for what is supported in this JAR file for the JDBC driver on J2ME CDC.

The following lists what is NOT currently implemented for the JDBC API:

■ You cannot use any methods requiring floating point data types, such as
ResultSet.getDouble.

■ You cannot use any methods requiring java.sql.Date, java.sql.Time or
java.sql.Timestamp data types. When working with SQL date, time and
timestamp data, consider using one of the following methods instead:
ResultSet.getString, PreparedStatement.setString and other string
getter and setter methods.

■ You cannot use any DatabaseMetaData objects.

■ The JDBC driver has no finalize() methods. Applications must explicitly close
database objects when done.

■ Since the java.math library is omitted from MIDP, you may not use the
BigDecimals object. Use the appropriate java.lang.String getter or setter
method.

Table 10–6 details the classes and exceptions available in this package. For more
information on these classes, such as the supported methods, see the Javadoc in the
Oracle Database Lite API Specification.

Table 10–6 J2ME CLDC Class and Exception Summary

Classes and Exceptions Description

BLOB The representation (mapping) in the Java programming
language of an SQL BLOB value.

CLOB The representation (mapping) in the Java programming
language of an SQL CLOB value.

Connection Connection represents a JDBC connection to an Oracle Lite
database.

PreparedStatement A PreparedStatement contains a pre-compiled SQL
statement which may have parameter markers.

ResultSet Represents a result set which is usually generated by
executing a statement that queries the database.

ResultsSetMetaData The ResultSetMetaData class can be used to get
information about the types and properties of the columns in
a ResultSet object.

J2ME Support

10-18 Oracle Database Lite Developer’s Guide

For the JDBC/J2ME/CLDC driver, only the JDBC Type 4 connection URL syntax is
supported. The following example demonstrates how to create a Connection object
using the OLiteDataSource object.

import oracle.lite.jdbc.OLiteDataSource;
import oracle.lite.jdbc.Connection;
import oracle.lite.jdbc.Statement;
…

public class TestOLiteDataSource implements Runnable
{
 …
 public void run()
 {
 String strUrl = "jdbc:polite4:system/manager@::polite";
 try {
 OLiteDataSource olds = new OLiteDataSource();
 olds.setUrl(strUrl);
 Connection conn = olds.getConnection();
 conn.setAutoCommit(true);
 Statement stmt = conn.createStatement();
 stmt.execute("create table t1(c1 int) ");
 }
 catch (SQLException e) {
 …
 }
 }
}

OliteDataSource OLiteDataSource partially implements the
javax.sql.DataSource interface. It is for retrieving a
Connection object.

OracleConnection Provides the same functional support as the Connection
object and also provides support for BLOB/CLOB objects.

OraclePreparedStatement Provides the same functional support as the
PreparedStatement object and also provides support for
BLOB/CLOB objects.

OracleResultSet Provides the same functional support as the ResultSet
object and also provides support for BLOB/CLOB objects.

Statement A Statement object is used for executing a static SQL
statement and obtaining the results produced by it.

Types The class that defines the constants that are used to identify
generic SQL types, called JDBC types. This class is never
instantiated.

DataTuncation An exception that reports a DataTruncation warning (on
reads) or throws a DataTruncation exception (on writes)
when JDBC unexpectedly truncates a data value.

SQLException An exception that provides information on a database access
error or other errors.

SQLWarning An exception that provides information on database access
warnings.

Table 10–6 (Cont.) J2ME CLDC Class and Exception Summary

Classes and Exceptions Description

J2ME Support

JDBC Programming 10-19

10.8.2 J2ME Support for Windows CE
Oracle Database Lite is certified with the following JVMs on Windows Mobile 2003
Second Edition:

■ IBM J9 Websphere Everyplace Micro Environment for Windows Mobile 2003 ARM
Personal Profile

■ Creme JVM, which can be obtained at http://www.nsicom.com

The following sections describe which class to use in connecting to an Oracle Lite
database for each JVM type:

■ Section 10.8.2.1, "Using IBM J9"

■ Section 10.8.2.2, "Using Creme 4.1"

10.8.2.1 Using IBM J9
When using IBM J9, use the DataSource class to connect to an Oracle Lite database,
as shown below:

POLJDBCDataSource dsPolite = new POLJDBCDataSource();
dsPolite.setUrl(DSN);
dsPolite.setUser(UserName);
dsPolite.setPassword(Password)
politeConnection = dsPolite.getConnection();

Perform the following to execute the ExampleClass sample class, which is part of the
ExamplePackage.jar:

j9 -jcl:ppro10 "-Xbootclasspath/p:path\classes.zip;path\jdbcjsr169.jar"
 -classpath "path\jdbcjsr169.jar;\Orace\olite40.jar;path\ExamplePackage.jar"
 ExampleClass

Where the jdbcjsr169.jar file contains the optional JDBC definitions. For more
details, refer to Section 10.8.1.1, "JDBC Driver for J2ME CDC".

10.8.2.2 Using Creme 4.1
When using the Creme 4.1 JVM, use the DriverManager class to connect to an Oracle
Lite database, as shown below:

politeConnection = DriverManager.getConnection(DSN,UserName,Password);

Perform the following command at the Creme Command prompt to execute the
ExampleClass sample class, which is part of the ExamplePackage.jar file:

Note: For a full description of what is supported for each object, see
the Oracle Database Lite API Specification for the Javadoc on these
objects.

Note: The jdbcjsr169.jar can be obtained from the SDK
installation in the <ORACLE_HOME>\Mobile\Sdk\samples\j2me
directory.

Note: Ensure that you replace the path with the correct path to the
required JAR and ZIP files.

J2ME Support

10-20 Oracle Database Lite Developer’s Guide

Creme -Of -classpath '<path>\jdbcjsr169.jar;\Oracle\olite40.jar;
 <path>\ExamplePackage.jar' ExampleClass <command_line_arguments>

Stored Procedures and Triggers 11-1

11
Stored Procedures and Triggers

The following sections describe how to use either Java, C++, or .Net stored procedures
and triggers within the Oracle Database Lite relational model:

■ Section 11.1, "Java Stored Procedure Features in Oracle Database Lite"

■ Section 11.2, "Overview of Java Stored Procedures and Triggers"

■ Section 11.3, "Creating Java Stored Procedures"

■ Section 11.4, "Converting Datatypes Between Java and SQL For Stored Procedures"

■ Section 11.5, "Using Triggers With Java Stored Procedures"

■ Section 11.6, "Creating a Java Stored Procedure That Is Invoked With a Trigger"

■ Section 11.7, "Executing Java Stored Procedures from JDBC"

■ Section 11.8, "Using C++ Stored Procedures"

■ Section 11.9, "Using .Net Stored Procedures"

11.1 Java Stored Procedure Features in Oracle Database Lite
Oracle Database Lite supports the Oracle database server development model for
stored procedures. The "load and publish" development model occurs when you load
the Java class into the Oracle Database Lite database instead of attaching the classes to
tables. To implement a Java stored procedure in the Oracle Lite database, do the
following:

1. Load the Java class into the Oracle Database Lite database with either the
loadjava command-line utility or the SQL statement CREATE JAVA.

2. Publish the methods in the class that you want to call from SQL with a call
specification, which is created with either the CREATE FUNCTION or CREATE
PROCEDURE commands.

Oracle Database Lite supports the traditional model of creating stored procedures. In
the traditional model, you attach the Java class to a table where:

■ The static methods in the class become table-level stored procedures of the table.

■ The non-static (instance) methods become row-level stored procedures.

Note: For more information, see Section 11.3.1, "Using the Load and
Publish Stored Procedure Development Model".

Overview of Java Stored Procedures and Triggers

11-2 Oracle Database Lite Developer’s Guide

The loadjava utility automates the task of loading Java classes into the database.
Using loadjava, you can load Java class, source, and resource files, individually or in
archives.

11.2 Overview of Java Stored Procedures and Triggers
■ Java stored procedure: A Java stored procedure is a Java method that is stored in

Oracle Database Lite. The procedure can be invoked by applications that access
the database. Java stored procedures can return a single value, a row, or multiple
rows.

■ Trigger: A trigger is a stored procedure that executes when a specific event occurs,
such as a row update, insertion, or deletion. An update of a specific column can
also fire a trigger. Triggers, however, cannot return a value. A trigger can operate
at the statement-level or row-level.

■ A statement-level trigger fires once per triggering statement, no matter how
many rows are affected.

■ A row-level trigger fires once for every row affected by the triggering
statement.

11.2.1 Creating Java Stored Procedures
To create a stored procedure, perform the following:

1. Create the class that you want to store in Oracle Database Lite. You can use any
Java IDE to write the procedure, or you can simply reuse an existing procedure
that meets your needs.

When creating the class, consider the following restrictions on calling Java stored
procedures from SQL DML statements:

■ When called from an INSERT, UPDATE, or DELETE statement, the method
cannot query or modify any database tables modified by that statement.

■ When called from a SELECT, INSERT, UPDATE, or DELETE statement, the
method cannot execute SQL transaction control statements, such as COMMIT or
ROLLBACK.

2. Provide your class with a unique name for its deployment environment, since only
one Java Virtual Machine is loaded for each Oracle Database Lite application. If
the application executes methods from multiple databases, then the Java classes
from these databases are loaded into the same Java Virtual Machine. We
recommend that you prefix the Java class name with the database name to ensure
that the Java class names are unique across multiple databases.

3. If you are executing any DML statements in your Java stored procedure, then—in
order for these statements to exist within the same transaction—you must pass an
argument of type java.sql.Connection as the first argument in the method.
You must have the Connection object in order to prepare and execute any
statements. Oracle Database Lite supplies the appropriate argument value of the
Oracle Lite database Connection object for you; the application executing the
method does not need to provide a value for this parameter.

Note: Any SQL statement in a stored procedure that violates a
restriction produces an error at run time.

Creating Java Stored Procedures

Stored Procedures and Triggers 11-3

11.3 Creating Java Stored Procedures
Oracle Database Lite supports the following development models for creating Java
stored procedures:

■ Section 11.3.1, "Using the Load and Publish Stored Procedure Development
Model"

■ Section 11.3.2, "Using the Attached Stored Procedure Development Model"

In addition, see the following sections for additional information about managing your
Java stored procedures:

■ Section 11.3.3, "Calling Java Stored Procedures From a Multithreaded C or C++
Application"

11.3.1 Using the Load and Publish Stored Procedure Development Model
You do not need to publish every procedure that you store in Oracle Database Lite,
only those that should be callable from SQL. Many stored procedures are only called
by other stored procedures, and do not need to be published. The load and publish
model only supports static methods. Perform the following to create Java stored
procedures:

1. Develop a Java class that contains the methods you want to store. Make sure that
the class compiles and executes without errors.

2. Load the Java class into Oracle Database Lite with either the loadjava utility or
the SQL CREATE JAVA command.

3. Publish any static methods in the Java class that you want to make accessible to
SQL by creating call specifications for these methods. By publishing a method, you
associate a SQL name to the method. SQL applications use this name to invoke the
method.

This model is supported by Oracle database, which enables you to utilize skills
and resources you have already developed in implementing Oracle database
enterprise applications and data. There is the following difference:

■ In Oracle Database Lite, you cannot publish a method that is mapped to a
main method.

■ In the Oracle database, call specs that publish main methods are permitted.

4. Invoke the stored procedure through a SQL DML statement.

5. If you no longer intend to use the stored procedure, you can drop it from the
database.

The following sections describe these activities in detail:

■ Section 11.3.1.1, "Loading Java Stored Procedure Classes Into the Oracle Lite
Database"

■ Section 11.3.1.2, "Publishing Stored Procedures to SQL"

Note: The load and publish development model only supports
Java static methods. To store static and non-static (instance)
methods, you must attach the class to database tables, as described
in Section 11.3.2, "Using the Attached Stored Procedure
Development Model".

Creating Java Stored Procedures

11-4 Oracle Database Lite Developer’s Guide

■ Section 11.3.1.3, "Calling Published Stored Procedures"

■ Section 11.3.1.4, "Dropping Published Stored Procedures"

■ Section 11.3.1.5, "Example Using the Load and Publish Model"

11.3.1.1 Loading Java Stored Procedure Classes Into the Oracle Lite Database
To load Java classes into the Oracle Database Lite database, you can use one of the
following:

■ Section 11.3.1.1.1, "loadjava"—The loadjava database command-line utility
automates the task of loading Java classes into Oracle Database Lite and Oracle
databases.

■ Section 11.3.1.1.2, "Using CREATE JAVA"—The SQL statement CREATE JAVA
loads Java classes manually.

11.3.1.1.1 loadjava The loadjava command-line utility creates schema objects from
files and loads them into the database. Schema objects can be created from Java source
files, class files, and resource files. Resource files may be image files, resources, or
anything else a procedure may need to access as data. You can pass files to loadjava
individually, or as ZIP or JAR archive files.

Oracle Database Lite does not keep track of class dependencies. Make sure that you
load into the database, or place in the CLASSPATH, all supporting classes and resource
files required by a stored procedure. To query the classes that are loaded in the
database, you can query the okJavaObj meta class.

Syntax
loadjava {-user | -u} username/password[@database]
 [-option_name -option_name ...] filename filename ...

Arguments
This section discusses the loadjava arguments in detail.

User
The user argument specifies a username, password, and database directory in the
following format:

<user>/<password>[@<database>]

For example:

scott/tiger@ ORACLE_HOME\Mobile\Sdk\OLDB40\Polite.odb

Options
Oracle Database Lite supports the following options that are listed and described in
Table 11–1.

Note: The table name and column names are case sensitive.

Table 11–1 Options

Option Description

-force | -f Forces files to be loaded, even if a schema object with the same
name already exists in the database.

-verbose | -v Directs loadjava to display detailed status messages while
running.

Creating Java Stored Procedures

Stored Procedures and Triggers 11-5

When specifying multiple options, you must separate the options with spaces. For
example:

-force -verbose

The Oracle database supports additional options. If used with Oracle Database Lite,
the additional options are recognized but not supported. Using them does not result in
an error.

To view the options supported by Oracle database, see the loadjava help
information using the following syntax.

loadjava {-help | -h}

Filenames
On the command line, you can specify as many class, source, JAR, ZIP, and resource
files as you like, in any order. You must separate multiple file names with spaces, not
commas. If passed a source file, loadjava invokes the Java compiler to compile the
file before loading it into the database. If passed a JAR or ZIP file, loadjava processes
each file in the JAR or ZIP. It does not create a schema object for the JAR or ZIP
archive. The loadjava utility does not process a JAR or ZIP archive within another
JAR or ZIP archive.

The best way to load files is to place them in a JAR or ZIP and then load the archive.
Loading archives avoids the complications associated with resource schema object
names. If you have a JAR or ZIP that works with the JDK, then you can be sure that
loading it with loadjava also works, and you can avoid the complications associated
with resource schema object naming.

As it loads files into the database, loadjava must create a name for the schema
objects it creates for the files. The names of schema objects differ slightly from
filenames, and different schema objects have different naming conventions. Class files
are self-identifying, so loadjava can map their filenames to the names of schema
objects automatically. Likewise, JAR and ZIP archives include the names of the files
they contain.

However, resource files are not self-identifying; loadjava derives the names of Java
resource schema objects from the literal names you enter on the command-line (or the
literal names in a JAR or ZIP archive). Because classes use resource schema objects
while executing, it is important that you specify the correct resource file names on the
command line.

The best way to load individual resource files is to run loadjava from the top of the
package tree, specifying resource file names relative to that directory. If you decide not
to load resource files from the top of the package tree, you must be aware of how
loadjava derives a name for your resource.

When you load a resource file, loadjava derives the name of the resource schema
object from the file name that you enter on the command line. Suppose you type the
following relative and absolute pathnames on the command line:

cd \scott\javastuff
loadjava options alpha\beta\x.properties

-meta | -m Creates the meta information in the database but does not load
the classes. This is useful when the classes are in a .jar file and
are not loaded into the database.

Table 11–1 (Cont.) Options

Option Description

Creating Java Stored Procedures

11-6 Oracle Database Lite Developer’s Guide

loadjava options \scott\javastuff\alpha\beta\x.properties

Although you have specified the same file with a relative and an absolute pathname,
loadjava creates two schema objects:

■ alpha\beta\x.properties

■ \scott\javastuff\alpha\beta\x.properties.

The loadjava utility generates the resource schema object's name from the file names
you enter.

Classes can refer to resource files relatively (for example, b.properties) or
absolutely (for example, \a\b.properties). To ensure that loadjava and the class
loader use the same name for a schema object, pass loadjava the name of the resource
that the class passes to the java.lang.Object.getResource or
java.lang.Class.getResourceAsStream method.

Instead of remembering whether classes use relative or absolute resource names and
changing directories so that you can enter the correct name on the command line, you
can load resource files into a JAR file, as follows:

cd \scott\javastuff
jar -cf alpharesources.jar alpha*.properties
loadjava options alpharesources.jar

Or, to simplify further, put both the class and resource files in a JAR, which makes the
following invocations equivalent:

loadjava options alpha.jar
loadjava options \scott\javastuff\alpha.jar

Example
The following loads a class and resource file into Oracle Database Lite. It uses the
force option; if the database already contains objects with the specified names,
loadjava replaces them.

c:\> loadjava -u scott/tiger@c:\Olite\Mobile\Sdk\OLDB40\Polite.odb -f Agent.class\
images.dat

11.3.1.1.2 Using CREATE JAVA

To load Java classes manually, use the following syntax:

CREATE [OR REPLACE] [AND RESOLVE] [NOFORCE]
 JAVA {CLASS [SCHEMA <schema_name>] |
 RESOURCE NAMED [<schema_name>.]<primary_name>}
 [<invoker_rights_clause>]
 RESOLVER <resolver_spec>]
 USING BFILE ('<dir_path>', '<class_name>')

The following apply to the CREATE JAVA parameters:

■ The OR REPLACE clause, if specified, recreates the function or procedure if one
with the same name already exists in the database.

■ For compatibility with the Oracle database, Oracle Database Lite recognizes but
ignores the <resolver_spec> clause. Unlike the Oracle database, Oracle
Database Lite does not resolve class dependencies. When loading classes
manually, be sure to load all dependent classes.

■ Oracle Database Lite recognizes, but ignores, <invoker_rights_clause>.

Creating Java Stored Procedures

Stored Procedures and Triggers 11-7

Example
The following demonstrates a CREATE JAVA statement. It loads a class named
Employee into the database.

CREATE JAVA CLASS USING BFILE ('c:\myprojects\java',
 'Employee.class');

11.3.1.2 Publishing Stored Procedures to SQL
After loading the Java class into the Oracle Database Lite database using loadjava or
CREATE JAVA, publish any static method in the class that you want to call from SQL
by creating a call specification for it. The call spec maps the Java method's name,
parameter types, and return types to SQL counterparts.

You do not need to publish every stored procedure, only those that serve as entry
points for your application. In a typical implementation, many stored procedures are
called only by other stored procedures, not by SQL users.

To create a call spec, use the SQL commands CREATE FUNCTION for methods that
return a value or CREATE PROCEDURE for methods that do not return a value. The
CREATE FUNCTION and CREATE PROCEDURE statements have the following syntax:

CREATE [OR REPLACE]
 { PROCEDURE [<schema_name>.]<proc_name> [([<sql_parms>])] |
 FUNCTION [<schema_name>.]<func_name> [([<sql_parms>])]
 RETURN <sql_type> }
 <invoker_rights_clause>
 { IS | AS } LANGUAGE JAVA NAME
 '<java_fullname> ([<java_parms>])
 [return <java_type_fullname>]';
 /

The following apply to this statement's keywords and parameters:

■ <sql_parms> has the following format:

<arg_name> [IN | OUT | IN OUT]
 <datatype>

■ <java_parms> is the fully qualified name of the Java datatype.

■ For compatibility with the Oracle database, Oracle Database Lite recognizes but
ignores the <invoker_rights_clause> clause.

■ <java_fullname> is the fully qualified name of a static Java method.

■ IS and AS are synonymous.

For example, assume the following class has been loaded into the database:

import java.sql.*;
import java.io.*;

public class GenericDrop {
 public static void dropIt (Connection conn, String object_type,
 String object_name) throws SQLException {
 // Build SQL statement
 String sql = "DROP " + object_type + " " + object_name;
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(sql);
 stmt.close();
 } catch (SQLException e) {
 System.err.println(e.getMessage());}

Creating Java Stored Procedures

11-8 Oracle Database Lite Developer’s Guide

 } // dropIt
} // GenericDrop

Class GenericDrop has one method named dropIt, which drops any kind of
schema object. For example, if you pass the arguments "table" and "emp" to dropIt,
the method drops the database table EMP from your schema.

The following call specification publishes the method to SQL:

CREATE OR REPLACE PROCEDURE drop_it (
 obj_type VARCHAR2,
 obj_name VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'GenericDrop.dropIt(java.sql.Connection,
 java.lang.String, java.lang.String)';
 /

Given that you have a table named TEMP defined in your schema, you can execute the
drop_it procedure from SQL Plus as follows.

Select drop_it('TABLE', 'TEMP') from dual;

You can also execute the drop_it procedure from within a ODBC application using
an ODBC CALL statement. For more information, refer Section 11.3.3, "Calling Java
Stored Procedures From a Multithreaded C or C++ Application".

11.3.1.3 Calling Published Stored Procedures
After publishing the stored procedure to SQL, call it with a SQL DML statement. For
example, assume that this class is stored in the database:

public class Formatter {
 public static String formatEmp (String empName, String jobTitle) {
 empName = empName.substring(0,1).toUpperCase() +
 empName.substring(1).toLowerCase();
 jobTitle = jobTitle.trim().toLowerCase();
 if (jobTitle.equals("analyst"))
 return (new String(empName + " is an exempt analyst"));
 else
 return (new String(empName + " is a non-exempt " + jobTitle));
 }
}

Class Formatter has one method named formatEmp, which returns a formatted
string containing an employee's name and job status. Create a call spec for Formatter
as follows:

CREATE OR REPLACE FUNCTION format_emp (ename VARCHAR2, job VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'Formatter.formatEmp (java.lang.String, java.lang.String)
 return java.lang.String';
 /

The call spec publishes the method formatEmp as format_emp. Invoke it as follows:

SELECT FORMAT_EMP(ENAME, JOB) AS "Employees" FROM EMP
 WHERE JOB NOT IN ('MANAGER', 'PRESIDENT') ORDER BY ENAME;

Note: You must fully qualify the Java datatype parameters.

Creating Java Stored Procedures

Stored Procedures and Triggers 11-9

This statement produces the following output:

Employees
--
Adams is a non-exempt clerk
Allen is a non-exempt salesman
Ford is an exempt analyst
James is a non-exempt clerk
Martin is a non-exempt salesman
Miller is a non-exempt clerk
Scott is an exempt analyst
Smith is a non-exempt clerk
Turner is a non-exempt salesman
Ward is a non-exempt salesman

11.3.1.4 Dropping Published Stored Procedures
Oracle Database Lite provides tools and SQL commands for dropping stored
procedures. You should use caution when dropping procedures from the database,
since Oracle Database Lite does not keep track of dependencies between classes. You
must ensure that the stored procedure you drop is not referenced by other stored
procedures. Dropping a class invalidates classes that depend on it directly or
indirectly.

To remove Java stored procedure classes from Oracle Database Lite that were loaded
using the load and publish method, use either of the following:

■ Section 11.3.1.4.1, "Using dropjava" for directions on how to use the dropjava
utility

■ Section 11.3.1.4.2, "Using SQL Commands" for directions on how to use the SQL
DROP JAVA statement

To drop call specifications, use either DROP FUNCTION or DROP PROCEDURE.

11.3.1.4.1 Using dropjava The dropjava command-line utility automates the task of
dropping Java classes from Oracle Database Lite and Oracle databases. dropjava
converts file names into the names of schema objects and drops the schema objects.
Use the following syntax to invoke dropjava:

dropjava {-user | -u} username/password[@database]
 [-option] filename filename ...

Arguments
This section describes the arguments to dropjava.

User
The user argument specifies a username, password, and absolute path to the database
file in the following format:

<user>/<password>[@<database>]

Note: Oracle Database Lite does not support the Oracle database
SQL CALL statement for invoking stored procedures.

For information on calling stored procedures from C and C++
applications, see Section 11.3.3, "Calling Java Stored Procedures
From a Multithreaded C or C++ Application".

Creating Java Stored Procedures

11-10 Oracle Database Lite Developer’s Guide

For example:

scott/tiger@c:\Olite\Mobile\Sdk\OLDB40\Polite.odb

Option
By specifying the verbose option (-verbose | -v), you can direct dropjava to
produce detailed status messages while running.

Oracle database supports additional options. If used with Oracle Database Lite, the
additional options are recognized but not supported. Using them does not result in an
error.

For a complete list of supported and recognized options, from the command prompt
type:

dropjava -help

Filename
For the filename argument, you can specify any number of Java class, source, JAR,
ZIP, and resource files, in any order. JAR and ZIP files must be uncompressed.
dropjava interprets most file names the same way loadjava does:

■ For class files, dropjava finds the class name in the file and drops the
corresponding schema object.

■ For source files, dropjava finds the first class name in the file and drops the
corresponding schema object.

■ For JAR and ZIP files, dropjava processes the archived file names as if they had
been entered on the command line.

If a file name has an extension other than .java, .class, .jar, or .zip, or has no extension,
then dropjava assumes that the file name is the name of a schema object, then drops
all source, class, and resource schema objects with that name. If dropjava encounters
a file name that does not match the name of any schema object, it displays an error
message and then processes the remaining file names.

11.3.1.4.2 Using SQL Commands To drop a Java class from Oracle Database Lite
manually, use the DROP JAVA statement, which has the following syntax:

DROP JAVA { CLASS | RESOURCE } [<schema-name> .]<object_name>

To drop a call specification, use the DROP FUNCTION or DROP PROCEDURE statement:

DROP { FUNCTION | PROCEDURE } [<schema-name>.]<object_name>

The schema name, if specified, is recognized but ignored by Oracle Database Lite.

11.3.1.5 Example Using the Load and Publish Model
The following example creates a Java stored procedure using the load and publish
model.

In this example, you store the Java method paySalary in the Oracle Database Lite.
paySalary computes the take-home salary for an employee.

This example covers the following steps.

■ Step 1: Create the Java Class

■ Step 2: Load the Java Class into the Database

■ Step 3: Publish the Function

Creating Java Stored Procedures

Stored Procedures and Triggers 11-11

■ Step 4: Execute the Function

More examples of Java stored procedures are located in the <ORACLE_
HOME>\Mobile\SDK\samples\jdbc directory.

Step 1: Create the Java Class
Create the Java class Employee in the file Employee.java. The Employee class
implements the paySalary method:

import java.sql.*;
public class Employee {
 public static String paySalary(float sal, float fica, float sttax,
 float ss_pct, float espp_pct) {
 float deduct_pct;
 float net_sal;
 // compute take-home salary
 deduct_pct = fica + sttax + ss_pct + espp_pct;
 net_sal = sal * deduct_pct;
 String returnstmt = "Net salary is " + net_sal;
 return returnstmt;
 } // paySalary
}

Step 2: Load the Java Class into the Database
From mSQL, load the Java class using CREATE JAVA, as follows:

CREATE JAVA CLASS USING BFILE ('c:\myprojects\doc',
'Employee.class');

This command loads the Java class located in c:\myprojects\doc into the Oracle
Database Lite.

Step 3: Publish the Function
Create a call spec for the paySalary method. The following call spec publishes the
Java method paySalary as function pay_salary:

CREATE FUNCTION pay_salary (
sal float, fica float, sttax float, ss_pct float, espp_pct float)
RETURN VARCHAR2
AS LANGUAGE JAVA NAME
'Employee.paySalary(float, float, float, float, float)
return java.lang.String';
/

Step 4: Execute the Function
To execute pay_salary in mSQL:

SELECT pay_salary(6000.00, 0.2, 0.0565, 0.0606, 0.1)
FROM DUAL;

To execute pay_salary in ODBC:

SQLExecDirect(hstm,
 "SELECT pay_salary(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL);

Note: The keyword "public class" should not be used in a
comment before the first public class statement.

Creating Java Stored Procedures

11-12 Oracle Database Lite Developer’s Guide

Because the arguments to pay_salary are constants, the FROM clause specifies the
dummy table DUAL. This SELECT statement produces the following output:

Net salary is 2502.6

11.3.2 Using the Attached Stored Procedure Development Model
You can create Java stored procedures by attaching classes to a table and invoking
methods in the class by name. Using this model, you can store both class-level (static)
methods and object-level (non-static) methods.

For this model, follow these steps:

1. Develop a Java class with the methods you want to store. Make sure that the class
compiles and executes without errors.

2. Attach the class to a table using the SQL ALTER TABLE command. Once the class
is attached, then the methods in the class become table-level or row-level stored
procedures of the table.

3. Invoke methods in the class directly from SQL. Identify the method with table_
name.method_name.

This information is specific to Oracle Database Lite; you cannot attach classes to Oracle
database tables as described here. The load and publish model for developing stored
procedures, described in Section 11.3.1, "Using the Load and Publish Stored Procedure
Development Model", only supports class (static) methods. By attaching classes to
tables, however, you can store and call Java class and instance methods.

The following sections describe the details for attaching and using Java stored
procedures:

■ Section 11.3.2.1, "Attaching a Java Class to a Table"

■ Section 11.3.2.2, "Table-Level Stored Procedures"

■ Section 11.3.2.3, "Row-Level Stored Procedures"

■ Section 11.3.2.4, "Calling Attached Stored Procedures"

■ Section 11.3.2.5, "Dropping Attached Stored Procedures"

■ Section 11.3.2.6, "Example of An Attached Java Stored Procedure"

11.3.2.1 Attaching a Java Class to a Table
To attach a Java class to a table, use the SQL command ALTER TABLE, which has the
following syntax:

ALTER TABLE [schema.]table
 ATTACH JAVA {CLASS|SOURCE} "cls_or_src_name "
 IN {DATABASE|'cls_or_src_path '}
 [WITH CONSTRUCTOR ARGS (col_name_list)]

Where:

■ The cls_or_src_name variable specifies a fully qualified name of a class or
source file. This includes the package name followed by class name, such as

Note: You can attach either a source file or a class file. Source files are
compiled by the Java compiler found in the system path.

Creating Java Stored Procedures

Stored Procedures and Triggers 11-13

Oracle.lite.Customer. Do not include the file extension in the class or source
file name. The name is case-sensitive. If you use lowercase letters, enclose the
name in double quotes (" "). Make sure that the source or class is in the package
specified by cls_or_src_name. For example, the source file of the example class
Customer should contain the line "package Oracle.lite;". The class file is
stored in the database in the same package. Oracle Database Lite creates the
package if it does not already exist.

■ If you have already attached the Java class to another table in the database, you
can use the IN DATABASE clause. If the class has not yet been attached, specify the
directory location of the class or source file in cls_or_src_path.

■ Prior to executing a row-level stored procedure, Oracle Database Lite creates a
Java object for the row, if one does not already exist. If the ALTER TABLE
statement includes a WITH CONSTRUCTOR clause, then Oracle Database Lite
creates the object using the class constructor that is the best match given the
datatypes of the columns included in col_name_list. If the ALTER TABLE
statement does not include a WITH CONSTRUCTOR clause, then Oracle Database
Lite uses the default constructor.

You can use the ODBC functions SQLProcedures and SQLProcedureColumns to
retrieve information about methods defined in a table.

11.3.2.2 Table-Level Stored Procedures
Table-level stored procedures are the static methods of the attached Java class.
Therefore, when executing the method, Oracle Database Lite does not instantiate the
class to which it belongs. In a call statement, you refer to table-level stored procedures
as table_name.method_name.

Statement-level triggers and BEFORE INSERT and AFTER DELETE row-level triggers
(see "Section 11.5.1, "Statement-Level vs. Row-Level Triggers") must be table-level
stored procedures.

11.3.2.3 Row-Level Stored Procedures
Row-level stored procedures are the non-static methods in the attached Java class. To
execute a row-level stored procedure, Oracle Database Lite instantiates the class to
which the procedure belongs. The arguments to the class constructor determine which
column values the constructor uses as parameters to create the class instances. In a call
statement, you refer to row-level stored procedures as method_name (without the
table qualifier). Row-level triggers can indirectly execute row-level stored procedures.

11.3.2.4 Calling Attached Stored Procedures
After attaching the class to a table using the ALTER TABLE statement, you can call it
with a SELECT statement. Refer to table-level stored procedures as table_name.method_
name and row-level procedures as method_name.

For example, to execute a table-level stored procedure:

SELECT table_name.proc_name[arg_list]
 FROM {DUAL|[schema.]table WHERE condition};

The proc_name is the name of the table-level stored procedure. Each argument in
arg_list is either a constant or a reference to a column in the table. If all the
arguments of arg_list are constants, the FROM clause should reference the dummy
table DUAL.

Execute a row-level stored procedure as follows:

Creating Java Stored Procedures

11-14 Oracle Database Lite Developer’s Guide

SELECT [schema.]proc_name[arg_list]
 FROM [schema.]table
 WHERE condition;

If you call a procedure in the form table_name.method_name, and a table or method with
that name does not exist, Oracle Database Lite assumes that table_name refers to a
schema name and method_name refers to a procedure name. If you reference method_
name only, Oracle Database Lite assumes that the referenced method is a row-level
procedure. If there is no such procedure defined, however, Oracle Database Lite
assumes that method_name refers to a procedure in the current schema.

11.3.2.5 Dropping Attached Stored Procedures
Oracle Database Lite provides tools and SQL commands for dropping stored
procedures. You should use caution when dropping procedures from the database,
since Oracle Database Lite does not keep track of dependencies between classes. You
must ensure that the stored procedure you drop is not referenced by other stored
procedures. Dropping a class invalidates classes that depend on it directly or
indirectly.

You use the ALTER TABLE command to drop stored procedures, which has the
following syntax:

ALTER TABLE [schema.]table
 DETACH [AND DELETE] JAVA CLASS "class_name"

Detaching the Java class does not delete it from the database. To delete the Java class
file from the database, use the DETACH AND DELETE statement.

If you delete a Java class from the database after invoking it as a stored procedure or
trigger, the class remains in the Java Virtual Machine attached to the application. To
unload the class from the Java Virtual Machine, commit changes to the database, if
necessary, and close all applications connected to the database. To replace a Java class,
you must close all connections to the database and reload the class.

11.3.2.6 Example of An Attached Java Stored Procedure
The following example shows how to create a Java stored procedure in Oracle
Database Lite. In this example, you attach the Java method paySalary to the table
EMP. paySalary computes the take-home salary for an employee.

This example covers the following steps:

■ Step 1: Create the Table

■ Step 2: Create the Java Class

Note: Oracle Database Lite does not support the Oracle8i SQL
CALL statement for invoking stored procedures.

You can use a callable statement to execute a procedure from ODBC
or JDBC applications. For more information, see Chapter 10, "JDBC
Programming" or Section 11.3.3, "Calling Java Stored Procedures
From a Multithreaded C or C++ Application".

Note: You must enclose the class name in double quotes (" ") if it
contains lowercase letters.

Creating Java Stored Procedures

Stored Procedures and Triggers 11-15

■ Step 3: Attach the Java Class to the Table

■ Step 4: Execute the Method

Step 1: Create the Table
Create the table using the following SQL command:

CREATE TABLE EMP(Col1 char(10));

Step 2: Create the Java Class
Create the Java class Employee in the file Employee.java. The Employee class
implements the paySalary method:

import java.sql.*;
public class Employee {
 public static String paySalary(float sal, float fica, float sttax,
 float ss_pct, float espp_pct) {
 float deduct_pct;
 float net_sal;
 // compute take-home salary
 deduct_pct = fica + sttax + ss_pct + espp_pct;
 net_sal = sal * deduct_pct;
 String returnstmt = "Net salary is " + net_sal;
 return returnstmt;
 } // paySalary
}

Step 3: Attach the Java Class to the Table
From mSQL, attach the Java class using the ALTER TABLE command:

ALTER TABLE EMP ATTACH JAVA SOURCE "Employee" IN 'C:\tmp';

This command attaches the Java source file for the Employee class, which resides in
the directory C:\tmp, to the EMP table.

Step 4: Execute the Method
To execute the paySalary method in mSQL, type the following statement:

SELECT EMP."paySalary"(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL;

To execute paySalary from ODBC, invoke SQLExecDirect:

SQLExecDirect(hstm,
 "SELECT EMP.\"paySalary\"(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL);

This statement produces the following result:

Net salary is 2502.6

11.3.3 Calling Java Stored Procedures From a Multithreaded C or C++ Application
When invoking a Java stored procedure from a multithreaded C or C++ application,
you should load jvm.dll from the application's main function. This resolves a
problem that occurs with the Java Virtual Machine's garbage collection when a C or
C++ application creates multiple threads that invoke a stored procedure directly or
indirectly. The Java Virtual Machine runs out of memory because the threads do not
detach from the Java Virtual Machine before exiting. Since Oracle Database Lite cannot

Converting Datatypes Between Java and SQL For Stored Procedures

11-16 Oracle Database Lite Developer’s Guide

determine whether the Java Virtual Machine or the user application created the thread,
it does not attempt to detach them.

The main function should load the library before taking any other action, as follows:

int main (int argc, char** argv)
{
 LoadLibrary("jvm.dll");
 ...
}

The library loads the Java Virtual Machine into the application's main thread. It
attempts to detach any thread from the Java Virtual Machine if the thread detaches
from the process. The jvm.dll behaves correctly even if the thread is not attached to
a Java Virtual Machine.

11.4 Converting Datatypes Between Java and SQL For Stored Procedures
Oracle Database Lite performs type conversion between Java and SQL datatypes
according to standard SQL rules. For example, if you pass an integer to a stored
procedure that takes a string, Oracle Database Lite converts the integer to a string. For
information about row-level triggers arguments, see Section 11.5.5, "Trigger
Arguments". For a complete list of Java to SQL datatype mappings, see Section 10.5.1,
"Mapping Datatypes Between Java and Oracle".

Java does not allow a method to change the value of its arguments outside the scope of
the method. However, Oracle Database Lite supports IN, OUT, and IN/OUT
parameters.

Many Java datatypes are immutable or do not support NULL values. To pass NULL
values and use IN/OUT parameters for those datatypes, a stored procedure can use an
array of that type or use the equivalent object type. Table 11–2 shows the Java integer
datatypes you can use to enable an integer to be an IN/OUT parameter or carry a NULL
value.

You can use mutable Java datatypes, such as Date, to pass a NULL or an IN/OUT
parameter. However, use a Date array if a stored procedure needs to change the NULL
status of its argument.

Note: In Oracle database, DATE columns are created as
TIMESTAMP. Also, note that TIMESTAMP WITH TIME ZONE data
type is not supported.

You must specify trigger methods accordingly.

Table 11–2 The Java Integer Datatypes

Java Argument Can Be IN/OUT Can Be NULL

int No No

int[] Yes Yes

Integer No Yes

Integer[] Yes Yes

int[][] Yes Yes

Converting Datatypes Between Java and SQL For Stored Procedures

Stored Procedures and Triggers 11-17

11.4.1 Declaring Parameters for Java Stored Procedures
The return value of a Java method is the OUT parameter of the procedure. A primitive
type or immutable reference type can be an IN parameter. A mutable reference type or
array type can be an IN/OUT parameter. Table 11–3 shows the Java type to use to
make the corresponding Oracle Database Lite parameter an IN/OUT parameter.

If the stored procedure takes a java.sql.Connection, Oracle Database Lite
automatically supplies the argument using the value of the current transaction or row.
This argument is the first argument passed to the procedure.

11.4.2 Using Stored Procedures to Return Multiple Rows
You can use stored procedures to return multiple rows. You can invoke stored
procedures that return multiple rows only from JDBC or ODBC applications, however.
For a stored procedure to return multiple rows, its corresponding Java method must
return a java.sql.ResultSet object. By executing a SELECT statement, the Java
method obtains a ResultSet object to return. The column names of the ResultSet
are specified in the SELECT statement. If you need to address the result columns by
different names than those used in the table, the SELECT statement should use aliases
for the result columns. For example:

SELECT emp.name Name, dept.Name Dept
 FROM emp, dept
 WHERE emp.dept# = dept.dept#;

Because the return type of a stored procedure that returns multiple rows must be
java.sql.ResultSet, the signature of that stored procedure cannot be used to
obtain the column names or types of the result. Consequently, you should design
additional tables to track the column names or result types for the stored procedures.
For example, if you embed the preceding SELECT statement in a Java method, the
method return type should be java.sql.ResultType, not char Name and char
Dept.

Note: Passing a NULL when the corresponding Java argument
cannot be NULL causes an error.

Table 11–3 Java Types for Oracle Database Lite IN/OUT Parameters

For IN/OUT parameters
of type... Use...

Number Integer[] or int[]

Binary byte[] or byte[][]

String string[]

Note: You can only create Java stored procedures that return
multiple rows using the attached stored procedure development
model, described in Section 11.3.2, "Using the Attached Stored
Procedure Development Model".

Using Triggers With Java Stored Procedures

11-18 Oracle Database Lite Developer’s Guide

11.4.2.1 Returning Multiple Rows in ODBC
To execute a stored procedure that returns multiple rows in an OBDC application, use
the following CALL statement, in which P is the name of the stored procedure and a1
through an are arguments to the stored procedure.

{CALL P(a1,...,an)}

You use a marker (?) for any argument that should be bound to a value before the
statement executes. When the statement executes, the procedure runs and the cursor
on the result set is stored in the statement handle. Subsequent fetches using this
statement handle return the rows from the procedure.

After you execute the CALL statement, use SQLNumResultCols to find the number of
columns in each row of the result. Use the SQLDescribeCol function to return the
column name and datatype.

11.4.2.2 Example
The following example shows how to use ODBC to execute a stored procedure that
returns multiple rows. This example does not use the SQLNumResultCols or
SQLDescribeCol functions. It assumes that you have created a stored procedure,
which you have published to SQL as PROC. PROC takes an integer as an argument.

rc = SQLPrepare(StmtHdl, "{call PROC(?)}", SQL_NTS);
CHECK_STMT_ERR(StmtHdl, rc, "SQLPrepare");

rc = SQLBindParameter(StmtHdl, 1, SQL_PARAM_INPUT_OUTPUT,
 SQL_C_LONG,SQL_INTEGER, 0, 0, &InOutNum, 0, NULL);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindParameter");

rc = SQLExecute(StmtHdl);
CHECK_STMT_ERR(StmtHdl, rc, "SQLExecute");

/* you can use SQLNumResultCols and SQLDescribeCol here */

rc = SQLBindCol(StmtHdl, 1, SQL_C_CHAR, c1, 20, &pcbValue1);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindCol");

rc = SQLBindCol(StmtHdl, 2, SQL_C_CHAR, c2, 20, &pcbValue2);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindCol");

while ((rc = SQLFetch(StmtHdl)) != SQL_NO_DATA_FOUND) {
 CHECK_STMT_ERR(StmtHdl, rc, "SQLFetch");
 printf("%s, %s\n", c1, c2);
}

11.5 Using Triggers With Java Stored Procedures
Triggers are stored procedures that execute, or "fire", when a specific event occurs. A
trigger can fire when a column is updated, or when a row is added or deleted. The
trigger can fire before or after the event.

Triggers are commonly used to enforce a database's business rules. For example, a
trigger can verify input values and reject an illegal insert. Similarly, a trigger can
ensure that all tables depending on a particular row are brought to a consistent state
before the row is deleted.

■ Section 11.5.1, "Statement-Level vs. Row-Level Triggers"

■ Section 11.5.2, "Creating Triggers"

Using Triggers With Java Stored Procedures

Stored Procedures and Triggers 11-19

■ Section 11.5.3, "Dropping Triggers"

■ Section 11.5.4, "Trigger Example"

■ Section 11.5.5, "Trigger Arguments"

■ Section 11.5.6, "Trigger Arguments Example"

11.5.1 Statement-Level vs. Row-Level Triggers
There are two types of triggers: row-level and statement-level. A row-level trigger is
fired once for each row affected by the change to the database. A statement-level
trigger fires only once, even if multiple rows are affected by the change.

The BEFORE INSERT and AFTER DELETE triggers can only fire table-level stored
procedures, since a row object cannot be instantiated to call the procedures. The
AFTER INSERT, BEFORE DELETE, and UPDATE triggers may fire table-level or
row-level stored procedures.

11.5.2 Creating Triggers
Use the CREATE TRIGGER statement to create a trigger. The CREATE TRIGGER
statement has the following syntax:

CREATE [OR REPLACE] TRIGGER trigger_name {BEFORE | AFTER} [{INSERT | DELETE |
 UPDATE [OF column_list]} [OR]] ON table_reference
 [FOR EACH ROW] procedure_ref
 (arg_list)

In the CREATE TRIGGER syntax:

■ Use the OR clause to specify multiple triggering events.

■ Use FOR EACH ROW to create a row-level trigger. For a table-level trigger, do not
include this clause.

■ Use procedure_ref to identify the stored procedure to execute.

You can create multiple triggers of the same kind for a table if each trigger has a
unique name within a schema.

In the following example, assume that you have stored and published a procedure as
PROCESS_NEW_HIRE. The trigger AIEMP fires every time a row is inserted into the
EMP table.

CREATE TRIGGER AIEMP AFTER INSERT ON EMP FOR EACH ROW
 PROCESS_NEW_HIRE(ENO);

UPDATE triggers that use the same stored procedure for different columns of a table
are fired only once when a subset of the columns is modified within a statement. For
example, the following statement creates a BEFORE UPDATE trigger on table T, which
has columns C1, C2, and C3:

CREATE TRIGGER T_TRIGGER BEFORE UPDATE OF C1,C2,C3 ON T
 FOR EACH ROW trigg(old.C1,new.C1,old.C2,new.C2,
 old.C3,new.C3);

This update statement fires T_TRIGGER only once:

UPDATE T SET C1 = 10, C2 = 10 WHERE ...

Using Triggers With Java Stored Procedures

11-20 Oracle Database Lite Developer’s Guide

11.5.2.1 Enabling and Disabling Triggers
When you create a trigger, it is automatically enabled. To disable triggers, use the
ALTER TABLE or ALTER TRIGGER statement.

To enable or disable individual triggers, use the ALTER TRIGGER statement, which
has the following syntax:

ALTER TRIGGER <trigger_name> {ENABLE | DISABLE}

To enable or disable all triggers attached to a table, use ALTER TABLE:

ALTER TABLE <table_name> {ENABLE | DISABLE} ALL TRIGGERS

11.5.3 Dropping Triggers
To drop a trigger, use the DROP TRIGGER statement, which has the following syntax:

DROP TRIGGER [schema.]trigger

11.5.4 Trigger Example
This example creates a trigger. It follows the development model described in
Section 11.3.2, "Using the Attached Stored Procedure Development Model". For an
example of creating triggers using the load and publish model, see Section 11.5.6,
"Trigger Arguments Example". In the example, you first create a table and a Java class.
Then you attach the class to the table. And finally, you create and fire the trigger.

The SalaryTrigger class contains the check_sal_raise method. The method
prints a message if an employee gets a salary raise of more than ten percent. The
trigger fires the method before updating a salary in the EMP table.

Since check_sal_raise writes a message to standard output, use mSQL to issue the
mSQL commands in the example. To start mSQL, invoke the Command Prompt and
enter the following.

msql username/password@connect_string

connect_string is JDBC URL syntax. For example, to connect to the default
database as user SYSTEM, at the Command Prompt.

msql system/passwd@jdbc:polite:polite

At the mSQL command line, create and populate the EMP table as follows.

CREATE TABLE EMP(E# int, name char(10), salary real,
 Constraint E#_PK primary key (E#));

INSERT INTO EMP VALUES (123,'Smith',60000);
INSERT INTO EMP VALUES (234,'Jones',50000);

Place the following class in SalaryTrigger.java:

class SalaryTrigger {
 private int eno;
 public SalaryTrigger(int enum) {
 eno = enum;
 }
 public void check_sal_raise(float old_sal,
 float new_sal)
 {
 if (((new_sal - old_sal)/old_sal) > .10)
 {

Using Triggers With Java Stored Procedures

Stored Procedures and Triggers 11-21

 // raise too high do something here
 System.out.println("Raise too high for employee " + eno);
 }
 }
}

The SalaryTrigger class constructor takes an integer, which it assigns to attribute
eno (the employee number). An instance of SalaryTrigger is created for each row
(that is, for each employee) in the table EMP.

The check_sal_raise method is a non-static method. To execute, it must be called
by an object of its class. Whenever the salary column of a row in EMP is modified, an
instance of SalaryTrigger corresponding to that row is created (if it does not
already exist) with the employee number (E#) as the argument to the constructor. The
trigger then calls the check_sal_raise method.

After creating the Java class, you attach it to the table, as follows:

ALTER TABLE EMP ATTACH JAVA SOURCE "SalaryTrigger" IN '.'
 WITH CONSTRUCTOR ARGS(E#);

This statement directs Oracle Database Lite to compile the Java source file
SalaryTrigger.java found in the current directory, and attach the resulting class
to the EMP table. The statement also specifies that, when instantiating the class, Oracle
Database Lite should use the constructor that takes as an argument the value in the E#
column.

After attaching the class to the table, create the trigger as follows:

CREATE TRIGGER CHECK_RAISE BEFORE UPDATE OF SALARY ON EMP FOR EACH ROW
 "check_sal_raise"(old.salary, new.salary);
/

This statement creates a trigger called check_raise, which fires the check_sal_
raise method before any update to the salary column of any row in EMP. Oracle
Database Lite passes the old value and the new value of the salary column as
arguments to the method.

In the example, a row-level trigger fires a row-level procedure (a non-static method). A
row-level trigger can also fire table-level procedures (static methods). However,
because statement-level triggers are fired once for an entire statement and a statement
may affect multiple rows, a statement-level trigger can only fire a table-level
procedure.

The following command updates the salary and fires the trigger:

UPDATE EMP SET SALARY = SALARY + 6100 WHERE E# = 123;

This produces the following output:

Raise too high for employee 123

11.5.5 Trigger Arguments
If using attached stored procedures, as described in Section 11.3.2, "Using the Attached
Stored Procedure Development Model", row-level triggers do not support Java-to-SQL
type conversion. Therefore, the Java datatype of a trigger argument must match the
corresponding SQL datatype (shown in section Section 11.4, "Converting Datatypes
Between Java and SQL For Stored Procedures") of the trigger column. However, if you
are using the load and publish model, Oracle Database Lite supports datatype casting.

Table 11–4 describes how trigger arguments work in each type of column.

Using Triggers With Java Stored Procedures

11-22 Oracle Database Lite Developer’s Guide

11.5.6 Trigger Arguments Example
The following example shows how to create triggers that use IN/OUT parameters.

1. First, create the Java class EMPTrigg.

import java.sql.*;

public class EMPTrigg {
 public static final String goodGuy = "Oleg";

 public static void NameUpdate(String oldName, String[] newName)
 {
 if (oldName.equals(goodGuy))
 newName[0] = oldName;
 }

 public static void SalaryUpdate(String name, int oldSalary,
 int newSalary[])
 {
 if (name.equals(goodGuy))
 newSalary[0] = Math.max(oldSalary, newSalary[0])*10;
 }

 public static void AfterDelete(Connection conn,
 String name, int salary) {
 if (name.equals(goodGuy))
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(
 "insert into employee values('" + name + "', " +
 salary + ")");
 stmt.close();
 } catch(SQLException e) {}
 }
 }

2. Create a new table EMPLOYEE and populate it with values.

CREATE TABLE EMPLOYEE(NAME VARCHAR(32), SALARY INT);
INSERT INTO EMPLOYEE VALUES('Alice', 100);
INSERT INTO EMPLOYEE VALUES('Bob', 100);
INSERT INTO EMPLOYEE VALUES('Oleg', 100);

3. Next, load the class into Oracle Database Lite.

CREATE JAVA CLASS USING BFILE ('c:\myprojects', 'EMPTrigg.class');

Table 11–4 Trigger Arguments

Trigger Argument New Column Access Old Column Access

insert Yes No

delete No Yes

update Yes Yes

Note: Triggers that have a java.sql.Connection object as an
argument may be used only with applications that use the
relational model.

Creating a Java Stored Procedure That Is Invoked With a Trigger

Stored Procedures and Triggers 11-23

4. Use the CREATE PROCEDURE statement to publish the EMPTrigg methods that
you want to call:

CREATE PROCEDURE NAME_UPDATE(
 OLD_NAME IN VARCHAR2, NEW_NAME IN OUT VARCHAR2)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.NameUpdate(java.lang.String, java.lang.String[])';
 /

CREATE PROCEDURE SALARY_UPDATE(
 ENAME VARCHAR2, OLD_SALARY INT, NEW_SALARY IN OUT INT)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.SalaryUpdate(java.lang.String, int, int[])';
 /

CREATE PROCEDURE AFTER_DELETE(
 ENAME VARCHAR2, SALARY INT)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.AfterDelete(java.sql.Connection,
 java.lang.String, int)';
 /

5. Now, create a trigger for each procedure:

CREATE TRIGGER NU BEFORE UPDATE OF NAME ON EMPLOYEE FOR EACH ROW
 NAME_UPDATE(old.name, new.name);

CREATE TRIGGER SU BEFORE UPDATE OF SALARY ON EMPLOYEE FOR EACH ROW
 SALARY_UPDATE(name, old.salary, new.salary);

CREATE TRIGGER AD AFTER DELETE ON EMPLOYEE FOR EACH ROW
 AFTER_DELETE(name, salary);

6. Enter the following commands to fire the triggers and view the results:

SELECT * FROM EMPLOYEE;
UPDATE EMPLOYEE SET SALARY=0 WHERE NAME = 'Oleg';
SELECT * FROM EMPLOYEE;

DELETE FROM EMPLOYEE WHERE NAME = 'Oleg';
SELECT * FROM EMPLOYEE;

UPDATE EMPLOYEE SET NAME='TEMP' WHERE NAME = 'Oleg';
DELETE FROM EMPLOYEE WHERE NAME = 'TEMP';

SELECT * FROM EMPLOYEE;

11.6 Creating a Java Stored Procedure That Is Invoked With a Trigger
In this tutorial, you create a Java class EMAIL, load the class into Oracle Database Lite,
publish its method to SQL, and create a trigger for the method. The EMAIL class
appears in the source file EMAIL.java, and is available in the Java examples directory
at the following location.

<ORACLE_HOME>\Mobile\Sdk\Samples\JDBC

EMAIL has a method named assignEMailAddress, which generates an email
address for an employee based on the first letter of the employee's first name and up
to seven letters of the last name. If the address is already assigned, the method

Creating a Java Stored Procedure That Is Invoked With a Trigger

11-24 Oracle Database Lite Developer’s Guide

attempts to find a unique email address using combinations of letters in the first and
last name.

After creating the class, you load it into Oracle Database Lite using mSQL. For this
example you use the SQL statement CREATE JAVA. Alternatively, you can use the
loadjava utility to load the class into Oracle Database Lite. After loading the class,
you publish the assignEMailAddress method to SQL.

Finally, you create a trigger that fires the assignEMailAddress method whenever a
row is inserted into T_EMP, the table that contains the employee information.

As arguments, assignEMailAddress takes a JDBC connection object, the
employee's identification number, first name, middle initial, and last name. Oracle
Database Lite supplies the JDBC connection object argument. You do not need to
provide a value for the connection object when you execute the method.
assignEMailAddress uses the JDBC connection object to ensure that the generated
e-mail address is unique.

■ Section 11.6.1, "Start mSQL"

■ Section 11.6.2, "Create a Table"

■ Section 11.6.3, "Create a Java Class"

■ Section 11.6.4, "Load the Java Class File"

■ Section 11.6.5, "Publish the Stored Procedure"

■ Section 11.6.6, "Populate the Database"

■ Section 11.6.7, "Execute the Procedure"

■ Section 11.6.8, "Verify the Email Address"

■ Section 11.6.9, "Create a Trigger"

■ Section 11.6.10, "Commit or Roll Back"

11.6.1 Start mSQL
Start mSQL and connect to the default Oracle Database Lite. Since the Java application
in this tutorial prints to standard output, use the DOS version of mSQL. From a DOS
prompt, type:

msql system/mgr@jdbc:polite:polite

The SQL prompt should appear.

11.6.2 Create a Table
To create a table, type:

CREATE TABLE T_EMP(ENO INT PRIMARY KEY,
 FNAME VARCHAR(20),
 MI CHAR,
 LNAME VARCHAR(20),
 EMAIL VARCHAR(8));

11.6.3 Create a Java Class
Create and compile the Java class EMAIL in the file EMAIL.java in C:\tmp.
EMAIL.java implements the assignEMailAddress method. The code sample
given below lists the contents of this file. You can copy this file from the following
location.

Creating a Java Stored Procedure That Is Invoked With a Trigger

Stored Procedures and Triggers 11-25

<ORACLE_HOME>\Mobile\Sdk\Samples\JDBC

import java.sql.*;

public class EMAIL {
 public static void assignEMailAddress(Connection conn,
 int eno, String fname,String lname)
 throws Exception
 {
 Statement stmt = null;
 ResultSet retset = null;
 String emailAddr;
 int i,j,fnLen, lnLen, rowCount;

 /* create a statement */
 try {
 stmt = conn.createStatement();
 }
 catch (SQLException e)
 {
 System.out.println("conn.createStatement failed: " +
 e.getMessage() + "\n");
 System.exit(0);
 }
 /* check fname and lname */
 fnLen = fname.length();
 if(fnLen > 8) fnLen = 8;
 if (fnLen == 0)
 throw new Exception("First name is required");
 lnLen = lname.length();
 if(lnLen > 8) lnLen = 8;
 if (lnLen == 0)
 throw new Exception("Last name is required");
 for (i=1; i <= fnLen; i++)
 {
 /* generate an e-mail address */
 j = (8-i) > lnLen? lnLen:8-i;
 emailAddr =
 new String(fname.substring(0,i).toLowerCase()+
 lname.substring(0,j).toLowerCase());
 /* check if this e-mail address is unique */
 try {
 retset = stmt.executeQuery(
 "SELECT * FROM T_EMP WHERE email = '"+
 emailAddr+"'");
 if(!retset.next()) {
 /* e-mail address is unique;
 * so update the email column */
 retset.close();
 rowCount = stmt.executeUpdate(
 "UPDATE T_EMP SET EMAIL = '"
 + emailAddr + "' WHERE ENO = "
 + eno);
 if(rowCount == 0)
 throw new Exception("Employee "+fname+ " " +
 lname + " does not exist");
 else return;
 }
 }
 catch (SQLException e) {
 while(e != null) {

Creating a Java Stored Procedure That Is Invoked With a Trigger

11-26 Oracle Database Lite Developer’s Guide

 System.out.println(e.getMessage());
 e = e.getNextException();
 }
 }
 }
 /* Can't find a unique name */
 emailAddr = new String(fname.substring(0,1).toLowerCase() +
 lname.substring(0,1).toLowerCase() + eno);
 rowCount = stmt.executeUpdate(
 "UPDATE T_EMP SET EMAIL = '"
 + emailAddr + "' WHERE ENO = "
 + eno);
 if(rowCount == 0)
 throw new Exception("Employee "+fname+ " " +
 lname + " does not exist");
 else return;
 }
}

11.6.4 Load the Java Class File
To load the EMAIL class file into Oracle Database Lite, type:

CREATE JAVA CLASS USING BFILE
 ('c:\tmp', 'EMAIL.class');

If you want to make changes to the class after loading it, you need to:

1. Drop the class from the database, using dropjava or DROP JAVA CLASS

2. Commit your work

3. Exit mSQL

4. Restart mSQL

This unloads the class from the Java Virtual Machine.

11.6.5 Publish the Stored Procedure
You make the stored procedure callable from SQL by creating a call specification (call
spec) for it. Since assignEMailAddress does not return a value, use the CREATE
PROCEDURE command, as follows:

CREATE OR REPLACE PROCEDURE
 ASSIGN_EMAIL(E_NO INT, F_NAME VARCHAR2, L_NAME VARCHAR2)
 AS LANGUAGE JAVA NAME 'EMAIL.assignEMailAddress(java.sql.Connection,
int, java.lang.String,
 java.lang.String)';

11.6.6 Populate the Database
Insert a row into T_EMP:

INSERT INTO T_EMP VALUES(100,'John','E','Smith',null);

11.6.7 Execute the Procedure
To execute the procedure, type:

SELECT ASSIGN_EMAIL(100,'John','Smith')
 FROM dual

Executing Java Stored Procedures from JDBC

Stored Procedures and Triggers 11-27

11.6.8 Verify the Email Address
To see the results of the ASSIGN_EMAIL procedure, type:

SELECT * FROM T_EMP;

This command produces the following output:

 ENO FNAME M LNAME EMAIL
 ---- ------------------ - -------------------- --------
 100 John E Smith jsmith

11.6.9 Create a Trigger
To make ASSIGN_EMAIL execute whenever a row is inserted into T_EMP, create an
AFTER INSERT trigger for it. Create the trigger as follows:

CREATE TRIGGER EMP_TRIGG AFTER INSERT ON T_EMP FOR EACH ROW
 ASSIGN_EMAIL(eno,fname,lname);

A trigger named EMP_TRIGG fires every time a row is inserted into T_EMP. The actual
arguments for the procedure are the values of the columns eno, fname, and lname.

You do not need to specify a connection argument.

11.6.9.1 Testing the Trigger
Test the trigger by inserting a row into T_EMP:

INSERT INTO T_EMP VALUES(200,'James','A','Smith',null);

11.6.9.2 Verify the Email Address
Issue a SELECT statement to verify that the trigger has fired:

SELECT * FROM T_EMP;
 ENO FNAME M LNAME EMAIL
 --- -------------------- - -------------------- --------
 100 John E Smith jsmith
 200 James A Smith jasmith

11.6.10 Commit or Roll Back
Finally, commit your changes to preserve your work, or roll back to cancel changes.

11.7 Executing Java Stored Procedures from JDBC
After creating a Java stored procedures, you can execute the procedure from a JDBC
application by performing one of the following:

■ Pass a SQL SELECT string, which executes the stored procedure, to the
Statement.executeQuery method.

■ Use a JDBC CallableStatement.

The executeQuery method executes table-level and row-level stored procedures.
CallableStatement currently only supports execution of table-level stored
procedures.

11.7.1 Using the executeQuery Method
To call a stored procedure using the executeQuery method, perform the following:

Executing Java Stored Procedures from JDBC

11-28 Oracle Database Lite Developer’s Guide

1. Create a Statement object and assign the value returned by the
createStatement method with the current connection object.

2. Execute the Statement.executeQuery method, passing the SQL SELECT
string that invokes the Java stored procedure.

The following example executes a row-level procedure SHIP on a table named
INVENTORY with the argument value stored in the variable q. The variable p contains
the product ID for the product (row) for which you want to execute the stored
procedure.

int res = 0;
Statement s = conn.createStatement();
ResultSet r = s.executeQuery("SELECT SHIP(" + q + ")" +
 "FROM INVENTORY WHERE PID = " + p);
if(r.next()) res = r.getInt(1);
r.close();
s.close();
return res;

If you need to execute a procedure repeatedly with varying parameters, use
PreparedStatement instead of Statement. Because the SQL statements in a
PreparedStatement are pre-compiled, a PreparedStatement executes more
efficiently. Additionally, a PreparedStatement can accept IN parameters,
represented in the statement with a question mark (?). However, if the
PreparedStatement takes a long type parameter, such as LONG or LONG RAW, you
must bind the parameter using the setAsciiStream, setUnicodeStream, or
setBinaryStream methods.

In the preceding example, if the SHIP procedure updates the database and the
isolation of the transaction that issues the above query is READ COMMITTED, then you
must append the FOR UPDATE clause to the SELECT statement, as follows:

"SELECT SHIP(" + q + ")" +
 FROM INVENTORY WHERE PID = " +
 p + "FOR UPDATE");

11.7.2 Using a Callable Statement
To execute the stored procedure using a callable statement, create a
CallableStatement object and register its parameters, as follows:

CallableStatement cstmt = conn.prepareCall(
 "{?=call tablename.methodname() }");
cstmt.registerOutParameter(1, ...);
cstmt.executeUpdate();
cstmt.get..(1);
cstmt.close();

The following restrictions apply to JDBC callable statements:

■ JDBC callable statements can only execute table-level stored procedures.

■ Both IN and OUT parameters are supported. However, not all Java datatypes can
be used as OUT parameters. For more information, see Section 11.4, "Converting
Datatypes Between Java and SQL For Stored Procedures".

■ Procedure names correspond to the Java method names, and are case-sensitive.

■ As with prepared statements, if the callable statement has a "long" type, such as:
LONG, LONG VARBINARY, LONG VARCHAR, LONG VARCHAR2, or LONG RAW, you

Using C++ Stored Procedures

Stored Procedures and Triggers 11-29

must bind the parameter using the setAsciiStream, setUnicodeStream, or
setBinaryStream methods.

11.8 Using C++ Stored Procedures
A C++ stored procedure is a C++ procedure or function that exists in a DLL outside of
Oracle Database Lite. The procedure can be invoked by applications that access the
database. C++ stored procedures can return a single value, a row, or multiple rows.

The following sections describe how to create, build, and publish a C++ stored
procedure:

■ Section 11.8.1, "Creating C++ Stored Procedures"

■ Section 11.8.2, "Building Your C++ Stored Procedures"

■ Section 11.8.3, "Publish Your C++ Stored Procedure"

■ Section 11.8.4, "C++ Stored Procedure Example"

11.8.1 Creating C++ Stored Procedures
When you are creating a C++ stored procedure, you use SODA APIs to access the
database and transaction objects. This section demonstrates how to develop your C++
stored procedures.

■ Section 11.8.1.1, "C++ Stored Procedure Include File and Procedure Definition"

■ Section 11.8.1.2, "Access SODA Objects Within Your C++ Stored Procedure"

11.8.1.1 C++ Stored Procedure Include File and Procedure Definition
When you create the C++ source file, remember to do the following:

■ Include the olcsp.h include file.

■ The following defines the stored procedure or function prototypes. For each, you
can have up to 32 parameters.

– C++ stored procedure prototype:

OL_CSP_CALL void cproc (const DBData &d1, const DBData &d2, ... , DBData
&dN)

– C++ stored function prototype:

OL_CSP_CALL DBData cproc (const DBData &d1, const DBData &d2, ... , DBData
&dN)

■ Use OL_CSP_CALL before all of your procedures and functions, as it defines these
as extern "C" __declspec(dllexport). This enables the procedures and
functions to be called from outside the DLL. For example, the following sum
procedure uses this declaration:

OL_CSP_CALL void sum (const DBData &a, const DBData &b, DBData &r)

■ You can use the DBData object to represent almost any database type. In addition,
it is easily cast to the correct datatype. For input parameters in the procedures, you

Note: When no longer needed, you should reclaim system
resources by closing JDBC objects, such as Resultset and
Statement objects.

Using C++ Stored Procedures

11-30 Oracle Database Lite Developer’s Guide

can use const DBData &. For input/output parameters, use DBData & as the
definition of the parameter.

Once inside the procedure, cast the parameters as shown below:

OL_CSP_CALL void sum (const DBData &a, const DBData &b, DBData &r)
{ r = (int)a + (int)b; }

11.8.1.2 Access SODA Objects Within Your C++ Stored Procedure
We use SODA, instead of ODBC, to provide a reliable access to the database and
transaction objects. To access the SODA API objects, use the methods defined in the
olcsp.h include file, as follows:

■ After you retrieve the session object, do not close the connection in side the
procedure.

■ Retrieve the SODA API DBSession object with the olCSPGetSession()
method, as follows:

DBSession &sess = olCSPGetSession();

■ Retrieve the SODA API DBSqlSession object, which is used in preparing and
executing SQL statements, with the olCSPGetSqlSession method. Once you
retrieve the DBSqlSession object, you can prepare the SQL statement within a
DBSqlStmt object. The returned DBSqlSession object is created based on the
existing ODBC handle. The following example retrieves the SQL Session, prepares
and executes a statement:

DBSqlSession sess = olCSPGetSqlSession();
DBSqlStmt stmt = sess.prepare("insert into testsql values(?)");
stmt.execute(DBDataList() << v);

■ If this procedure was executed within the trigger, you can retrieve the object on
which the trigger was invoked with the olCSPGetObject method. This returns a
DBObject of the trigger object. This will not work for BEFORE CREATE or
AFTER DELETE triggers.

■ If you want to use ODBC instead of SODA, you can retrieve the ODBC connection
handle with the olCSPGetODBCHdl method.

■ All C++ stored procedures can throw DBException. This exception is
automatically thrown if any SODA/SODASQL operation fails inside your stored
procedure. If you are using a WinCE device, then you must use the ALE library for
exceptions. See the ALE documentation for more information.

11.8.2 Building Your C++ Stored Procedures
You can either build your stored procedure manually or by using the olsp.mak
makefile. The following describes both processes:

■ Section 11.8.2.1, "Linking in Appropriate Libraries"

■ Section 11.8.2.2, "Automatically Build Your Stored Procedure"

■ Section 11.8.2.3, "Manually Building Your Stored Procedure"

Note: For details on the SODA API, see Chapter 12, "Using Simple
Object Data Access (SODA) for PocketPC Platforms".

Using C++ Stored Procedures

Stored Procedures and Triggers 11-31

11.8.2.1 Linking in Appropriate Libraries
When you build your procedure, link in one or more of the following libraries:

■ For all builds, link in olobj40.lib, which exists in <Mobile_
Server>Mobile/SDK/lib.

■ If you are using SODASQL in your stored procedure, then link in sodasql.lib.

11.8.2.2 Automatically Build Your Stored Procedure
If you have only a single source file, then you can use the olsp.mak makefile to build.
The resulting DLL is named the same as the source file. This makefile supports
building procedures for both the desktop and Windows CE platforms. Set up the
following within the makefile before you execute to ensure a proper build:

1. Place the olsp.mak makefile in the same location as your source file.

2. If you build C++ stored procedures for a Windows CE device, then before you
execute the makefile, you need to run the batch file from embedded visual C++.
This sets the appropriate build environment for your windows CE platform. The
following example shows execution of the wcearmv4.bat batch file:

 C:\EVC4.0\EVC\wce420\bin\WCEARMV4.BAT

3. Set the MOBILESDK environment variable—which defines the Oracle Lite Mobile
SDK directory. For example,

MOBILESDK=C:\oracle\ora90\mobile\sdk

4. Within the makefile, define CDEFINE (compiler defines) and LFL (linker flags)
macros for your Windows CE platform.

5. If you are building .Net procedures, then set the NETFRKDIR environment variable
in the makefile to point to your .Net Framework directory

6. If building for the Compact Framework, then define the CFK macro and set the
CFSDKDIR environment variable in the makefile to point to your Compact
Framework SDK directory.

7. Execute the makefile, as follows:

nmake -f olsp.mak MyProc.dll [macros] [options]

The macros that you can use are as follows:

■ For debug mode, use the macro DEBUG=/DDEBUG.

■ For compact framework, use the macro CFK=1.

8. Copy the new DLL, such as MyProc.dll, into a directory on the system path. If
your platform is a WinCE device, copy this DLL into the \Windows directory.

For example, if your source file is MyProc.cpp or MyProc.cs, then this makefile
builds MyProc.dll for you.

11.8.2.3 Manually Building Your Stored Procedure
If you have more than one source file for the stored procedure, then you must
manually build. Keep in mind the following:

1. Because you are using the export "C" declaration on the stored procedure,
which supports the procedure being able to throw exceptions, use the /EHc-
compiler flag when building the stored procedure.

Using C++ Stored Procedures

11-32 Oracle Database Lite Developer’s Guide

2. If you are using the SODASQL in the procedure, then link with either the
olobj40.lib and sodasql.lib.

11.8.3 Publish Your C++ Stored Procedure
Publish the methods in the class that you want to call from SQL with a call
specification, which is created with either the CREATE FUNCTION or CREATE
PROCEDURE commands.

Perform the following to publish C++ stored procedures:

1. Publish any methods in the C++ class that you want to make accessible to SQL by
creating call specifications for these methods. By publishing a method, you
associate a SQL name to the method. SQL applications use this name to invoke the
method.

2. Invoke the stored procedure through a SQL DML statement.

Publish any static method in the class that you want to call from SQL by creating a call
specification for it. The call spec maps the method's name, parameter types, and return
types to SQL counterparts.

To create a call spec, use the SQL commands CREATE FUNCTION for methods that
return a value or CREATE PROCEDURE for methods that do not return a value. The
CREATE FUNCTION and CREATE PROCEDURE statements have the following syntax:

CREATE [OR REPLACE]
 { PROCEDURE <proc_name> [([<sql_parms>])] |
 FUNCTION <func_name> [([<sql_parms>])]
 RETURN <datatype> }
 AS LANGUAGE CPLUSPLUS NAME
 ’<lib_name>::<func_name>)’;
 /

Where:

■ <proc_name> is a SQL procedure name; <func_name> is the name of the
function in the DLL used for this procedure.

■ <sql_parms> can be a maximum of 32 arguments. All arguments passed to the
procedures are given as DBData values to the function, which must cast the
arguments to the appropriate data type. The syntax has the following format:

<arg_name> [IN | OUT | IN OUT] <datatype>

■ <datatype> is the datatype.

■ <lib_name> is the name of the DLL where the function is delcared, without the
.dll extension.

For example:

The following call specification publishes the method to SQL:

CREATE PROCEDURE bu1 (
 oc1 int,
 nc1 int,
 oc2 int,
 nc2 int)
 AS LANGUAGE CPLUSPLUS
 NAME 'CSPLib::bu1';
 /

Using C++ Stored Procedures

Stored Procedures and Triggers 11-33

11.8.4 C++ Stored Procedure Example
The following examples show how to create, build and publish the stored procedures.

■ Section 11.8.4.1, "C++ Stored Procedure and Trigger Example One"

■ Section 11.8.4.2, "C++ Stored Procedure and Trigger Example Two"

■ Section 11.8.4.3, "JDBC Calling a C++ Stored Procedure Example"

11.8.4.1 C++ Stored Procedure and Trigger Example One
The following example does the following:

1. Creates the t1 table.

2. Creates the call specification of bu1 for the C++ stored procedure bu1 in the
CSPLib.dll.

3. Creates a BEFORE UPDATE trigger, foo, which calls the bu1 C++ stored procedure
before the values of c1 and c2 in the table are updated.

create table t1(c1 int, c2 int);

create procedure bu1(oc1 int, nc1 int, oc2 int, nc2 int)
 as language cplusplus name 'CSPLib::bu1';

create trigger foo before update of c1,c2 on t1
 for each row bu1(old.c1,new.c1,old.c2,new.c2);

The following demonstrates how the trigger is executed, which in turn invokes the
C++ stored procedure:

insert into t1 values(1,2);
insert into t1 values(10,2);

--trigger fired here
update t1 set c1 = 10, c2 = 20 where c1 = 1;
update t1 set c1 = 100 where c1 = 10;

11.8.4.2 C++ Stored Procedure and Trigger Example Two
The following example does the same as Example 1, but with a more complicated
trigger. The trigger and procedure are dropped at the end of this example.

create table t3(c1 int, c2 int);

create procedure bc2(tabref varchar, tranid int, opseq int, c1 int, c2 int) as
language cplusplus name 'CSPLib::bc2';

--special trigger columns here
create trigger foo2 before insert on t3 for each row bc2(OL__TABLEREF, OL__
TRANSID, OL__OPSEQ, new.c1,new.c2);

--trigger fired here
insert into t3 values(1,2);
insert into t3 values(10,20);
insert into t3(c1) values(100);
insert into t3(c2) values(100);

drop trigger foo2;
drop procedure bc2;

Using .Net Stored Procedures

11-34 Oracle Database Lite Developer’s Guide

11.8.4.3 JDBC Calling a C++ Stored Procedure Example
The following example shows JDBC invoking a C++ stored procedure through the
CallableStatement.

//The following statement creates the procedure TESTINOUT1 with in out parameters
stmt.execute("CREATE OR REPLACE PROCEDURE TESTINOUT1(A IN OUT INT,
 B IN OUT DOUBLE PRECISION, C IN OUT VARCHAR, D IN OUT DATE,
 E IN OUT TIME, F IN OUT BINARY) AS LANGUAGE CPLUSPLUS
 NAME CSPLib::testInOut");

CallableStatement cstmt =
 conn.prepareCall("{call TESTINOUT1(?, ?, ?, ?, ?, ?)}");

cstmt.registerOutParameter(1, Types.INTEGER);
cstmt.registerOutParameter(2, Types.DOUBLE);
cstmt.registerOutParameter(3, Types.VARCHAR);
cstmt.registerOutParameter(4, Types.DATE);
cstmt.registerOutParameter(5, Types.TIME);
cstmt.registerOutParameter(6, Types.BINARY);

//setting parameters to null values
cstmt.setNull(1, Types.INTEGER);
cstmt.setNull(2, Types.DOUBLE);
cstmt.setNull(3, Types.VARCHAR);
cstmt.setNull(4, Types.DATE);
cstmt.setNull(5, Types.TIME);
cstmt.setNull(6, Types.BINARY);

for(int i = 0; i < 5; i++) {
 //executing the procedure. The parameters will be modified inside the procedure
 cstmt.execute();
 int a = cstmt.getInt(1);
 double b = cstmt.getDouble(2);
 String c = cstmt.getString(3);
 Date d = cstmt.getDate(4);
 Time e = cstmt.getTime(5);
 byte [] f = cstmt.getBytes(6);
}

11.9 Using .Net Stored Procedures
The .Net environment enables you to create stored procedures from any .Net
language, such as C++, C#, C, and Visual Basic .Net. You create procedures and
functions based on methods of a .Net class that is stored in an external DLL. Unlike
C++ procedures, you don’t need a fixed signature. Instead, the procedure can receive
arguments and return values for any supported data type.

The following sections detail how to build your .Net stored procedures:

Note: Windows CE devices have the following limitations:

■ You cannot pass delegates to native code when using the Compact
Framework.

■ You cannot start the .Net runtime from native code. The only way
to use .Net on a Windows CE device is to start it within a C#
application before the stored procedures are invoked.

Using .Net Stored Procedures

Stored Procedures and Triggers 11-35

■ Section 11.9.1, "Creating the .Net Source for Your Stored Procedure"

■ Section 11.9.2, "Building Your .Net Stored Procedures"

■ Section 11.9.3, "Publish Your .Net Stored Procedure"

■ Section 11.9.4, "Dropping .Net Stored Procedures"

■ Section 11.9.5, ".Net Stored Procedure Example"

11.9.1 Creating the .Net Source for Your Stored Procedure
When you are creating a .Net stored procedure, you can use Oracle-specific .Net
extension classes to access the database and transaction objects. The .Net extension
classes discussed in the following sections are OracleData, OracleDataRow, and
OracleSPManager.

The following sections demonstrate how to develop your .Net stored procedures:

■ Section 11.9.1.1, "Defining Methods, Imports and Namespace"

■ Section 11.9.1.2, "Access and Modify Database Using .Net Extension Classes In
Stored Procedures"

■ Section 11.9.1.3, "Access and Modify Database Using OracleSPManager Inside
Triggers"

11.9.1.1 Defining Methods, Imports and Namespace
1. When you create your .Net source file, be sure to import the

Oracle.DataAccess.Lite namespace.

2. All stored procedures are declared as public static methods of the class.

The following example defines public static methods and includes the
Oracle.DataAccess.Lite namespace:

using System;
using Oracle.DataAccess.Lite;

public class SPClass
{
 //function which multiplies two integers
 public static int multiply(int a, int b)
 {
 return a * b;
 }

 //returns string length, as in C++ procedure example
 public static int strlen(string s)
 {
 return s.Length;
 }

//stores sum of first two arguments in the third argument
//as in C++ procedure example
 public static void trigSum(int a, int b, out int c)
 {
 c = a + b;
 }
public static void testInOut1(ref int dInt, ref double dDouble,
 ref string dStr, ref DateTime dDate, ref DateTime dTime,
 ref byte [] dBin)

Using .Net Stored Procedures

11-36 Oracle Database Lite Developer’s Guide

 {
 dInt += 10;
 dDouble += 12.34;
 dStr += "aaaaa";

 dDate = dDate.AddYears(1);
 dDate = dDate.AddMonths(1);
 dDate = dDate.AddDays(1);

 dTime = dTime.AddMinutes(1);
 dTime = dTime.AddSeconds(1);

 int len = dBin == null ? 0 : dBin.Length;
 byte [] newBin = new byte[len + 5];
 if (dBin != null)
 Array.Copy(dBin, 0, newBin, 0, len);
 for(int i = len; i < newBin.Length; i++)
 newBin[i] = (byte)'x';
 dBin = newBin;
 }
}
}

11.9.1.2 Access and Modify Database Using .Net Extension Classes In Stored
Procedures
The following are Oracle-specific .Net extension classes:

■ Section 11.9.1.2.1, "OracleData"—A .Net version of the SODA DBData class.

■ Section 11.9.1.2.2, "OracleDataRow"—encapsulates and Oracle Lite database row.

11.9.1.2.1 OracleData The OracleData object is a .Net version of the SODA DBData
class.

Data types that are supported by Oracle Database Lite can be used in the OracleData
object. These types can be implicitly cast to other compatible types; the cast must still
follow normal database SQL casting rules. Casting between scalar types are implicit;
casting to array types are explicit. If you try to cast an incompatible type, and
OracleException is thrown.

This includes the following data types:

For example, the following code shows how you can cast a String to an Integer
using the OracleData object:

string s = "10";
OracleData d = new OracleData(s);
int i = d;

Table 11–5 Data Type For OracleData Object

Data Type

int, int[] byte, byte[]
database type binary

short, short[] bool, bool []

long, long[] double, double[] string, string[]

DateTime, DateTime[] OracleDataRow,
OracleDataRow[]

OracleBlob, Oracle
Blob[] (Oracle Lite
Blob object)

Using .Net Stored Procedures

Stored Procedures and Triggers 11-37

11.9.1.2.2 OracleDataRow The OracleDataRow object encapsulates and Oracle Lite
database row. You can query and modify column values in place, instead of using
SQL. The OracleDataRow implements indexes on the row, which returns an
OracleData object.

To create an object query on a table, implement OracleDataReader, an Oracle
extension of the ADO.Net DataReader object, to return OracleDataRow objects. The
following example uses the GetDataRow method of the OracleDataReader object
to retrieve the desired rows. To set up the query more efficiently, set the RowQuery
attributes of Table and Filter before executing the query, as follows:

OracleConnection conn =
 new OracleConnection("DSN=POLITE;UID=SYSTEM;PWD=MANAGER");
conn.Open();
OracleCommand cmd = (OracleCommand)conn.CreateCommand();
//set properties for row query of table name and where clause
cmd.RowQuery.Table = "T1"; //table name
cmd.RowQuery.Filter = "C1 < 10"; //where clause

//execute the query and retrieve the desired rows
OracleDataReader rd = (OracleDataReader)cmd.ExecuteQuery();

//While there are rows, process each row
while(rd.Read())
{ //Retrieve each row with the GetDataRow method into the OracleDataRow object
 OracleDataRow row = rd.GetDataRow();
 //query and modify in place columns C1 and C2 of the row.
 //implicit conversion to and from OracleData
 // Retrieve the integer in column C1
 int i = row["C1"];
 // Add 5 to the value in C1 and store it in column C2
 row["C2"] = i + 5;
 //convert the value to a string and write it out
 string s = row["C2"];
 Console.WriteLine(s);
}
rd.Close();
conn.Close()

You can retrieve and modify the row by performing the following:

1. Retrieve the row with the GetDataRow method of the OracleDataReader class.

2. Query and modify the retrieved row within the OracleDataRow object.

11.9.1.3 Access and Modify Database Using OracleSPManager Inside Triggers
When you have a stored procedure that is executed by a trigger, the actual row that
caused the trigger is accessible through the OracleSPManager. Thus, you do not
have to create a SQL statement to retrieve the desired row. Instead, use the
GetDataRow method of the OracleSPManager object. Also, you can use the
GetConnection method of this object to retrieve the current Connection object.

The OracleSPManager class contains the following static methods, which you can
ues to retrieve the connection or the row:

Note: For more information on the ADO.Net classes, see Chapter 13,
"Oracle Database Lite ADO.NET Provider".

Using .Net Stored Procedures

11-38 Oracle Database Lite Developer’s Guide

public static OracleConnection GetConnection();
public static OracleDataRow GetDataRow();

The following example uses the OracleSPManager static methods to retrieve the
connection and row:

public static void log1(int a, int b, int c)
{
 //get current connection from .Net procedure manager
 OracleConnection conn = OracleSPManager.GetConnection();

 //get current row for trigger
 OracleDataRow r = OracleSPManager.GetDataRow();

 if (r[0] != a || r[1] != b || r[2] != c)
 throw new OracleException(“Invalid row”);

 if (ia == 0 && ib == 0 && ic == 0)
 throw new OracleException(“Invalid row”);

 OracleCommand cmd = (OracleCommand)conn.CreateCommand();
 cmd.CommandText = “INSERT INTO T1_LOG VALUES(?, ?)”;
 cmd.Parameters.Add(new OracleParameter(a));
 cmd.Parameters.Add(new OracleParameter(a + b + c));
 cmd.ExecuteNonQuery();
 //do not close connection here
 }
}

11.9.2 Building Your .Net Stored Procedures
You can either build your stored procedure using Visual Studio .Net or by using the
olsp.mak makefile. See the Visual Studio documentation for how to build using
Visual Studio .Net.

If you want to build using the olsp.mak file, follow the directions as given for the
C++ stored procedures in Section 11.8.2.2, "Automatically Build Your Stored
Procedure". There are a few directions in that section that are specific to the .Net
environment, as follows:

1. If you are building .Net procedures, then set the NETFRKDIR environment variable
in the makefile to point to your .Net Framework directory

2. If building for the Compact Framework, then define the CFK macro and set the
CFSDKDIR environment variable in the makefile to point to your Compact
Framework SDK directory.

3. When building the SPClass.dll C# class, use the following syntax for the make:

nmake -f olsp.mak SPClass.dll

4. Move the resulting DLL into the appropriate place, which is either the application
directory or in the global assembly cache. Use the gacutil.exe executable if you
want to install this DLL in the global assembly cache.

11.9.3 Publish Your .Net Stored Procedure
When you want to publish your .Net stored procedure, perform the following:

■ Section 11.9.3.1, "Create the .Net Class Object in the Oracle Lite Database"

■ Section 11.9.3.2, "Publish Methods With a Call Specification"

Using .Net Stored Procedures

Stored Procedures and Triggers 11-39

11.9.3.1 Create the .Net Class Object in the Oracle Lite Database
before you can create the call specification for the .Net stored procedure, you must first
create the class within the Oracle Lite database. Use the following syntax:

CREATE [OR REPLACE] DOTNET CLASS USING BFILE(’AssemblyName’, ’ClassName’);

Where:

■ AssemblyName is the assembly file name, such as SPClass.DLL.

■ ClassName is the name of the class, such as SPClass. However, if the class is
defined within a namespace, prefix the namespace name before the classname, as
follows: MyNameSpace.SPClass.

For example, the following creates the SPClass within the Oracle Lite database.

create dotnet class using bfile(’SPClass.dll’, ’SPClass’);

11.9.3.2 Publish Methods With a Call Specification
Publish the methods in the class that you want to call from SQL with a call
specification, which is created with either the CREATE FUNCTION or CREATE
PROCEDURE commands.

Perform the following to publish your .Net stored procedures:

1. Publish any methods in the .Net class that you want to make accessible to SQL by
creating call specifications for these methods. By publishing a method, you
associate a SQL name to the method. SQL applications use this name to invoke the
method.

2. Invoke the stored procedure through a SQL DML statement.

Publish any static method in the class that you want to call from SQL by creating a call
specification for it. The call spec maps the method's name, parameter types, and return
types to SQL counterparts.

To create a call spec, use the SQL commands CREATE FUNCTION for methods that
return a value or CREATE PROCEDURE for methods that do not return a value. The
CREATE FUNCTION and CREATE PROCEDURE statements have the following syntax:

CREATE [OR REPLACE]
 { PROCEDURE <proc_name> [([<sql_parms>])] |
 FUNCTION <func_name> [([<sql_parms>])]
 RETURN <datatype> }
 AS LANGUAGE DOTNET NAME
 ’<class_name>.<method_name>)’;
 /

Where:

■ <proc_name> is a SQL procedure name; <func_name> is the name of the
function in the DLL used for this procedure.

■ <sql_parms> can be a maximum of 32 arguments. All arguments passed to the
procedures are given as DBData values to the function, which must cast the
arguments to the appropriate data type. The syntax has the following format:

<arg_name> [IN | OUT | IN OUT] <datatype>

■ <datatype> is the datatype.

■ <class_name>.<method_name> is the name of the class and method that is
used for the procedure or function.

Using .Net Stored Procedures

11-40 Oracle Database Lite Developer’s Guide

For example:

The following call specification publishes the method to SQL:

CREATE PROCEDURE bu1 (
 oc1 int,
 nc1 int,
 oc2 int,
 nc2 int)
 AS LANGUAGE DOTNET
 NAME 'SPClass.bu1';
 /

11.9.4 Dropping .Net Stored Procedures
To drop a .Net class object from the database, delete it with the following drop
statement:

drop dotnet class ’ClassName’;

11.9.5 .Net Stored Procedure Example
The following examples show how to create, build and publish the stored procedures.

■ Section 11.9.5.1, ".Net Stored Procedure and Trigger Example One"

■ Section 11.9.5.2, ".Net Stored Procedure and Trigger Example Two"

11.9.5.1 .Net Stored Procedure and Trigger Example One
The following example does the following:

1. Creates the .Net SPClass.

2. Creates the t1 table.

3. Creates the call specification of bu1 for the .NET stored procedure bu1 in the
class.method: SPClass.bu1.

4. Creates a BEFORE UPDATE trigger, foo, which calls the bu1 .Net stored procedure
before the values of c1 and c2 in the table are updated.

create dotnet class using bfile(’SPClass.dll’, ’SPClass’);

create table t1(c1 int, c2 int);

create procedure bu1(oc1 int, nc1 int, oc2 int, nc2 int)
 as language dotnet name 'SPClass.bu1';

create trigger foo before update of c1,c2 on t1
 for each row bu1(old.c1, new.c1, old.c2, new.c2);

The following demonstrates how the trigger is executed, which in turn invokes the
.Net stored procedure:

insert into t1 values(1,2);
insert into t1 values(10,2);

--trigger fired here
update t1 set c1 = 10, c2 = 20 where c1 = 1;
update t1 set c1 = 100 where c1 = 10;

Using .Net Stored Procedures

Stored Procedures and Triggers 11-41

11.9.5.2 .Net Stored Procedure and Trigger Example Two
The following example does the same as Example 1, but with a more complicated
trigger. The trigger and procedure are dropped at the end of this example.

create table t3(c1 int, c2 int);

create procedure bc2(tabref varchar, tranid int, opseq int, c1 int, c2 int) as
language dotnet name 'SPClass.bc2';

--special trigger columns here
create trigger foo2 before insert on t3 for each row bc2(OL__TABLEREF, OL__
TRANSID, OL__OPSEQ, new.c1, new.c2);

--trigger fired here
insert into t3 values(1,2);
insert into t3 values(10,20);
insert into t3(c1) values(100);
insert into t3(c2) values(100);

drop dotnet class ’SPClass’;

Using .Net Stored Procedures

11-42 Oracle Database Lite Developer’s Guide

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-1

12
Using Simple Object Data Access (SODA) for

PocketPC Platforms

SODA is an interface used for Oracle Database Lite C++ development that provides
object-oriented data access using method calls, relational access using SQL and
object-relational mapping to bridge the gap between the two. Object functionality is
roughly three times faster than ODBC for simple operations. It enables rich
datatypes—such as arrays and object pointers—as well as standard SQL columns. A
programmer can store any data structure in the database and not think about
relational design or performing joins.

A C++ developer can also use an interface for executing SQL statements. The resulting
code is shorter and cleaner than ODBC. SQL queries can return objects to be examined
and modified directly through the object-oriented layer, without calling any additional
SQL statements.

Object-relational mapping enables the application to access relational data as if it was
object hierarchy. Thus, your application can replicate rich data types or object pointers
to the Oracle database server.

Oracle Database Lite includes SODA Forms, which is a library that simplifies the
development of GUI applications for PocketPC devices. See Section 12.6.2, "Develop
Your GUI Using the SODA Forms Library" for more details.

The SODA API method calls are documented in the SODA: Simple Object Data Access
API Reference, which is located off the <ORACLE_HOME>/Mobile/index.htm page.
The full sample code that is demonstrated in this chapter is located in the <ORACLE_
HOME>/Mobile/doc/soda/sodadoc/html/sodasimple_8cpp-source.html
file.

■ Section 12.1, "Getting Started With SODA"

■ Section 12.2, "Using SQL Queries in SODA Code for PocketPC Platforms"

■ Section 12.3, "Virtual Columns and Object-Relational Mapping"

■ Section 12.4, "Behavior of Reference-Counted and Copy-By-Assignment Objects"

■ Section 12.5, "Another Library for Exceptions (ALE)"

■ Section 12.6, "Building a SODA Forms Application"

■ Section 12.7, "SODA Forms Edit Modes"

■ Section 12.8, "Customizing Your SODA Forms Application"

■ Section 12.9, "Displaying a List Of Objects in a Table"

■ Section 12.10, "SODA Forms UI Controls"

Getting Started With SODA

12-2 Oracle Database Lite Developer’s Guide

12.1 Getting Started With SODA
In order to get started with SODA quickly, the following sections discuss the most
frequently used classes:

■ Section 12.1.1, "Overview of the SODA Classes"

■ Section 12.1.2, "Demonstrating Frequently-Used SODA Classes"

12.1.1 Overview of the SODA Classes
When developing your C++ application, you would use the following classes the
most:

■ DBSession connects to the database and find and create classes.

■ DBClass creates new database objects.

■ DBObject modifies existing objects.

■ DBData wraps an attribute value and is used for type conversion.

■ DBQueryExpr builds single-table queries supported by SODA.

■ DBString (olString) is a C string wrapper used by SODA.

■ DBList (olList) is a template to store lists of values.

■ DBColList and DBDataList instantiate these objects.

For example, implement the DBObject method, as follows:

DBObject obj;
...
obj["NAME"] = "Jack"

For full documentation for the SODA API method calls, see the SODA APIs, which
you can find off the <ORACLE_HOME>/Mobile/index.htm page.

12.1.2 Demonstrating Frequently-Used SODA Classes
The following example demonstrates most of the SODA object-oriented functionality,
as discussed in Section 12.1.1, "Overview of the SODA Classes".

void helloSODA() {
 puts("Hello SODA");
 try {
 DBSession sess("POLITE"); // Connect to the DSN, creating it if necessary

 // Find or create our class
 DBClass cls;
 try {
 cls = sess["PEOPLE"];
 } catch(DBException e) {
 cls = sess.createClass("PEOPLE", DBAttrList() <<
 DBAttr("ID", DB_INT) << DBAttr("NAME", DB_STRING));
 }
 // Create several objects. We can identify columns by name or positions
 DBObject o = cls.create("ID", 10, "NAME", "Alice");

 // The previous syntax of col1, val1, col2, val2 ... works for up to
// 32 columns. This version works for any number of columns
 cls.create(DBSetList() << "ID" << 10 << "NAME" << "Alice");
 cls.create(0, 20, 1, "Bob");

Using SQL Queries in SODA Code for PocketPC Platforms

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-3

 // Note the automatic type conversion
 cls.create("ID", "314", 1, 3.14159265358);

 // Execute a query (will return two objects)
 DBCursor c = cls.createCursor(DBColumn("ID") == 10 ||
 DBColumn("NAME") == "Bob");

 DBObject ob;

 while (ob = ++c) {
 DBString s = ob["NAME"];
 puts(s);
 o["ID"] = (int)o["ID"]+1;
 }

 // Delete an object
 o.remove();

 // Clean up so that create class is successful next time
 sess.rollback();
 } catch(DBException e) {
 DBString s = e.getMessage();
 printf("Error: %s\n", (const char *)s);
 }
}

12.2 Using SQL Queries in SODA Code for PocketPC Platforms
To add SQL queries to your SODA code for PocketPC platforms, do the following:

1. Include sodasql.h, instead of soda.h.

2. Link your program with sodasql.lib.

3. Install sodasql.dll at runtime.

4. Create a DBSqlSession object instead of the DBSession object. Execute
relational queries and other SQL statements with the help of DBSqlStmt and
DBSqlCursor classes. Query results can be returned either as column values or as
DBObjects for matching rows.

The following is a sample that uses the SODA relational interface:

void helloSQL() {
 try {
 puts("Hello SQL");
 DBSqlSession sess("POLITE");
 sess.execute("create table odtest(c1 int, c2 varchar(80))");
 DBSqlStmt stmt = sess.prepare("insert into odtest values(?,?)");

 // The values stand in for two ?'s in the statement above
 stmt.execute(5, "John");
 stmt.execute(10, "Mike");
 stmt.execute(15, "Alice");

 // Execute a single-table query that will return DBObject's for matching
 // rows. Use a standard SODA interface to access the objects
 DBSqlCursor c = sess.execute("odtest", "c1 < 15");
 while (++c) {
 DBObject o = c.getObject();
 DBString s = o["c2"];

Virtual Columns and Object-Relational Mapping

12-4 Oracle Database Lite Developer’s Guide

 int val = o["c1"];
 printf("%d %s\n", val, (const char *)s);
 o["c1"] = val+1; // Can modify objects in addition to just reading them
 }

 // Execute a usual relational query
 c = sess.execute("select * from odtest");
 while (++c) {
 DBString s = c["c2"];
 printf("%d %s\n", (int)c["c1"], (const char *)s);
 }
 } catch(DBException e) {
 DBString s = e.getMessage();
 printf("Error: %s\n", (const char *)s);
 }
}

12.3 Virtual Columns and Object-Relational Mapping
A programmer does not view the data as column values that are stored in the
database. For example, a master-detail relationship might be expressed as matching
values in two tables, but for a program it is more natural to access a column in the
master object, which contains an array of pointers to details.

The DBVirtualCol class enables the translation between the conceptual view of the
data and the actual data in the tables. You can create a column that is completely under
programmer’s control through the get, set and remove methods and adding it to a
class at runtime.

In fact, SODA contains a specialized DBValueRel class that extends the
DBVirtualCol class to map master-detail relationships to object pointers. The
following sample builds a binary search tree in the database using object-relational
mapping:

struct HelloVirtual {
 int lpos, rpos, vpos;
 void visit(DBObject o);
 HelloVirtual();
};

void HelloVirtual :: visit(DBObject o) {
 while (o) {
 visit(o[lpos]);
 printf("%d\n", (int)o[vpos]);
 o = o[rpos];
 }
}

HelloVirtual :: HelloVirtual() {
 try {
 DBSession sess("POLITE");
 // TreeNode represent a binary tree with left and right pointers
 // that point back to parent's id column
 DBClass cls = sess.createClass("TreeNode",
 DBAttrList() << DBAttr("val", DB_INT) << DBAttr("id", DB_INT)
 << DBAttr("lchild", DB_INT) << DBAttr("rchild", DB_INT));
 // Create an index on id to speed up search
 cls.createIndex("i1", DBColList() << "id", true);
 // Set a sequence as a default value of id, so that we don't have to set it
 // explicitely

Behavior of Reference-Counted and Copy-By-Assignment Objects

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-5

 DBSequence seq = sess.createSequence("s1");
 cls.defaultVal("id", seq);
 // Create the virtual columns
 DBValueRel lref("left", DBSrcCol(cls, "lchild") -> DBDstCol(cls, "id"),
 DB_UPD_DETAIL);
 DBValueRel rref("right", DBSrcCol(cls, "rchild") -> DBDstCol(cls, "id"),
 DB_UPD_DETAIL);
 // Cache column positions for frequent access
 lpos = cls["left"], rpos = cls["right"], vpos = cls["val"];
 // Root of the binary tree
 DBObject root;
 // Insert some random numbers into our binary search tree
 for (int i = 0; i < 50; i++) {
 int v = rand();
 DBObject o = cls.create(vpos, v); // Note automatically generated ids
 DBObject par; int dir;
 for(DBObject cur = root; cur; par = cur, cur = cur[dir])
 dir = (int)cur[vpos] >= v ? lpos : rpos;
 if (par) par[dir] = o; else root = o;
 }
 // Do in-order traversal of the tree, printing out numbers in sorted order
 visit(root);
 } catch(DBException e) {
 DBString s = e.getMessage();
 puts(s);
 }
}

12.4 Behavior of Reference-Counted and Copy-By-Assignment Objects
Most C++ classes in SODA are reference-counted, which means that assigning one
variable of one type to another cannot copy an object, but creates another way to refer
to the same object. For example, the DBData class represents values that can be stored
in persistent objects.

The following example demonstrates reference-counting:

DBData d = 5; // Create a new object containing value 5
 // and make a reference to it
DBData d2 = d; // Both reference the same object
d << 20; // Add another value to existing object.
 // Both d and d2 reference the new array
d2 = 10; // d references the array, d2 is reassigned to the new data.
d.clear(); // Clear the last reference to the array of 5 and 20
 //and free the array

The programmer does not need to free objects when they are no longer used.
However, this method is relatively expensive and not practical for objects that are
created and destroyed often, such as when new lists of values, such as DBSetList, are
allocated for each SODA call. Various lists in SODA, such as DBSetList,
DBDataList and so on, are copy-on-assignment rather than reference-counted
objects.

The following example demonstrates copy-by-assignment:

DBSetList ls << "cost" << 1000;
DBSetList ls2 = ls; // Created a copy of ls
ls << "value" << "priceless" // Only ls is changed
ls2.clear(); // Just set this copy to size 0

Another Library for Exceptions (ALE)

12-6 Oracle Database Lite Developer’s Guide

You can optimize your implementation by not creating an unnecessary copy by
passing a reference or a const reference to the object, rather than an object, for both
reference-counted and copy-on-assignment classes when calling a function. For
example, void func(const DBData &v) avoids creating an unnecessary copy.

12.5 Another Library for Exceptions (ALE)
Many embedded compilers, such as Visual C++ for PocketPC, do not support C++
exceptions. Oracle Database Lite includes ALE, which is a library that closely mimics
C++ exceptions. The following sections describe how to use ALE:

■ Section 12.5.1, "Decorating Classes With ALE"

■ Section 12.5.2, "New Operator and ALE"

■ Section 12.5.3, "Global Variables"

■ Section 12.5.4, "Exceptions and Inheritance"

■ Section 12.5.5, "Using ALE with PocketPC ARM Compilers"

■ Section 12.5.6, "Troubleshooting ALE Runtime Errors"

■ Section 12.5.7, "Compiling Your Program With ALE"

■ Section 12.5.8, "ALE Code on Systems That Support Exceptions"

12.5.1 Decorating Classes With ALE
A decorated class is one that uses ALE for handling its exceptions. If your embedded
compiler does not support exception handling, then use ALE, which relies on careful
accounting of all objects that are already constructed or are being constructed. ALE
supports stack unwinding and catching exceptions based on object type.

To use ALE, C++ source code needs to be modified where the try, catch and throw
blocks are replaced with the ALE macros, which is known as decorating classes. The
following is an example of a decorated class:

#include "ale.h"
struct Error {
 const char *msg;
 Error(const char *msg) :msg(msg) {}
};

aleTry {
 olArray<char> a(5);
 aleThrow(Error,Error("Adios"));// Or aleThrowObj(Error,("Adios"));

Note: SODA includes non-database classes and templates for your
convenience, which have names that start with ol rather than
DB—such as olHash. Avoid making unnecessary copies of these
classes.

Note: The clear method only nullifies a particular reference to
reference-counted objects. DBSession and DBCursor classes provide
a close method that releases the underlying database resources, even
while the objects are still referenced. Using anything that relies on a
closed cursor or database connection throws a DBException.

Another Library for Exceptions (ALE)

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-7

} aleCatch(Error,e) {
 puts(e.msg);
} aleCatch(aleBadAlloc,e) {
 puts("Tough!");
} aleCatchAll {
 puts("Some other exception happened\n");
 aleReThrow;
} aleEnd;

If your embedded compiler does not support exception handling, then use ALE, which
relies on careful accounting of all objects that are already constructed or are being
constructed. Your class is involved in exception handling if the class is on the stack
when an exception is thrown, its constructor may throw an exception, or it has a
decorated superclass and member—even if the class does not do any additional
exception-related processing.

When you decorate one class with ALE, you must decorate all classes involved with
this class. If you omit a decoration in one of the classes, then the program might fail.
Therefore, it is best to decorate all your classes except for plain C-style structures that
do not have any constructors or destructors.

If your class does not have any constructors with a body that throws exceptions (it is
OK if the superclass or member constructor does), then you can use a simple form of
class decoration by adding ALELAST(ClassName), without a semicolumn, at the end
of class declaration. ALELAST informs the library to register the class and clean-up if
an error occurs. The following demonstrates how to use ALELAST:

template<class T> class PtrHolder {
 T *ptr;
public:
 ~PtrHolder() { delete ptr; }
 operator T *() { return ptr; }
 ALELAST(PtrHolder)
};

If any of the constructors throw exceptions, then you need to do the following:

Table 12–1 ALE Macros for C++ Exceptions

Macro Action

aleTry Equivalent to C++ try. Use to enclose the code that might
encounter any exception.

aleCatch (type,
varName)

Catch exception of a given type and store it in the variable
varName, which is local to the block. Unlike the regular C++
exceptions, the type name string must match the argument of the
throw exactly.

aleThrow (type, obj) Throw an exception contained in obj of type. ALE supports
single inheritence of exceptions, as described in Section 12.5.4,
"Exceptions and Inheritance".

aleThrowObj (type,
arg1, arg2,)

Construct a new object of type with the specified arguments and
throw it as an exception.

aleCatchAll Catch any exceptions that are not handled explicitly.

aleReThrow Rethrow the exception that is caught in the innermost aleCatch
or aleCatchAll block.

aleEnd Close the exception handling construct. Add a semi-colon ; after
aleEnd.

Another Library for Exceptions (ALE)

12-8 Oracle Database Lite Developer’s Guide

1. Add ALECLAST(ClassName), rather than ALELAST to the end of the class body.

2. Add ALECONS(ClassName) in the beginning of the body of each constructor.

This is demonstrated, as follows:

template<class T> class Array {
 T *a;
 size_t len;
public:
 Array(size_t len=0} : len(len) {
 ALECONS(Array);
 a = new T[len];
 }
 Array(const Array &arr) : len(arr.len) {
 ALECONS(Array);
 for (size_t i = 0; i < len; i++)
 a[i] = arr.a[i];
 }
 ...
 ALECLAST(Array)
};

In this example, the class contains an explicit copy constructor. If your class does not
contain an explicit copy constructor and instances can be copied, then you need to
explicitly write a copy constructor and add ALECONS(ClassName); rather than
using a copy constructor that is generated by the compiler. If you need a more
complicated initialization than a default or copy constructor, then use a global
pointer—which can be initialized by another global object, rather than a global
instance.

12.5.2 New Operator and ALE
Decorated classes can be safely used with the new and delete functions, including
using new and delete for array and placement new. However, systems that do
not support exceptions usually do not declare std::bad_alloc and std::no_
throw types. Use aleBadAlloc and aleNoThrow instead of using std::bad_
alloc and std::no_throw types.

One design decision is whether to decorate classes with constructors that only throw
bad::alloc if they run out of memory using ALELAST or ALECLAST. If you are
writing classes for a single application that does not allocate much memory, you might
dispense with error checking and just use ALELAST. Your program might crash
because of incorrect cleanup calls if it runs out of memory. If your class allocates a lot
of memory or you are writing a highly-reusable framework, then it is best to use
ALECLAST and decorate all the constructors.

12.5.3 Global Variables
If you need a global or static variable to be decorated with ALE, declare it using
aleGlobal template, as follows:

aleGlobal<MyType> myGlobal; // Initialized with default constructor
aleGlobal<MyType> myGlobal1(MyType("Hello", 5")); // Initialized with copy
constructor.
...
MyType *t = myGlobal; // Declared variables behave as pointers

Declare all global or static decorated instances using aleGlobal or you may receive
runtime errors.

Another Library for Exceptions (ALE)

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-9

12.5.4 Exceptions and Inheritance
Unlike regular C++ exception handling, ALE requires that class names in aleThrow
and aleCatch match exactly. Typedef names, throwing a subclass, and catching a
superclass will not work. To build a hierarchy of exceptions, add ALEPARENT
declaration to the subclass, as follows:

class BaseE {
 ALELAST(BaseE)
};
class DerivedE : public BaseE {
 ALELAST(DerivedE)
 ALEPARENT(BaseE)
};

DerivedE can be caught as BaseE. If you use multiple inheritance, then the first base
class must be declared as a parent.

12.5.5 Using ALE with PocketPC ARM Compilers
The Microsoft Embedded Visual C++ for ARM has a bug that is triggered when an
ALE-decorated object (or any object with embedded pointers) is passed by value to a
function or method. The affected code receives an ALE fatal error message at runtime.
To avoid this problem, always pass SODA objects and instances of other classes that
use ALE as a constant reference rather than value. For example, modify the following
code:

void createName(DBClass cls, DBString name) {
cls.create("name", name);
}

to the following implementation:

void createName(const DBClass &cls, const DBString &name) {
cls.create("name", name);

12.5.6 Troubleshooting ALE Runtime Errors
If your classes are not decorated properly, then you will receive runtime errors. On
PocketPC, ALE displays a message box explaining the problem, and then the program
terminates. In addition, the error and the dump of the ALE stack is appended to
aleDump.txt, which exists in the root directory of the device. In simple cases, the
error message pinpoints the exact problem; for example ALECONS is missing for
class MyArray. Usually, one of the classes found near the top of the ALE stack is not
decorated properly. If you do not decorate a class and its superclasses or members are
decorated, then you may receive a runtime error and see the superclasses/members on
the stack.

12.5.7 Compiling Your Program With ALE
To build a program that uses ALE, include ale.h from the Oracle Database Lite SDK
and link with the olStdDll.lib library. You need olStdDll.dll at runtime.

12.5.8 ALE Code on Systems That Support Exceptions
For systems that already support C++ exceptions, like Win32, Oracle Lite includes a
dummy ale.h that defines the same macros, but uses regular C++ exceptions to
implement them. If you are writing code that must execute on both Win32 and

Building a SODA Forms Application

12-10 Oracle Database Lite Developer’s Guide

PocketPC, remember to test the code with the actual ALE library to ensure that all
your classes are decorated correctly. ALELAST, ALECLAST or ALECONS have no effect
on the Win32 platform.

12.6 Building a SODA Forms Application
The following sections describe how to create a SODA Forms Application for
PocketPC platforms:

■ Section 12.6.1, "Development Environment Requirements"

■ Section 12.6.2, "Develop Your GUI Using the SODA Forms Library"

■ Section 12.6.3, "Designing the UI for PocketPC"

■ Section 12.6.4, "Customizing the Database Schema"

■ Section 12.6.5, "Binding UI to Data in the PocketPC Environment"

■ Section 12.6.6, "Setting List Choices for Status Contol on PocketPC"

■ Section 12.6.7, "Customizing the Table in OrderForm"

■ Section 12.6.8, "Monitoring the Logic"

12.6.1 Development Environment Requirements
SODA Forms relies on SODA, which is an easy-to-use C++ interface for the Oracle Lite
database engine. Read SODA documentation before continuing with this manual.
Make sure you understand objects, queries, cursors and virtual columns as a way to
customize database schema for a particular application.

When developing for the PocketPC environment, refer to the Microsoft Development
Network. Focus on how to use Embedded Visual C++ to create resources and compile
programs for PocketPC. Also, familiarize yourself with Windows UI controls,
including their formats and styles.

If you want to use SQL in your application, understand the SODA SQL support. The
FormsOrder demo uses SODA SQL to support custom queries.

Find and open FormOrders.vcp in SodamFormCE\FormOrders directory under
the samples for SODA on the PocketPC. This is the demo for PPC2003.

12.6.2 Develop Your GUI Using the SODA Forms Library
SODA Forms is a quick way to create data entry GUI.

12.6.2.1 Traditional Way to Develop Native Data Entry Applications
The GUI for data entry applications performs the same actions, as follows:

■ Copy values from different columns of a database record into controls, such as text
fields and checkboxes.

■ Track what the user is doing by handling various UI events, like "field entered" or
"button clicked". The user typically examines or edits the data on the screen and
presses a button or picks a menu item to designate the next action.

To perform the action requested by the user, the application performs database and UI
calls. For example, to save changes, the application retrieves the values in the UI
controls and eventually executes a SQL update statement. An application needs to be

Building a SODA Forms Application

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-11

able to discard changes, delete records, create new records, go to the previous or the
next entry, and search for data that satisfies user-selected conditions.

Normally, you duplicate the UI code for each screen supported by the program, which
can result in a bulky program. Instead, use Soda Forms, as described in
Section 12.6.2.2, "Trimming Your PocketPC UI Code With SODA Forms", to streamline
your UI code.

12.6.2.2 Trimming Your PocketPC UI Code With SODA Forms
We moved the boilerplate UI code to a library and to enable the programmer to
concentrate on application logic, not the tasks of copying values from database rows to
UI controls. Oracle Database Lite provides this library for PocketPC.

The following example creates a form:

DBSession sess("OrdersODB"); // Open a database connection
DBClass cls = sess["ORD_MASTER"]; // Locate a table in the database
DBForm frm(OrderForm, cls, orderCols, OL_COUNTOF(orderCols)); // Initialize a form
frm.edit(cls.createCursor()); // Let the user edit all records in ORD_MASTER table

When designing an application for PocketPC, the form is created with Embedded
Visual C++ resource editor with values from the first row of ORD_MASTER table1, as
follows:

Building a SODA Forms Application

12-12 Oracle Database Lite Developer’s Guide

Building a SODA Forms Application

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-13

The user can update the current record and then either save the changes or discard
them and reload from the database. He or she can also search data using any values
visible on the screen, scroll through all the records as well as delete existing entries or
create new ones. No special code is needed to support these operations.

On PocketPC, you can also see a lens button on the toolbar. When this button is
clicked, the application can launch a cusomtized dialog for entering search conditions,
retrieve their values, an dexecute custom queries. For PocketPC, we only support
queries implemented by the application.

12.6.3 Designing the UI for PocketPC
For the PocketPC platform, a SODA form is a Windows dialog. Thus, the first step is to
design dialogs for every form using the Embedded Visual C++ resource editor. In the
FormOrders project, click on the resource tab, open the dialog folder and click on the
IDD_FORMORDERS_MASTER dialog. This shows the dialog for the master form, as
follows:

Building a SODA Forms Application

12-14 Oracle Database Lite Developer’s Guide

The controls on the master form, labels (also called static controls, such as "Date:",
"Status:", and so on), edit controls (name and description fields), Date-Time picker (for
date field), ComboBox (for status field), and list view control for the detail table. There
are corresponding icons on the toolbox used to create these controls.

Each control has separate formats and styles that can be customized through the
resource editor to find the appearance and behavior you want. For every control there
is a resource symbol with numeric id assigned to it. Right-click on the
FormOrders.rc and select Resource Symbols, as follows:

You can either create your own identifiers or let the resource editor create them for
each symbol. Look at the header file, resource.h, which is generated by the resource

Building a SODA Forms Application

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-15

editor, to see how identifiers are assigned to resource symbols using #define
statements.

12.6.4 Customizing the Database Schema
The following SODA code connects the application to an Oracle Lite database and
retrieves the DBClass objects for two tables used in the demo—ORD_MASTER and
ORD_DETAIL:

DBSession sess("OrdersODB"); // Open a database connection
DBClass mCls = sess["ORD_MASTER"];
DBClass dCls = sess["ORD_DETAIL"];

However, values stored in the database do not exactly match what should be shown to
the user. SODA allows each application to customize how the schema is shown. Both
the ORD_MASTER and ORD_DETAIL tables have ID columns, which are primary keys
and should be initialized to some unique value when a new record is created. To avoid
asking the user to pick unique values, set the default value of each column to a
sequence, as follows:

mCls.defaultVal("ID", sess.findSequence("OrderSeq"));
dCls.defaultVal("ID", sess.findSequence("DetailSeq"));

In addition, the UI shows the order status as "Open", "Closed" or "Pending"; however,
the "STATUS" column in ORD_MASTER stores numbers, such as 0, 1 or 2. The following
line creates a virtual column named strStatus that contains a mapped value:

DBMapCol mc("strStatus", mCls, "STATUS", DBDataList() << 0 << "Open" << 1 <<
"Closed" << 2 << "Pending" << DBNULL << DBNULL);

Finally, modify the Order screen to contain a table of items included in the order.
SODA Forms populates a table by reading a column that stores a list of DBObject
pointers and copying values from each object to a table row. In our case, ORD_DETAIL
rows relate to a row in ORD_MASTER through the values of the KEY column, which
matches the value of the master ID. The following declaration creates a
pseudo-column that contains an array of pointers and updates KEY values as assigned:

DBValueRel rDet("detail", DBSrcCol(mCls, "ID") -> DBDstCol(dCls, "KEY"), DB_UPD_
CASCADE);

If a mapping you are looking for is not part of SODA, then you can create your own by
subclassing the DBVirtualCol class. Default values and virtual columns are transient
and not stored in the database. Thus, declare them in every application that requires
access to your abstractions.

12.6.5 Binding UI to Data in the PocketPC Environment
Once you complete customizing the database schema, you can map columns in the
database to values that appear on the user screen when editing a particular record. You
can map the columns by binding UI to data in the PocketPC environment. For each
column, you need to define a DBFormCols structure that has the following fields.

■ The resource id assigned to a particular UI control.

■ The column name to which the UI control will be bound.

■ The optional argument that specifies how the control should be edited. For
PocketPC, the only relevant value is DBFormEditListIndex, which asks to use
the index of the selection, rather than its string value, for ListBox and ComboBox
controls. If omitted, the default method is used.

Building a SODA Forms Application

12-16 Oracle Database Lite Developer’s Guide

Here is the mapping for our two forms:

//Mapping for ORD_MASTER table
static const DBFormCols orderCols[] = {
 { IDC_FORMORDERS_DATE, "DDATE", DBFormEditDate},
 { IDC_FORMORDERS_NAME, "NAME"},
 { IDC_FORMORDERS_DESC, "DESCRIPTION"},
 { IDC_FORMORDERS_STATUS, "strStatus"},
 { IDC_FORMORDERS_DETAIL, "detail"}
};
//Mapping for ORD_DETAIL table
static const DBFormCols detailCols[] = {
 { IDC_FORMDETAIL_DATE, "DDATE", DBFormEditDate },
 { IDC_FORMDETAIL_ITEMS, "DESCRIPTION" },
 { IDC_FORMDETAIL_ORDERED, "QTYORDERED", DBFormEditDigits },
 { IDC_FORMDETAIL_SHIPPED, "QTYSHIPPED", DBFormEditDigits },
 { IDC_FORMDETAIL_RECEIVED, "QTYRECEIVED", DBFormEditDigits },
 { IDC_FORMDETAIL_COST, "COST", DBFormEditDigits }
};

Once the mapping is in place, create the DBForm objects by specifying the resource ID
of the form itself, the DBClass of objects that the form will be used to edit and the
mapping table with the number of elements it contains, as follows:

DBForm mFrm(OrderForm, mCls, orderCols, OL_COUNTOF(orderCols));
DBForm dFrm(DetailForm, dCls, detailCols, OL_COUNTOF(detailCols));

12.6.6 Setting List Choices for Status Contol on PocketPC
For listbox and ComboBox controls in the PocketPC environment, set the string list of
choices. You cannot set the list choices for the listbox in the resource editor, and it can
be difficult to set for the combobox. Thus, set the list choices for both the listbox and
the combobox programmatically through the setListItems function of DBFormCol,
as follows:

DBList<DBString> stList;
stList << "Open" << "Closed" << "Pending";
mFrm[IDC_FORMORDERS_STATUS].setListItems(stList);

12.6.7 Customizing the Table in OrderForm
Specify which columns of the ORD_DETAIL table appear in the table and how the
values are aligned within a cell and in the title of each column. The following array
contains the information:

static const DBFormTblCols detailTblCols[] = {
 { "DESCRIPTION", "Items" },
 { "QTYORDERED", "Ordered", DBFormColRight },
 { "COST", "Cost", DBFormColRight }
};

Retrieve a handle to the table column and set its format, as follows:

DBFormCol tCol = mFrm[OrderDetailTable];
tCol.setTableInfo(dCls, detailTblCols, OL_COUNTOF(detailTblCols));

12.6.8 Monitoring the Logic
The following few lines of code constitute the logic of FormOrders application:

// Load all objects of ORD_MASTER into a form

Building a SODA Forms Application

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-17

DBCursor c = mCls.createCursor();
mFrm.load(c);
// Handle table select event in master form to launch the detail form
while (mFrm.edit() == OrderDetailTable)
 dFrm.edit(mFrm[OrderDetailTable]);

From this, the following occurs:

1. A list of objects from ORD_MASTER to edit is loaded into the order form.

2. The mFrm.edit function displays the UI and handles many of the user actions
internally. Before the call returns, the user could have made changes, created new
records, searched through the data, and so on.

3. The return values from the function call are an identifier of the UI control that was
activated, which was not handled internally. In the case of the Orders demo, it
would either be the OrderDetailTable—meaning that a row in that table was
clicked—or the DBFormItemExit—if the exit icon on the toolbar was clicked.

4. If the user clicked the table, the demo asks the DBForm detail to edit the list of
objects contained in the table.

5. Once the edit is completed, any pointers to new objects are saved in the detail
virtual column of the ORD_MASTER row. The DBMapCol updates the KEY column
of the objects to the identifier value that matches the master.

You can use SODA Forms to write concise UI code without replicating a boilerplate.
The next sections explore more advanced capabilities of the library.

12.6.9 Compiling Your SODA Application
SODA can be compiled on Windows and PocketPC environments. To build a SODA
application on Win32, perform the following:

1. Add the Oracle Database Lite SDK to the include and library path in your
compiler options.

2. Include the appropriate .h files and link with appropriate library files, as follows:

■ For most applications, include <soda.h> and link with olStdDll.lib and
sodadll.lib.

■ If you are using Visual Studio.Net and you are building an application using
SODA SQL binding, include the <sodasql.h> file instead of soda.h and
link with olStdDll.lib, sodadll.lib, and sodasql.lib.

■ If you are using Visual C++ 6.0 and building and application using SODA SQL
binding, then link with olStdDll6.lib, sodadll6.lib, and
sodasql6.lib libraries. The olStdDll library contains utility classes that
are not related to database, such as olString and olHash. It does not
depend on the rest of Oracle Database Lite runtime, except ceansi.dll, on
PocketPC platforms.

■ To build a SODA Forms application for PocketPC platform, include
SodaForm.h into your program and link with the following import libraries:
sodadll.lib (soda library), sodasql.lib (library for soda sql) and
sodaform.lib (sodaform runtime). Also, install the Oracle Database Lite
runtime and sodadll.cab in order to run your application. Sodadll.cab
contains sodadll.dll, sodasql.dll, sodaform.dll and
SodaFormHelp.html (default help file for SODA Forms). Currently, we
support SODA Forms for two Pocket PC platforms: Pocket PC 2002 and

SODA Forms Edit Modes

12-18 Oracle Database Lite Developer’s Guide

Pocket PC 2003. The soda libraries and sodadll.cab files are provided in the
SDK for each platform—both for the device and the emulator.

SODA includes a software emulation library that requires some changes in syntax
when using C++ exceptions, but keeps the program structure intact. See Section 12.5,
"Another Library for Exceptions (ALE)" on how to support C++ exceptions.

12.7 SODA Forms Edit Modes
The following sections describe the SODA Forms edit modes:

■ Section 12.7.1, "Editing a Single Object"

■ Section 12.7.2, "Editing a List of Objects"

■ Section 12.7.3, "Creating a New Object"

■ Section 12.7.4, "Popping Up A Dialog"

■ Section 12.7.5, "Custom Queries for PocketPC Environment"

12.7.1 Editing a Single Object
The code below enables a user to edit a specific object. To edit a list of objects, see
Section 12.7.2, "Editing a List of Objects":

DBObject o;
DBFormItem id = frm.edit(o);

In this case, toolbar will not have arrows to scroll or "new" icon to create a new object.
Query is disabled. If the user saves the changes or deletes the object,
DBFormItemSave and DBFormItemDelete are returned respectively. With list edit,
save or delete do not return, since the user can still make additional changes to another
record.

12.7.2 Editing a List of Objects
The following example loads a list of objects into a form, and enables the user to insert,
delete, update or query:

olList<DBObject> ls;
ls << obj1 << obj2 << obj3;
DBFormItem id = frm.edit(ls);

When the edit returns, the DBObject list is updated with the new list of objects that
reflects creation and deletion. The DBFormItem variable has one of the following
values:

Table 12–2 DBFormItem Identifier Values

Value Explanation

DBFormItemExit On PocketPC, the user clicked an OK button on the navigation
bar

Identifier of a table column User clicked on a row in a table. Use the
frm[id].getSelectedRowfunction to determine which one it is.

Identifier of a button User clicked on a button in the form.

Identifier of a menu item User clicked on a menu item not handled internally by SODA
forms.

SODA Forms Edit Modes

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-19

There are several ways to customize the editing. The following example demonstrates
a customization:

DBCursor cur = cls.createCursor(DBColumn("status") == "Active");
frm.load(cur, DBFormNew|DBFormUpdate|DBFormDirtyExit, DBSetList() << "zip" <<
94403 << "status" << "Active");

DBFormItem id;
while ((id = frm.edit()) != DBFormItemExit)
 if (id == CustomerBelmontButton) {
 frm[CustomerZipField] = 94002;
 frm.dirty();
 }
olList<DBObject> ls;
frm.getList(ls);

The DBFormNew or DBFormUpdate edit modes are specified instead of the default
DBFormListEdit mode, which disallows the deletion of records while creating and
updates are OK. DBFormReadOnly enables users to view and search the data.

The DBFormDirtyExit flag means that a button press or menu selection would exit
edit even if the form is dirty. The default is to beep and wait until the user saves or
reverts the change.

Specifying a DBSetList provides initial values that are given when a new object is
created. For bound, enabled columns, the user can change that value. For unbound
database columns or columns bound to read-only UI controls, this is the final value.

You can specify objects to edit in two ways – by giving an explicit list of objects or by
providing a DBCursor. In the later case, the results of a query are loaded into the
form.

In this case, load the list of objects once, call edit one or more times, and then retrieve
the final edited list. SODA Forms provides you a choice between calling the edit
method with all the arguments or calling load, edit without arguments and then
getList or getObject functions. Examples in this document only show one
possibility and do not discuss each edit flag.

12.7.3 Creating a New Object
The example below loads initial values into a form and asks the user to modify the
values. The user then either clicks Save to create a new record or clicks Delete to
cancel the creation.

DBObject o = frm.create(DBSetList() << "zip" << 94403 << "status" << "Active");

This call returns the new object or DBNULL, if the creation was canceled. However, if
you use the load/edit sequence, then call the getObject method to retrieve the object
handle, if DBFormItemSave is returned by the edit method.

Identifier of a pop-up list or
checkbox

The UI control was changed and you called
frm[resId].setChangeNotify(true) on that column.

DBFormItemRevert You set DBFormRevertExit edit flag and the user reverted a
change.

Table 12–2 (Cont.) DBFormItem Identifier Values

Value Explanation

SODA Forms Edit Modes

12-20 Oracle Database Lite Developer’s Guide

12.7.4 Popping Up A Dialog
Although SODA Forms is designed for editing database records, you can use the same
interface to retrieve input from the user. The following example enables the user to
edit two fields and then retrieve the result:

DBForm frm(CustomerForm);
frm[CustomerZipField] = 94002;
frm[CustomerStatusField] = "Active";
DBFormItem id = frm.dialog();
if (id == DBFormItemSave) {
 DBString status = frm[CustomerStatusField];
 int zip = frm[CustomerZipField];
 ...
}

The values set before the frm.dialog call are default values. The user can make
changes and then click Revert to restore the defaults and try again. Finally, the user
clicks Save to send the changes to the program.

12.7.5 Custom Queries for PocketPC Environment
If you want to search on the list of objects loaded into a form, you can perform a
custom query, which is the query logic implemented by the application. Execute the
FormOrders demo and click on the lens toolbar button on the main form. It pops up a
form—a dialog—to enter the search parameters for a custom query. Examine the IDD_
FORMORDERS_QUERY dialog under the FormOrders resources to see how it enters the
following search criteria: from- and to- dates, multiple list choices for the order status,
and keyword search on the company name.

The following code sets up the query form:

//orders query form
//this constructor will automatically put the form into a dialog mode
DBForm qFrm(IDD_FORMORDERS_QUERY);
//set list choices
qFrm[IDC_FORMQUERY_STATUS].setListItems(stList); //same list as for the master
form
qFrm[IDC_FORMQUERY_STATUS].setEditType(DBFormEditListIndex); //cannot use virtual
column here

In order to enable the lens toolbar button, specify DBFormCustomQuery mode when
loading the master form, as follows:

// Load all objects of ORD_MASTER into a form
DBCursor c = mCls.createCursor();
long mMode = DBFormListEdit | DBFormCustomQuery;
mFrm.load(c, mMode);

The full logic of the FormOrders application is as follows:

for(;;) {
 DBFormItem i = mFrm.edit();
 if (i == IDC_FORMORDERS_DETAIL)
 dFrm.edit(mFrm[i]);
 else if (i == DBFormItemQuery) {
 DBFormItem j = qFrm.edit();
 if (j == DBFormItemSave) {
 mFrm.load(doQuery(sess, qFrm), mMode);
 mFrm.setTitle("Search Results");
 }

Customizing Your SODA Forms Application

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-21

 else if (j == DBFormItemDelete) {
 mFrm.load(mCls.createCursor(), mMode);
 mFrm.setTitle("Order");
 }
 }
 else //DBFormItemExit
 break;
}

Call the edit method on the master form and look at the return value. If the row in
the table was clicked (i == IDC_FORMORDERS_DETAIL), then call the edit method
on the detail form and then return to the master form through the loop as shown
earlier in the document. If the user clicks on the query(lens) button (i ==
DBFormItemQuery), then pop up a query dialog (qFrm.edit). Once the user sets up
the query parameters, the user can click on the Save button to execute the query (j ==
DBFormItemSave), Delete button to cancel the query (j == DBFormItemDelete) or
exit the form to come back to the previous screen. The doQuery function creates the
DBSqlCursor based on the search parameters in the query form. To execute the
query, load the master form using the DBSqlCursor and change the form title to
Search Results. If the query was canceled, reload the master form with the original
list of objects (mCls.createCursor) and change its title back to the original.

The doQuery function retrieves the search parameters from the query form as DBData
from its columns. Then it creates a SQL where-clause string and the binding list for it.
The multiple choices for the status list are stored inside DBData as an array of integers.
For the company name field, the search is performed using a LIKE expression—LIKE
%s%—so that any substring matches.

12.8 Customizing Your SODA Forms Application
You can customize the UI of your application by configuring your resource file. Also,
edit the sodares.rsrc file to modify the UI resources used by the SODA Forms
library.

12.8.1 Customizing Help Messages
On PocketPC, when the user clicks on the help button on the toolbar, SODA Forms
launches the Windows CE help editor and loads the help file. The default help file is
SodaFormHelp.html, which describes editing the database record. This help file is
copied under the \Windows directory on PocketPC during installation. If you want to
display different helpfiles or customize help for every screen in your application, then
SODA Forms calls the frm.setHelpFile method where you can pass in your help
file name. Your custom help file should be located under the \Windows directory on
your PocketPC. You may include images and hyperlinks in your help file.

12.8.2 Menus
For PocketPC, SODA Forms uses the PocketPC Menubar, which is a combination of
menus and the toolbar. The default Menubar comes with the SODA Forms and
includes the "Edit" menu and tool bar buttons ("Left", "Right", "New", "Delete", "Save",
"Revert", "Query", "Help"). The menubar can be created in the resource editor, so you
can create your own or modify the default one. Read the MSDN library on how to
create Menubar resources.

Remember to keep the same identifiers for the Menubar itself (IDR_DBFORM_
MENUBAR) and the predefined menu items. You can locate these identifiers in the file
SodaRes.h, which comes with the SODA Forms source code. You should have all the

Displaying a List Of Objects in a Table

12-22 Oracle Database Lite Developer’s Guide

menu and toolbar items that are in the default menubar with the identifiers defined in
SodaRes.h. You can modify toolbar icons, caption, and place toolbar items in your
menus, as long as you keep the same identifiers.

To create or modify the existing menubar within SodaForms, then rebuild the project
and copy the new SodaForm.dll on the device for the changes to take effect.

12.9 Displaying a List Of Objects in a Table
SODA Forms allows one table control on a form to be bound to a list of objects. This
list can be specified by the user, using one of the overloaded setObjects methods in
the DBFormCol class. You can also bind a table to a database column that contains a
list of objects. SODA supports the object pointer array datatype directly, but only
normalized relational data can be replicated to the Mobile Server. Use DBValueRel
virtual columns to map master-detail relationships into pointers.

To bind a table to the database column, perform the following:

■ Add the column name for the PocketPC environment by adding the column name
and the ListView resource identifier to the DBFormCols array that you pass to
the DBForm constructor.

■ Call the setTableInfo method in the corresponding DBFormCol object to
specify which columns of the objects are to be displayed in the table, what are the
column titles, and how the data is to be aligned.

Users can scroll through the table, click on the headers to sort on the column value and
click a row to select it. In this case, the edit call returns with the object identifier of
the selected row and executing the getSelectedPos method on the DBFormCol
returns the row selected or DB_NEW_POS, if the user clicked on an empty space. These
events are suppressed if the form is dirty.

The application handles any table click. However, you should load the list of objects
into another DBForm, let user edit it, and then save the changes back to the table and
to the corresponding database column. DBForm contains an overloaded
edit(DBFormCol) method that does all the work automatically for you if you only
have a single level of a master-detail relationship. For more complicated cases, you
could do the following:

1. Maintain a stack of DBForm objects.

2. Call the DBForm::load(DBFormCol) method when you push a new form on the
stack.

3. Call DBFormCol::saveTo(DBFormCol) before the pop.

12.10 SODA Forms UI Controls
SODA Forms supports multiple kinds of UI resources. For each, the values stored in
the database and editing behavior can be customized by specifying an edit type in the
third field of DBFormCols, as described in Section 12.6.5, "Binding UI to Data in the
PocketPC Environment", and optionally calling methods on the corresponding
DBFormCol object.

The form developed on PocketPC can have controls that are not bound to database,
such as push buttons. Clicking on a button returns from the edit method with the
button Id. When developing on PocketPC, use the following control types:

SODA Forms UI Controls

Using Simple Object Data Access (SODA) for PocketPC Platforms 12-23

Table 12–3 Control Types for PocketPC

Control Type Edit Behavior Value stored in database

Checkbox The checkbox can be checked on or off. If
Tri-state style is specified, then the checkbox
can have a greyed-out appearance if the value
is unknown.

True, false or null (for unknown value) is
stored in the database.

ComboBox This is a combination of a listbox and the edit
control. Drop List is a popup list.
Dropdown is a popup list that contains edit
control for editing the selection. Multiple
selections are not supported for the
Combobox.

Same as listbox. For "Dropdown" format, with
the default edit type, the strings which are not
in the original list can be loaded into the edit
area of the combo box or stored in the
database.

Edit This is a text field for entering characters.
Different styles can be specified in the
resource editor, to change the appearance and
the set of characters that can be entered into
the field. For example, the Number style only
allows numbers to be entered.

Any trailing spaces or newlines will be
stripped from user's input. If the result is an
empty string, null value will be stored in the
database. Otherwise, the trimmed result will
be stored. If the control is bound to a numeric
column (control should have "Number" style),
the entered number will be stored.

Date-Time Picker The control stores and shows date and/or
time values. It displays a month calendar to
modify the value. You can use any of the
following formats: Short Date, Long Date,
Time, or a custom format. To set the custom
format, call the
tbl[resId].setDateFormat method with
the custom format string. See the MSDN
library for the DateTime_SetFromat
method on how to construct the custom
format. Use the Show None style to null the
date/time. This places a check box on the left
and the control has an unspecified (null) value
when the check box is not checked. The
Allow Edit style enables manual editing of
the date string.

Date/time value is stored in the database. If
the control has the Show None style and is in
unspecified state, then a null value is stored.

Listbox Displays a list of text items. Set iether single or
multiple selection type in the resource editor.
The latter is useful for the query mode when
you want to query by multiple choices within
the list.

Single-selection listbox:

If the column edit type is default, the string of
the selected item is stored in the database. On
input, unknown values or null are shown as
an empty string. To allow user to choose a null
value, include an empty string as one of the
list selections.

If the column edit type is
DBFormEditListIndex, 0-based index of the
selection is stored in the database. This mode
is useful where the selection strings are
language specific but the database column
should always have the same values.

Multiple-selection listbox:

List selections are stored as array of strings or
numbers (when edit type is
DBFormEditListIndex). Remember that
DBData can store arrays of values of certain
type. If there are no selections, null value is
stored.

SODA Forms UI Controls

12-24 Oracle Database Lite Developer’s Guide

Oracle Database Lite ADO.NET Provider 13-1

13
Oracle Database Lite ADO.NET Provider

The following sections discuss the Oracle Database Lite ADO.NET provider for
Microsoft .NET and Microsoft .NET Compact Framework. The Oracle Database Lite
ADO.NET provider resides in the Oracle.DataAccess.Lite namespace.

■ Section 13.1, "Discussion of the Classes That Support the ADO.NET Provider"

■ Section 13.2, "Limitations for the ADO.NET Provider"

■ Section 13.3, "Developing an ADO.NET Application on WinCE"

13.1 Discussion of the Classes That Support the ADO.NET Provider
The Oracle Database Lite ADO.NET driver is implemented in the following assembly:

■ Windows—Oracle.DataAccess.Lite.dll

■ Windows CE—Oracle.DataAccess.Lite_wce.dll

If you are building an application that uses the ADO.Net driver, you must package the
driver with the application files. The assembly DLL must be located in the same
directory as your application executable (*.exe file). Alternatively, you can add the
driver to the Windows global assembly cache. See the Microsoft documentation on
how to add this DLL to the Global Assembly Cache.

The following sections describe classes for the Oracle Database Lite ADO.NET
provider:

■ Section 13.1.1, "Establish Connections With the OracleConnection Class"

■ Section 13.1.2, "Transaction Management"

■ Section 13.1.3, "Create Commands With the OracleCommand Class"

■ Section 13.1.4, "Maximize Performance Using Prepared Statements With the
OracleParameter Class"

■ Section 13.1.5, "Large Object Support With the OracleBlob Class"

■ Section 13.1.6, "Data Synchronization With the OracleSync Class"

■ Section 13.1.7, "Creating a Database for Testing"

13.1.1 Establish Connections With the OracleConnection Class
The OracleConnection interface establishes connections to Oracle Database Lite.
This class implements the System.data.IDBConnection interface. When
constructing an instance of the OracleConnection class, implement one of the
following to open a connection to the back-end database:

Discussion of the Classes That Support the ADO.NET Provider

13-2 Oracle Database Lite Developer’s Guide

■ Pass in a full connection string as described in the Microsoft ODBC
documentation for the SQLDriverConnect API, which is shown below:

OracleConnection conn = new OracleConnection
 ("Data_Directory=\\orace;Database=polite;DSN=*;uid=system;pwd=manager");
conn.Open();

■ Construct an empty connection object and set the ConnectionString property
later.

With an embedded database, we recommended that you open the connection at the
initiation and leave it open for the life of the program. When you close the connection,
all of the IDataReader cursors that use the connection are also closed.

13.1.2 Transaction Management
By default, Oracle Database Lite connection uses the autocommit mode. If you do not
want the autocommit to be on, then you can start a transaction with the
BeginTransaction method in the OracleConnection object. The
BeginTransaction method returns a reference to the IDbTransaction object.
Then, when finished, execute either the Commit or Rollback methods on the
returned IDbTransaction, which either commits or rolls back the transaction. Once
the transaction is completed, the database is returned to autocommit mode.

Whenever you rollback a transaction, it rolls back all the operations that you have
performed before. Sometimes you need to undo the transaction to a certain point. For
this scenario, you can use the Save Points functionality. Save Points allows you to
rollback a transaction to a certain point. Oracle Lite supports Save Points. Within a
transaction, you can set up, remove or undo any number of Save Points using SQL
statements. Using save points gives you better granular control over the transaction.
Within the transaction, use SQL syntax to set up, remove and undo savepoints.

For WinCE devices, Oracle Database Lite supports only one process to access a given
database. When a process tries to connect to a database that is already in use, the
OracleConnectionOpen method throws an OracleException. To avoid this
exception being thrown, close a connection to allow another process to connect.

The following is an example in turning off autocommit for a C# application:

OracleConnection conn = new OracleConnection ("DSN=consroot;uid=system");
conn.Open();
IDbTransaction trans = conn.BeginTransaction(); // Turn off AUTOCOMMIT
OracleCommand cmd = (OracleCommand)conn.CreateCommand();
cmd.CommandText = "create table TEST1 (c0 number)";
cmd.ExecuteNonQuery();
trans.Commit(); // AutoCommit is 'ON'
cmd.Dispose();
conn.Close();

The following is an example in turning off autocommit for a VB.NET application:

conn = New Oracle.DataAccess.Lite.OracleConnection(("DSN=consroot;uid=system")
conn.Open()
IDbTransaction trans = conn.BeginTransaction()
OracleCommand cmd = New OracleCommand (conn)
cmd.CommandText = "create table TEST1 (c0 number)"
cmd.ExecuteNonQuery()
trans.Commit()
cmd.Dispose()
conn.Close()

Discussion of the Classes That Support the ADO.NET Provider

Oracle Database Lite ADO.NET Provider 13-3

13.1.3 Create Commands With the OracleCommand Class
The OracleCommand class implements the System.Data.IDBCommand interface.
Create any commands through the CreateCommand method of the
OracleConnection class. The OracleCommand has constructors recommended by
the ADO.NET manual, such as OracleCommand(OracleConnection conn,
string cmd).

However, if you use the OracleCommand constructors, it is difficult to port the code
to other platforms, such as the ODBC provider on Windows 32. Instead, create the
connection and then use interface methods to derive other objects. With this model,
you can either change the provider at compile time or use the reflection API at
runtime.

13.1.4 Maximize Performance Using Prepared Statements With the OracleParameter
Class

Parsing a new SQL statement can take significant time; thus, use prepared statements
for any performance-critical operations. Although, IDbCommand has an explicit
Prepare method, this method always prepares a statement on the first use. You can
reuse the object repeatedly without needing to call Dispose or change the
CommandText property.

13.1.4.1 SQL String Parameter Syntax
Oracle Database Lite uses ODBC-style parameters in the SQL string, such as the ?
character. Parameter names and data types are ignored by the driver and are only for
the programmer's use.

For example, assume the following table:

create table t1(c1 int, c2 varchar(80), c3 data)

You can use the following parameters in the context of this table:

IDbCommand cmd = conn.CreateCommand();
cmd.CommandText = "insert into t1 values(?,?,?);"
cmd.Parameters.Add("param1", 5);
cmd.Parameters.Add("param2", "Hello");
cmd.Parameters.Add("param3", DateTime.Now);
cmd.ExecuteNonQuery();

13.1.5 Large Object Support With the OracleBlob Class
The OracleBlob class supports large objects. Create a new OracleBlob object to
instantiate or insert a new BLOB object in the database, as follows:

OracleBlob blob = new OracleBlob(conn);

Since the BLOB is created on a connection, you can use the Connection property of
OracleBlob to retrieve the current OracleConnection.

Functions that you can perform with a BLOB are as follows:

■ Section 13.1.5.1, "Using BLOB Objects in Parameterized SQL Statements"

■ Section 13.1.5.2, "Query Tables With BLOB Columns"

Note: The relevant class names are OracleParameter and
OracleParameterCollection.

Discussion of the Classes That Support the ADO.NET Provider

13-4 Oracle Database Lite Developer’s Guide

■ Section 13.1.5.3, "Read and Write Data to BLOB Objects"

13.1.5.1 Using BLOB Objects in Parameterized SQL Statements
You can use the BLOB object in parameterized SQL statements, as follows:

OracleCommand cmd = (OracleCommand)conn.CreateCommand();
cmd.CommandText = "create table LOBTEST(X int, Y BLOB)";
cmd.ExecuteNonQuery();
cmd.CommandText = "insert into LOBTEST values(1, ?)";
cmd.Parameters.Add(new OracleParameter("Blob", blob));
cmd.ExecuteNonQuery();

13.1.5.2 Query Tables With BLOB Columns
You can retrieve the OracleBlob object using the data reader to query a table with a
BLOB column, as follows:

cmd.CommandText = "select * from LOBTEST";
IDataReader rd = cmd.ExecuteReader();
rd.read();
OracleBlob b = (Blob)rd["Y"];

Or you can write the last line of code, as follows:

OracleBlob b = (OracleBlob)rd.getvalue(1);

13.1.5.3 Read and Write Data to BLOB Objects
The OracleBlob class supports reading and writing to the underlying BLOB, and
retrieving and modifying the BLOB size. Use the Length property of OracleBlob to
get or to set the size. Use the following functions to read and write to the BLOB, as
follows:

public long GetBytes(long blobPos, byte [] buf, int bufOffset, int len);
public byte [] GetBytes(long blobPos, int len);
public void SetBytes(long blobPos, byte [] buf, int bufOffset, int len);
public void SetBytes(long blobPos, byte [] buf);

For example, the following appends data to a BLOB and retrieves the bytes from
position five forward:

byte [] data = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
 blob.SetBytes(0, data); //append data to the blob
byte [] d = blob.GetBytes(5, (int)blob.Length - 5); //get bytes from position 5 up
to the end
blob.Length = 0; //truncate the blob completely

Use the GetBytes method of the data reader to read the BLOB sequentially, but
without accessing it as a OracleBlob object. You should not, however, use the
GetBytes method of the reader and retrieve it as a OracleBlob object at the same
time.

13.1.6 Data Synchronization With the OracleSync Class
You can perform a synchronization programatically with one of the following
methods:

■ Section 13.1.6.1, "Using the OracleSync Class to Synchronize"

■ Section 13.1.6.2, "Using the OracleEngine to Synchronize"

Discussion of the Classes That Support the ADO.NET Provider

Oracle Database Lite ADO.NET Provider 13-5

13.1.6.1 Using the OracleSync Class to Synchronize

To programmatically synchronize databases, perform the following:

1. Instantiate an instance of the OracleSync class.

2. Set relevant properties, such as username, password and URL. The username and
password are limited to 28 characters each.

3. Call the Synchronize method to trigger data synchronization.

This is demonstrated in the following example:

OracleSync sync = new OracleSync();
sync.UserName = "JOHN";
sync.Password = "JOHN";
sync.ServerURL = "mobile_server";
sync.Synchronize();

The attributes that you can set are described in Table 13–1.

If you want to retrieve the synchronization progress information, set the
SyncEventHandler attribute of the OracleSync class before your execute the
sync.synchronize method, as follows.

sync.SetEventHandler (new OracleSync.SyncEventHandler
 (MyProgress), true);

Note: A DataException is thrown if synchronization fails. Also,
you must close all database connections before doing a
synchronization.

Table 13–1 OracleSync Attributes

Attibute Description

UserName Assign a string in quotes with the name of the user for
synchronization.

Password Assign a string in quotes with the password for the user.

ServerURL Assign a string in quotes with the Mobile Server host name.

ProxyHost Assign a string in quotes with the host name of the proxy server.

ProxyPort Assign a string in quotes with the port of the proxy server.

Secure Set to true if using SSL; false if not.

PushOnly If true, upload changes from the client to the server only, as download
is not allowed. This is useful when the data transfer is a one way
transmission from the client to server.

HighPriority Set to true if requesting a high priority synchronization.

SetTableSyncFlag Three arguments are required for SetTablesyncFlag, as follows:

sync.SetTableSyncFlag (String pub_name,
 String tbl_name, boolean remove)

Passing pub_name, null tbl_name, remove = 0 turns off syncFlag
for everytable in that publication. Passing pub_name, tbl_name,
remove = 1 turns on syncFlag for that specific table. Thus, you can
set synchronization off for all tables, then turn on each individual table
that you want to synchronize.

Discussion of the Classes That Support the ADO.NET Provider

13-6 Oracle Database Lite Developer’s Guide

You pass in your implementation of the MyProgress method, which has the
following signature:

Void MyProgress(SyncStage stage, int Percentage)

13.1.6.2 Using the OracleEngine to Synchronize
You can synchronize with the same engine that performs the synchronization for the
msync tool. You can actually launch the GUI to have the user enter information and
click Synchronize or you can enter the information programmatically and synchronize
without launching the GUI.

13.1.6.2.1 Launch the msync Tool for User Input You can launch the msync tool, so that
the user can modify settings and initialize the synchronization, by executing the
following:

OracleEngine.Synchronize(false)

Providing the false as the input parameter tells the engine that you are not providing
the input parameters, but to bring up the msync GUI for the user to input the
information.

13.1.6.2.2 Set the Environment and Synchronize With the OracleEngine You can set the
information and call for a synchronization through the OracleEngine class without
bringing up the GUI.

If you accept the default synchronization settings, provide true as the input
parameter to automatically synchronize, as follows:

OracleEngine.Synchronize(true)

You can execute the synchronize method with three input parameters that define a
specific server: the server name, username and password.

OracleEngine.Synchronize("S11U1", "manager", "myserver.mydomain.com")

Alternatively, you can configure a string that contains the options listed in Table 13–2
with a single String input parameter and synchronize, as follows:

OracleEngine.Synchronize(args)

In the above example, the String args input parameter is a combination of the
options in Table 13–2.

String args = "S11U1/manager@myserver.mydomain.com /save /ssl /force"

Include as many of the options that you wish to enable in the String.

Table 13–2 Command Line Options

Option Description

username/password@server[:port]
[@proxy:port]

Automatically synchronize to the specified
server.

/a Automatically synchronize to saved preferred
server.

/save Save user info and exit.

/proxy:(proxy_server)[:port] Connect by specific proxy server and port.

/ssl Synchronize with SSL encryption.

Limitations for the ADO.NET Provider

Oracle Database Lite ADO.NET Provider 13-7

13.1.7 Creating a Database for Testing
In a non-production environment, you may want to create a database to test your
ADO.NET application against. In the production environment, the database is created
when you perform the OracleEngine.Synchronize method (see Section 13.1.6.2,
"Using the OracleEngine to Synchronize" for more information). However, to just
create the database without synchronization, you can use the CreateDatabase
method of the OracleEngine class. To remove the database after testing is complete,
use the RemoveDatabase method. These methods are only supported when you
install the Mobile Development Kit (MDK).

The following is the signature of the CreateDatabase method:

OracleEngine.CreateDatabase (string dsn, string db, string pwd)

13.2 Limitations for the ADO.NET Provider
The following are limitations to the Oracel Database Lite ADO.NET provider:

■ Section 13.2.1, "Partial Data Returned with GetSchemaTable"

■ Section 13.2.2, "Creating Multiple DataReader Objects Can Invalidate Each Other"

■ Section 13.2.3, "Calling DataReader.GetString Twice Results in a DbNull Object"

■ Section 13.2.4, "Thread Safety"

13.2.1 Partial Data Returned with GetSchemaTable
The Oracle Database Lite ADO.NET provider method—GetSchemaTable—only
returns partial data. For example, it claims that all of the columns are primary key,
does not report unique constraints, and returns null for BaseTableName,

/force Force refresh.

/noapp:(application_name) Do not synchronize specific Web-to-Go
application data. Synchronize with other
applications.

/nopub:(publication_name) Do not synchronize specific publication data.
Synchronize with other publications.

/notable:(table_name)
/notable:(odb_name).(table_name)

Do not synchronize specific table data.
Synchronize with other tables.

/onlyapp:(application_name) Synchronize only specific Web-to-Go
application data. Do not synchronize with other
applications.

/onlypub:(publication_name) Synchronize only specific publication data. Do
not synchronize with other publications.

/onlytable:(table_name)
/onlytable:(odbc_name).
(table_name)

Synchronize only specific table data. Do not
synchronize with other tables.

/hp Enable high priority data synchronization.

Note: Use the CAB file provided with the MDK.

Table 13–2 (Cont.) Command Line Options

Option Description

Developing an ADO.NET Application on WinCE

13-8 Oracle Database Lite Developer’s Guide

BaseSchemaName and BaseColumnName. Instead, to retrieve Oracle Database Lite
meta information, use ALL_TABLES and ALL_TAB_COLUMNS instead of this call to get
Oracle Database Lite meta information.

13.2.2 Creating Multiple DataReader Objects Can Invalidate Each Other
The Oracle Database Lite ADO.NET provider does not support multiple concurrent
DataReader objects created from a single OracleCommand object. If you need more
than one active DataReader objects at the same time, create them using separate
OracleCommand objects.

The following example shows how if you create multiple DataReader objects from a
single OracleCommand object, then the creation of reader2 invalidates the reader1
object.

OracleCommand cmd = (OracleCommand)conn.CreateCommand();
cmd.CommandText = "SELECT table_name FROM all_tables";
cmd.Prepare();
IDataReader reader1 = cmd.ExecuteReader();
IDataReader reader2 = cmd.ExecuteReader();

13.2.3 Calling DataReader.GetString Twice Results in a DbNull Object
Calling the GetString method of DataReader twice on the same column and for
the same row results in a DbNull object. The following example demonstrates this in
that the second invocation of GetString results in a DbNull object.

 IDataReader dr = cmd.ExecuteReader();
 String st = null;
 while(dr.Read())
 {
 st = dr.GetString (1);
 st = dr.GetString (1);
 }

13.2.4 Thread Safety
To build a thread-safe program, make sure that different threads use separate
IDbCommand and IDataReader objects. The OracleConnection and
IDbTransaction methods can be called concurrently, except for when used to open
and close the connection.

13.3 Developing an ADO.NET Application on WinCE
For an example of how to develop an ADO.NET application, see Chapter 20, "Tutorial
for Building Mobile Applications for Windows CE".

Using Symbian Devices 14-1

14
Using Symbian Devices

Symbian support is a relatively new addition to the supported devices in Oracle
Database Lite. As such, not all functionality that exists for other devices is available for
Symbian devices. This chapter helps to show what is supported. Use the rest of the
documentation for more details on those areas.

■ Section 14.1, "Support Symbian Devices in Oracle Database Lite"

■ Section 14.2, "Invoke Synchronization from Applications on Symbian Devices"

■ Section 14.3, "Using a JDBC Driver for J2ME CLDC to Connect to the Database"

■ Section 14.4, "Use the Utility Tools on Symbian Devices"

14.1 Support Symbian Devices in Oracle Database Lite
When you are developing applications for the Symbian environment, you can use the
following:

■ For your development language, you can use either C or C++ APIs.

■ Symbian applications that need a standard interface and work with multiple
database engines can use either the Open Database Connectivity (ODBC) interface
or some other interface built on top of ODBC.

14.2 Invoke Synchronization from Applications on Symbian Devices
The following sections describes how to set up your application to use the
synchronization APIs for use on a Symbian device. Also, see Section 4.1,
"Synchronization APIs For C or C++ Applications" for information on how to use the
C or C++ APIs available to start synchronization programmatically within your
application.

■ Section 14.2.1, "How To Write A Program Using Oracle Database Lite 10g"

■ Section 14.2.2, "Prepare Your Application for Synchronization"

■ Section 14.2.3, "How to Use the Synchronization API for Symbian Devices"

14.2.1 How To Write A Program Using Oracle Database Lite 10g

Note: For an example, see the CSQL example in the
<EPOCROOT>\OliteEx\CoreDB\CSQL directory.

Invoke Synchronization from Applications on Symbian Devices

14-2 Oracle Database Lite Developer’s Guide

Perform the following to enable database (ODBC) functionality:]

1. Include sql.h and sqlext.h in your source code, as follows:

#include <sql.h>
#include <sqlext.h>

2. Add the include path SYSTEMINCLUDE \epoc32\include\olite in the .mmp
file.

3. Add the library LIBRARY olod2040.lib in the .mmp file.

4. Oracle Database Lite 10g uses STDLIB resources. You need to call
CloseSTDLIB() after all database operations to free up resources.

5. Character data stored in Oracle Database Lite 10g must be in UTF-8 encoding.

If you write APP application, then you might need to convert between UCS and
UTF-8 encodings back and forth. For more information, refer the Symbian API
reference.

You can use the following two functions to convert between encodings:

■ CnvUtfConverter::ConvertFromUnicodeToUtf8()

■ CnvUtfConverter::ConvertToUnicodeFromUtf8()

6. Oracle Database Lite 10g uses STDLIB; thus, you must release all resources after
you finish any ODBC operations. To release all resources, perform the following:

a. Add #include <sys/reent.h>.

b. Invoke the CloseSTDLIB() method after each SQLFreeEnv() call.

14.2.2 Prepare Your Application for Synchronization

1. Include ocapi.h in your source code, as follows: #include <ocapi.h>.

2. Add the include path SYSTEMINCLUDE \epoc32\include\olite in your
.mmp file.

3. Add the library LIBRARY ocapi.lib in your .mmp file.

14.2.3 How to Use the Synchronization API for Symbian Devices
The Synchronization API does not run under the eshell.exe. For starting
synchronization, the application performs the following:

1. Invoke the ocSessionInit() method.

2. Invoke the ocDoSynchronize() method, which will return before the
synchronization completes.

Note: To use these functions, include utf.h and link
charconv.lib.

Note: For an example, see the mSync example in the
<EPOCROOT>\OliteEx\Sync\mSync directory.

Use the Utility Tools on Symbian Devices

Using Symbian Devices 14-3

3. To determine if the synchronization is complete, the GUI application continues to
invoke the ocGetLastError() method. If it returns -1, then synchronization is
still executing. With any other value, the synchronization is complete.

4. Once synchronization completes, then invoke the ocSessionTerm() method.

For an example, see the msync.cpp sample code.

14.3 Using a JDBC Driver for J2ME CLDC to Connect to the Database
You can use a JDBC driver for J2ME CLDC—in a limited capacity—for Java
applications to connect and update the database. Full details on the JDBC driver for
J2ME CLDC, which can be used on Symbian devices is documented in Section 10.8.1.2,
"JDBC Driver for J2ME CLDC".

14.4 Use the Utility Tools on Symbian Devices
To use the database utility tools on the emulator, perform the following:

1. Open a command prompt window.

2. Change directory to the <EPOCROOT>\epoc32\release\wins\udeb directory.

3. Type the tool name with appropriate arguments. See the Oracle Database Lite 10g
documentation for more information.

To use the database utility tools on the device, perform the following:

1. Open eshell.exe on the device. Consult with the device manufacturer for the
eshell.exe program.

2. Type the tool name with appropriate arguments. See the Oracle Database Lite 10g
documentation for more information.

Use the Utility Tools on Symbian Devices

14-4 Oracle Database Lite Developer’s Guide

Oracle Database Lite Transaction Support 15-1

15
Oracle Database Lite Transaction Support

When an application connects to the local client database—Oracle Database Lite—it
begins a transaction with the database. There can be a maximum of 64 connections to
Oracle Database Lite. Each connection to Oracle Database Lite maintains a separate
transaction, which conform to ACID requirements.

A transaction can include a sequence of database operations, such as SELECT,
UPDATE, DELETE, and INSERT. All operations either succeed and are committed or
are rolled back. Oracle Database Lite only updates the database file when the commit
is executed. If an event, such as a power outage, interrupts the commit, then the
database is restored during the next connection.

■ Section 15.1, "Locking"

■ Section 15.2, "What Are the Transaction Isolation Levels?"

■ Section 15.3, "Configuring the Isolation Level"

■ Section 15.4, "Supported Combinations of Isolation Levels and Cursor Types"

15.1 Locking
Oracle Database Lite supports row-level locking. Whenever a row is read, it is read
locked. Whenever a row is modified, it is write locked. If a row is read locked, then
different transactions can still read the same row. However, a transaction cannot access
a row if it is a write locked row by another transaction.

15.2 What Are the Transaction Isolation Levels?
Each transaction is isolated from another. Even though many transactions run
concurrently, transaction updates are concealed from other transactions until the
transaction commits. You can specify what level of isolation is used within the
transaction, as listed in Table 15–1:

What Are the Transaction Isolation Levels?

15-2 Oracle Database Lite Developer’s Guide

Refer to the documentation for ODBC for more information on isolation levels.

Table 15–1 Isolation Levels

Isolation Level Description

Read Committed In Oracle Database Lite, a READ COMMITTED transaction first acquires a
temporary database level read lock, places the result of the query into a
temporary table, and then releases the database lock. During this time,
no other transaction can perform a commit operation. No data objects
are locked. All other transactions are free to perform any DML
operation—except commit—during this time. Since a commit operation
locks the database in intent exclusive mode, a read committed
transaction, while gathering the query result, will block another
transaction that is trying to commit or vice versa. A READ COMMITTED
transaction provides the highest level of concurrency, as it does not
acquire any data locks and does not block any other transaction from
performing any DML operations. In addition, the re-execution of the
same query (SELECT statement) may return more or less rows based on
other transactions made to the data in the result set of the query.

Note: A SELECT statement containing the FOR UPDATE clause is
always executed as if it is running in a REPEATABLE READ isolation
level.

A SELECT statement can execute Java stored procedures. If the
transaction executing the Java stored procedure is in the READ
COMMITTED isolation level and the Java stored procedure updates the
database, then the SELECT statement that executes the Java stored
procedure must have a FOR UPDATE clause. Otherwise, Oracle
Database Lite issues an error.

Note: If you are retrieving a large object, such as a BLOB, within a
READ COMMITTED transaction, see the "Select Statement Behavior
When Retrieving BLOBs in a READ COMMMITTED
transaction" section in the Oracle Database Lite SQL Reference.

Repeatable Read In this isolation level, a query acquires read locks on all of the returned
rows. More rows may be read locked because of the complexity of the
query itself, the indexes defined on its tables, or the execution plan
chosen by the query optimizer. The REPEATABLE READ isolation level
provides less concurrency than a READ COMITTED isolation level,
transaction because the locks are held until the end of the transaction.

A "phantom" read is possible in this isolation level, which can occur
when another transaction inserts rows that meet the search criteria of
the current query and the transaction re-executes the query.

If a FOR UPDATE clause is used in a query, a short-term update lock is
acquired on the current row(s) being selected. If a row is updated, the
lock is converted into an exclusive lock. An exclusive lock prevents any
other transaction running in an isolation level other than READ
COMMITTED to access this row. If the row is not updated but the next
row is fetched, the update lock is downgraded to a read lock,
permitting other transactions to read the row.

Serializable This isolation level acquires shared locks on all tables participating in
the query. The same set of rows is returned for the repeated execution of
the query in the same transaction. Any other transaction attempting to
update any rows in the tables in the query is blocked.

SingleUser In this isolation level only one connection is permitted to the database.
The transaction has no locks and consumes less memory.

Supported Combinations of Isolation Levels and Cursor Types

Oracle Database Lite Transaction Support 15-3

15.3 Configuring the Isolation Level
The default isolation level is READ COMMITTED. You can modify the isolation level for
a data source name (DSN) by using the ODBC Administrator—which you can bring
up by executing odbcad32—or by manually editing the ODBC.INI file. We
recommend that you use the odbcad32 tool, as it will inform you if you have an
incorrect combination of isolation level and cursor type. See Section 15.4, "Supported
Combinations of Isolation Levels and Cursor Types" for more information.

When you bring up the ODBC Administrator, under the User DSN tab, double-click
the Oracle Lite 40 ODBC driver for which you want to modify the isolation level.
Select the default cursor type from the pull-down list.

If you decide to edit the ODBC.INI file by hand, then set the isolation level as follows:

IsolationLevel = XX

where the value for XX is Read Committed, Repeatable Read, Serializable, or Single
User.

Alternatively, you can define the isolation level of a transaction by using the following
SQL statement:

SET TRANSACTION ISOLATION LEVEL <ISOLATION_LEVEL>;

where ISOLATION_LEVEL is READ COMMITTED, REPEATABLE READ,
SERIALIZABLE, or SINGLE USER.

See Section 15.4, "Supported Combinations of Isolation Levels and Cursor Types", for
information on how certain isolation levels and scrollable cursors sometimes cannot be
used in combination.

15.4 Supported Combinations of Isolation Levels and Cursor Types
If you use the ODBC Administrator—which you can bring up by executing
odbcad32—then this tool informs you if you are using an incorrect combination of
isolation level and cursor type.

We support these types of cursors

■ Forward only cursors allow you to only move forward through the returned result
set. You cannot go backwards, nor can you view any additional modifications. To
return to a row, you would have to close the cursor, reopen it and then move to the
row you wanted to see. However, it is the fastest cursor for moving through a
result set.

■ Scrollable cursors are the most flexible as they allow you to go forward and
backward through the returned result set, but are also expensive. The other
advantage of using a scrollable cursor is you can see modifications directly after
they occur.

The three supported types of scrollable cursors are as follows:

Note: The ODBC.INI file is available in Windows under %WINDIR%
and in Linux under $OLITE_HOME/bin. For the Linux platform, you
must have write permissions on the directory where this is located to
be able to modify them.

Supported Combinations of Isolation Levels and Cursor Types

15-4 Oracle Database Lite Developer’s Guide

■ Static—The result set appears to be static; that is, it does not detect modifications
made to the membership, order, or values of the result set after the cursor is
opened. This cursor can detect its own modifications, just not the modifications of
others.

■ Dynamic—Any modifications to the result set can be detected and viewed when
the row is re-fetched.

■ Keyset Driven—The abilities of this cursor is between the static and dynamic. It
can detect modifications to the values in the rows of the result set; however, it
cannot detect changes to the membership and order of the result set.

Refer to the documentation for ODBC for more information on cursor types.

For some cursors, you cannot combine them with certain isolation levels. Table 15–2
shows the supported combinations of isolation levels and cursor types. Unsupported
combinations generate error messages.

Table 15–2 Supported Combinations

Forward
Only
Cursor

Scrollable
Static
Cursor

Scrollable
Keyset Driven
Cursor

Scrollable
Dynamic
Cursor

Isolation Level

Read Committed Supported Supported Unsupported Unsupported

Repeatable Read Supported Unsupported Supported Supported

Serializable Supported Unsupported Supported Supported

Single User Supported Supported Supported Supported

Oracle Database Lite Security 16-1

16
Oracle Database Lite Security

The following sections detail security issues for Oracle Database Lite:

■ Section 16.1, "Authenticating Users With Your Own User Management System"

■ Section 16.2, "Providing Your Own Encryption Module for the Client Oracle Lite
Database"

16.1 Authenticating Users With Your Own User Management System
You can provide an external authenticator for the Mobile Server to authenticate users
with passwords as well as their access privileges to applications. For example, in an
enterprise environment, you may have your user data, such as employee information,
stored in a LDAP-based directory service. The Mobile Server can retrieve the user
information from the LDAP directory—or from any custom User Management
System—if configured with your own implementation of an external authenticator.
The Mobile Server links the external user information to the Mobile Server repository.

16.1.1 Implementing Your External Authenticator
In order to use an external authenticator, you must implement the
oracle.lite.provider.Authenticator JAVA interface and configure the
implementation in the webtogo.ora file.

Implement the following methods in your external authenticator. The Mobile Server
invokes each of these methods as appropriately.

■ Section 16.1.1.1, "The Initialization Method for the External Authenticator"

■ Section 16.1.1.2, "The Destruction Method for the External Authenticator"

■ Section 16.1.1.3, "The Authentication Method for the External Authenticator"

■ Section 16.1.1.4, "The User Instantiation Method for the External Authenticator"

■ Section 16.1.1.5, "Retrieve the User Name or the User Global Unique ID"

■ Section 16.1.1.6, "Log Off User"

■ Section 16.1.1.7, "Change User Password"

Note: Sample code for an external authenticator can be found in
<ORACLE_HOME>\Mobile\Server\samples\devmgr\
java\SampleAuthenticator.java

Authenticating Users With Your Own User Management System

16-2 Oracle Database Lite Developer’s Guide

16.1.1.1 The Initialization Method for the External Authenticator
Mobile Server invokes the initialize method before calling any other method of
provider class. This method will be called only once when the provider is initialized.

Method: void initialize (String metaData) throws Exception
Parameter: String metaData (Reserved for future use)

16.1.1.2 The Destruction Method for the External Authenticator
Mobile Server invokes the destroy method when the system shutdowns. Provider
implementation should implement all the cleanup code in this method.

Method: void destroy() throws Exception
Parameter: None

16.1.1.3 The Authentication Method for the External Authenticator
Authenticate a user and return a session handle. The returned session handle is passed
to the logOff method when the user logs off from the system. Note that the logOff
method may not be called for each successful authenticate method call. Some of
the Mobile Server clients may use the authenticate method to verify the user
credential and not for logging on to the system.

Method: Object authenticate (String uid, String pwd) throws SecurityException
Parameter: User Id (or User Name) and password string
Return: Session handle or null

16.1.1.4 The User Instantiation Method for the External Authenticator
If the user has not been instantiated in the Mobile Server repository, then the Mobile
Server invokes the getInitializationScripts method—after authenticating the
user—to retrieve the initialization scripts for the user. The Mobile Server uses the
initialization scripts to instantiate the user in the Mobile Server and assign access
rights to applications and data. See Section 16.1.3, "User Initialization Scripts" for more
information.

Method: StringBuffer getInitializationScripts (Object sid)
Parameter: Session handle returned by 'authenticate' method
Return: 'StringBuffer' containing User's initialization scripts

16.1.1.5 Retrieve the User Name or the User Global Unique ID
Return the user name or GUID (Globally Unique Id) of the user if there is one. Usually,
LDAP-based User Management systems maintain a GUID for each user. In case your
authentication mechanism does not support GUID, then the getUserGUID method
returns NULL.

Method: String getFullName (Object sid)
Parameter: Session handle returned by 'authenticate' method
Return: User's full name

Method: String getUserGUID (Object sid)
Parameter: Session handle returned by 'authenticate' method
Return: User's GUID or null

16.1.1.6 Log Off User
Log off the User from the back-end system. Note that the logOff method may not be
called for each successful authenticate method call. Some of the Mobile Server
clients may use the authenticate method to verify the user credential and not for
logging on to the system.

Authenticating Users With Your Own User Management System

Oracle Database Lite Security 16-3

Method: void logOff (Object sid) throws SecurityException
Parameter: Session handle returned by 'authenticate' method

16.1.1.7 Change User Password
Method: void changePassword (Object sid, String pwd) throws SecurityException
Parameter: Session handle returned by the authenticate method and new password
string

16.1.2 Registering External Authenticator
To register your external authenticator, modify the webtogo.ora file and set your
external Authenticator JAVA class name in the EXTERNAL_AUTHENTICATION
section, as follows:

[EXTERNAL_AUTHENTICATION]
CLASS = SampleAuthenticator
EXPIRATION = 1800

The Mobile Server caches the user instantiated through the external authenticator for a
period of time in order to improve efficiency. The default expiration time for the
cached user object is 30 minutes (or 1800 seconds). Customize this value by setting a
new value for the EXPIRATION parameter.

16.1.3 User Initialization Scripts
Mobile Server invokes the getInitializationScripts method to retrieve the user
initialization script that instantiates user-specific objects in the Mobile Repository. The
external authenticator can perform the following actions during the initialization
process:

1. Assign access rights to applications

2. Set data subscription parameters.

3. Optionally, add the user to a user group.

The syntax of the initialization script is based on the INI format. The first section in
the script is as follows.

[MAIN]
VERSION=2

The following example performs these actions for a user whose id is USER1.

1. Assigning access rights to applications.

Assign access rights to Application1 and Application2 for USER1, where
Application1 has two publication items and three subscription parameters.

List the applications we want access to
#
[ACL]
Application1
Application2
List Access details for 'Application1'
#
[ACL.Application1]
NAME=USER1
TYPE=USER
DATA=LOCATION, ITEMS
List Access details for 'Application2'

Providing Your Own Encryption Module for the Client Oracle Lite Database

16-4 Oracle Database Lite Developer’s Guide

#
[ACL.Application2]
NAME=USER1
TYPE=USER

2. Setting data subscription parameters.

[SUBSCRIPTION.USER1.Application1.LOCATION]
NAME=ZIP, USR_ID
VALUE=12345, USER1
[SUBSCRIPTION.USER1.Application1.ITEMS]
NAME=WEIGHT
VALUE=20

3. Adding a User to a User Group

[GROUP]
User's Group
[GROUP.User's Group]
USER=USER1

16.2 Providing Your Own Encryption Module for the Client Oracle Lite
Database

The database on the Mobile client—also known as the Oracle Lite database—uses
Advanced Encryption Standard (AES) for encrypting the database. However, you can
provide your own encryption module for the client database.

The following sections describe how to implement and plug-in your own encryption
module.

■ Section 16.2.1, "Encryption Module APIs"

■ Section 16.2.2, "Plug-In Custom Encryption Module"

16.2.1 Encryption Module APIs
Oracle Database Lite invokes your encryption APIs when performing encryption
duties, instead of the internal AES encryption module. Thus, you must develop and
include the following APIs in your customized encryption module:

■ Section 16.2.1.1, "Initialize the Encryption Module"

■ Section 16.2.1.2, "Delete Encryption Context"

■ Section 16.2.1.3, "Create the Encryption Key"

■ Section 16.2.1.4, "Encrypt Data"

■ Section 16.2.1.5, "Decrypt Data"

16.2.1.1 Initialize the Encryption Module
Implement the encCreateCtxt function to initialize the external encryption module.
Oracle Database Lite invokes this function when initializing encryption. This function
returns an encryption context handle to Oracle Database Lite, which it passes back on

Note: All of the functions in this section are in Windows format.
Adjust appropriately if developing on a UNIX environment.

Providing Your Own Encryption Module for the Client Oracle Lite Database

Oracle Database Lite Security 16-5

all subsequent API calls. The context handle is displayed as a void*, so that you can
make it any type of structure you desire.

__declspec(dllexport) void* encCreateCtxt()

16.2.1.2 Delete Encryption Context
When Oracle Database Lite is finished with the encryption module, it invokes the
encDeleteCtxt function to delete the encryption context—which was created with
the encCreateCtxt function.

__declspec(dllexport) void encDeleteCtxt(voie * ctx);

16.2.1.3 Create the Encryption Key
Oracle Database Lite invokes your encCreateKey function to create the encryption
key within the encryption context, as follows:

__declspec(dllexport) void encCreateKey (void* ctx, const unisgned char* key, int
len, int dir);

Where the input parameters are as follows:

■ ctx—The encryption context, which is created in the encCreateCtxt function.

■ key—Pointer to the key to be created.

■ len—Length of the encryption key.

■ dir—Encryption direction or type, where 1: encryption, 2: decryption, 3: both
encryption and decryption.

16.2.1.4 Encrypt Data
Oracle Database Lite invokes your encEncryptData function to encrypt the data that
is to be sent, as follows:

__declspec(dllexport) void encEncryptData (void* ctx, const unisgned char* data,
int len, unsigned char* out);

Where the input parameters are as follows:

■ ctx—The encryption context, which is created in the encCreateCtxt function.

■ data—Pointer to the data to be encrypted.

■ len—Length of the data in bytes.

■ out—Output buffer.

This function returns the number of bytes copied to the output buffer.

16.2.1.5 Decrypt Data
Oracle Database Lite invokes your encDecryptData function to decrypt the data that
it receives. This function copies the result to the output buffer.

__declspec(dllexport) void encDecryptData (void* ctx, const unisgned char* data,
int len, unsigned char* out);

Where the input parameters are as follows:

■ ctx—The encryption context, which is created in the encCreateCtxt function.

■ data—Pointer to the data to be decrypted.

Providing Your Own Encryption Module for the Client Oracle Lite Database

16-6 Oracle Database Lite Developer’s Guide

■ len—Length of the data in bytes.

■ out—Output buffer.

This function returns the number of bytes copied to the output buffer.

16.2.2 Plug-In Custom Encryption Module
Once implemented, you can plug-in your custom encryption module by adding the
[All Databases] section to the POLITE.INI configuration file. You must either
implement your encryption module into a DLL for the Windows environment or into a
Shared Object (.SO) for the UNIX environment.

For example, if you created the encryption module as a DLL called my_enc.dll,
which is located in the C:\my_dir directory, then you would add this module as the
default encryption module in the POLITE.INI configuration file, as follows:

[All Databases]
EXTERNAL_ENCRYPTION_DLL=C:\my_dir\my_enc.dll

Tutorial for Building Mobile Web-to-Go Applications 17-1

17
Tutorial for Building Mobile Web-to-Go

Applications

There are two types of Web-to-Go applications:

■ The original Oracle Database Lite Web-to-Go application that uses an Oracle
Database Lite Servlet stack. You can still use this type of application, but the
Oracle Database Lite Server stack is not J2EE 1.3 compatible.

■ A Web-to-Go application built upon the OracleAS OC4J stack. Since the OC4J
product is continually updated, then building your Web-to-Go application using
the J2EE standards is better if you want to use future J2EE standards. This
application is known as the OC4J Web-to-Go application.

To build the OC4J Web-to-Go application, follow the J2EE standards specified by
Sun Microsystems and then create the snapshot with MDW and publish the
application with the EAR or WAR file within the Packaging Wizard.

This tutorial demonstrates how to build, package and publish the original Oracle
Database Lite Web-to-Go application with the "To Do List" demo. For details on how to
create an OC4J Web-to-Go application, refer to the OC4J documentation or to the Sun
Microsystems J2EE specification.

The "To Do List" application maintains a list of "To Do" items with status for each item
indicating its completion. All items are stored in the Oracle database. Multiple users
can access the "To Do List" application to display their corresponding To Do items.

The following sections in this tutorial guide you through the phases of implementing a
Web-to-Go application for Mobile devices:

■ Section 17.1, "Develop the Application"

■ Section 17.2, "Create Publication for Application"

■ Section 17.3, "Package the Application Using the Packaging Wizard"

■ Section 17.4, "Administer the Application"

■ Section 17.5, "Execute the Application on the Mobile Client for Web-to-Go"

Note: For more information on developing Web-to-Go applications,
see Chapter 6, "Developing Mobile Web-to-Go Applications".

17-2 Oracle Database Lite Developer’s Guide

17.1 Develop the Application
The first step is to develop and test the "To Do List" application using the Mobile
Development Kit for Web-to-Go. Table 17–1 shows the components for the "To Do List"
application:

The source code for the "To Do List" application is installed along with the Mobile
Development Kit. It can be found at the following location.

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial

■ The JavaServer Page—The ToDoList.jsp generates an HTML page which
displays the list of items that must be completed.

■ The JavaBean—The ToDoBean.java JSP uses a JavaBean to perform operations
with the Oracle database. Y

■ The Java Servlet—The InsertToDo.java Java Servlet inserts a new To Do Item
in the Oracle database, and uses the "To Do List" JSP to regenerate the HTML page.

In this section, the following tasks are discussed.

■ Section 17.1.1, "Create Database Objects in the Oracle Server"

■ Section 17.1.2, "Compile the Application"

The Mobile Development Kit for Web-to-Go always uses Oracle Database Lite as the
development database and a Web-to-Go server, which is known as the Mobile Client
Web Server.

17.1.1 Create Database Objects in the Oracle Server
During deployment, the Mobile Server automatically creates the Oracle Database Lite
database in the client device along with the requisite tables and data. To publish the
application, users must create the database objects used by the application in the
back-end Oracle database.

The "To Do List" application uses the following database objects.

■ The TODO_ITEMS table—The application stores To Do Items in this database table.
Table 17–2 shows the To Do Items table columns.

Table 17–1 "To Do List" Application Components

Component Function

Java Servlet Accesses the database and inserts To Do items.

Java Server Page (JSP) Provides the "To Do List" application user interface in HTML.

JavaBean Provides database access to the JSP.

Table 17–2 The TODO_ITEMS Table

Column Function

ID Primary key

TODO_ITEM Text describing the To Do item

USERNAME Owner of the To Do item

DONE Indicates whether or not the To Do item has been completed

Develop the Application

Tutorial for Building Mobile Web-to-Go Applications 17-3

■ The TODO_SEQ sequence—Each time a user inserts a new record in the TODO_
ITEMS table, the TODO_SEQ sequence generates a primary key value for the new
record.

17.1.1.1 Create the Table Owner Account
Create the database user who will own the "To Do List" application objects in the
Oracle database. If you have installed the samples during your Mobile Server
installation, you can skip this step and continue with the next step. If you have not
installed the samples, enter the following commands using the Command Prompt.

sqlplus system/<sys_password>@<CONNECT_STRING>
create user master identified by master;
grant CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE SESSION,
CREATE INDEXTYPE to master;

17.1.1.2 Create the Database Objects in the Oracle Database
In order to execute the To Do List demo, set up the schema and the database objects.
We have provided a SQL script that creates the database objects in the back-end
database.

To create the database objects, run the tutorial.sql SQL script against the back-end
Oracle database, as follows:

> cd <ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial
> msql system/<sys_pwd>@jdbc:oracle:thin:@<host>:<port>:
 <oracle_sid> @tutorial.sql
> msql master/master>@jdbc:oracle:thin:@<host>:<port>:
 <oracle_sid> @tutorial.sql

When you execute the tutorial.sql command against the system schema, it
creates the TODO_ITEMS and TODO_SEQUENCE in the back-end server database. When
you execute the tutorial.sql command against the master schema, then it creates
the TODO_ITEMS table and the TODO_SEQUENCE sequence in the user schema also,
which in this example is master. This is necessary in order to create the publication
item in the master schema.

Where:

■ <sys_pwd> is the system password. This is required if you are creating the
master schema. However, if you have eliminated the statements that create the
schema, you can use master/master for username/password.

■ <host>:<port> refers to the name and listening port of the machine where the
back-end Oracle database is installed.

This script creates the TODO_ITEMS table and the TODO_SEQUENCE sequence on the
Oracle database.

Note: The CONNECT_STRING is the entry where the database
resides, as defined in the tnsnames.ora file, which is used to locate
the back-end Oracle database.

Note: While entering the above command to create database
objects, you must include a mandatory space between
"<oracle_sid>" and "@tutorial.sql".

17-4 Oracle Database Lite Developer’s Guide

17.1.2 Compile the Application
Compile the application by performing the following tasks:

1. Set the CLASSPATH.

You must set the CLASSPATH to include the required Java Servlet Development Kit
and Mobile Server libraries. To include these libraries, this tutorial provides a
script called setenv.bat. Using the Command Prompt, enter the following
commands.

cd <ORACLE_HOME>\Mobile\Sdk\wtgsdk\bin
setenv.bat

2. Compile the application.

You can compile the application manually or by running the compile.bat script.
To run the script, start the Command Prompt and enter the following commands.

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial
compile.bat

To compile the application manually, perform the following tasks.

a. Compile the Java Servlet—Using the command prompt, enter the following
commands:

cd <ORACLE_HOME>\Mobile\Sdk\wtgsdk\src\tutorial
javac -d ..\..\root\tutorial\WEB-INF\classses\InsertToDo.java

This creates the following servlet class file.

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\root\tutorial\
WEB-INF\classses\InsertToDo.class

b. Compile the Java Bean—Using the command prompt, enter the following
command:

javac -d ..\..\root\tutorial\WEB-INF\classes ToDoBean.java

c. Install the JSP—Using the command prompt, enter the following command:

copy ToDoList.jsp
 <ORACLE_HOME>\Mobile\Sdk\wtgsdk\root\tutorial\ToDoList.jsp

17.2 Create Publication for Application
As described fully in Chapter 5, "Using Mobile Database Workbench to Create
Publications", you can use MDW to create your publication. Launch MDW by
executing oramdw from <ORACLE_HOME>/Mobile/Sdk/bin. The following sections
detail how to use MDW to create a publication for the application in this tutorial.

■ Section 17.2.1, "Create a Project"

■ Section 17.2.2, "Create Publication Items"

Note: While creating this publication, use Chapter 5, "Using Mobile
Database Workbench to Create Publications" for a deeper
understanding of how to use MDW and the type of information that
you must provide.

Create Publication for Application

Tutorial for Building Mobile Web-to-Go Applications 17-5

■ Section 17.2.3, "Create Publication"

17.2.1 Create a Project
Create a new project for this application by selecting File->New->Project. This brings
up a wizard where you enter the following information:

1. Define a name and location for the project.

2. Enter the username, password, JDBC driver type, database host, database port and
database SID for the Mobile repository.

Provide the Mobile Repository access information. Because you are interacting
with the repository to create and manipulate synchronization objects, including
the SQL scripts for the publication items, you need access to the Mobile
Repository. For example, the Mobile Repository username and password is
mobileadmin/welcome123. The JDBC driver type used is the Oracle Thin
driver. The back-end Oracle database host, port, and SID are
mobile-qa11.oracle.com:1521:orcl.

3. Specify schema username and password. Enter the user and password of the
schema owner for the schema that you are using for the Mobile application. The
Mobile application schema contains all database tables, views, synonyms used to
build the snapshots for the application.

4. Verify the information that you entered and click Finish.

17.2.2 Create Publication Items
For this project, you need to create the todo_items publication item and a todo_seq
sequence.

The following sections describe how to create the publication item and the sequence
for this publication:

■ Section 17.2.2.1, "Create Publication Item"

■ Section 17.2.2.2, "Create Sequence"

17.2.2.1 Create Publication Item
Perform the following to create the publication item:

1. Start the new publication item wizard by selecting File->New->Publication Item.

2. Enter the name as todo_items and the type as Fast. If you want this publication
item to use automatic synchronization, make sure that the "Enable Automatic
Synchronization" checkbox is checked. Uncheck to use manual synchronization.
Click Next.

3. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select todo_items from the
object list. Click Next.

Note: For more information, see Section 5.2, "Create a Project".

Note: For more information, see Section 5.4, "Create a Publication
Item".

17-6 Oracle Database Lite Developer’s Guide

4. Click >> to select all of the columns in the todo_items table. Click Next.

5. In the Query tab, select Edit to edit the query, as follows:

select * from master.todo_items where username=:username

Click Next.

6. If you checked the ’Enable Automatic Synchronization’ checkbox, then an
additional screen comes up. This screen enables you to specify users included in
the compose. By default, all users are included. Leave checkbox unchecked and
click Next.

7. The Summary page displays. Click Finish.

17.2.2.2 Create Sequence
Create the todo_seq sequence for the To Do List demo, as follows:

1. Start the new sequence wizard by selecting File->New->Sequence.

2. Enter the name as todo_seq and that the sequence starts with 1, increment of 2,
window size of 500, and threshold of 50.

3. Uncheck the offline only checkbox, if already checked.

17.2.3 Create Publication
When you have completed the creation of the publication items, create the publication
within the project by selecting File->New->Publication.

1. In the General tab, enter the name as todo, which becomes part of the DSN for the
client-side database.

2. In the Publication Item tab, click Add to add the publication item that you just
created with the following configuration:

Name: todo_items
Updatability: Updatable
Conflict Resolution: Server Wins
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 1
Description: Blank

3. In the Sequence tab, click Add to add the todo_seq that you just created and click
OK.

4. Optionally, if you do want to set some of the event rules for the publication, then
you can select the Events tab to configure the thresholds for Automatic
Synchronization rules, such as the following:

■ Sync if number of modified records in database exceeds threshold value

■ Sync if number of modified records in out queue exceeds threshold value

5. Save the publication by selecting File->Save and exit MDW.

Package the Application Using the Packaging Wizard

Tutorial for Building Mobile Web-to-Go Applications 17-7

17.3 Package the Application Using the Packaging Wizard
Using the Packaging Wizard, you can package and publish the To Do List application
into the Mobile Server. For more information on how to use the Packaging Wizard, see
Chapter 7, "Using the Packaging Wizard".

You can select and describe the To Do List application by launching the Packaging
Wizard, as follows:

1. Start the Packaging Wizard, as follows:

cd <ORACLE_HOME>\Mobile\Sdk\bin
wtgpack

The Packaging Wizard appears and provides you with the option to create a new
application, edit an existing application, delete an existing application, or open a
packaged application, as displayed in Figure 17–1.

Figure 17–1 Make a Selection Dialog

2. Select the Create a new application option and click OK.

3. The Select a Platform panel appears. As Figure 17–2 displays, this panel enables
you to specify the platform for your application. Select Oracle Lite WEB;US from
the Available Platform list. Click Next.

Note: Deleting an existing application merely deletes the application
from the XML file and does not remove the application from the
Mobile Server.

17-8 Oracle Database Lite Developer’s Guide

Figure 17–2 Selecting a Platform

4. As Figure 17–3 displays, the Application panel appears. Use the Application panel
to modify "To Do List" application settings. As Table 17–3 describes, enter the
specified values in the corresponding fields.

Figure 17–3 Application Panel

Table 17–3 The "To Do List" Application Values

Field Value

Application Name ToDoList

Virtual Path /tutorial

Package the Application Using the Packaging Wizard

Tutorial for Building Mobile Web-to-Go Applications 17-9

5. Click Next. As Figure 17–4 displays, the Files panel appears. Using the Files panel,
you can select files that are part of the application. The Packaging Wizard uploads
the selected files from the local application directory to the application repository
on the Mobile Server.

The Files panel identifies files that the Packaging Wizard uploads from the local
application directory to the application repository on the Mobile Server.

Figure 17–4 Uploading Application Files

6. Click Compile JSP. The Packaging Wizard compiles all your JSP files to Java
Servlet classes. As Figure 17–5 displays, the following confirmation page appears.
Click OK.

Description This is the To Do List Application

Application Classpath (Leave this field blank)

Default page ToDoList.jsp (this is case sensitive)

Local Application
Directory

<ORACLE_HOME>\mobile\sdk\wtgsdk\root\tutorial

Publication Name Click on Browse. The ’Connect to database’ window appears.
Enter the following:

■ username: mobiladmin

■ password: welcome123

■ database URL:
jdbc:oracle:thin:@<hostname>:<port>:<SID>

The next window shows the available publications. Select
todo.

Icon tutorial.gif

Table 17–3 (Cont.) The "To Do List" Application Values

Field Value

17-10 Oracle Database Lite Developer’s Guide

Figure 17–5 JSP Compilation Completion Message

7. The generated files are automatically added to the list of application files.

Figure 17–6 Including Generated Files to Application Files

8. To view "To Do List" application servlets, click Next. To register with the Mobile
Client Web Server, the Packaging Wizard automatically detects and selects servlets
in your Local Application Directory. These servlets are registered with the Mobile
Client Web Server.

Package the Application Using the Packaging Wizard

Tutorial for Building Mobile Web-to-Go Applications 17-11

As Figure 17–7 displays, you can view the "To Do List" application servlet in the
Servlets panel. Since the "To Do List" application contains only one servlet, the
Servlets panel displays a single line.

The Servlets panel enables you to map virtual paths (servlet name) to the
corresponding Java classes (servlet class).

Change the servlet name to insert by selecting the field, which turns white when
selected. The servlet name is case sensitive, and must be in lower case. Leave the
servlet class as InsertTodo.

Figure 17–7 Registering Servlets

9. Click Next till you arrive at the Application Definition Completed Dialog as
shown in Figure 17–8.

Note: Ensure that you change the servlet name.

17-12 Oracle Database Lite Developer’s Guide

Figure 17–8 Application Definition Completed Dialog

Using the Application Definition Completed panel, you can package the "To Do
List" application into a JAR file. The Application Definition Completed Dialog
remains open for you to initiate application packaging.

a. Select the Create files option and select both the Package Application into a
JAR file and Generate SQL scripts for database objects boxes.

b. At this stage, the Save the Application dialog prompts you for the name of the
JAR file, as Figure 17–9 displays. The default location is given below.

<ORACLE_HOME>\Mobile\Sdk\wtgsdk\root\ToDoList.jar

Figure 17–9 Save the Application Dialog

After choosing the JAR file, click OK. The JAR file is created and contains the
application files and definition.

c. Back in the Application Definition Completed dialog, select the Publish the
Current Application option and click OK.

The Publish the Application dialog appears. As Table 17–4 describes, enter the
specified values.

Note: The Mobile Server must be up for successful publishing.

Administer the Application

Tutorial for Building Mobile Web-to-Go Applications 17-13

d. To publish the application in the Mobile Server Repository, click OK. A dialog
displays the application publishing status. You must wait until the application
is published.

e. To confirm that the application is published successfully, click OK.

f. To exit the Packaging Wizard, click Exit.

You have now completed all development tasks that are required for packaging your
application. Your application is packaged.

17.4 Administer the Application
This section describes how to administer the application that you created and
deployed through the following tasks.

■ Section 17.4.1, "Start the Mobile Server and the Mobile Manager"

■ Section 17.4.2, "Using the Mobile Manager to Create a New User"

■ Section 17.4.3, "Setting Application Properties"

■ Section 17.4.4, "Granting User Access to the Application"

■ Section 17.4.5, "Defining Snapshot Template Values for the User"

For more information about Mobile Manager tasks described in this tutorial, see the
Oracle Database Lite Administration and Deployment Guide.

17.4.1 Start the Mobile Server and the Mobile Manager
The Mobile Manager is a Web-based application that enables you to administer Mobile
Server applications. To start the Mobile Manager, perform the following steps.

1. Using the command prompt, go to the following directory.

<ORACLE_HOME>\Mobile\Server\bin

2. To start the Mobile Server for the first time and subsequent occasions, execute the
runmobileserver command.

3. Start your Web browser and connect to the Mobile Server by enter the following
URL:

http://<mobile_server>/webtogo

Table 17–4 Publish the Application Dialog Description

Field Description Value

Mobile Server URL URL or IP Address of the machine where the
Mobile Server is running.

<Mobile
Server>/webtogo

Mobile Server User
Name

User name of the Mobile Server user with
administrative privileges.

Administrator

Mobile Server
Password

Password of the Mobile Server user with
administrative privileges.

admin

Repository Directory Directory name where all files for this application
will be stored inside the Mobile Server
Repository.

/tutorial

Public Application Do not select this check box unless you want to
make this application available to all users.

Clear

17-14 Oracle Database Lite Developer’s Guide

4. Log on as the Mobile Server Administrator using administrator as the User
Name and admin as the Password.

5. To launch the Mobile Manager, click the Mobile Manager link in the workspace.

6. Click the Mobile Server link.

7. Click the Applications link. As Figure 17–10 displays, the Applications page
appears. Locate the To Do List application, which should be there since you
published it.

Figure 17–10 Applications Page

17.4.2 Using the Mobile Manager to Create a New User
To create a new Mobile Server user, perform the following steps.

1. On the Mobile Manager home page, click the Users link. As Figure 17–11 displays,
the Users page appears.

Note: Replace <mobile_server> with the host name of your
Mobile Server.

Administer the Application

Tutorial for Building Mobile Web-to-Go Applications 17-15

Figure 17–11 Users Page

2. Click Add User. As Figure 17–12 displays, the Add User page appears.

Figure 17–12 Add User Page

3. As described in Table 17–5, enter the following information in the Add User page
and click Save.

Table 17–5 Add User Page Description

Field Value

Display Name tutorial

User Name tutorial

Password tutorial

Password Confirm tutorial

17-16 Oracle Database Lite Developer’s Guide

17.4.3 Setting Application Properties
To set the "To Do List" application properties, perform the following steps.

1. On Mobile Manager home page, click the Applications link. The Applications
page appears.

2. To search for the application that you just published, enter To Do List in the
Application Name field and click Search. The "To Do List" application appears in
the workspace.

3. Click the To Do List application link. As Figure 17–13 displays, the Application
Properties page lists application properties and database connectivity details.

Figure 17–13 Application Properties Page

4. In the Database Password field type master. This is the default password for the
Web-to-Go demo schema. Click Apply. The Mobile Manager displays a
confirmation message.

Privilege User

Register Device True

Software Update Select all updates

Note: To display all the available applications, leave the search
field blank and click Search. This action generates a list of all the
available Mobile Server applications in the workspace.

Table 17–5 (Cont.) Add User Page Description

Field Value

Administer the Application

Tutorial for Building Mobile Web-to-Go Applications 17-17

17.4.4 Granting User Access to the Application
To grant the user TUTORIAL access to the "To Do List" application, perform the
following steps.

1. Navigate to the Application Properties page and click the Access link. As
Figure 17–14 displays, the Access page lists groups and users that are associated
with the application. The check boxes on this page indicate whether or not the user
or group has access to the application.

Figure 17–14 Access Page

2. Under the Users table, locate the user TUTORIAL and select the check box
displayed against the user, TUTORIAL.

3. Click Save. The Mobile Manager displays a confirmation message. The user
TUTORIAL has now been granted access to the "To Do List" application.

17.4.5 Defining Snapshot Template Values for the User
Define the snapshot template variable for the user, TUTORIAL. Each Mobile Client for
Web-to-Go downloads the same application data when it synchronizes. In some cases,
you may want to specify the data your application downloads for each user. You can
accomplish this by modifying the user's snapshot template variable.

To modify a user's Data Subsetting parameters, perform the following steps.

17-18 Oracle Database Lite Developer’s Guide

1. Navigate to the Applications page and click the ToDoList application link. The
Application Properties page appears. Click the Data Subsetting link. As
Figure 17–15 displays, the Data Subsetting page appears.

Figure 17–15 Data Subsetting Page

2. Under the User Name column, click the user name link tutorial. As
Figure 17–16 displays, the Data Subsetting Parameters page appears.

Figure 17–16 Data Subsetting Parameters Page

3. Select the Username parameter and enter the value tutorial. Click Save.

For more information about snapshots, refer the Oracle Database Lite Administration and
Deployment Guide.

17.5 Execute the Application on the Mobile Client for Web-to-Go
This section describes how to set up a Mobile client to use the application that you
created and tested in the Development section, deployed in the Deployment section,
and then administered in the Administration section. In this section, you will perform
the following tasks.

■ Section 17.5.1, "Install the Mobile Client for Web-to-Go"

■ Section 17.5.2, "Log into the Mobile Client for Web-to-Go"

■ Section 17.5.3, "Manually Synchronize the Mobile Client for Web-to-Go"

17.5.1 Install the Mobile Client for Web-to-Go
You must install the Mobile client before you can use the application that you created
and deployed.

Note: You must install the application and test it on a separate
machine from the Mobile Server.

Note: You must install the Mobile Client on a machine which does
not host the Mobile Server installation.

Execute the Application on the Mobile Client for Web-to-Go

Tutorial for Building Mobile Web-to-Go Applications 17-19

To install the Mobile Client for Web-to-Go, perform the following actions.

1. Start your Web browser and connect to the Mobile Server by entering the
following URL.

http://<mobile_server>/webtogo/setup

2. As Figure 17–17 displays, the Mobile Client Setup page lists a set of Mobile clients
by platform. To download the Mobile Client for Web-to-Go setup program, click
the corresponding Mobile Client link.

Figure 17–17 Mobile Client Setup Page

3. If you are using Netscape, choose a location to save the setup program and click
OK. In Windows Explorer, double-click setup.exe to run the setup program.

If you are using Internet Explorer, run the setup program from your browser
window.

4. While installing the Mobile Client, you will be prompted for the user name and
password. Enter tutorial as the user name and tutorial as the password.

5. The setup program prompts you to choose an installation directory such as
D:\mobileclient and downloads all the required components and starts the
Mobile Client for Web-to-Go on your machine. After completing the installation,
the Mobile Manager login page appears as Figure 17–18 displays.

Note: While installing the Mobile Client, you will be prompted for
the User name and Password. Enter tutorial as the user name and
tutorial as the password.

17-20 Oracle Database Lite Developer’s Guide

Figure 17–18 Mobile Manager Login Page

17.5.2 Log into the Mobile Client for Web-to-Go
Complete the Mobile Client for Web-to-Go setup process. Your browser displays the
Web-to-Go logon page. If your browser does not display the Web-to-Go login page,
enter the following URL.

http://localhost/webtogo

1. Log on to Web-to-Go using tutorial as the User Name and tutorial as the
password.

2. As you are logging into the Mobile Client for Web-to-Go for the first time, you
must complete the initial setup process. The client initialization page appears and
displays a confirmation message. "The Web-to-Go Client was installed
successfully! Web-to-Go client will now synchronize your computer with the
Mobile Server."

3. To start downloading your applications and data, click Next. The data
synchronization page appears. This page displays the data synchronization status.

4. Once the synchronization process is finished, the Mobile Client for Web-to-Go is
restarted automatically. The Mobile Server displays the following message: "New
or updated application files have been downloaded. Please wait while Mobile
Client for Web-to-Go is being restarted."

5. After restarting the Mobile Client for Web-to-Go, the workspace portal appears
with a single icon for the "To Do List" application and a link labeled ToDoList.

6. Click the To Do List application icon. As Figure 17–19 displays, Web-to-Go
launches the "To Do List" application in your browser.

Execute the Application on the Mobile Client for Web-to-Go

Tutorial for Building Mobile Web-to-Go Applications 17-21

Figure 17–19 The "To Do List" Application

7. Enter a new To Do item and save it in the database. Click Add.

8. Exit the application by closing the browser window. This action returns you to the
workspace.

17.5.3 Manually Synchronize the Mobile Client for Web-to-Go
If you set up automatic synchronization, you can skip this section. To manually
synchronize the Mobile Client for Web-to-Go with the Mobile Server, perform the
following steps.

1. As Figure 17–20 displays, click the Sync tab in the upper right corner of the
workspace.

Figure 17–20 Sync Tab Location

The Mobile Client for Web-to-Go synchronizes the application and all of your data to
the Oracle 10g Database. The workspace appears when the synchronization process
has completed.

17-22 Oracle Database Lite Developer’s Guide

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-1

18
Tutorial for Building Mobile Web Applications

Using ADF/BC4J

The following sections use a tutorial to describe how to create, deploy, and use an
ADF/BC4J application:

■ Section 18.1, "Overview"

■ Section 18.2, "Creating a Database Connection"

■ Section 18.3, "Develop the ADF/BC4J Application"

■ Section 18.4, "Package the ADF/BC4J Application"

■ Section 18.5, "Publish and Configure the ADF/BC4J Application from the Mobile
Manager"

■ Section 18.6, "Test the ADF/BC4J Application"

■ Section 18.7, "Run the ADF/BC4J Application on the Mobile Client for Oracle Lite
WEB OC4J"

18.1 Overview
The Oracle Application Development Framework (Oracle ADF) is an end-to-end a
application framework that builds on J2EE standards and open-source technologies to
simplify and accelerate implementing service-oriented applications. If you develop
enterprise solutions that search, display, create, modify and validate data using Web,
wireless, desktop or Web services interfaces, then Oracle ADF can simplify your job.

Oracle Business Components for Java (BC4J) is a part of the Oracle JDeveloper IDE
(Integrated Development Environment), and provides Java developers with tools to
create and manage reusable Java components.

ADF/BC4J offers a standards-based, server-side Java and XML framework for
developers. You can build and deploy reusable business components for high
performance Internet applications, such as e-commerce and business-to-business
systems. Applications, which are created using ADF/BC4J, comprise five basic
framework components: Entity Objects, Associations, View Objects, View Links, and
Application Modules. Each of these components is interrelated to the other
components, which enables you to establish views into database tables. You can
combine, filter, and sort data as needed.

When used in application development, ADF/BC4J automatically generates database
oriented components, so that you can focus on the business logic instead of on
database related components.

Creating a Database Connection

18-2 Oracle Database Lite Developer’s Guide

The ADF/BC4J sample application used in this tutorial maintains employee details
and stores all items in a relational database.

18.1.1 Before You Start
Ensure that the computer you are using for your development meets the requirements
specified in this section. Table 18–1 lists configuration and installation requirements for
the development computer.

18.2 Creating a Database Connection
When using ADF/BC4J, you need to define the database connection in both
JDeveloper and Oracle Database Lite, which is shown in the following sections:

■ Section 18.2.1, "Creating a Database Connection to Oracle Database"

■ Section 18.2.2, "Specify The Connection To The Oracle Lite Database"

18.2.1 Creating a Database Connection to Oracle Database
Java Database Connectivity (JDBC) is a standard application-programming interface
(API) that is used for connecting a Java application to relational databases. JDeveloper
uses a connection navigator to maintain connection information for your application.
The connection navigator makes it easy to create, manage, and test database
connections. If you have not already established a connection to the database, then
perform the following steps:

1. Connect to Oracle Database as the master user and execute the adf_main.sql
script, which is located in the <ORACLE_LITE_
HOME>\Mobile\Sdk\wtgsdk\src\bc4jtutorial directory.

2. Start Oracle10g JDeveloper Release 3 (10.1.3) Studio.

3. Select the Connections tab on the Applications Navigator.

Table 18–1 Development Computer Requirements

Requirement Description

Windows NT/2000/XP
User Login

The Windows NT/2000/XP login user must have Administrator
privileges on the development computer.

Installed Java
Components

■ Java Development Kit 1.4.2 or higher for the Mobile Server and
Jdeveloper.

■ JRE 1.5.x or higher for the OC4J client.

Installed Oracle
Components

Mobile Server or Mobile Development Kit (Oracle Database Lite
CD-ROM)

Oracle 9i or higher with the default Master schema installed.

Oracle10g JDeveloper Release 3 (10.1.3.0.4) Studio.
Studio Edition Version 10.1.3.0.4.3673
BUILD JDEVADF_10.1.3_NT_060125.0900.3673

Note: This tutorial is written and certified using the
above-mentioned version of Jdeveloper.

Note: If the Connections tab is not showing, choose View ->
Connection Navigator from the JDeveloper main menu.

Creating a Database Connection

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-3

Figure 18–1 JDeveloper Connection tab on the Connection Navigator

4. Right-click the Database folder and select New Database Connection. This starts
the Create Database Connection Wizard.

Figure 18–2 JDeveloper Connection tab on the Connection Navigator, New Database
Connection

5. Perform the following in the Create Database Connection Wizard:

a. Review the information on the Welcome page and click Next.

b. In the Connection Name field, enter adfconn. Click Next.

Creating a Database Connection

18-4 Oracle Database Lite Developer’s Guide

Figure 18–3 Connection Wizard - Step 1 of 4: Type Panel

c. On the Authentication page, enter master/master for the
username/password fields. Select Deploy password.

Figure 18–4 Connection Wizard - Step 2 of 4: Authentication Panel

d. On the Connections page, the default values for the connection is as follows:

– Driver: thin

– Host name: <mobileserver_host>

– JDBC Port: <mobileserver_port>

Creating a Database Connection

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-5

– SID: <repository_SID>

e. Click Next and Test Connection. One of the following occurs:

– If the database is available and the connection details are correct, then
Success! displayed in the Status window.

– If an error occurs, verify the connection settings. Click Back to make any
necessary changes, and then retest the connection.

– If the connection is successful, click Finish to complete the connection.

18.2.2 Specify The Connection To The Oracle Lite Database
The Oracle Database Lite connection is used for synchronization between the two
databases—the back-end Oracle database and the local Oracle Lite database. Once you
specify the connection within JDeveloper, then modify the application to use this
connection.

For this example, we will create the WTGJdbc connection, which uses the
oracle.lite.web.WTGJdbcDriver.

To create the WTGJdbc connection, do the following:

1. In JDeveloper, configure the project settings and include the Oracle Database Lite
user library named webtogo.jar, as follows:

a. Copy the olite40.jar and webtogo.jar files from the Oracle Lite MDK
into the <JDEV_HOME>\bc4j\lib.

b. Click Tools->Manage Libraries.

c. Select the Libraries tab.

d. Select User.

e. Create the library dialogs for both the webtogo.jar and olite40.jar files,
as follows:

– Click New Button. The "Create Library Dialog" displays.

– Enter webtogo.jar for the library name.

– Select Deployed by default.

– Click Add Entry and browse for the webtogo.jar file.

– Click OK.

– The Manage Libraries screen displays. Click OK.

f. Repeat step e for the olite40.jar file.

2. Select the Connections tab on the Application Navigator.

Note: Leave the fields set to these default values.

Note: The WTGJdbc connection must be used within the application
as well as configured in the project settings. However, during
development, you may have used the adfconn JDBC connection for
testing. Once development is complete for the application, make sure
that you modify your application to use the WTGJdbc connection
before you deploy it.

Creating a Database Connection

18-6 Oracle Database Lite Developer’s Guide

3. Right-click the Database folder and select New Database Connection.

Figure 18–5 JDeveloper Connection tab on the Connection Navigator, New Database
Connection

The Create Database Connection Wizard starts. Perform the following in creating a
new database connection using this wizard:

a. Click Next on the Welcome screen.

b. Enter WTGJdbc as the Connection Name and choose Third Party JDBC Driver
as the JDBC Connection Type.

c. Click Next.

Figure 18–6 Connection Wizard - Step 1 of 4: Type Panel

Note: If you do not see the Connections tab, select
View->Connection Navigator.

Creating a Database Connection

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-7

4. The Connection Wizard - Step 2 of 4: Authentication panel appears. Do not enter
any values in this panel. Click Next.

5. The Connection Wizard - Step 3 of 4: Connection panel appears. Click New.

Figure 18–7 Connection Wizard - Step 3 of 4: Connection Panel

6. The Register JDBC Driver dialog appears, as Figure 18–8 displays. Perform the
following:

a. Enter oracle.lite.web.WTGJdbcDriver as the Driver Class. Choose
webtogo from the Library list and click OK.

Creating a Database Connection

18-8 Oracle Database Lite Developer’s Guide

Figure 18–8 JDBC Driver Dialog

b. Enter the following jdbc:oracle:webtogo URL and click Next.

Figure 18–9 Enter URL for Database Connection

7. The Connection Wizard - Step 4 of 4: Click Finish. Do not test the Connection since
you do not have any Client database to test the connection at this point.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-9

18.3 Develop the ADF/BC4J Application
The following sections describe the steps to develop the ADF/BC4J application for
Oracle Database Lite:

■ Section 18.3.1, "Building the Data Model with ADF Business Components"

■ Section 18.3.2, "Customize the Business Components Views"

■ Section 18.3.3, "Creating a Master-Detail JavaServer Faces Page"

■ Section 18.3.4, "Running the JSF Page"

■ Section 18.3.5, "Configure the ADF/BC4J Application for the Oracle Database Lite
Environment"

18.3.1 Building the Data Model with ADF Business Components
The data model provides data access and validation for an application. The data is
validated by the model, regardless of the client implementation. This separates the
validation and business rules from the user interface.

The following sections describe the steps to create an application in JDeveloper and
create a Business Components model for your applications.

■ Section 18.3.1.1, "Create a New Application and Projects"

■ Section 18.3.1.2, "Create Business Components"

18.3.1.1 Create a New Application and Projects
In JDeveloper, you work with projects contained in an application. The application is
the highest point in the control structure.

A JDeveloper project is an organizational structure that logically groups related files.
You can add multiple projects to your application to easily organize, access, modify,
and reuse your source code. In the Applications Navigator, projects are displayed as
the second level in the hierarchy, under the application.

Before you create any components, you must first create the application and a project.
Perform the following steps:

1. Select the Applications tab to go back to the Applications Navigator.

2. Right-click the Applications node and select New Application from the context
menu.

Develop the ADF/BC4J Application

18-10 Oracle Database Lite Developer’s Guide

Figure 18–10 New Application

3. In the Create Application dialog box, enter the Application Name OrderEntry.
Notice that the directory name changes automatically.

Enter orderentry as the Application Package Prefix. For the Application
Template, select the Web Application [JSF, ADF BC] value from the
Application Template drop-down list.

Figure 18–11 Create Application

Click OK.

4. The Application should contain two projects: Model and ViewController.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-11

Figure 18–12 OrderEntry in JDeveloper

You now have an application and projects to contain and manage your application.

18.3.1.2 Create Business Components
In this section, you create ADF Business Components based on tables in the database.
For this example, use the adfconn database connection, which you created earlier.
You create these objects in the Model project.

1. In the Applications Navigator, right-click the Model project and select New from
the context menu.

Figure 18–13 New Object in Model Project

2. In the New Gallery, expand Business Tier and select ADF Business Components
in the Categories list.

Select Business Components from Tables in the Items list.

Develop the ADF/BC4J Application

18-12 Oracle Database Lite Developer’s Guide

Figure 18–14 Select ADF Business Components from Tables

Click OK.

3. In the Business Components Project Initialization window, select the adfconn
connection from the Connection list. Change SQL Flavor to OLite and Type Map to
Java, and then click OK.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-13

Figure 18–15 Initialize Business Components Project

4. If the Welcome page of the Create Business Components wizard appears, click
Next. If no package name is specified when creating the application, by default it
takes the project name, which is model.

5. Select the tables for the business component, as follows:

a. Select MASTER from the Schema drop down list.

b. Click Query to populate the list of available tables.

c. Control-click to select both CUSTOMERS and ORDERS in the Available list.

d. Click the right arrow to move both tables to the Selected list.

Note: An ADF Entity Object is a Java component that represents a
row in an underlying database table as a domain business object in
your J2EE application. It encapsulates the business rules for that
domain object and automatically handles saving any change made by
the user back to the database. If you are familiar with Oracle Forms,
the entity object provides functionality similar to the Oracle Forms
record manager, but with the ability to associate encapsulated
business rules with each type of 'business record' structure.

Develop the ADF/BC4J Application

18-14 Oracle Database Lite Developer’s Guide

Figure 18–16 Select Tables for Business Components

e. Click Next to continue.

6. On the Updatable View Objects page of the Create Business Components Wizard,
select both Entity objects and click the right arrow button to move both tables to
the Selected list.

Note: An ADF View Object is a Java component that represents a
SQL query against one or more underlying tables. It allows you to
project, join, filter, and sort business information in exactly the way
the end-user needs to see it for the user interface you need to provide
to your end users. When related to underlying ADF Entity Objects, the
view object allows users to create, update, and remove rows with
automatic enforcement of business rules. If you are familiar with
Oracle Forms, the view object provides functionality similar to the
Oracle Forms Data Block, but adds the flexibility to finely tune the
SQL query and to automatically leverage centralized business rules
encapsulated by the entity object.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-15

Figure 18–17 Updatable View Objects

Click Next.

7. Skip the Read-only View Objects page of the wizard by clicking Next. You will
only be using view objects that can be updated.

Figure 18–18 Read-Only View Objects

8. On the Application Module page of the wizard, name the application module
OrderEntryAM.

Note: An ADF Application Module is a Java component that
represents a transactional data model of master/detail-related view
object queries. It allows client interface technologies of any kind in a
service-oriented architecture to easily manipulate the business
information exposed by the view object instances contained in its data
model. If you are familiar with Oracle Forms, the application module
provides the functionality of a transactional data container similar to
the Oracle Forms Form object, but is designed to allow any kind of
user interface to work with the data in its view object 'data blocks'.

Develop the ADF/BC4J Application

18-16 Oracle Database Lite Developer’s Guide

Figure 18–19 Application Module

Click Next.

9. JDeveloper provides several different techniques for managing components. One
is to use a diagram of the components and their relationships. In this step,
JDeveloper provides such a diagram option.

For this tutorial, you will not use this option. Click Next to continue.

Figure 18–20 Diagram

10. The final page of the Business Components Wizard shows the objects and
relationships that will be created.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-17

Click Finish to complete the wizard actions.

Figure 18–21 Finish

11. Using the far right button of the toolbar in the navigator pane, sort elements by
type.

Figure 18–22 Sort by Type

18.3.2 Customize the Business Components Views
In the previous sections, you created some default Business Components from two
tables (Customers and Orders). The default view objects expose all of the columns
from those tables. For your application, you want to expose only a few of those
columns. ADF BC allows you to easily customize hose objects to fit your specific
application needs.

Develop the ADF/BC4J Application

18-18 Oracle Database Lite Developer’s Guide

In the following steps, you will add an Order By clause to the CustomersView to make
sure the returned data is sorted by customer ID.

1. In the Applications Navigator, right-click the CustomersView node and select Edit
CustomersView from the context menu.

Figure 18–23 Edit CustomersView

2. Select SQL Statement and add an Order By clause to the CustomersView to
make sure the returned data is sorted by customer ID.

Figure 18–24 View Object Editor

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-19

Click OK to apply the changes and exit the View Object Editor.

3. Click the Save All icon on the JDeveloper menu bar, or select File > Save All from
the menu. You have now customized the Customers view to meet the specific
needs of your application.

18.3.3 Creating a Master-Detail JavaServer Faces Page
Conforming to the JSF standards, ADF Faces lets you concentrate on the application
and layout rather than markup language and tags. Due to the integration of ADF Faces
and ADF Business Components, you can easily change the default field labels for the
user interface from within ADF Business Components.

In the next few steps, you create an ADF Faces application based on the ADF BC
model that you just built. You also modify some of the ADF BC default settings to help
enhance the default UI.

1. When you created the application, two projects were defined: Model and
ViewController. The Model project contains the business components that
serve as the data model for your application. The ViewController project will
include the View portion of your application, which defines the user interface.

Collapse the Model node so that the Applications Navigator appear as follows:

Figure 18–25 OrderEntry in JDeveloper

2. Create a new JSF by right-clicking ViewController in the Applications Navigator
and selecting New from the context menu.

Develop the ADF/BC4J Application

18-20 Oracle Database Lite Developer’s Guide

Figure 18–26 New Object Under ViewController

3. Select JSF JSP from the JSF Category.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-21

Figure 18–27 New JSF JSP

4. Selecting a new JSF opens the Create JSF JSP Wizard. Perform the following for
creating the CustomerOrders.jsp:

a. Click Next to skip the Welcome page of the JSF JSP Wizard, if it appears.

b. Name the new JSP CustomerOrders.jsp. Accept the other defaults and
click Next to continue.

Develop the ADF/BC4J Application

18-22 Oracle Database Lite Developer’s Guide

Figure 18–28 Step 1 of Creating JSP

c. On the next page, Component Binding, select the Do Not Automatically
Expose UI Components option. Leave other default values and click Next.

Figure 18–29 Step 2 of Creating JSP

d. Select libraries in the Available Libraries window, and use the Add button to
move them into the Selected Libraries section, as needed. Make sure the
following libraries appear in Selected Libraries:

– JSF Core 1.0

– JSF HTML 1.0

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-23

– ADF Faces Components

– ADF Faces HTML

Figure 18–30 Step 3 of Creating JSP

Click Next to accept these libraries.

e. Click Finish to accept the default HTML options and create the new JSP.

Figure 18–31 Step 4 of Creating JSP

Develop the ADF/BC4J Application

18-24 Oracle Database Lite Developer’s Guide

You now have an empty CustomerOrders.jsp page. In the next few steps, add a
data-bound ADF Faces component to the page. This component displays a customer
along with the orders that the customer has placed.

When you created the CustomerOrders.jsp page, JDeveloper opened it in a visual
editor in the center of the JDeveloper IDE. You add the ADF Faces components by
dragging them from either the Component Palette or the Data Control Palette to the
visual editor. Here you will drop some databound components based on the view
objects you created earlier using the Data Control Palette.

1. Expand OrderEntryDataAMControl in the Data Control palette.

Figure 18–32 Data Control Palette

2. Expand CustomersView1.

Figure 18–33 Expand CustomersView1

3. Drag OrdersView2 to the visual editor. JDeveloper opens a context menu with
the available options for that data control.

Note: By default, the Business Components from Tables wizard
noticed the foreign key relationships between the ORDERS and
CUSTOMER tables and created a default data model in the
OrderEntryDataAM data model that features both an OrdersView1,
allowing us to see all orders, as well as an OrdersView2 that is
linked with the OrdersView1 showing all of the customers. In this
scenario, we'll use the CustomersView1 and the OrdersView2 that
displays customers and their set of orders.

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-25

Figure 18–34 Visual Editor

4. Place your cursor over the Master-Details option, and then select ADF Master
Form, Detail Table.

Figure 18–35 Master-Details Selection

5. JDeveloper adds the ADF Master Detail component to your JSF page.

Develop the ADF/BC4J Application

18-26 Oracle Database Lite Developer’s Guide

Figure 18–36 Add ADF Master-Detail to JSP

6. In the JSF Page in the OrderView2, eliminate the Submit button by selecting the
Component Submit and click the Delete key on your keyboard. The page should
look as follows:

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-27

Figure 18–37 Submit Components

You now have a complete JSF that is databound to your ADF BC business services.

18.3.4 Running the JSF Page
Now that you have built your new ADF Faces application, you need to test it.
JDeveloper makes it easy to test JSF through a built-in OC4J server. The server is
automatically launched when you test a page from within JDeveloper.

The next few steps take you through the testing process.

1. To test the page, right-click CustomerOrders.jsp in the Applications Navigator
and select Run from the context menu. Alternatively, you can right-click inside the
visual editor and select Run from that context menu.

Develop the ADF/BC4J Application

18-28 Oracle Database Lite Developer’s Guide

Figure 18–38 Test the Page

2. After execution, the results page should be as follows:

Figure 18–39 Results Page

Develop the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-29

3. Navigate through the customer rows to see the differences in the orders that each
customer has placed. Note that the first few customers in the list have multiple
orders.

When you are finished, close the browser. Make sure you stop the JDeveloper OC4J
Server before proceeding to next section. To stop the JDeveloper OC4J Server, select
Run -> Terminate -> Embedded OC4J Server.

18.3.5 Configure the ADF/BC4J Application for the Oracle Database Lite Environment
Using JDeveloper, configure the application to use the Oracle Database Lite
environment, as described in the following sections:

Change the application configuration to use the WTGJdbcConnection, as follows:

1. In the JDeveloper Applications Navigator, right-click the OrderEntryAM node and
select Configurations.

Figure 18–40 Selecting Configurations in JDeveloper

2. Select JDBCName and edit the connection. The Oracle Business Component
Configuration window is displayed.

3. Select WTGJdbc for Connection Name and click OK.

Note: JDeveloper will open your default web browser and display
the page. If this doesn't happen, visit the Tools -> Preferences and
select the Web Browser and Proxy category. Here you can enter the
command line to your preferred browser. Then, try running the page
again after setting this preference.

Package the ADF/BC4J Application

18-30 Oracle Database Lite Developer’s Guide

Figure 18–41 Business Component Configuration Window

4. Save your project.

The ADF/BC4J application has been configured to use Oracle Database Lite
connection

18.3.6 Deploy the Application as WAR file
 To deploy the application, create a deployment profile and then deploy the
application as a WAR file, as follows:

1. In the Application Navigator, select the CustomerOrders.jsp.

2. Choose Run -> Deploy -> New Deployment Profile and create a new deployment
profile.

3. Choose Run -> Deploy and then select the deployment profile created in step 2.

18.4 Package the ADF/BC4J Application
In order to package the ADF/BC4J application, you must perform the following:

■ Section 18.4.1, "Include the ADF Runtime Libraries with the ADF/BC4J
Application"

■ Section 18.4.2, "Package the Application from the Packaging Wizard"

18.4.1 Include the ADF Runtime Libraries with the ADF/BC4J Application
In order for the application to execute correctly, the ADF runtime libraries must be
included. Perform the following to include these libraries in your ADF/BC4J
application:

Package the ADF/BC4J Application

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-31

1. Unarchive the WAR file with the ADF/BC4J application into a temporary
directory, such as adftutapp. This explodes the CustomerOrders.jsp and the
WEB-INF directory into the adftutapp directory.

2. Navigate to the WEB-INF\lib directory and copy all ADF/BC4J runtime libraries
to this directory.

18.4.2 Package the Application from the Packaging Wizard
To package the JSP application, perform the following steps.

1. Copy the adftutapp directory and its contents into the following location:

<Mobile_ServerHome>\Mobile\Sdk\wtgsdk\root

2. Using the Command Prompt window, run the Packaging Wizard and provide the
screen inputs that are listed and described in Table 18–2.

3. Retain the default values for Files, Servlet, Database and Roles screens.

Note: For information regarding list of libraries to be copied, refer to
Chapter 22.12.3 “Installing the ADF Runtime Libraries Manually” in
the Oracle Application Framework, Developer’s Guide, 10g Release 3
(10.1.3).

Table 18–2 Packaging Wizard Input Details for BC4J Application

Screen Input Details

Platform Oracle Lite Web OC4J; US N/A

Application Application Name ADF BC4J Oracle Database Lite
Tutorial Application

Application Virtual Path /bc4jtutorial

Application Description Oracle Lite Tutorial Application

Application Application Classpath no input

Application Default Page faces/CustomerOrders.jsp

Application Local Application Directory <ORACLE_HOME>\Mobile\SDK
\wtgsdk\root\adftutapp

Files The Packaging Wizard loads all
files into the directory under the
local application directory.

N/A

Note: For all ADF-based applications, you need to also perform the
following:

■ For Platform input, the user should select the correct language for
the Oracle Lite Web OC4J; <lang>.

■ For the Default page Input for the application screen, always
prepend the faces/ directory before the default page name.

If you miss these steps, your application will not perform correctly.

Publish and Configure the ADF/BC4J Application from the Mobile Manager

18-32 Oracle Database Lite Developer’s Guide

4. On the Snapshots screen, click Import. You can now connect to the Oracle
Database by providing the values shown in Table 18–3 in the "Connect to
Database" dialog:

5. After specifying the Database Connection values, select CUSTOMERS from the list
of tables and click Add.

6. Select ORDERS from the list of tables. Click Add and then click Close.

7. From the snapshot panel, select Customers and change the weight from 0 to 1.

8. From the snapshot panel, select ORDERS and click Edit. Change the weight from
0 to 2.

9. Retain the default values for Sequences and DDLs.

10. Package the ADF/BC4J application into a JAR file.

18.5 Publish and Configure the ADF/BC4J Application from the Mobile
Manager

To publish and configure the JSP application from the Mobile Manager, perform the
following steps:

1. Using the Command Prompt window, enter runmobileserver to start the
Mobile Server.

2. Using the following URL, browse the local host.

http://<localhost>:<portnumber>/webtogo

3. Login into the Mobile Server using the administrator username and password.

4. Click Mobile Manager. Select the Mobile Server tab and then click Host name.

5. Click Applications and publish the JAR file that you just created.

18.6 Test the ADF/BC4J Application
Perform the following to test your ADF/BC4J application:

1. Log on to the Mobile Server with the administrator username and password.

2. Select Mobile Manager.

3. Click on the Mobile Server tab.

4. Select the host.

Table 18–3 Connect to Database Dialog

Field Description

Username master

Password master

Database URL jdbc:oracle:thin:@<database_
hostname>:<port>:<SID>

Note: If the above port number is other than 80, specify the
appropriate port number.

Run the ADF/BC4J Application on the Mobile Client for Oracle Lite WEB OC4J

Tutorial for Building Mobile Web Applications Using ADF/BC4J 18-33

5. Click Users.

6. Create a new user called tutorial and grant permission to this user for the
"ADF/BC4J Oracle Database Lite Tutorial Application."

7. Test the application by executing the ADF/BC4J application on the Mobile Client
for Oracle Lite WEB OC4J, as described in Section 18.7, "Run the ADF/BC4J
Application on the Mobile Client for Oracle Lite WEB OC4J".

18.7 Run the ADF/BC4J Application on the Mobile Client for Oracle Lite
WEB OC4J

Before you execute, you must have JRE 1.5.x or higher installed for the OC4J client.

To execute the ADF/BC4J application on the Mobile Client for Oracle Lite WEB OC4J,
perform the following steps:

1. Point the client machine browser to the following URL:

http://<Server_IP_Address>/setup

where Server_IP_Address is your server machine IP address.

2. Download and install the Mobile Client for Oracle Lite WEB OC4J

3. Point the client machine browser to the following URL:
http://<localhostname>, where localhostname is the client machine host
name.

4. Log in to the client machine-using tutorial as both the username and password.

5. After the client machine synchronizes the application and data from the server,
click the “ADF/BC4J Oracle Database Lite Tutorial” Application link to test the
application on the client machine.

Run the ADF/BC4J Application on the Mobile Client for Oracle Lite WEB OC4J

18-34 Oracle Database Lite Developer’s Guide

Tutorial for Building Mobile Applications for Win32 19-1

19
Tutorial for Building Mobile Applications for

Win32

To demonstrate the steps involved in building Mobile applications for the Win32
platform, this tutorial presents a simplified Mobile field service example. The
following sections guide you through the Mobile application development process for
the Win32 platform. When developing, you can use Visual Studio 2003.

■ Section 19.1, "Plan the Mobile Application Demo for Win32"

■ Section 19.2, "Description of Tasks for Win32 Demo"

■ Section 19.3, "Administer the Application"

■ Section 19.4, "Execute the Application on the Mobile Client for Web-to-Go"

19.1 Plan the Mobile Application Demo for Win32
Let us assume that you have a TASK table on the server that contains information
about tasks that must be accomplished by your Mobile field service technicians for a
day. Listed below is the TASK table structure. Each row in the TASK table describes
work to be done at a customer site.

■ TASK(ID number(4) primary key

■ Description varchar(40) not null

■ CustName varchar(30) not null

■ CustPhone varchar(12)

■ CustStAddr varchar(40) not null

■ CustCity varchar(40) not null

■ Notes varchar(100)

Let us also assume that you have three service technicians, Tom, Dick, and Harry. You
want to assign all the tasks in the City of Cupertino to Tom, those in the City of
Mountain View to Dick, and those in the City of Palo Alto to Harry. You envision your
application to work as follows:

Each service technician has a laptop that he uses to obtain his task list in the morning.
He will perform the task during the day and will update the Notes column of a task
with information about its status or what he has done. At the end of his work day, the
service technician uploads his changes to the server.

We will assume the following environment for your application.

■ The Mobile Server is installed on the machine called mserver.

Description of Tasks for Win32 Demo

19-2 Oracle Database Lite Developer’s Guide

■ The test Oracle database that is used to store the application data and the Mobile
Server Repository is installed on the machine oradbserver with the listener on
port 1521. The Oracle database instance name is orcl. We will assume that you
can log in to the database with the user name master and password master. You
can substitute any user for master so long as the user has the right privileges.

■ You have already installed the Mobile Development Kit on your development
machine.

Our implementation plan is as follows. The exact sequence of commands for each step
is given later.

1. Create the TASK table in the oradbserver and insert some rows into it. This step
is not needed if you already have a database that contains a table similar to TASK.

2. Use MDW to create a publication that contains a single publication item based on
the TASK table.

3. Use the Packaging Wizard to define and publish the Mobile Field Service
application to the Mobile Server.

4. Use the Mobile Manager to create users Tom, Dick, and Harry on the Mobile
Server. Grant all users the privilege to execute the Mobile Field Service application
and create a subscription for each of them.

5. Install the Oracle Database Lite 10g client on your development machine in a
separate directory (emulating a technician's machine). Run the Mobile Sync
application to download the Mobile Field Service application (which is currently
empty) and data.

6. On your development machine, use mSQL to look at the rows in the TASK
snapshot and update the rows by entering notes in the Notes column.

7. Synchronize the changes you made in the snapshot with the server database by
running the Mobile Sync application again.

8. Connect to the server database and check that your changes are there. Modify the
Description of one of the rows for the customer in Cupertino.

9. Run the Mobile Sync application again. You will see the changes that you made on
the server are in the snapshot in the client database.

10. Develop a C or C++ program against Oracle Database Lite to:

■ show the tasks to the technician, and

■ let the technician choose a task and enter notes for it

11. Use the Packaging Wizard to update the application to include the above program.

The Mobile Server is now ready for real life testing.

19.2 Description of Tasks for Win32 Demo
The following sections describe the command sequence for successfully creating the
Win32 demo:

1. Section 19.2.1, "Create TASK Table on the Server Database"

2. Section 19.2.2, "Create Publication for Application"

3. Section 19.2.3, "Package the Application Using the Packaging Wizard"

Description of Tasks for Win32 Demo

Tutorial for Building Mobile Applications for Win32 19-3

19.2.1 Create TASK Table on the Server Database
We will use the Oracle 10g thin JDBC driver to connect to the Oracle database running
in the oradbserver machine. Ensure that the thin JDBC driver (<ORACLE_
HOME>\jdbc\lib\ojdbc14.jar) file is included in your CLASSPATH environment
variable. Connect as master with password master.

D:>msql master/master@jdbc:oracle:thin:@oradbserver:1521:orcl

Now create the TASK table in this database. The SQL script to create and populate the
server database is provided in the following directory.

<ORACLE_HOME>\mobile\sdk\samples\odbc\win32\MFS

SQL>create table TASK(

1> ID number(4) primary key,
2> Description varchar(40) not null,
3> CustName varchar(30) not null,
4> CustPhone varchar(12),
5> CustStAddr varchar(40) not null,
6> CustCity varchar(40) not null,
7> Notes varchar(100));

We will now insert four rows into this table.

SQL> insert into task values(1,'Refrigerator not
working','Able','408-999-9999','123 Main St.','Cupertino',null);
SQL> insert into task values(2,'Garbage Disposal
broken','Baker','408-888-8888','234 Central Ave','Cupertino',null);
SQL> insert into task values(3,'Refrigerator makes
noise','Choplin','650-777-7777','1 North St.','Mountain View',null);
SQL> insert into task values(4,'Faucet leaks','Dean','650-666-6666','10 University
St.','Palo Alto','Beware of dogs');
SQL> commit;
SQL> exit

19.2.2 Create Publication for Application
As described fully in Chapter 5, "Using Mobile Database Workbench to Create
Publications", you can use MDW to create your publication. Launch MDW by
executing oramdw from <ORACLE_HOME>/Mobile/Sdk/bin. The following sections
detail how to use MDW to create a publication for the application in this tutorial.

■ Section 19.2.2.1, "Create a Project"

■ Section 19.2.2.2, "Create Publication Item"

■ Section 19.2.2.3, "Create Publication"

19.2.2.1 Create a Project
Create a new project for this application by selecting File->New->Project. This brings
up a wizard where you enter the following information:

Note: While creating this publication, use Chapter 5, "Using Mobile
Database Workbench to Create Publications" for a deeper
understanding of how to use MDW and the type of information that
you must provide.

Description of Tasks for Win32 Demo

19-4 Oracle Database Lite Developer’s Guide

1. Define a name and location for the project.

2. Enter the username, password, JDBC driver type, database host, database port and
database SID for the Mobile repository. Username and password are
master/master, and the database URL is
jdbc:oracle:thin:@oradbserver:1521:orcl.

Provide the Mobile Repository access information. Because you are interacting
with the repository to create and manipulate synchronization objects, including
the SQL scripts for the publication items, you need access to the Mobile
Repository.

3. Specify schema username and password. Enter the user and password of the
schema owner for the schema that you are using for the Mobile application. The
Mobile application schema contains all database tables, views, synonyms used to
build the snapshots for the application.

4. Verify the information that you entered and click Finish.

19.2.2.2 Create Publication Item
For this project, you need to create the taskpi publication item.

Perform the following to create the publication item:

1. Start the new publication item wizard by selecting File->New->Publication Item.

2. Enter the name as taskpi and the type as Fast. If you want this publication item
to use automatic synchronization, make sure that the "Enable Automatic
Synchronization" checkbox is checked. Uncheck to use manual synchronization.
Click Next.

3. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select the task table from the
object list. Click Next.

4. Click >> to select all of the columns in the task table. Click Next.

5. In the Query tab, select Edit to edit the query, as follows:

select * from master.task where CustCity = :city

Click Next.

6. If you checked the ’Enable Automatic Synchronization’ checkbox, then an
additional screen comes up. This screen enables you to specify users included in
the compose. By default, all users are included. Leave checkbox unchecked and
click Next.

7. The Summary page displays. Click Finish.

Note: For more information, see Section 5.2, "Create a Project".

Note: For more information, see Section 5.4, "Create a Publication
Item".

Description of Tasks for Win32 Demo

Tutorial for Building Mobile Applications for Win32 19-5

19.2.2.3 Create Publication
When you have completed the creation of the publication items, create the publication
within the project by selecting File->New->Publication.

1. In the General tab, enter the name as task, which becomes part of the DSN for the
client-side database.

2. In the Publication Item tab, click Add to add the publication item that you just
created with the following configuration:

Name: task
Updatability: Updatable
Conflict Resolution: Server Wins
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 1
Description: Blank

3. In the Events tab, set the thresholds for Automatic Synchronization rules, as
follows:

■ Sync if number of modified records in database exceeds threshold value

■ Sync if number of modified records in out queue exceeds threshold value

4. Save the publication by selecting File->Save.

19.2.3 Package the Application Using the Packaging Wizard
Using the Packaging Wizard, you can package and publish the Task application into
the Mobile Server.

You can select and describe the Task application by launching the Packaging Wizard,
as follows:

1. Start the Packaging Wizard, as follows:

cd <ORACLE_HOME>\Mobile\Sdk\bin
runwtgpack

The Packaging Wizard appears and provides you with the option to create a new
application, edit an existing application, delete an existing application, or open a
packaged application, as displayed in Figure 19–1.

Note: For full details on how to use the Packaging Wizard, see
Chapter 7, "Using the Packaging Wizard".

Note: Deleting an existing application merely deletes the application
from the XML file and does not remove the application from the
Mobile Server.

Description of Tasks for Win32 Demo

19-6 Oracle Database Lite Developer’s Guide

Figure 19–1 Make a Selection Dialog

2. Select the Create a new application option and click OK.

3. The Select a Platform panel appears. As Figure 19–2 displays, this panel enables
you to specify the platform for your application. Select Oracle Lite WIN32;US
from the Available Platform list. Click Next.

Figure 19–2 Selecting a Platform

4. As Figure 19–3 displays, the Application panel appears. Use the Application panel
to modify "Mobile Field Service" application settings. As Table 19–1 describes,
enter the specified values in the corresponding fields.

Description of Tasks for Win32 Demo

Tutorial for Building Mobile Applications for Win32 19-7

Figure 19–3 Application Panel

5. Click Next. As Figure 19–4 displays, the Files panel appears. Using the Files panel,
you can select files that are part of the application. The Packaging Wizard uploads
the selected files from the local application directory to the application repository
on the Mobile Server.

The Files panel identifies files that the Packaging Wizard uploads from the local
application directory to the application repository on the Mobile Server.

Table 19–1 The Task Application Values

Field Value

Application Name Mobile Field Service

Virtual Path /MFS

Description Field Service Task Assignment

Local Application Directory D:/MFSDEV

Publication Name Click on Browse. The ’Connect to database’ window appears.
Enter the following:

■ username: mobiladmin

■ password: welcome123

■ database URL:
jdbc:oracle:thin:@<hostname>:<port>:<SID>

The next window shows the available publications. Select
task.

Description of Tasks for Win32 Demo

19-8 Oracle Database Lite Developer’s Guide

Figure 19–4 Uploading Application Files

6. Click Next till you arrive at the Application Definition Completed Dialog as
shown in Figure 19–5.

Figure 19–5 Application Definition Completed Dialog

Using the Application Definition Completed panel, you can package the "Task"
application into a JAR file. The Application Definition Completed Dialog remains
open for you to initiate application packaging.

a. Select the Create files option and select both the Package Application into a
JAR file and Generate SQL scripts for database objects boxes.

At this stage, the Save the Application dialog prompts you for the name of the
JAR file, which is Mobile_Field_Service.jar.

Administer the Application

Tutorial for Building Mobile Applications for Win32 19-9

Figure 19–6 Save the Application Dialog

After choosing the JAR file, click OK. The JAR file is created and contains the
application files and definition.

b. Back in the Application Definition Completed dialog, select the Publish the
Current Application option and click OK.

The Publish the Application dialog appears. As Table 19–2 describes, enter the
specified values.

c. To publish the application in the Mobile Server Repository, click OK. A dialog
displays the application publishing status. You must wait until the application
is published.

d. To confirm that the application is published successfully, click OK.

e. To exit the Packaging Wizard, click Exit.

You have now completed packaging and publishing your application.

19.3 Administer the Application
This section describes how to administer the application that you created and
deployed through the following tasks.

■ Section 19.3.1, "Start the Mobile Server and the Mobile Manager"

Note: The Mobile Server must be up for successful publishing.

Table 19–2 Publish the Application Dialog Description

Field Description Value

Mobile Server URL URL or IP Address of the machine where the
Mobile Server is running.

<Mobile
Server>/webtogo

Mobile Server User
Name

User name of the Mobile Server user with
administrative privileges.

Administrator

Mobile Server
Password

Password of the Mobile Server user with
administrative privileges.

admin

Repository Directory Directory name where all files for this application
will be stored inside the Mobile Server
Repository.

/tutorial

Public Application Do not select this check box unless you want to
make this application available to all users.

Clear

Administer the Application

19-10 Oracle Database Lite Developer’s Guide

■ Section 19.3.2, "Using the Mobile Manager to Create New Users for the Task
Application"

■ Section 19.3.3, "Setting Application Properties"

■ Section 19.3.4, "Granting User Access to the Application"

■ Section 19.3.5, "Defining Snapshot Template Values for the User"

For more information about Mobile Manager tasks described in this tutorial, see the
Oracle Database Lite Administration and Deployment Guide.

19.3.1 Start the Mobile Server and the Mobile Manager
The Mobile Manager is a Web-based application that enables you to administer Mobile
Server applications. To start the Mobile Manager, perform the following steps:

1. Using the command prompt, go to the following directory.

<ORACLE_HOME>\Mobile\Server\bin

2. To start the Mobile Server for the first time and subsequent occasions, execute the
runmobileserver command.

3. Start your Web browser and connect to the Mobile Server by enter the following
URL:

http://<mobile_server>/webtogo

4. Log on as the Mobile Server Administrator using administrator as the User
Name and admin as the Password.

5. To launch the Mobile Manager, click the Mobile Manager link in the workspace.

6. Click the Mobile Server link.

7. Click the Applications link. As Figure 19–7 displays, the Applications page
appears. Locate the Task application, which shows all applications that are
published.

Figure 19–7 Applications Page

Note: Replace <mobile_server> with the host name of your
Mobile Server.

Administer the Application

Tutorial for Building Mobile Applications for Win32 19-11

19.3.2 Using the Mobile Manager to Create New Users for the Task Application
For the Task application, create users Tom, Dick and Harry. We only show how to
create the user Tom in the following steps:

1. On the Mobile Manager home page, click the Users link. As Figure 19–8 displays,
the Users page appears.

Figure 19–8 Users Page

2. Click Add User. As Figure 19–9 displays, the Add User page appears.

Figure 19–9 Add User Page

3. As described in Table 19–3, enter the following information in the Add User page
and click Save.

Administer the Application

19-12 Oracle Database Lite Developer’s Guide

Repeat these steps to create the Dick and Harry users.

19.3.3 Setting Application Properties
To set the Task application properties, perform the following steps:

1. On Mobile Manager home page, click the Applications link. The Applications
page appears.

2. To search for the application that you just published, enter Task in the Application
Name field and click Search. The Task application appears in the workspace.

3. Click the Task application link. As Figure 19–10 displays, the Application
Properties page lists application properties and database connectivity details.

Figure 19–10 Application Properties Page

Table 19–3 Add User Page Description

Field Value

Display Name Tom Jones

User Name Tom

Password tomjones

Password Confirm tomjones

Privilege User

Register Device True

Software Update Select all updates

Note: To display all the available applications, leave the search
field blank and click Search. This action generates a list of all the
available Mobile Server applications in the workspace.

Administer the Application

Tutorial for Building Mobile Applications for Win32 19-13

4. In the Database Password field, type the application demo schema password. In
the past, this password was master. Click Apply. The Mobile Manager displays a
confirmation message.

19.3.4 Granting User Access to the Application
To grant the Tom, Dick and Harry users access to the Task application, perform the
following steps:

1. Navigate to the Application Properties page and click the Access link. As
Figure 19–11 displays, the Access page lists groups and users that are associated
with the application. The check boxes on this page indicate whether or not the user
or group has access to the application.

Figure 19–11 Access Page

2. Under the Users table, locate the Tom, Dick and Harry users and select the check
boxes for these users.

3. Click Save. The Mobile Manager displays a confirmation message. The users have
now been granted access to the Task application.

19.3.5 Defining Snapshot Template Values for the User
Define the snapshot template variables for the users, Tom, Dick and Harry. For the
Mobile Field Service application, we have only one publication item and it has only
one subscription parameter called city.

To modify a user's Data Subsetting parameters, perform the following steps:

1. Navigate to the Applications page and click the Task application link. The
Application Properties page appears. Click the Data Subsetting link. As
Figure 19–12 displays, the Data Subsetting page appears.

Execute the Application on the Mobile Client for Web-to-Go

19-14 Oracle Database Lite Developer’s Guide

Figure 19–12 Data Subsetting Page

2. Under the User Name column, click the user name link Tom. As Figure 19–13
displays, the Data Subsetting Parameters page appears.

Figure 19–13 Data Subsetting Parameters Page

3. Select the city parameter and enter the value Cupertino. Click Save. The
Mobile Manager displays a confirmation message. Click OK.

Repeat these steps for Dick and Harry. For more information about snapshots, refer to
the Oracle Database Lite Administration and Deployment Guide.

19.4 Execute the Application on the Mobile Client for Web-to-Go
This section describes how to set up a Mobile client to use the application that you
created and tested in the Development section, deployed in the Deployment section,
and then administered in the Administration section.

In this section, you will perform the following tasks:

■ Section 19.4.1, "Install the Mobile Client on the Win32 Device"

■ Section 19.4.2, "Browse the TASK Snapshot and Update a Row"

■ Section 19.4.3, "Develop your Mobile Field Service Application Using Oracle
Database Lite"

■ Section 19.4.4, "Republish the Application with the Application Program"

19.4.1 Install the Mobile Client on the Win32 Device
You must install the Mobile client before you can use the application that you created
and deployed.

Note: You must install the application and test it on a separate
machine from the Mobile Server.

Note: You must install the Mobile Client on a machine which does
not host the Mobile Server installation.

Execute the Application on the Mobile Client for Web-to-Go

Tutorial for Building Mobile Applications for Win32 19-15

To install the Mobile Client for Win32, perform the following actions:

1. Start your Web browser and connect to the Mobile Server by entering the
following URL.

http://<mobile_server>/webtogo/setup

2. As Figure 19–14 displays, the Mobile Client Setup page lists a set of Mobile clients
by platform. To download the Mobile Client for Win32 setup program, click the
Oracle Lite WIN32 link.

Figure 19–14 Mobile Client Setup Page

3. If you are using Netscape, choose a location to save the setup program and click
OK. In Windows Explorer, double-click setup.exe to run the setup program.

If you are using Internet Explorer, run the setup program from your browser
window.

4. While installing the Mobile Client, you will be prompted for the user name and
password. Enter Tom as the user name and tomjones as the password.

5. The setup program prompts you to choose an installation directory for the Mobile
client, such as D:\MFS, and downloads all the required components and starts the
Mobile client on your machine. Browse the directory and familiarize yourself with
its structure.

Note: While installing the Mobile Client, you will be prompted for
the User name and Password. Enter Tom as the user name and
tomjones as the password.

Execute the Application on the Mobile Client for Web-to-Go

19-16 Oracle Database Lite Developer’s Guide

6. Perform the initial synchronization to bring down the first snapshot and create the
Oracle Lite database. Start the Command Prompt and enter the following:

D:\MFS\Mobile\bin>msync

This executes the Mobile Sync application, downloaded as part of the application
installation. You can also execute the Mobile Sync application located in the
\sdk\bin directory.). When the dialog appears, enter the following information:

User Name: Tom

Password: tomjones

Server: mserver

Click the Sync button. A message box appears showing the progress of
synchronization. When the synchronization process is complete, click the Cancel
button on the Mobile Sync application dialog.

You now have an Oracle Database Lite database on your development machine. It
contains a snapshot called TASK which has two rows in it; both rows have Cupertino
for the CustCity column. These are the service requests by customers in Cupertino
and Tom has been assigned these tasks.

The initial synchronization process also created an ODBC data source name (DSN)
called tom_mfs (the user name followed by the underscore character followed by the
database name).

19.4.2 Browse the TASK Snapshot and Update a Row
You can update a row in the Task snapshot, as follows:

D:>MFS\Mobile\bin>msql system/manager@jdbc:polite:tom_mfs
SQL> select * from task;

The following two rows are displayed.

SQL> update task set Notes ='Replaced the motor:$65' where ID = 1;
1 row(s) updated
SQL> commit;
commit complete
SQL> exit

You have successfully updated a row of the TASK snapshot. Perform another
synchronization to upload the changes to the server.

19.4.3 Develop your Mobile Field Service Application Using Oracle Database Lite
An example ODBC program called MFS.exe is provided with the Mobile
Development Kit in the following directory:

<ORACLE_HOME>\Mobile\Sdk\samples\odbc\win32\mfs\

The\src directory contains the source and the makefile for it.

This example displays the task list and prompts the user to enter the Task ID for the
chosen task, before entering notes. When the user enters the Task ID value as -1, the
program terminates. For any valid Task ID, the MFS application prompts the user to
enter notes. Enter notes without using quotes. You can try to improve the example as
required.

To republish this program to the Mobile Server, copy the mfs.exe file into the
directory D:\MFSDEV\Win32.

Execute the Application on the Mobile Client for Web-to-Go

Tutorial for Building Mobile Applications for Win32 19-17

19.4.4 Republish the Application with the Application Program
Use the Packaging Wizard to republish the application, as follows:

1. From the Command Line, enter the following:

D:>runwtgpack

2. Select the "Edit an existing application" option. From the drop down list, select
"Mobile Field Service" and click the OK button.

3. Click the Files tab. As shown in Figure 19–15, verify that the mfs.exe file is listed
in the "File Name" window and click Finish.

Figure 19–15 Load the MFS.EXE File.

4. Select the "Publish the current application" option and click OK. You will be
prompted to enter the login information for the Mobile Server. Click OK after
entering the information. A message box warns you that the application already
exists on the Mobile Server and asks whether you want to overwrite it. Click YES.

Figure 19–16 Republish the Application

Execute the Application on the Mobile Client for Web-to-Go

19-18 Oracle Database Lite Developer’s Guide

5. If you get the message "Application Published Successfully", click OK and then
click EXIT. You have successfully republished an application that has a file called
mfs.exe and one publication item.

6. Test your application by using a fresh Windows 32 machine. Follow Step 4 to
install the Oracle Database Lite 10g client and the Mobile Field Service application
on the machine. Then execute the Mobile Field Service application by executing
the D:\MFS\Mobile\oldb40\TOM\mfs.exe program, as follows:

D:\MFS\Mobile\oldb40\TOM\mfs.exe TOM_MFS system manager

7. When TOM is the user. Enter notes for one of the tasks. Then execute
D:\MFS\Mobile\bin\msync.exe to synchronize your changes with the server.

Tutorial for Building Mobile Applications for Windows CE 20-1

20
Tutorial for Building Mobile Applications for

Windows CE

You can implement Mobile applications with Oracle Database Lite for WinCE. Oracle
Database Lite supports various application models for the Windows Mobile/Pocket
PC device, such as ODBC, JDBC, and ADO.NET. When developing your own WinCE
application, you can use Visual Studio 2005.

This chapter uses a tutorial to demonstrate how to create, deploy, administer, and use
a Windows CE application. The tutorial shows a Visual Basic.NET (Visual Studio.NET)
application that uses the Oracle Database Lite ADO.NET interface for Windows
Mobile.

The following sections detail the development process:

■ Section 20.1, "Overview of the WinCE Sample Application"

■ Section 20.2, "Develop the Application"

■ Section 20.3, "Create Publication for Application"

■ Section 20.4, "Package and Publish the Application"

■ Section 20.5, "Administer the Application"

■ Section 20.6, "Run the Application on the Windows Mobile/Pocket PC Device"

20.1 Overview of the WinCE Sample Application
The sample WinCE application details typical activities of delivery personnel in the
Transportation and Logistics industry, which includes package pick-up and delivery.

1. Before he leaves the dispatch center, the delivery person collects the complete
delivery package list and the package delivery destination information for the day
on his device.

2. As he delivers and picks-up packages, the delivery person updates the package
pick-up and delivery status on his client device.

3. When he returns to the dispatch center, he synchronizes his updated information
with the central server running in the dispatch center over any wireless network.

20.1.1 Before You Start
Before starting the Mobile application development process, you must ensure that the
development computer and the client device meet the requirements specified below.

■ Section 20.1.1.1, "Application Development Computer Requirements"

Develop the Application

20-2 Oracle Database Lite Developer’s Guide

■ Section 20.1.1.2, "Client Device Requirements"

20.1.1.1 Application Development Computer Requirements
Table 20–1 lists the configuration and installation requirements for the Mobile
application development computer.

20.1.1.2 Client Device Requirements
You must connect the client device to the desktop and install the Oracle Database Lite
client for Pocket PC on the device. For more information on how to install the Mobile
Client on the device, see Section 20.6.1, "Install the Oracle Database Lite Mobile client
for Pocket PC".

20.2 Develop the Application
This section explains how to develop and test the WinCE Transport application using
the Mobile Development Kit. The WinCE Transport application is written in Visual
Basic.NET (Visual Studio.NET).

To develop and test the WinCE Transport application, perform the following tasks.

1. Section 20.2.1, "Create Database Objects in the Oracle Server"

2. Section 20.2.2, "Write the Application Code"

3. Section 20.2.3, "Compile the Application"

20.2.1 Create Database Objects in the Oracle Server
During deployment, the Mobile Server automatically creates the Oracle Database Lite
database in the client device along with the requisite tables and data. To publish the
application, users must create the database objects used by the application in the
back-end Oracle database.

20.2.1.1 The WinCE Transport Application Database Objects
The WinCE Transport application uses the following database objects:

■ Packages Table

■ Routes Table

■ Trucks Table

Table 20–1 Application Development Computer Requirements

Requirement Description

Windows NT/2000/XP User Login The login user on the Windows NT/2000 development
computer must have "Administrator" privileges.

Installed Java Components Java Development Kit 1.4.2 or higher.

Installed Oracle Database Lite 10g
Components

Oracle Database 9.2 or higher.

The Mobile Server (Oracle Database Lite CD-ROM).

The Mobile Development Kit (Oracle Database Lite
CD-ROM).

Installed Windows Mobile/Pocket
PC Components

Microsoft Active Sync 3.8 or higher.

Develop the Application

Tutorial for Building Mobile Applications for Windows CE 20-3

Table 20–2 lists the columns for the Packages table for storing information about the
package.

Table 20–3 lists the columns for the Routes table for storing information about a route.

Table 20–4 lists columns for the Trucks table for storing information about the
availability status and destination information for a truck.

To Create Database Objects
In order to execute the Transport demo, you must set up the schema and the database
objects. We have provided a SQL script that will create the master schema and the
database objects in the back-end. However, if the master schema is already created,
then remove the statements that create this schema from the create.sql script.

Table 20–2 Packages Table

Column Description

DID Package ID

DDSC Package Description

DWT Package Weight

DSTR Destination Street

DCTY Destination City

DST Destination State

DRTNR Route Number

DRTNM Route Name

DESN Signature

DSTS Package Status

TID Truck Number

PRTY Priority

PTNO Point Number

TIND Delivery 'D', or Pick-up 'P'

Table 20–3 Routes Table

Column Description

ROUTE_NO Route Number (Primary Key)

ROUTE_NM Route Name

EST_TIME Estimated Time

Table 20–4 Trucks Table

Column Description

TRUCK_NO Truck Number (Primary Key)

TRUCK_STATUS Status of the Truck

ALERT_ADDRESS Mobile or Pager address to send alert to
(Portal User Interface)

DRIVER_ID ID of the Truck Driver

Develop the Application

20-4 Oracle Database Lite Developer’s Guide

Execute the create.sql script, as follows:

> cd ORACLE_HOME\Mobile\Sdk\samples\ado.net\wince\Transport\sql

> msql system/<sys_pwd>@jdbc:oracle:thin:@<host>:<port>:
 <oracle_sid> @create.sql

Where:

■ <sys_pwd> is the system password. This is required if you are creating the
master schema. However, if you have eliminated the statements that create the
schema, you can use master/master for username/password.

■ <host>:<port> refers to the name and listening port of the machine where the
back-end Oracle database is installed.

20.2.2 Write the Application Code
The WinCE Transport application, located in cd ORACLE_
HOME\Mobile\Sdk\samples\ado.net\wince\Transport, uses Visual
Basic.NET (Visual Studio.NET), which is available with the sample application. The
following sections describe the Transport application code:

■ Section 20.2.2.1, "Transport Module (Transport.vb)"

■ Section 20.2.2.2, "Main Form (frmMain.vb)"

■ Section 20.2.2.3, "View Packages (frmView.vb)"

■ Section 20.2.2.4, "Create Package (frmNew.vb)"

20.2.2.1 Transport Module (Transport.vb)
To open a database connection, you must declare a connection object,. which—in this
tutorial—is called conn. The scope of the connection object is project level. The
Connect sub-routine in the transport.vb module establishes a connection to the
local Oracle Lite database with the DSN transport; the Disconnect sub-routine
releases the connection.

Within the Connect sub-routine, the DSN is initialized as follows:

Dim dsn As String = "dsn=transport;uid=system;pwd=" & pwd
conn = New Oracle.DataAccess.Lite.OracleConnection(dsn)
conn.Open()

The DSN username and password are system and the user password; thus, only the
user can connect since the user password is used.

Note: Ensure that the CLASSPATH includes ojdbc14.jar.

Note: While entering the above command to create database
objects, you must include a mandatory space between
"<oracle_sid>" and "@create.sql".

Develop the Application

Tutorial for Building Mobile Applications for Windows CE 20-5

20.2.2.2 Main Form (frmMain.vb)
The frmMain.vb file implements the main form of the Transport Tutorial application.
This form connects to Oracle Database Lite on Load time and invokes the Create
Package and View Packages forms, using the appropriate command buttons.

If the synchronization button is pushed, notice that the following is executed:

Disconnect()
OracleEngine.Synchronize(True)
Connect(UserName, Password)

In order to retrieve information from the database, the connection was established at
the start of the application. Since you can only have a single connection to the
back-end database—and the OracleEngine.Synchronization method creates a
connection to the database as part of its functionality—the original connection is
disconnected before the synchronization is invoked. Once synchronization is complete,
the original connection is re-established. See Section 13.1.6.2, "Using the OracleEngine
to Synchronize" for more information on this class.

20.2.2.3 View Packages (frmView.vb)
This form displays existing packages from the database. It also allows the user to
modify and save existing packages. This form demonstrates the usage of the
OracleDataAdapter and DataSet classes.

When this form is loaded, it creates an instance of the OracleDataAdapter object
and sets the appropriate OracleCommand objects namely, Select, Update, and
Delete. These OracleCommand objects are created by the transport.vb module
during the main form loading process. Once an OracleAdapter object has been
created successfully, this form creates a Dataset object and populates it with data
from Oracle Database Lite, using the OracleDataAdapter object that was created.

dba = New OracleDataAdapter
dba.SelectCommand = cmdSel
dba.DeleteCommand = cmdDel
dba.UpdateCommand = cmdUpd

' Fill dataset
'
dset = New DataSet
dba.Fill(dset)

Once the Dataset is filled with Oracle Database Lite data, this form populates the UI
controls using data from the DataSet object.

Dim table As DataTable = dset.Tables(0)
Dim rows As DataRowCollection = table.Rows
Dim row As DataRow = rows.Item(index)

Note: The OracleDataAdapter is the same as the Microsoft
ADO.Net DataAdapter class. For more information on
DataAdapter and DataSet classes, see the Microsoft ADO.Net
documentation.

Note: For more information on the OracleCommand class, see
Section 13.1.3, "Create Commands With the OracleCommand Class".

Develop the Application

20-6 Oracle Database Lite Developer’s Guide

Me.packDesc.Text = row.Item(1).ToString()
Me.packWeight.Text = row.Item(2).ToString()
Me.packStreet.Text = row.Item(3).ToString()
Me.packCity.Text = row.Item(4).ToString()
Me.packState.Text = row.Item(5).ToString()
Me.packRoute.Text = row.Item(7).ToString()

When users make changes to the package data, this form uses the OracleAdapter
Update method to save the changes to Oracle Database Lite.

Dim row As DataRow = table.Rows(index)
row.BeginEdit()
row(6) = Me.packPriority.SelectedItem.ToString()
row(8) = Me.packStatus.SelectedItem.ToString()
row.EndEdit()
dba.Update(table)

20.2.2.4 Create Package (frmNew.vb)
This form allows users to create a new package entry in Oracle Database Lite. During
the Load duration, this form creates a unique Package ID and populates the drop
down list controls with truck numbers and route names.

When the user saves this form, it uses the OracleCommand and OracleParameter
classes to save user changes in Oracle Database Lite.

cmd = GetConnection().CreateCommand()
rts = Me.packRoute.SelectedItem.ToString()

' Obtain route number
'
cmd.CommandText = "SELECT ROUTE_NO FROM ROUTES where ROUTE_NM='" & rts & "'"
res = cmd.ExecuteReader()
 While res.Read() = True
 rtn = res.GetString(0)
 End While
res.Close()

cmd.CommandText = "INSERT INTO PACKAGES (
 (DID,DDSC,DWT,DSTR,DCTY,DST,DRTNR,DRTNM,DSTS,TID,PRTY,PTNO,TIND) values
 (?,?,?,?,?,?,?,?,'NEW',?,?,'1','P')"

' Set DID
'
par = cmd.CreateParameter()
par.DbType = DbType.String
par.Direction = ParameterDirection.Input
par.Value = id
cmd.Parameters.Add(par)

 ' Set DDSC
 '
par = cmd.CreateParameter()
par.DbType = DbType.String
par.Direction = ParameterDirection.Input

Note: For more information on the OracleCommand class, see
Section 13.1.3, "Create Commands With the OracleCommand Class".

Create Publication for Application

Tutorial for Building Mobile Applications for Windows CE 20-7

par.Value = Me.packDesc.Text
cmd.Parameters.Add(par)
...
cmd.ExecuteNonQuery()
cmd.Dispose()

20.2.3 Compile the Application
To install the application on the device, you must create a CAB file. The CAB file is
uploaded into the Mobile Server Repository during the application's publish phase.
You can create a CAB file using the Visual Basic.NET (Visual Studio.NET).

20.2.3.1 Create CAB Files
To create the CAB file for this demo, perform the following:

1. Start the Visual Studio.NET and click on File->Select Open

2. Browse for the Transport.sln file, which is located in the ORACLE_
HOME\Mobile\SDK\samples\ado.net\wince\Transport directory. Ignore
the warning message, "The .NET assembly
’Oracle.DataAccess.Lite.dll’ could not be found."

3. Right click on References.

4. Select Add Reference.

5. Click Browse and choose Oracle.DataAccess.Lite.dll from the ORACLE_
HOME\Mobile\SDK\ado.net\wince\v1.x or v2.x directory.

6. In the ’Solution Configuration’ list box, select Release instead of Debug.

7. Click Build->Build CAB File, which will build the CAB file for you.

20.2.3.2 Install the Application from the CAB File
You can download and install the application on the device after packaging and
publishing the application. See Section 20.4, "Package and Publish the Application" for
directions on how to package and publish the application.

20.3 Create Publication for Application
As described fully in Chapter 5, "Using Mobile Database Workbench to Create
Publications", you can use MDW to create your publication. Launch MDW by
executing oramdw from $ORACLE_HOME/Mobile/Sdk/bin. The following sections
detail how to use MDW to create a publication for the application in this tutorial.

■ Section 20.3.1, "Create a Project"

■ Section 20.3.2, "Create Publication Items"

■ Section 20.3.3, "Create Publication"

Note: While creating this publication, use Chapter 5, "Using Mobile
Database Workbench to Create Publications" heavily for a deeper
understanding of how to use MDW and the type of information that
you must enter.

Create Publication for Application

20-8 Oracle Database Lite Developer’s Guide

20.3.1 Create a Project
Create a new project for this application by selecting File->New->Project. This brings
up a wizard where you enter the following information:

1. Define a name and location for the project.

2. Enter the username, password, JDBC driver type, database host, database port and
database SID for the Mobile repository.

Provide the Mobile Repository access information. Because you are interacting
with the repository to create and manipulate synchronization objects, including
the SQL scripts for the publication items, you need access to the Mobile
Repository.

3. Specify schema username and password. Enter the user and password of the
schema owner for the schema that you are using for the Mobile application. The
Mobile application schema contains all database tables, views, synonyms used to
build the snapshots for the application.

4. Verify the information that you entered and click Finish.

20.3.2 Create Publication Items
For this project, you need to create three publication items for packages, routes, and
trucks. Start the new publication item wizard by selecting File->New->Publication
Item.

20.3.2.1 Create Packages Publication Item
1. Enter the name as packages and the type as Fast.

2. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select Packages from the object
list.

3. Click ’>>’ to select all of the columns in the Packages table.

4. In the Query tab, select Edit if you want to edit the query.

5. Click Run to test.

6. Verify and click Finish.

20.3.2.2 Create Routes Publication Item
1. Enter the name as routes and the type as Fast.

2. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select Routes from the object list.

3. Click ’>>’ to select all of the columns in the Routes table.

4. In the Query tab, select Edit if you want to edit the query.

5. Click Run to test.

Note: For more information, see Section 5.2, "Create a Project".

Note: For more information, see Section 5.4, "Create a Publication
Item".

Create Publication for Application

Tutorial for Building Mobile Applications for Windows CE 20-9

6. Verify and click Finish.

20.3.2.3 Create Trucks Publication Item
1. Enter the name as trucks and the type as Fast.

2. Select the schema name as MASTER, the object type as Table, and leave the object
filter blank. Click Search. When the search ends, select Trucks from the object list.

3. Click ’>>’ to select all of the columns in the Trucks table.

4. In the Query tab, select Edit if you want to edit the query.

5. Click Run to test.

6. Verify and click Finish.

20.3.3 Create Publication
When you have completed the creation of the publication items, create the publication
within the project by selecting File->New->Publication.

1. In the General tab, enter the name as transport, which is the DSN for the
client-side database.

2. In the Publication Item tab, add the three publication items that you just created
with the following configuration:

Name: PACKAGES
Updatability: Updatable
Conflict Resolution: Server Wins
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 1
Description: Blank

Name: ROUTES
Updatability: Read Only
Conflict Resolution: Custom
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 2
Description: Blank

Name: TRUCKS
Updatability: Read Only
Conflict Resolution: Custom
DML Callback: BLANK
Grouping Function: BLANK
Priority Condition: BLANK
My Compose: BLANK
Weight: 3
Description: Blank

3. Save the publication by selecting File->Save.

Package and Publish the Application

20-10 Oracle Database Lite Developer’s Guide

20.4 Package and Publish the Application
The following sections describe how to package the application and prepare it for
publishing into the Mobile Server:

1. Section 20.4.1, "Define the Application Using the Packaging Wizard"

2. Section 20.4.2, "Publish the Application"

20.4.1 Define the Application Using the Packaging Wizard
Using the Packaging Wizard, you can select and describe the Transport application.

20.4.1.1 Create a New Application
Using the Mobile Server Packaging Wizard, you can publish the WinCE application
into the Mobile Server. For more information on how to use the Packaging Wizard, see
Chapter 7, "Using the Packaging Wizard".

You can select and describe the WinCE Transport application by launching the
Packaging Wizard in regular mode.

To launch the Packaging Wizard in regular mode, perform the following steps.

1. Using the Command Prompt, enter the following.

cd ORACLE_HOME\Mobile\SDK\bin

wtgpack

As Figure 20–1 displays, the Packaging Wizard displays the Welcome panel. Select
the Create a new application option and click OK.

Figure 20–1 Welcome Dialog

2. The Select Platforms panel appears. Choose ’Oracle Lite PPC50 ARMV4I;US’
from the list displayed and click Next.

3. The Application panel appears. As Table 20–5 describes, enter the WinCE
Transport application settings. Figure 20–2 displays the Applications panel.

Package and Publish the Application

Tutorial for Building Mobile Applications for Windows CE 20-11

Figure 20–2 Applications Panel

4. Click Next. As Figure 20–3 displays, the Files panel appears.

Table 20–5 The WinCE Transport Application Settings

Field Value

Application
Name

Transport

Virtual Path /Transport

Description Transport and Logistics Management

Local
Application
Directory

<ORACLE_
HOME>\Mobile\Sdk\samples\ado.net\wince\Transport\cab\Release

Publication
Name

Select Browse to locate the publication that was created by MDW, named
transport. This pops up a "Publication Name" screen where you can select the
publication and click Add.

Package and Publish the Application

20-12 Oracle Database Lite Developer’s Guide

Figure 20–3 Files Panel

The Files panel automatically lists all files that reside in the directory, based on the
'Local Application Directory' specified in the previous Application panel. Ensure
that you select the correct CAB file.

For example, in this tutorial, you must select the Transport_PPC.ARMV4.CAB
and Transport_PPC.ARMV4.DAT, because your target device is Pocket PC with
the ARM chipset. If other .CAB and .DAT files are in this listing, then use the
Delete button in the Files panel to delete these files from the list.

After selecting the appropriate CAB file, you must define the application connection
details to the Oracle Lite database.

On the Files panel, click Next.

20.4.2 Publish the Application
Using the Application Definition Completed dialog, you can package and publish the
WinCE Transport application.

To publish the Transport application, perform the following steps.

1. In the Application Definition Completed dialog, select the Publish the Current
Application option and click OK.

2. The Publish the Application dialog appears. As Table 20–6 describes, enter the
specified values.

Table 20–6 Publish the Application Dialog Description

Field Description Value

Mobile Server URL URL or IP Address of the machine where the
Mobile Server is running.

<Mobile
Server>/webtogo

Administer the Application

Tutorial for Building Mobile Applications for Windows CE 20-13

3. To publish the application in the Mobile Server Repository, click OK. A dialog
displays the application's publishing status. You must wait until the application is
published.

4. To confirm that the application is published successfully, click OK.

5. To exit the Packaging Wizard, click Exit.

At this stage, you have completed all the development tasks required for packaging or
publishing the application.

20.5 Administer the Application
This section describes how to administer the Mobile application published by you into
the Mobile Server. To administer the application, perform the following tasks.

1. Section 20.5.1, "Start the Mobile Server"

2. Section 20.5.2, "Launch the Mobile Manager"

3. Section 20.5.3, "Create a New User"

4. Section 20.5.4, "Set the Application Properties"

5. Section 20.5.5, "Grant User Access to the Application"

For more information on the Mobile Manager see the Oracle Database Lite
Administration and Deployment Guide.

20.5.1 Start the Mobile Server
To start the Mobile Server in standalone mode, enter the following command using the
Command Prompt.

> runmobileserver

20.5.2 Launch the Mobile Manager
Using the login user name and password, you can log in to the Mobile Server and
launch the Mobile Manager.

To start the Mobile Manager, perform the following steps.

1. Open your Web browser and connect to the Mobile Server by entering the
following URL.

http://<mobile_server>/webtogo

Mobile Server User
Name

User name of the Mobile Server user with
administrative privileges.

Administrator

Mobile Server
Password

Password of the Mobile Server user with
administrative privileges.

admin

Repository Directory Directory name where all files for this application
will be stored inside the Mobile Server
Repository.

/transport

Public Application Do not select this check box unless you want to
make this application available to all users.

Clear

Table 20–6 (Cont.) Publish the Application Dialog Description

Field Description Value

Administer the Application

20-14 Oracle Database Lite Developer’s Guide

2. Log in as the Mobile Server administrator using administrator as the User
Name and admin as the Password.

3. To launch the Mobile Manager, click the Mobile Manager link in the workspace.
The Mobile Server farms page appears. To display your Mobile Server's home
page, click your Mobile Server link.

Figure 20–4 displays the Mobile Server home page.

Figure 20–4 Mobile Server Home Page

20.5.3 Create a New User
To create a new Mobile Server user, perform the following steps.

1. In the Mobile Manager, click the Users tab.

2. Click Add User.

3. Enter data as described in Table 20–7.

4. Click Save. The Mobile Manager displays a confirmation message.

5. Click OK.

Table 20–7 lists the values that you must enter in the Add User page.

Note: You must replace the <mobile_server> variable with
your Mobile Server's host name.

Table 20–7 The Add User Page Description

Field Value

Display Name bob

User Name bob

Administer the Application

Tutorial for Building Mobile Applications for Windows CE 20-15

20.5.4 Set the Application Properties
To set the WinCE Transport Application properties, perform the following steps.

1. In the Mobile Manager, click the Applications tab. As Figure 20–5 displays, The
Applications page appears. You can search the list of available applications by
application name.

Figure 20–5 Applications Page

2. Click Transport. The Transport application page appears. It displays an
application's properties and database connectivity details.

3. In the Platform Name, select Oracle Lite PPC50 ARMV4I; US. In the Database
User field, enter master for the master schema. In the Database Password field,
enter master. This is the default password for the master user schema of the
Oracle Server Database.

4. Click Apply.

20.5.5 Grant User Access to the Application
To grant user access to the Transport application, perform the following steps.

1. In the Transport application page, click the Access link. As Figure 20–6 displays,
the Access page lists application users and application groups. To grant access to a
user or a group of users to the Transport application, select the corresponding
boxes.

For example, to provide access to a user named BOB, locate the user name "BOB"
in the Users list and select the corresponding box.

2. Click Save. The user "BOB" is granted access to the Transport application.

Figure 20–6 displays the Access page of the Transport application.

Password bobhope

Password Confirm Re-enter the password for
confirmation

System Privilege Select the "User" option

Table 20–7 (Cont.) The Add User Page Description

Field Value

Run the Application on the Windows Mobile/Pocket PC Device

20-16 Oracle Database Lite Developer’s Guide

Figure 20–6 Access Page

20.6 Run the Application on the Windows Mobile/Pocket PC Device
The following sections describe how to run the application after creating, testing,
deploying, and administering the application:

1. Section 20.6.1, "Install the Oracle Database Lite Mobile client for Pocket PC"

2. Section 20.6.2, "Install and Synchronize the Transport Application and Data"

20.6.1 Install the Oracle Database Lite Mobile client for Pocket PC
To install the Oracle Database Lite Mobile client for Pocket PC, perform the following
actions.

1. Open your desktop browser and enter the following URL to connect to the Mobile
Server.

http://<mobile_server>/webtogo/setup

A Web page appears displaying links to various Oracle Database Lite Mobile
clients with different platforms. You can filter the selection by Language and
Platform.

2. Click the hyperlink Oracle Lite PPC50 ARMV4I;US to access the setup program
for the Pocket PC device with the ARM chipset.

Figure 20–7 displays the Mobile Client Setup page.

Note: You must replace the <mobile_server> variable with the
host name or IP address of your Mobile Server.

Run the Application on the Windows Mobile/Pocket PC Device

Tutorial for Building Mobile Applications for Windows CE 20-17

Figure 20–7 Mobile Client Setup Page

3. If you are using Netscape as your browser, choose a location on your desktop to
save the setup program and click OK. Open the Windows Explorer program and
locate the "setup.exe". To run the setup program, double-click "setup.exe".

If you are using Internet Explorer, run the "setup" program from your browser
window. Once started, the setup program asks you to provide the user name and
password to log on to the Mobile Server. Enter BOB as the User Name and
bobhope for the Password. Click OK.

4. The setup program asks you to provide an install directory. Enter the directory
where you want to install the client, such as C:\mobileclient\. Click OK. To
confirm your install directory, click Yes.

5. The setup program automatically downloads all the required components to the
specified destination on your desktop computer.

6. Assume that you have a Pocket PC device attached to your desktop computer and
are connected with Microsoft ActiveSync. The installation for your Pocket PC
device starts automatically.

7. Click Yes to confirm installing Oracle Lite PPC ARM; US to the default
application directory. The application installation starts on the device. Once
completed, the Mobile Client for Pocket PC is installed on your device under the
\ORACE directory.

20.6.2 Install and Synchronize the Transport Application and Data
To install the Transport application and data, perform the following steps.

1. On the device, locate and tap the msync application icon in the programs group.

2. The msync dialog appears. To download the Transport application and snapshots
for user BOB, enter data as described in Table 20–8.

Table 20–8 Values You Must Enter in the msync Dialog

Name Value

UserName bob

Run the Application on the Windows Mobile/Pocket PC Device

20-18 Oracle Database Lite Developer’s Guide

Figure 20–8 displays the msync dialog on the Pocket PC.

Figure 20–8 Running msync on Pocket PC

3. To save these values, click Apply.

4. To synchronize your application and data to the device, click Sync. If you receive
an error message for invalid username/password, re-enter the clear text password
in the login window.

5. Once the synchronization is complete, click Exit. The Update window appears.

6. Click Install to install the application. Click Exit.

7. Using the Start menu on the device, locate the Transport application in the
Programs menu.

8. To run the Transport application, click the Transport icon.

Password bobhope (all lowercase)

Save password box Select

Server Machine name or IP address

Note: Ensure that the device is connected to the desktop or the
network and that the Mobile Server is running.

Note: After the synchronization process is complete, a
transport.odb file is created under the \OraCE directory.

Table 20–8 (Cont.) Values You Must Enter in the msync Dialog

Name Value

Oracle Lite Database Utilities A-1

A
Oracle Lite Database Utilities

This appendix describes how to use the following Oracle Lite database utilities for the
Windows 32 and Windows CE platforms. Table A–1 lists all of the utility names:.

A.1 The mSQL Tool
Mobile SQL (mSQL) is a GUI-based application that runs on the client device (laptop
and Windows CE). It allows the user to execute SQL statements against the local

Table A–1 Database Tools and Utilities

Utility Description

Section A.1, "The mSQL Tool" Allows users to execute SQL statements against the Oracle
Lite database.

Section A.2, "CREATEDB" Use this to create your Oracle Lite database.

Section A.3, "REMOVEDB" Use this to remove your Oracle Lite database.

Section A.4, "ENCRYPDB" Use this to encrypt your Oracle Lite database.

Section A.5, "DECRYPDB" Use this to decrypt your Oracle Lite database.

Section A.6, "BACKUPDB" Use this to backup your Oracle Lite database.

Section A.7, "ODBC
Administrator and the Oracle
Database Lite ODBC Driver"

Use this to manage ODBC connections by creating data
source names (DSNs) that associate the Oracle Database Lite
ODBC Driver with the Oracle Database Lite that you want
to access through the driver.

Section A.8, "ODBINFO" Use this utility to find out the version number and volume
ID of an Oracle Database Lite database.

Section A.9, "VALIDATEDB" Use this to validate the structure of an Oracle Lite database
and find any corruption of the database.

Section A.10, "Transferring Data
Between a Database and an
External File"

Use either the command-line tool or programmatic APIs to
load data from an external file into a table in Oracle
Database Lite, or to unload (dump) data from a table in
Oracle Database Lite to an external file.

Support for Linguistic Sort Allows databases to be created with linguistic sort
capability enabled. See Section 2.10, "Support for Linguistic
Sort" for more information.

dropjava This is a command-line utility you can use to remove Java
classes from Oracle Database Lite. For more information,
see Section 11.3.1.4.1, "Using dropjava".

loadjava This is a command-line utility you can use to load a Java
class into Oracle Database Lite. For more information, see
Section 11.3.1.1.1, "loadjava".

The mSQL Tool

A-2 Oracle Database Lite Developer’s Guide

database. It is a development tool that enables users to execute SQL statements to the
Oracle Lite database.

Using mSQL you can accomplish the following:

■ Create databases

■ View tables

■ Execute SQL statements

The following sections describe how to use the mSQL tool on two platforms:

■ Section A.1.1, "The mSQL Tool for Windows 32"

■ Section A.1.2, "The mSQL Tool for Windows CE"

A.1.1 The mSQL Tool for Windows 32
On Windows 32 platform, the mSQL tool accesses the database through JDBC. The
following sections describe how to use the mSQL command-line to access the database
for the Windows 32 platform:

■ Section A.1.1.1, "Starting mSQL"

■ Section A.1.1.2, "Populating your Database Using mSQL"

■ Section A.1.1.3, "SET TERM {ON|OFF}"

■ Section A.1.1.4, "SET TIMING {ON|OFF}"

■ Section A.1.1.5, "SET VERIFY {ON|OFF}"

A.1.1.1 Starting mSQL
Start mSQL by opening the ORACLE_HOME\Mobile\SDK\Bin directory and
double-click the msql.exe file. This starts the command-line interface that accepts
standard SQL commands. For more information, see the Oracle Database Lite SQL
Reference.

A.1.1.2 Populating your Database Using mSQL
You can use SQL scripts to create tables and schema, and to insert data into tables. A
SQL script is a text file, generally with a .sql extension, that contains SQL commands.
You can run a SQL script from the mSQL prompt, as follows:

msql> @<ORACLE_HOME>\DBS\Poldemo.sql

You can also type:

msql> START <filename>

A.1.1.3 SET TERM {ON|OFF}
Controls the display of output generated by commands executed from a script. OFF
suppresses the display so that you can spool output from a script without seeing the

Note: UTF8 SQL Scripts are not supported in mSQL.

Note: You do not need to include the .sql file extension when
running the script.

The mSQL Tool

Oracle Lite Database Utilities A-3

output on the screen. ON displays the output. TERM OFF does not affect output from
commands you enter interactively.

A.1.1.4 SET TIMING {ON|OFF}
Controls the display of timing statistics. ON displays timing statistics on each SQL
command. OFF suppresses timing of each command.

A.1.1.5 SET VERIFY {ON|OFF}
Controls whether to list the text of a SQL statement or PL/SQL command before and
after replacing substitution variables with values. ON lists the text; OFF suppresses the
listing.

A.1.2 The mSQL Tool for Windows CE
The mSQL tool allows the user to execute SQL statements against the local database.
You can use either the mSQL tool as a command-line or GUI tool.

The following sections describe the GUI or the command-line tool:

■ Section A.1.2.1, "The mSQL GUI Tool"

■ Section A.1.2.2, "The Command-Line Version of the mSQL Tool for Windows CE"

A.1.2.1 The mSQL GUI Tool
Start the mSQL GUI tool by double-clicking on msql.exe. The mSQL GUI tool
provides you the ability to perform the following tasks:

■ Section A.1.2.1.1, "Connect to the Oracle Lite Database"

■ Section A.1.2.1.2, "Execute SQL Statement Against Oracle Lite Database"

■ Section A.1.2.1.3, "Create or Encrypt the Oracle Lite Database"

■ Section A.1.2.1.4, "Table Contents of the Oracle Lite Database"

■ Section A.1.2.1.5, "Views of the Oracle Lite Database"

■ Section A.1.2.1.6, "Sequences of the Oracle Lite Database"

A.1.2.1.1 Connect to the Oracle Lite Database Select the Connect tab to connect to the
Oracle Lite database on the Mobile device.

1. If you have more than one Oracle Lite database on the device, select the
appropriate database from the pull-down.

2. Provide the username and password for this database. If this database was created
with a synchronization, the username is SYSTEM and the password is the same as
the Mobile user password.

3. Click Connect.

The mSQL Tool

A-4 Oracle Database Lite Developer’s Guide

Figure A–1 Connect to the Oracle Lite Database

A.1.2.1.2 Execute SQL Statement Against Oracle Lite Database Select the SQL tab to execute
a SQL statement against the Oracle Lite database. After connecting, enter your SQL
statement and click Execute. The statement and any results are displayed in the
bottom window.

Figure A–2 Execute a SQL Statement

A.1.2.1.3 Create or Encrypt the Oracle Lite Database The Tools tab enables you to create an
Oracle Lite database or to encrypt or validate and existing database.

■ Create Database: You can create an Oracle Lite database on the Mobile device. This
database can only be used as a standalone database. This database cannot use the
synchronization feature with a back-end Oracle database. Use this feature to create
a database to use for a standalone application.

■ Encrypt/Decrypt/Validate: Select the Oracle Lite database that you want to
execute the EncrypDB, DecrypDB or ValidateDB commands against.

If you are using this database as an embedded database and not for
synchronization, then provide the password for the encryption. However, if you
are using this database within the Mobile client option for synchronization, do not

The mSQL Tool

Oracle Lite Database Utilities A-5

provide a password, as modifying this password will create an issue for
synchronization.

Click on the appropriate button for each of these functions.

See the following sections for details on EncryptDB, DecryptDB or ValidateDB:

– Appendix A.6, "BACKUPDB"

– Appendix A.5, "DECRYPDB"

– Appendix A.9, "VALIDATEDB"

Figure A–3 Create, Encrypt, Decrypt, or Validate the Oracle Lite Database

A.1.2.1.4 Table Contents of the Oracle Lite Database When you select the Tables tab, you
can select any of the tables in the Oracle Lite database and click Describe. The
structure and contents of this table is displayed.

Note: If you are using the Mobile client option and want to encrypt
your Oracle Lite database, use the ENCRYPT_DB parameter, which is
described in Appendix G, "POLITE.INI Parameters" in the Oracle
Database Lite Administration and Deployment Guide.

The mSQL Tool

A-6 Oracle Database Lite Developer’s Guide

Figure A–4 Table Description for Oracle Lite Database

A.1.2.1.5 Views of the Oracle Lite Database When you select the Views tab, you can select
any of the views in the Oracle Lite database and click Describe. The view definition is
displayed.

Figure A–5 Show Views of Oracle Lite Database

A.1.2.1.6 Sequences of the Oracle Lite Database When you select the Sequences tab, you
can select any of the sequences in the Oracle Lite database and click Describe. The
sequence definition is displayed.

CREATEDB

Oracle Lite Database Utilities A-7

Figure A–6 Display Sequence Definition of Oracle Database Lite

A.1.2.2 The Command-Line Version of the mSQL Tool for Windows CE
The following sections describe the command-line version of mSQL and how to access
the database for the Windows CE platform:

■ Section A.1.2.2.1, "Starting mSQL"

■ Section A.1.2.2.2, "Manage Snapshots Using mSQL"

A.1.2.2.1 Starting mSQL Start mSQL by opening the <ORACLE_
HOME>\Mobile\Sdk\WinCE, selecting the folder representing the version Windows
CE, and selecting the processor on your device. Double-click on the msql.exe file.
This starts the GUI which accepts standard SQL commands. For more information, see
the Oracle Database Lite SQL Reference.

A.1.2.2.2 Manage Snapshots Using mSQL The Oracle Lite database format is the same on
Windows 32 and Windows CE platforms. Manage your snapshots, as follows:

1. Create and test your snapshots on Windows 32 using the Windows 32 mSQL
command-line utility.

2. Copy the database to the Windows CE platform.

3. Use the Windows CE mSQL tool to manipulate the database that is on your
device.

The mSQL tool enables the user to execute SQL statements against the local database
and access functionality provided by the interfaces of the underlying Oracle Lite
database engine.

A.2 CREATEDB

Description
Utility for creating a database.

Syntax
CREATEDB DataSourceName DatabaseName Database_SysUser_Password [[[VolID] DATABASE_
SIZE] EXTENT_SIZE] [collation sequence]

CREATEDB

A-8 Oracle Database Lite Developer’s Guide

Keywords and Parameters
DataSourceName

Data source name, used to look up the ODBC.INI file for the default database
directory.

DatabaseName

Name of the database to be created. It can be a full path name or just the database
name. If only the database name is given, the database is created under the Data
Directory for the data source name specified in the ODBC.INI file. The extension for
the database name must always be .ODB. If a name without the .ODB is given, the
.ODB is appended.

DATABASE_SysUser_Password

The database system user password.

VolID

When specified, the VolID is used as the database ID, instead of the database ID from
the POLITE.INI file. The ID must be unique for each database. If you specify a
volumn id, then you also specify the database and extent sizes. Thus, the createdb
executable knows that the volume id, database size and extent size are being specified
when three numbers are provided in a row.

DATABASE_SIZE

The database size in bytes. If you want to specify the database size, then you also must
specify the volume id and extent size.

EXTENT_SIZE

An incremental amount of pages in a database file. When a database runs out of pages
in the current file, it extends the file by this number of pages. If you want to specify the
extent size, then you also must specify the volume id and database size.

COLLATION_SEQUENCE

This parameter is a string constant which creates the database as enabled for linguistic
sorting when a value other than the default is used. A collation sequence specified
here overrides a collation sequence set using the NLS_SORT [collation_
sequence] parameter in the POLITE.INI file. The string can also be one of the
options listed in Table A–2:

Note: If you specify an invalid DSN, Oracle Database Lite ignores
the DSN and creates the database in the current directory. To access
this database through ODBC, you must create a DSN for the database
that points to the directory in which the database resides. For
instructions on adding a DSN, see Section A.7.1, "Adding a DSN
Using the ODBC Administrator".

Note: For the volume id, database size, and extent size, specify only
the number; do not specify name=value. See the examples for more
information.

REMOVEDB

Oracle Lite Database Utilities A-9

Examples
Create the db1 database with DSN of polite and password manager: createdb
polite db1 manager

Create the db2.odb database with DSN polite and password manager300:
createdb polite c:\testdir\db2.odb manager300

Create polite database with DSN polite, password of manager, and a collation
sequence of french: createdb polite polite manager french

Create polite database with DSN polite, password manager, volume id of 199,
database size of 1000, and extent size of 1:
createdb polite polite manager 199 1000 1

A.3 REMOVEDB

Description
Utility for deleting a database.

Syntax
REMOVEDB DataSourceName Database Name

Keywords and Parameters

DataSourceName
Data source name of the database you want to remove. The DSN can be a dummy
argument such as none, in which case the database name must be a fully qualified
filename.

Table A–2 Collation Sequence Values

Collation Sequence Description

BINARY Default. Two strings are compared character by character and the
characters are compared using their binary code value. You cannot
perform a linguistic sort with an Oracle Lite database that has a binary
collation sequence.

FRENCH Two strings are compared according to the collation sequence of French.
Supported by ISO 8859-1 or IBM-1252.

GERMAN Two strings are compared according to the collation sequence of
German. Supported by ISO 8859-1 or IBM-1252.

CZECH Two strings are compared according to the collation sequence of Czech.
Supported by ISO 8859-2 or IBM-1250.

XCZECH Two strings are compared according to the collation sequence of Xczech.
Supported by ISO 8859-2 or IBM-1250.

Note: There is no way to alter a collation sequence after the database
is created.

ENCRYPDB

A-10 Oracle Database Lite Developer’s Guide

DatabaseName
The name of the database to delete. It can be a full path name or just the database
name. If only the database name is given, the database is deleted from the Data
Directory for the data source name specified in the ODBC.INI file.

Examples
removedb polite db1

removedb none c:\testdir\db2.odb

A.4 ENCRYPDB

Description
Enables you to encrypt Oracle Database Lite with a password, which prevents
unauthorized access to the database and encrypts the database, so that the data stored
in the database files cannot be interpreted. To decrypt the database, see Section A.5,
"DECRYPDB".

This tool is used by embedded applications to encrypt the database used by the
application. If you are using this database as an embedded database and not for
synchronization, then provide the Mobile user password for the encryption. However,
if you are using this database within the Mobile client option for synchronization, do
not provide a password, as modifying this password will create an issue for
synchronization.

This is more difficult on a handheld as it is sometimes difficult for users to find the
RUN option in order to execute the command with arguments.

ENCRYPDB uses AES-128 encryption.

Syntax
ENCRYPDB DSN | NONE DBName [New_Password [Old_Password]]

Keywords and Parameters
■ DSN—Data Source Name of Oracle Database Lite that you want to encrypt. If you

specify NONE, DBName must be a fully qualified database name with the full path
name (without the .ODB extension). If the DSN is a value other than NONE, then the
name must appear as a data source name in the ODBC.INI file.

■ DBName—Name of the database to be encrypted. If DSN was specified as NONE,
DBName must be entered with the full path name.

■ New_Password and Old_Password—Optional, the password (or previously
used password) for encrypting the database. This password can be 128 characters
in length. If you do not enter a password, ENCRYPDB prompts you to enter one.
Since both passwords are optional in the command line to invoke the utility, the
command line could have three different forms:

Note: If you are using the Mobile client option and want to encrypt
your Oracle Lite database, use the ENCRYPT_DB parameter, which is
described in Appendix G, "POLITE.INI Parameters" in the Oracle
Database Lite Administration and Deployment Guide.

ENCRYPDB

Oracle Lite Database Utilities A-11

■ No password given: If the database is already encrypted, then ENCRYPDB
assumes that the user is trying to change the password of the database. It
prompts the user for the old password once and new password twice, and
encrypts the database using the new password. If the database is not already
encrypted, ENCRYPDB prompts for the new password twice and encrypts the
database using this new password.

■ One password given: This password is assumed to be the new password. If the
database is already encrypted, ENCRYPDB prompts for the old password and
encrypts the database using the new password.

■ Both passwords given: ENCRYPDB assumes that the first password is the new
password and the second is the old password.

To run from the command line, you must pass in the DSN name and the database
name. The following encrypts the employee database with DSN of Employee with
the test password:

Encrypdb Employee employee test test

Comments
If you call this utility from another program, the possible values returned are listed in
Table A–3:

The default Oracle Database Lite (POLITE.ODB) is not encrypted. After encrypting an
Oracle Database Lite, every user that attempts to establish a connection to the
encrypted Oracle Database Lite must provide the valid password. If the password is
not provided, Oracle Database Lite returns an error. An Oracle Database Lite database
cannot be encrypted if there are any open connections to the database.

You should consider the following when encrypting and decrypting Oracle Database
Lite:

■ You cannot decrypt an encrypted database without the password. Make sure you
back up your database in a secure place before you encrypt it. Another user of the
same database can create a copy with a new user name for a user who loses their
password, otherwise, there is no method to recover a database where the
passwords are lost.

■ A password encrypts the entire database. It is not a user-specific password.

■ Database encryption does not prevent a third party from removing an Oracle Lite
Database. That is, removedb and rmdb remove a database without checking the
password. Use tools that protect unauthorized users from manipulating your file
system.

■ ODBC applications that connect to an encrypted Oracle Database Lite database
need to specify a valid password. It is customary to prompt for the password at

Table A–3 ENCRYPDB Return Codes

Return Code Description

EXIT_SUCCESS Success

EXIT_USAGE Command line arguments are not properly used or are in error

EXIT_PATH_TOO_LONG Path is too long

EXIT_SYSCALL I/O error while making new encrypted copy on disk

EXIT_BAD_PASSWD Incorrect password supplied

DECRYPDB

A-12 Oracle Database Lite Developer’s Guide

runtime rather than to code it in the application. Most ODBC applications can use
the SQLDriverConnect function with the DRIVER= option, rather than the
SQLConnect function, if the applications require the Oracle Database Lite ODBC
driver to prompt for the password at runtime.

■ All sample applications provided with this release of Oracle Database Lite are
designed to run against a database that is not encrypted.

■ You can use DECRYPDB and ENCRYPDB (in this order) to change the password of a
database. However, DECRYPDB creates an Oracle Database Lite database in plain
text before ENCRYPDB encrypts it. This results in a database in plain text form, for
a short period of time, and is not recommended.

■ For encrypted databases, all user names and passwords are written to a file named
DSN.OPW. Each user can then use the password as a "key" to unlock the .OPW file
before the .ODB file is accessed. When you copy or back up the database, you
should include the .OPW file.

A.5 DECRYPDB

Description
This tool allows you to decrypt an encrypted Oracle Lite database used with an
embedded application. For more information, see Section A.6, "BACKUPDB".

This tool is used by embedded applications to decrypt the database used by the
application. To encrypt an Oracle Lite database used by a Mobile client, see the
ENCRYPT_DB parameter in the POLITE.INI Appendix in Appendix G, "POLITE.INI
Parameters" in the Oracle Database Lite Administration and Deployment Guide.

SYNTAX
DECRYPDB DSN | NONE DBName [Password]

Keywords and Parameters
DSN

Data Source Name of Oracle Database Lite that you want to decrypt. If you specify
NONE, you must the enter the DBName with the full path name (without the .ODB
extension).

DBName

Name of the database to be decrypted. If DSN was specified as NONE, the DBName
must be entered with the full path name.

Password

Optional. The password used previously to encrypt Oracle Database Lite. If you do not
enter the password, DECRYPDB prompts you to enter it.

Comments
An Oracle Database Lite database cannot be decrypted if there is any open connection
to the database.

If you call this utility from another program, the possible values returned are listed in
Table A–4:

BACKUPDB

Oracle Lite Database Utilities A-13

For more information, see the comments in Section A.6, "BACKUPDB".

A.6 BACKUPDB

Description
For either the Mobile client or embedded solutions, you can back up the Oracle Lite
database either by using the backupdb utility or by copying the files to another
location.

Oracle Database Lite uses the ODB and OBS files with dependent log files that can be
backed up by copying to another location. Before any files can be copied, disconnect
all applications that access the database and shut down the multi-user service, if
running. Once that has been accomplished, execute the backupdb utility, which copies
the *.odb, *.obs, *.opw, and *.plg files to the filename of your choice to make a
backup of the database.

BACKUPDB DSN|NONE DBName backup_filename

If you want to restore the backup, then execute the backupdb executable, with NONE
and reversing the filename and the dbname, as follows:

BACKUPDB NONE backup_filename DBName

This is more difficult on a handheld as it is sometimes difficult for users to find the
RUN option in order to execute the command with arguments.

Syntax
BACKUPDB DSN | NONE DBName <backup_filename>]

Keywords and Parameters
■ DSN—Data Source Name of Oracle Database Lite that you want to backup. If you

specify NONE, DBName must be a fully qualified database name with the full path
name (without the .ODB extension). If the DSN is a value other than NONE, then the
name must appear as a data source name in the ODBC.INI file.

■ DBName—Name of the database to be encrypted. If DSN was specified as NONE,
DBName must be entered with the full path name.

■ backup_filename—File where you want the backup to be stored. This can
include an absolute or relative path. If no path is included, then the file is stored in
the directory where the command is executed.

To run from the command line, you must pass in the DSN name and the database
name. The following backs up the employee database with DSN of Employee into
the backupemployee file:

Table A–4 DECRYPDB Return Codes

Return Code Description

EXIT_SUCCESS Success

EXIT_USAGE Command line arguments are not properly used or are in error

EXIT_PATH_TOO_LONG Path is too long

EXIT_SYSCALL I/O error while making new decrypted copy on disk

EXIT_BAD_PASSWD Incorrect password supplied

ODBC Administrator and the Oracle Database Lite ODBC Driver

A-14 Oracle Database Lite Developer’s Guide

Backupdb Employee employee backupemployee

A.7 ODBC Administrator and the Oracle Database Lite ODBC Driver
A Data Source Name (DSN) associates the Oracle Database Lite ODBC Driver with the
Oracle Database Lite database that you want to access through the driver. The Oracle
Database Lite installation process creates a default DSN, POLITE, for the Oracle
Database Lite database. You can also create additional DSNs for the additional Oracle
Database Lite databases that you create.

Microsoft provides the ODBC Administrator, a tool for managing the ODBC.INI file
and associated registry entries in Windows 2000/XP. The ODBC.INI file and the
Windows registry store the DSN entries captured through the ODBC Administrator.
Using the ODBC Administrator, you can relate a DSN to the Oracle Database Lite
ODBC Driver.

In the ODBC Administrator, in addition to the DSN, you must specify the parameters
listed in Table A–5:

Note: This document does not provide instructions on using the
ODBC Administrator. See the ODBC Administrator tool online help
for this information.

Table A–5 ODBC Administrator DSN Parameters

DSN Parameter Description

Data Description An optional description for the data source.

Database Directory The path to the data directory where the database resides. This is
an existing path.

Database Oracle Database Lite database name to be created. Do not
include the .ODB extension.

Default Isolation
Level

Determines the degree to which operations in different
transactions are visible to each other. For more information on
the supported isolation levels, refer the Oracle Database Lite
Developer’s Guide. The default level is "Read Committed".

ODBC Administrator and the Oracle Database Lite ODBC Driver

Oracle Lite Database Utilities A-15

For example, the DSN entry for POLITE in the ODBC.INI file may contain:

[POLITE]
Description=Oracle Lite Data Source
Data_Directory=C:\ORANT\OLDB40
Database=POLITE
IsolationLevel=Repeatable Read
CursorType=Dynamic

Autocommit Commits every database update operation in a transaction when
that operation is performed. Autocommit values are Off and On.
The default value is Off.

Note: In the Microsoft ODBC SDK, the ODBC driver defaults to
auto-commit mode. However, the default for Oracle Database
Lite is manual-commit mode. In this environment, if you execute
SQLEndTrans / SQLTransact call with SQL_COMMIT option
using the ODBC driver, you receive a SQL_SUCCESS, because
ODBC believes that auto-commit is on. However, no commit
actually occurs, because ODBC transfers the transaction to
Oracle Database Lite, whose default is manual-commit. You
must configure the Microsoft ODBC Driver Manager to transfer
control of the SQLEndTrans / SQLTransact API call to Oracle
Database Lite by explicitly setting autocommit to OFF in ODBC.
When you do this, ODBC does not try to autocommit, but gives
control of the transaction to Oracle Database Lite.

To set auto-commit to off, execute either the SQLSetConnectAtrr
or SQLSetConnectOption method with SQL_AUTOCOMMIT_
OFF as the value of the SQL_AUTOCOMMIT option. Then, the
SQLEndTrans / SQLTransact calls will commit as defaulted
within Oracle Database Lite. Thus, if you want auto-commit on,
turn it on only within Oracle Database Lite.

Default Cursor Type ■ Forward Only: Default. A non-scrollable cursor which only
moves forward but not backward through the result set. As
a result, the cursor cannot go back to previously fetched
rows.

■ Dynamic: Capable of detecting changes to the membership,
order, or values of a result set after the cursor is opened. If a
dynamic cursor fetches rows that are subsequently deleted
or updated by another application, it detects those changes
when it fetches those rows again.

■ Keyset Driven: Does not detect change to the membership or
order of a result set, but detects changes to the values of
rows in the result set.

■ Static: Does not detect changes to the membership, order or
values of a result set after the cursor is opened. If a static
cursor fetches a row that is subsequently updated by
another application, it does not detect the changes even if it
fetches the row again.

Note: The ODBC.INI file is available in Windows under %WINDIR%
and in Linux under $OLITE_HOME/bin. For the Linux platform, you
must have write permissions on the directory where this is located to
be able to modify them.

Table A–5 (Cont.) ODBC Administrator DSN Parameters

DSN Parameter Description

ODBINFO

A-16 Oracle Database Lite Developer’s Guide

A.7.1 Adding a DSN Using the ODBC Administrator
To add a DSN using the ODBC Administrator:

1. Start the ODBC Administrator, either by selecting its icon in the Oracle Database
Lite program group, or by typing the following at a DOS prompt:

C:\>ODBCAD32

2. Click Add.

3. Double-click the Oracle Database Lite nn ODBC Driver, where nn is the release
number, from the list of Installed ODBC Drivers.

4. Next, add the DSN name and define the parameters in the ODBC driver setup
dialog. Refer the preceding table for help in defining the parameters.

A.7.2 Adding a DSN which points to Read-Only Media (CD-ROM)
1. Create the DSN as explained in Section A.7.1, "Adding a DSN Using the ODBC

Administrator".

2. Add the following line to the new DSN in the ODBC.INI file:

ReadOnly = True

A.8 ODBINFO

Description
You can use ODBINFO to find out the version number and volume ID of an Oracle
Database Lite database. ODBINFO can also display and set several parameters.

Syntax
To display current information without making any changes use the syntax:

odbinfo [-p passwd]DSN DBName

You can also use:

odbinfo [-p passwd] NONE dbpath\dbanme.odb

For example:

Note: You can define a DSN which points to a file on a CD-ROM.
Simply point the DSN to the CD-ROM drive and directory and
provide the file name of the database file. Then modify the ODBC.INI
file to add the line ReadOnly=True to the data source definition.
ODBC programmers can call the following before opening the
database to enable this feature (instead of adding the line to the
ODBC.INI file):

SQLSetConnectOption(hdbc, SQL_ACCESS_MODE, SQL_
MODE_READ_ONLY)

Setting a database file to read-only suppresses the creation of log files.
Updates, insertions, deletions, or commits appear to work on the
in-memory image of tables. However, when you commit, these
changes are not written to the database file. If you exit your
application, reconnect, and issue your query, you see your original
data.

ODBINFO

Oracle Lite Database Utilities A-17

odbinfo -p tiger polite polite

odbinfo NONE c:\orant\oldb40\polite.odb

If your database is encrypted you need to include the password.

Parameters
To set or clear parameters, use one or more "+" or "-" parameter arguments before the
DSN or NONE. For example:

odbinfo +reuseoid -pagelog -fsync polite polite

You can use the parameters listed in Table A–6 with the ODBINFO utility:

Table A–6 ODBINFO Parameters

Parameter Description

pagelog By default, a commit backs up modified database pages to
filename.plg before actually writing the changes to
filename.odb. If an application or the operating system
experiences a failure during a commit, the transaction is cleanly
rolled back during the next connect. If -pagelog is specified, no
backup is created and the database can become corrupted if a
failure occurs.

fsync Oracle Database Lite generally forces the operating system to
write all the modified buffers associated with the database back
to disk during a commit. If this option is disabled (-fsync), the
operating system can keep the changes in memory until a later
time. If the system (but not the application) crashes before the
buffers are flushed, the database can become corrupted.

Using odbinfo -fsync -pagelog improves the performance
of applications that use many small transactions (with
autocommit on) or ones with massive updates. However, if the
database is corrupted, there is no straightforward way to repair
it or recover the data. Therefore these two options should only
be cleared during initial loading of the database, if (1) the .ODB
file is backed up on regular basis, or (2) the data in the database
can be recovered from some other source.

Using this option has no effect on applications that seldom
update the database. Setting the transaction isolation level to
SINGLE USER has more impact in this case.

reuseoid By default, Oracle Database Lite does not reuse the ROWID of
any row that exists in a table until the table is dropped. The "Slot
Deleted" error is returned when accessing a deleted object. This
uses two bytes of storage for each deleted object, causing
performance and disk space usage to degrade over time if rows
are constantly inserted and deleted.

If you use odbinfo +reuseoid, new rows can reuse ROWIDs
of previously deleted rows. However, this may not free all the
space in a table that already has many deleted objects. For best
results, you should set this option immediately after you create
your database.

This option is safe for pure relational applications. However,
SQL applications that use ROWID and OKAPI applications that
use direct pointers between objects need to verify that all
references to an object are set to NULL before the object is
deleted. Otherwise, dangling references may eventually point to
some other, unrelated object.

VALIDATEDB

A-18 Oracle Database Lite Developer’s Guide

A.9 VALIDATEDB
This command-line tool validates the structures within the database file and if the
database structure is found to be corrupted, lists the errors found in a file designated
by the user. The tool checks the following:

■ Objects - Header information for database objects. Flags are checked for
consistency in case the object was moved or compressed. Object length is checked
against a valid range. If the object is a BLOB, the object's frames are checked
against the volume page bitmap.

■ Index page entries - Checks that the creation of an index page entry results in the
correct number of nodes or list of object identifiers.

■ Index pages - Checks that all key values on the page are sorted. All objects
contained on the page are validated. Page descriptor information such as the
number of objects, the number of free bytes, and the number of entries are checked
against the actual objects on the page.

■ Groups - As each page is validated, the group descriptor information is checked
against the actual number of pages and objects.

■ Indexes - All the pages are validated against the btree. The tool also validates all
page pointers. All levels of the btree are checked to validate that key values are in
the sorted order as a whole. For leaf elements of the btree, all OIDs from the leaf
page entries are checked for consistency with the actual group objects.

Syntax
validatedb DSName DBName [-p password] [-l username:password] [-t schemaname.tablename] -file
outputfilename

Keywords and Parameters

DSName
The data source name. This can also be NONE if no DSN is present.

compress This option (which is "on" by default) enables run-length
compression of objects. Run-length compression takes very little
CPU time, so you should only deselect (-compress) this option
if:

■ Operating system-level file compression is used, such as
DriveSpace or a NTFS compressed attribute. In this case
not compressing the same data twice provides a better
compression ratio.

■ Most objects in the database are frequently updated to a
highly compressible state (for example, all columns set to
NULL), and the data cannot be compressed well (such as
binary columns with random data). In these cases, using
this option (+compress) can result in highly fragmented
tables.

Changing this option does not compress or decompress any
existing objects in the database.

Table A–6 (Cont.) ODBINFO Parameters

Parameter Description

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities A-19

DBName
If there is a DSN present, this is the database file name (without the .odb extension) if
it is different from the default filename for the DSN. If there is no DSN, then
VALIDATEDB uses the current directory unless the full path is specified. If there is a
log file in the same directory as the database file, it is also validated.

-p password
Password for an encrypted database.

-l username:password
Optional. Provide the username/password to log into the Oracle Lite database that
you are validating with the -l username:password option.

The following details the behavior of this option:

1. If the database is encrypted, and the encryption password (the -p option) is not
supplied, then the password included in the login (-l) option is used as the
encryption password.

2. If you do supply an encryption password in the -p option as well as a login
password with the -l option, then the login password is used to verify that the
encryption password is correct.

-t schemaname:tablename
Optional.

■ schema name. The default schema name is used unless this is specified.

■ table name. The specified table is validated along with all of its indexes. If no table
name is specified, the entire database is validated.

-file outputfilename
Optional filename for the text file where all errors and other related information
revealed by VALIDATEDB are saved. The default is stdout.

Examples
validatedb polite polite -t emp -file out.txt

A.10 Transferring Data Between a Database and an External File
You can transfer data between an external file and the Oracle Lite database through
either a command-line tool or programmatic APIs, as described in the following
sections:

■ Section A.10.1, "OLLOAD"

■ Section A.10.2, "Oracle Database Lite Load Application Programming Interfaces
(APIs)"

A.10.1 OLLOAD
The Oracle Database Lite Load Utility (OLLOAD) is a command-line tool, which enables
you to load data from an external file into a table in Oracle Database Lite or to unload

Note: This is not available on Windows CE.

Transferring Data Between a Database and an External File

A-20 Oracle Database Lite Developer’s Guide

(dump) data from a table in Oracle Database Lite to an external file. Unlike
SQL*Loader, OLLOAD does not use a control file in which you supply all data
parameters and format information on the command-line.

When loading data, OLLOAD takes an input file that contains one record per line with a
separator character between fields. The default field separator is a comma (,). These
records can also include fields with values that are quoted strings. The default value is
single quote (’). For more information on data parsing, see "Data Parsing".

A.10.1.1 Syntax

Loading a Datafile
To load a datafile, use the following syntax.

olload [options] -load dbpath tbl [col1 col2 ...] [<datafile]

Unloading (dump) to an Outfile
olload [options] -dump dbpath tbl [col1 col2 ...] [>outfile]

A.10.1.2 Keywords and Parameters
This section describes keywords and parameters that are available for the OLLOAD
utility.

[options]
For a list of options, see Section A.10.1.2.1, "Options".

-load
To use the load utility.

-dump
To use the unload (dump) utility.

dbpath
The path to the Oracle Database Lite (.odb) file.

tbl
The table name. OLLOAD first attempts to find a table name in the user-specified case.
If this fails, it searches for the upper-case of the user-specified name.

col1 col2
The column names. OLLOAD first attempts to find a column name in the user-specified
case. If this fails, it searches for the upper-case of the user-specified name.

[datafile] [outfile]
The source or destination file for the load or unload operations. If you do not specify a
datafile or outfile, OLLOAD displays the output on the screen.

Note: The default user is SYSTEM. To specify an OLLOAD operation
for another user name's tables, prefix the tbl parameter with the user
name and a dot (.).

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities A-21

A.10.1.2.1 Options This section describes keyword and parameter options that are
available for the OLLOAD utility.

-sep character
The field separator. If you do not specify this option, OLLOAD assumes that the
separator character is a comma (,).

-quote character
The quote character. If you do not specify this option, OLLOAD assumes that the quote
character is a single quote (’).

-file filename
Use this option when loading and unloading data to specify the source or destination
file name. When loading data, filename specifies the source file to load into Oracle
Database Lite. When unloading (dumping) data, it is the destination file for the
unloaded data.

-log logfile
Specify this option if you want to produce a log file listing rows that OLLOAD could
not insert during load. If you do not specify a log file, loading stops at the first error.

-passwd passwd
The connection password for an encrypted database. You need to supply this
password so that loading and unloading can occur.

-nosingle
Specify this option when you do not want to use single user mode. This degrades
performance but allows other connections to the database.

-readonly
Specify this option when unloading data from a read-only Oracle Database Lite, for
example, one located on a CD-ROM.

-commit count
Use this option if you want OLLOAD to commit after processing a specified number
of rows. The default is 10000. OLLOAD prints an asterisk (*) to the screen each time it
commits the specified number of rows. To disable the commit operation specify 0.

-mark count
Use this option if you want OLLOAD to print a dot on the screen after processing the
specified number of records. The default is 1000. To disable this feature specify 0.

Data Parsing
Table A–7 lists examples for OLLOAD data parsing.

Note: To unload data from Oracle Database Lite and load (or pipe) it
to another Oracle Database Lite, do not specify a file name for this
option. For a description of sample syntax, see "Examples".

Transferring Data Between a Database and an External File

A-22 Oracle Database Lite Developer’s Guide

If there are more values than database columns, extra values are ignored. Any missing
values at the end of the line are set to NULL.

OLLOAD Utility Restrictions
OLLOAD does not support tab-delimited input files and LONG datatypes.

Examples
olload -quote \" -file p_kakaku.csv -load c:\orant\oldb40\polite.odb skkm01
olload -dump c:\orant\oldb40\polite.odb emp empno ename | olload -load myfile.odb
myemp

A.10.2 Oracle Database Lite Load Application Programming Interfaces (APIs)
This document describes the Oracle Database Lite Load APIs. Each section of this
document presents a different topic. These topics include:

■ Section A.10.2.1, "Overview"

■ Section A.10.2.2, "Oracle Database Lite Load APIs"

■ Section A.10.2.3, "File Format"

■ Section A.10.2.4, "Limitations"

A.10.2.1 Overview
The Oracle Database Lite Load APIs allow you to load data from an external file into a
table in Oracle Database Lite, or to unload (dump) data from a table in Oracle
Database Lite to an external file. For information on using the command line tool
OLLOAD, see Section A.10.1, "OLLOAD". You can use the API calls presented in this
document to make your own customizations.

A.10.2.2 Oracle Database Lite Load APIs
The Oracle Database Lite Load APIs include:

■ Section A.10.2.2.1, "Connecting to the Database: olConnect"

■ Section A.10.2.2.2, "Disconnecting from the Database: olDisconnect"

■ Section A.10.2.2.3, "Deleting All Rows from a Table: olTruncate"

■ Section A.10.2.2.4, "Setting Parameters for Load and Dump Operations: olSet"

■ Section A.10.2.2.5, "Loading Data: olLoad"

Table A–7 Data Parsing Examples

Input Data Explanation

’Redwood Shores, CA’ Redwood Shores CA Enclosing the input string in quotes preserves
spaces and punctuations within a string.

’O"Brien’ O’Brien Represent a single quote with its escape
sequence, two single quotes.

fire fly firefly Spaces in data that is not quoted is ignored.

, NULL,NULL Empty fields are NULL.

1,,3 1,NULL,3,NULL Empty fields are NULL.

[no row inserted] Completely empty lines are ignored.

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities A-23

■ Section A.10.2.2.6, "Dumping Data: olDump"

■ Section A.10.2.2.7, "Compiling"

■ Section A.10.2.2.8, "Linking"

The normal mechanism for unloading and loading a table is as follows:

1. Declare local variable, DBHandle.

2. Connect to the database using olConnect.

3. Optionally, set parameters for load or unload.

4. Dump or load the data using olDump or olLoad. You may optionally delete all
rows from a table by calling olTruncate.

5. Disconnect from the database using olDisconnect.

A.10.2.2.1 Connecting to the Database: olConnect Use this API to connect to the database.
This is the first API that you have to call. It creates a load and unload context that is
used in subsequent APIs to influence the load and unload behavior. This returns an
initialized database handle DBHandle.

Syntax
olError olConnect (char *database_path, char *password, DBHandle &dbh);

The arguments for olConnect are listed in Table A–8:

Return Values
(short) integer error code

Values from -1 to -8999 are used for the error codes returned by the database, values
from -9000 and below are used for olLoad-specific error codes.

A.10.2.2.2 Disconnecting from the Database: olDisconnect Disconnects from the database.

Syntax
olError olDisconnect (DBHandle dbh);

The arguments for olDisconnect are listed in Table A–9:

Table A–8 olConnect Arguments

Argument Description

database_path The full path to the database file (directory path and filename).

password The password used for the encrypted database, for any other
database the password = NULL.

dbh The application handle for the current database connection.
This allows multiple database connections for one application
thread (each connection has a different handle).

Table A–9 olDisconnect Arguments

Argument Description

dbh The current application handle.

Transferring Data Between a Database and an External File

A-24 Oracle Database Lite Developer’s Guide

Return Value
(short) integer error code

A.10.2.2.3 Deleting All Rows from a Table: olTruncate This API can be used to delete all
rows from an existing table.

Syntax
olError olTruncate (DBHandle dbh, char* table);

The arguments for olTruncate are listed in Table A–10:

Return Value
(short) integer error code

A.10.2.2.4 Setting Parameters for Load and Dump Operations: olSet This is an optional API.
This sets optional parameters for load and unload.

Syntax
olError olSet (DBHandle dbh, char * parameter_name, char *parameter_value);

The arguments for olSet are listed in Table A–11:

Return Value
(short) integer error code

A.10.2.2.5 Loading Data: olLoad OlLoad loads data from a file into a table using current
parameter settings.

Note: Records removed from the server through a truncate
command will not be removed from the client unless a complete
refresh is triggered. The truncate command is considered a DDL
operation. Consequently, the necessary DML triggers do not fire and
therefore the operations are not logged for fast refresh.

Table A–10 olTruncate Arguments

Argument Description

dbh The current application handle.

tablename The name of the table in the form: owner_name.table_name.

where owner_name is the name of the owner of the table.

Table A–11 olSet Arguments

Argument Description

dbh The current application handle.

parameter_name The name of the given parameter. This is not case sensitive. See
Section A.10.2.3.2, "Parameters" for a list of parameter names
and their default values.

parameter_value The value to be set. This is not case sensitive for most
parameters.

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities A-25

Syntax
olError olLoad (DBHandle dbh, char *table, char *file);

The arguments for olLoad are listed in Table A–12:

Return Value
(short) integer error code

A.10.2.2.6 Dumping Data: olDump OlDump dumps data from a table into a file using
current parameter settings.

Syntax
olError olDump (DBHandle dbh, char *table, char *file);

The arguments for olDump are listed in Table A–13:

Return Value
(short) integer error code

A.10.2.2.7 Compiling The declarations for the DBHandle, parameter constants and
flags, and error message codes are given in the file olloader.h in the ORACLE_
HOME\Mobile\SDK\include directory. For compilation of your product include
olloader.h in your main source file.

A.10.2.2.8 Linking Linking use the file olloader40.dll and the library file
olloader40.lib. Include these files in your project settings.

Table A–12 olLoad Arguments

Argument Description

dbh The current application handle.

table The table information in the form: owner_name.table_
name(col1,col2,...)

where col1,col2,... is the list of column names to load.

This allows you to load and dump certain columns instead of
the entire table. If the entire table is to be dumped, the column
list need not be specified.

file The path to the file from which loading takes place.

Note: If table = NULL, olLoad tries to find the table description
in the file header.

Table A–13 olDump Arguments

Argument Description

dbh The current application handle.

table The table information in the same form as olLoad.

file The file to which dump data is written.

Transferring Data Between a Database and an External File

A-26 Oracle Database Lite Developer’s Guide

A.10.2.3 File Format
The Oracle Database Lite Load APIs support three file formats FIXEDASCII, BINARY
and CSV. Each file contains an optional header followed by zero or more rows of data.

A.10.2.3.1 Header Format The header has the following format (comments are in bold):

$$OL_BH$$ [begins header]
VERSION=xx.xx.xx.xx [version number]
TABLE=T1(C1, C2, ...)... [table name with list of column names dumped]
FILEFORMAT=FIXEDASCII
SEPARATOR=,
[any other parameters in the parameter list can be listed here]
$$OL_EH$$ [ends header]

The following is a header example:

$$OL_BH$$
VERSION=01.01.01.01
TABLE=T1(EMPNO,SALARY)
FILEFORMAT=BINARY
BITARRAY=TRUE
HEADER=TRUE
RDONLY=FALSE
LOGFILE=
COMMITCOUNT=-1
NOSINGLE=TRUE
$$OL_EH$$

The header lines can be in any order and all lines except $$OL_BH$$ and $$OL_EH$$
can be considered optional. Although, during the dump, if the header flag is on, table
information and all parameter settings are dumped into the header.

When executing load, parameter information in the header overwrites current
parameter settings. If the table argument in olLoad is NULL, the table name and list
of columns in the header prevails, otherwise the table argument of olLoad prevails
over the header.

A.10.2.3.2 Parameters Header file parameters listed in Table A–14 are not case
sensitive.

Table A–14 Parameters

Parameter Description

FILEFORMAT Input and output file format. The following formats are supported:

■ FixedASCII - text file with fixed field width for each datatype.

■ CSV – comma separated values format.

■ Binary - binary file format.

These key word values are not case sensitive.

SEPARATOR The separator between the values (one character), comma by default.

QUOTECHAR The quote character for the string datatype values in the file, single quote (')
by default.

LOGFILE The log file name. NULL by default (no log file produced and loading stops at
the first error).

NOSINGLE FALSE for single user mode (the default), or TRUE for no single user mode.

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities A-27

A.10.2.3.3 Data Format The data format can be comma separated value (CSV), fixed
ASCII, or binary. The following cases apply:

■ CSV Format: Each row of the table is represented as a separate line in the file. Each
line is separated by a carriage return and a line feed character on the Windows
platform. Each value in the row is separated by a separator character which by
default is a comma.

Each value is also quoted by a quote character. Nulls are represented by an empty
quoted string " ". The number of quoted strings in the file should be the same as
the number of columns in the table, olLoad gives an error otherwise.

■ FixedAscii Format: Each row of the table is represented as a separate line in the
file. Each line is separated by a carriage return and a line feed character on the
Windows platform. Each line is of the same size. The datatype of a column
governs its format or representation in the file. Nulls are represented by a string of
n '\0' (null) characters, where n is the fixed size of the field. Table A–15 describes
data representation for each data type. The total record length for each line in the
file should be the same as the sum of field lengths (precision) of each column,
otherwise olLoad returns an error.

READONLY FALSE (the default). TRUE to dump the data from read-only database (such
as CD-ROM).

COMMITCOUNT The number of rows processed after which olLoad, olDump, and
olTruncate commit. The default value is -1, not to commit at all. Value 0
commits at the end of the operation, and values above 0 commit after the
specified number of rows.

HEADER FALSE (the default). TRUE to create a header in the beginning of the file
during olDump.

BITARRAY TRUE (the default) to support writing and reading nulls in binary format.
During the dump, a bit array with the null information is dumped before each
row. For FALSE olDump provides an error trying to write nulls in binary.

NONULL TRUE (the default) when trying to read or write nulls olLoad and olDump
return an error. When the flag is set to FALSE nulls are supported, including
binary format since the default BITARRAY value is TRUE.

DATEFORMAT The string for which date and timestamp columns should be written into the
file and read from the file in FIXED ASCII and CSV formats. Such formats as
"YYYYMMDD", "YYYY-MM-DD", and "YYYY/MM/DD" are supported. The
default value is empty string (which can also be set using NULL), and the
default date format is "YYYY-MM-DD". (In Oracle mode, date is treated the
same as timestamp so that the date format is the default timestamp format
which is "YYYY-MM-DD HH:MM:SS.SSSSSS".)

Table A–15 Datatypes

Datatype Description

CHAR(n) Length of the field in n characters. Data is left aligned and padded with
blanks on the right.

VARCHAR(n) Length of the field in n characters. Data is left aligned. It is padded with a
null byte ('\0').

Table A–14 (Cont.) Parameters

Parameter Description

Transferring Data Between a Database and an External File

A-28 Oracle Database Lite Developer’s Guide

NUMERIC(p,s) The default mode: length of the field is p+1 characters if scale s is zero or is
not present. Otherwise, the length of the field is (p+2) characters. The value
is right aligned in the output field. Format is optional negative sign,
followed by zeros if required, followed by significant digits. If there is no
negative sign, then '0' instead, for example, Number(5,2)

12.3 -> ' 012.30'

-12.3 -> '-012.30'

1.23 -> ' 001.23'

-1.23 -> '-001.23'

The custom mode: the field length is one less: p if scale is not present, or
zero and p+1 otherwise. The actual number stored in the file is of type
NUMERIC(p-1, s). Correspondingly, olDump gives an error trying to insert
a number within the range of NUMERIC(p, s), but out of the range of
NUMERIC(p-1, s). Therefore, the first character in the NUMERIC field
must be '0' or '-'; olLoad gives an error otherwise.

DECIMAL(p,s) The same as NUMERIC(p,s).

INTEGER Length of the field is 11 characters. A negative sign or space followed by 10
digits.

Leading digits are filled with zeros.

SMALLINT Field length is 6 characters. Minus sign or space followed by 5 digits.

FLOAT Field length is 23 characters. In Oracle mode, it is minus sign or space,
followed by leading zeroes, followed by some number of digits, followed
by dot, followed by some number of digits. For example:

0 -> ' 0000000000000000000000'

-12.34 -> '-0000000000000000012.34'

In SQL92 mode the E (exponent) is always present and there is only 1 digit
before the decimal point. For example:

0 -> ' 00000000000000000000E0'

-12.34 -> '-000000000000001.234E10'

REAL The same format as for double precision except that the total field length is
only 16 characters instead of 23.

DOUBLE
PRECISION

Field length is 23 characters. Minus sign or space followed by 22 characters
which are digits, dot, or E, floating point number followed by E, followed
by the exponent digits. In Oracle mode, if the number is small enough to fit
in the field without using the exponent, E is not used. In SQL92 mode, E is
always used. There is always one meaningful digit before the floating
point, except 0.

For example, in SQL92 mode:

0 -> ' 00000000000000000000E0'

-1.79E10 -> '-0000000000000001.79E10'

12 -> ' 00000000000000001.2E10'

For example, in Oracle mode:

1.2E75 -> ' 00000000000000001.2E75'

-1.33333 -> '-0000000000000001.33333'

-1.79E10 -> '-0000000000017900000000'

Table A–15 (Cont.) Datatypes

Datatype Description

Transferring Data Between a Database and an External File

Oracle Lite Database Utilities A-29

A.10.2.4 Limitations
Currently olLoad does not support the following features:

■ Columns of the datatype Interval, Time with time zone, Timestamp with time
zone, BLOB, and CLOB.

■ Binary data is not supported.

■ The only "var" type supported is varchar.

DATE In SQL92 mode: YYYY-MM-DD, 10 characters long, for example:

October 1, 1999 -> 1999-10-01

In Oracle mode the date is dumped as timestamp.

If it is not the default date format parameter, the date format corresponds
to the specified date format string, for example:

DATEFORMAT = "YYYYMMDD"

October 1, 1999 -> 19991001

TIME HH:MM:SS, 8 characters long, for example:

5:01:58 p.m. is 17:01:58

TIMESTAMP Date format, space, time format, dot, 6 digits after dot (precision of
microseconds), total length of 26 characters:

YYYY-MM-DD HH:MM:SS.SSSSSS

If it is not the default date format parameter, the timestamp format
corresponds to the specified date format string. If no time is specified in
the date format string, the time information in the timestamp is omitted
when dumping into a file.

Note: TIMESTAMP WITH TIME ZONE is not supported.

Table A–15 (Cont.) Datatypes

Datatype Description

Transferring Data Between a Database and an External File

A-30 Oracle Database Lite Developer’s Guide

Glossary-1

Glossary

Apache Server

The Apache Server is a public domain HTTP server derived from the National Center
for Supercomputing Applications (NCSA).

Base Table

A source of data, either a table or a view, that underlies a view. When you access data
in a view, you are really accessing data from its base tables.

Connected

Connected is a generic term that refers to users, applications, or devices that are
connected to a server. The Mobile client for Web-to-go is "connected" when it is in
online mode.

Database Object

A database object is a named database structure: a table, view, sequence, index,
snapshot, or synonym.

Database Server

The Oracle database server is the third tier of the Mobile Server/Mobile Client Web
model. It stores the application data.

Disconnected

Disconnected is a generic term that refers to users, applications, or devices that are not
connected to a server.

Foreign Key

A foreign key is a column or group of columns in one table or view whose values
provide a reference to the rows in another table or view. A foreign key generally
contains a value that matches a primary key value in another table. See also "Primary
Key".

Index

An index is a database object that provides fast access to individual rows in a table.
You create an index to accelerate the queries and sorting operations performed against
the table's data. You also use indexes to enforce certain constraints on tables, such as
unique and primary key constraints.

Indexes, once created, are automatically maintained and used for data access by the
database engine whenever possible.

Integrity Constraint

Glossary-2

Integrity Constraint

An integrity constraint is a rule that restricts the values that can be entered into one or
more columns of a table.

Java Applets

Java applets are small applications that are executed in the browser that extend the
functionality of HTML pages by adding dynamic content.

JDBC

JDBC (Java Database Connectivity) is a standard set of java classes providing
vendor-independent access to relational data. Modeled on ODBC, the JDBC classes
provide standard features such as simultaneous connections to several databases,
transaction management, simple queries, manipulation of pre-compiled statements
with bind variables, and calls to stored procedures. JDBC supports both static and
dynamic SQL.

JavaServer Pages

JavaServer Pages (JSP) is a technology that enables developers to change a page's
layout without altering the page's underlying content. JSP, which uses HTML and
pieces of Java code to combine the presentation of dynamic content with business
logic.

Java Servlets

Java servlets are protocol and platform-independent server-side components that are
written in Java. Java servlets dynamically extend Java-enabled servers and provide a
general framework for services built using the request-response paradigm.

Join

A relationship established between keys (both primary and foreign) in two different
tables or views. Joins are used to link tables that have been normalized to eliminate
redundant data in a relational database. A common type of join links the primary key
in one table to the foreign key in another table to establish a master-detail relationship.
A join corresponds to a WHERE clause condition in a SQL statement.

Master-Detail Relationship

A master-detail relationship exists between tables or views in a database when
multiple rows in one table or view (the detail table or view) are associated with a
single master row in another table or view (the master table or view).

Master and detail rows are normally joined by a primary key column in the master
table or view that matches a foreign key column in the detail table or view.

When you change values for the primary key, the application should query a new set
of detail records, so that values in the foreign key match values in the primary key. For
example, if detail records in the EMP table are to be kept synchronized with master
records in the DEPT table, the primary key in DEPT should be DEPTNO, and the
foreign key in EMP should be DEPTNO. See also "Primary Key" and "Foreign Key".

MIME

MIME (Multipurpose Internet Mail Extensions) is a message format used on the
Internet to describe the contents of a message. MIME is used by HTTP servers to
describe the type of file being delivered.

MIME Type

MIME Type is a file format defined by Multipurpose Internet Mail Extension (MIME).

Primary Key

Glossary-3

Mobile client for Web-to-go

The Mobile client for Web-to-go is the client tier of the Web-to-Go model. It contains
the Mobile Server and Oracle Database Lite. Web-to-Go replicates the user applications
and data to the Mobile device. When the user synchronizes, Web-to-Go replicates any
data changes to the Oracle database.

Mobile Development Kit for Web-to-go

The Mobile Development Kit for Web-to-go enables application developers to develop
and debug Web-to-go applications that consist of Java servlets, JavaServer Pages (JSP),
or Java applets.

Mobile Server

The Mobile Server resides on the application server tier of the three-tier Web-to-go
model and processes requests from the Mobile client for Web-to-go to modify data in
the Oracle database server. The Mobile Server can be configured to run with the Oracle
application server or as a standalone Mobile Server.

Mobile Server Repository

The Mobile Server repository is a virtual file system. It is a persistent resource
repository that contains all application files and definitions of the applications.

ODBC

ODBC (Open Database Connectivity) is a Microsoft standard that enables database
access on different platforms. You can enable ODBC support on the Mobile client for
Web-to-go for troubleshooting purposes. ODBC support enables you to view the
client's data, which is stored on the local Oracle Database Lite. To view this
information, you can use Mobile SQL.

Oracle Database

The Oracle database is the database component of the Mobile Server.

Oracle Database Lite

Oracle Database Lite is a small footprint relational database.

Packaging Wizard

The Packaging Wizard enables administrators to package and publish Mobile
applications to the Mobile Server repository. Developers can use the Packaging Wizard
to create a new application or to edit an existing application definition.

Positioned DELETE

A positioned DELETE statement deletes the current row of the cursor. Its format is:

DELETE FROM table
 WHERE CURRENT OF cursor_name

Positioned UPDATE

A positioned UPDATE statement updates the current row of the cursor. Its format is:

UPDATE table SET set_list
 WHERE CURRENT OF cursor_name

Primary Key

A table's primary key is a column or group of columns used to uniquely identify each
row in the table. The primary key provides fast access to the table's records, and is

Publication Item

Glossary-4

frequently used as the basis of a join between two tables or views. Only one primary
key may be defined per table.

To satisfy a PRIMARY KEY constraint, no primary key value can appear in more than
one row of the table, and no column that is part of the primary key can contain a
NULL value.

Publication Item

A publication item is a SQL select statement that specifies which data subset a client
can access. A publication item usually corresponds to a replica table on the client
device. You can create publication items using the Mobile Server Admin API. This API
contains Java functions that implement the publish/subscribe model. You can call the
functions in this API from within Java programs as standard function calls.

Referential Integrity

Referential integrity is defined as the accuracy of links between tables in a
master-detail relationship that is maintained when records are added, modified, or
deleted.

Carefully defined master-detail relationships promote referential integrity. Constraints
in your database enforce referential integrity at the database (the server in a
client/server environment).

The goal of referential integrity is to prevent the creation of an orphan record, which is
a detail record that has no valid link to a master record. Rules that enforce referential
integrity prevent the deletion or update of a master record, or the insertion or update
of a detail record, that creates an orphan record.

Replication

Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system. Changes applied at one site are
captured and stored locally before being forwarded and applied at each of the remote
locations. Replication provides users with fast, local access to shared data, and protects
the availability of applications because alternate data access options exist. Even if one
site becomes unavailable, users can continue to query or even update the remaining
locations.

Replication Conflict

Replication conflicts occur when contradictory changes to the same data are made.

Schema

A schema is a named collection of database objects, including tables, views, indexes,
and sequences.

Sequence

A sequence is a schema object that generates sequential numbers. After creating a
sequence, you can use it to generate unique sequence numbers for transaction
processing. These unique integers can include primary key values. If a transaction
generates a sequence number, the sequence is incremented immediately whether you
commit or roll back the transaction.

Sequence Window

The sequence window contains a unique range of values. The range of values never
overlaps with those of other clients. When a client uses all the values in the range of its
sequence window, the Mobile client recreates the sequence with a new, unique range
of values.

Unique key

Glossary-5

Snapshots

A snapshot is a subset of application data for a specific user. For each user, the
publication (within the application) contains a SQL query that defines the information
relevant to this user. This information is known as the snapshot.

The Mobile client retrieves the appropriate data from the Oracle database and
downloads to the client when there is a connection to the back-end Oracle database. A
snapshot can be a copy of an entire database table, or a subset of rows from the table, if
specified within a parameterized SQL query. The first time a user synchronizes, the
Mobile client automatically creates the snapshots on the client machine. Each
subsequent time that a user synchronizes, the Mobile client either refreshes the
snapshots with the most recent data or recreates them depending on the complexity of
the snapshot.

SQL

SQL, or Structured Query Language, is a non-procedural database access language
used by most relational database engines. Statements in SQL describe operations to be
performed on sets of data. When a SQL statement is sent to a database, the database
engine automatically generates a procedure to perform the specified tasks.

Synchronization

Synchronization is the process the Mobile client uses to replicate data between the
Mobile client and the Oracle database. The Mobile client replicates the user
applications and data to Oracle Database Lite when the user synchronizes. The Mobile
client replicates any data changes made on the client to the Oracle database.

Synonym

A synonym is an alternative name, or alias, for a table, view, sequence, snapshot, or
another synonym.

Table

A table is a database object that stores data that is organized into rows and columns. In
a well designed database, each table stores information about a single topic (such as
company employees or customer addresses).

Three-Tier Web Model

The three-tier Web model is an Internet database configuration that contains a client, a
middle tier, and an Oracle database server. Web-to-go architecture follows the
three-tier Web model.

Transaction

A set of changes made to selected data in a relational database. Transactions are
usually executed with a SQL statement such as INSERT, UPDATE, or DELETE. A
transaction is complete when it is either committed (the changes are made permanent)
or rolled back (the changes are discarded).

A transaction is frequently preceded by a query, which selects specific records from the
database that you want to change. See also "SQL".

Unique key

A table's unique key is a column or group of columns that are unique in each row of a
table. To satisfy a UNIQUE KEY constraint, no unique key value can appear in more
than one row of the table. However, unlike the PRIMARY KEY constraint, a unique
key made up of a single column can contain NULL values.

View

Glossary-6

View

A view is a customized presentation of data selected from one or more tables (or other
views). A view is like a "virtual table" that allows you to relate and combine data from
multiple tables (called base tables) and views. A view is a kind of "stored query"
because you can specify selection criteria for the data that the view displays.

Views, like tables, are organized into rows and columns. However, views contain no
data themselves. Views allow you to treat multiple tables or views as one database
object.

Web-to-go

Oracle Web-to-go is a framework for the creation and deployment of Mobile,
Web-based, database applications. Web-to-go contains a three-tier database
architecture consisting of the Mobile client for Web-to-go, the Mobile Server and
Oracle database. It is centrally managed from the server and Web-to-go applications
can be run when Web-to-go connected to the server (online) or disconnected from the
server (offline). When Web-to-go is disconnected from the back-end Oracle database, it
caches data locally and synchronizes the data with the server when the client and
server connect.

Workspace

The Mobile Server Workspace is a Web page that provides users with access to
Web-to-go applications. Web-to-go generates the Workspace in the user's browser after
the user logs in to Web-to-go. The Workspace displays icons, links, and descriptions of
all applications that are available to the user. An application is available to the user
after the administrator publishes it to the Web-to-go system and grants access
privileges to the user.

Index-1

Index

A
addPublicationItem method, 3-78
addSyncRule method, 3-28
ADF/BC4J

tutorial, 18-1
administration, 17-13, 19-9, 20-13

defining snapshot values, 17-17, 19-13
granting user access, 17-17, 19-13
setting properties, 17-16, 19-12

ADO.NET, 2-11
creating database for test, 13-7
testing application, 13-7

ADO.NET provider, 3-49, 13-3
classes, 13-1
creating commands, 13-3
DataReader.GetString method, 13-8
DbNull object, 13-8
establishing connections, 13-1
GetSchemaTable method, 13-7
large object support, 13-3
limitations, 13-7
OracleBlob class, 13-3
OracleCommand, 13-3
OracleConnection class, 13-1
performance, 13-3
synchronization, 13-4
thread safety, 13-8
transactions, 13-2

Advanced Encryption Standard, see AES
AES, see encryption
ALTER TABLE statement, 11-12, 11-14, 11-20
ALTER TRIGGER statement, 11-20
alterPublicationItem method, 3-30
application

administration, 17-13, 19-9, 20-13
Web-to-Go, 17-18, 19-14

application development, 6-1
Application Development Framework, see ADF
applications

building Web applications, 17-1
packaging, 19-5

apply callback, 5-11
apply phase

development, 3-69
architecture

Data Source name, 1-14
Java support, 1-14
MGP, 1-7
Mobile Development Kit, 1-12
Mobile Server, 1-6
msync, 1-6
Oracle Database Lite RDBMS, 1-6
repository, 1-8

automatic synchronization
data event rules, 5-24
disable, 3-7
enable

MDW, 5-10
event notification, 3-12
publication rules, 5-24
rules, 3-8
start, 3-7
status, 3-15
stop, 3-7

B
BC4J, 18-2

overview, 18-1
tutorial, 18-1

BGSyncMsg class, 3-13
BLOB, 10-6, 10-8

ADO.NET provider, 13-3
getting values, 10-7
query tables, 13-4
read and write data, 13-4
setting values, 10-7
using in parameterized SQL statements, 13-4

building applications
using BC4J, 18-2
Win32, 19-1
Windows CE, 20-1

building Mobile applications
developing, 17-2

building Mobile Web applications, 17-1

C
C application

get publication name, 4-7
initiate synchronization, 4-10

Index-2

programmatic synchronization, 4-1
selective synchronization, 4-9, 4-18
setting HTTP parameters, 4-6
synchronization

initialize environment, 4-2
C++ application

get publication name, 4-7
initiate synchronization, 4-10
programmatic synchronization, 4-1

example, 4-1
selective synchronization, 4-9, 4-18
setting HTTP parameters, 4-6
synchronization

intialize environment, 4-2
C++ stored procedure

access database, 11-30
JDBC, 11-34

C++ stored procedures, 11-29
building, 11-30
exceptions, 11-30
publish, 11-32
using ODBC, 11-30
using triggers, 11-33

call specifications
creating, 11-7, 11-26, 11-32, 11-39
sample, 11-8, 11-11, 11-32, 11-40

callable statement, 11-28
CallableStatement class, 11-28
Callback Customization for DML Operations, 3-35
Calling Published Stored Procedures, 11-8
C/C++ Interface, 3-49, 4-1
CDC

JDBC driver, 10-16
classes

loading with CREATE JAVA, 11-6
loading with loadjava, 11-4

CLDC
JDBC driver, 10-16

client
constraint, 3-56
device

delete, 3-81
notification, 3-79

clients
subscribing to publications, 3-33

CLOB, 10-6, 10-8
getting values, 10-7
setting values, 10-7

close method, 10-8
complete refresh

defined in MDW, 5-9
Complete Refresh for Views, 3-51
compose

notify clients, 3-79
compose callback, 5-11
compose phase

development, 3-69
condition rule, 3-8
conflict resolution

synchronization rules, 5-22

Connect to Oracle Database Lite
Type 2 Driver Connection URL Syntax, 10-2
Type 4 (Pure Java) Driver Connection URL

Syntax, 10-4
Connection objects, passed as arguments, 11-17
connections

ADO.NET provider, 13-1
Consolidator Manager

modifying publication item, 3-34
ConsolidatorManager, 3-78
constraint

foreign key
client, 3-56

Mobile client, 3-56
CREATE FUNCTION statement, 11-7, 11-32, 11-39
CREATE JAVA statement, 11-6, 11-11
CREATE PROCEDURE statement, 11-7, 11-32, 11-39
CREATE TRIGGER statement, 11-19
CreateDatabase method, 13-7
createDataCollectionQueue method, 3-78
CREATEDB, A-7

syntax, A-7
createPublication method, 3-78
createStatement method, 11-28
createSyncRule method, 3-28
Creating a Dependency Hint, 3-58
Creme

DriverManager class, 10-19
J2ME, 10-19

cursors
restrictions with isolation levels, 15-3

D
Data Access Extensions

Reading from a BLOB Sample Program, 10-8
Writing to a CLOB Sample Program, 10-8

Data Collection Queues, 3-77
data source

creating name, 2-3
name creation, 8-2

database
accessing, 2-18
backing up, 2-19
building demo tables, 2-8
connecting, 2-7
creating, 2-6
encrypting and decrypting, 2-19
row-level locking, 15-1
starter, 2-3

database connection
verification using mSQL, 2-18

database objects
creating, 17-2, 20-2

DataReader object
limitations, 13-8

DataSource object, 10-4
datatypes, 10-5

Java, 11-16
mapping, 3-82

Index-3

DBData, 11-29
DBException, 11-30
DBSession object, 11-30
DDL

dependencies, 5-18
DECRYPDB, A-12
decryption

database, 2-19
Defining Application DDLs

Importing Views and Index Definitions, 7-24
Defining Snapshots for Replication

Creating Indexes for Snapshots, 7-15
Creating New Snapshots, 7-14
Editing Snapshots, 7-18
Importing Sequences, 7-20
Importing Snapshots, 7-17

dependency hint
creating for publication item, 5-11
creating in MDW, 5-12

DETACH AND DELETE statement, 11-14
Developing and Testing the Application, 6-1
Developing Java Server Pages, 6-3
Developing Mobile Web Applications, 6-1
development

compiling, 17-4
registration, 17-7

Development and Testing
Building Web-to-Go Applications, 6-2
Customizing the Workplace Application, 6-18
Debugging Web-to-Go Applications, 6-15
Developing Applet JDBC Communication, 6-12
Developing Applet Servlet Communication, 6-13
Developing Java servlets for Web-to-Go, 6-4
Specifying Application Roles, 6-3
Using the Mobile Server Admin API, 6-20
Using Web-to-Go Applets, 6-10

Development Architecture, 6-2
development interfaces

for object database development, 2-10
for relational database development, 2-10
JDBC, 2-10
ODBC, 2-11
SODA, 2-11

device
delete, 3-81

DML
callback, 5-22

doCompose Method, 3-39
download_complete method

signature, 3-73
download_init method, 3-69

example, 3-75
signature, 3-73

DROP FUNCTION statement, 11-10
DROP JAVA statement, 11-10
DROP PROCEDURE statement, 11-10
DROP TRIGGER statement, 11-20
dropjava

arguments, 11-9
options, 11-10

specifying filenames to, 11-10
dropSyncRule method, 3-29
DSN

adding, A-16
creating, 2-17

E
Embedded Visual Tools, 20-1
encCreateCtxt method, 16-4
encCreateKey method, 16-5
encDecryptData method, 16-5
encDeleteCtxt method, 16-5
encEncryptData method, 16-5
ENCRYPDB, A-10, A-13
encryption

APIs, 16-4
create key, 16-5
database, 2-19
decrypt data, 16-5
delete encryption context, 16-5
encrypt data, 16-5
initializing custom module, 16-4
plug-in custom module, 16-6
provide custom module, 16-4

error message
synchronization, 4-12

Error queue
synchronization, 3-2

event rule, 3-8
executeQuery method, 11-27
EXTERNAL_ENCRYPTION_DLL parameter, 16-6

F
fast refresh

defined in MDW, 5-9
requirements, 5-11
virtual primary key, 5-27

fast refresh and update, 3-49
Fast Refresh for Views, 3-50
firewall

configure proxy information, 4-10
flush method, 10-8
foreign key

constraint
client, 3-56

foreign key constraint, 3-55, 3-82
foreign key constraints, 3-81

violations, 3-81

G
getAsciiOutputStream, 10-6
getAsciiStream, 10-6
getBinaryOutputStream, 10-6
getBinaryStream, 10-6
getBLOB, 10-7
getBytes, 10-6
getCharacterOutputStream, 10-6
getCharacterStream, 10-6

Index-4

getChars, 10-6
getCLOB, 10-7
getConnection, 10-6, 10-7
GetMessage method, 3-13
getMessage method, 3-13
getPublicationNames method, 3-29
getQueuPkg method, 3-76
GetSchemaTable method

returns partial data, 13-7
getSubString, 10-6
getSyncRule method, 3-29

H
HTTP

setting parameters, 4-6

I
IBM J9, 10-19

DataSource class, 10-19
inconsistent datatype

SQL exception, 3-34
In-Queue

synchronization, 3-2
INSTEAD OF Triggers, 3-58
Interface Connection

Methods, 10-9
Interface Database MetaData

Methods, 10-14
Methods that Return False, 10-14

Interface PreparedStatement
Methods, 10-16

Interface ResultMetaData
Methods, 10-15

Interface ResultSet
Fields, 10-10
Methods, 10-11
Methods that Return False, 10-13

isConvertibleTo, 10-6, 10-7
isolation level

configuration, 15-3
restrictions with cursors, 15-3

isolation level, transaction, 11-28
isolation levels, 15-1
isSyncRuleModified method, 3-29

J
J2ME

CDC
JDBC driver, 10-16

CLDC
JDBC driver, 10-16

Creme, 10-19
IBM J9, 10-19
support, 10-16
WinCE, 10-19

JAR files, loading, 11-5
Java

datatypes

declaring parameters, 11-17
example, 11-18
return multiple rows, 11-17

development environment, 9-2
native application usage, 9-1
non-static methods, 11-12
static methods, 11-12

Java Development Tools, 9-3
Java Interface SyncParam Settings

Example 1, 4-17
Example 2, 4-18

Java Interface TransportParam Parameters
Example, 4-18

Java Stored Procedure
publish, 11-26

Java stored procedure
create trigger, 11-27
start mSQL, 11-24

Java stored procedures, 11-15
calling, 11-13, 11-14
create Java Class, 11-24
create table, 11-24
development model, 11-12
dropping, 11-9, 11-14
example, 11-10
Java datatypes, 11-16
JDBC, 11-27, 11-28
load Java class, 11-26
ODBC, 11-15
publishing to SQL, 11-26
return multiple rows, 11-18
row-level, 11-13
SELECT statement, 11-13
table-level, 11-13
tutorial, 11-23
using dropjava, 11-9
using SQL Commands, 11-10
using triggers, 11-18

Java Stored Procedures (JSPs), see JSP
Java Stored Procedures and Triggers, 11-1, 11-2
Java Support on Windows CE

Java Interface SyncParam Settings, 4-17
Java Interface TransportParam Parameters, 4-18
Overview, 4-13
Sync Class, 4-13
SyncException Class, 4-14
SyncOption Class, 4-15
SyncProgress Listener Service, 4-19

Java Virtual Machine (JVM), 11-2, 11-14, 11-15, 11-26
JDBC

calling C++ stored procedure, 11-34
description, 10-1
extensions, 10-5 to 10-8
J2ME, 10-16
Java stored procedures, 11-27
using DataSource, 10-4

JDBC driver, 2-10
description, 2-10

JDBC Programming
Connect to Oracle Database Lite, 10-2

Index-5

JDBC Compliance, 10-1
JDBC Environment Setup, 10-1
Limitations, 10-8
New JDBC 2.0 Features, 10-9
Oracle Database Lite Extensions, 10-5

JDeveloper
ADF/BC4J tutorial, 18-1

JDK
setting variables, 9-3

JSP
load, 11-3
loading classes, 11-4
publish, 11-3
publishing, 11-7
triggers, 11-3
using, 11-3

jvm.dll, 11-15

L
length method, 10-6
linguistic sort, 2-19
Load APIs, 2-18, A-22
Load utility

overview, A-19
Load Utility (OLLOAD), 2-18
loading

JAR files, 11-5
ZIP files, 11-5

loadjava, 11-4
options, 11-4
specifying filenames to, 11-5
syntax, 11-4

locking
row-level, 15-1

M
makeJdbcArray, 10-6, 10-7
mark method, 10-8
markSupported method, 10-8
MDK

Packaging Wizard, 1-14
MDW

automatic synchronization, 5-10
create project, 5-2
create publication item, 5-9
dependency hint, 5-11, 5-12
deploy publication, 5-29
overview, 1-14, 5-1
parent table hint, 5-11, 5-13
primary key hint, 5-11, 5-13
project, 1-14, 5-1

definition, 5-2
Project Wizard, 5-2
publication

creation, 5-20
publication item

creating SQL statement, 5-12
define refresh mode, 5-9

Publication Item Wizard, 5-9
Quick Wizard, 5-4
resource

loading into project, 5-20
script, 5-18

loading into project, 5-19
sequence, 5-16
test publication, 5-28
test publication synchronization, 5-28

Message Generator and Processor (MGP), 1-7
metadata cache

reset, 3-30
MGP

apply callback, 5-11
apply phase, 1-7
applying changes to the database, 1-8
compose

notify client, 3-79
compose callback, 5-11
compose phase, 1-8
composing transaction, 3-3
execution process, 3-2

Mobile client
constraint, 3-56
synchronizing, 17-21

Mobile Database Workbench, see MDW
Mobile Development Kit, 1-12

mSQL, 1-13
Mobile Manager

application properties, 17-16, 19-12
Mobile Server

overview, 1-6
mSQL, A-1

SET TERM {ON|OFF}, A-2
SET TIMING {ON|OFF}, A-3
SET VERIFY {ON|OFF}, A-3
starting, A-2, A-7
verifying database connection, 2-18
Windows 32, A-2
Windows CE, A-7

populating database, A-2
msync

architecture, 1-6
MSync/OCAPIs/mSyncCom, 4-21
multithreaded programs

Java stored procedures, 11-15
MyCompose, 3-37

doCompose, 3-39
needCompse Method, 3-38

MyCompose class, 5-23
myProgressProc callback function, 4-11

N
naming stored procedures, 11-2
native application

data source name, 8-2
development, 4-1, 8-1
saving user settings, 4-8
supported Java functions, 9-1

Index-6

Native Application Development
Data Source Name, 8-2
Java Support, 9-1
Using the Packaging Wizard, 7-1

native applications
clean synchronization environment, 4-12
selective synchronization, 4-9, 4-18

needCompose Method, 3-38
.Net stored procedures, 11-34
New JDBC 2.0 Features

Interface Connection, 10-9
Interface Database MetaData, 10-14
Interface PreparedStatement, 10-15
Interface ResultMetaData, 10-15
Interface ResultSet, 10-10
Interface Statement, 10-10

notification
client, 3-79

O
OCBC Administrator, 2-3
ocDoSynchronize function

determine progress, 4-11
ocDoSynchronize method, 4-10
ocEnv class, 4-2
ocEnv structure, 4-3
ocGetLastError function, 4-12
ocGetPublication function, 4-7
ocGetPublication method, 4-7
ocSaveUserInfo function, 4-10
ocSaveUserInfor method, 4-8
ocSessionInit function, 4-2
ocSessionTerm method, 4-12
ocSetSyncOption function, 4-10
ocTransportEnv structure, 4-6
ODBC

adding DSN, A-16
administration, A-14
development interfaces, 2-11
Java stored procedures, 11-15

ODBC driver, 2-11
description, 2-11

odbc.ini
location, 2-4

ODBINFO, A-16
olcSPGetObject method, 11-30
olCSPGetSession method, 11-30
olGetSyncMsg method, 3-12
olSyncMsg class, 3-12
Once, 3-27
Oracle Application Development Framework, see

ADF
Oracle Database Lite

application model and architecture, 1-4
introduction, 1-1

Oracle Database Lite Extensions
Data Access Extensions, 10-7
Datatype Extensions, 10-6

Oracle Database Lite Java Support

Oracle Database Lite Java Development
Environment, 9-2

Oracle Database Lite Support
Java Datatypes, 10-5

OracleBlob class, 13-3
OracleCommand class, 13-3
OracleConnection class, 13-1
OracleData, 11-35, 11-36
OracleDataRow, 11-35, 11-37
OracleEngine class

CreateDatabase method, 13-7
OracleParameter class

ADO.NET provider
PreparedStatement class, 13-3

OracleResultSet class, 10-7
OracleSPManager, 11-35, 11-37
OracleSync class, 13-4
Out-Queue

synchronization, 3-2

P
packaging, 19-5
Packaging Wizard, 1-14, 17-7, 19-5, 20-10
parameters, stored procedures, 11-28
parent table hint

creating in MDW, 5-13
performance

ADO.NET provider, 13-3
scripts, 5-18

POLClobReader class, 10-7
POLClobWriter class, 10-8
POLJDBCDataSource object., 10-4
POLLobInputStream class, 10-7
POLLobOutputStream class, 10-7
PreparedStatement class, 11-28, 13-3
primary key

composite
query rule, 3-34

creating virtual, 5-27
primary key hint

creating in MDW, 5-13
primary key index, 3-30, 3-60
privileges

setting, 3-61
Programming interfaces

C / C++, 3-49, 4-1
project

MDW, create, 5-2
properties

setting, 17-16, 19-12
Provisioning Mobile Applications

Managing Snapshots, 3-18
proxy

setting proxy information for
synchronization, 4-10

publication
add publication item, 3-30
altering, 3-30
associate publication item, 5-21

Index-7

associate resource, 5-24
associate script, 5-24
associate sequence, 5-24
automatic synchronization, 5-24

rule, 3-27
create using MDW, 1-14, 5-1
creation, 5-20
deploy, 5-29
import existing from repository, 5-25
setting order execution for publication

items, 5-24
specifying conflict resolution rules, 5-22
test synchronization, 5-28
test using MDW, 5-28
use Quick Wizard, 5-4

publication item
add to publication, 3-30
altering, 3-30
associate with publication, 5-21
create using MDW, 5-9
creating SQL query, 5-11
creating SQL statement, 5-12
dependency hint, 5-11
execution order, 5-24
import from repository, 5-25
modifying, 3-34
queue-based, 3-69

create, 3-76
setting priority, 5-23
use Quick Wizard, 5-4

publications
subscribing clients to, 3-33

publish applications
create database account, 17-3

publishing application
create database objects, 17-3

publishing applications
start the Mobile Server, 17-13, 19-10

publishing stored procedures, 11-26
putBytes, 10-6
putChars, 10-7
putString, 10-7

Q
query

rule
composite primary key, 3-34

querying
in JDBC, 11-27

Queue Interface, 3-67
queue-based

notify clients, 3-79
queue-based publication item, 3-69

create queues, 3-70
creation, 3-76
register package, 3-76

queue-based refresh
defined in MDW, 5-9

queues

data collection, 3-77
involved in synchronization, 3-2

R
RDBMS

creating multiple users, 2-7
development interfaces, 2-10
linguistic sort, 2-19

Read-Only Snapshots, 3-18
ready method, 10-7
Refresh

complete, 3-51
fast, 3-50

refresh mode
defined in MDW, 5-9

Refreshing a Snapshot, 3-19
registerQueuePkg method, 3-76
REMOVEDB, A-9
removeSyncRule method, 3-29
repository

architecture, 1-8
reset method, 10-8
resetCache method, 3-30
resource

associate with publication, 5-24
import from repository, 5-25
loading into MDW project, 5-20

Restricting Predicate, 3-36
restricting predicate, 3-36
resume

client configuration, 3-53
synchronization, 3-52

RESUME_BLOCKSIZE parameter, 3-53
RESUME_CLIENT_MAXSEND parameter, 3-53
RESUME_CLIENT_TIMEOUT parameter, 3-53
RESUME_FILE parameter, 3-52
RESUME_FILE_SIZE parameter, 3-52
RESUME_MAXACTIVE parameter, 3-53
RESUME_MAXCHUNK parameter, 3-53
RESUME_TIMEOUT parameter, 3-53
row-level triggers, 11-2
rule

automatic synchronization
publication, 3-27

RuleInfo class, 3-27
rules

automatic synchronization, 3-8
publication, 5-24

Rules class, 3-27

S
schema

evolution, 3-60
schema object names, 11-5
script

adding to publication in MDW, 5-18
associate with publication, 5-24
DDL dependencies, 5-18

Index-8

import from repository, 5-25
testing, 5-18

SELECT statement
Java stored procedures, 11-13

sequence
associate with publication, 5-24
creating in MDW, 5-16
definition, 5-17
import from repository, 5-25

sequences
synchronization, 3-32

server
controlling load, 3-53
set max connections, 3-53

servlets
registering, 17-7

setSyncRuleParams method, 3-27
shared maps

grouping function to force sharing, 5-23
skip method, 10-8
snapshot

read-only, 5-21
updatable, 5-21

snapshot definitions
declarative, 3-18
programmatic, 3-20

Snapshot Template Variables, 3-19
SODA

access database, 11-30
C++ stored procedures, 11-29

SQL
parsing in ADO.NET provider, 13-3
using mSQL, A-1

SQL exception
inconsistent datatypes, 3-34

SQLDescribeCol, 11-18
SQLNumResultCols, 11-18
statement-level triggers, 11-2
stored procedures

C++, 11-29
calling, 11-28
description, 11-2
naming, 11-2
.Net, 11-34

sychronization
conflicts, 3-58

Symbian
application development, 14-1
J2ME, 10-16
ODBC, 14-2
support, 14-1
synchronization, 14-1
utility tools, 14-3

Sync Class
Constructors, 4-13
Public Methods, 4-13

Sync Client
downloading data, 3-3

Sync Server
execution process, 3-2

uploading data, 3-2
SyncException Class

Constructors, 4-14
Public Methods, 4-14

synchonization
retrieve error message, 4-12

Synchronization
Change Password, 3-24
Client Device Database DDL Operations, 3-37,

3-60
Defining Conflict Rules, 3-31
Defining Publication Items, 3-26
DownloadInfo Class Access Methods, 3-64
Extending MyCompose, 3-40
Extending MyCompose as a User Defined

Sub-Class, 3-37, 3-38, 3-43
getDownloadInfo Method, 3-64
PublicationSize Class, 3-65
Publish and Subscribe Model, 3-21
Publishing Synonyms, 3-63
Remote Database Link Support, 3-62, 3-63
Sync Discovery API, 3-63

synchronization
ADO.NET provider, 13-4
C applications, 4-1
C++ applications, 4-1
clean environment, 4-12
compose phase customization, 3-37
composing transaction, 3-3
controlling server load, 3-53
downloading data, 3-3
errors, 3-58, 5-22
execution steps, 3-2
native applications

initiate, 4-10
queues, 3-2
resuming interrupted, 3-52
selective, 4-9, 4-18
sequences, 3-32
subscribing users, 3-33
temporary data storage, 3-52
uploading data, 3-2
using APIs, 3-49

synchronize
determine progress, 4-11

synchronizing
Mobile client, 17-21
WinCE, 20-17

SyncOption Class
Constructors, 4-15
Example, 4-16
Public Methods, 4-15

SyncProgress Listener Service
Example, 4-20
Method, 4-20

T
table

attaching a Java class, 11-12

Index-9

tables
building, 2-8
users sharing, 5-23

thread safety
ADO.NET provider, 13-8

threads
invoking Java stored procedures, 11-15

toJdbc method, 10-6, 10-7
transactions, 15-1

ADO.NET provider, 13-2
configuring isolation level, 15-3
isolation levels, 11-28, 15-1
locking, 15-1

trigger
testing, 11-27

triggers
arguments, 11-21

example, 11-22
creating, 11-19, 11-27
description, 11-2
dropping, 11-20
enabling and disabling, 11-20
example, 11-20
row-level, 11-2
statement-level, 11-2
statement-level vs. row-level, 11-19
using C++ stored procedures, 11-33

troubleshooting
sequences, 3-32
synchronization conflicts, 3-58

truncate command, A-24

U
unRegisterQueuePkg method, 3-76
Updatable Snapshots, 3-19
upload_complete method, 3-69

example, 3-74
signature, 3-73

user
granting access, 17-17, 19-13
subscribing, 3-33

users
defining snapshot values, 17-17, 19-13

Using the Packaging Wizard for Web Applications
Adding Servlets, 7-9
Defining Application DDLs, 7-22
Defining Application Roles, 7-11
Defining Sequences for Replication, 7-19
Defining Snapshots for Replication, 7-12
Editing Applications, 7-24
Entering Database Information, 7-10
Listing Application Files, 7-7
Naming New Applications, 7-4
Starting the Packaging Wizard, 7-25

V
VALIDATEDB, A-18
view

parent table hint, 5-13
primary key hint, 5-13
specifying parent table hint, 5-11
specifying primary key hint, 5-11

views
fast refresh and update, 3-49

Virtual Primary Key, 3-60
Visual Studio

versions for development, 1-3
WinCE, 1-3

W
Web-to-Go

get publication name, 4-7
install the client, 17-18, 19-14
using the Packaging Wizard, 17-7

Web-to-go
client installation, 17-18, 19-14

Win32
using the Packaging Wizard, 19-5
Visual Studio

version, 1-3
WinCE

installing, 20-16
J2ME, 10-19
synchronizing, 20-17
Visual Studio

version, 1-3
Windows CE

compilation, 20-7
creating database object, 17-2, 20-2
developing applications, 20-2
packaging, 17-7, 19-5, 20-10
publishing, 17-7, 19-5, 20-10
using the Packaging Wizard, 20-10
writing application code, 20-4

write method, 10-7, 10-8

Z
ZIP files, loading, 11-5

Index-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Send Us Your Comments

	1 Overview
	1.1 Introduction
	1.2 Supported Technologies for Application Development
	1.2.1 Native Applications
	1.2.2 Standalone Java Applications
	1.2.3 Web Applications

	1.3 Oracle Database Lite Application Model and Architecture
	1.3.1 Oracle Database Lite RDBMS
	1.3.2 Mobile Sync
	1.3.3 Mobile Server
	1.3.4 Message Generator and Processor (MGP)
	1.3.5 Mobile Server Repository

	1.4 Execution Models for Oracle Lite Database
	1.4.1 Embedded Application in Single Process
	1.4.2 Multiple Processes Accessing the Same Database
	1.4.3 Multiple Embedded Application Clients Accessing Remote Database
	1.4.4 Embedded Mobile Client in Single Process
	1.4.5 Multiple Clients Accessing Remote Database

	1.5 Mobile Development Kit (MDK)
	1.5.1 Mobile SQL (mSQL)
	1.5.2 Using the Mobile Database Workbence
	1.5.3 Using the Packaging Wizard

	1.6 Java Support
	1.7 Data Source Name

	2 The Oracle Database Lite RDBMS
	2.1 Oracle Lite Database Overview
	2.2 Creating and Managing the Database for a Mobile Client
	2.3 Creating and Managing the Database in an Embedded Application
	2.3.1 Install Oracle Database Lite Runtime
	2.3.2 Creating the Default Starter Oracle Lite Database for an Embedded Application
	2.3.3 Creating a Unique Oracle Lite Database for an Embedded Application
	2.3.3.1 Creating a Data Source Name with ODBC Administrator
	2.3.3.2 Creating a New Oracle Lite Database for the Embedded Application
	2.3.3.3 Connecting to Your New Oracle Lite Database

	2.3.4 Creating Users for Your Embedded Oracle Lite Database
	2.3.4.1 Pre-Defined Roles
	2.3.4.2 Building and Populating Demo Tables

	2.3.5 Packaging Your Embedded Application With the Oracle Database Lite Runtime

	2.4 Data Access APIs
	2.4.1 JDBC
	2.4.2 ODBC
	2.4.3 ADO.NET
	2.4.4 SODA

	2.5 Oracle Database Lite Multi-User Service
	2.5.1 Accessing the Multi-User Oracle Database Lite Database Service
	2.5.1.1 Administration for the Multi-User Service on the Windows Platform
	2.5.1.2 Administration for the Multi-User Service on the Linux Platform
	2.5.1.3 Debugging the Multi-User Service
	2.5.1.4 Creating DSNs
	2.5.1.5 Accessing the Database
	2.5.1.6 Verifying the Connection Using mSQL

	2.6 Move Your Client Data Between an Oracle Lite Database and an External File
	2.6.1 Move Data Between an Oracle Lite Database and an External File Using Programmatic APIs
	2.6.2 Oracle Database Lite Load Utility (OLLOAD)

	2.7 Backing Up an Oracle Lite Database
	2.8 Encrypting a Database
	2.9 Discover Oracle Lite Database Version Number
	2.10 Support for Linguistic Sort
	2.10.1 Creating Linguistic Sort Enabled Databases
	2.10.2 How Collation Works
	2.10.3 Collation Element Examples
	2.10.3.1 Sorting Normal Characters
	2.10.3.2 Reverse Sorting of French Accents
	2.10.3.3 Sorting Contracting Characters
	2.10.3.4 Sorting Expanding Characters
	2.10.3.5 Sorting Numeric Characters

	2.11 Using Oracle Database Lite Samples
	2.11.1 Executing the Visual Basic Sample Application
	2.11.1.1 Open Visual Basic
	2.11.1.2 View the Sample Application Tables and Data
	2.11.1.3 Open the Sample Application
	2.11.1.4 View and Manipulate the Data in the EMP Table

	2.11.2 Executing the ODBC Examples
	2.11.2.1 ODBCTBL
	2.11.2.2 ODBCVIEW
	2.11.2.3 ODBCFUNC
	2.11.2.4 ODBCTYPE
	2.11.2.5 LONG

	2.12 Limitations of the Oracle Database Lite Engine

	3 Synchronization
	3.1 How Does Synchronization Work?
	3.1.1 Synchronization Overview
	3.1.2 Automatic or Manual Synchronization
	3.1.3 How Updates Are Propagated to the Back-End Database

	3.2 Automatic Synchronization Overview
	3.2.1 Enable Automatic Synchronization at the Publication Item Level
	3.2.2 Enable/Disable Automatic Synchronization
	3.2.2.1 POLITE.INI Configuration to Enable/Disable Automatic Synchronization
	3.2.2.2 Overview of the Start/Stop Methods from the Sync Control API.
	3.2.2.3 C/C++ Sync Control APIs to Start/Stop Automatic Synchronization
	3.2.2.4 C# Sync Control APIs to Start/Stop Automatic Synchronization
	3.2.2.5 JAVA Sync Control APIs to Start/Stop Automatic Synchronization

	3.2.3 Define the Rules Under Which the Automatic Synchronization Starts
	3.2.3.1 Configure Publication-Level Automatic Synchronization Rules
	3.2.3.2 Configure Platform-Level Automatic Synchronization Rules

	3.2.4 Enable the Server to Notify the Client to Initiate a Synchronization to Download Data
	3.2.5 Notify Application on Completion of Automatic Synchronization Cycle
	3.2.6 Request Status for Automatic Synchronization Cycle

	3.3 What is The Process for Setting Up a User For Synchronization?
	3.3.1 Creating a Snapshot Definition Declaratively
	3.3.1.1 Manage Snapshots

	3.3.2 Creating the Snapshot Definition Programmatically

	3.4 Creating Publications Using Oracle Database Lite APIs
	3.4.1 Defining a Publication With Java Consolidator Manager APIs
	3.4.1.1 Create the Mobile Server User
	3.4.1.2 Create Publications
	3.4.1.3 Create Publication Items
	3.4.1.4 Define Publication-Level Automatic Synchronization Rules
	3.4.1.5 Data Subsetting: Defining Client Subscription Parameters for Publications
	3.4.1.6 Create Publication Item Indexes
	3.4.1.7 Adding Publication Items to Publications
	3.4.1.8 Creating Client-Side Sequences for the Downloaded Snapshot
	3.4.1.9 Subscribing Users to a Publication
	3.4.1.10 Instantiate the Subscription
	3.4.1.11 Bringing the Data From the Subscription Down to the Client
	3.4.1.12 Modifying a Publication Item
	3.4.1.13 Callback Customization for DML Operations
	3.4.1.14 Restricting Predicate

	3.5 Client Device Database DDL Operations
	3.6 Customize the Compose Phase Using MyCompose
	3.6.1 Create a Class That Extends MyCompose to Perform the Compose
	3.6.2 Implement the Extended MyCompose Methods in the User-Defined Class
	3.6.2.1 Implement the needCompose Method
	3.6.2.2 Implement the doCompose Method
	3.6.2.3 Implement the init Method
	3.6.2.4 Implement the destroy Method

	3.6.3 Use Get Methods to Retrieve Information You Need in the User-Defined Compose Class
	3.6.3.1 Retrieve the Publication Name With the getPublication Method
	3.6.3.2 Retrieve the Publication Item Name With the getPublicationItem Method
	3.6.3.3 Retrieve the DML Table Name With the getPubItemDMLTableName Method
	3.6.3.4 Retrieve the Primary Key With the getPubItemPK Method
	3.6.3.5 Retrieve All Base Tables With the getBaseTables Method
	3.6.3.6 Retrieve the Primary Key With the getBaseTablePK Method
	3.6.3.7 Discover If Base Table Has Changed With the baseTableDirty Method
	3.6.3.8 Retrieve the Name for DML Log Table With the getBaseTableDMLLogName Method
	3.6.3.9 Retrieve View of the Map Table With the getMapView Method

	3.6.4 Register the User-Defined Class With the Publication Item

	3.7 Customize What Occurs Before and After Synchronization Phases
	3.7.1 Customize What Occurs Before and After Every Phase of Each Synchronization
	3.7.1.1 NullSync
	3.7.1.2 BeforeProcessApply
	3.7.1.3 AfterProcessApply
	3.7.1.4 BeforeProcessCompose
	3.7.1.5 AfterProcessCompose
	3.7.1.6 BeforeProcessLogs
	3.7.1.7 AfterProcessLogs
	3.7.1.8 BeforeClientCompose
	3.7.1.9 AfterClientCompose
	3.7.1.10 Example Using the Customize Package
	3.7.1.11 Error Handling For CUSTOMIZE Package

	3.7.2 Customize What Occurs Before and After Compose/Apply Phases for a Single Publication Item

	3.8 Initiating Client Synchronization With Synchronization APIs
	3.8.1 Starting Synchronization Upload and Download Phases With C or C++ Applications
	3.8.2 Starting Synchronization Upload and Download Phases With Java Applications
	3.8.3 Starting Synchronization Upload and Download Phases With the ADO.NET Provider

	3.9 Understanding Your Refresh Options
	3.9.1 Fast Refresh
	3.9.2 Complete Refresh for Views
	3.9.3 Queue-Based Refresh
	3.9.4 Forced Refresh

	3.10 Resuming an Interrupted Synchronization
	3.10.1 Defining Temporary Storage Location for Client Data
	3.10.2 Controlling Server Load
	3.10.3 Client Configuration.

	3.11 Synchronizing With Database Constraints
	3.11.1 Synchronization And Database Constraints
	3.11.2 Primary Key is Unique
	3.11.3 Foreign Key Constraints
	3.11.3.1 Set Update Order for Tables With Weights
	3.11.3.2 Defer Constraint Checking Until After All Transactions Are Applied

	3.11.4 Unique Key Constraint
	3.11.5 Not Null Constraint
	3.11.6 Generating Constraints on the Mobile Client
	3.11.6.1 The assignWeights Method

	3.12 Parent Tables Needed for Updateable Views
	3.12.1 Creating a Parent Hint
	3.12.2 INSTEAD OF Triggers

	3.13 Resolving Conflict Resolution with Winning Rules
	3.13.1 Resolving Errors and Conflicts Using the Error Queue
	3.13.2 Customizing Synchronization Conflict Resolution Outcomes

	3.14 Manipulating Application Tables
	3.14.1 Creating Secondary Indexes on Client Device
	3.14.2 Virtual Primary Key

	3.15 Facilitating Schema Evolution
	3.16 Set DBA or Operational Privileges for the Mobile Server
	3.17 Create a Synonym for Remote Database Link Support For a Publication Item
	3.17.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem
	3.17.2 Creating or Removing a Dependency Hint

	3.18 Using the Sync Discovery API to Retrieve Statistics
	3.18.1 getDownloadInfo Method
	3.18.2 DownloadInfo Class Access Methods
	3.18.3 PublicationSize Class

	3.19 Customizing Replication With Your Own Queues
	3.19.1 Customizing Apply/Compose Phase of Synchronization with a Queue-Based Publication Item
	3.19.1.1 Queue Creation
	3.19.1.2 Queue-Based PL/SQL Procedure for UPLOAD_COMPLETE and DOWNLOAD_INIT Callouts
	3.19.1.3 Create a Publication Item as a Queue
	3.19.1.4 Register the PL/SQL Package Outside the Repository

	3.19.2 Creating Data Collection Queues for Uploading Client Collected Data
	3.19.2.1 Creating a Data Collection Queue

	3.19.3 Selecting How/When to Notify Clients of Composed Data

	3.20 Deleting a Client Device
	3.21 Synchronization Performance
	3.22 Troubleshooting Synchronization Errors
	3.22.1 Foreign Key Constraints in Updatable Publication Items
	3.22.1.1 Foreign Key Constraint Violation Example
	3.22.1.2 Avoiding Constraint Violations with Table Weights
	3.22.1.3 Avoiding Constraint Violations with BeforeApply and After Apply

	3.23 Datatype Conversion Between the Oracle Server and Client Oracle Lite Database

	4 Invoking Synchronization APIs from Applications
	4.1 Synchronization APIs For C or C++ Applications
	4.1.1 Overview of Synchronization API
	4.1.2 Initializing the Environment With ocSessionInit
	4.1.3 Managing the C/C++ Data Structures
	4.1.3.1 ocEnv Data Structure
	4.1.3.2 ocTransportEnv Data Structure

	4.1.4 Retrieving Publication Information With ocGetPublication
	4.1.5 Managing User Settings With ocSaveUserInfo
	4.1.6 Manage What Tables Are Synchronized With ocSetTableSyncFlag
	4.1.7 Configure Proxy Information
	4.1.8 Start the Synchronization With the ocDoSynchronize Method
	4.1.8.1 See Progress of Synchronization with Progress Listening

	4.1.9 Clear the Synchronization Environment Using ocSessionTerm
	4.1.10 Retrieve Synchronization Error Message with ocGetLastError

	4.2 Synchronization API for Java Applications
	4.2.1 Overview
	4.2.2 Sync Class
	4.2.3 SyncException Class
	4.2.4 SyncOption Class
	4.2.5 Java Interface SyncParam Settings
	4.2.6 Java Interface TransportParam Parameters
	4.2.7 Manage What Tables Are Synchronized With Selective Sync
	4.2.8 SyncProgress Listener Service

	4.3 msync/OCAPIs/mSyncCom

	5 Using Mobile Database Workbench to Create Publications
	5.1 Use MDW to Create Publications
	5.1.1 Set Access Privileges to SYSTEM Tables for Your Application Schema
	5.1.2 Launch MDW

	5.2 Create a Project
	5.3 Use the Quick Wizard to Create Your Publication
	5.4 Create a Publication Item
	5.4.1 Create SQL Statement for Publication Item
	5.4.2 Create a Dependency Hint
	5.4.3 Specify Parent Table and Primary Key Hints

	5.5 Define the Rules Under Which the Automatic Synchronization Starts
	5.5.1 Configure Publication-Level Automatic Synchronization Rules
	5.5.2 Configure Platform-Level Automatic Synchronization Rules
	5.5.2.1 Define System Event Rules for the Platform
	5.5.2.2 Define Automatic Synchronization Conditions for the Platform

	5.6 Create a Sequence
	5.7 Create and Load a Script Into The Project
	5.7.1 Writing SQL Scripts
	5.7.2 Test SQL Scripts
	5.7.2.1 Connect to the Database
	5.7.2.2 Load and Execute SQL Scripts

	5.7.3 Load the Script Into the Project

	5.8 Load a Resource Into the Project
	5.9 Create a Publication
	5.9.1 General Tab Configures Publication Name
	5.9.2 Publication Item Tab Associates Publication Items With the Publication
	5.9.2.1 Associating a Publication Item to this Publication

	5.9.3 Sequence Tab Associates Existing Sequences With the Publication
	5.9.4 Script Tab Associates Existing Scripts With the Publication
	5.9.5 Resource Tab Associates Existing Resources With the Publication
	5.9.6 Event Tab Configures Automatic Synchronization Rules for this Publication

	5.10 Import Existing Publications and Objects from Repository
	5.10.1 Import Existing Publication from Repository
	5.10.2 Import Existing Publication Item From the Repository
	5.10.3 Import Existing Sequence From the Repository
	5.10.4 Import Existing Resource From the Repository
	5.10.5 Import an Existing Script From the Repository

	5.11 Create a Virtual Primary Key
	5.12 Test a Publication by Performing a Synchronization
	5.13 Deploy the Publications in the Project to the Repository

	6 Developing Mobile Web-to-Go Applications
	6.1 Choose the Type of Web-to-Go Mobile Client to Use
	6.2 Developing and Testing the Application
	6.2.1 Building Web-to-Go Applications
	6.2.1.1 Static Components
	6.2.1.2 Dynamic Components
	6.2.1.3 Database Components
	6.2.1.4 Database Connections

	6.2.2 Application Roles
	6.2.3 Developing JavaServer Pages
	6.2.3.1 Mobile Server or Mobile Development Kit Web Server
	6.2.3.2 Mobile Client for Web-to-Go

	6.2.4 Developing Java Servlets for Web-to-Go
	6.2.4.1 Limitations
	6.2.4.2 Accessing Applications on the Mobile Development Kit for Web-to-Go
	6.2.4.3 Creating a Servlet
	6.2.4.4 Running a Servlet
	6.2.4.5 Accessing the Schema Directly in Oracle Database Lite

	6.2.5 Using Web-to-Go Applets
	6.2.5.1 Creating the Web-to-Go Applet
	6.2.5.2 Creating the HTML Page for the Applet

	6.2.6 Developing Applet JDBC Communication
	6.2.6.1 getConnection()
	6.2.6.2 Design Issue

	6.2.7 Developing Applet Servlet Communication
	6.2.7.1 Creating the Web-to-Go Servlet

	6.2.8 Debugging Web-to-Go Applications
	6.2.8.1 Running Sample 1 Using Oracle9i JDeveloper

	6.2.9 Customizing the Workspace Application
	6.2.9.1 Web-to-Go Parameters
	6.2.9.2 Sample Workspace

	6.2.10 Using the Mobile Server Admin API

	7 Using the Packaging Wizard
	7.1 Using the Packaging Wizard
	7.1.1 Starting the Packaging Wizard
	7.1.2 Specifying New Application Definition Details
	7.1.3 Listing Application Files
	7.1.3.1 Compile JSP (For Web-to-Go Applications Only)
	7.1.3.2 Filters

	7.1.4 Adding Servlets (For OC4J and Web-to-Go Applications Only)
	7.1.5 Entering Database Information
	7.1.6 Defining Application Roles
	7.1.7 Defining Snapshots for Replication
	7.1.7.1 Creating New Snapshots
	7.1.7.2 Creating Indexes for Snapshots
	7.1.7.3 Importing Snapshots
	7.1.7.4 Editing Snapshots

	7.1.8 Defining Sequences for Replication
	7.1.8.1 Importing Sequences

	7.1.9 Defining Application DDLs
	7.1.9.1 Importing Views and Index Definitions

	7.1.10 Editing Application Definition
	7.1.11 Troubleshooting

	7.2 Packaging Wizard Synchronization Support

	8 Native Application Development
	8.1 Supported APIs for Oracle Database Lite
	8.2 Data Source Name

	9 Java Application Development
	9.1 Java Support for Applications
	9.1.1 JDBC Drivers

	9.2 Oracle Database Lite Java Development Environment
	9.2.1 Setting Variables for the JDK

	9.3 Java Development Tools

	10 JDBC Programming
	10.1 JDBC Compliance
	10.2 JDBC Environment Setup
	10.3 JDBC Drivers to Use When Connecting to Oracle Database Lite
	10.3.1 Type 2 Driver
	10.3.2 Type4 (Pure Java) Driver Connection URL Syntax

	10.4 DataSource Connection
	10.5 Java Datatypes and JDBC Extensions
	10.5.1 Mapping Datatypes Between Java and Oracle
	10.5.2 Datatype Extensions
	10.5.3 Data Access Extensions
	10.5.3.1 Reading from a BLOB Sample Program
	10.5.3.2 Writing to a CLOB Sample Program

	10.6 Limitations
	10.7 New JDBC 2.0 Features
	10.7.1 Interface Connection
	10.7.1.1 Methods

	10.7.2 Interface Statement
	10.7.3 Interface ResultSet
	10.7.3.1 Fields
	10.7.3.2 Methods
	10.7.3.3 Methods that Return False

	10.7.4 Interface Database MetaData
	10.7.4.1 Methods
	10.7.4.2 Methods that Return False

	10.7.5 Interface ResultMetaData
	10.7.5.1 Methods

	10.7.6 Interface PreparedStatement
	10.7.6.1 Methods

	10.8 J2ME Support
	10.8.1 JDBC Drivers for J2ME CDC and CLDC
	10.8.1.1 JDBC Driver for J2ME CDC
	10.8.1.2 JDBC Driver for J2ME CLDC

	10.8.2 J2ME Support for Windows CE
	10.8.2.1 Using IBM J9
	10.8.2.2 Using Creme 4.1

	11 Stored Procedures and Triggers
	11.1 Java Stored Procedure Features in Oracle Database Lite
	11.2 Overview of Java Stored Procedures and Triggers
	11.2.1 Creating Java Stored Procedures

	11.3 Creating Java Stored Procedures
	11.3.1 Using the Load and Publish Stored Procedure Development Model
	11.3.1.1 Loading Java Stored Procedure Classes Into the Oracle Lite Database
	11.3.1.2 Publishing Stored Procedures to SQL
	11.3.1.3 Calling Published Stored Procedures
	11.3.1.4 Dropping Published Stored Procedures
	11.3.1.5 Example Using the Load and Publish Model

	11.3.2 Using the Attached Stored Procedure Development Model
	11.3.2.1 Attaching a Java Class to a Table
	11.3.2.2 Table-Level Stored Procedures
	11.3.2.3 Row-Level Stored Procedures
	11.3.2.4 Calling Attached Stored Procedures
	11.3.2.5 Dropping Attached Stored Procedures
	11.3.2.6 Example of An Attached Java Stored Procedure

	11.3.3 Calling Java Stored Procedures From a Multithreaded C or C++ Application

	11.4 Converting Datatypes Between Java and SQL For Stored Procedures
	11.4.1 Declaring Parameters for Java Stored Procedures
	11.4.2 Using Stored Procedures to Return Multiple Rows
	11.4.2.1 Returning Multiple Rows in ODBC
	11.4.2.2 Example

	11.5 Using Triggers With Java Stored Procedures
	11.5.1 Statement-Level vs. Row-Level Triggers
	11.5.2 Creating Triggers
	11.5.2.1 Enabling and Disabling Triggers

	11.5.3 Dropping Triggers
	11.5.4 Trigger Example
	11.5.5 Trigger Arguments
	11.5.6 Trigger Arguments Example

	11.6 Creating a Java Stored Procedure That Is Invoked With a Trigger
	11.6.1 Start mSQL
	11.6.2 Create a Table
	11.6.3 Create a Java Class
	11.6.4 Load the Java Class File
	11.6.5 Publish the Stored Procedure
	11.6.6 Populate the Database
	11.6.7 Execute the Procedure
	11.6.8 Verify the Email Address
	11.6.9 Create a Trigger
	11.6.9.1 Testing the Trigger
	11.6.9.2 Verify the Email Address

	11.6.10 Commit or Roll Back

	11.7 Executing Java Stored Procedures from JDBC
	11.7.1 Using the executeQuery Method
	11.7.2 Using a Callable Statement

	11.8 Using C++ Stored Procedures
	11.8.1 Creating C++ Stored Procedures
	11.8.1.1 C++ Stored Procedure Include File and Procedure Definition
	11.8.1.2 Access SODA Objects Within Your C++ Stored Procedure

	11.8.2 Building Your C++ Stored Procedures
	11.8.2.1 Linking in Appropriate Libraries
	11.8.2.2 Automatically Build Your Stored Procedure
	11.8.2.3 Manually Building Your Stored Procedure

	11.8.3 Publish Your C++ Stored Procedure
	11.8.4 C++ Stored Procedure Example
	11.8.4.1 C++ Stored Procedure and Trigger Example One
	11.8.4.2 C++ Stored Procedure and Trigger Example Two
	11.8.4.3 JDBC Calling a C++ Stored Procedure Example

	11.9 Using .Net Stored Procedures
	11.9.1 Creating the .Net Source for Your Stored Procedure
	11.9.1.1 Defining Methods, Imports and Namespace
	11.9.1.2 Access and Modify Database Using .Net Extension Classes In Stored Procedures
	11.9.1.3 Access and Modify Database Using OracleSPManager Inside Triggers

	11.9.2 Building Your .Net Stored Procedures
	11.9.3 Publish Your .Net Stored Procedure
	11.9.3.1 Create the .Net Class Object in the Oracle Lite Database
	11.9.3.2 Publish Methods With a Call Specification

	11.9.4 Dropping .Net Stored Procedures
	11.9.5 .Net Stored Procedure Example
	11.9.5.1 .Net Stored Procedure and Trigger Example One
	11.9.5.2 .Net Stored Procedure and Trigger Example Two

	12 Using Simple Object Data Access (SODA) for PocketPC Platforms
	12.1 Getting Started With SODA
	12.1.1 Overview of the SODA Classes
	12.1.2 Demonstrating Frequently-Used SODA Classes

	12.2 Using SQL Queries in SODA Code for PocketPC Platforms
	12.3 Virtual Columns and Object-Relational Mapping
	12.4 Behavior of Reference-Counted and Copy-By-Assignment Objects
	12.5 Another Library for Exceptions (ALE)
	12.5.1 Decorating Classes With ALE
	12.5.2 New Operator and ALE
	12.5.3 Global Variables
	12.5.4 Exceptions and Inheritance
	12.5.5 Using ALE with PocketPC ARM Compilers
	12.5.6 Troubleshooting ALE Runtime Errors
	12.5.7 Compiling Your Program With ALE
	12.5.8 ALE Code on Systems That Support Exceptions

	12.6 Building a SODA Forms Application
	12.6.1 Development Environment Requirements
	12.6.2 Develop Your GUI Using the SODA Forms Library
	12.6.2.1 Traditional Way to Develop Native Data Entry Applications
	12.6.2.2 Trimming Your PocketPC UI Code With SODA Forms

	12.6.3 Designing the UI for PocketPC
	12.6.4 Customizing the Database Schema
	12.6.5 Binding UI to Data in the PocketPC Environment
	12.6.6 Setting List Choices for Status Contol on PocketPC
	12.6.7 Customizing the Table in OrderForm
	12.6.8 Monitoring the Logic
	12.6.9 Compiling Your SODA Application

	12.7 SODA Forms Edit Modes
	12.7.1 Editing a Single Object
	12.7.2 Editing a List of Objects
	12.7.3 Creating a New Object
	12.7.4 Popping Up A Dialog
	12.7.5 Custom Queries for PocketPC Environment

	12.8 Customizing Your SODA Forms Application
	12.8.1 Customizing Help Messages
	12.8.2 Menus

	12.9 Displaying a List Of Objects in a Table
	12.10 SODA Forms UI Controls

	13 Oracle Database Lite ADO.NET Provider
	13.1 Discussion of the Classes That Support the ADO.NET Provider
	13.1.1 Establish Connections With the OracleConnection Class
	13.1.2 Transaction Management
	13.1.3 Create Commands With the OracleCommand Class
	13.1.4 Maximize Performance Using Prepared Statements With the OracleParameter Class
	13.1.4.1 SQL String Parameter Syntax

	13.1.5 Large Object Support With the OracleBlob Class
	13.1.5.1 Using BLOB Objects in Parameterized SQL Statements
	13.1.5.2 Query Tables With BLOB Columns
	13.1.5.3 Read and Write Data to BLOB Objects

	13.1.6 Data Synchronization With the OracleSync Class
	13.1.6.1 Using the OracleSync Class to Synchronize
	13.1.6.2 Using the OracleEngine to Synchronize

	13.1.7 Creating a Database for Testing

	13.2 Limitations for the ADO.NET Provider
	13.2.1 Partial Data Returned with GetSchemaTable
	13.2.2 Creating Multiple DataReader Objects Can Invalidate Each Other
	13.2.3 Calling DataReader.GetString Twice Results in a DbNull Object
	13.2.4 Thread Safety

	13.3 Developing an ADO.NET Application on WinCE

	14 Using Symbian Devices
	14.1 Support Symbian Devices in Oracle Database Lite
	14.2 Invoke Synchronization from Applications on Symbian Devices
	14.2.1 How To Write A Program Using Oracle Database Lite 10g
	14.2.2 Prepare Your Application for Synchronization
	14.2.3 How to Use the Synchronization API for Symbian Devices

	14.3 Using a JDBC Driver for J2ME CLDC to Connect to the Database
	14.4 Use the Utility Tools on Symbian Devices

	15 Oracle Database Lite Transaction Support
	15.1 Locking
	15.2 What Are the Transaction Isolation Levels?
	15.3 Configuring the Isolation Level
	15.4 Supported Combinations of Isolation Levels and Cursor Types

	16 Oracle Database Lite Security
	16.1 Authenticating Users With Your Own User Management System
	16.1.1 Implementing Your External Authenticator
	16.1.1.1 The Initialization Method for the External Authenticator
	16.1.1.2 The Destruction Method for the External Authenticator
	16.1.1.3 The Authentication Method for the External Authenticator
	16.1.1.4 The User Instantiation Method for the External Authenticator
	16.1.1.5 Retrieve the User Name or the User Global Unique ID
	16.1.1.6 Log Off User
	16.1.1.7 Change User Password

	16.1.2 Registering External Authenticator
	16.1.3 User Initialization Scripts

	16.2 Providing Your Own Encryption Module for the Client Oracle Lite Database
	16.2.1 Encryption Module APIs
	16.2.1.1 Initialize the Encryption Module
	16.2.1.2 Delete Encryption Context
	16.2.1.3 Create the Encryption Key
	16.2.1.4 Encrypt Data
	16.2.1.5 Decrypt Data

	16.2.2 Plug-In Custom Encryption Module

	17 Tutorial for Building Mobile Web-to-Go Applications
	17.1 Develop the Application
	17.1.1 Create Database Objects in the Oracle Server
	17.1.1.1 Create the Table Owner Account
	17.1.1.2 Create the Database Objects in the Oracle Database

	17.1.2 Compile the Application

	17.2 Create Publication for Application
	17.2.1 Create a Project
	17.2.2 Create Publication Items
	17.2.2.1 Create Publication Item
	17.2.2.2 Create Sequence

	17.2.3 Create Publication

	17.3 Package the Application Using the Packaging Wizard
	17.4 Administer the Application
	17.4.1 Start the Mobile Server and the Mobile Manager
	17.4.2 Using the Mobile Manager to Create a New User
	17.4.3 Setting Application Properties
	17.4.4 Granting User Access to the Application
	17.4.5 Defining Snapshot Template Values for the User

	17.5 Execute the Application on the Mobile Client for Web-to-Go
	17.5.1 Install the Mobile Client for Web-to-Go
	17.5.2 Log into the Mobile Client for Web-to-Go
	17.5.3 Manually Synchronize the Mobile Client for Web-to-Go

	18 Tutorial for Building Mobile Web Applications Using ADF/BC4J
	18.1 Overview
	18.1.1 Before You Start

	18.2 Creating a Database Connection
	18.2.1 Creating a Database Connection to Oracle Database
	18.2.2 Specify The Connection To The Oracle Lite Database

	18.3 Develop the ADF/BC4J Application
	18.3.1 Building the Data Model with ADF Business Components
	18.3.1.1 Create a New Application and Projects
	18.3.1.2 Create Business Components

	18.3.2 Customize the Business Components Views
	18.3.3 Creating a Master-Detail JavaServer Faces Page
	18.3.4 Running the JSF Page
	18.3.5 Configure the ADF/BC4J Application for the Oracle Database Lite Environment
	18.3.6 Deploy the Application as WAR file

	18.4 Package the ADF/BC4J Application
	18.4.1 Include the ADF Runtime Libraries with the ADF/BC4J Application
	18.4.2 Package the Application from the Packaging Wizard

	18.5 Publish and Configure the ADF/BC4J Application from the Mobile Manager
	18.6 Test the ADF/BC4J Application
	18.7 Run the ADF/BC4J Application on the Mobile Client for Oracle Lite WEB OC4J

	19 Tutorial for Building Mobile Applications for Win32
	19.1 Plan the Mobile Application Demo for Win32
	19.2 Description of Tasks for Win32 Demo
	19.2.1 Create TASK Table on the Server Database
	19.2.2 Create Publication for Application
	19.2.2.1 Create a Project
	19.2.2.2 Create Publication Item
	19.2.2.3 Create Publication

	19.2.3 Package the Application Using the Packaging Wizard

	19.3 Administer the Application
	19.3.1 Start the Mobile Server and the Mobile Manager
	19.3.2 Using the Mobile Manager to Create New Users for the Task Application
	19.3.3 Setting Application Properties
	19.3.4 Granting User Access to the Application
	19.3.5 Defining Snapshot Template Values for the User

	19.4 Execute the Application on the Mobile Client for Web-to-Go
	19.4.1 Install the Mobile Client on the Win32 Device
	19.4.2 Browse the TASK Snapshot and Update a Row
	19.4.3 Develop your Mobile Field Service Application Using Oracle Database Lite
	19.4.4 Republish the Application with the Application Program

	20 Tutorial for Building Mobile Applications for Windows CE
	20.1 Overview of the WinCE Sample Application
	20.1.1 Before You Start
	20.1.1.1 Application Development Computer Requirements
	20.1.1.2 Client Device Requirements

	20.2 Develop the Application
	20.2.1 Create Database Objects in the Oracle Server
	20.2.1.1 The WinCE Transport Application Database Objects

	20.2.2 Write the Application Code
	20.2.2.1 Transport Module (Transport.vb)
	20.2.2.2 Main Form (frmMain.vb)
	20.2.2.3 View Packages (frmView.vb)
	20.2.2.4 Create Package (frmNew.vb)

	20.2.3 Compile the Application
	20.2.3.1 Create CAB Files
	20.2.3.2 Install the Application from the CAB File

	20.3 Create Publication for Application
	20.3.1 Create a Project
	20.3.2 Create Publication Items
	20.3.2.1 Create Packages Publication Item
	20.3.2.2 Create Routes Publication Item
	20.3.2.3 Create Trucks Publication Item

	20.3.3 Create Publication

	20.4 Package and Publish the Application
	20.4.1 Define the Application Using the Packaging Wizard
	20.4.1.1 Create a New Application

	20.4.2 Publish the Application

	20.5 Administer the Application
	20.5.1 Start the Mobile Server
	20.5.2 Launch the Mobile Manager
	20.5.3 Create a New User
	20.5.4 Set the Application Properties
	20.5.5 Grant User Access to the Application

	20.6 Run the Application on the Windows Mobile/Pocket PC Device
	20.6.1 Install the Oracle Database Lite Mobile client for Pocket PC
	20.6.2 Install and Synchronize the Transport Application and Data

	A Oracle Lite Database Utilities
	A.1 The mSQL Tool
	A.1.1 The mSQL Tool for Windows 32
	A.1.1.1 Starting mSQL
	A.1.1.2 Populating your Database Using mSQL
	A.1.1.3 SET TERM {ON|OFF}
	A.1.1.4 SET TIMING {ON|OFF}
	A.1.1.5 SET VERIFY {ON|OFF}

	A.1.2 The mSQL Tool for Windows CE
	A.1.2.1 The mSQL GUI Tool
	A.1.2.2 The Command-Line Version of the mSQL Tool for Windows CE

	A.2 CREATEDB
	A.3 REMOVEDB
	A.4 ENCRYPDB
	A.5 DECRYPDB
	A.6 BACKUPDB
	A.7 ODBC Administrator and the Oracle Database Lite ODBC Driver
	A.7.1 Adding a DSN Using the ODBC Administrator
	A.7.2 Adding a DSN which points to Read-Only Media (CD-ROM)

	A.8 ODBINFO
	A.9 VALIDATEDB
	A.10 Transferring Data Between a Database and an External File
	A.10.1 OLLOAD
	A.10.1.1 Syntax
	A.10.1.2 Keywords and Parameters

	A.10.2 Oracle Database Lite Load Application Programming Interfaces (APIs)
	A.10.2.1 Overview
	A.10.2.2 Oracle Database Lite Load APIs
	A.10.2.3 File Format
	A.10.2.4 Limitations

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

