
Oracle® Database Lite
SQL Reference  

10g (10.2.0) 

Part No.  B15917-01

June 2005



Oracle Database Lite SQL Reference 10g (10.2.0)

Part No.  B15917-01

Copyright © 2003, 2005, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they 
are provided under a license agreement containing restrictions on use and disclosure and are also protected 
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, 
or decompilation of the Programs, except to the extent required to obtain interoperability with other 
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in 
the documentation, please report them to us in writing. This document is not warranted to be error-free. 
Except as may be expressly permitted in your license agreement for these Programs, no part of these 
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any 
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on 
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation 
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license 
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial 
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, 
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such 
purposes, and we disclaim liability for any damages caused by such use of the Programs. 

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks 
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third 
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. 
You bear all risks associated with the use of such content. If you choose to purchase any products or services 
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: 
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the 
third party, including delivery of products or services and warranty obligations related to purchased 
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from 
dealing with any third party. 



iii

Contents

Send Us Your Comments ........................................................................................................................   xi

Preface ...............................................................................................................................................................   xiii

Documentation Accessibility ...................................................................................................................    xiii
Structure .....................................................................................................................................................    xiii

1  Using SQL

1.1 SQL Overview .............................................................................................................................   1-1
1.1.1 Examples ...............................................................................................................................   1-2
1.1.2 Oracle SQL and SQL-92 ......................................................................................................   1-2
1.1.2.1 Running SQL-92 on Oracle Lite..................................................................................   1-2
1.2 Oracle Lite SQL and Oracle SQL Comparison .......................................................................   1-2
1.2.1 Objects ...................................................................................................................................   1-3
1.2.2 Operators ..............................................................................................................................   1-3
1.2.3 Functions...............................................................................................................................   1-3
1.2.4 Commands............................................................................................................................   1-3
1.2.5 Miscellaneous Data Definition Language (DDL)............................................................   1-4
1.2.6 Datatypes ..............................................................................................................................   1-5
1.2.7 Indicator Variables...............................................................................................................   1-5
1.2.8 Data Precision During Arithmetic Operations................................................................   1-5
1.2.9 Data Dictionaries .................................................................................................................   1-5
1.2.10 Tables Not Installed with Oracle Database Lite..............................................................   1-5
1.2.11 Messages ...............................................................................................................................   1-5
1.2.12 Sequences ..............................................................................................................................   1-5
1.2.13 PL/SQL .................................................................................................................................   1-5
1.2.14 SQL Functions ......................................................................................................................   1-6
1.2.15 Locking and Transactions...................................................................................................   1-6
1.3 Oracle Database Lite SQL Conventions...................................................................................   1-6
1.3.1 SQL Statement Syntax.........................................................................................................   1-6
1.3.1.1 Capital Letters ...............................................................................................................   1-6
1.3.1.2 Lowercase ......................................................................................................................   1-6
1.3.1.3 Bracket Delimited .........................................................................................................   1-6
1.3.1.4 Braces..............................................................................................................................   1-6
1.3.1.5 Vertical Bars...................................................................................................................   1-7
1.3.1.6 Ellipsis ............................................................................................................................   1-7



iv

1.3.1.7 Underline .......................................................................................................................   1-7
1.3.1.8 Block Letters ..................................................................................................................   1-7
1.3.1.9 Initial Colon...................................................................................................................   1-7
1.3.2 SQL Tables ............................................................................................................................   1-7
1.3.3 SQL Object Names...............................................................................................................   1-7
1.3.4 SQL Operator Precedence ..................................................................................................   1-8
1.3.5 SQL Sessions.........................................................................................................................   1-8
1.3.6 SQL Transactions .................................................................................................................   1-8
1.3.7 Issuing SQL Statements From a Program ........................................................................   1-8
1.3.8 SQL and ODBC ....................................................................................................................   1-9
1.4 ODBC SQL Syntax Conventions...............................................................................................   1-9
1.5 Oracle Database Lite Database Object Naming Conventions ..............................................   1-9
1.6 Formats ......................................................................................................................................    1-10
1.6.1 Number Format Elements ...............................................................................................    1-10
1.6.2 Date Format Elements......................................................................................................    1-10
1.7 Specifying SQL Conditions.....................................................................................................    1-11
1.7.1 Simple Comparison Conditions .....................................................................................    1-11
1.7.2 Group Comparison Conditions .....................................................................................    1-12
1.7.2.1 A Row_Value_Constructor in a Subquery Comparison......................................    1-13
1.7.2.2 Subquery in Place of a Column ...............................................................................    1-13
1.7.3 Membership Conditions .................................................................................................    1-13
1.7.4 Range Conditions .............................................................................................................    1-14
1.7.5 NULL Conditions ............................................................................................................    1-14
1.7.6 EXISTS Conditions ...........................................................................................................    1-14
1.7.7 LIKE Conditions ...............................................................................................................    1-15
1.7.8 Compound Conditions ...................................................................................................    1-15
1.8 Specifying Expressions ...........................................................................................................    1-16
1.8.1 Form I, Simple Expression...............................................................................................    1-16
1.8.2 Form II, Function Expression..........................................................................................    1-17
1.8.3 Form III, Java Function Expression................................................................................    1-17
1.8.4 Form IV, Compound Expression....................................................................................    1-17
1.8.5 Form V, DECODE Expression .......................................................................................    1-18
1.8.6 Form VI, Expression List .................................................................................................    1-19
1.8.7 Form VII, Variable Expression........................................................................................    1-19
1.8.8 Form VIII, CAST Expression...........................................................................................    1-20
1.9 Oracle Database Lite SQL Datatypes and Literals ..............................................................    1-20
1.9.1 Character String Comparison Rules ..............................................................................    1-21
1.9.1.1 Blank-Padded Comparison Semantics ...................................................................    1-21
1.9.1.2 Non-Padded Comparison Semantics......................................................................    1-21
1.10 Comments Within SQL Statements.......................................................................................    1-21
1.11 Tuning SQL Statement Execution Performance With the EXPLAIN PLAN...................    1-22
1.11.1 The PLAN Table................................................................................................................    1-23
1.11.2 EXPLAIN PLAN Examples .............................................................................................    1-25
1.11.2.1 Example for Select Distinct and Group By ............................................................    1-26
1.11.2.2 Example for Select Statement with Union .............................................................    1-27
1.11.2.3 Example for Select Statement With Multiple Qualifiers......................................    1-27



v

2  SQL Operators

2.1 SQL Operators Overview ..........................................................................................................   2-1
2.1.1 Unary Operators ..................................................................................................................   2-1
2.1.2 Binary Operators..................................................................................................................   2-1
2.1.3 Set Operators ........................................................................................................................   2-1
2.1.4 Other Operators ...................................................................................................................   2-2
2.2 Arithmetic Operators .................................................................................................................   2-2
2.3 Character Operators ...................................................................................................................   2-2
2.3.1 Concatenating Character Strings.......................................................................................   2-3
2.4 Comparison Operators...............................................................................................................   2-3
2.5 Logical Operators........................................................................................................................   2-4
2.6 Set Operators ...............................................................................................................................   2-5
2.7 Other Operators ..........................................................................................................................   2-6

3  SQL Functions

3.1 SQL Function Types ...................................................................................................................   3-1
3.2 SQL Functions Overview...........................................................................................................   3-2
3.2.1 Number Functions...............................................................................................................   3-3
3.2.2 Character Functions.............................................................................................................   3-3
3.2.3 Character Functions Returning Number Values.............................................................   3-3
3.2.4 Date Functions......................................................................................................................   3-3
3.2.5 Conversion Functions .........................................................................................................   3-3
3.3 SQL Functions Alphabetical Listing ........................................................................................   3-3
3.3.1 ADD_MONTHS...................................................................................................................   3-4
3.3.2 ASCII......................................................................................................................................   3-4
3.3.3 AVG .......................................................................................................................................   3-4
3.3.4 CASE......................................................................................................................................   3-5
3.3.5 CAST......................................................................................................................................   3-6
3.3.6 CEIL .......................................................................................................................................   3-8
3.3.7 CHR .......................................................................................................................................   3-9
3.3.8 CONCAT...............................................................................................................................   3-9
3.3.9 CONVERT.............................................................................................................................   3-9
3.3.10 COUNT ..............................................................................................................................    3-10
3.3.11 CURDATE..........................................................................................................................    3-11
3.3.12 CURRENT_DATE.............................................................................................................    3-12
3.3.13 CURRENT_TIME..............................................................................................................    3-12
3.3.14 CURRENT_TIMESTAMP................................................................................................    3-12
3.3.15 CURTIME...........................................................................................................................    3-13
3.3.16 DATABASE .......................................................................................................................    3-13
3.3.17 DAYNAME........................................................................................................................    3-14
3.3.18 DAYOFMONTH ...............................................................................................................    3-14
3.3.19 DAYOFWEEK ...................................................................................................................    3-15
3.3.20 DAYOFYEAR ....................................................................................................................    3-15
3.3.21 DECODE ............................................................................................................................    3-16
3.3.22 EXTRACT...........................................................................................................................    3-17
3.3.23 FLOOR................................................................................................................................    3-18



vi

3.3.24 GREATEST.........................................................................................................................    3-18
3.3.25 HOUR .................................................................................................................................    3-18
3.3.26 INITCAP ............................................................................................................................    3-19
3.3.27 INSTR .................................................................................................................................    3-19
3.3.28 INSTRB...............................................................................................................................    3-20
3.3.29 INTERVAL.........................................................................................................................    3-20
3.3.30 LAST_DAY ........................................................................................................................    3-21
3.3.31 LEAST.................................................................................................................................    3-21
3.3.32 LENGTH ............................................................................................................................    3-22
3.3.33 LENGTHB .........................................................................................................................    3-22
3.3.34 LOCATE.............................................................................................................................    3-23
3.3.35 LOWER...............................................................................................................................    3-24
3.3.36 LPAD ..................................................................................................................................    3-24
3.3.37 LTRIM.................................................................................................................................    3-25
3.3.38 MAX....................................................................................................................................    3-25
3.3.39 MIN.....................................................................................................................................    3-25
3.3.40 MINUTE.............................................................................................................................    3-26
3.3.41 MOD ...................................................................................................................................    3-26
3.3.42 MONTH .............................................................................................................................    3-26
3.3.43 MONTHNAME.................................................................................................................    3-27
3.3.44 MONTHS_BETWEEN......................................................................................................    3-27
3.3.45 NEXT_DAY........................................................................................................................    3-28
3.3.46 NOW...................................................................................................................................    3-28
3.3.47 NVL.....................................................................................................................................    3-29
3.3.48 POSITION ..........................................................................................................................    3-30
3.3.49 QUARTER..........................................................................................................................    3-31
3.3.50 REPLACE...........................................................................................................................    3-31
3.3.51 ROUND - Date Function..................................................................................................    3-32
3.3.52 ROUND - Number Function...........................................................................................    3-32
3.3.53 RPAD..................................................................................................................................    3-33
3.3.54 RTRIM ................................................................................................................................    3-33
3.3.55 SECOND ............................................................................................................................    3-34
3.3.56 STDDEV .............................................................................................................................    3-34
3.3.57 SUBSTR ..............................................................................................................................    3-35
3.3.58 SUBSTRB............................................................................................................................    3-35
3.3.59 SUM ....................................................................................................................................    3-36
3.3.60 SYSDATE ...........................................................................................................................    3-36
3.3.61 TIMESTAMPADD ............................................................................................................    3-36
3.3.62 TIMESTAMPDIFF ............................................................................................................    3-37
3.3.63 TO_CHAR..........................................................................................................................    3-39
3.3.64 TO_DATE...........................................................................................................................    3-39
3.3.65 TO_NUMBER....................................................................................................................    3-40
3.3.66  TRANSLATE ....................................................................................................................    3-41
3.3.67 TRIM ..................................................................................................................................    3-41
3.3.68 TRUNC...............................................................................................................................    3-42
3.3.69 UPPER ................................................................................................................................    3-43
3.3.70 USER...................................................................................................................................    3-43



vii

3.3.71 VARIANCE........................................................................................................................    3-44
3.3.72 WEEK .................................................................................................................................    3-44
3.3.73 YEAR ..................................................................................................................................    3-45

4  SQL Commands

4.1 SQL Command Types ................................................................................................................   4-1
4.2 SQL Commands Overview........................................................................................................   4-2
4.2.1 Data Definition Language (DDL) Commands ................................................................   4-2
4.2.2 Data Manipulation Language (DML) Commands..........................................................   4-2
4.2.3 Transaction Control Commands .......................................................................................   4-2
4.2.4 Clauses...................................................................................................................................   4-2
4.2.5 Pseudocolumns ....................................................................................................................   4-3
4.2.6 BNF Notation Conventions ................................................................................................   4-3
4.3 SQL Commands Alphabetical Listing .....................................................................................   4-3
4.3.1 ALTER SEQUENCE ............................................................................................................   4-4
4.3.2 ALTER SESSION..................................................................................................................   4-5
4.3.3 ALTER TABLE .....................................................................................................................   4-6
4.3.4 ALTER TRIGGER .............................................................................................................    4-12
4.3.5 ALTER USER.....................................................................................................................    4-13
4.3.6 ALTER VIEW ....................................................................................................................    4-14
4.3.7 COMMIT............................................................................................................................    4-15
4.3.8 CONSTRAINT clause.......................................................................................................    4-16
4.3.9 CREATE DATABASE ......................................................................................................    4-19
4.3.10 CREATE FUNCTION.......................................................................................................    4-21
4.3.11 CREATE GLOBAL TEMPORARY TABLE ...................................................................    4-25
4.3.12 CREATE INDEX ...............................................................................................................    4-26
4.3.13 CREATE JAVA..................................................................................................................    4-28
4.3.14 CREATE PROCEDURE ...................................................................................................    4-31
4.3.15 CREATE SCHEMA...........................................................................................................    4-35
4.3.16 CREATE SEQUENCE ......................................................................................................    4-37
4.3.17 CREATE SYNONYM .......................................................................................................    4-38
4.3.18 CREATE TABLE ...............................................................................................................    4-40
4.3.19 CREATE TRIGGER...........................................................................................................    4-43
4.3.20 CREATE USER..................................................................................................................    4-45
4.3.21 CREATE VIEW..................................................................................................................    4-47
4.3.22 CURRVAL and NEXTVAL pseudocolumns ................................................................    4-49
4.3.23 DELETE..............................................................................................................................    4-51
4.3.24 DROP clause ......................................................................................................................    4-52
4.3.25 DROP FUNCTION ...........................................................................................................    4-53
4.3.26 DROP INDEX ....................................................................................................................    4-54
4.3.27 DROP JAVA ......................................................................................................................    4-55
4.3.28 DROP PROCEDURE ........................................................................................................    4-56
4.3.29 DROP SCHEMA ...............................................................................................................    4-57
4.3.30 DROP SEQUENCE ...........................................................................................................    4-57
4.3.31 DROP SYNONYM............................................................................................................    4-58
4.3.32 DROP TABLE ....................................................................................................................    4-59
4.3.33 DROP TRIGGER ...............................................................................................................    4-60



viii

4.3.34 DROP USER.......................................................................................................................    4-61
4.3.35 DROP VIEW ......................................................................................................................    4-62
4.3.36 EXPLAIN PLAN ...............................................................................................................    4-63
4.3.37 GRANT...............................................................................................................................    4-64
4.3.38 INSERT...............................................................................................................................    4-66
4.3.39 LEVEL pseudocolumn .....................................................................................................    4-68
4.3.40 OL__ROW_STATUS pseudocolumn .............................................................................    4-69
4.3.41 REVOKE.............................................................................................................................    4-70
4.3.42 ROLLBACK .......................................................................................................................    4-71
4.3.43 ROWID pseudocolumn....................................................................................................    4-73
4.3.44 ROWNUM pseudocolumn..............................................................................................    4-73
4.3.45 SAVEPOINT ......................................................................................................................    4-74
4.3.46 SELECT...............................................................................................................................    4-76
4.3.46.1 SELECT Command Arguments ..............................................................................    4-76
4.3.46.2 The SUBQUERY Expression ....................................................................................    4-79
4.3.46.3 The FOR_UPDATE Clause.......................................................................................    4-80
4.3.46.4 The ORDER_BY Clause ............................................................................................    4-81
4.3.46.5 The TABLE_REFERENCE Expression ...................................................................    4-81
4.3.46.6 The ODBC_JOIN_TABLE Expression ....................................................................    4-82
4.3.46.7 The JOINED_TABLE Expression ............................................................................    4-82
4.3.46.8 The HINT Expression ...............................................................................................    4-82
4.3.46.9 The LIMIT and OFFSET Clauses .............................................................................    4-84
4.3.46.10 Examples For the SELECT Command....................................................................    4-86
4.3.47 SET TRANSACTION .......................................................................................................    4-87
4.3.48 TRUNCATE TABLE.........................................................................................................    4-89
4.3.49 UPDATE.............................................................................................................................    4-90

A  Oracle Database Lite Keywords and Reserved Words

A.1 Oracle Database Lite Keywords...............................................................................................    A-1
A.2 Oracle Database Lite Reserved Words....................................................................................    A-3

B  SQL Limitations For Oracle Database Lite

C  Oracle Database Lite Datatypes

C.1 BIGINT.........................................................................................................................................    C-2
C.2 BINARY.......................................................................................................................................    C-3
C.3 BIT ................................................................................................................................................    C-3
C.4 BLOB ............................................................................................................................................    C-3
C.5 CHAR...........................................................................................................................................    C-4
C.6 CLOB............................................................................................................................................    C-5
C.7 DATE ...........................................................................................................................................    C-6
C.8 DECIMAL ...................................................................................................................................    C-6
C.9 DOUBLE PRECISION ...............................................................................................................    C-7
C.10 FLOAT .........................................................................................................................................    C-7
C.11 INTEGER.....................................................................................................................................    C-7
C.12 LONG...........................................................................................................................................    C-8



ix

C.13 LONG RAW................................................................................................................................    C-8
C.14 LONG VARBINARY .................................................................................................................    C-8
C.15 LONG VARCHAR.....................................................................................................................    C-9
C.16 NUMBER.....................................................................................................................................    C-9
C.17 NUMERIC.................................................................................................................................   C-10
C.18 RAW...........................................................................................................................................   C-10
C.19 REAL..........................................................................................................................................   C-10
C.20 ROWID ......................................................................................................................................   C-11
C.21 SMALLINT ...............................................................................................................................   C-11
C.22 TIME ..........................................................................................................................................   C-11
C.23 TIMESTAMP.............................................................................................................................   C-12
C.24 TINYINT....................................................................................................................................   C-12
C.25 VARBINARY ............................................................................................................................   C-12
C.26 VARCHAR................................................................................................................................   C-13
C.27 VARCHAR2..............................................................................................................................   C-13

D  Oracle Database Lite Literals

D.1 CHAR, VARCHAR....................................................................................................................    D-1
D.2 DATE ...........................................................................................................................................    D-1
D.3 DECIMAL, NUMERIC, NUMBER ..........................................................................................    D-2
D.4 REAL, FLOAT, DOUBLE PRECISION ...................................................................................    D-2
D.5 SMALLINT, INTEGER, BIGINT, TINYINT...........................................................................    D-3
D.6 TIME ............................................................................................................................................    D-3
D.7 TIMESTAMP...............................................................................................................................    D-3

E     Index Creation Options

E.1 Uniqueness Constraint in Oracle Lite .....................................................................................    E-1
E.1.1 The Address Table Example .............................................................................................    E-1
E.1.2 Using Uniqueness Constraints..........................................................................................    E-1
E.1.3 Specifying the Number of Columns in an Index............................................................    E-1
E.1.3.1 The POLITE.INI File....................................................................................................    E-2
E.1.3.2 The CREATE UNIQUE INDEX Statement ..............................................................    E-2
E.1.3.3 The CREATE TABLE and ALTER TABLE Statements ..........................................    E-2
E.1.3.4 Usage Notes..................................................................................................................    E-3

F  Syntax Diagram Conventions

F.1 Introduction ................................................................................................................................    F-1
F.2 Required Keywords and Parameters ......................................................................................    F-1
F.3 Optional Keywords and Parameters.......................................................................................    F-2
F.4 Syntax Loops...............................................................................................................................    F-2
F.5 Multipart Diagrams ...................................................................................................................    F-3
F.6 Database Objects ........................................................................................................................    F-3
F.7 BNF Notation..............................................................................................................................    F-3



x

Glossary

Index



xi

Send Us Your Comments

Oracle Database Lite SQL Reference 10g (10.2.0)

Part No.  B15917-01

Oracle Corporation welcomes your comments and suggestions on the quality and 
usefulness of this publication. Your input is an important part of the information used 
for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information?  If so, where?

■ Are the examples correct?  Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate 
the title and part number of the documentation and the chapter, section, and page 
number (if available). You can send comments to us in the following ways:

■ Electronic mail: helplite_us@oracle.com 

■ FAX: (650) 506-7355.   Attn:  Oracle Database Lite 10g

■ Postal service:

Oracle Corporation 
Oracle Database Lite Documentation Manager
500 Oracle Parkway, Mailstop 1op2
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and 
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support 
Services.



xii



xiii

Preface

This preface introduces the Oracle Database Lite SQL Reference. This reference describes 
the Structured Query Language (SQL) used to manage information in an Oracle 
Database Lite database. 

Oracle SQL is a superset of the SQL-92 standard defined by the American National 
Standards Institute (ANSI) and the International Standards Organization (ISO). 

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible, with good usability, to the disabled community. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Standards will continue to evolve over 
time, and Oracle is actively engaged with other market-leading technology vendors to 
address technical obstacles so that our documentation can be accessible to all of our 
customers. For additional information, visit the Oracle Accessibility Program Web site 
at 

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader, 
may not always correctly read the code examples in this document. The conventions 
for writing code require that closing braces should appear on an otherwise empty line; 
however, JAWS may not always read a line of text that consists solely of a bracket or 
brace.

Accessibility of Links to External Web Sites in Documentation This documentation 
may contain links to Web sites of other companies or organizations that Oracle does 
not own or control. Oracle neither evaluates nor makes any representations regarding 
the accessibility of these Web sites.

Structure
The following topics are discussed:

■ Chapter 1, "Using SQL"

Lists and defines important differences between Oracle Lite SQL and Oracle SQL, 
and explains how to use SQL.

■ Chapter 2, "SQL Operators"



xiv

Describes the following types of Oracle Lite SQL operators: arithmetic, character, 
comparison, logical, set, and other.

■ Chapter 3, "SQL Functions"

Describes the following types of Oracle Lite SQL functions: number, character, 
character returning number values, date, conversion, group, other.

■ Chapter 4, "SQL Commands"

Describes the following types of Oracle Lite SQL commands: Data Definition 
Language (DDL), Data Manipulation Language (DML), transaction control, 
clauses, and pseudocolumns.

■ Appendix A, "Oracle Database Lite Keywords and Reserved Words"

Contains a list and description of Oracle Lite keywords and reserved words.

■ Appendix B, "SQL Limitations For Oracle Database Lite"

Contains the SQL limitations for the Oracle Lite database.

■ Appendix C, "Oracle Database Lite Datatypes"

Contains a list and description of Oracle Lite datatypes.

■ Appendix D, "Oracle Database Lite Literals"

Contains a list and description of Oracle Lite literals.

■ Appendix E, "Index Creation Options"

Describes additional options for the CREATE INDEX command.

■ Appendix F, "Syntax Diagram Conventions"

Explains the syntax diagrams and document conventions used in the Oracle 
Database Lite SQL Reference.



Using SQL 1-1

1
Using SQL

This document discusses how SQL is used with Oracle Database Lite. Topics include:

■ Section 1.1, "SQL Overview"

■ Section 1.2, "Oracle Lite SQL and Oracle SQL Comparison"

■ Section 1.3, "Oracle Database Lite SQL Conventions"

■ Section 1.4, "ODBC SQL Syntax Conventions"

■ Section 1.5, "Oracle Database Lite Database Object Naming Conventions"

■ Section 1.6, "Formats"

■ Section 1.7, "Specifying SQL Conditions"

■ Section 1.8, "Specifying Expressions"

■ Section 1.9, "Oracle Database Lite SQL Datatypes and Literals"

■ Section 1.10, "Comments Within SQL Statements"

■ Section 1.11, "Tuning SQL Statement Execution Performance With the EXPLAIN 
PLAN"

1.1 SQL Overview
Oracle Database Lite uses the SQL (Structured Query Language) database language to 
store and retrieve data. It includes the following categories of SQL statements:

■ DDL (Data Definition Language)

Used to create, alter, or drop database objects, such as schemas, tables, columns, 
views, and sequences. For example, statements that use the commands, ALTER, 
CREATE, DROP, GRANT, and REVOKE.

■ DML (Data Manipulation Language) 

Used to query and manipulate data in existing schema objects. For example, 
statements that use the commands, SELECT, INSERT, UPDATE, and DELETE.

■ TCL (Transaction Control Language) 

These statements manage changes made in DML statements. For example, 
statements that use the commands, COMMIT, ROLLBACK, and SAVEPOINT.

■ Clause

Subsets of commands that modify commands. Oracle Lite supports CONSTRAINT 
and DROP clauses.



Oracle Lite SQL and Oracle SQL Comparison

1-2 Oracle Database Lite SQL Reference

■ Pseudocolumns

Values generated from commands that behave like columns of a table but are not 
actually stored in the table. Oracle Database Lite supports the LEVEL and ROWNUM 
pseudocolumns.

■ Functions

Operate on data to transform or aggregate it. For example, TO_DATE to transform 
a date column into a particular format, and SUM to total all values for a column.

1.1.1 Examples
This reference provides SQL statement examples. All examples are based on the 
default Oracle Database Lite objects.

1.1.2 Oracle SQL and SQL-92
Oracle Database Lite uses Oracle SQL as its default SQL language. Oracle SQL handles 
computation results and date data in a different manner than SQL-92. The differences 
between Oracle SQL and SQL-92 are listed in Table 1–1.

Although Oracle Database Lite uses Oracle SQL, by default it supports several SQL-92 
features including:

■ Column datatypes: TIME, TIMESTAMP, TINYINIT, and BIT

■ CASE expression

■ CAST expression

1.1.2.1 Running SQL-92 on Oracle Lite
As mentioned in the preceding section, Oracle Database Lite uses Oracle SQL by 
default. However, if you want to support SQL-92 by default instead of Oracle SQL, 
you can change the SQL compatibility parameter in the POLITE.INI file to SQL-92. 
To change the parameter, add the following in the POLITE.INI file.

SQLCOMPATIBILITY=SQL92

See the Oracle Database Lite Administration and Deployment Guide for more information 
about the POLITE.INI file.

1.2 Oracle Lite SQL and Oracle SQL Comparison
The SQL language supported by Oracle Database Lite is a subset of the SQL language 
supported by Oracle. Oracle Database Lite supports some additional SQL-92 database 
objects, functions, and commands.

Table 1–1 Differences Between Oracle SQL and SQL-92

Oracle SQL SQL-92

Division yields a double precision result 
such as 3.333. For example 8/3 yields 2.666.

Division yields datatypes of operands such as 3. 
For example, 8/3 yields 2.

DATE datatype stores full timestamp 
information but only displays the date 
portion.

DATE datatype stores and displays date but no 
timestamp information.



Oracle Lite SQL and Oracle SQL Comparison

Using SQL 1-3

1.2.1 Objects
The differences between database objects supported by Oracle Database Lite and those 
supported by Oracle are listed in Table 1–2. See "Oracle Database Lite Database Object 
Naming Conventions" for more information:

1.2.2 Operators
Chapter 2, "SQL Operators", lists the operators supported by Oracle Database Lite. In 
general, the Oracle Database Lite supports all operators supported by Oracle.

Except for datatype-related differences, the corresponding operators always work 
identically.

1.2.3 Functions
Chapter 3, "SQL Functions" lists the functions supported by Oracle Database Lite. The 
functions listed in Table 1–3 produce different results in Oracle and Oracle Database 
Lite. 

1.2.4 Commands
Some Oracle commands have a more limited functionality in Oracle Database Lite. The 
Oracle command parameters that are not supported by Oracle Database Lite are listed 
in Table 1–4.

Table 1–2 Differences Between Oracle Database Lite and Oracle-Supported Database 
Objects

Supported by Oracle Database Lite Supported by Oracle

Tables, views, indexes, sequences, schemas, snapshots. All database objects.

A name identifier up to 128 characters for columns, indexes, tables, 
and schemas. User name identifiers can be up to 30 characters. 

A name identifier up to 31 
characters.

Table 1–3 Function Behavior in Oracle Database Lite and Oracle

Function Supported by Oracle Lite Supported by Oracle

ROWID 16 characters long 18 characters long

TO_CHAR does not accept 'nlsparams' accepts 'nlsparams'

TO_DATE does not accept 'nlsparams' accepts 'nlsparams'

TO_NUMBER does not accept 'nlsparams' accepts 'nlsparams'

Table 1–4 Oracle Command Parameters Not Supported by Oracle Database Lite

Command Element Unsupported by Oracle Lite

CREATE TABLE Index clause for table and column constraints.

Exceptions into clauses for table and column constraints.

Physical organization clauses.

Deferred options for columns and tables.



Oracle Lite SQL and Oracle SQL Comparison

1-4 Oracle Database Lite SQL Reference

Oracle Database Lite does not support the following commands and clauses.

■ Commands related to the following database objects.

■ Clusters

■ Database links

■ Stored functions and procedures other than Java stored procedures

■ Packages

■ Profiles

■ Rollback segments

■ Snapshot logs

■ Table spaces

■ Physical data storage clauses such as PCTFREE.

1.2.5 Miscellaneous Data Definition Language (DDL)
Oracle Database Lite does not support space management, table spaces, and 
INITRANS.

Oracle Database Lite DDL does not commit when executed as Oracle does, but 
commits as part of the current transaction. 

CREATE TRIGGER On Views

OR REPLACE

INSTEAD OF

REFERENCING OLD

REFERENCING NEW

WHEN

OR

ALTER TABLE RENAME

ALTER INDEX Rename index option.

Rebuild index option.

SET TRANSACTION READ ONLY

READ WRITE

UPDATE Set clause containing subqueries that select more than one column.

Returning clause where row IDs for updated rows are returned.

TO_CHAR When used to extract timestamp from date value.

Note: There may be differences in subqueries for Oracle and 
Oracle Database Lite.

Table 1–4 (Cont.) Oracle Command Parameters Not Supported by Oracle Database Lite

Command Element Unsupported by Oracle Lite



Oracle Lite SQL and Oracle SQL Comparison

Using SQL 1-5

1.2.6 Datatypes
Oracle Database Lite supports more datatypes than Oracle. For results similar to those 
of Oracle in Oracle Database Lite, use NUMBER and specify precision and scale.

Oracle anticipates datatypes to return and their display. It may produce results 
automatically, where Oracle Database Lite may need a specific CAST (one_datatype AS 
another_datatype) in the statement. You should avoid INT, FLOAT, and DOUBLE if you 
want portability between machine types. Oracle Database Lite uses the native 
implementations of these datatypes while Oracle maps these to specific NUMBER 
datatypes.

1.2.7 Indicator Variables
Oracle Database Lite uses 32-bit LONG indicator variables integers. Oracle uses, 16-bit 
SHORT indicator variables integers.

1.2.8 Data Precision During Arithmetic Operations
Oracle databases look at the datatype on the left side of an assignment when deciding 
how many decimal places of a result to store into a column. Oracle Database Lite 
follows SQL-92 convention, and only provides the maximum number of digits of 
precision from the right side of the assignment.

1.2.9 Data Dictionaries
The Oracle Database Lite data dictionary is different from the Oracle data dictionary. 
Oracle Database Lite provides many commonly used system views including ALL_
TABLES and ALL_INDEXES.

1.2.10 Tables Not Installed with Oracle Database Lite
The table system.product_privs, which contains product user profiles in an 
Oracle database, does not exist in the Oracle Database Lite.

1.2.11 Messages
Oracle Database Lite may not generate the same messages that Oracle databases 
generate in response to SQL commands. The error codes may also be different. 
Applications should not depend on a specific error code or message text to recognize 
that an error has occurred. 

1.2.12 Sequences
Oracle Database Lite does not support CYCLE and CACHE clauses in sequence 
statements. Sequence numbers are also subject to ROLLBACK under some 
circumstances.

1.2.13 PL/SQL
Oracle Database Lite does not support PL/SQL. However, Oracle Database Lite does 
support stored procedures and triggers written in Java.



Oracle Database Lite SQL Conventions

1-6 Oracle Database Lite SQL Reference

1.2.14 SQL Functions
Oracle Database Lite does not support trigonometric functions, SOUNDEX, or bit 
operations.

1.2.15 Locking and Transactions
Oracle Database Lite begins a transaction with the first use of SELECT. In some 
isolation levels, the use of a SELECT on one connection can lock out an UPDATE of the 
same table on another connection. You may need to COMMIT after a SELECT to free the 
lock, so the UPDATE may proceed. 

1.3 Oracle Database Lite SQL Conventions
When you issue a SQL statement, you can include one or more tabs, carriage returns, 
spaces, or comments anywhere a space occurs within the definition of the command. 
Oracle Database Lite SQL evaluates the following two statements in the same manner.

SELECT ENAME,SAL*12,MONTHS_BETWEEN(HIREDATE,SYSDATE) FROM EMP;

SELECT ENAME,
   SAL * 12,
      MONTHS_BETWEEN( HIREDATE, SYSDATE )
   FROM EMP;

Reserved words, keywords, identifiers and parameters are not case-sensitive. 
However, text literals and quoted names are case-sensitive. See the syntax descriptions 
in Chapter 3, "SQL Functions" and Chapter 4, "SQL Commands".

1.3.1 SQL Statement Syntax
SQL syntax definitions use the following conventions. SQL syntax definitions are 
always shown in monospace text.

1.3.1.1 Capital Letters
SELECT

Indicates literal text that must be entered as shown.

1.3.1.2 Lowercase
table_name

Indicates a place holder that should be replaced by an appropriate value or expression. 
Any additional delimiter that the replacement value or expression requires such as 
single quotes is shown.

1.3.1.3 Bracket Delimited
[PUBLIC] OR [MAXVALUE | NOMAXVALUE]

Indicates an optional item or clause. Multiple items or clauses are separated by vertical 
bars. Do not enter brackets or vertical bars.

1.3.1.4 Braces
{ENABLE | DISABLE | COMPILE}



Oracle Database Lite SQL Conventions

Using SQL 1-7

Braces enclose two or more required alternative choices, separated by vertical bars. Do 
not enter braces or vertical bars.

1.3.1.5 Vertical Bars
{IDENTITY | NULL} OR  [MAXVALUE integer | NOMAXVALUE]

Vertical bars separate two or more choices, either required arguments enclosed in 
braces { } or optional arguments enclosed in brackets [ ]. Do not enter vertical bars, 
braces, or brackets.

1.3.1.6 Ellipsis
[, column] ...

Indicates that further repetitions of the argument expressed in the same format are 
permissible. Do not enter ellipses.

1.3.1.7 Underline
[ASC | DESC]

Indicates the default value used if you do not specify any of the options separated by 
vertical bars.

1.3.1.8 Block Letters
PCTFREE

Indicates a keyword that should be entered exactly as shown.

1.3.1.9 Initial Colon
: integer_value

Indicates a place holder that should be replaced by an appropriate reference to a host 
variable. You include the initial colon with the host variable reference.

1.3.2 SQL Tables
A database can be made up of one or more database files or catalogs in ODBC and 
SQL-92. The fundamental unit of storage in SQL is a table consisting of rows of data 
organized in columns. All database objects, including tables, views, and indexes, are 
owned by a user name or a schema. By default in Oracle Database Lite, tables are 
created as part of the user schema, the schema with the same name as the login ID.

1.3.3 SQL Object Names
Object names in SQL must begin with a letter and may contain numbers and the 
special characters "_" and "$". Names are generally not case-sensitive. Mixed case 
names are permitted when enclosed in double quotes (" ").

Object names may be qualified by the catalog and schema to which they belong by 
separating the qualifiers with a period ".". For example, 

production.payroll.emp.salary

This example refers to the salary column of the emp table owned by the payroll 
schema in the production catalog.



Oracle Database Lite SQL Conventions

1-8 Oracle Database Lite SQL Reference

1.3.4 SQL Operator Precedence
The following list describes the relative precedence of SQL operators. The operators at 
the top of the list have the highest precedence (they are evaluated first); the operators 
at the bottom of the list have the lowest precedence (they are evaluated last). 
Operators of equal precedence are evaluated from left to right.

1. + (unary), -(unary), PRIOR

2. *,/

3. +, -, ||

4. All comparison operators

5. NOT

6. AND

7. OR

You can use parentheses in an expression to override operator precedence. Expressions 
inside parentheses are evaluated before those outside parentheses.

1.3.5 SQL Sessions
The execution of SQL statements requires the existence of a SQL session. An 
application can establish a SQL session by performing the following.

■ Issuing a SQL statement that requires a SQL session (a default session is implicitly 
established).

■ Issuing SQLConnect or SQLDriverConnect ODBC calls.

A SQL session is closed when one of the following occurs. 

■ The SQLDisconnect API in ODBC is called.

■ An ODBC program terminates.

1.3.6 SQL Transactions
SQL databases handle requests in logical units of work called transactions. A 
transaction is a group of related operations that must be performed successfully before 
any changes to the database are finalized. 

A SQL transaction starts when any DDL or DML statement is executed in a session. 
When you are satisfied that no errors occurred during the transaction, you can end the 
transaction with a COMMIT command. The database then changes to reflect the 
operation. If an error occurs, you can abandon the changes with the ROLLBACK 
command.

Oracle Database Lite does not commit a DDL statement until you issue the COMMIT 
command. Oracle immediately commits all DDL statements.

1.3.7 Issuing SQL Statements From a Program
Oracle Database Lite datatypes and object classes are interoperable with other 
programming languages. You can issue SQL statements to Oracle Database Lite in a 
host language if you connect to the database from within the application, using the 
appropriate ODBC or JDBC driver.



Oracle Database Lite Database Object Naming Conventions

Using SQL 1-9

1.3.8 SQL and ODBC
The Open Database Connectivity (ODBC) interface from Microsoft defines a call level 
interface to provide interoperability across different databases. ODBC specifies a set of 
interface functions to allow the following features. 

■ Connections to databases by different vendors.

■ Preparation and execution of SQL statements in a common language.

■ Retrieval of query results into local program variables.

Oracle Database Lite supports the ODBC 2.0 call level interface (CLI). Oracle Database 
Lite SQL supports implicit type conversion from the character string type to another 
datatype when necessary. For example, if the datatype of a column AGE is INTEGER, 
and you execute the following statement. 

UPDATE EMPLOYEE SET AGE = '30' WHERE NAME = 'John'

'30' is automatically converted to an INTEGER type.

1.4 ODBC SQL Syntax Conventions
There are two principal reasons to use ODBC SQL syntax rather than the SQL syntax 
that is specific to your database.

First, SQL statements written in ODBC syntax are easily transferred among 
ODBC-compliant databases. Even though ODBC SQL syntax does not include many of 
the keywords and arguments that invoke important functionality for a specific 
database, SQL statements written in ODBC syntax are fully portable among all 
ODBC-compliant databases.

Second, you can use ODBC SQL syntax to execute SQL statements against databases 
that you are not familiar with. While ODBC SQL syntax cannot invoke your database's 
full functionality like your database's own SQL syntax, you can use it to perform many 
of the most common, and important, database functions.

You can always use database-specific SQL syntax, even when connected to a database 
through ODBC, since ODBC passes SQL statements through to a connected database 
without modification.

1.5 Oracle Database Lite Database Object Naming Conventions
This section lists rules for naming Oracle Database Lite database objects and their 
parts.

1. User names must be from 1 to 30 characters long. Columns, indexes, tables, and 
schemas can be up to 128 characters long. Oracle Database Lite has no limit on 
name length, but it is recommended that you limit your name length to 30 
characters.

2. Names cannot contain quotation marks.

3. Names are not case sensitive.

4. A name must begin with an alphabetic character.

5. Names can contain only alphanumeric characters and the characters _,$,and #. 
The use of $ and # is not recommended.

6. A name cannot be an Oracle Database Lite reserved word.

7. The word DUAL should not be used as a name for an object or part.



Formats

1-10 Oracle Database Lite SQL Reference

8. The Oracle Database Lite SQL language contains other keywords that have special 
meanings. Because these keywords are not reserved, you can also use them as 
names for objects and object parts. However, using them as names may make your 
SQL statements more difficult to read. See Appendix A, "Oracle Database Lite 
Keywords and Reserved Words" for a list of Oracle Lite keywords.

9. A name must be unique across its name space.

10. A name can be enclosed in double quotes. Such names can contain any 
combination of characters, ignoring rules 3 through 7 in this list.

11. Names cannot contain a dot (".") character.

1.6 Formats
The sections Number Format Elements and Date Format Elements list the elements 
you can use to create a valid number or date format. Formats can be used as 
arguments to the SQL functions: TO_DATE, TO_NUMBER, TO_CHAR, and TRUNC.

1.6.1 Number Format Elements
Oracle Database Lite number formats are listed in Table 1–5.

1.6.2 Date Format Elements
Oracle Database Lite date formats are listed in Table 1–6.

Table 1–5 Oracle Database Lite Number Formats

Element Example Description

9 9999 The number of nines specifies the number of significant digits 
returned. Blanks are returned for leading zeros and for a value 
of zero.

0 0000.00 Returns a leading zero or a value of zero as a 0, rather than as a 
blank.

$ $9999 Prefixes value with a dollar sign.

B B9999 Returns zero value as blank, regardless of zeros in the format 
model.

MI 9999MI Returns "-" after negative values. For positive values, a trailing 
space is returned.

S S9999 Returns "+" for positive values and "-" for negative values.

PR 9999PR Returns negative values in <angle brackets>. For positive 
values, a leading and trailing space are returned.

D 99D99 Returns the decimal character, separating the integral and 
fractional parts of a number.

G 9G999 Returns the group separator.

C C999 Returns the ISO currency symbol.

L L999 Returns the local currency symbol.

, (comma) 9,999 Returns a comma.

. (period) 99.99 Returns a period, separating the integral and fractional parts of 
a number.

EEEE 9.999EEEE Returns a value in scientific notation.



Specifying SQL Conditions

Using SQL 1-11

1.7 Specifying SQL Conditions
Use one of the following syntax forms to specify a SQL condition. The syntax 
diagrams in this document use a variation of Backus-Nauer Form (BNF) notation. For 
a description of the convention used in this document, please see Section 4.2.6, "BNF 
Notation Conventions".

1.7.1 Simple Comparison Conditions
A simple comparison condition specifies a comparison with expressions or subquery 
results using the syntax displayed in Figure 1–1.

Table 1–6 Oracle Database Lite Date Formats

Element Description

SCC or CC Century; "S" prefixes BC dates with "-".

YYYY or SYYYY 4-digit year; "S" prefixes BC dates with "-".

IYYY 4-digit year based on the ISO standard.

YYY or YY or Y Last 3, 2, or 1 digit(s) of year.

IYY or IY or I Last 3, 2, or 1 digit(s) of the ISO year.

Y,YYY Year with comma.

Q Quarter of year (1, 2, 3, 4; JAN-MAR = 1)

MM Month (01-12; JAN = 01)

MONTH Name of month; padded with blanks to length of 9 characters.

MON Abbreviated name of the month.

WW Week of year (1-53) where week 1 starts on the first day of the 
year and continues to the seventh day of the year.

IW Week of year (1-52 or 1-53) based on the ISO standard.

W Week of month (1-5) where week 1 starts on the first day of the 
year and continues to the seventh day of the year.

DDD Day of year (1-366).

DD Day of month (1-31).

D Day of week (1-7).

DAY Name of day, padded with blanks to length of 9 characters.

DY Abbreviated name of day.

AM or PM Meridian indicator.

A.M. or P.M. Meridian indicator with periods.

HH or HH12 Hour of day (1-12).

HH24 Hour of day (0-23).

MI Minute (0-59).

RR Last 2 digits of year; for years in other countries.

SS Second (0-59).

SSSSS Seconds past midnight (0-86399).

- / . ; : "text" Punctuation and quoted text is reproduced in the result.



Specifying SQL Conditions

1-12 Oracle Database Lite SQL Reference

Figure 1–1 A SIMPLE COMPARISON Condition

BNF Notation
{ expr { = | != | ^= | <> | > | < | >= | <= } { expr |"(" subquery")"}

For example, 

SELECT * FROM EMP WHERE SAL > 2000;

For information on comparison operators, see Comparison Operators.

1.7.2 Group Comparison Conditions 
A group comparison condition specifies a comparison with any or all members in a list 
or subquery using the syntax displayed in Figure 1–2.

Figure 1–2 A GROUP COMPARISON Condition

BNF Notation
{ expr 
   { = | != | ^= | <> | > | < | >= | <= } 



Specifying SQL Conditions

Using SQL 1-13

   { ANY | SOME | ALL } 
   {"(" subquery")"}
| expr_list 
   { = | != }
   { ANY | SOME | ALL } 
   { "(" subquery ")"}
}

For example:

SELECT * FROM EMP WHERE ENAME = any ('SMITH', 'WARD', 'KING');

1.7.2.1 A Row_Value_Constructor in a Subquery Comparison
This allows the comparison of columns or expressions using a subquery that returns a 
multi-column result. This feature allows users to supply a row value constructor, such 
as a list of comma-separated expressions enclosed within parenthesis.

1.7.2.2 Subquery in Place of a Column
You may insert a subquery anywhere. An arithmetic expression or a column can 
appear. The subquery needs to be enclosed in parenthesis and is restricted to return a 
maximum of one row with one column.

For example,

1.  Subquery in a select list. The following query is supported (assuming c1 and c2 
are columns in table t1 and c1 is a primary key).

   SELECT (select c1 from t1 b where a.c1 = b.c1), 
       c2 from t1 a where <condition>

The select list of the subquery in a select list can itself contain a subquery. There is 
no limit to the number of nested subqueries.

2.  Subquery in an expression: The following query is supported (with the same 
assumption as example 1).

   SELECT *  from t1 a  where
      (select c1 from t1 where c1 = 10) =
      (select c1 from t1 b where a.c1 = b.c1) - 20;

3. A subquery can contain Group By, Union, Minus, and Intersect, but not an Order 
By clause.

1.7.3 Membership Conditions 
A membership condition tests for membership in a list or subquery using the syntax 
displayed in Figure 1–3.

Figure 1–3 A MEMBERSHIP Condition



Specifying SQL Conditions

1-14 Oracle Database Lite SQL Reference

BNF Notation
expr [NOT] IN { expr_list | "("subquery ")"}

For example,

SELECT * FROM EMP WHERE ENAME not in ('SMITH', 'WARD', 'KING');

1.7.4 Range Conditions
A range condition tests for inclusion in a range using the syntax displayed in 
Figure 1–4.

Figure 1–4 A RANGE Condition

BNF Notation
expr [ NOT ] BETWEEN expr AND expr ;

For example,

SELECT * FROM EMP WHERE SAL between 2000 and 50000;

1.7.5 NULL Conditions 
A NULL condition tests for nulls using the syntax displayed in Figure 1–5.

Figure 1–5 A NULL Condition

BNF Notation
expr IS [NOT]  NULL

For example:

SELECT * FROM EMP WHERE MGR IS NOT NULL;

1.7.6 EXISTS Conditions 
An EXISTS condition tests for the existence of rows in a subquery using the syntax 
displayed in Figure 1–6.



Specifying SQL Conditions

Using SQL 1-15

Figure 1–6 An EXISTS Condition

BNF Notation
EXISTS "("subquery")"

For example,

SELECT * FROM EMP WHERE EXISTS (SELECT ENAME FROM EMP WHERE MGR IS NULL);

1.7.7 LIKE Conditions
A LIKE condition specifies a test involving pattern matching using the syntax 
displayed in Figure 1–7.

Figure 1–7 Like Conditions Syntax

BNF Notation
char1 [NOT] LIKE  char2 [ESCAPE "'"esc_char"'" ]

For example,

SELECT * FROM EMP WHERE NAME like ’SM%"

1.7.8 Compound Conditions 
A COMPOUND condition specifies a combination of other conditions using the syntax 
displayed in Figure 1–8.

Figure 1–8 A COMPOUND Condition

BNF Notation
{ "(" condition ")" 
  | NOT  condition
  | condition {AND | OR} condition



Specifying Expressions

1-16 Oracle Database Lite SQL Reference

}
;

For example,

SELECT * FROM EMP WHERE COMM IS NOT NULL AND SAL > 1500;

1.8 Specifying Expressions 
Use one of the following syntax forms to specify a SQL expression.

1.8.1 Form I, Simple Expression
A simple expression specifies column, pseudocolumn, constant, sequence number, or 
null using the syntax displayed in Figure 1–9.

Figure 1–9 A SIMPLE Expression

BNF Notation
{ [schema .] { table | view } "." { column | pseudocolumn }
| text 
| catalog "." schema "." { table| view } "." { column | pseudocolumn }
| number
| sequence "." { CURRVAL | NEXTVAL }
| NULL
}

In addition to the schema of a user, schema can also be PUBLIC (double quotation 
marks required), in which case it must qualify a public synonym for a table, view, or 
materialized view. Qualifying a public synonym with PUBLIC is supported only in 
Data Manipulation Language (DML) statements, not Data Definition Language (DDL) 
statements.

The pseudocolumn can be either LEVEL, ROWID, or ROWNUM. You can use a 
pseudocolumn only with a table, not with a view or materialized view. 



Specifying Expressions

Using SQL 1-17

Examples
emp-ename
’this is a text string’
10

1.8.2 Form II, Function Expression
A built-in function expression specifies a call to a single-row SQL function using the 
syntax displayed in Figure 1–10.

Figure 1–10 A FUNCTION Expression

BNF Notation
function ["(" [DISTINCT | ALL] expr [, expr]...")"] ;

Some valid built-in function expressions are:

LENGTH(’BLAKE’)
ROUND(1234.567*43)
SYSDATE

1.8.3 Form III, Java Function Expression
java_function_name (expr , expr...)
schema.table.java_function_name (expr , expr...)

For information on how to use Java functions, see the Oracle Database Lite Developer’s 
Guide for Java.

1.8.4 Form IV, Compound Expression
A compound expression specifies a combination of other expressions using the syntax 
displayed in Figure 1–11.



Specifying Expressions

1-18 Oracle Database Lite SQL Reference

Figure 1–11 A COMPOUND Expression

BNF Notation
 { "(" expr ")" 
  | { + | - } expr
  | PRIOR column
  | expr( * | / | + | - | ||) expr
 }
;

Some combinations of functions are inappropriate and are rejected. For example, the 
LENGTH function is inappropriate within an aggregate function. 

Examples
(’CLARK’ || ’SMITH’)
LENGTH(’MOOSE’) * 57
SQRT(144) + 72
my_fun(TO_CHAR(sysdate,’DD-MM-YY’))

1.8.5 Form V, DECODE Expression 
A DECODE expression uses the special DECODE syntax displayed in Figure 1–12.

Figure 1–12 The DECODE Expression

BNF Notation
DECODE "(" expr "," search "," result [, search "," result]... [, default] ")" ;

To evaluate this expression, Oracle Database Lite compares expr to each search value 
one by one. If expr is equal to a search, Oracle Database Lite returns the corresponding 
result. If no match is found, Oracle Database Lite returns default, or, if default is omitted, 
returns null. If expr and search contain character data, Oracle Database Lite compares 
them using non-padded comparison semantics.

The search, result, and default values can be derived from expressions. Oracle Database 
Lite evaluates each search value only before comparing it to expr, rather than evaluating 



Specifying Expressions

Using SQL 1-19

all search values before comparing any of them with expr. Consequently, Oracle 
Database Lite never evaluates a search if a previous search is equal to expr. 

Oracle Database Lite automatically converts expr and each search value to the datatype 
of the first search value before comparing. Oracle Database Lite automatically converts 
the return value to the same datatype as the first result. If the first result has the 
datatype CHAR or if the first result is null, then Oracle Database Lite converts the return 
value to the datatype VARCHAR2.

In a DECODE expression, Oracle Database Lite considers two nulls to be equivalent. If 
expr is null, Oracle Database Lite returns the result of the first search that is also null. 
The maximum number of components in the DECODE expression, including expr, 
searches, results, and default is 255.

Example
This expression decodes the value DEPTNO. In this example, if DEPTNO is 10, the 
expression evaluates to ’ACCOUNTING’. If DEPTNO is not 10, 20, 30, or 40, the 
expression returns ’NONE’.

DECODE (deptno,10, ’ACCOUNTING’,
               20, ’RESEARCH’,
               30, ’SALES’,
               40, ’OPERATION’,
                   ’NONE’)

1.8.6 Form VI, Expression List
An EXPRESSION LIST is a series of expressions, each separated by a comma as 
displayed in Figure 1–13. The entire series is enclosed in parenthesis.

Figure 1–13 The EXPRESSION List

BNF Notation
"("[ expr [, expr]...] ")"

1.8.7 Form VII, Variable Expression
A VARIABLE EXPRESSION specifies a host variable with an optional indicator 
variable as displayed in Figure 1–14. This form of expression can appear in a 
programmatic programming interface.

Figure 1–14 The VARIABLE Expression

BNF Notation
":" host_variable [[INDICATOR] ":" indicator_variable]



Oracle Database Lite SQL Datatypes and Literals

1-20 Oracle Database Lite SQL Reference

1.8.8 Form VIII, CAST Expression
A CAST expression converts one built-in datatype or collection-typed value into 
another built-in datatype or collection-typed value as displayed in Figure 1–15.

Figure 1–15 The CAST Expression

BNF Notation
 CAST "(" expr AS datatype_name ")"

For the operand, expr is a built-in datatype. Table 1–7 shows which built-in datatypes 
accept CAST conversion to another datatype. (CAST does not support LONG, LONG 
RAW, or any of the LOB datatypes.)

The Date datatype is affected by the SQLCompatibility setting defined in the 
POLITE.INI file.

■ Date and Timestamp are equivalent if you have set: 
SQLCompatibility=Oracle

■ Date and Timestamp are not equivalent if you have set: 
SQLCompatibility=SQL92

See the Oracle Database Lite Administration and Deployment Guide for more information 
about the POLITE.INI file.

The numeric category includes the following datatypes: BIGINT, BINARY, BIT, 
DECIMAL, DOUBLE PRECISION, FLOAT, INTEGER, NUMBER, NUMERIC, REAL, 
SMALLINT, and TINYINT.

Built-In Datatype Examples

SELECT CAST (’1997-10-22’ AS DATE) FROM DUAL;
SELECT * FROM t1 WHERE CAST (ROWID AS CHAR(5)) = ’01234’;

1.9 Oracle Database Lite SQL Datatypes and Literals
For a complete list of Oracle Database Lite SQL datatypes, see Appendix C, "Oracle 
Database Lite Datatypes". For information about literals, see Appendix D, "Oracle 
Database Lite Literals".

Table 1–7 Built-In Datatypes that Accept the CAST Conversion

From/ 
To

Char,
Varchar2 Numeric Date Time Timestamp Raw

Char,
Varchar2

X X X X X X

Numeric X X

Date X X X

Time X X X

Timestamp X X X X

Raw X X



Comments Within SQL Statements

Using SQL 1-21

1.9.1 Character String Comparison Rules
Oracle Database Lite compares character string values using one of these comparison 
rules:

■ blank-padded comparison semantics

■ non-padded comparison semantics

The following sections explain these comparison semantics. The results of comparing 
two character values using different comparison semantics may vary. Table 1–8 lists 
the results of comparing five pairs of character values using each comparison 
semantic. Generally, the results of blank-padded and non-padded comparisons are the 
same. The last comparison in the table illustrates the differences between the 
blank-padded and non-padded comparison semantics.

1.9.1.1 Blank-Padded Comparison Semantics
If the two values have different lengths, Oracle Database Lite first adds blanks to the 
end of the shorter one so that their lengths are equal. Oracle Database Lite then 
compares the values character by character up to the first character that differs. The 
value with the greater than character (>) in the first differing position is considered 
greater. If two values have no differing characters, then they are considered equal. This 
rule means that two values are equal if they differ only in the number of trailing 
blanks. Oracle Database Lite uses blank-padded comparison semantics only when 
both values in the comparison are either expressions of the datatype CHAR, text literals, 
or values returned by the USER and DATABASE functions.

1.9.1.2 Non-Padded Comparison Semantics
Oracle Database Lite compares two values character by character up to the first 
character that differs. The value with the greater than character (>) in that position is 
considered greater. If two values of different length are identical up to the end of the 
shorter one, the longer value is considered greater. If two values of equal length have 
no differing characters, then the values are considered equal. Oracle Database Lite uses 
non-padded comparison semantics whenever one or both values in the comparison 
have the datatype VARCHAR2. As a result, when comparing a CHAR value with a 
VARCHAR2 value, Oracle Database Lite considers the character value 'a    ' unequal to 
'a'.   

1.10 Comments Within SQL Statements
You can associate comments with SQL statements and schema objects. Comments 
within SQL statements do not affect the statement execution, but they can make your 
application easier to read and maintain. 

Table 1–8 Comparison of Blank-Padded and Non-Padded Comparison Semantics

Blank-Padded Non-Padded

'ab' > 'aa' 'ab' > 'aa'

'ab' > 'a ' 'ab' > 'a  '

'ab' > 'a' 'ab' > 'a' 

'ab' = 'ab' 'ab' = 'ab'

'a    ' = 'a' 'a    ' > 'a' 



Tuning SQL Statement Execution Performance With the EXPLAIN PLAN

1-22 Oracle Database Lite SQL Reference

A comment can appear between any keywords, parameters, or punctuation marks in a 
statement. You can include a comment in a statement using one of the following 
options.

■ Begin the comment with a slash and an asterisk (/*). Proceed with the text of the 
comment. This text can span multiple lines. End the comment with an asterisk and 
a slash (*/). The opening and terminating characters need not be separated from 
the text by a space or a line break.

■ Begin the comment with -- (two hyphens). Proceed with the text of the comment. 
This text cannot extend to a new line. End the comment with a line break.

A SQL statement can contain multiple comments of both styles. The text of a comment 
can contain any printable characters in your database character set.

Example 1
SELECT * FROM EMP WHERE EMP.DEPTNO = /* The subquery matches values in EMP.DEPTNO 
with values in DEPT.DEPTNO */ (SELECT DEPTNO FROM DEPT WHERE LOC='DALLAS');

This statement returns the following output.

    EMPNO ENAME      JOB             MGR HIREDATE        SAL      COMM    DEPTNO
--------- ---------- --------- --------- --------- --------- --------- ---------
     7566 JONES      MANAGER        7839 1981-04-0      2975                  20
     7902 FORD       ANALYST        7566 1981-12-0      3000                  20
     7369 SMITH      CLERK          7902 1980-12-1       800                  20
     7788 SCOTT      ANALYST        7566 1982-12-0      3000                  20
     7876 ADAMS      CLERK          7788 1983-01-1      1100                  20

Example 2
SELECT ENAME, -- select the employee name
 SAL          -- and the salary
 FROM EMP     -- from the EMP table
 WHERE SAL    -- where the salary
 >=           -- is greater than or equal to
 3000         -- 3000
 ;

This statement returns the following output:

ENAME            SAL
---------- ---------
KING            5000
FORD            3000
SCOTT           3000

1.11 Tuning SQL Statement Execution Performance With the EXPLAIN 
PLAN

To execute a SQL statement, Oracle might need to perform several operations. The 
combination of the operations Oracle uses to execute a statement is called an execution 
plan, which includes an access path for each table that the statement accesses and an 
ordering of the tables (the join order) with the appropriate join method. The execution 
plan shows you exactly how Oracle Database Lite executes your SQL statement. 

The components of an execution plan include the following:

■ An ordering of the tables referenced by the statement.

■ An access method for each table mentioned in the statement.



Tuning SQL Statement Execution Performance With the EXPLAIN PLAN

Using SQL 1-23

■ A join method for tables affected by join operations in the statement.

■ Data operations, such as FILTER, SORT, UNION, and so on.

The EXPLAIN PLAN command stores the execution plan chosen by the Oracle 
Database Lite optimizer for SELECT, UPDATE, INSERT, and DELETE statements into 
the table—PLAN_TABLE. Before using the EXPLAIN PLAN statement, a user creates 
the plan table using an interactive query tool, such as msql. 

You can examine the execution plan chosen by the optimizer for a SQL statement by 
using the EXPLAIN PLAN statement. When the statement is issued, the optimizer 
chooses an execution plan and then inserts data describing the plan into a database 
table. Simply issue the EXPLAIN PLAN statement and then query the output table.

The EXPLAIN PLAN output shows how Oracle executes SQL statements, which helps 
a developer or DBA understand how a query is being executed. Thus, you can identify 
additional indexes needed, or how best to modify the query. The query modification 
may involve a re-write or use of optimizer hints to change the join order.

1. Use the SQL script—utlxplan.sql—to create the sample output table called 
PLAN_TABLE in your schema. Alternatively, you can use msql to create the plan 
table. See Section 1.11.1, "The PLAN Table". 

2. Include the EXPLAIN PLAN FOR clause prior to the SQL statement. The syntax is 
as follows:

Explain_plan_statement ::= EXPLAIN PLAN [SET STATEMENT_ID = ’text’ ] [INTO 
[schema.] plan_table] [FOR] statement;

Where

■ statement is any SELECT, UPDATE, INSERT, DELETE statement

■ ’text’ is a literal provided by the user to identify all rows for the given query.

■ schema.plan_table is the table where you want the result to be stored.  
The table must conform to the layout given in the utlxplan.sql script. The 
default value for is PLAN_TABLE in your own schema.

3. After issuing the EXPLAIN PLAN statement, query the PLAN_TABLE for the 
output.

The EXPLAIN PLAN command is not unique to Oracle Database Lite. It is a feature of 
the Oracle database. However, not all SQL operations supported in the Oracle 
database are supported by Oracle Database Lite. This section shows the operation 
subset that you can use in Oracle Database Lite. 

In addition, this section does not go into full details on how the EXPLAIN PLAN 
works. For a full description of the EXPLAIN PLAN, see the "Using Explain Plan" 
chapter in the Oracle Database Performance Tuning Guide.

■ Section 1.11.1, "The PLAN Table"

■ Section 1.11.2, "EXPLAIN PLAN Examples"

1.11.1 The PLAN Table
The PLAN_TABLE is the default sample output table into which the EXPLAIN PLAN 
statement inserts rows describing execution plans. See Table 1–9 for a description of 
the columns in the table.

Use the SQL script utlxplan.sql to manually create a local PLAN_TABLE in your 
schema. 



Tuning SQL Statement Execution Performance With the EXPLAIN PLAN

1-24 Oracle Database Lite SQL Reference

Table 1–10 lists each combination of Operation and Option produced by the EXPLAIN 
PLAN statement and its meaning within an execution plan.

Table 1–9 Plan Table

Column Data Type Description

statement_id Varchar2(30) User specified ID

Timestamp Date Date and time of creation

Remarks Varchar2(80) A user-specified remarks

Operation Varchar2(30) The name of operation, such as SELECT, INSERT, 
UPDATE, DELETE, TABLE ACCESS and so on. See 
the Operations table for more information.

Options Varchar2(30) Qualification for the operation

object_owner Varchar2(30) Owner of a table or index

object_name Integer Name of the table or index

Id Integer Step identification number

parent_id Integer Parent step number

Position Integer Order of processing among the steps that have the 
same parent step id

Cost Integer Estimated cost in number of I/Os.

Cardinality Integer The estimated number of rows produced

Text Varchar2(4096) First 4096 bytes of the statement text stored with the 
first step of execution. For example, id=0

Table 1–10 Operation and Option Values Produced by the EXPLAIN PLAN

Operation Options Comments

CONNECT BY Retrieves rows in hierarchical order for a 
query containing a CONNECT BY clause.

FILTER None Operation accepting a set of rows, eliminates 
some of them, and returns the rest.

FOR UPDATE None Operation retrieving and locking the rows 
selected by a query containing a FOR 
UPDATE clause.

INDEX Retrieval of one or more rowids from an 
index.

NESTED LOOP Operation accepting two sets of rows, an 
outer set and an inner set. Oracle compares 
each row of the outer set with each row of the 
inner set, returning rows that satisfy a 
condition.

SORT AGGREGATE, 
UNIQUE, GROUP BY, 
ORDER BY

A sort is being performed for aggregation, 
duplicate removal, group by or order by 
operations respectively.

TABLE ACCESS FULL All data pages of the table will be scanned.

TABLE ACCESS BY INDEX ROWID, BY 
ROWID

The table rows are accessed using rowids 
from an index, or provided by some other 
means.



Tuning SQL Statement Execution Performance With the EXPLAIN PLAN

Using SQL 1-25

1.11.2 EXPLAIN PLAN Examples
The following examples demonstrate the EXPLAIN PLAN statement. The output for 
each example should only be used as a guideline. The actual output is subject to 
change based on the analysis of internal data structures. The examples are based on a 
sample schema, as follows:

Sample Schema

drop table s;
drop table sp;
drop table p;
drop table j;
drop table spj;
create table S ( S# char(3), SNAME Char(10), Status Int, City char(10));
create table P (P# char(3), PNAME Char(10), Color Char(10), Weight Int, City 
Char(10));
create table SP (S# char(3), P# Char(3), Qty Int);create table J ( J# char(3), 
JNAME Char(10), City char(10));create table SPJ (S# char(3), P# Char(3), J# 
Char(3), Qty Int);
insert into S values ('S1', 'Smith', 20, 'London');insert into S values ('S2', 
'Jones', 10, 'Paris');
insert into S values ('S3', 'Blake', 30, 'Paris');insert into S values ('S4', 
'Clark', 20, 'London');
insert into S values ('S5', 'Adams', 30, 'Athens');insert into P values ('P1', 
'Nut', 'Red', 12, 'London');
insert into P values ('P2', 'Bolt', 'Green', 17, 'Paris');
insert into P values ('P3', 'Screw', 'Blue', 17, 'Rome');
insert into P values ('P4', 'Screw', 'Red', 14, 'London');
insert into P values ('P5', 'Cam', 'Blue', 12, 'Paris');
insert into P values ('P6', 'Cog', 'Red', 19, 'London');
insert into J values ('J1', 'Sorter', 'Paris');insert into J values ('J2', 
'Punch', 'Rome');insert into J values ('J3', 'Reader', 'Athens');
insert into J values ('J4', 'Console', 'Athens');
insert into J values ('J5', 'Collator', 'London');
insert into J values ('J6', 'Terminal', 'Oslo');
insert into J values ('J7', 'Tape', 'London');
insert into SP values ('S1', 'P1', 300);
insert into SP values ('S1', 'P2', 200);

UNION ALL A UNION ALL operation is being 
performed.

VIEW A logical or physical view is being 
materialized.

CREATE TEMP 
TABLE

ORDER BY, READ 
COMMITTED, GROUP 
BY, UNION, CONNECT 
BY, MINUS, 
AGGREGATE

Option indicates the reason for creating the 
temporary table.

INSERT An INSERT operation is being performed.

UPDATE An UPDATE operation is being performed.

DELETE A DELETE operation is being performed.

SELECT A SELECT operation is being performed.

MINUS A MINUS operation is being performed.

Table 1–10 (Cont.) Operation and Option Values Produced by the EXPLAIN PLAN

Operation Options Comments



Tuning SQL Statement Execution Performance With the EXPLAIN PLAN

1-26 Oracle Database Lite SQL Reference

insert into SP values ('S1', 'P3', 400);
insert into SP values ('S1', 'P4', 200);
insert into SP values ('S1', 'P5', 100);
insert into SP values ('S1', 'P6', 100);
insert into SP values ('S2', 'P1', 300);
insert into SP values ('S2', 'P2', 400);
insert into SP values ('S3', 'P2', 200);
insert into SP values ('S4', 'P2', 200);
insert into SP values ('S4', 'P4', 300);
insert into SP values ('S4', 'P5', 400);
insert into SPJ values ('S1', 'P1', 'J1', 200);
insert into SPJ values ('S1', 'P1', 'J4', 700);
insert into SPJ values ('S2', 'P3', 'J1', 400);
insert into SPJ values ('S2', 'P3', 'J2', 200);
insert into SPJ values ('S2', 'P3', 'J3', 200);
insert into SPJ values ('S2', 'P3', 'J4', 500);
insert into SPJ values ('S2', 'P3', 'J5', 600);
insert into SPJ values ('S2', 'P3', 'J6', 400);
insert into SPJ values ('S2', 'P3', 'J7', 800);
insert into SPJ values ('S2', 'P5', 'J5', 100);
insert into SPJ values ('S3', 'P3', 'J1', 200);
insert into SPJ values ('S3', 'P4', 'J2', 500);
insert into SPJ values ('S4', 'P6', 'J3', 300);
insert into SPJ values ('S5', 'P2', 'J2', 200);
commit;
create unique index SIX1 on S ( S# );
create unique index PIX1 on P ( P# );
create unique index SPIX1 on SP ( S#, P# );
create unique index SPJIX1 on SPJ ( S#, P#, J# );
create index PCOLOR on P(Color);

The following examples demonstrate three examples of the output for the EXPLAIN 
PLAN for specific select statements:

■ Section 1.11.2.1, "Example for Select Distinct and Group By"

■ Section 1.11.2.2, "Example for Select Statement with Union"

■ Section 1.11.2.3, "Example for Select Statement With Multiple Qualifiers"

1.11.2.1 Example for Select Distinct and Group By
The following is an example query and corresponding output from the EXPLAIN 
PLAN for a select statement where select distinct P# from SPJ group by 
p#,j# having avg(qty) > 320;

Table 1–11 Sample Output

ID POSITION PARENT_ID OPERATION OPTIONS OBJNAME

0 SORT ORDER BY

1 1 0 CREATE TEMP TABLE ORDER BY

2 1 1 SELECT

3 1 2 FILTER

4 1 3 CREATE TEMP TABLE GROUP BY

5 1 4 TABLE ACCESS FULL SPJ



Tuning SQL Statement Execution Performance With the EXPLAIN PLAN

Using SQL 1-27

1.11.2.2 Example for Select Statement with Union
The following is an example query and corresponding output from the EXPLAIN 
PLAN for a select statement where select s.* from S, SP where s.s#=Sp.P# 
and status > 20 and  qty  > 40 union Select s.* from s,sp, p 
where s.s#=sp.s# and sp.p#=p.p# and p.color='Red'; 

1.11.2.3 Example for Select Statement With Multiple Qualifiers
The following is an example query and corresponding output from the EXPLAIN 
PLAN for a select statement where select s.* from s, sp where s.s# = 
sp.s# and status > 20 and city in (select city from j where j# = 
'J1' or j# = 'J2'); 

Table 1–12

ID POSITION PARENT_ID OPERATION OPTIONS OBJNAME

0 SORT ORDER BY

1 1 0 CREATE TEMP TABLE ORDER BY

2 1 1 UNION ALL

3 1 2 SELECT

4 1 3 FILTER

5 1 4 NESTED LOOP

6 1 5 TABLE ACCESS FULL S

7 2 5 TABLE ACCESS FULL SP

8 2 2 SELECT

9 1 8 FILTER

10 1 9 NESTED LOOP

11 1 10 NESTED LOOP

12 1 11 TABLE ACCESS BY INDEX ROWID P

13 1 12 INDEX PCOLOR

14 2 11 TABLE ACCESS FULL SP

15 2 10 TABLE ACCESS BY INDEX ROWID S

16 1 15 INDEX SIX1

Table 1–13

ID POSITION PARENT_ID OPERATION OPTIONS OBJECT_NAME

0 SELECT

1 1 0 FILTER

2 1 1 NESTED LOOP

3 1 2 TABLE ACCESS FULL S

4 2 2 TABLE ACCESS BY INDEX ROWID SP

5 1 4 INDEX SPIX1

6 2 1 SELECT

7 1 6 FILTER



Tuning SQL Statement Execution Performance With the EXPLAIN PLAN

1-28 Oracle Database Lite SQL Reference

8 1 7 TABLE ACCESS FULL J

Table 1–13 (Cont.)

ID POSITION PARENT_ID OPERATION OPTIONS OBJECT_NAME



SQL Operators 2-1

2
SQL Operators

This document discusses SQL operators used with Oracle Database Lite. Topics 
include:

■ Section 2.1, "SQL Operators Overview"

■ Section 2.2, "Arithmetic Operators"

■ Section 2.3, "Character Operators"

■ Section 2.4, "Comparison Operators"

■ Section 2.5, "Logical Operators"

■ Section 2.6, "Set Operators"

■ Section 2.7, "Other Operators"

2.1 SQL Operators Overview
An operator manipulates individual data items and returns a result. The data items are 
called operands or arguments. Operators are represented by special characters or by 
keywords. For example, the multiplication operator is represented by an asterisk (*) 
and the operator that tests for nulls is represented by the keywords IS NULL. There 
are two general classes of operators: unary and binary. Oracle Database Lite SQL also 
supports set operators.

2.1.1 Unary Operators
A unary operator uses only one operand. A unary operator typically appears with its 
operand in the following format.

operator operand

2.1.2 Binary Operators
A binary operator uses two operands. A binary operator appears with its operands in 
the following format.

operand1 operator operand2

2.1.3 Set Operators
Set operators combine sets of rows returned by queries, instead of individual data 
items. All set operators have equal precedence. Oracle Database Lite supports the 
following set operators.

■ UNION



Arithmetic Operators

2-2 Oracle Database Lite SQL Reference

■ UNION ALL

■ INTERSECT

■ MINUS

The levels of precedence among the Oracle Database Lite SQL operators from high to 
low are listed in Table 2–1. Operators listed on the same line have the same level of 
precedence.

2.1.4 Other Operators
Other operators with special formats accept more than two operands. If an operator 
receives a null operator, the result is always null. The only operator that does not 
follow this rule is CONCAT.

2.2 Arithmetic Operators
Arithmetic operators manipulate numeric operands. The ’-’ operator is also used in 
date arithmetic. Supported arithmetic operators are listed in Table 2–2.

2.3 Character Operators
Character operators used in expressions to manipulate character strings are listed in 
Table 2–3.

Table 2–1 Levels of Precedence of the Oracle Database Lite SQL Operators

Precedence Level SQL Operator

1 Unary + - arithmetic operators, PRIOR operator

2 * / arithmetic operators

3 Binary + - arithmetic operators, || character operators

4 All comparison operators

5 NOT logical operator

6 AND logical operator

7 OR logical operator

Table 2–2 Arithmetic Operators

Operator Description Example

+ (unary) Makes operand positive SELECT +3 FROM DUAL;

- (unary) Negates operand SELECT -4 FROM DUAL;

/ Division (numbers and 
dates) 

SELECT SAL / 10 FROM 
EMP;

* Multiplication SELECT SAL * 5 FROM 
EMP;

+ Addition (numbers and 
dates)

SELECT SAL + 200 FROM 
EMP;

- Subtraction (numbers and 
dates)

SELECT SAL - 100 FROM 
EMP;



Comparison Operators

SQL Operators 2-3

2.3.1 Concatenating Character Strings
With Oracle Database Lite, you can concatenate character strings with the following 
results.

■ Concatenating two character strings results in another character string.

■ Oracle Database Lite preserves trailing blanks in character strings by 
concatenation, regardless of the strings' datatypes.

■ Oracle Database Lite provides the CONCAT character function as an alternative to 
the vertical bar operator. For example,

SELECT CONCAT (CONCAT (ENAME, ' is a '),job) FROM EMP WHERE SAL > 2000;

This returns the following output.

CONCAT(CONCAT(ENAME
-------------------------
KING       is a PRESIDENT
BLAKE      is a MANAGER
CLARK      is a MANAGER
JONES      is a MANAGER
FORD       is a ANALYST
SCOTT      is a ANALYST

6 rows selected.

■ Oracle Database Lite treats zero-length character strings as nulls. When you 
concatenate a zero-length character string with another operand the result is 
always the other operand. A null value can only result from the concatenation of 
two null strings.

2.4 Comparison Operators
Comparison operators used in conditions that compare one expression with another 
are listed in Table 2–4. The result of a comparison can be TRUE, FALSE, or UNKNOWN.

Table 2–3 Character Operators

Operator Description Example

|| Concatenates character 
strings

SELECT 'The Name of 
the employee is: ' || 
ENAME FROM EMP;

Table 2–4 Comparison Operators

Operator Description Example

= Equality test. SELECT ENAME 
"Employee" FROM EMP 
WHERE SAL = 1500;

!=, ^=, <> Inequality test. SELECT ENAME FROM EMP 
WHERE SAL ^= 5000;

> Greater than test. SELECT ENAME 
"Employee", JOB 
"Title" FROM EMP 
WHERE SAL > 3000;

< Less than test. SELECT * FROM PRICE 
WHERE MINPRICE < 30;



Logical Operators

2-4 Oracle Database Lite SQL Reference

2.5 Logical Operators
Logical operators which manipulate the results of conditions are listed in Table 2–5.

>= Greater than or equal to test. SELECT * FROM PRICE 
WHERE MINPRICE >= 20;

<= Less than or equal to test. SELECT ENAME FROM EMP 
WHERE SAL <= 1500;

IN "Equivalent to any member 
of" test. Equivalent to "=ANY".

SELECT * FROM EMP 
WHERE ENAME IN 
('SMITH', 'WARD');

ANY/ SOME Compares a value to each 
value in a list or returned by 
a query. Must be preceded by 
=, !=, >, <, <= or >=. 
Evaluates to FASLE if the 
query returns no rows.

SELECT * FROM DEPT 
WHERE LOC = SOME 
('NEW 
YORK','DALLAS');

NOT IN Equivalent to "!=ANY". 
Evaluates to FALSE if any 
member of the set is NULL.

SELECT * FROM DEPT 
WHERE LOC NOT IN 
('NEW YORK', 
'DALLAS');

ALL Compares a value with every 
value in a list or returned by 
a query. Must be preceded by 
=, !=, >, <, <= or 
>=. Evaluates to TRUE if the 
query returns no rows.

SELECT * FROM emp   
WHERE sal >= ALL 
(1400, 3000);

[NOT] BETWEEN x and y [Not] greater than or equal to 
x and less than or equal to y.

SELECT ENAME, JOB 
FROM EMP WHERE SAL 
BETWEEN 3000 AND 
5000;

EXISTS TRUE if a sub-query returns 
at least one row.

SELECT * FROM EMP 
WHERE EXISTS (SELECT 
ENAME FROM EMP WHERE 
MGR IS NULL);

x [NOT] LIKE y [ESCAPE z] TRUE if x does [not] match 
the pattern y. Within y, the 
character "%" matches any 
string of zero or more 
characters except null. The 
character "_" matches any 
single character. Any 
character following ESCAPE 
is interpreted literally, useful 
when y contains a percent 
(%) or underscore (_).

SELECT * FROM EMP   
WHERE ENAME LIKE  
'%E%';

IS [NOT] NULL Tests for nulls. This is the 
only operator that should be 
used to test for nulls.

SELECT * FROM EMP 
WHERE COMM IS NOT 
NULL AND SAL > 1500;

Table 2–4 (Cont.) Comparison Operators

Operator Description Example



Set Operators

SQL Operators 2-5

2.6 Set Operators
Set operators which combine the results of two queries into a single result are listed in 
Table 2–6.

Table 2–5 Logical Operators

Operator Description Example

NOT Returns TRUE if the 
following condition is 
FALSE. Returns FALSE if it is 
TRUE. If it is UNKNOWN, it 
remains UNKNOWN.

SELECT * FROM EMP 
WHERE NOT (job IS 
NULL)

SELECT * FROM EMP 
WHERE NOT (sal 
BETWEEN 1000 AND 
2000)

AND Returns TRUE if both 
component conditions are 
TRUE. Returns FALSE if 
either is FALSE; otherwise 
returns UNKNOWN.

SELECT * FROM EMP 
WHERE job='CLERK' AND 
deptno=10

OR Returns TRUE if either 
component condition is 
TRUE. Returns FALSE if both 
are FALSE. Otherwise, 
returns UNKNOWN.

SELECT * FROM emp 
WHERE job='CLERK' OR 
deptno=10

Table 2–6 Set Operators

Operator Description Example

UNION Returns all distinct rows 
selected by either query. 

SELECT * FROM 

(SELECT ENAME FROM 
EMP WHERE JOB = 
'CLERK' 

UNION 

SELECT ENAME FROM EMP 
WHERE JOB = 
'ANALYST');

UNION ALL Returns all rows selected by 
either query, including all 
duplicates.

SELECT * FROM 

(SELECT SAL FROM EMP 
WHERE JOB = 'CLERK' 

UNION

 SELECT SAL FROM EMP 
WHERE JOB = 
'ANALYST');

INTERSECT and INTERSECT 
ALL

Returns all distinct rows 
selected by both queries.

SELECT * FROM orders_
list1

INTERSECT

SELECT * FROM orders_
list2



Other Operators

2-6 Oracle Database Lite SQL Reference

2.7 Other Operators
Other operators used by Oracle Database Lite are listed in Table 2–7.

MINUS Returns all distinct rows 
selected by the first query but 
not the second.

SELECT * FROM (SELECT 
SAL FROM EMP WHERE 
JOB = 'PRESIDENT'

MINUS 

SELECT SAL FROM EMP 
WHERE JOB = 
'MANAGER');

Note: :  The syntax for INTERSECT ALL is supported, but it 
returns the same results as INTERSECT.

Table 2–7 Other Operators

Operator Description Example

(+) Indicates that the preceding 
column is the outer join 
column in a join.

SELECT ENAME, DNAME    
FROM EMP, DEPT        
WHERE DEPT.DEPTNO = 
EMP.DEPTNO (+);

PRIOR Evaluates the following 
expression for the parent row 
of the current row in a 
hierarchical, or 
tree-structured query. In such 
a query, you must use this 
operator in the CONNECT BY 
clause to define the 
relationship between the 
parent and child rows.

SELECT EMPNO, ENAME, 
MGR FROM EMP           
CONNECT BY           
PRIOR EMPNO = MGR;

Table 2–6 (Cont.) Set Operators

Operator Description Example



SQL Functions 3-1

3
SQL Functions

This document discusses SQL functions used with Oracle Database Lite. Topics 
include:

■ Section 3.1, "SQL Function Types"

■ Section 3.2, "SQL Functions Overview"

■ Section 3.3, "SQL Functions Alphabetical Listing"

3.1 SQL Function Types
This section lists the different types of SQL functions.The "SQL Functions Overview" 
provides an explanation of each function.

SQL Function Types

Number Function SQL Types

CEIL ROUND - Number Function

FLOOR TRUNC

MOD

Character Function SQL Types

CHR ROUND - Date Function

CONCAT SUBSTR

INITCAP SUBSTRB

LCASE See LOWER TRANSLATE

LOWER TRIM

LPAD UCASE See UPPER

LTRIM UPPER

REPLACE USER

RPAD



SQL Functions Overview

3-2 Oracle Database Lite SQL Reference

3.2 SQL Functions Overview
SQL functions are similar to SQL operators in that both manipulate data items and 
both return a result. SQL functions differ from SQL operators in the format in which 
they appear with their arguments. The SQL function format enables functions to 
operate with zero, one, or more arguments.

function(argument1, argument2, ...) alias

If passed an argument whose datatype differs from an expected datatype, most 
functions perform an implicit datatype conversion on the argument before execution. 
If passed a null value, most functions return a null value.

Character Functions Returning Number Values

ASCII LENGTH

BIT_LENGTH (See LENGTH) LENGTHB

CHAR_LENGTH (See LENGTH)  OCTET_LENGTH (See LENGTH)

INSTR POSITION

INSTRB

Date Functions SQL Types

ADD_MONTHS DAYOFMONTH MONTHNAME TIMESTAMPADD

CURDATE DAYOFWEEK MONTHS_BETWEEN TIMESTAMPDIFF

CURRENT_DATE DAYOFYEAR NEXT_DAY TRUNC

CURRENT_TIME HOUR NOW WEEK

CURRENT_
TIMESTAMP

LAST_DAY ROUND - Date 
Function

YEAR

CURTIME MINUTE SECOND

DAYNAME MONTH SYSDATE

Conversion Functions Other Functions Grouping Functions

CAST CASE AVG 

CONVERT DATABASE COUNT 

TO_CHAR DECODE MAX 

TO_NUMBER EXTRACT MIN

TO_DATE GREATEST STDDEV

IFNULL (See CASE and NVL) SUM

INTERVAL VARIANCE

LEAST

LOCATE

NVL

SUBSTR

USER



SQL Functions Alphabetical Listing

SQL Functions 3-3

SQL functions are used exclusively with SQL commands within SQL statements. There 
are two general types of SQL functions: single row (or scalar) functions and aggregate 
functions. These two types differ in the number of database rows on which they act. A 
single row function returns a value based on a single row in a query, whereas an 
aggregate function returns a value based on all the rows in a query.

Single row SQL functions can appear in select lists (except in SELECT statements that 
contain a GROUP BY clause) and WHERE clauses.

Aggregate functions are the set functions: AVG, MIN, MAX, SUM, and COUNT. You must 
provide them with an alias that can be used by the GROUP BY function.

Most functions have an SQL form and an ODBC form that can differ slightly in 
functionality. 

3.2.1 Number Functions
Number functions accept numeric input and return numeric values.

3.2.2 Character Functions
Single row character functions accept character input and can return both character 
and number values.

3.2.3 Character Functions Returning Number Values
Some character functions return only number values.

3.2.4 Date Functions
Date functions operate on values of the DATE datatype. All date functions return a 
value of the DATE datatype, except the MONTHS_BETWEEN function which returns a 
number.

3.2.5 Conversion Functions
Conversion functions convert a value from one datatype to another. Generally, the 
form of the function name follows the convention datatype TO datatype. The first 
datatype is the input datatype; the last datatype is the output datatype.

3.3 SQL Functions Alphabetical Listing
This section lists Oracle Database Lite SQL functions in alphabetical order and defines 
each function. The discussion includes:

■ Syntax

■ Purpose

■ Argument and Description 

■ Examples

■ Usage Notes

■ ODBC Functionality (where relevant)



SQL Functions Alphabetical Listing

3-4 Oracle Database Lite SQL Reference

3.3.1 ADD_MONTHS

Syntax
ADD_MONTHS(d, n)

d, a value of the Date datatype.

n, an integer that represents a number of months.

Purpose
Adds a specified date d to a specified number of months n and returns the resulting 
date. If the day component of argument d is the last day of the month, or if the 
resulting month has fewer days than the day component of d, then ADD_MONTHS 
returns the last day of the resulting month. Otherwise, ADD_MONTHS returns a value 
that has the same day component as d.

Example
SELECT TO_CHAR(ADD_MONTHS(hiredate,1)),'DD-MM-YYYY' "Next month"FROM emp WHERE 
ename = 'SMITH'

Returns the following result.

TO_CHAR(ADD_MONTHS(HIREDATE              Next month
---------------------------------------- ----------
1981-01-17                               DD-MM-YYYY

3.3.2 ASCII

Syntax
ASCII(char)

Purpose
Returns the decimal representation in the database character set of the first byte of 
char. If your database character set is 7-bit ASCII, this function returns an ASCII value.

Example
SELECT ASCII('Q') FROM DUAL;

Returns the following result.

ASCII('Q')
----------
        81

3.3.3 AVG

Syntax
AVG([DISTINCT | ALL] n)

Purpose
Returns the average value of a column n.



SQL Functions Alphabetical Listing

SQL Functions 3-5

Example 1
SELECT AVG(SAL) FROM EMP;

Returns the following result.

 AVG(SAL)
---------
  2073.21

Example 2
SELECT {FN AVG (SAL)} FROM EMP;

Returns the following result.

{FNAVG(SAL)}
------------
     2073.21

Example 3
SELECT AVG (DISTINCT DEPTNO) FROM EMP;

Returns the following result.

AVG(DISTINCTDEPTNO)
-------------------
                 20

Example 4
SELECT AVG (ALL DEPTNO) FROM EMP;

Returns the following result.

AVG(ALLDEPTNO)
--------------
        22.142

ODBC Function
{FN AVG ([DISTINCT | ALL] n)}

where n is the name of a numeric column.

3.3.4 CASE

Syntax
CASE 
WHEN condition 1
 THEN result 1
WHEN condition 2
 THEN result 2
...
WHEN condition n
 THEN result n
ELSE result x
END,

Purpose
Specifies a conditional value using arguments listed in Table 3–1.



SQL Functions Alphabetical Listing

3-6 Oracle Database Lite SQL Reference

Usage Notes
The CASE function specifies conditions and results for a select or update statement. 
You can use the CASE function to search for data based on specific conditions or to 
update values based on a condition.

Example
SELECT CASE JOB
WHEN 'PRESIDENT' THEN 'The Honorable'
WHEN 'MANAGER' THEN 'The Esteemed'
ELSE 'The good'
END,
ENAME
FROM EMP;

Returns the following result.

CASEJOBWHEN'PRESI ENAME
----------------- ----------
The Honorable     KING
The Esteemed      BLAKE
The Esteemed      CLARK
The Esteemed      JONES
The good          MARTIN
The good          ALLEN
The good          TURNER
The good          JAMES
The good          WARD
The good          FORD
The good          SMITH
The good          SCOTT
The good          ADAMS
The good          MILLER

14 rows selected.

3.3.5 CAST

Syntax
SELECT CAST ( <source_operand > AS <data_type > ) FROM DUAL;

Purpose
Converts data from one type to another type using arguments listed in Table 3–2.

Table 3–1 Arguments Used with the CASE Function

Argument Description

WHEN Begins a condition clause.

condition Specifies the condition.

THEN Begins a result clause.

result Specifies the result of the associated condition.

ELSE An optional clause specifying the result of any value not 
described in a condition clause.

END Terminates the case statement.



SQL Functions Alphabetical Listing

SQL Functions 3-7

Usage Notes
The table in Figure 3–1 displays the conversion results of source operands to 
datatypes.

Figure 3–1 Conversion Results of Source Operands and Datatypes

The conversion results of source operands to datatypes are defined in Table 3–3.

If <source_operand> is an exact numeric and <data_type> is an interval, then the interval 
contains a single date-time field.

If <source_operand> is an interval and <data_type> is an exact numeric, then the interval 
contains a single date-time field.

If <source_operand> is a character string and <data_type> specifies a character string, 
then their character repertoire is the same.

Table 3–2 Arguments Used with the CAST Function

Argument Description

<source_operand> a value expression or NULL.

<data_type> the type of target.

Table 3–3 Definitions of Conversion Results and Source Operands

Result Definitions Source Operands

EN = exact number D = date

C = fixed or variable length character TS = timestamp

VC = variable length character DT = date-time

T = time V = valid

YM = year-month interval R = valid with restrictions

AN = approximate numeric X = invalid

FC = fixed length character



SQL Functions Alphabetical Listing

3-8 Oracle Database Lite SQL Reference

If <data_type> is numeric and the result cannot be represented without losing leading 
significant digits, then the following exception is raised: data-exception, numeric value 
out of range.

Example 1
SELECT CAST('0' AS INTEGER) FROM DUAL;

Returns the following result.

CAST('0'ASINTEGER)
------------------
                 0

Example 2
SELECT CAST(0 AS REAL) FROM DUAL;

Returns the following result.

CAST(0ASREAL)
-------------
            0

Example 3
SELECT CAST(1E0 AS NUMERIC(12, 2)) FROM DUAL;

Returns the following result.

CAST(1E0ASNUMERIC(12
--------------------
                   1

Example 4
SELECT CAST(CURRENT_TIMESTAMP AS VARCHAR(30)) FROM DUAL;

Returns the following result.

CAST(CURRENT_TIMESTAMPASVARCH
------------------------------
1999-04-12 14:53:53

3.3.6 CEIL

Syntax
CEIL (n)

Purpose
Returns smallest integer greater than or equal to n.

Example
SELECT CEIL(15.7) "Ceiling" FROM DUAL;

Returns the following result.

  Ceiling
---------
       16



SQL Functions Alphabetical Listing

SQL Functions 3-9

3.3.7 CHR

Syntax
CHR (n)

Purpose
Returns the character with the binary equivalent to n in the database character set.

Example
SELECT CHR(68)||CHR(79)||CHR(71) "Dog" FROM DUAL;

Returns the following result.

Dog
---
DOG

3.3.8 CONCAT

Syntax
CONCAT(char1, char2)

or

CHAR1 || CHAR2

Purpose
Returns char1 concatenated with char2, where char1 and char2 are string arguments. 
This function is equivalent to the concatenation operator (||).

Example
This example uses nesting to concatenate three character strings.

SELECT CONCAT( CONCAT(ename, ' is a '), job) "Job"
FROM emp
WHERE empno = 7900;

Returns the following result.

Job
-------------------------
JAMES      is a CLERK

ODBC Function
{FN CONCAT (char1, char2)}

3.3.9 CONVERT

Syntax
{ fn CONVERT(value_exp, data_type) }

Purpose
Converts a character string from one character set to another. 



SQL Functions Alphabetical Listing

3-10 Oracle Database Lite SQL Reference

The value_exp argument is the value to be converted. 

The data_type argument is the name of the character set to which char is converted. 

Usage Notes
The common character sets are listed in Table 3–4.

Example
SELECT {fn CONVERT('Groß', 'US7ASCII') }
"Conversion" FROM DUAL;

Returns the following result.

conversi
--------
Groß

3.3.10 COUNT

Syntax
COUNT([* | [DISTINCT | ALL] expr})

Purpose
Returns the number of rows in the query.

Example 1 
SELECT COUNT(*) "Total" FROM emp;

Returns the following result.

Total
----------
14

Example 2
SELECT COUNT(job) "Count" FROM emp;

Returns the following result.

Count
----------

Table 3–4 Common Character Sets Used with the CONVERT Function

Common Character Sets

US7ASCII WE8ISO8859P1

WE8DEC HP West European Laserjet 8-bit character set

WE8HP DEC French 7-bit character set

F7DEC IBM West European EBCDIC Code Page 500

WE8EBCDIC500 IBM PC Code Page 850 ISO 8859-1 West European 8-bit 
character set

WE8PC850 ISO 8859-1 West European 8-bit character set



SQL Functions Alphabetical Listing

SQL Functions 3-11

14

Example 3 
SELECT COUNT(DISTINCT job) "Jobs" FROM emp;

Returns the following result.

Jobs
----------
5

Example 4
SELECT COUNT (ALL JOB) FROM EMP;

Returns the following result.

COUNT(ALLJOB)
-------------

3.3.11 CURDATE

Syntax
{ fn CURDATE ( <value_expression > ) }

Purpose
Returns the current date.

Usage Notes
If you specify expr (expression), this function returns rows where expr is not null. You 
can count either all rows, or only distinct values of expr.

If you specify the asterisk (*), this function returns all rows, including duplicates and 
nulls.

Example 1
SELECT {fn CURDATE()} FROM DUAL;

Returns the following result.

{FNCURDATE
-----------
1999-04-12

Example 2
SELECT {fn WEEK({fn CURDATE()})} FROM DUAL;

Returns the following result.

{FNWEEK({FNCURDATE()})}
-----------------------
                     16



SQL Functions Alphabetical Listing

3-12 Oracle Database Lite SQL Reference

3.3.12 CURRENT_DATE

Syntax
CURRENT_DATE

Purpose
Returns the current date.

Example
SELECT CURRENT_DATE FROM DUAL;

Returns the following result.

CURRENT_DATE
------------
1999-04-12

ODBC Function
{fn CURDATE()}

3.3.13 CURRENT_TIME

Syntax
CURRENT_TIME

Purpose
Returns the current time.

Example
SELECT CURRENT_TIME FROM DUAL;

Returns the following result.

CURRENT_T
---------
15:54:18

ODBC Function
{fn CURTIME()}

3.3.14 CURRENT_TIMESTAMP

Syntax
CURRENT_TIMESTAMP

Purpose
Returns the current local date and local time as a timestamp value but only displays 
the current local date by default. You can view current local time information by using 
CURRENT_TIMESTAMP as a value of the TO_CHAR function and by including a time 
format. For more information, see Example 2.



SQL Functions Alphabetical Listing

SQL Functions 3-13

Example 1
SELECT CURRENT_TIMESTAMP FROM DUAL;

Returns the following result.

CURRENT_TI
---------
1999-04-12

Example 2
SELECT TO_CHAR (CURRENT_TIMESTAMP, 'HH24:MM:SS, Day, Month, DD, YYYY')FROM DUAL;

Returns the following result.

TO_CHAR(CURRENT_TIMESTAMP
----------------------------------------
18:04:05, Tuesday  , April    , 06, 1999

ODBC Function
{fn CURTIME()}

3.3.15 CURTIME

Syntax
{ fn CURTIME ( <value_expression > ) }

Purpose
Returns the current time.

Example 1
SELECT {fn CURTIME()} FROM DUAL;

Returns the following result.

{FNCURTIM
---------
11:09:59

Example 2
SELECT {fn HOUR({fn CURTIME()})} FROM DUAL;

Returns the following result.

{FNHOUR({FNCURTIME()})}
-----------------------
                     11

3.3.16 DATABASE

Syntax
{ fn DATABASE () }

Purpose
Specifies the name of the database. If you are using ODBC, the DATABASE function 
returns the name of the current default database file without the .ODB extension. 



SQL Functions Alphabetical Listing

3-14 Oracle Database Lite SQL Reference

Usage Notes
A database name function returns the same value as that of 
SQLGetConnectOption() with the option SQL_CURRENT_QUALIFIER. 

Example
The following example returns a result for users connected to the default database.

SELECT {fn DATABASE () } FROM DUAL;

Returns the following result.

{FNDATABASE()}
--------------
POLITE

3.3.17 DAYNAME

Syntax
{ fn DAYNAME (date_expr) }

Purpose
Returns the day of the week as a string.

Example
SELECT {fn dayname({fn curdate()})} from dual;

Returns the current day of the week as a string.

3.3.18 DAYOFMONTH

Syntax
{ fn DAYOFMONTH ( <value_expression > ) }

Purpose
Returns the day of the month as an integer using arguments listed in Table 3–5.

Example 1
SELECT {fn DAYOFMONTH ({fn CURDATE()})} FROM DUAL;

Returns the following result:

{FNDAYOFMONTH({FNCURDATE()})
----------------------------
                          12

Table 3–5 Argument Used with the DAYOFMONTH Function

Argument Description

<value_expression> Date on which the day of the month is computed. The result is 
between 1 and 31, where 1 represents the first day of the 
month.



SQL Functions Alphabetical Listing

SQL Functions 3-15

Example 2
SELECT {fn DAYOFMONTH('1997-07-16')} "DayOfMonth" FROM DUAL;

Returns the following result.

DayOfMonth
----------
        16

3.3.19 DAYOFWEEK

Syntax
{ fn DAYOFWEEK ( <value_expression > ) }

Purpose
Returns the day of the week as an integer using arguments listed in Table 3–6.

Example 1
SELECT {fn DAYOFWEEK ({fn CURDATE()})} FROM DUAL;

Returns the following result.

{FNDAYOFWEEK({FNCURDATE()})}
----------------------------
                           2

Example 2
SELECT {fn DAYOFWEEK('1997-07-16')} "DayOfWeek" FROM DUAL;

Returns the following result.

DayOfWeek
------------------
4

3.3.20 DAYOFYEAR

Syntax
{ fn DAYOFYEAR ( <value_expression > ) }

Purpose
Returns the day of the year as an integer using arguments listed in Table 3–7.

Table 3–6 Argument Used with the DAYOFWEEK Function

Argument Description

<value_expression> Date on which the day of the week is computed. The result is 
between 1 and 7, where 1 represents Sunday.

Table 3–7 Argument Used with the DAYOFYEAR Function

Argument Description

<value_expression> A date on which the day of the year is computed. The result is 
between 1 and 366.



SQL Functions Alphabetical Listing

3-16 Oracle Database Lite SQL Reference

Example 1
SELECT {fn DAYOFYEAR ({fn CURDATE()})} FROM DUAL;

Returns the following result.

{FNDAYOFYEAR({FNCURDATE()})}
----------------------------
                         102

Example 2
SELECT {fn DAYOFYEAR('1997-07-16')} "DAYOFYEAR" FROM DUAL;

Returns the following result.

DayOfYear
---------
197

3.3.21 DECODE

Syntax
DECODE (expr, search, result [, search, result...] [,default])

Purpose
Search for an expression’s values and then evaluate them in terms of a specified result.

Usage Notes
To evaluate an expression, Oracle Database Lite compares the expression to each 
search value one by one. If the expression is equal to a search, Oracle Database Lite 
returns the corresponding result. If no match is found, Oracle Database Lite returns 
default, or, if default is omitted, returns null. If the expression and search contain 
character data, Oracle Database Lite compares them using non-padded comparison 
semantics.

The search, result, and default values can be derived from expressions. Oracle 
Database Lite evaluates each search value only before comparing it to the expression, 
rather than evaluating all search values before comparing any of them with the 
expression. Consequently, Oracle Database Lite never evaluates a search if a previous 
search is equal to the expression.

Oracle Database Lite automatically converts the expression and each search value to 
the datatype of the first search value before making comparisons. Oracle Database Lite 
automatically converts the return value to the same datatype as the first result. If the 
first result has the datatype CHAR or if the first result is null, then Oracle Database Lite 
converts the return value to the datatype VARCHAR2.

In a DECODE expression, Oracle Database Lite considers two nulls to be equivalent. If 
the expression is null, Oracle Database Lite returns the result of the first search that is 
also null.

The maximum number of components in the DECODE expression, including the 
expression, searches, results, and default is 255.

Example 1
The following expression decodes the DEPTNO column in the DEPT table. If DEPTNO is 
10, the expression evaluates to ’ACCOUNTING’; if DEPTNO is 20, it evaluates to 



SQL Functions Alphabetical Listing

SQL Functions 3-17

’RESEARCH’; and so on. If DEPTNO is not 10, 20, 30, or 40, the expression returns 
’NONE’.

DECODE (deptno, 10, 'ACCOUNTING',
20, 'RESEARCH',
30, 'SALES',
40, 'OPERATIONS',
'NONE')

Example 2
The following example uses the DECODE clause in a SELECT statement.

SELECT DECODE (deptno, 10, 'ACCOUNTING',
20, 'RESEARCH',
30, 'SALES',
40, 'OPERATIONS',
'NONE') 
FROM DEPT;

Returns the following result.

DECODE(DEP
----------
ACCOUNTING
RESEARCH
SALES
OPERATIONS

3.3.22 EXTRACT

Syntax
EXTRACT (extract-field FROM extract source)

Purpose
Returns information from the i portion of the extract-source. The extract-source 
argument contains date-time or interval expressions. The extract-field argument 
contains one of the following keywords: YEAR, MONTH, DAY, HOUR, MINUTE, or 
SECOND.

The precision of the returned value is defined in implementation. The scale is 0 unless 
SECOND is specified. When SECOND is specified, the scale is not less than the fractional 
seconds precision of the extract-source field.

Example 1
SELECT EXTRACT (DAY FROM '06-15-1966') FROM DUAL;

Returns the following result.

EXTRACT(DAY
-----------
         15

Example 2
SELECT  EXTRACT (YEAR FROM {FN CURDATE()}) FROM DUAL;

Returns the following result.

EXTRACT(YEAR



SQL Functions Alphabetical Listing

3-18 Oracle Database Lite SQL Reference

------------
        1999

3.3.23 FLOOR

Syntax
FLOOR (n)

Purpose
Returns largest integer equal to or less than n.

Example
SELECT FLOOR(15.7) "Floor" FROM DUAL;

Returns the following result.

    Floor
---------
       15

3.3.24 GREATEST

Syntax
GREATEST(expr [,expr] ...)

Purpose
Returns the greatest of the list of exprs (expressions). All exprs after the first are 
implicitly converted to the datatype of the first exprs before the comparison. Oracle 
Database Lite compares the exprs using non padded comparison semantics. Character 
comparison is based on the value of the character in the database character set. One 
character is greater than another if it has a higher value. If the value returned by this 
function is character data, its datatype is always VARCHAR2.

Example
SELECT GREATEST('HARRY','HARRIOT','HAROLD') "GREATEST" FROM DUAL;

Returns the following result.

GREATEST
--------
HARRY

3.3.25 HOUR

Syntax
HOUR (time_exp)

Purpose
Returns the hour as an integer value in the range of 0-23.

Example 1
SELECT {FN HOUR ('14:03:01')} FROM DUAL;



SQL Functions Alphabetical Listing

SQL Functions 3-19

Returns the following result.

{FNHOUR('14:03:01')}
--------------------
                  14

Example 2
SELECT {fn HOUR({fn CURTIME()})} FROM DUAL;

Returns the following result.

{FNHOUR({FNCURTIME()})}
-----------------------
                     11

3.3.26 INITCAP

Syntax
INITCAP(char)

Purpose
Returns char, with the first letter of each word in uppercase, all other letters in 
lowercase. Words are delimited by white space or characters that are not 
alphanumeric.

Example
SELECT INITCAP('the soap') "Capitals" FROM DUAL;

Returns the following result.

Capitals
--------
The Soap

3.3.27 INSTR

Syntax
INSTR(char1, char2, [, n [, m ]])

Purpose
Searches the string argument char1, beginning with its nth character, for the mth 
occurrence of string argument char2, where m and n are numeric arguments. Returns 
the position in char1 of the first character of this occurrence.

Usage Notes
If n is negative, INSTR counts and searches backward from the end of char1. The value 
of m must be positive. The default values of both n and m are 1, meaning that INSTR 
begins searching at the first character of char1 for the first occurrence of char2. The 
return value is relative to the beginning of char1, regardless of the value of n, and is 
expressed in characters. If the search is unsuccessful (if char2 does not appear m times 
after the nth character of char1), the return value is 0. For additional information, see 
the syntax for the POSITION function.



SQL Functions Alphabetical Listing

3-20 Oracle Database Lite SQL Reference

Example
SELECT INSTR('CORPORATE FLOOR','OR',3,2) "Instring" FROM DUAL;

Returns the following result.

 Instring
---------
       14

3.3.28 INSTRB

Syntax
INSTRB(char1, char2, [, n [, m ]])

Purpose
Searches the string argument char1, beginning with its nth byte, for the mth occurrence 
of string argument char2, where m and n are numeric arguments. Returns the position 
in char1 of the first byte of this occurrence. The same as INSTR except that n and the 
function's return value are expressed in bytes rather than characters. For a single-byte 
database character set, INSTRB is equivalent to INSTR.

Example
SELECT INSTRB('CORPORATE FLOOR','OR',5,2) "Instring in bytes" FROM DUAL;

Returns the following result.

Instring in bytes
-----------------
               14

3.3.29 INTERVAL

Syntax
INTERVAL (datetime values)

Purpose
Subtracts one datetime from another and generates the result. When you add or 
subtract one interval from another, the result is always another interval. You can 
multiply or divide an interval by a numeric constant.

Example 1
SELECT CURRENT_DATE - INTERVAL '8' MONTH FROM DUAL;

Returns the following result.

CURRENT_DATE-INTERVAL
---------------------
1998-08-09

Example 2
SELECT TO_CHAR (INTERVAL '6' DAY * 3) FROM DUAL;

Returns the following result.

TO_CHAR(INTERVAL'6'DAY*3)



SQL Functions Alphabetical Listing

SQL Functions 3-21

-------------------------
18

3.3.30 LAST_DAY

Syntax
LAST_DAY(d)

Purpose
Returns a date that represents the last day of the month in which date d occurs.

Usage Notes
You can use this function to determine how many days are left in the current month.

Example 1
SELECT LAST_DAY (SYSDATE) FROM DUAL;

Returns the following result.

LAST_DAY
----------
1999-04-30

Example 2
SELECT SYSDATE,
LAST_DAY(SYSDATE) "Last",
LAST_DAY(SYSDATE) - SYSDATE "Days Left"
FROM DUAL;

Returns the following result.

{FNNOW()}   Last        Days Left
----------  ----------  ---------
1999-04-12  1999-04-30         18

3.3.31 LEAST

Syntax
LEAST(expr [,expr] ...)

Purpose
Returns the least of the list of exprs (expressions). All exprs after the first are implicitly 
converted to the datatype of the first exprs before the comparison. Oracle Database Lite 
compares the exprs using non-padded comparison semantics. Character comparison is 
based on the value of the character in the database character set. One character is less 
than another if it has a lower value. If the value returned by this function is character 
data, its datatype is always VARCHAR2.

Example
SELECT LEAST('HARRY','HARRIOT','HAROLD') "LEAST" FROM DUAL;

Returns the following result.

LEAST



SQL Functions Alphabetical Listing

3-22 Oracle Database Lite SQL Reference

-------
HAROLD

3.3.32 LENGTH

Syntax
LENGTH (char)
{fn LENGTH(char)}
BIT_LENGTH (char)
CHAR_LENGTH (char)
OCTET_LENGTH (char)

LENGTH returns the number of characters in char. BIT_LENGTH, CHAR_LENGTH, and 
OCTET_LENGTH return the length of char in bits, characters, or octets, respectively.

Purpose
Returns the length in characters of the string argument char. If char has the datatype 
CHAR, the length includes all trailing blanks. If char is null, it returns null.

Usage Notes
BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH are SQL-92 functions. CHAR_
LENGTH is the same as LENGTH, and OCTET_LENGTH is the same as LENGTHB.

Example
SELECT LENGTH('CANDIDE') "Length in characters" FROM DUAL;

Returns the following result.

Length in characters
--------------------
                   7

3.3.33 LENGTHB 

Syntax
LENGTHB(char)
{fn LENGTHB(char)}

Purpose
Returns the length in bytes of the string argument char. If char is null, it returns null. 
For a single-byte database character set, LENGTHB is equivalent to LENGTH.

Example
SELECT LENGTHB('CANDIDE') "Length in bytes" FROM DUAL;

Returns the following result.

Length in bytes
---------------
              7



SQL Functions Alphabetical Listing

SQL Functions 3-23

3.3.34 LOCATE

Syntax
LOCATE (string_exp1, string_exp2[,start])

Purpose
Returns the starting position of the first occurrence of string_exp1 within the first 
character position of string_exp2. You can use the start value to specify a search 
location other than the first character position of string_exp2.

Example 1
The following example selects the starting position of the character 'R' in the string 
expression 'TURNER' for every row of the EMP table.

SELECT {FN LOCATE ('R', 'TURNER')} FROM EMP ENAME;

Returns the following result.

{FNLOCATE('R'
-------------
            3
            3
            3
            3
            3
            3
            3
            3
            3
            3
            3
            3
            3
            3

14 rows selected.

Example 2
The following example selects the starting position of the character 'R' in the string 
expression 'TURNER' and starts its search at the fourth character in 'TURNER'. The 
example displays the results found for every occurrence of 'TURNER' in every row of 
the EMP table.

SELECT {FN LOCATE ('R', 'TURNER',4)} FROM EMP ENAME;

Returns the following result.

{FNLOCATE('R'
-------------
            6
            6
            6
            6
            6
            6
            6
            6
            6



SQL Functions Alphabetical Listing

3-24 Oracle Database Lite SQL Reference

            6
            6
            6
            6
            6

14 rows selected.

3.3.35 LOWER

Syntax
LOWER(char)

Purpose
Returns a string argument char, with all its letters in lowercase. The return value has 
the same datatype as char, either CHAR or VARCHAR2.

Example
SELECT LOWER('LOWER') FROM DUAL;

Returns the following result.

LOWER
-----
lower

ODBC Function
{fn LCASE (char)}

3.3.36 LPAD

Syntax
LPAD(char1,n [,char2])

Purpose
Returns char1, left-padded to length n with the sequence of characters in char2; char2 
defaults to a single blank. If char1 is longer than n, this function returns the portion of 
char1 that fits in n.

The argument n is the total length of the return value as it is displayed on your 
terminal screen. In most character sets, this is also the number of characters in the 
return value. However, in some multi-byte character sets, the display length of a 
character string can differ from the number of characters in the string.

Example
SELECT LPAD('Page1',15,'*.') "LPAD example" FROM DUAL;

Returns the following result.

LPAD example
-----------------
*.*.*.*.*.Page1



SQL Functions Alphabetical Listing

SQL Functions 3-25

3.3.37 LTRIM

Syntax
LTRIM(char [, set])

Purpose
Returns the string argument char, with its left-most characters removed up to the first 
character which is not in the string argument set, which defaults to (a single space).

Example
SELECT LTRIM ('xyxXxyLAST WORD','xy') "LTRIM example" FROM DUAL;

Returns the following result.

LTRIM example
---------------
XxyLAST WORD

ODBC Function
{fn LTRIM (char) }      (trims leading blanks)

3.3.38 MAX

Syntax
MAX([DISTINCT | ALL] expr)

Purpose
Returns the maximum value of an expression specified by the argument expr.

Example
SELECT MAX(SAL) FROM EMP;

Returns the following result.

MAX(SAL)
---------
5000

3.3.39 MIN

Syntax
MIN([DISTINCT | ALL] expr)

Purpose
Returns the minimum value of an expression specified by the argument expr.

Example
SELECT MIN(SAL), MAX(SAL) FROM EMP;

Returns the following result.

 MIN(SAL)
---------



SQL Functions Alphabetical Listing

3-26 Oracle Database Lite SQL Reference

      800

3.3.40 MINUTE

Syntax
MINUTE (time_exp)

Purpose
Returns the minute as an integer value in the range of 0-59.

Example 1
SELECT {FN MINUTE ('14:03:01')} FROM DUAL;

Returns the following result.

{FNMINUTE('14:03:01')}
----------------------
                     3

Example 2
SELECT {fn MINUTE({fn CURTIME()})} FROM DUAL;

Returns the following result.

{FNMINUTE({FNCURTIME()})}
-------------------------
                       23

3.3.41 MOD

Syntax
MOD (m,n)

Purpose
Returns the remainder of m divided by n. Returns m if n is 0.

Example
SELECT MOD (26,11) "ABLOMOV" FROM DUAL;

Returns the following result.

  ABLOMOV
---------
        4

3.3.42 MONTH

Syntax
MONTH (date_exp)

Purpose
Returns the month as an integer value in the range of 1-12.



SQL Functions Alphabetical Listing

SQL Functions 3-27

Example 1
SELECT {FN MONTH ('06-15-1966')} FROM DUAL;

Returns the following result.

{FNMONTH('06-15-1966')}
-----------------------
                      6

Example 2
SELECT {fn MONTH({fn CURDATE()})} FROM DUAL;

Returns the following result.

{FNMONTH({FNCURDATE()})}
------------------------
                       4

3.3.43 MONTHNAME

Syntax
{ fn MONTHNAME (date_exp) }

Purpose
Returns the name of the month as a string.

Example
select {fn monthname({fn curdate()})} from dual;

Returns the current month of the year as a string.

3.3.44 MONTHS_BETWEEN

Syntax
MONTHS_BETWEEN(d1, d2 )

Purpose
Returns number of months between dates d1 and d2. If d1 is later than d2, result is 
positive; if earlier, negative. If d1 and d2 are either the same days of the month or both 
last days of months, the result is always an integer. Otherwise, Oracle Database Lite 
calculates the fractional portion of the result based on a 31-day month and considers 
the difference in time components of d1 and d2.

Example
SELECT MONTHS_BETWEEN(
TO_DATE('02-02-1995','MM-DD-YYYY'),
TO_DATE('01-01-1995','MM-DD-YYYY') ) "Months"
FROM DUAL;

Returns the following result.

   Months
---------



SQL Functions Alphabetical Listing

3-28 Oracle Database Lite SQL Reference

1.0322581

3.3.45 NEXT_DAY

Syntax
NEXT_DAY(d, char)

Purpose
Returns the date of the first weekday named by char that is later than the date d. The 
argument char must be a day of the week in your session's date language. The return 
value has the same hours, minutes, and seconds component as the argument d.

Example
SELECT NEXT_DAY('15-MAR-92','TUESDAY') "NEXT DAY" FROM DUAL;

Returns the following result.

NEXT DAY
----------
1992-03-17

3.3.46 NOW

Syntax
NOW

Purpose
Returns the current local date and local time as a timestamp value but only displays 
the current local date by default. You can view current local time information by using 
NOW as a value of the TO_CHAR function and by including a time format. For more 
information, see Example 2.

Example 1
SELECT {FN NOW()} FROM DUAL;

Returns the following result.

{FNNOW()}
----------
1999-04-07

Example 2
SELECT TO_CHAR ({fn NOW ('YYYY, Month, DD, HH24:MM:SS')}) FROM DUAL;

Returns the following result.

TO_CHAR({FNNOW('YYYY
----------------------------------------
1999-04-07 12:55:31



SQL Functions Alphabetical Listing

SQL Functions 3-29

3.3.47 NVL

Syntax
NVL(expr1, expr2)

Purpose
If expr1 is null, returns expr2; if expr1 is not null, returns expr1. The arguments expr1 
and expr2 must be of the same datatype.

Example 1
SELECT ename, NVL(TO_CHAR(COMM),'NOT APPLICABLE') "COMMISSION"
FROM emp
WHERE deptno = 30;

Returns the following result.

ENAME      COMMISSION
---------- ----------------
BLAKE      NOT APPLICABLE
MARTIN     1400.00
ALLEN      300.00
TURNER     .00
JAMES      NOT APPLICABLE
WARD       500.00

6 rows selected.

Example 2
SELECT {fn IFNULL(Emp.Ename, 'Unknown')},
NVL (Emp.comm, 0) FROM EMP;

Returns the following result.

{FNIFNULL( 'UNKNOWN')}
---------- -----------
KING                 0
BLAKE                0
CLARK                0
JONES                0
MARTIN            1400
ALLEN              300
TURNER               0
JAMES                0
WARD               500
FORD                 0
SMITH                0
SCOTT                0
ADAMS                0
MILLER               0

14 rows selected.

Example 3
SELECT sal+NVL(comm, 0) FROM EMP;

Returns the following result.

SAL+NVL(COMM



SQL Functions Alphabetical Listing

3-30 Oracle Database Lite SQL Reference

------------
        5000
        2850
        2450
        2975
        2650
        1900
        1500
         950
        1750
        3000
         800
        3000
        1100
        1300

14 rows selected.

ODBC Function
{fn IFNULL (expr1, expr2)}

3.3.48 POSITION

Syntax
POSITION ( <substring_value_expression>
                IN <value_expression> )

The arguments for the POSITION function are listed in Table 3–8.

Purpose
Returns the starting position of the first occurrence of a sub-string in a string.

Usage Notes
If the length of <substring_value_expression> is 0, the result is null. If <substring_value_
expression> occurs in <value_expression>, the result is the position of the first character 
of <substring_value_expression>. Otherwise, the result is 0. If <start_len_cnt> is omitted, 
the function starts the search from position 1. For additional information, see the 
INSTR and INSTRB functions.

Example
SELECT POSITION ('CAT' IN 'CATCH') FROM DUAL;

Returns the following result.

POSITION('CAT'IN'CATCH')
------------------------
                       1

Table 3–8 Arguments Used with the POSITION Function

Argument Description

<value_expression> a source string to search in.

<substring_value_
expression>

a sub-string to search for.

<start_len_cnt> the starting position for the search



SQL Functions Alphabetical Listing

SQL Functions 3-31

ODBC Function
{fn LOCATE ( <substring_value_expression> ,
  <value_expression>[, <start_len_cnt> ] ) }

3.3.49 QUARTER

Syntax
{ fn QUARTER ( <value_expression> ) }

The arguments for the QUARTER function are listed in Table 3–9.

Purpose
Returns the quarter of a date as an integer.

Example
SELECT {fn QUARTER ({fn CURDATE()})} FROM DUAL;

Returns the following result.

{FNQUARTER({FNCURDATE()})}
--------------------------
                         2

3.3.50 REPLACE

Syntax
REPLACE(char, search_string [, replacement_string])

Purpose
Returns char with every occurrence of search_string replaced with replacement_string, 
where char, search_string, and replacement_string are string arguments.

Usage Notes
If replacement_string is omitted or null, all occurrences of search_string are removed. If 
search_string is null, then char is returned. This function provides a super-set of the 
functionality provided by the TRANSLATE function. TRANSLATE provides single 
character, one to one, and substitution functions. REPLACE enables you to substitute 
one string for another as well as to remove character strings.

Example
SELECT REPLACE('JACK and JUE','J','BL') "Changes" FROM DUAL;

Returns the following result.

Changes
---------------
BLACK and BLUE

Table 3–9 Arguments Used with the QUARTER Function

Argument Description

<value_expression> A date on which the quarter is computed. The result is between 
1 and 4, where 1 represents January 1 through March 31.



SQL Functions Alphabetical Listing

3-32 Oracle Database Lite SQL Reference

3.3.51 ROUND - Date Function

Syntax
ROUND(d [,fmt])

The format models to be used with the ROUND (and TRUNC) date function, and the 
units to which it rounds dates are listed in Table 3–10. The default model, DD, returns 
the date rounded to the day with a time of midnight.

Purpose
Returns d rounded to the unit specified by the format model fmt. If you omit fmt, d is 
rounded to the nearest day.

Example
SELECT ROUND(TO_DATE('27-OCT-92'),'YEAR')
"FIRST OF THE YEAR" FROM DUAL;

Returns the following result.

FIRST OF
---------
1993-01-0

3.3.52 ROUND - Number Function

Syntax
ROUND(n [,m ])

Table 3–10 The Format Models with the ROUND Date Function 

Formal Model Rounding Unit

CC or SCC Century

YYYY, SYYYY,

YEAR, SYEAR,

YYY, YY, Y

Year (rounds up on July 1)

IYYY, IYY, IY, I ISO Year

Q Quarter (rounds up in the sixteenth day of the second month of 
the quarter)

MONTH, MON, MM, RM Month (rounds up on the sixteenth day)

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO year

W Same day of the week as the first day of the month

DDD, DD, J Day

DAY, DY, D Starting day of the week.

HH, HH12, HH24 Hour

MI Minute



SQL Functions Alphabetical Listing

SQL Functions 3-33

Purpose
Returns n rounded to m places to the right of the decimal point; if m is omitted, to 0 
places. m can be negative to round off digits left of the decimal point. m must be an 
integer.

Example 1
SELECT ROUND (54.339, 2) FROM DUAL;

Returns the following result.

ROUND(54.339
------------
54.34

3.3.53 RPAD

Syntax
RPAD(char1,n [,char2 ])

Purpose
Returns char1, right-padded to length n with char2 replicated as many times as 
necessary; char2 defaults to a single blank. If char1 is longer than n, this function 
returns the portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on your 
terminal screen. In most character sets, this is also the number of characters in the 
return value. However, in some multi-byte character sets, the display length of a 
character string can differ from the number of characters in the string.

Example
SELECT RPAD('ename',12,'ab') "RPAD example"
FROM emp
WHERE ename = 'TURNER';

Returns the following result.

RPAD example
-------------
enameabababa

3.3.54 RTRIM

Syntax
RTRIM(char [,set])

Purpose
Returns the string argument char, with its right-most characters removed following the 
last character which is not in the string argument set. This defaults to ' ' (a single 
space).

Example 1
SELECT RTRIM ('TURNERyxXxy', 'xy') "RTRIM example" FROM DUAL;

Returns the following result.



SQL Functions Alphabetical Listing

3-34 Oracle Database Lite SQL Reference

RTRIM examp
-----------
TURNERyxX

Example 2
SELECT {fn RTRIM ('TURNERyxXxy', 'xy')} FROM DUAL;

Returns the following result.

{{FNRTRIM('T
-----------
TURNERyxX

ODBC Function
{fn RTRIM (char)}    (trims leading blanks)

3.3.55 SECOND

Syntax
SECOND (time_exp)

Purpose
Returns the second as an integer value in the range of 0-59.

Example 1
SELECT {FN SECOND ('14:03:01')} FROM DUAL;

Returns the following result.

{FNSECOND('14:03:01')}
----------------------
                     1

Example 2
SELECT {fn SECOND({fn CURTIME()})} FROM DUAL;

Returns the following result.

{FNSECOND({FNCURTIME()})}
-------------------------
                       59

3.3.56 STDDEV

Syntax
STDDEV([DISTINCT|ALL] x)

Purpose
Returns the standard deviation of x, a number. Oracle Database Lite calculates the 
standard deviation as the square root of the variance defined for the VARIANCE 
group function.

Example
SELECT STDDEV(sal) "Deviation" FROM emp;



SQL Functions Alphabetical Listing

SQL Functions 3-35

Returns the following result.

Deviation
---------
1182.5032

3.3.57 SUBSTR

Syntax
SUBSTR(char, m [, n ])

Purpose
Returns a portion of the string argument char, beginning with the character at position 
m and n characters long.

Usage Notes
If m is positive, SUBSTR counts from the beginning of char to find the first character. If 
m is negative, SUBSTR counts backwards from the end of char. The value m cannot be 
0. If n is omitted, SUBSTR returns all characters to the end of char. The value n cannot 
be less than 1.

Example
SELECT SUBSTR('ABCDEFG',3,4) "Subs" FROM DUAL;

Returns the following result.

Subs
----
CDEF

3.3.58 SUBSTRB

Syntax
SUBSTRB(char, m [,n])

Purpose
Returns a portion of the string argument char, beginning with the byte at position m 
and n bytes long. The same as SUBSTR, except that the arguments m and n specify 
bytes rather than characters. For a single-byte database character set, SUBSTRB is 
equivalent to SUBSTR.

Example
SELECT SUBSTRB('ABCDEFG',5,4) "Substring with bytes" FROM DUAL;

Returns the following result.

Substring with bytes
--------------------
EFG



SQL Functions Alphabetical Listing

3-36 Oracle Database Lite SQL Reference

3.3.59 SUM

Syntax
SUM([DISTINCT | ALL] n)

Purpose
Returns the sum of values of n.

Example
SELECT deptno, SUM(sal) TotalSalary FROM emp GROUP BY deptno;

Returns the following result.

   DEPTNO TOTALSALARY
--------- -----------
       10        8750
       20       10875
       30        9400

3.3.60 SYSDATE

Syntax
SYSDATE

Purpose
Returns the current date and time. Requires no arguments.

Usage Notes
You cannot use this function in the condition of the Oracle Database Lite DATA type 
column. You can only use the time in a TIME column, and both date and time in a 
TIMESTAMP column.

Example
SELECT TO_CHAR(SYSDATE, 'MM-DD-YYYY HH24:MI:SS') NOW FROM DUAL;

Returns the following result.

NOW
-------------------
04-12-1999 19:13:48

3.3.61 TIMESTAMPADD

Syntax
{fn TIMESTAMPADD (<interval>, <value_exp1 >, <value_exp2 >)}
<value_exp1 > + <value_exp2 >

The arguments for the TIMESTAMPADD function are listed in Table 3–11.



SQL Functions Alphabetical Listing

SQL Functions 3-37

Purpose
Adds a date and time value to the current timestamp.

Example
The following example adds one day to the current timestamp for 1999-04-13.

SELECT {fn TIMESTAMPADD (SQL_TSI_DAY, 1, {fn NOW()})} FROM DUAL;

Returns the following result.

{FNTIMESTA
----------
1999-04-14

3.3.62 TIMESTAMPDIFF

Syntax
{fn TIMESTAMPDIFF (<interval>, <value_exp1 >, <value_exp2 >)}
<value_expression > - <value_expression >

The arguments for the TIMESTAMPDIFF function are listed in Table 3–12.

Table 3–11 Arguments Used with the TIMESTAMPADD Function

Argument Description

<interval> Specifies the unit of the second operand, <value_exp1>. The 
following keywords are valid values for intervals.

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

<value_exp1> an integer

<value_exp2> a timestamp

<value_expression> an operand



SQL Functions Alphabetical Listing

3-38 Oracle Database Lite SQL Reference

Purpose
Calculates the difference between two timestamp values using a specified interval.

Example 1
SELECT {fn TIMESTAMPDIFF (SQL_TSI_DAY, {fn CURDATE()}, '1998-12-09')} FROM DUAL;

Returns the following result.

{FNTIMESTAMPDIFF(SQL_TSI_DAY
----------------------------
                        -125

Example 2
SELECT ENAME, {fn TIMESTAMPDIFF (SQL_TSI_YEAR, {fn CURDATE()},HIREDATE)} FROM EMP;

Returns the following result.

ENAME      {FNTIMESTAMPDIFF(SQL_TSI_YEA
---------- ----------------------------
KING                                -17
BLAKE                               -17
CLARK                               -17
JONES                               -18
MARTIN                              -17
ALLEN                               -18
TURNER                              -17
JAMES                               -17
WARD                                -18
FORD                                -17
SMITH                               -18
SCOTT                               -16
ADAMS                               -16
MILLER                              -17

14 rows selected.

Table 3–12 Arguments Used with the TIMESTAMPDIFF Function

Argument Description

<interval> specifies the unit of the second operand, <value_exp1>. The 
following keywords are valid values for intervals:

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

<value_exp1> an integer

<value_exp2> a timestamp

<value_expression> an operand



SQL Functions Alphabetical Listing

SQL Functions 3-39

3.3.63 TO_CHAR

Syntax for Dates
TO_CHAR(d [, fmt])

Syntax for Numbers
TO_CHAR(n [, fmt])

Purpose
Converts a date or number to a value of the VARCHAR2 datatype, using the optional 
format fmt using arguments listed in Table 3–13.

Usage Notes
■ If you omit fmt, the argument d or n is converted to a VARCHAR2 value. For dates, 

the argument d is returned in the default date format. For numbers, the argument 
n is converted to a value exactly long enough to hold its significant digits.

■ Date literals must be preceded by the DATE keyword when used as arguments to 
TO_CHAR.

You can specify a default date format for all databases on your computer by setting the 
NLS_DATE_FORMAT parameter in the POLITE.INI file. See the Oracle Database Lite 
Administration and Deployment Guide for more information on setting the NLS_DATE_
FORMAT parameter in the POLITE.INI file.

Example
SELECT TO_CHAR (SYSDATE, 'Day, Month, DD, YYYY')"TO_CHAR example" FROM DUAL;

Returns the following result.

TO_CHAR example
--------------------------------
Saturday , May      , 22, 1999

3.3.64 TO_DATE

Syntax
TO_DATE(char [, fmt ])

Purpose
Converts the character string argument char to a value of the DATE datatype. The fmt 
argument is a date format specifying the format of char.

Example
SELECT TO_DATE('January 26, 1996, 12:38 A.M.', 'Month dd YYYY HH:MI A.M.') FROM 
DUAL;

Table 3–13 Arguments Used with the TO_CHAR Function

Argument Description

d date column or SYSDATE

fmt format string

n number column or literal



SQL Functions Alphabetical Listing

3-40 Oracle Database Lite SQL Reference

Returns the following result.

TO_CHAR(TO_DATE('JANUARY26
----------------------------------------
1996-01-26 12:38:00

3.3.65 TO_NUMBER

Syntax
TO_NUMBER(char [, fmt ])

Purpose
Converts the string argument char that contains a number in the format specified by 
the optional format model fmt, to a return value of the NUMBER datatype.

Usage Notes
■ For information about date and number formats, see Formats.

■ Do not use the TO_DATE function with a DATE value for the char argument.

■ The returned DATE value can have a different century value than the original char, 
depending on fmt or the default date format.

■ Dates in the Oracle format (such as 06-JUN-85 and 6-JUN-1985), the SQL-92 
format (such as 1989-02-28), or the format specified by the NLS_DATE_FORMAT 
parameter are converted automatically when inserted into a date column.

■ You can specify a default date format for all databases on your computer by 
setting the NLS_DATE_FORMAT parameter in the POLITE.INI file. See the Oracle 
Database Lite Administration and Deployment Guide for more information on setting 
the NLS_DATE_FORMAT parameter in the POLITE.INI file.

Example
The following example updates the salary of an employee named Blake according to 
the value specified in the TO_NUMBER function. In this example, you first view Blake’s 
salary. Then, update Blake’s salary and view it again.

SELECT * FROM EMP WHERE ENAME = 'BLAKE';

Returns the following result.

    EMPNO ENAME      JOB             MGR HIREDATE        SAL      COMM    DEPTNO
--------- ---------- --------- --------- --------- --------- --------- ---------
     7698 BLAKE      MANAGER        7839 1981-05-0      2850                  30

UPDATE EMP SET SAL = SAL + TO_NUMBER('100.52','9,999.99') WHERE ENAME = 'BLAKE';

Returns the following result.

1 row updated.

SELECT * FROM EMP WHERE ENAME = 'BLAKE';

Returns the following result.

    EMPNO ENAME      JOB             MGR HIREDATE        SAL      COMM    DEPTNO
--------- ---------- --------- --------- --------- --------- --------- ---------
     7698 BLAKE      MANAGER        7839 1981-05-0   2950.52                  30



SQL Functions Alphabetical Listing

SQL Functions 3-41

3.3.66  TRANSLATE

Syntax
TRANSLATE(char, from, to)

Purpose
Returns char with all occurrences of each character in from replaced by its 
corresponding character in to, where char, from, and to are string arguments.

Usage Notes
■ Characters in char that are not in from are not replaced. 

■ The argument from can contain more characters than to. In this case, the extra 
characters at the end of from have no corresponding characters in to. If these extra 
characters appear in char, they are removed from the return value.

You cannot use an empty string for to to remove from the return value all characters in 
from. TRANSLATE interprets the empty string as null, and if this function has a null 
argument, it returns null.

Example
SELECT TRANSLATE('2KRW229', '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',
'9999999999XXXXXXXXXXXXXXXXXXXXXXXXXX') "Licence" FROM DUAL;

Returns the following result.

Licence
-------
9XXX999

3.3.67 TRIM 

Syntax
TRIM( [[<trim_spec >] char ]
    FROM ] string )

If <trim_spec> is omitted, then BOTH is implied. If char is omitted, then a space 
character is implied as listed in Table 3–14.

Purpose
Removes leading and/or trailing blanks (or other characters) from a string.

Example
SELECT TRIM ('OLD' FROM 'OLDMAN') FROM DUAL;

Returns the following result.

Table 3–14 Arguments Used with the TRIM Function

Argument Description

<trim_spec> a specification: LEADING, TRAILING, or BOTH

char a single character

string the target string to be trimmed



SQL Functions Alphabetical Listing

3-42 Oracle Database Lite SQL Reference

TRIM('
------
MAN

3.3.68 TRUNC

Syntax with Numeric Arguments
TRUNC(n [, m])

Syntax with Date Arguments
TRUNC(d [, fmt])

Purpose with Numeric Arguments
Returns n truncated to m decimal places, where m and n are numeric arguments. If m is 
omitted, truncates to 0 places. If m is negative, truncates (makes zero) m digits to the 
left of the decimal point.

Purpose with Date Arguments
Returns the date d with its time portion truncated to the time unit specified by the 
format model fmt. If you omit fmt, then d is truncated to the nearest day.

Usage Notes
The format models to be used with the TRUNC (and ROUND) date function, and the 
units to which it rounds dates are listed in Table 3–15. The default model, DD, returns 
the date rounded to the day with a time of midnight.

Example 1
SELECT TRUNC(TO_DATE('27-OCT-92', 'DD-MON-YY'), 'YEAR') "First Of The Year"
FROM DUAL;

Table 3–15 Arguments Used with the TRUNC Function

Format Model Rounding Unit

CC or SCC Century

YYYY, SYYYY, 

YEAR, SYEAR,

YYY, YY, Y

Year (rounds up on July 1)

IYYY, IYY, IY, I ISO Year

Q Quarter (rounds up in the sixteenth day of the second month of 
the quarter)

MONTH, MON, MM, RM Month (rounds up on the sixteenth day)

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO year

W Same day of the week as the first day of the month

DDD, DD, J Day

DAY, DY, D Starting day of the week

HH, HH12, HH24 Hour

MI Minute



SQL Functions Alphabetical Listing

SQL Functions 3-43

Returns the following result.

First Of T
----------
1992-01-01

Example 2
SELECT TRUNC(15.79,1) "Truncate" FROM DUAL;

Returns the following result.

 Truncate
---------
     15.7

Example 3
SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;

Returns the following result.

 Truncate
---------
       10

3.3.69 UPPER

Syntax
UPPER(char)

Purpose
Returns the string argument char with all its letters converted to uppercase. The return 
value has the same datatype as char.

Example
SELECT UPPER('Carol') FROM DUAL;

Returns the following result.

UPPER
-----
CAROL

ODBC Function
{fn UCASE (char)}

3.3.70 USER

Syntax
USER

Purpose
Returns the current schema name as a character string.



SQL Functions Alphabetical Listing

3-44 Oracle Database Lite SQL Reference

Example 1
SELECT USER "User" FROM DUAL;

Returns the following result.

User
--------
SYSTEM

Example 2
SELECT {fn USER()} FROM DUAL;

Returns the following result.

{FNUSER()}
------------------------------
SYSTEM

ODBC Function
{ fn USER()}

3.3.71 VARIANCE

Syntax
VARIANCE([DISTINCT|ALL] x)

Purpose
Returns variance of x, a number. Oracle Lite calculates the variance of x using this 
formula.

xi is one of the elements of x. 

n is the number of elements in the set x. If n is 1, the variance is defined to be 0.

Example
SELECT VARIANCE(sal) "Variance" FROM emp;

Returns the following result.

 Variance
---------
1398313.9

3.3.72 WEEK

Syntax
{ fn WEEK ( <value_expression> ) }

Purpose
Returns the week of the year as an integer using arguments listed in Table 3–16.



SQL Functions Alphabetical Listing

SQL Functions 3-45

Example 1
SELECT {fn WEEK({fn CURDATE()})} FROM DUAL;

Returns the following result.

{FNWEEK({FNCURDATE()})}
-----------------------
                     16

Example2
SELECT {fn week('1999-06-15')} FROM DUAL;

Returns the following.

EK('1999-06-15')}
-----------------
               25

3.3.73 YEAR

Syntax
YEAR (date_exp)

Purpose
Returns the YEAR as an integer.

Example 1
SELECT {FN YEAR ('06-15-1966')} FROM DUAL;

Returns the following result.

{FNYEAR('06-15-1966')}
----------------------
                  1966

Example 2
SELECT {fn YEAR({fn CURDATE()})} FROM DUAL;

Returns the following result.

{FNYEAR({FNCURDATE()})}
-----------------------
                   1999

Table 3–16 Arguments Used with the WEEK Function

Argument Description

<value_expression> A date on which the week is computed. The result is between 1 
and 53.



SQL Functions Alphabetical Listing

3-46 Oracle Database Lite SQL Reference



SQL Commands 4-1

4
SQL Commands

This document discusses SQL commands used by Oracle Database Lite. Topics 
include:

■ Section 4.1, "SQL Command Types"

■ Section 4.2, "SQL Commands Overview"

■ Section 4.3, "SQL Commands Alphabetical Listing"

4.1 SQL Command Types
The following lists the different types of SQL commands including clauses and 
pseudocolumns. An explanation of each SQL command, clause, and pseudocolumn is 
provided in "SQL Commands Overview".

SQL Commands

Table 4–1 Data Definition Language (DDL) Commands

DDL DDL DDL

ALTER SEQUENCE CREATE PROCEDURE DROP INDEX

ALTER SESSION CREATE SCHEMA DROP JAVA

ALTER TABLE CREATE SEQUENCE DROP PROCEDURE

ALTER TRIGGER CREATE SYNONYM DROP SCHEMA

ALTER USER GRANT DROP SEQUENCE

ALTER VIEW REVOKE DROP SYNONYM

CREATE DATABASE CREATE TABLE DROP TABLE

CREATE FUNCTION CREATE TRIGGER DROP TRIGGER

CREATE GLOBAL 
TEMPORARY TABLE

CREATE USER DROP USER

CREATE INDEX CREATE VIEW DROP VIEW

CREATE JAVA DROP FUNCTION TRUNCATE TABLE

Table 4–2 Data Manipulation Language (DML)

DML DML

DELETE SELECT

EXPLAIN PLAN subquery::=



SQL Commands Overview

4-2 Oracle Database Lite SQL Reference

4.2 SQL Commands Overview
Oracle Database Lite uses several different types of SQL commands. This section 
discusses the different types of SQL commands.

4.2.1 Data Definition Language (DDL) Commands
Data definition language (DDL) commands enable you to perform the following tasks.

■ Create, alter, and drop schema objects

■ Grant and revoke privileges and roles

■ Add comments to the data dictionary

The CREATE, ALTER, and DROP commands require exclusive access to the object being 
acted upon. For example, an ALTER TABLE command fails if another user has an open 
transaction on the specified table.

4.2.2 Data Manipulation Language (DML) Commands
Data manipulation language (DML) commands query and manipulate data in existing 
schema objects. These commands do not implicitly commit the current transaction.

4.2.3 Transaction Control Commands
Transaction control commands manage changes made by DML commands.

4.2.4 Clauses
Clauses are subsets of commands that modify the command.

INSERT UPDATE

Table 4–3 Transaction Control Commands

Command Command

COMMIT SAVEPOINT

ROLLBACK SET TRANSACTION

Table 4–4 Clauses

Clause Clause

CONSTRAINT clause DROP clause

Table 4–5 Pseudocolumns

Pseudocolumns Pseudocolumns

CURRVAL and NEXTVAL pseudocolumns OL__ROW_STATUS pseudocolumn

ROWNUM pseudocolumn ROWID pseudocolumn

LEVEL pseudocolumn

Table 4–2 (Cont.) Data Manipulation Language (DML)

DML DML



SQL Commands Alphabetical Listing

SQL Commands 4-3

4.2.5 Pseudocolumns
Pseudocolumns are values generated from commands that behave like columns of a 
table, but are not actually stored in the table. Pseudocolumns are supported by Oracle 
but are not part of SQL-92.

4.2.6 BNF Notation Conventions
The syntax diagrams in this document use a variation of Backus-Nauer Form (BNF), a 
convention used to show syntax in many programming languages. Emphasis and 
symbols have the following meaning in this version of BNF syntax.

■ Keywords are shown in UPPERCASE.

■ Placeholders for which you must substitute an actual value are shown in 
lowercase. These can include clauses and other expressions.

■ Vertical (|) bars separate multiple choices. They indicate "or".

■ Parentheses and other punctuation enclosed in quotes must be typed as shown, for 
example "(".

■ Square brackets ( [] ) are not typed. They indicate that the enclosed syntax is 
optional.

■ Curly braces ( {} ) usually are not typed. They indicate that you must specify one 
of the enclosed choices. (The choices are separated by vertical bars.)

■ Loops or repetitions are indicated by a second, bracketed appearance of the term, 
set of terms, or expression, followed by ellipsis points. The brackets indicate that 
the repetition is optional (all repetitions are optional). The ellipsis points indicate 
that multiple repetitions are allowed. The bracketed appearance of the term begins 
with a comma if the repetitions are comma delimited.

■ All other punctuation (quotation marks, commas, semicolons, and so on) must be 
typed as shown.

4.3 SQL Commands Alphabetical Listing
This section lists Oracle Database Lite SQL commands, clauses, and pseudocolumns in 
alphabetical order and discusses each. This discussion includes the following.

■ Syntax

■ BNF Notation

■ Purpose

■ Prerequisites

■ Argument and Descriptions

■ Usage Notes

■ Examples

■ Related Topics

■ ODBC Functionality (where relevant)



SQL Commands Alphabetical Listing

4-4 Oracle Database Lite SQL Reference

4.3.1 ALTER SEQUENCE

Syntax
The syntax for the ALTER SEQUENCE command is displayed in Figure 4–1.

Figure 4–1 The ALTER SEQUENCE Command

BNF Notation
 ALTER SEQUENCE [schema .] sequence
  [(INCREMENT BY "integer"
   | (MAXVALUE "integer" | NOMAXVALUE)
   | (MINVALUE "integer" | NOMINVALUE)
  ]
;

Prerequisite
The sequence must be in your own schema.

Purpose
Changes a sequence in one of the following ways.

■ Changes the increment between future sequence values.

■ Sets or eliminates the minimum or maximum value.

The arguments for the ALTER SEQUENCE command are listed in Table 4–6.

Note: All examples refer to sample database objects supplied with 
Oracle Database Lite. Some DDL examples may alter the structure 
and data of the sample database objects. To avoid altering the 
sample database objects, use the ROLLBACK command after each 
DDL example that you try in the database.

Table 4–6 Arguments Used with the ALTER SEQUENCE Command

Argument Description

schema The name of the schema to contain the sequence. If you omit 
schema, Oracle Database Lite alters the sequence in your own 
schema.

sequence The name of the sequence to be altered.



SQL Commands Alphabetical Listing

SQL Commands 4-5

Usage Notes
■ To restart a sequence at a different number, you must drop and recreate the 

sequence. Only future sequence numbers are affected by the ALTER SEQUENCE 
command.

■ Oracle Database Lite performs some validations. For example, you cannot specify 
a new MAX VALUE that is less than the current sequence number, or a new 
MINVALUE that is greater than the current sequence number.

Example
This statement sets a new maximum value for the ESEQ sequence.

ALTER SEQUENCE eseq MAXVALUE 1500

ODBC 2.0
Although the ALTER SEQUENCE command is not part of ODBC SQL; ODBC passes 
the command through to your database.

Related Topics
CREATE SEQUENCE, DROP SEQUENCE

4.3.2 ALTER SESSION

Syntax
The syntax for the ALTER SESSION command is displayed in Figure 4–2.

Figure 4–2 The ALTER SESSION Command

INCREMENT BY Specifies the interval between sequence numbers. Can be any 
positive or negative integer, but cannot be 0. If negative, then 
the sequence descends. If positive, the sequence ascends. This 
value can have 10 or fewer digits. The absolute of this value 
must be less than the difference of MAXVALUE and MINVALUE. 
If you omit the INCREMENT BY clause, the default is 1.

MAXVALUE Specifies the maximum value the sequence can generate. This 
integer value can have 10 or fewer digits. MAXVALUE must be 
greater than MINVALUE.

NOMAXVALUE Specifies a maximum value of 2147483647 for an ascending 
sequence or –1 for a descending sequence.

MINVALUE Specifies the minimum value that the sequence can generate. 
This integer value can have 10 or fewer digits. MINVALUE must 
be less than MAXVALUE.

NOMINVALUE Specifies a minimum value of 1 for an ascending sequence or 
–2147483647 for a descending sequence.

Table 4–6 (Cont.) Arguments Used with the ALTER SEQUENCE Command

Argument Description



SQL Commands Alphabetical Listing

4-6 Oracle Database Lite SQL Reference

BNF Notation
ALTER SESSION SET nls_date_format = nls_date_value ;

Prerequisite
None

Purpose
To specify or modify any of the conditions or parameters that affect your connection to 
the database. Oracle Database Lite only enables you to use the SET clause of this 
command to specify or modify the NLS date format. The statement stays in effect until 
you disconnect from the database. 

The arguments for the ALTER SESSION command are listed in Table 4–7.

Example
ALTER SESSION 
SET NLS_DATE_FORMAT = 'YYYY MM DD HH24:MI:SS';

Oracle Lite uses the new default date format.

SELECT TO_CHAR(SYSDATE) Today FROM DUAL; 

TODAY 
------------------- 
1997 08 12 14:25:56 

4.3.3 ALTER TABLE

Syntax
The syntax for ALTER TABLE is displayed in Figure 4–3.

Table 4–7 Arguments Used with the ALTER SESSION Command

Argument Description

parameter_name With Oracle Lite, the ALTER SESSION command has only one 
parameter name: NLS_DATE_FORMAT.

parameter_value The NLS date format. For example: YYYY MM DD 
HH24:MI:SS.



SQL Commands Alphabetical Listing

SQL Commands 4-7

Figure 4–3 The ALTER TABLE Command

BNF Notation
ALTER TABLE [schema .] table
{
  ADD add_column_list
 |ADD table_constraint
 |DROP drop_clause
 |ATTACH JAVA {CLASS | SOURCE} cls_or_src_name 
   IN {DATABASE | cls_or_src_path} 
    [WITH CONSTRUCTOR ARGUMENTS "(" col_name_list ")"
 |DETACH [AND DELETE] JAVA CLASS class_name
 |ENABLE ALL TRIGGERS
 |DISABLE ALL TRIGGERS
 |MODIFY "(" modify_column_option")"
 |MODIFY CONSTRAINT constraint_name constraint_state
}
;

add_column_list::=
The syntax for the add_column_list expression is displayed in Figure 4–4.



SQL Commands Alphabetical Listing

4-8 Oracle Database Lite SQL Reference

Figure 4–4 The add_column_list Expression

BNF Notation
[COLUMN] "("column datatype [DEFAULT expr] [column_constraint] 
[, column_constraint]...")" [, [COLUMN] "("column datatype [DEFAULT expr]
[column_constraint] [, column_constraint]...")"]...

modify_column_option::=
The syntax for modify_column_option expression is displayed in Figure 4–5.

Figure 4–5 The modify_column_option Expression

BNF Notation
column [datatype] [DEFAULT { literal | USER | SYSDATE }] [ NULL | NOT NULL ]
      [,  column [ [datatype] [DEFAULT { literal | USER | SYSDATE }] 
       [ NULL | NOT NULL ] ] ]...

constraint_state::=
The syntax for constraint_state expression is displayed in Figure 4–6.

Figure 4–6 The constraint_state Expression

BNF Notation
([ENABLE | DISABLE] [VALIDATE | NOVALIDATE]) 

Prerequisite
The table must be in your own schema. You must be logged into the database as 
SYSTEM or as a user with DBA/DDL privileges.

Purpose
Changes the definition of a table in one of the following ways:



SQL Commands Alphabetical Listing

SQL Commands 4-9

■ Adds a column or integrity constraint

■ Drops a column or integrity constraint

■ Attaches a Java class

■ Detaches a Java class

■ Add, or change default value of a column

■ Change datatype or size of a column

■ Disable or enable a constraint

■ Change nullity property of a column

The arguments for the ALTER TABLE command are listed in Table 4–8.

Table 4–8 Arguments Used with the ALTER TABLE Command

Argument Description

schema The name of the schema, which is a character string of up to 
128 characters. The schema name must be different from any 
user names since each user name comes with a default schema 
with the same name. If you create a schema with the same 
name as a user name, Oracle Lite returns an error. See 
"CREATE USER" for more information.

table The name of a database table.

ADD Specifies that a column or integrity constraint is added to the 
database table.

DROP Specifies that a column or integrity constraint is dropped from 
the database table.

column The name of a database column.

datatype The datatype of the database column.

DEFAULT Specifies a default value expr (expression) for the new column. 
It can be one of the following:

■ DEFAULT NULL, DEFAULT USER (the user name when 
the table is created), DEFAULT literal

■ ODBC FUNCTIONS - TIMESTAMPADD, TIMESTAMPDIFF, 
DATABASE, USER

■ SQL FUNCTIONS - CURRENT_DATE, CURRENT_TIME, 
CURRENT_TIMESTAMP, SYSDATE

For more information about expressions, see Section 1.8, 
"Specifying Expressions".

expr A valid expression. Expressions are evaluated when ALTER 
TABLE is executed, not when a row is inserted with a default 
value. For more information, see Section 1.8, "Specifying 
Expressions".

column_constraint A column integrity constraint. For more information, see 
CONSTRAINT clause. You cannot add a column with a not 
null constraint to a table that already contains data.

table_constraint A table integrity constraint. For more information, see 
"CONSTRAINT clause".

drop_clause An integrity constraint to be dropped. For more information, 
see "DROP clause".

ATTACH JAVA Attaches a Java class or source file to the database table.



SQL Commands Alphabetical Listing

4-10 Oracle Database Lite SQL Reference

IN Indicates that the Java class or source file must be attached in 
either a database, Java class, or source path.

DATABASE The database in which you attach the Java class or source path.

DETACH Detaches a Java class from the database table.

CLASS Specifies a Java class.

SOURCE Specifies a Java source file.

cls_or_src_name A fully qualified Java class or source file name.

cls_or_src_path The directory containing the specified Java class or source file.

WITH CONSTRUCTOR 
ARGS

Specifies attributes of the class to be used as arguments to the 
Java constructor.

col_name_list List of columns (attributes) in the database table.

AND DELETE Deletes the Java class from the database.

class_name The name of a fully qualified Java class.

ENABLE ALL TRIGGERS Enables all triggers associated with the table. The triggers are 
fired whenever their triggering condition is satisfied. To enable 
a single trigger, use the ENABLE clause of ALTER TRIGGER. 
See ALTER TRIGGER.

DISABLE ALL TRIGGERS Disables all triggers associated with the table. A disabled 
trigger is not fired even if the triggering condition is satisfied. 
To disable a single trigger, use the DISABLE clause of ALTER 
TRIGGER. See ALTER TRIGGER.

MODIFY This specifies a new default for an existing column. Oracle 
Database Lite assigns this value to the column if a subsequent 
INSERT statement omits a value for the column. The datatype 
of the default value must match the datatype specified for the 
column. The column must also be long enough to hold the 
default value.

modify_column_option This modifies the definition of an existing column. Any of the 
optional parts of the column definition, datatype, default value 
(literal, USER, or SYSDATE) or column constraint state (NULL, 
NOT NULL) which are omitted remain unchanged. Existing 
datatypes can be changed to a new datatype as long as the 
existing data is such that the data conversion does not produce 
any conversion errors. Increasing the size of a varchar column 
whose existing size is greater than 15 characters does not 
require any data conversion. All other changes require a data 
conversion step. Each column is converted individually. Each 
datatype change involves a rewrite of all objects and creation 
of all dependent indexes.

A column undergoing datatype alteration which is part of an 
index created using the KEY COLUMNS clause, may cause the 
ALTER TABLE MODIFY command to fail because the index 
recreation is unable to reestablish the KEY COLUMNS option. 
An index created using KEY COLUMNS, should be dropped 
before modifying the column.

CONSTRAINT Modifies the state of an existing constraint. ENABLE specifies 
that the constraint is applied to all new data in the table. Before 
a referential integrity constraint can be enabled, its referenced 
constraint must be enabled.

Table 4–8 (Cont.) Arguments Used with the ALTER TABLE Command

Argument Description



SQL Commands Alphabetical Listing

SQL Commands 4-11

Usage Notes
If you use the ADD clause to add a new column to the table, then the initial value of 
each row for the new column is null. You can add a column with a NOT NULL 
constraint only when a default value is also specified, regardless of whether or not the 
table is empty.

If VALIDATE or NOVALIDATE are omitted from the ENABLE argument, the default is 
NOVALIDATE.

If VALIDATE or NOVALIDATE are omitted from the DISABLE argument, the default is 
NOVALIDATE.

The nullity constraint is the only integrity constraint that can be added to an existing 
column using the MODIFY clause with the column constraint syntax. NOT NULL can be 
added only if the column contains no nulls. A NULL can be added provided the 
column is not a component of a primary key constraint.

Example
The following statement adds the columns THRIFTPLAN and LOANCODE to the EMP 
table. THRIFTPLAN has a datatype, NUMBER, with a maximum of seven digits and two 

ENABLE VALIDATE This setting specifies that all existing data complies with the 
constraint. An enabled validated constraint guarantees that all 
data is and continues to be valid. If a user places a primary key 
constraint in ENABLE VALIDATE mode, validation ensures 
that primary key columns contain no nulls.

If VALIDATE or NOVALIDATE are omitted, the default is 
VALIDATE.

ENABLE NOVALIDATE This setting ensures that all new DML operations on the 
constrained data comply with the constraint, but does not 
ensure that existing data in the table complies with the 
constraint.

Enabling a primary key constraint automatically creates a 
primary index to enforce the constraint. This index is 
converted to an ordinary index if the primary key constraint is 
subsequently disabled. If the constraint is subsequently 
re-enabled, the index is checked for any primary key 
constraints and if no violations are detected, is restored to 
primary key status.

DISABLE VALIDATE This setting disables the constraint and converts the index on 
the primary key constraint to an ordinary index, but keeps the 
constraint valid. No DML statements are allowed on the table 
through the SQLRT engine but you may be able to perform a 
DML statement through Oracle Database Lite Java Access 
Classes (JAC).

If VALIDATE or NOVALIDATE are omitted, the default is 
NOVALIDATE.

DISABLE NOVALIDATE This setting signifies that Oracle Database Lite makes no effort 
to maintain the constraint (because it is disabled) and cannot 
guarantee that the constraint is true (because it is not 
validated). A primary key constraint index is downgraded to 
an ordinary index.

You cannot drop a table with a primary key that is referenced 
by a foreign key even if the foreign key constraint is in the 
DISABLE NOVALIDATE state.

Table 4–8 (Cont.) Arguments Used with the ALTER TABLE Command

Argument Description



SQL Commands Alphabetical Listing

4-12 Oracle Database Lite SQL Reference

decimal places. LOANCODE has a datatype, CHAR, with a size of one and a NOT NULL 
integrity constraint:

ALTER TABLE emp
ADD (thriftplan NUMBER(7,2),
loancode CHAR(1));

Related Topics
CONSTRAINT clause, CREATE TABLE, CREATE VIEW

4.3.4 ALTER TRIGGER

Syntax
The syntax for the ALTER TRIGGER command is displayed in Figure 4–7.

Figure 4–7 The ALTER TRIGGER Command

BNF Notation
ALTER TRIGGER [schema .] trigger { ENABLE | DISABLE };

Prerequisites 
To alter a trigger you must have the DBA/DDL privilege.

Purpose
To enable or disable a database trigger. For information on creating a trigger, see 
CREATE TRIGGER. For information on dropping a trigger, see DROP TRIGGER.

The arguments for the ALTER TRIGGER command are listed in Table 4–9.

Note: This statement does not change the declaration or definition 
of an existing trigger. To redeclare or redefine a trigger, use the             
CREATE TRIGGER statement with OR REPLACE.

Table 4–9 Parameters of the ALTER TRIGGER Command

Parameter Description

schema The schema containing the trigger. If you omit schema, Oracle 
Database Lite assumes the trigger is in your own schema.

trigger The name of the trigger to be altered.

ENABLE Enables the trigger. You can also use the ENABLE ALL 
TRIGGERS clause of ALTER TABLE to enable all triggers 
associated with a table. See ALTER TABLE.

DISABLE Disables the trigger. You can also use the DISABLE ALL 
TRIGGERS clause of ALTER TABLE to disable all triggers 
associated with a table. See ALTER TABLE.



SQL Commands Alphabetical Listing

SQL Commands 4-13

Examples
Consider a trigger named REORDER created on the INVENTORY table. The trigger is 
fired whenever an UPDATE statement reduces the number of a particular part on hand 
below the part's reorder point. The trigger inserts into a table of pending orders a row 
that contains the part number, a reorder quantity, and the current date.

When this trigger is created, Oracle Database Lite enables it automatically. You can 
subsequently disable the trigger with the following statement.

ALTER TRIGGER reorder DISABLE;

When the trigger is disabled, Oracle Database Lite does not fire the trigger when an 
UPDATE statement causes the part's inventory to fall below its reorder point.

After disabling the trigger, you can subsequently enable it with the following 
statement.

ALTER TRIGGER reorder ENABLE; 
After you re-enable the trigger, Oracle Database Lite fires the trigger whenever a part's 
inventory falls below its reorder point as a result of an UPDATE statement. It is possible 
that a part's inventory falls below its reorder point while the trigger was disabled. In 
that case, when you reenable the trigger, Oracle Database Lite does not automatically 
fire the trigger for this part until another transaction further reduces the inventory.

Related Topics
CREATE TRIGGER

4.3.5 ALTER USER

Syntax
The syntax for ALTER USER is displayed in Figure 4–8.

Figure 4–8 The ALTER USER Command

BNF Notation
ALTER USER user IDENTIFIED BY password ;

Prerequisite
You can change your user password in the database if you meet one of the following 
conditions.

■ You are connected to the database as that user.

■ You are connected to the database as SYSTEM or as a user with DBA/DDL or 
ADMIN privileges.

■ You are granted the UNRESOLVED XREF TO ADMIN or UNRESOLVED XREF TO 
DBA/DDL role.

Purpose
Changes a database user password.

The arguments for the ALTER USER command are listed in Table 4–10.



SQL Commands Alphabetical Listing

4-14 Oracle Database Lite SQL Reference

Example
The following example creates a user named todd identified by the password, tiger. 
It then changes the user's password to lion.

CREATE USER todd IDENTIFIED BY tiger;

ALTER USER todd IDENTIFIED BY lion;

Related Topics
CREATE USER, DROP USER

4.3.6 ALTER VIEW

Syntax
The syntax for the ALTER VIEW command is displayed in Figure 4–9.

Figure 4–9 The ALTER VIEW Command

BNF Notation
ALTER VIEW [schema .] view COMPILE ;

Prerequisite
The view must be in your own schema. You must be logged into the database as 
SYSTEM or as a user with DBA/DDL privileges.

Purpose
Recompiles a view.

The arguments for the ALTER VIEW command are listed in Table 4–11.

Table 4–10 Arguments Used with the ALTER USER Command

Argument Description

user The user to be altered. Here, user is a unique user name with 
no more than 30 characters, beginning with one character. The 
first character in user cannot be a blank space.

IDENTIFIED BY Indicates how Oracle Database Lite permits user access.

password Specifies a new password for the user which is a name of up to 
128 characters. The password does not appear in quotes and is 
not case-sensitive.

Table 4–11 Arguments Used with the ALTER VIEW Command

Argument Description

schema The schema to contain the view. If you omit schema, Oracle 
Database Lite alters the view in your own schema.

view The name of the view to be recompiled.



SQL Commands Alphabetical Listing

SQL Commands 4-15

Usage Notes
You can use ALTER VIEW to explicitly recompile a view that is invalid. Explicit 
recompilation enables you to locate recompilation errors before run-time. You may 
want to explicitly recompile a view after altering one of its base tables to ensure that 
the alteration does not affect the view or other objects that depend on it. When you 
issue an ALTER VIEW statement, Oracle Database Lite recompiles the view regardless 
of whether it is valid or invalid. Oracle Database Lite also invalidates any local objects 
that depend on the view.

This command does not change the definition of an existing view. To redefine a view, 
you must use the CREATE VIEW command with the OR REPLACE option.

Example
The following code demonstrates the ALTER VIEW SQL command. The COMPILE 
keyword is required.

ALTER VIEW customer_view COMPILE;

Related Topics
CREATE VIEW, DROP VIEW

4.3.7 COMMIT

Syntax
The syntax for COMMIT is displayed in Figure 4–10.

Figure 4–10 The COMMIT Command

BNF Notation
COMMIT [WORK] ;

Prerequisite
None

Purpose
Ends your current transaction, making permanent to the database all its changes.

The arguments for the COMMIT command are listed in Table 4–12.

COMPILE Causes Oracle Lite to recompile the view. The COMPILE 
keyword is required.

Table 4–11 (Cont.) Arguments Used with the ALTER VIEW Command

Argument Description



SQL Commands Alphabetical Listing

4-16 Oracle Database Lite SQL Reference

Usage Notes
Oracle Database Lite does not autocommit any DDL statements except for CREATE 
DATABASE. You must commit your current transaction to make permanent all of its 
changes to the database.

Example
The following code demonstrates the COMMIT command. This example inserts a row 
into the DEPT table and commits the change. The WORK argument is optional.

INSERT INTO dept VALUES (50, 'Marketing', 'TAMPA');

COMMIT;

ODBC 2.0
Although the COMMIT command is not part of the ODBC SQL syntax, ODBC passes 
the command through to your database.

An ODBC program typically uses the API call SQLTransact() with the SQL_
COMMIT flag. 

Related Topics
ROLLBACK

4.3.8 CONSTRAINT clause

Syntax
The syntax for the COLUMN CONSTRAINT clause is displayed in Figure 4–11.

Figure 4–11 The COLUMN_CONSTRAINT Clause

BNF Notation
 [CONSTRAINT constraint]
 { [NOT] NULL

Table 4–12 Arguments Used with the Commit Command

Argument Description

WORK An optional argument with no effect. WORK is supported only 
for compliance with standard SQL. The statements COMMIT 
and COMMIT WORK are equivalent.



SQL Commands Alphabetical Listing

SQL Commands 4-17

    | {UNIQUE | PRIMARY KEY} 
    | REFERENCES [schema .] table ["("column")"] [ON DELETE CASCADE]
    | CHECK "(" condition ")"
 }

Syntax
The syntax for the TABLE CONSTRAINT clause is displayed in Figure 4–12.

Figure 4–12 The TABLE CONSTRAINT Clause

BNF Notation
[CONSTRAINT constraint]
{
 
 { UNIQUE | PRIMARY KEY } "("column [, column] ...")" [ KEY COLUMNS = number ]
 | FOREIGN KEY "("column [, column] ...")" REFERENCES [ schema .] table   
"("column [, column] ...")" [ON DELETE CASCADE]
 | CHECK "("condition")"
}

Prerequisite
CONSTRAINT clauses can appear in both the CREATE TABLE and ALTER TABLE 
commands. To define an integrity constraint, you must be logged into the database as 
SYSTEM or as a user with DBA/DDL privileges. Oracle Database Lite only has 
integrity constraints.

Purpose
Defines an integrity constraint.

The arguments for the CONSTRAINT clause are listed in Table 4–13.



SQL Commands Alphabetical Listing

4-18 Oracle Database Lite SQL Reference

Table 4–13 Arguments Used with the Constraint Clause

Argument Description

CONSTRAINT Identifies the integrity constraint named by the constraint 
argument. Oracle Database Lite stores the constraint's name 
and definition in the data dictionary. If you omit the 
CONSTRAINT keyword, Oracle Database Lite generates a name 
with this form: POL_SYS_CONSn, where n is an integer that 
makes the name unique within the database.

constraint The name of the constraint being added.

NULL Specifies that a column can contain null values.

NOT NULL Specifies that a column cannot contain null values. By default, 
a column can contain nulls.

UNIQUE Designates a column, or a combination of columns, as a unique 
key.

PRIMARY KEY Designates a column, or a combination of columns, as the 
table's primary key.

KEY COLUMNS = This specifies how many columns should be used to create the 
index. This clause is useful when an index is needed on a large 
number of columns, since it reduces the size of the index. 
Query performance may suffer when multiple rows qualify as 
prefix columns of an index key as given by the KEY COLUMNS 
value, since the database looks up all qualifying rows to find 
the matching row(s).

number An integer which specifies the number of KEY COLUMNS.

FOREIGN KEY Designates a column, or a combination of columns in the child 
table, as the foreign key in a referential integrity constraint.

schema The name of the schema, which is a character string up to 128 
characters. The schema name must be different from any user 
names since each user name comes with a default schema with 
the same name. If you create a schema with the same name as a 
user name, Oracle Database Lite returns an error. See CREATE 
USER for more information.

REFERENCES Identifies the primary key or unique key of the parent table 
that is referenced by a foreign key in a referential integrity 
constraint.

table Specifies the table on which the constraint is placed. If you 
specify only table and omit the column argument, the foreign 
key automatically references the primary key of the table.

column Specifies the column of the table on which the constraint is 
placed.

ON DELETE CASCADE Specifies that Oracle Database Lite maintains referential 
integrity by automatically removing dependent foreign key 
values when you remove a referenced primary key or unique 
key value.

CHECK Specifies that a condition be checked for each row in the table. 
Oracle Database Lite only supports the following operators 
and functions in CHECK conditions.

+ - / * = ! = < > < = > = IS NULL, LIKE, 
BETWEEN, TO_CHAR

TO_NUMBER, TO_DATE, TRANSLATE

condition Specifies the condition that each row in the table must satisfy. 
For more information about creating a valid condition, see 
Section 1.7, "Specifying SQL Conditions".



SQL Commands Alphabetical Listing

SQL Commands 4-19

Example
The following example creates a table T, with columns A and B. The example uses the 
PRIMARY KEY constraint clause to make column A the table's primary key.

CREATE TABLE T (A CHAR(20) PRIMARY KEY, B CHAR(20));

Related Topics
ALTER TABLE, CREATE TABLE

4.3.9 CREATE DATABASE

Syntax
The syntax for CREATE DATABASE is displayed in Figure 4–13.

Figure 4–13 The CREATE DATABASE Command

BNF Notation
 CREATE DATABASE database database_parameter [, database_parameter]...;

database_parameters::=
The syntax for the database_parameters expression is displayed in Figure 4–14.

Figure 4–14 The database_parameters Expression

BNF Notation
 {|DATABASE_ID database_id
  |DATABASE_SIZE max_bytes
  |EXTENT_SIZE npages
 }
; 

Prerequisite
None

Purpose
Creates a database.

The arguments for the CREATE DATABASE command are listed in Table 4–14.



SQL Commands Alphabetical Listing

4-20 Oracle Database Lite SQL Reference

Usage Notes
The number of pages should be less than or equal to 64.

Keywords may be listed in any order.

Before you can run a newly created database, you must first configure its ODBC data 
source name (DSN) using the ODBC Administrator. See the Oracle Lite User’s Guide 
for more information about creating a DSN or using the ODBC Administrator. 

Unlike other DDL statements, Oracle Lite autocommits the CREATE DATABASE 
command. You cannot undo the CREATE DATABASE command with a ROLLBACK 
statement.

If the POLITE.INI parameter NLS_SORT has been set to enable one of the collation 
sequences, such as FRENCH, all databases are created with that collation sequence. The 
default is BINARY. For more information see the Oracle Database Lite Developer’s Guide. 

Example
To create the data file LIN.ODB in the directory C:\TMP with the .ODB file extension, 
use.

CREATE DATABASE "C:\TMP\LIN"

Table 4–14 Arguments Used with the CREATE DATABASE Command

Argument Description

database A data file name or full path name. Full path names must be 
enclosed in double quotation marks. If no path name is 
specified, the data file is created in the directory specified by 
the data source name (DSN) if connected through ODBC. If 
neither the full path name nor DSN are valid, the database is 
created under the current working directory. The length of 
database is limited by the operating system or file system. If a 
duplicate database name is used, an error occurs.

DATABASE_ID An optional numeric identifier for the database.

database_id A unique identifier for the database. Must be a unique number 
from 16 to 32765. If omitted, the default initial value is 64. The 
database_id parameter in the POLITE.INI file indicates the next 
available database ID. It is possible to create two databases 
with the same database ID; however, you cannot connect to 
both databases at the same time.

DATABASE_SIZE The database size.

maxbytes The maximum file size to which the database can grow. If 
omitted, the default value is 256M. The abbreviations K, M, 
and G may be used for kilobytes, megabytes, and gigabytes, 
respectively. If an abbreviation is not specified, the default is K. 
If specifying an abbreviation, you must use an integer value 
between 250 kilobytes and 4 gigabytes, for example, 256M, 
1000K, or 2G.

EXTENT_SIZE An incremental amount of pages in a database file. When a 
database runs out of pages in the current file, it extends the file 
by this number of pages.

npages The number of 4K (kilobyte) pages which make up an extent 
(the minimum unit of allocation for a table). A number that is a 
multiple of 2 is required for npages. The default value is 4. If set 
to 0, Oracle Database Lite sets npages to the default value.



SQL Commands Alphabetical Listing

SQL Commands 4-21

Related Topics
ROLLBACK

4.3.10 CREATE FUNCTION

Syntax
The syntax for CREATE FUNCTION is displayed in Figure 4–15.

Figure 4–15 The CREATE FUNCTION Command

BNF Notation
CREATE [OR REPLACE] FUNCTION [schema .] function
["(" argument [ IN | OUT | IN OUT ] datatype 
   [, argument [ IN | OUT | IN OUT ] datatype]... 
 ")"
]
 
RETURN datatype { IS | AS } [ invoker_rights_clause] [call_spec]
;

call_spec::=
The syntax for the call_spec expression is displayed in Figure 4–16.

Figure 4–16 The call_spec Expression

BNF Notation
LANGUAGE  Java_declaration

Java_declaration::=
The syntax for the Java_declaration expression is displayed in Figure 4–17.



SQL Commands Alphabetical Listing

4-22 Oracle Database Lite SQL Reference

Figure 4–17 The Java_declaration Expression

BNF Notation
JAVA NAME . string .

Prerequisite
To create a function in your own schema, you must be connected to the database as 
SYSTEM or you must have DBA/DDL privileges.

To invoke a call specification, you must have DBA/DDL privileges.

Purpose
To create a call specification for a stored function.

A stored function (also called a user function) is a Java stored procedure that returns a 
value. Stored functions are very similar to procedures, except that a procedure does 
not return a value to the environment in which it is called. For a general discussion of 
procedures and functions, see CREATE PROCEDURE. For examples of creating 
functions, see the CREATE FUNCTION examples.

A call specification declares a Java method so that it can be called from SQL. The call 
specification tells Oracle Database Lite which Java method to invoke when a call is 
made. It also tells Oracle Database Lite what type conversions to make for the 
arguments and return value.

The CREATE FUNCTION statement creates a function as a standalone schema object. 
For information on dropping a stand alone function, see DROP FUNCTION.

The arguments for the CREATE FUNCTION command are listed in Table 4–15.

Table 4–15 Arguments Used with the CREATE FUNCTION Command

Argument Description

OR REPLACE Recreates the function if it already exists. Use this clause to 
change the definition of an existing function without dropping, 
re-creating, and regranting object privileges previously granted 
on the function.

Users who had previously been granted privileges on a 
redefined function can still access the function without being 
regranted the privileges. If any function-based indexes depend 
on the function, Oracle Database Lite marks the indexes 
DISABLED.

schema The schema to contain the function. If you omit schema, Oracle 
Database Lite creates the function in your current schema.

function The name of the function to create. See "Usage Notes".

argument The name of an argument to the function. If the function does 
not accept arguments, you can omit the parentheses following 
the function name.

IN Specifies that you must supply a value for the argument when 
calling the function. This is the default.

OUT Specifies that the function sets the value of the argument.



SQL Commands Alphabetical Listing

SQL Commands 4-23

Usage Notes
User-defined functions cannot be used in situations that require an unchanging 
definition. You cannot use user-defined functions.

■ In a CHECK constraint clause of a CREATE TABLE or ALTER TABLE statement.

■ In a DEFAULT clause of a CREATE TABLE or ALTER TABLE statement.

In addition, when a function is called from within a query or DML statement, the 
function cannot.

■ Have OUT or IN OUT parameters.

■ Commit or roll back the current transaction, create or roll back to a savepoint, or 
alter the session or the system. DDL statements implicitly commit the current 
transaction, so a user-defined function cannot execute any DDL statements.

IN OUT Specifies that a value for the argument can be supplied by you 
and may be set by the function. 

■ Changes made either to this parameter or to another 
parameter may be visible immediately through both 
names if the same variable is passed to both. 

■ If the function is exited with an unhandled exception, any 
assignment made to this parameter may be visible in the 
caller's variable.

These effects may or may not occur on any particular call. You 
should use NOCOPY only when these effects do not matter.

datatype The datatype of an argument. An argument can have any 
datatype supported by SQL. The datatype cannot specify a 
length, precision, or scale. Oracle Database Lite derives the 
length, precision, or scale of an argument from the 
environment from which the function is called.

RETURN datatype Specifies the datatype of the function's return value. Because 
every function must return a value, this clause is required. The 
return value can have any datatype supported by SQL.

The datatype cannot specify a length, precision, or scale. Oracle 
Database Lite derives the length, precision, or scale of the 
return value from the environment from which the function is 
called.

IS Associates the SQL identifier with the Java method.

AS Associates the SQL identifier with the Java method.

invoker_rights_clause For compatibility with Oracle, Oracle Database Lite recognizes 
but does not enforce the invoker_rights_clause.

call_spec Maps the Java method name, parameter types, and return type 
to their SQL counterparts. 

LANGUAGE Specifies the call_spec language. In Oracle database this can be 
C or Java. In Oracle Database Lite, this can only be Java.

java_declaration Specifies the call_spec language. In Oracle database this can be 
C or Java. In Oracle Database Lite, this can only be Java.

JAVA NAME The Java method name

string Identifies the Java implementation of the method. For more 
information, see the Oracle Database Lite Developer’s Guide for 
Java.

Table 4–15 (Cont.) Arguments Used with the CREATE FUNCTION Command

Argument Description



SQL Commands Alphabetical Listing

4-24 Oracle Database Lite SQL Reference

■ Write to the database, if the function is being called from a SELECT statement. 
However, a function called from a subquery in a DML statement can write to the 
database. 

■ Write to the same table that is being modified by the statement from which the 
function is called, if the function is called from a DML statement.

Except for the restriction on OUT and IN OUT parameters, Oracle Database Lite 
enforces these restrictions not only for the function called directly from the SQL 
statement, but also for any functions that the function calls. Oracle Database Lite also 
enforces these restrictions on any functions called from the SQL statements executed 
by that function or any function it calls.

Example
The following example provides complete instructions for creating and testing a 
function.

1. Create and compile the following Java program and name it Employee.java.

public class Employee {
  public static String paySalary (float sal, float fica, float sttax, 
     float ss_pct, float espp_pct) {
   float deduct_pct;
   float net_sal;

   /* compute take-home salary */
   deduct_pct = fica + sttax + ss_pct + espp_pct;
   net_sal = sal * deduct_pct;

   String returnstmt = "Net salary is " + net_sal;
   return returnstmt;
 } /*paySalary */
}

2. Load the Employee class into Oracle Database Lite. Once loaded, the Employee 
class methods become stored procedures in Oracle Database Lite.

CREATE JAVA CLASS USING BFILE ('C:\', 'Employee.class');

3. Since the employeeSalary method returns a value, publish it by using the 
CREATE FUNCTION statement.

CREATE FUNCTION
PAY_SALARY(
    sal float, fica float, sttax float, ss_pct float, espp_pct float)
    return varchar2
as language java name
'Employee.paySalary(float,float,float,float,float)return java.lang.String';
.
/

4. Select the PAY_SALARY stored procedure from dual:

SELECT PAY_SALARY(6000.00, 0.2, 0.0565, 0.0606, 0.1) from dual;

Returns the following result.

PAY_SALARY
-----------------------------------------
Net Salary is 2502.6



SQL Commands Alphabetical Listing

SQL Commands 4-25

Related Topics
DROP FUNCTION

4.3.11 CREATE GLOBAL TEMPORARY TABLE

Syntax
The syntax for the CREATE GLOBAL TEMPORARY TABLE command is displayed in 
Figure 4–18.

Figure 4–18 The CREATE GLOBAL TEMPORARY TABLE Command

BNF Notation
CREATE GLOBAL TEMPORARY TABLE table
"("  column datatype [DEFAULT expr] [{ NULL | NOT NULL}]
  [,  column datatype [DEFAULT expr] [ {NULL | NOT NULL} ]... ")"
ON COMMIT {DELETE | PRESERVE } ROWS ;

Purpose
The CREATE GLOBAL TEMPORARY TABLE command creates a temporary table which 
can be transaction specific or session specific. For transaction-specific temporary 
tables, data exists for the duration of the transaction. For session-specific temporary 
table, data exists for the duration of the session. Data in a temporary table is private to 
the session. Each session can only view and modify its own data. On rollback of a 
transaction, all modifications made to the global temporary table are lost.

The arguments for the CREATE GLOBAL TEMPORARY TABLE command are listed in 
Table 4–16.

Table 4–16 Arguments Used with CREATE GLOBAL TEMPORARY TABLE

Argument Description

name An optionally qualified table name.

schema A schema, which has the same name as the user who owns it. 
If omitted, the default schema name is used.

column The name of a table column.

datatype The datatype of the column. Cannot be used in subquery.



SQL Commands Alphabetical Listing

4-26 Oracle Database Lite SQL Reference

Usage Notes
Temporary tables cannot be partitioned, organized into an index, or clustered.

You cannot specify any referential integrity (foreign key) constraints on temporary 
tables.

Examples
The following statement creates a temporary table FLIGHT_SCHEDULE for use in an 
automated airline reservation scheduling system. Each client has its own session and 
can store temporary schedules. The temporary schedules are deleted at the end of the 
session.

CREATE GLOBAL TEMPORARY TABLE flight_schedule ( 
startdate DATE, 
enddate DATE, 
cost NUMBER) 
ON COMMIT PRESERVE ROWS; 

4.3.12 CREATE INDEX

Syntax
The syntax for the CREATE INDEX command is displayed in Figure 4–19.

Figure 4–19 The CREATE INDEX Command

BNF Notation
CREATE [ UNIQUE ] INDEX [schema .] index ON
[schema .] table 

DEFAULT Specifies a default value expr (expression) for the new column. 
It can be one of the following:

■ DEFAULT NULL, DEFAULT USER (the user name when 
the table is created), DEFAULT literal

■ ODBC FUNCTIONS - TIMESTAMPADD, 
TIMESTAMPDIFF, DATABASE, USER

■ SQL FUNCTIONS - CURRENT_DATE, CURRENT_TIME, 
CURRRENT_TIMESTAMP, SYSDATE

For more information about expressions, see Section 1.7, 
"Specifying SQL Conditions".

Table 4–16 (Cont.) Arguments Used with CREATE GLOBAL TEMPORARY TABLE

Argument Description



SQL Commands Alphabetical Listing

SQL Commands 4-27

"(" column [ ASC | DESC]
 [, column [ ASC | DESC]]...
 ")" 
[ KEY COLUMNS=number]
;

Prerequisite
The table to be indexed must be in your own schema. You must be logged into the 
database as SYSTEM or as a user with DBA/DDL privileges.

Purpose
Creates an index on one or more columns of a table.

The arguments for the CREATE INDEX command are listed in Table 4–17.

Usage Notes
You can use additional index creation options for tuning purposes. However, only use 
these options when necessary as they may degrade your database performance. See 
Appendix E, "Index Creation Options" for more information.

CREATE ANY INDEX can be used to create a index in another schema, but this 
requires the DBA/DDL role.

Example
The following example creates an index on the SAL column of the EMP table.

Table 4–17 Arguments Used with the CREATE INDEX Command

Argument Description

UNIQUE Designates the specified column or combination of columns as 
a unique key.

schema When it follows CREATE INDEX, this is the schema that 
contains the index. If you omit schema, Oracle Database Lite 
creates the index in your own schema.

When used in the ON clause, the schema that contains the table 
for which the index is created.

index The name of the index to create. You can create any number of 
indexes for a table, provided you do not use the same columns 
and column order for more than one index.

table The name of the table for which the index is created. If you do 
not qualify table with a schema, Oracle Database Lite assumes 
that the table is contained in your own schema.

column The name of a column in the table. A column of an index 
cannot be of the datatype LONG or LONG RAW.

ASC | DESC Provided for DB2 compatibility only. Indexes are always 
created in ascending order.

KEY COLUMNS = This specifies how many columns should be used to create the 
index. This clause is useful when an index is needed on a large 
number of columns, since it reduces the size of the index. 
Query performance may suffer when multiple rows qualify as 
prefix columns of an index key as given by the KEY COLUMNS 
value. The database looks up all qualifying rows to find the 
matching row(s).

number An integer which specifies the number of KEY COLUMNS.



SQL Commands Alphabetical Listing

4-28 Oracle Database Lite SQL Reference

CREATE INDEX SAL_INDEX ON EMP(SAL);

Related Topics
CONSTRAINT clause, CREATE TABLE, DROP INDEX

4.3.13 CREATE JAVA

Syntax
The syntax for CREATE JAVA is displayed in Figure 4–20.

Figure 4–20 The CREATE JAVA Command

BNF Notation
CREATE [OR REPLACE] [AND { RESOLVE | COMPILE } NOFORCE ]  JAVA
{ { SOURCE | RESOURCE } NAMED [schema .] primary_name 
    | CLASS [SCHEMA schema .]
}
 
[invoker_rights_clause] 
[RESOLVER
"(" "(" match_string [,] { schema_name | - }")"
   ["(" match_string [,] { schema_name | - }")"]...
 ")"
]
 
{ USING  BFILE "(" directory_path , server_file_name ")"
  | AS source_text
 }
;

Prerequisite
To create or replace a schema object containing a Java source, class, or resource in your 
own schema, you must be connected to the database as SYSTEM or you must have 
DBA/DDL privileges.

Purpose
To create a schema object containing a Java source, class, or resource.



SQL Commands Alphabetical Listing

SQL Commands 4-29

The arguments for the CREATE JAVA command are listed in Table 4–18.

Note: For information on Java concepts, including Java stored 
procedures and JDBC, see the Oracle Database Lite Developer’s Guide 
for Java.

Table 4–18 Arguments Used with the CREATE JAVA Command

Argument Description

OR REPLACE Recreates the schema object containing the Java class, source, or 
resource if it already exists. Use this clause to change the 
definition of an existing object without dropping, re-creating, and 
regranting object privileges previously granted.

If you redefine a Java schema object and specify RESOLVE or 
COMPILE, Oracle Database Lite recognizes but ignores those 
parameters.

Users, previously granted privileges on a redefined function, can 
still access the function. You do need to re-grant privileges to the 
users.

RESOLVE | COMPILE Oracle Database Lite recognizes but ignores this parameter. In 
Oracle, you specify that the database should attempt to resolve the 
Java schema object that is created if this statement succeeds.

■ When applied to a class, resolution of referenced names to 
other class schema objects occurs.

■ When applied to a source, source compilation occurs.

Restriction: You cannot specify this clause for a Java resource.

NOFORCE Oracle Database Lite recognizes but ignores this parameter. In 
Oracle NO FORCE rolls back the results of this CREATE command 
if you have specified either RESOLVE OR COMPILE, and the 
resolution or compilation fails. If you do not specify this option, 
Oracle takes no action if the resolution or compilation fails (that is, 
the created schema object remains).

CLASS Loads a Java class file.

RESOURCE Loads a Java resource file.

SOURCE Loads a Java source file. Requires the use of the AS source_text 
clause.

NAMED Oracle Database Lite recognizes but ignores this parameter. In 
Oracle, it is required for a Java source or resource.

■ For a Java source, this clause specifies the name of the schema 
object in which the source code is held. A successful CREATE 
JAVA SOURCE statement also creates additional schema 
objects to hold each of the Java classes defined by the source.

■ For a Java resource, this clause specifies the name of the 
schema object to hold the Java resource.

If you do not specify schema,

Oracle creates the object in your own schema.

Restrictions:

■ You cannot specify NAMED for a Java class.

■ The primary_name cannot contain a database link.



SQL Commands Alphabetical Listing

4-30 Oracle Database Lite SQL Reference

Usage Notes
When Oracle Database Lite loads a Java class into the database, it does not load 
dependent classes. Generally, you should use the loadjava utility to load Java classes 
into the database. See the Oracle Database Lite Developer’s Guide for Java for more 
information about the loadjava utility.

Java Class Example
The following statement creates a schema object and loads the specified Java class into 
the newly created schema object.

CREATE JAVA CLASS USING BFILE (bfile_dir, 'Agent.class');

This example assumes the directory path bfile_dir, which points to the operating 
system directory containing the Java class Agent.class, already exists. In this 
example, the name of the class determines the name of the Java class schema object.

Java Source Example
The following statement creates a Java source schema object: 

CREATE OR REPLACE JAVA SOURCE AS
/* This is a class Test */
import java.math.*; /* */
public class Test {
public static BigDecimal myfunc(BigDecimal a, BigDecimal b)
{ return a.add(b); }
public static Strin myfunc2(String a, String b)

SCHEMA schema Oracle Database Lite recognizes but ignores this parameter. In 
Oracle, it applies only to a Java class. This optional clause specifies 
the schema in which the object containing the Java file resides. If 
you do not specify SCHEMA and you do not specify NAMED 
(above), Oracle creates the object in your own schema.

invoker_rights_clause For compatibility with Oracle, Oracle Database Lite recognizes but 
does not enforce the invoker_rights_clause.

RESOLVER Oracle Database Lite recognizes but ignores this parameter. In 
Oracle, it specifies a mapping of the fully qualified Java name to a 
Java schema object, where:

■ match_string is either a fully qualified Java name, a wildcard 
that can match such a Java name, or a wildcard that can 
match any name.

■ schema_name designates a schema to be searched for the 
corresponding Java schema object.

■ A dash (-) as an alternative to schema_name indicates that if 
match_string matches a valid Java name, Oracle can leave the 
schema unresolved. The resolution succeeds, but the name 
cannot be used at run time by the class. 

This mapping is stored with the definition of the schema objects 
created in this command for use in later resolutions (either 
implicit or in explicit ALTER...RESOLVE statements).

AS source_text A text of a Java source program.

USING BFILE Identifies the format of the class file. BFILE is interpreted as a 
binary file by the CREATE JAVA CLASS or CREATE JAVA 
RESOURCE.

Table 4–18 (Cont.) Arguments Used with the CREATE JAVA Command

Argument Description



SQL Commands Alphabetical Listing

SQL Commands 4-31

{ return (a+b); }
};

Java Resource Example
The following statement creates a Java resource schema object named APPTEXT from a 
binary file.

CREATE JAVA RESOURCE NAMED "appText" 
   USING BFILE ('C:\TEMP', 'textBundle.dat');

Related Topics
DROP JAVA

4.3.14 CREATE PROCEDURE

Syntax
The syntax for CREATE PROCEDURE is displayed in Figure 4–21.

Figure 4–21 The CREATE PROCEDURE Command

BNF Notation
CREATE [OR REPLACE] PROCEDURE [schema .] procedure
["(" argument [ IN | OUT | IN OUT ] datatype 
   [, argument [ IN | OUT | IN OUT ] datatype]...

Note: The keyword public class should not be used in a 
comment before the first public class statement.

Note: when embedding any Java statements, the semi-colon 
character, ";" cannot be the last character in an SQL*Plus 
statement. If the semi-colon must be the last character in a line, a 
blank comment line must be added using the following characters: 
"/* */" . The regular comment symbols, "//" do not work in this 
context. Placing /* */ at the end of the line prevents SQL*Plus from 
interpreting the semi-colon as the end of the SQL statement.



SQL Commands Alphabetical Listing

4-32 Oracle Database Lite SQL Reference

 ")"
] 
[invoker_rights_clause] { IS | AS } call_spec
;

call_spec::=
The syntax for the call_spec expression is displayed in Figure 4–22.

Figure 4–22 The call_spec Expression used with CREATE PROCEDURE

BNF Notation
LANGUAGE Java_declaration

Java_declaration::=
The syntax for the Java_declaration expression is displayed in Figure 4–23.

Figure 4–23 The Java_declaration Expression used with CREATE PROCEDURE

BNF Notation
JAVA NAME . string .

Prerequisite
To create a procedure in your own schema, you must be connected to the database as 
SYSTEM or you must have DBA/DDL privileges. 

Purpose
To create a call specification for a stand alone stored procedure. 

A call specification ("call spec") declares a Java method so that it can be called from 
SQL. The call spec tells Oracle which Java method to invoke when a call is made. It 
also tells Oracle Database Lite what type conversions to make for the arguments and 
return value.

Stored procedures offer advantages in the areas of development, integrity, security, 
and memory allocation. For more information on stored procedures, including how to 
call stored procedures, see the Oracle Database Lite Developer’s Guide for Java.

Stored procedures and stored functions are similar. While a stored function returns a 
value to the environment in which it is called, a stored procedure does not. For 
information specific to functions, see CREATE FUNCTION.

The CREATE PROCEDURE statement creates a procedure as a stand alone schema 
object. For information on dropping a stand alone procedure, see DROP 
PROCEDURE.

The arguments for the Create Procedure command are listed in Table 4–19.



SQL Commands Alphabetical Listing

SQL Commands 4-33

Table 4–19 Arguments Used with the Create Procedure Command

Argument Description

OR REPLACE Recreates the procedure if it already exists. Use this clause to 
change the definition of an existing procedure without 
dropping, re-creating, and regranting object privileges 
previously granted on it.

If any function-based indexes depend on the package, Oracle 
Database Lite marks the indexes DISABLED.

schema The schema to contain the procedure. If you omit schema, 
Oracle Database Lite creates the procedure in your current 
schema.

procedure The name of the procedure to create. 

argument The name of an argument to the procedure. If the procedure 
does not accept arguments, you can omit the parentheses 
following the procedure name.

IN Indicates that you must specify a value for the argument when 
calling the procedure.

OUT Indicates that the procedure passes a value for this argument 
back to its calling environment after execution.

IN OUT Indicates that you must specify a value for the argument when 
calling the procedure and that the procedure passes a value 
back to its calling environment after execution.

If you omit IN, OUT, and IN OUT, the argument defaults to IN.

Changes made either to this parameter or to another parameter 
may be visible immediately through both names if the same 
variable is passed to both.

If the procedure is exited with an unhandled exception, any 
assignment made to this parameter may be visible in the 
caller's variable.

These effects may or may not occur on any particular call. You 
should use NOCOPY only when these effects would not matter.

datatype The datatype of the argument. An argument can have any 
datatype supported by Oracle Database Lite SQL.

Datatypes cannot specify length, precision, or scale. For 
example, VARCHAR2(10) is not valid, but VARACHAR2 is valid. 
Oracle Database Lite derives the length, precision, and scale of 
an argument from the environment from which the procedure 
is called.

invoker_rights_clause For compatibility with Oracle, Oracle Database Lite recognizes 
but does not enforce the invoker_rights_clause.

IS Associates the SQL identifier with the Java method.

AS Associates the SQL identifier with the Java method.

call_spec Maps the Java method name, parameter types, and return type 
to SQL counterparts.

LANGUAGE Specifies the call_spec language. In Oracle this can be C or Java. 
In Oracle Database Lite, this can only be Java.

Java_declaration Identifies the method name in the Java class.

JAVA NAME The Java method name.

string Identifies the Java implementation of the method. For more 
information, see the Oracle Database Lite Developer’s Guide for 
Java. 



SQL Commands Alphabetical Listing

4-34 Oracle Database Lite SQL Reference

Usage Notes
Oracle Database Lite recognizes but does not enforce the <invoker_rights_clause>. 
Oracle Database Lite always uses current_user for AUTHID.

Example
The following example creates and compiles a Java procedure and tests it against 
Oracle Database Lite.

1. Create and compile the following Java program and name it EMPTrigg.java:

import java.sql.*;

public class EMPTrigg {
   public static final String goodGuy = "Oleg";

   public static void NameUpdate(String oldName, String[] newName) {
      if (oldName.equals(goodGuy))
         newName[0] = oldName;
   }

   public static void SalaryUpdate(String name, int oldSalary, 
                             int newSalary[])
   {
      if (name.equals(goodGuy))
         newSalary[0] = Math.max(oldSalary, newSalary[0])*10;
   }

   public static void AfterDelete(Connection conn, String name, 
               int salary) {
      if (name.equals(goodGuy))
         try {
            Statement stmt = conn.createStatement();
            stmt.executeUpdate(
               "insert into employee values('" + name + "', " + 
                                    salary + ")");
            stmt.close();
         } catch(SQLException e) {}
   }
}

2. Create the EMPLOYEE table with the NAME and SALARY columns.

CREATE TABLE EMPLOYEE (NAME VARCHAR(32), SALARY INT);

3. Insert values into the EMPLOYEE table by typing the following statements.

INSERT INTO EMPLOYEE VALUES ('Alice', 100);

INSERT INTO EMPLOYEE VALUES ('Bob', 100);

INSERT INTO EMPLOYEE VALUES ('Oleg', 100);

4. Load the EMPTrigg class into Oracle Database Lite. Once loaded, the EMPTrigg 
class methods become stored procedures in Oracle Database Lite.

CREATE JAVA CLASS USING BFILE ('c:\', 'EMPTrigg.class');

5. Use the CREATE PROCEDURE statement to enable SQL to call the methods in the 
EMPTrigg class.

CREATE PROCEDURE name_update(



SQL Commands Alphabetical Listing

SQL Commands 4-35

old_name in varchar2, new_name in out varchar2)
is language java name
'EMPTrigg.NameUpdate (java.lang.String, java.lang.String[])';
/

 CREATE PROCEDURE salary_update(
 ename varchar2, old_salary int, new_salary in out int)
 as language java name
 'EMPTrigg.SalaryUpdate (java.lang.String, int, int[])';
 /

 CREATE PROCEDURE after_delete(
 ename varchar2, salary int)
 as language java name
 'EMPTrigg.AfterDelete (java.sql.Connection, java.lang.String, int)';
 /

6. Create a trigger for each of the stored procedures.

CREATE TRIGGER NU BEFORE UPDATE OF NAME ON EMPLOYEE FOR EACH ROW
name_update (old.name, new.name);
/

CREATE TRIGGER SU BEFORE UPDATE OF SALARY ON EMPLOYEE FOR EACH ROW
salary_update (name, old.salary, new.salary);
/

CREATE TRIGGER AD AFTER DELETE ON EMPLOYEE FOR EACH ROW
after_delete (name, salary);
/

7. Select all rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE;

Returns the following result:

NAME                                SALARY
-------------------------------- ---------
Alice                                  100
Bob                                    100
Oleg                                   100

Related Topics
DROP PROCEDURE

4.3.15 CREATE SCHEMA

Syntax
The syntax for the CREATE SCHEMA command is displayed in Figure 4–24.



SQL Commands Alphabetical Listing

4-36 Oracle Database Lite SQL Reference

Figure 4–24 The CREATE SCHEMA Command

BNF Notation
CREATE SCHEMA schema . CREATE TABLE command [ CREATE TABLE command]... ;

Prerequisite
The CREATE SCHEMA statement can include the CREATE TABLE, CREATE VIEW, and 
GRANT statements. To issue a CREATE SCHEMA statement, you must be logged into 
the database as SYSTEM or as a user with DBA/DDL or ADMIN privileges.

Purpose
Creates a schema or an owner of tables, indexes, and views. CREATE SCHEMA can also 
be used to create multiple tables and views in a single transaction.

The arguments for the CREATE SCHEMA command are listed in Table 4–20.

Usage Notes
■ Oracle Database Lite treats the schema as the user's private database. Informally, a 

schema defines a separate name space and a scope of ownership. In other words, 
two tables may have the same name if they reside in different schemas. All tables 
and views in the same schema are owned by the owner of that schema. To use a 
schema different from the one currently in use, you must first disconnect from the 
current schema, then connect to the new schema.

■ CREATE SCHEMA treats a group of separate statements as a single statement; if one 
of its constituent statements fails, all of its statements are reversed.

■ The name of the new schema appears in the POL_SCHEMATA view.

Example 1
To create a sample schema called HOTEL_OPERATION use.

CREATE SCHEMA HOTEL_OPERATION;

Example 2
To create the schema HOTEL_OPERATION together with the table HOTEL_DIR and the 
view LARGE_HOTEL use.

Table 4–20 Arguments Used with the CREATE SCHEMA Command

Argument Description

schema The name of the schema, which is a character string of up to 
128 characters. The schema name must be different from any 
user names since each user name has a default schema with the 
same name. If you create a schema with the same name as a 
user name, Oracle Database Lite returns an error. See CREATE 
USER for more information.

CREATE TABLE A CREATE TABLE statement to be issued as part of the 
CREATE SCHEMA statement.

command Contains all the arguments and keywords for a CREATE 
TABLE or CREATE VIEW command.



SQL Commands Alphabetical Listing

SQL Commands 4-37

CREATE SCHEMA HOTEL_OPERATION
CREATE TABLE HOTEL_DIR(
HOTELNAME CHAR(40) NOT NULL,
RATING INTEGER,
ROOMRATE FLOAT,
LOCATION CHAR(20) NOT NULL,
CAPACITY INTEGER);

ODBC 2.0
Although the CREATE SCHEMA command is not part of the ODBC SQL syntax, ODBC 
passes the command through to your database.

Related Topics
GRANT, CREATE SEQUENCE, CREATE VIEW

4.3.16 CREATE SEQUENCE

Syntax
The syntax for CREATE SEQUENCE is displayed in Figure 4–25.

Figure 4–25 The CREATE SEQUENCE Command

BNF Notation
CREATE SEQUENCE [schema .] sequence
{ { INCREMENT BY } integer
 | { MAXVALUE integer | NOMAXVALUE }
 | { MINVALUE integer | NOMINVALUE }
 | { START WITH } integer
 }
[{ { INCREMENT BY } integer
 | { MAXVALUE integer | NOMAXVALUE }
 | { MINVALUE integer | NOMINVALUE }
 | { START WITH } integer
 }]...
;

Prerequisite
None

Purpose
Creates a sequence.

The arguments for the CREATE SEQUENCE command are listed in Table 4–21.



SQL Commands Alphabetical Listing

4-38 Oracle Database Lite SQL Reference

Usage Notes
Oracle Database Lite commits sequence numbers when you access the NEXTVAL 
function. However, unlike Oracle, Oracle Database Lite does not automatically commit 
sequences. As a result, you can roll back sequences in Oracle Database Lite. To 
maintain a sequence when using the ROLLBACK command, you must commit the 
sequence after you create it.

Example
The following statement creates the sequence ESEQ.

CREATE SEQUENCE ESEQ INCREMENT BY 10;

The first reference to ESEQ.NEXTVAL returns 1. The second returns 11. Each 
subsequent reference returns a value 10 greater than the previous one.

ODBC 2.0
Although the CREATE SEQUENCE command is not part of the ODBC SQL syntax, 
ODBC passes the command through to your database.

Related Topics
ALTER SEQUENCE, DROP SEQUENCE

4.3.17 CREATE SYNONYM

Syntax
The syntax for CREATE SYNONYM is displayed in Figure 4–26.

Table 4–21 Arguments Used with the CREATE SEQUENCE Command

Argument Description

schema The name of the schema to contain the sequence. If you omit 
schema, Oracle Database Lite creates the sequence in your own 
schema.

sequence The name of the sequence to be created.

INCREMENT BY Specifies the interval between sequence numbers. Can be any 
positive or negative integer, but cannot be 0. If negative, then 
the sequence descends. If positive, the sequence ascends. If you 
omit the INCREMENT BY clause, the default is 1.

START WITH Specifies the first sequence number to be generated. Use this 
option to start an ascending sequence at a value greater than its 
minimum (which is the default), or to start a descending 
sequence at a value less than its maximum (which is the 
default).

MAXVALUE Specifies the maximum value the sequence can generate. This 
integer value can have 9 or fewer digits. MAXVALUE must be 
greater than MINVALUE.

NOMAXVALUE Specifies a maximum value of 2147483647 for an ascending 
sequence or –1 for a descending sequence.

MINVALUE Specifies the minimum value that the sequence can generate. 
This integer value can have 9 or fewer digits. MINVALUE must 
be less than MAXVALUE.

NOMINVALUE Specifies a minimum value of 1 for an ascending sequence or 
–2147483647 for a descending sequence.



SQL Commands Alphabetical Listing

SQL Commands 4-39

Figure 4–26 The CREATE SYNONYM Command

BNF Notation
CREATE [PUBLIC] SYNONYM [schema .] synonym 
FOR [schema .] object ;

Prerequisite
None

Purpose
Creates a public or private SQL synonym.

The arguments for the CREATE SYNONYM command are listed in Table 4–22.

Usage Notes
A private synonym name must be distinct from all other objects in its schema.

You can only use synonyms with the INSERT, SELECT, UPDATE, and DELETE 
statements. You cannot use synonyms with the DROP statement.

Example
To define the synonym PROD for the table PRODUCT in the schema SCOTT, issue the 
following statement.

CREATE SYNONYM PROD FOR SCOTT.PRODUCT;

Related Topics
CREATE TABLE, CREATE VIEW, CREATE SEQUENCE, DROP SYNONYM

Table 4–22 Arguments Used with the CREATE SYNONYM Command

Argument Description

PUBLIC Creates a public synonym. Public synonyms are accessible to 
all users. If you omit this option, the synonym is private and is 
accessible only within its schema.

schema The schema to contain the synonym. If you omit schema, Oracle 
Database Lite creates the synonym in your own schema. You 
cannot specify schema if you have specified PUBLIC.

synonym The name of the synonym to be created.

FOR object Identifies the object for which the synonym is created. If you 
do not qualify the object with a schema, Oracle Database Lite 
assumes that the object is in your own schema. The object can 
be a table, view, sequence, or another synonym. Note that the 
object need not currently exist and you must have privileges to 
access the object.



SQL Commands Alphabetical Listing

4-40 Oracle Database Lite SQL Reference

4.3.18 CREATE TABLE

Syntax
The syntax for the CREATE TABLE command is displayed in Figure 4–27.

Figure 4–27 The CREATE TABLE Command

BNF Notation
CREATE TABLE [schema .] table 
column_list [column_list ]...  
[AS subquery] ;

column_list::=
The syntax for the column_list expression is displayed in Figure 4–28.

Figure 4–28 The column_list Expression

BNF Notation
"("
column datatype [DEFAULT expr|AUTO INCREMENT][column_constraint] [column_
constraint]...
[table_constraint]
[, column datatype [DEFAULT expr|AUTO INCREMENT][column_constraint] [column_
constraint]...
[table_constraint]]...
")"

Prerequisite
To create a table in your schema or another schema, you must be logged into the 
database as SYSTEM or as a user with DBA/DDL privileges.

Purpose
Creates a database table.

The CREATE TABLE command creates and populates a database table based on the 
result of a specified sub-query. The datatypes for the column are derived from the 
subquery’s result set. See Usage Notes for more information.

The arguments for the CREATE TABLE command are listed in Table 4–23.



SQL Commands Alphabetical Listing

SQL Commands 4-41

Usage Notes
CREATE ANY TABLE can be used to create a table in another schema, but this requires 
the DBA/DDL role. Each table can have upto 1000 columns and no more than one 
primary key constraint.

If the column_list is omitted.

■ If table columns are not defined when specifying a sub query, column names are 
derived from the expressions selected from the sub query.

Table 4–23 Arguments Used with the CREATE TABLE Command

Argument Description

schema A schema, which has the same name as the user who owns it. If omitted, 
the default schema name is used.

table The name of a database table. Table names may not contain the period 
"." character, nor begin with an underscore "_" character.

column The name of a table column.

datatype The datatype of the column. Cannot be used in subquery.

DEFAULT The DEFAULT clause enables you to assign a value to the column if a 
subsequent INSERT statement omits a value for the column. The 
datatype of the expression must match the datatype of the column. To 
contain this expression, the column size must be increased.

The DEFAULT expression can include any SQL function provided the 
function does not return a column reference or a nested function 
invocation.

Restrictions on Default Common Values

A DEFAULT expression cannot contain references to Java stored 
procedures, other columns or the psuedo columns named LEVEL, 
PRIOR, and ROWNUM.

A DEFAULT expression cannot contain a sub query.

For more information about expressions, see Chapter 1, "Using SQL", 
Section 1.8, "Specifying Expressions".

auto increment Set the column to auto increment column.

The data type for any auto increment column has to be of the type 
INTEGER.

The value of an auto increment column is auto incremented and 
inserted, so that the user does not have to provide the value. The value 
is unique in the table and contains no null value, and thus can be used 
as a primary key column, when required. The value of the column is 
determined by the database system and the user does not have means to 
control the amount incremented, the start value, or the maximum value.

The value of the auto increment column starts with 0 and the maximum 
positive value is the maximum value of a 4-byte integer (2147483647). 
Once the auto-incremented value reaches the maximum value, the next 
auto-incremented value starts from the minimum value of the 4-byte 
integer (-2147483648).

column_constraint Adds a column integrity constraint. For more information, see 
"CONSTRAINT clause".

table_constraint Adds a table integrity constraint. For more information, see 
"CONSTRAINT clause".

AS subquery  A SELECT statement.



SQL Commands Alphabetical Listing

4-42 Oracle Database Lite SQL Reference

■ If an expression in the select list contains an alias, then the alias is used as the 
column name.

■ If an expression is a column with no alias name, then its name is used as the 
column name. An expression is illegal if it is not a column and has no alias. The 
datatypes for the table’s columns are the same as the datatypes for the 
corresponding expressions in the select list of the sub query.

■ If the subquery contains UNION or MINUS, the first select statement is chosen for 
this purpose.

If the column_list is omitted.

■ The number of columns in the column_list must equal the number of 
expressions in the sub query.

■ The column definitions can specify only column names, default values, and 
integrity constraints, but not datatypes or auto incremented columns.

■ A referential integrity constraint cannot be defined using the CREATE TABLE 
statement form. Instead, an ALTER TABLE statement can be used to create the 
referential integrity constraint at a later point.

If an ORDER BY clause is used in the sub query, the data is inserted in the specified 
order into the table. This normaly results in clustering of the data according to the 
order by columns, but is not guaranteed.

To insert into tables with auto-incremented column(s), since the value of an 
auto-incremented column is generated automatically by the database system, there is 
no insert operation allowed on this column. To insert a row into a table that has auto 
increment column(s), the user has to specify the column list that contains no auto 
increment column(s) for the insert operation to be successful. For example, assuming 
that we have the following table defined.

CREATE TABLE t1 (c1 INT AUTO INCREMENT, c2 INT, c3 INT);

To insert into table t1, use the following command.

INSERT INTO T1(c2,c3) values (123, 456);

If the user does not specify the column list, an error message is returned.

To avoid the column list in the insert statement, the auto-incremented column can be 
hidden before issuing the INSERT command. For example, if we have the following 
ALTER COMMAND issued.

ALTER TABLE T1 HIDE C1;

Then, to insert into table t1, the insert statement can omit the column list as given 
below.

INSERT INTO T1 VALUES (123,456);

Example 1
The following statement creates a table named HOTEL_DIR with two columns. They 
are: HOTEL_NAME which is the primary key, and CAPACITY, which is not nullable and 
has the default value 0.

CREATE TABLE HOTEL_DIR (HOTEL NAME CHAR(40) PRIMARY KEY, 
CAPACITY INTEGER DEFAULT 0 NOT NULL)

Example 2
The following statement creates a table named HOTEL_RESTAURANT.



SQL Commands Alphabetical Listing

SQL Commands 4-43

CREATE TABLE HOTEL_RESTAURANT(REST_NAME CHAR(50) UNIQUE, HOTEL_
NAME CHAR(40) REFERENCES HOTEL_DIR, RATING FLOAT DEFAULT NULL)

The columns include.

■ REST_NAME - Restaurant name.

■ HOTEL_NAME - Name of the hotel that the restaurant is in.

■ RATING - Restaurant rating. The default value is null.

The table has the following integrity constraints.

■ Two hotels or restaurants cannot have the same name.

■ HOTEL_NAME must refer to a hotel in the HOTEL_DIR table.

Related Topics
CONSTRAINT clause, DROP TABLE, Transaction Control Commands, SELECT

4.3.19 CREATE TRIGGER

Syntax
The syntax for CREATE TRIGGER is displayed in Figure 4–29.

Figure 4–29 The CREATE TRIGGER Command

BNF Notation
CREATE [OR REPLACE] TRIGGER [schema .] trigger 
{ BEFORE | AFTER }
{ DELETE | INSERT | UPDATE [OF column [, column]...] } 
[OR { DELETE | INSERT | UPDATE [OF col_list [, col_list]...] }]... 
ON { [schema .] table
FOR EACH ROW proc_name ["("arg_list")"] ["("arg_list")"]...  
;

Prerequisite
None

Purpose
Creates and enables a database trigger.



SQL Commands Alphabetical Listing

4-44 Oracle Database Lite SQL Reference

The arguments for the CREATE TRIGGER command are listed in Table 4–24.

Example
The following example provides you with instructions for creating and testing a 
trigger.

1. Create the following Java program and name it TriggerExample.java.

import java.lang.*; 
import java.sql.*; 
class TriggerExample { 
        public void EMP_SAL(Connection conn, int new_sal) 
        { 
            System.out.println("new salary is :"+new_sal); 

Table 4–24 Arguments Used with the CREATE TRIGGER Command

Argument Description

OR REPLACE Recreates the trigger if it already exists. Creates the trigger if it 
does not already exist. Used to change the definition of an 
existing trigger without dropping, recreating, or regranting 
object privileges previously granted on it.

schema The schema to contain the trigger. If omitted, Oracle Database 
Lite creates the trigger in your own schema.

table The name of a table in the database.

trigger The name of the trigger to be created.

BEFORE Specifies that the trigger should be fired before executing the 
triggering statement. For row triggers, this is a separate firing 
before each affected row is changed. 

AFTER Specifies that the trigger should be fired after executing the 
triggering statement. For row triggers, this is a separate firing 
after each affected row is changed.

DELETE Specifies that the trigger should be fired whenever a DELETE 
statement removes a row from the table.

INSERT Specifies that the trigger should be fired whenever an INSERT 
statement adds a row to the table.

UPDATE OF Specifies that the trigger should be fired whenever an UPDATE 
statement changes a value in one of the columns specified in 
the OF clause. If you omit the OF clause, Oracle Database Lite 
fires the trigger whenever an UPDATE statement changes a 
value in any column of the table.

col_list The column(s) that, when updated, cause the trigger to be 
fired.

ON Specifies the schema and name of the table on which the 
trigger is to be created. If omitted, Oracle Database Lite 
assumes the table is in your own schema.

FOR EACH ROW Designates the trigger to be a row trigger. Oracle Database Lite 
fires a row trigger once for each row that is affected by the 
triggering statement. If you omit this clause, the trigger is a 
statement trigger. Oracle Database Lite fires a statement trigger 
only once when the triggering statement is issued if the 
optional trigger constraint is met.

proc_name Name of the Java method Oracle Database Lite executes to fire 
the trigger.

arg_list Arguments passed to the Java method.



SQL Commands Alphabetical Listing

SQL Commands 4-45

        } 
    } 

2. Attach TriggerExample.java to the EMP table.

ALTER TABLE EMP ATTACH JAVA SOURCE "TriggerExample" in '.'; 

3. Create the Java trigger.

CREATE TRIGGER SAL_CHECK BEFORE UPDATE OF SAL ON EMP FOR EACH ROW 
EMP_SAL(NEW.SAL); 
 . 
 /

4. Update the EMP table using the Java trigger.

update emp set sal=sal+5000 where sal=70000; 

Returns the following result.

new salary is:75000

1 row updated

Related Topics
ALTER TRIGGER, ALTER VIEW, CREATE VIEW, DROP TRIGGER

4.3.20 CREATE USER

Syntax
The syntax for CREATE USER is displayed in Figure 4–30.

Figure 4–30 The CREATE USER Command

BNF Notation
CREATE USER user IDENTIFIED BY password ;

Prerequisite
To create users in your schema or other schemas, you must be logged into the database 
as SYSTEM or as a user with DBA/DDL privileges.

Purpose
Creates a database user with no privileges.

The arguments for the CREATE USER command are listed in Table 4–25.

Table 4–25 Arguments Used with the CREATE USER Command

Argument Description

user The user to be created. Here, user is a unique string, beginning 
with a letter, with a minimum of one byte and a maximum length 
of 30 bytes. 



SQL Commands Alphabetical Listing

4-46 Oracle Database Lite SQL Reference

Usage Notes
You can create multiple users in Oracle Database Lite by using the CREATE USER 
command. A user is not a schema. When you create a user, Oracle Database Lite 
creates a schema with the same name and automatically assigns it to the new user as 
the default schema. The name of the new user appears in the ALL_USERS view. The 
new user's default schema appears in the POL_SCHEMATA view. 

When you connect to an Oracle Lite database as a user, the user name becomes the 
default schema for that session. If there is no schema to match the user name, Oracle 
Lite refuses the connection. You can access database objects in the default schema 
without prefixing them with the schema name.

Users with the appropriate privileges can create additional schemas by using the 
CREATE SCHEMA command, but only the default schema can connect to the 
database. These schemas are owned by the user who created them and require the 
schema name prefix to access their objects.

When you create a database using the CREATEDB utility or the CREATE DATABASE 
command, Oracle Lite creates a special user called SYSTEM with password of 
MANAGER. This user has all database privileges. You can use SYSTEM as the default 
user name until you establish user names of your own as needed.

For encrypted databases, all user names and passwords are written to a file named 
mydbname.opw. Each user can then use their own password as a key to unlock the 
.opw file before the .odb file is accessed. When you copy or back up the database, 
you should include the .opw file and the .plg file.

Oracle Lite does not permit a user other than SYSTEM to access data or perform 
operations in a schema that is not its own. Users can only access data and perform 
operations in a different user's schema if one of the following conditions is met:

■ The user is granted a pre-defined role in another user's schema, which permits the 
user to perform the operation.

■ The user is granted specific privileges in another user's schema.

Example
CREATE USER SCOTT IDENTIFIED BY TIGER;

Related Topics
ALTER USER, GRANT

IDENTIFIED BY Indicates how Oracle Database Lite permits user access.

password Specifies a new password for the user which is a name of up to 
128 characters. The password does not appear in quotes and is not 
case-sensitive.

Note: The user SYSTEM must grant DBA/DDL or RESOURCE 
privileges to a new user before the new user can create database 
objects. The DBA role is recommended as a replacement for the 
DDL role wherever possible.

Table 4–25 (Cont.) Arguments Used with the CREATE USER Command

Argument Description



SQL Commands Alphabetical Listing

SQL Commands 4-47

4.3.21 CREATE VIEW

Syntax
The syntax for CREATE VIEW is displayed in Figure 4–31.

Figure 4–31 The CREATE VIEW Command

BNF Notation
CREATE [OR REPLACE] [[NO] FORCE] VIEW [schema .] view
["("alias [, alias]...")"] AS subquery ;

Prerequisite
You must be logged into the database as SYSTEM or as a user with DBA/DDL 
privileges.

FORCE creates the view regardless of whether the view’s base tables or the referenced 
object types exist or the owner of the schema containing the view has privileges on 
them. These conditions must be true before any SELECT, INSERT, UPDATE, or 
DELETE statements can be issued against the view.

NO FORCE creates the view only if the base tables exist and the owner of the schema 
containing the view has privileges on them. This is the default.

Purpose
Creates or replaces a view.

The arguments for the CREATE VIEW command are listed in Table 4–26.

Table 4–26 Arguments Used with the CREATE VIEW Command 

Argument Description

OR REPLACE Recreates the view if it already exists. Used to change the 
definition of an existing view without dropping, recreating, or 
re-granting object privileges previously granted.

FORCE Specify FORCE if you want to create the view regardless of 
whether the view’s base tables or the referenced object types exist 
or the owner of the schema containing the view has privileges on 
them. These conditions must be true before any SELECT, INSERT, 
UPDATE, or DELETE statements can be issued against the view.

NO FORCE Specify NO FORCE if you want to create the view only if the base 
tables exist and the owner of the schema containing the view has 
privileges on them. This is the default option.

schema The schema to contain the view. If you omit schema, Oracle Lite 
creates the view in your own schema.

view The name of the view.



SQL Commands Alphabetical Listing

4-48 Oracle Database Lite SQL Reference

Usage Notes
A view is updatable if:

■ The subquery selects from a single base table or from another updatable view.

■ Each selected expression is a column reference to that base table or updatable 
view.

■ No two column references in the select list reference the same column.

CREATE ANY VIEW can be used to create a view in another schema, but this requires 
the DBA/DDL role.

The FORCE option of CREATE VIEW behaves differently under Oracle Database Lite. 
There are two cases:

1. A command issued to a view created by using CREATE FORCE VIEW without the 
base table must have the ALTER VIEW view_name COMPILE command issued 
first, otherwise an error message is thrown.

2. A CREATE FORCE VIEW created with a valid base table is no different than 
CREATE VIEW. 

Example
The following example creates a view called EMP_SAL which displays the name, job, 
and salary of each row in the EMP table:

CREATE VIEW EMP_SAL (Name, Job, Salary) AS SELECT ENAME, JOB, SAL FROM EMP;

SELECT * FROM EMP_SAL;

Returns the following result:

NAME       JOB          SALARY
---------- --------- ---------
KING       PRESIDENT      5000
BLAKE      MANAGER        2850
CLARK      MANAGER        2450
JONES      MANAGER        2975
MARTIN     SALESMAN       1250
ALLEN      SALESMAN       1600
TURNER     SALESMAN       1500
JAMES      CLERK           950
WARD       SALESMAN       1250
FORD       ANALYST        3000
SMITH      CLERK           800
SCOTT      ANALYST        3000
ADAMS      CLERK          1100

alias Specifies names for the expressions selected by the view's query. 
The number of aliases must match the number of expressions 
selected by the view. Aliases must follow Oracle Lite's rules for 
naming schema objects. Each alias must be unique within the 
view.

AS subquery Identifies columns and rows of the table(s) on which the view is 
based. A view's query can be any SELECT statement without the 
ORDER BY or FOR UPDATE clauses. Its select list can contain up 
to 254 expressions.

Table 4–26 (Cont.) Arguments Used with the CREATE VIEW Command 

Argument Description



SQL Commands Alphabetical Listing

SQL Commands 4-49

MILLER     CLERK          1300

14 rows selected.

ODBC 2.0
Although the ODBC SQL syntax for CREATE VIEW does not support the OR 
REPLACE argument, ODBC passes the command through to your database.

Editing Data in a View
Most ODBC-based tools require a primary key before allowing updates on a view. 
Oracle Lite does not report primary keys for views, so you must issue SQL commands 
to perform updates or deletes on views using the WHERE clause to specify the target 
row or rows.

Related Topics
DROP SEQUENCE, CREATE TABLE, DROP VIEW

4.3.22 CURRVAL and NEXTVAL pseudocolumns

Purpose
A sequence is a schema object that can generate unique sequential values. These 
values are often used for primary and unique keys. You can use the CURRVAL and 
NEXTVAL pseudocolumns to refer to sequence values in SQL statmetments.

Prerequisite
You must have a sequence object.

Usage Notes
You must qualify CURRVAL and NEXTVAL with the name of the sequence:

sequence.CURRVAL
sequence.NEXTVAL

To refer to the current or next value of a sequence in the schema of another user, you 
must qualify the sequence with the schema containing it.

schema.sequence.CURRVAL
schema.sequence.NEXTVAL

You can use CURRVAL and NEXTVAL in: 

■ The SELECT list of a SELECT statement that is not contained in a subquery, 
materialized view, or view.

■ The SELECT list of a subquery in an INSERT statement.

■  The VALUES clause of an INSERT statement.

■ The SET clause of an UPDATE statement.

You cannot use CURRVAL and NEXTVAL in:

■ A query of a view or of a materialized view.

■ A SELECT statement with the DISTINCT operator.

■ A SELECT statement with a GROUP BY clause or ORDER BY clause.



SQL Commands Alphabetical Listing

4-50 Oracle Database Lite SQL Reference

■ A SELECT statement that is combined with another SELECT statement with the 
UNION, INTERSECT, or MINUS set operator.

■ The WHERE clause of a SELECT statement.

■ DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement.

■ The condition of a CHECK constraint

Also, within a single SQL statement that uses CURRVAL or NEXTVAL, all referenced 
LONG columns, updated tables, and locked tables must be located on the same 
database.

When you create a sequence, you can define its initial value and the increment 
between its values. The first reference to NEXTVAL returns the sequence's initial value. 
Subsequent references to NEXTVAL increment the sequence value by the defined 
increment and return the new value. Any reference to CURRVAL always returns the 
sequence's current value, which is the value returned by the last reference to NEXTVAL. 
Note that before you use CURRVAL for a sequence in your session, you must first 
initialize the sequence with NEXTVAL. Within a single SQL statement, Oracle Database 
Lite will increment the sequence only once for each row. If a statement contains more 
than one reference to NEXTVAL for a sequence, Oracle increments the sequence once 
and returns the same value for all occurrences of NEXTVAL. If a statement contains 
references to both CURRVAL and NEXTVAL, Oracle increments the sequence and 
returns the same value for both CURRVAL and NEXTVAL regardless of their order 
within the statement. 

A sequence can be accessed by many users concurrently with no waiting or locking. 

Example 1
This example selects the current value of the employee sequence in the sample schema 
hr: 

SELECT employees_seq.currval 
    FROM DUAL;

Example 2
This example increments the employee sequence and uses its value for a new 
employee inserted into the sample table hr.employees: 

INSERT INTO employees
   VALUES (employees_seq.nextval, 'John', 'Doe', 'jdoe', 
   '555-1212', TO_DATE(SYSDATE), 'PU_CLERK', 2500, null, null,
   30);

Example 3
This example adds a new order with the next order number to the master order table. 
It then adds suborders with this number to the detail order table: 

INSERT INTO orders (order_id, order_date, customer_id)
   VALUES (orders_seq.nextval, TO_DATE(SYSDATE), 106);

INSERT INTO order_items (order_id, line_item_id, product_id)
   VALUES (orders_seq.currval, 1, 2359);

INSERT INTO order_items (order_id, line_item_id, product_id)
   VALUES (orders_seq.currval, 2, 3290);

INSERT INTO order_items (order_id, line_item_id, product_id)
   VALUES (orders_seq.currval, 3, 2381);



SQL Commands Alphabetical Listing

SQL Commands 4-51

Related Topics
LEVEL pseudocolumn, ROWID pseudocolumn, ROWNUM pseudocolumn

4.3.23 DELETE

Syntax
The syntax for DELETE is displayed in Figure 4–32.

Figure 4–32 The DELETE Command

BNF Notation
DELETE FROM [schema .] {table|view}[WHERE condition] ;

Prerequisite
You can only delete rows from tables or views in your schema.

Purpose
Removes rows from a table or from a view's base table.

The arguments for the DELETE command are listed in Table 4–27.

Usage Notes
If no WHERE clause is specified, then all rows of the table are deleted.

A positioned DELETE requires that the cursor be updatable.

Example
DELETE FROM PRICE WHERE MINPRICE < 2.4;

ODBC 2.0
The ODBC SQL syntax for DELETE is the same as the SQL syntax. In addition, ODBC 
syntax includes the CURRENT OF cursor_name keyword and argument. These are used 

Table 4–27 Arguments Used with the DELETE Command

Argument Description

schema The schema that contains the table or view. If you omit schema, 
Oracle Lite assumes the table or view is in your own schema.

table The name of a table from which you want to delete rows.

view The name of the view. If you specify view, Oracle Lite deletes 
rows from the view's base tables.

WHERE condition Deletes only rows that satisfy a condition specified with the 
condition argument. For more information about creating a 
valid condition, see Section 1.7, "Specifying SQL Conditions".



SQL Commands Alphabetical Listing

4-52 Oracle Database Lite SQL Reference

in the WHERE clause to specify the cursor where the DELETE operation occurs, as 
follows:

WHERE CURRENT OF cursor_name

Related Topics
UPDATE

4.3.24 DROP clause

Syntax
The syntax for the DROP clause is displayed in Figure 4–33.

Figure 4–33 The DROP Clause

BNF Notation
DROP 
{PRIMARY KEY
 | [COLUMN] column
 | UNIQUE "("column")" [, "("column")"]...
 |CONSTRAINT constraint }
[ CASCADE ]  ;

Prerequisite
The DROP clause only appears in an ALTER TABLE statement. To drop an integrity 
constraint, you must be logged into the database as SYSTEM or as a user with 
DBA/DDL privileges.

Purpose
Removes an integrity constraint from the database.

The arguments for the DROP clause are listed in Table 4–28.

Table 4–28 Arguments Used with the DROP Clause

Argument Description

PRIMARY KEY Drops the table's PRIMARY KEY constraint.

UNIQUE Drops the UNIQUE constraint from the specified columns.

COLUMN Drops a column from the table.



SQL Commands Alphabetical Listing

SQL Commands 4-53

Example
ALTER TABLE EMP DROP COLUMN COMM;

Related Topics
ALTER TABLE, CONSTRAINT clause

4.3.25 DROP FUNCTION

Syntax
The syntax for the DROP function is displayed in Figure 4–34.

Figure 4–34 The DROP Function

BNF Notation
DROP FUNCTION [schema .] function_name ;

Prerequisite
To drop a function, you must meet one of the following requirements:

■ The function must be in your own schema.

■ You must be connected to the database as SYSTEM.

■ You must have DBA/DDL privileges.

Purpose
To remove a stand alone stored function from the database. For information on 
creating a function, see "CREATE FUNCTION".

The arguments for the DROP function are listed in Table 4–29.

column Specifies the column from which a column constraint is 
removed, or in the case of DROP COLUMN, specifies the 
column to be dropped from the table.

CONSTRAINT Drops the integrity constraint named constraint. For more 
information, see "CONSTRAINT clause".

constraint The name of the integrity constraint to drop.

RESTRICT If any integrity constraints depend on the constraint to drop, 
the DROP command fails.

CASCADE Drops all other integrity constraints that depend on the 
constraint specified in the CONSTRAINT clause.

Table 4–28 (Cont.) Arguments Used with the DROP Clause

Argument Description



SQL Commands Alphabetical Listing

4-54 Oracle Database Lite SQL Reference

Example
The following statement drops the PAY_SALARY function, which you created in the 
CREATE FUNCTION example. When you drop the PAY_SALARY function, you 
invalidate all objects that depend on PAY_SALARY.

DROP FUNCTION PAY_SALARY;

Related Topics
CREATE FUNCTION

4.3.26 DROP INDEX

Syntax
The syntax for DROP INDEX is displayed in Figure 4–35.

Figure 4–35 The DROP INDEX Command

BNF Notation
DROP INDEX [schema .] index ;

Prerequisite
To drop an index, you must be logged into the database as SYSTEM or as a user with 
DBA/DDL privileges.

Purpose
Removes an index from the database.

The arguments for the DROP INDEX command are listed in Table 4–30.

Table 4–29 Arguments Used with the DROP Function

Argument Description

schema The schema containing the function. If you omit schema, Oracle Lite 
assumes the function is in your own schema.

function_name The name of the function to drop. 

Oracle Lite invalidates any local objects that depend on, or call, the 
dropped function. If you subsequently reference one of these objects, 
Oracle Lite tries to recompile the object and returns an error if you have not 
recreated the dropped function.

Table 4–30 Arguments Used with the DROP INDEX Command

Argument Description

schema The schema that contains the index to drop. If you omit the schema, 
Oracle Lite assumes that the index is in your own schema.

index The name of the index to drop.



SQL Commands Alphabetical Listing

SQL Commands 4-55

Example
The following example drops an index on the SAL column of the EMP table:

DROP INDEX SAL_INDEX;

Related Topics
CREATE INDEX

4.3.27 DROP JAVA

Syntax
The syntax for DROP JAVA is displayed in Figure 4–36.

Figure 4–36 The DROP JAVA Command

BNF Notation
DROP JAVA { CLASS | RESOURCE } [schema .] object_name;

Prerequisite
To drop a class or resource schema object, you must meet the following requirements:

■ The Java class, or resource must be in your own schema.

■ You must be connected to the database as SYSTEM or have DBA/DDL privileges. 

Purpose
To drop a Java class or resource schema object. 

For more information on resolving Java classes, and resources, see the Oracle Database 
Lite Java Developer's Guide. 

The arguments for the DROP JAVA command are listed in Table 4–31.

Usage Notes
Oracle Lite recognizes schema_name when specified, but does not enforce it.

Example
The following statement drops the Java class MyClass: 

DROP JAVA CLASS "MyClass";

Table 4–31 Arguments Used with the DROP JAVA Command

Argument Description

JAVA CLASS Drops a Java class schema object. 

JAVA RESOURCE Drops a Java resource schema object. 

object_name Specifies the name of an existing Java class, source, or resource 
schema object. 



SQL Commands Alphabetical Listing

4-56 Oracle Database Lite SQL Reference

Related Topics
CREATE JAVA

4.3.28 DROP PROCEDURE

Syntax
The syntax for DROP PROCEDURE is displayed in Figure 4–37.

Figure 4–37 The DROP PROCEDURE Command

BNF Notation
DROP PROCEDURE [schema .] procedure ;

Prerequisite
The procedure must be connected to the database as schema or you must have 
DBA/DDL privileges. 

Purpose
To remove a stand alone stored procedure from the database.

For information on creating a procedure, see "CREATE PROCEDURE". 

The arguments for the DROP PROCEDURE command are listed in Table 4–32.

Example
The following statement drops the procedure TRANSFER owned by the user KERNER 
and invalidates all objects that depend on TRANSFER: 

DROP PROCEDURE kerner.transfer 

Related Topics
CREATE PROCEDURE

Table 4–32 Arguments Used with the DROP PROCEDURE Command

Argument Description

schema The schema containing the procedure. If you omit schema, 
Oracle Lite assumes the procedure is in your own schema. 

procedure The name of the procedure to drop. 

When you drop a procedure, Oracle Lite invalidates any local 
objects that depend on the dropped procedure. If you 
subsequently reference one of these objects, Oracle Lite tries to 
recompile the object and returns an error message if you have 
not recreated the dropped procedure.



SQL Commands Alphabetical Listing

SQL Commands 4-57

4.3.29 DROP SCHEMA

Syntax
The syntax for DROP SCHEMA is displayed in Figure 4–38.

Figure 4–38 The DROP SCHEMA Command

BNF Notation
DROP SCHEMA schema . [{CASCADE | RESTRICT}] ;

Prerequisite
To drop a schema, you must be logged into the database as SYSTEM or as a user with 
DBA/DDL or ADMIN privileges.

Purpose
Removes a schema from the database.

The arguments for the DROP SCHEMA command are listed in Table 4–33.

Usage Notes
If no options are specified, the default behavior is determined by the RESTRICT 
argument.

Example
The following example drops the HOTEL_OPERATION schema you created in the 
CREATE SCHEMA example:

DROP SCHEMA HOTEL_OPERATION CASCADE;

Related Topics
CREATE SCHEMA

4.3.30 DROP SEQUENCE

Syntax
The syntax for DROP SEQUENCE is displayed in Figure 4–39.

Table 4–33 Arguments Used with the DROP SCHEMA Command

Argument Description

schema The schema to drop from the database.

CASCADE Specifies that all other objects whose definitions depend on the 
specified schema are automatically dropped with the schema.

RESTRICT Specifies that if there are other objects whose definitions 
depend on the specified schema, the DROP SCHEMA 
operation fails.



SQL Commands Alphabetical Listing

4-58 Oracle Database Lite SQL Reference

Figure 4–39 The DROP SEQUENCE Command

BNF Notation
DROP SEQUENCE [schema .] sequence ;

Prerequisite
You must be logged into the database as SYSTEM, or the sequence must be in your 
schema.

Purpose
Removes a sequence from the database.

The arguments for the DROP SEQUENCE command are listed in Table 4–34.

Usage Notes
One method for restarting a sequence is to drop and recreate it. For example, if you 
have a sequence with a current value of 150 and you would like to restart the sequence 
with a value of 27, you would:

■ Drop the Sequence.

■ Create it with the same name and a START WITH value of 27.

Example
The following example drops the ESEQ sequence you created in the CREATE 
SEQUENCE example:

DROP SEQUENCE ESEQ;

ODBC 2.0
Although the DROP SEQUENCE command is not part of the ODBC SQL syntax, 
ODBC passes the command through to your database.

Related Topics
ALTER SEQUENCE, CREATE SEQUENCE

4.3.31 DROP SYNONYM

Syntax
The syntax for DROP SYNONYM is displayed in Figure 4–40.

Table 4–34 Arguments Used with the DROP SEQUENCE Command

Argument Description

schema The schema that contains the sequence to drop. If you omit 
schema, Oracle Lite assumes that the sequence is in your own 
schema.

sequence The name of the sequence to remove from the database.



SQL Commands Alphabetical Listing

SQL Commands 4-59

Figure 4–40 The DROP SYNONYM Command

BNF Notation
DROP [PUBLIC] SYNONYM [schema .] synonym ;

Prerequisite
To drop a synonym from the database, you must be logged into the database as 
SYSTEM, or the synonym must be in your schema.

Purpose
Drops a public or private SQL sequence from the database.

The arguments for the DROP SYNONYM command are listed in Table 4–35.

Example
The following example drops the synonym named PROD, which you created in the 
CREATE SYNONYM example:

DROP SYNONYM PROD;

Related Topics
CREATE SYNONYM

4.3.32 DROP TABLE

Syntax
The syntax for DROP TABLE is displayed in Figure 4–41.

Figure 4–41 The DROP TABLE Command

Table 4–35 Arguments Used with the DROP SYNONYM Command

Argument Description

PUBLIC Specifies a public synonym. You must specify PUBLIC to drop 
a public synonym.

schema The schema to contain the synonym. If you omit schema, 
Oracle Lite creates the synonym in your own schema. You 
cannot specify schema if you have specified PUBLIC.

synonym The name of the synonym to be dropped.



SQL Commands Alphabetical Listing

4-60 Oracle Database Lite SQL Reference

BNF Notation
DROP TABLE [schema .] table [{CASCADE | CASCADE CONSTRAINTS | RESTRICT}] ;

Prerequisite
To drop a table from the database, you must be logged into the database as SYSTEM or 
as a user with DBA/DDL privileges.

Purpose
Removes a table from the database.

The arguments for the DROP TABLE command are listed in Table 4–36.

Usage Notes
If no options are specified and there are no referential integrity constraints that refer to 
the table, Oracle Lite drops the table. If no options are specified and there are 
referential integrity constraints that refer to the table, Oracle Lite returns an error 
message.

Example
DROP TABLE EMP;

Related Topics
ALTER TABLE, CREATE TABLE

4.3.33 DROP TRIGGER

Syntax
The syntax for DROP TRIGGER is displayed in Figure 4–42.

Figure 4–42 The DROP TRIGGER Command

Table 4–36 Arguments Used with the DROP TABLE Command

Argument Description

schema The schema that contains the table to drop. If you omit schema, 
Oracle Lite assumes that the table is in your own schema.

table The name of the table to remove from the database.

CASCADE Specifies that, if the table is a base table for views, or if there 
are referential integrity constraints that refer to primary keys in 
the table, they are automatically dropped with the table. 

CASCADE 
CONSTRAINTS

Specifies that all referential integrity constraints that refer to 
primary keys in the table are automatically dropped with the 
table.

RESTRICT Specifies that, if the table is a base table for views, or if the 
table is referenced in any referential integrity constraints, the 
DROP TABLE operation fails. 



SQL Commands Alphabetical Listing

SQL Commands 4-61

BNF Notation
DROP TRIGGER [schema .] trigger ;

Prerequisite
You must be logged into the database as SYSTEM or the trigger must be in your 
schema.

Purpose
Removes a database trigger from the database.

The arguments for the DROP TRIGGER command are listed in Table 4–37.

Example
The following statement drops the SAL_CHECK trigger, which you created in the 
CREATE TRIGGER example:

DROP TRIGGER ruth.reorder

Related Topics
CREATE TRIGGER

4.3.34 DROP USER

Syntax
The syntax for DROP USER is displayed in Figure 4–43.

Figure 4–43 The DROP USER Command

BNF Notation
DROP USER user [CASCADE] ;

Prerequisite
To drop a user from the database, you must be logged into the database as SYSTEM, or 
you must have DBA/DDL or ADMIN privileges.

Purpose
Removes a user from the database.

The arguments for the DROP USER command are listed in Table 4–38.

Table 4–37 Arguments Used with the DROP TRIGGER Command

Argument Description

schema The schema that contains the trigger. If you omit schema, 
Oracle Lite assumes that the trigger is in your own schema.

trigger The name of the trigger.



SQL Commands Alphabetical Listing

4-62 Oracle Database Lite SQL Reference

Usage Notes
You can drop users if you are connected to the database as SYSTEM, or if you are 
granted the ADMIN or DBA/DDL role.

Example
To drop a user when the user's schema does not contain any objects, use the syntax:

DROP USER <user>

To drop all objects in the user's schema before dropping the user, use the syntax:

DROP USER <user> CASCADE

The following statement drops the user Michael:

DROP USER MICHAEL;

Related Topics
CREATE USER

4.3.35 DROP VIEW

Syntax
The syntax for DROP VIEW is displayed in Figure 4–44.

Figure 4–44 The DROP VIEW Command

BNF Notation
DROP [schema .] VIEW view [ {CASCADE | RESTRICT}] ;

Prerequisite
To drop a view from the database, you must be logged into the database and you must 
meet one of the following requirements:

■ You must be logged into the database as SYSTEM.

■ You must have DBA/DDL privileges.

■ The view must be in your schema.

Purpose
Removes a view from the database.

Table 4–38 Arguments Used with the DROP USER Command

Argument Description

user Name of the user to be dropped.

CASCADE Drops all objects associated with the user.



SQL Commands Alphabetical Listing

SQL Commands 4-63

The arguments for the DROP VIEW command are listed in Table 4–39.

Usage Notes
If no options are specified, Oracle Lite drops only this view. Other dependent views 
are not affected.

Example
The following statement drops the EMP_SAL view you created in the CREATE VIEW 
example:

DROP VIEW EMP_SAL;

Related Topics
CREATE SYNONYM, CREATE TABLE, CREATE VIEW

4.3.36 EXPLAIN PLAN

Syntax
The syntax for EXPLAIN PLAN is displayed in Figure 4–45.

Figure 4–45 The EXPLAIN PLAN Command

BNF Notation
EXPLAIN PLAN select_command;

Purpose
Displays the execution plan chosen by the Oracle Lite database optimizer for 
subquery::= statements.

The arguments for the EXPLAIN PLAN command are listed in Table 4–40.

Table 4–39 Arguments Used with the DROP VIEW Command

Argument Description

schema The schema that contains the view to drop. If you omit schema, 
Oracle Lite assumes that the view is in your own schema.

view The name of the view to be removed from the database.

CASCADE Specifies that all other views whose definitions depend on the 
specified view are automatically dropped with the view.

RESTRICT Specifies that if there are other views whose definitions depend 
on the specified view, the DROP VIEW operation fails. 

Table 4–40 Arguments Used with the EXPLAIN PLAN Command

Argument Description

EXPLAIN PLAN Determines an execution plan on a query.

select_command The query for which you determine the execution plan.



SQL Commands Alphabetical Listing

4-64 Oracle Database Lite SQL Reference

Usage Notes
Oracle Lite outputs the execution plan to a file called execplan.txt. Oracle Lite appends 
each new execution plan to the file.

For every execution of the EXPLAIN PLAN command, Oracle Lite outputs a single 
line of the EXPLAIN COMMAND followed by one or more lines of the execution plan.

The execution plan contains one line for each query block. A query block begins with a 
subquery::= keyword. 

The plan output is indented to indicate nesting. All siblings of UNION and MINUS are 
also indented. Each line of the plan output has the following general form:

table-name [(column-name)] [{NL(rows)|IL(rows)} table-name [(column-name)] ]

The parameters for the EXPLAIN PLAN command are listed in Table 4–41.

The tables are executed from left to right. The left-most table forms the outer-most 
loop of iteration.

Oracle Lite uses row estimates to order tables, however, the actual values are not 
important. The optimizer estimates the best possible index. The object kernel may 
choose a different index since it is more accurate at execution time.

4.3.37 GRANT

Syntax
The syntax for GRANT is displayed in Figure 4–46.

Figure 4–46 The GRANT Command

BNF Notation
GRANT {role | privilege_list ON object_name} TO user_list ;

Prerequisite
To grant roles, you must be logged into the database as SYSTEM, or as a user with 
DBA/DDL and ADMIN privileges, or with RESOURCE privileges to GRANT 
privilege on your own objects to other users.

Table 4–41 Parameters of the EXPLAIN PLAN Output

Parameter Definition

table-name A fully qualified alias or table name.

column-name The name of the first column of an index key.

NL Nested loop join.

IL Index loop join is an index used to join the table following "IL".

(rows) Indicates the optimizer's estimate of rows for the result of the 
join.



SQL Commands Alphabetical Listing

SQL Commands 4-65

Purpose
Grants the ADMIN, DBA, DDL, or RESOURCE roles to users, or grants privileges on a 
database object to users. The DBA role is recommended as a replacement for the DDL 
role wherever possible.

The arguments for the GRANT command are listed in Table 4–42.

Pre-defined Roles
Oracle Lite combines some privileges into pre-defined roles for convenience. In many 
cases it is easier to grant a user a pre-defined role than to grant specific privileges in 
another schema. Oracle Lite does not support creating or dropping roles. The Oracle 
Lite pre-defined roles are listed in Table 4–43:

Table 4–42 Arguments Used with the GRANT Command

Argument Description

role The UNRESOLVED XREF TO ADMIN, UNRESOLVED XREF TO 
DBA/DDL, or UNRESOLVED XREF TO RESOURCE role.

user_list One user, or a comma-separated list of users.

ON Signifies the database object to which you grant roles.

privilege_list Either a comma-separated list of the following privileges or a combination 
called ALL: INSERT, DELETE, UPDATE (col_list), SELECT, and 
REFERENCES.

TO Signifies the users or user list to whom you grant roles.

object_name A table name optionally prefixed with a schema name.

Table 4–43 Predefined Roles in Oracle Database Lite

Role Name Privileges Granted To Role

ADMIN Enables the user to create other users and grant privileges 
other than DDL and ADMIN on any object in the schema. The 
user can execute any of the following commands in a SQL 
statement:

CREATE SCHEMA, CREATE USER, ALTER USER, DROP 
USER, DROP SCHEMA, GRANT, and REVOKE.

DBA/DDL Enables the user to issue the following DDL statements which 
otherwise can only be issued by SYSTEM: 

All ADMIN privileges, CREATE TABLE, CREATE ANY 
TABLE, CREATE VIEW, CREATE ANY VIEW, CREATE 
INDEX, CREATE ANY INDEX, ALTER TABLE, ALTER VIEW, 
DROP TABLE, DROP VIEW, and DROP INDEX.

RESOURCE The RESOURCE role grants the same level of control as the 
DBA/DDL role, but only over the user’s own domain. The 
user can execute any of the following commands in a SQL 
statement:

CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE 
CONSTRAINT, ALTER TABLE, ALTER VIEW, ALTER INDEX, 
ALTER CONSTRAINT, DROP TABLE, DROP VIEW, DROP 
INDEX, DROP CONSTRAINT, and GRANT or REVOKE 
privileges on any object under a user’s own schema.



SQL Commands Alphabetical Listing

4-66 Oracle Database Lite SQL Reference

Usage Notes
If privilege_list is ALL, then the user can INSERT, DELETE, UPDATE, or SELECT from 
the table or view. If privilege_list is either INSERT, DELETE, UPDATE, or SELECT, then 
the user has that privilege on a table.

When you grant UPDATE on a table to a user and then subsequently alter the table by 
adding a column, the user is not able to update the new column. The user can only 
update the new column if you issue a grant statement after creating the new column. 
For example:

CREATE TABLE t1 (c1 NUMBER c2 INTEGER);
CREATE USER a IDENTIFIED BY a;
GRANT SELECT, UPDATE ON t1 TO a;
ALTER TABLE t1 ADD c3 INT;
COMMIT;

In the preceding example, the GRANT statement must be issued after the ALTER 
TABLE statement or the user cannot update the new column, c3.

Example 1
The following example creates a user named MICHAEL and grants the user the 
ADMIN role:

CREATE USER MICHAEL IDENTIFIED BY SWORD;

GRANT ADMIN TO MICHAEL;

Example 2
The following example creates a user named MICHAEL and grants INSERT and 
DELETE privileges on the EMP table the user.

CREATE USER MICHAEL IDENTIFIED BY SWORD;

GRANT INSERT, DELETE ON EMP TO MICHAEL;

Example 3
The following example grants ALL privileges on the PRODUCT table to the newly 
created user, MICHAEL:

GRANT ALL ON PRODUCT TO MICHAEL;

Related Topics
REVOKE

4.3.38 INSERT

Syntax
The syntax for INSERT is displayed in Figure 4–47.



SQL Commands Alphabetical Listing

SQL Commands 4-67

Figure 4–47 The INSERT Command

BNF Notation
INSERT INTO [schema .] {table | view }
["("column [, column]...")"]
{ VALUES  "(" expr [, expr]...")" | subquery} ;
 

Prerequisite
To insert rows into a table or view, you must be logged into the database as SYSTEM, 
or the table and view must be in your schema.

Purpose
Adds rows to a table or to a view's base table.

The arguments for the INSERT command are listed in Table 4–44.

Usage Notes
■ The same column name may not appear more than once in the column argument.

■ If you omit any columns from the column argument, Oracle Lite assigns the 
columns the default values specified when the table is created.

Table 4–44 Arguments Used with the INSERTCommand

Argument Description

schema The schema that contains the table or view. If you omit schema, Oracle Lite 
assumes that the table or view is in your own schema.

table The name of the table into which you want to insert rows.

view The name of the view into whose base tables you want to insert rows.

column A column of a table or view. In the inserted row, each column listed in this 
argument is assigned a value from the VALUES clause or from the subquery.

If you omit one of the table's columns from this argument, the column's value 
for the inserted row is the column's default value as specified when the table 
is created. If you omit the column argument, the VALUES clause or the query 
must specify values for all columns in the table.

VALUES Specifies a row of values to be inserted into the table or view. You specify in 
the VALUES clause a value for each column in the column argument.

expr The values assigned to the corresponding column. This can contain host 
variables. For more information, see Section 1.8, "Specifying Expressions".

subquery A SELECT statement that returns rows that are inserted into the table. The 
SELECT list of this subquery must have the same number of columns as the 
column list of the INSERT statement.



SQL Commands Alphabetical Listing

4-68 Oracle Database Lite SQL Reference

■ The number of columns specified in the column argument must be the same as the 
number of values provided. If you omit the column argument, the number of 
values must be equal to the degree of the table.

■ If a column does not have a user-defined default value, its default value is NULL. 
This is true even when there is a NOT NULL constraint on the column. If an 
INSERT statement does not provide an explicit value for such a column, Oracle 
Lite generates an integrity violation error message.

Example
INSERT INTO EMP (EMPNO, ENAME, DEPTNO) VALUES ('7010', 'VINCE', '20');

Related Topics
DELETE, UPDATE

4.3.39 LEVEL pseudocolumn

Purpose
The LEVEL pseudocolumn can be used in a SELECT statement that performs a 
hierarchical query. For each row returned by a hierarchical query, the LEVEL 
pseudocolumn returns 1 for a root node, 2 for a child of a root, and so on. In a 
hierarchical query, a root node is the highest node within an inverted tree, a child node 
is any non-root node, a parent node is any node that has children, and a leaf node is 
any node without children. 

Prerequisites
None.

Usage Notes
The number of levels returned by a hierarchical query is limited to 32.

Example
The following statement returns all employees in hierarchical order. The root row is 
defined to be the employee whose job is PRESIDENT. The child rows of a parent row 
are defined to be those who have the employee number of the parent row as their 
manager number.

SELECT LPAD(' ',2*(LEVEL-1)) || ename org_chart,
empno, mgr, job
FROM emp
START WITH job = 'PRESIDENT'
CONNECT BY PRIOR empno = mgr;

Returns the following result:

ORG_CHART              EMPNO       MGR JOB
------------------ --------- --------- ---------
                        7839           PRESIDENT
    JONES               7566      7839 MANAGER
    SCOTT               7788      7566 ANALYST
    ADAMS               7876      7788 CLERK
    FORD                7902      7566 ANALYST
    SMITH               7369      7902 CLERK
    CLARK               7782      7839 MANAGER
    MILLER              7934      7782 CLERK



SQL Commands Alphabetical Listing

SQL Commands 4-69

    BLAKE               7698      7839 MANAGER
    WARD                7521      7698 SALESMAN
    JAMES               7900      7698 CLERK
    TURNER              7844      7698 SALESMAN
    ALLEN               7499      7698 SALESMAN
    MARTIN              7654      7698 SALESMAN

14 rows selected.

Related Topics
CURRVAL and NEXTVAL pseudocolumns, OL__ROW_STATUS pseudocolumn, 
ROWID pseudocolumn, ROWNUM pseudocolumn, 

4.3.40 OL__ROW_STATUS pseudocolumn

Purpose
For each row in the database, the OL__ROW_STATUS pseudocolumn returns the status 
of a row from a snapshot table: new, updated, or clean. 

Prerequisite
None.

Usage Notes
OL__ROW_STATUS enables you to select the column from any snapshot or regular 
table, but row status information is only returned for snapshot table rows. Regular 
table rows return the same value regardless of status. 

The OL__ROW_STATUS pseudocolumn can be qualified with the table name in the 
same manner as other pseudocolumns. Thus you can determine row status in complex 
queries involving multiple tables as listed in Table 4–45.

Example 1
Select OL__ROW_STATUS, Emp.* from Employee Emp Where Empno = 7900;

Example 2
Select Emp. OL__ROW_STATUS, ENAME, DNAME  from EMP,DEPT where
DEPT.DEPTNO=EMP.DEPTNO AND EMP.EMPNO=7900;

Related Topics
CURRVAL and NEXTVAL pseudocolumns, LEVEL pseudocolumn, ROWID 
pseudocolumn, ROWNUM pseudocolumn

Table 4–45 OL__ROW_STATUS Results

Table Type
OL__ROW_STATUS 
value Description

Snapshot table 0 The row is clean or not dirty.

Snapshot table 16 The row is a new row created at the client side.

Snapshot table 32 The row has been updated.

Regular table 0 This value is static and never changes.



SQL Commands Alphabetical Listing

4-70 Oracle Database Lite SQL Reference

4.3.41 REVOKE

Syntax
The syntax for REVOKE is displayed in Figure 4–48.

Figure 4–48 The REVOKE Command

BNF Notation
REVOKE  { role | privilige_list ON object_name } FROM user_list ;

Prerequisite
To revoke roles from users, you must be logged into the database as SYSTEM or as a 
user with DBA or ADMIN privileges.

Purpose
Revokes the ADMIN, DBA/DDL, or RESOURCE roles from users, or revokes 
privileges on a database object from users. The DBA role is recommended as a 
replacement for the DDL role. 

The arguments for the REVOKE command are listed in Table 4–46.

Usage Notes
If privilege_list contains INSERT, DELETE, UPDATE, or SELECT, then the user has 
those privileges on a table or view. If privilege_list is ALL, then the user can INSERT, 
DELETE, UPDATE, or SELECT from the table or view.

Example 1
The following example creates a user named STEVE and grants the user the ADMIN 
role. Then, the example revokes the ADMIN role from the user, STEVE.

CREATE USER STEVE IDENTIFIED BY STINGRAY;
GRANT ADMIN TO STEVE;
REVOKE ADMIN FROM STEVE;

Table 4–46 Arguments Used with the REVOKE Command

Argument Description

role The UNRESOLVED XREF TO ADMIN, UNRESOLVED XREF 
TO DBA/DDL, or UNRESOLVED XREF TO RESOURCE role.

user_list One user, or a comma-separated list of users.

privilege_list A comma-separated list of the following privileges or a 
combination called ALL: INSERT, DELETE, UPDATE (col_list), 
and SELECT.

object_name A table name prefixed with a schema name.



SQL Commands Alphabetical Listing

SQL Commands 4-71

Example 2
The following example revokes the INSERT and DELETE privileges on the EMP table 
from the user, SCOTT.

REVOKE INSERT,DELETE ON EMP FROM SCOTT;

Example 3
The following example creates a user named CHARLES and grants the user the 
INSERT and DELETE privileges on the PRICE table, and ALL privileges on the ITEM 
table. Then the example revokes all privileges for the user CHARLES on the PRICE 
and ITEM tables.

CREATE USER CHARLES IDENTIFIED BY VORTEX;
GRANT INSERT, DELETE, UPDATE ON PRICE TO CHARLES;
GRANT ALL ON ITEM TO CHARLES;
REVOKE ALL ON PRICE FROM CHARLES;
REVOKE ALL ON ITEM FROM CHARLES;

Related Topics
GRANT

4.3.42 ROLLBACK

Syntax
The syntax for ROLLBACK is displayed in Figure 4–49.

Figure 4–49 The ROLLBACK Command

BNF Notation
ROLLBACK [{ WORK | TO savepoint_name }] ;

Prerequisite
None.

Purpose
Undoes work performed in the current synonym.

The arguments for the ROLLBACK command are listed in Table 4–47.

Table 4–47 Arguments Used with the ROLLBACK Command

Argument Description

work An optional argument supported to provide ANSI 
compatibility.

TO An optional argument that enables you to roll back to a 
savepoint.

savepoint_name The name of the savepoint you roll back to.



SQL Commands Alphabetical Listing

4-72 Oracle Database Lite SQL Reference

Usage Notes
If you are not already in a transaction, Oracle Lite starts one the first time you issue a 
SQL statement. All the statements you issue are considered part of the transaction 
until you use a COMMIT or ROLLBACK command. 

The COMMIT command makes permanent changes to the data in the database, saving 
everything up to the start of the transaction. Before changes are committed, both the 
old and new data exist so that changes can be stored or the data can be restored to its 
prior state.

The ROLLBACK command discards pending changes made to the data in the current 
transaction, restoring the database to its state before the start of the transaction. You 
can ROLLBACK a portion of a transaction by identifying a SAVEPOINT.

Example
The following example inserts a new row into the DEPT table and then rolls back the 
transaction. This example returns the same results for both ROLLBACK and 
ROLLBACK WORK.

INSERT INTO DEPT (deptno, dname, loc) VALUES (50, 'Design', 'San Francisco');
SELECT * FROM dept;

Returns the following result:

   DEPTNO DNAME          LOC
--------- -------------- -------------
       10 ACCOUNTING     NEW YORK
       20 RESEARCH       DALLAS
       30 SALES          CHICAGO
       40 OPERATIONS     BOSTON
       50 DESIGN         SAN FRANCISCO

ROLLBACK WORK;
SELECT * FROM dept;

Returns the following result:

   DEPTNO DNAME          LOC
--------- -------------- -------------
       10 ACCOUNTING     NEW YORK
       20 RESEARCH       DALLAS
       30 SALES          CHICAGO
       40 OPERATIONS     BOSTON

ODBC 2.0
Although the ROLLBACK command is not part of the ODBC SQL syntax, ODBC 
passes the command through to your database.

An ODBC program typically uses the API call SQLTransact() with the SQL_
ROLLBACK flag.

Related Topics
SAVEPOINT

Important: Oracle Lite does not automatically commit DDL 
commands, except for CREATE DATABASE. DDL commands in 
Oracle Lite are subject to rollback.



SQL Commands Alphabetical Listing

SQL Commands 4-73

4.3.43 ROWID pseudocolumn

Purpose
For each row in the database, the ROWID pseudocolumn returns a row address. A 
ROWID value uniquely identifies a row in the database. Values of the ROWID 
pseudocolumn have the datatype ROWID.

Prerequisite
None.

Usage Notes
ROWID values have several important uses: 

■ They are the fastest way to access a single row. 

■ They can show you how a table's rows are stored.

■ They are unique identifiers for rows in a table.

You should not use ROWID as a table's primary key. If you delete and reinsert a row 
with the Import and Export utilities, for example, its rowid may change. If you delete a 
row, Oracle Database Lite may reassign its ROWID to a new row inserted later. 

Although you can use the ROWID pseudocolumn in the SELECT and WHERE clause of a 
query, these pseudocolumn values are not actually stored in the database. You cannot 
insert, update, or delete a value of the ROWID pseudocolumn. 

Example 1
This statement selects the address of all rows that contain data for employees in 
department 20: 

SELECT ROWID, last_name  
   FROM employees
   WHERE department_id = 20;

Related Topics
CURRVAL and NEXTVAL pseudocolumns, LEVEL pseudocolumn, ROWNUM 
pseudocolumn, OL__ROW_STATUS pseudocolumn

4.3.44 ROWNUM pseudocolumn

Purpose
For each row returned by a query, the ROWNUM pseudocolumn returns a number 
indicating the order in which Oracle Lite selects the row from a table or set of joined 
rows. The first row selected has a ROWNUM of 1, the second has 2, and so on. 

Prerequisite
None.

Usage Notes
If an ORDER BY clause follows ROWNUM in the same subquery, the rows are 
reordered by the ORDER BY clause. The results can vary depending on the way the 
rows are accessed. For example, if the ORDER BY clause causes Oracle Lite to use an 
index to access the data, Oracle Lite may retrieve the rows in a different order than 
without the index. 



SQL Commands Alphabetical Listing

4-74 Oracle Database Lite SQL Reference

If you embed the ORDER BY clause in a subquery and place the ROWNUM condition 
in the top-level query, you can force the ROWNUM condition to be applied after the 
ordering of the rows. See Example 3.

Example 1
The following example uses ROWNUM to limit the number of rows returned by a 
query: 

SELECT * FROM emp WHERE ROWNUM < 10;

Example 2
The following example follows the ORDER BY clause with ROWNUM in the same 
query. As a result, the rows are reordered by the ORDER BY clause and do not have 
the same effect as the preceding example:

SELECT * FROM emp WHERE ROWNUM < 11 ORDER BY empno;

Example 3
The following query returns the ten smallest employee numbers. This is sometimes 
referred to as a "top-N query": 

SELECT * FROM
   (SELECT empno FROM emp ORDER BY empno)
   WHERE ROWNUM < 11;

Example 4
The following query returns no rows: 

SELECT * FROM emp WHERE ROWNUM > 1;

The first fetched row is assigned a ROWNUM of 1 and makes the condition false. The 
second row to be fetched is now the first row and is also assigned a ROWNUM of 1, 
this makes the condition false. All rows subsequently fail to satisfy the condition, so no 
rows are returned. 

Example 5
The following statement assigns unique values to each row of a table:

UPDATE tabx SET col1 = ROWNUM;

Related Topics
CURRVAL and NEXTVAL pseudocolumns, LEVEL pseudocolumn, ROWID 
pseudocolumn, OL__ROW_STATUS pseudocolumn

4.3.45 SAVEPOINT

Syntax
The syntax for SAVEPOINT is displayed in Figure 4–50.

Figure 4–50 The SAVEPOINT Command



SQL Commands Alphabetical Listing

SQL Commands 4-75

BNF Notation
SAVEPOINT savepoint_name ;

Purpose
To identify a point in a transaction to which you can later roll back.

Prerequisites
None.

Usage Notes
Once you set a savepoint you can either roll back to it or remove it later. To roll back to 
a savepoint use the statement:

ROLLBACK TO <savepoint_name>

To remove a savepoint use the statement:

REMOVE SAVEPOINT <savepoint_name>

When you roll back to remove a savepoint, all nested savepoints are also rolled back or 
removed. Savepoints should be removed as soon as possible to reduce memory usage.

A user defined savepoint enables you to name and mark the current point in the 
processing of a transaction. Used with ROLLBACK, SAVEPOINT lets you undo parts 
of a transaction instead of the entire transaction. When you roll back to a savepoint, 
any savepoint marked after that savepoint is erased. The COMMIT statement erases 
any savepoints marked since the last commit or rollback.

The number of active savepoints you define for each session is unlimited. An active 
savepoint is one marked since the last commit or rollback.

Example
The following example updates the salary for two employees, Blake and Clark. It then 
checks the total salary in the EMP table. The example rolls back to savepoints for each 
employee's salary, and updates Clark's salary.

UPDATE emp 
    SET sal = 2000 
    WHERE ename = 'BLAKE';

SAVEPOINT blake_sal;

UPDATE emp 
    SET sal = 1500 
    WHERE ename = 'CLARK';

SAVEPOINT clark_sal;
SELECT SUM(sal) FROM emp;
ROLLBACK TO SAVEPOINT blake_sal;
UPDATE emp 
    SET sal = 1300
    WHERE ename = 'CLARK';
COMMIT; 

Related Topics
COMMIT, SAVEPOINT, ROLLBACK



SQL Commands Alphabetical Listing

4-76 Oracle Database Lite SQL Reference

4.3.46 SELECT
The SELECT statement retrieves data from one or more tables or views. You can also 
use the select statement to invoke Java stored procedures. To select data from a table or 
view, you must be logged into the database as SYSTEM, or the table(s) and view(s) 
must be part of your schema.

Syntax
select::=

The syntax for SELECT is displayed in Figure 4–51.

Figure 4–51 The SELECT Command

BNF Notation
subquery [order_by_clause] [ for_update_clause] ;

Related Topics
CONSTRAINT clause, DELETE, UPDATE

The following sections describe the different operations you can use within a select 
statement:

■ Section 4.3.46.1, "SELECT Command Arguments"

■ Section 4.3.46.2, "The SUBQUERY Expression"

■ Section 4.3.46.3, "The FOR_UPDATE Clause"

■ Section 4.3.46.4, "The ORDER_BY Clause"

■ Section 4.3.46.5, "The TABLE_REFERENCE Expression"

■ Section 4.3.46.6, "The ODBC_JOIN_TABLE Expression"

■ Section 4.3.46.7, "The JOINED_TABLE Expression"

■ Section 4.3.46.8, "The HINT Expression"

■ Section 4.3.46.9, "The LIMIT and OFFSET Clauses"

4.3.46.1 SELECT Command Arguments
The arguments for the SELECT command are listed in Table 4–48.

Table 4–48 Arguments Used with the SELECT Command 

Argument Description

DISTINCT Returns only one copy of each set of duplicate rows selected. 
Duplicate rows are those with matching values for each 
expression in the select list.

ALL Returns all rows selected, including all copies of duplicates. 
The default is ALL.



SQL Commands Alphabetical Listing

SQL Commands 4-77

* Selects all columns from all tables, views, or snapshots listed in 
the FROM clause.

table.* Selects all columns from the selected table. Use the schema 
qualifier to select from a schema other than your own.

view.* Selects all columns from the selected view. Use the schema 
qualifier to select from a schema other than your own.

expr Selects an expression, usually based on column values, from 
one of the tables or views in the FROM clause. A column name 
in this list can be qualified with a schema only if the table or 
view that contains the column is itself qualified with a schema 
in the FROM clause. For more information, see Section 1.8, 
"Specifying Expressions".

hint Hints are processed by the Oracle Database Lite optimizer to 
suggest choices for statement execution. See "The HINT 
Expression" for more information.

/*+ ... */ Hint processed by both Oracle and Oracle Database Lite.

/*% ...%*/ Hint processed as a comment in Oracle, processed by Oracle 
Database Lite.

// ... // Hint processed by both Oracle and Oracle Database Lite.

c_alias Provides a column alias, which is a different name for the 
column expression, and causes the column alias to be used in 
the column heading. A column alias does not affect the actual 
name of the column. The alias can only be used in the ORDER 
BY clause. It cannot be used by other clauses in the query.

schema The schema that contains the selected table, view, or snapshot. 
If you omit schema, Oracle Lite assumes that the table, view, or 
snapshot resides in your own schema.

table The table from which data is selected.

view The view from which data is selected

t_alias Provides a different name or alias for the table, view, or 
snapshot, for evaluating the query. Most often used in a 
correlated query. Other references to the table, view, or 
snapshot throughout the query must refer to the alias.

WHERE Restricts the rows selected to those for which the specified 
condition is TRUE. If you omit the WHERE clause, Oracle Lite 
returns all rows from the tables, views, or snapshots in the 
FROM clause. WHERE specifies a conditional expression that 
evaluates to TRUE or FALSE. For more information, see 
Section 1.8, "Specifying Expressions".

condition A search condition. For more information about creating a 
valid condition, see Section 1.7, "Specifying SQL Conditions".

START WITH Returns rows in a hierarchical order.

CONNECT BY Specifies the relationship between parent and child rows in a 
hierarchical query. The condition defines this relationship, and 
must use the PRIOR operator to refer to the parent row. To find 
the children of the parent row, Oracle Lite evaluates the PRIOR 
expression for each row in the table. Rows for which the 
condition is TRUE are the children of the parent. For more 
information, see the details of the PRIOR operator in 
Section 2.7, "Other Operators".

Table 4–48 (Cont.) Arguments Used with the SELECT Command 

Argument Description



SQL Commands Alphabetical Listing

4-78 Oracle Database Lite SQL Reference

Usage Notes
If you do not specify a WHERE clause and there is more than one table in the FROM 
clause, Oracle Lite computes a Cartesian product of all the tables involved.

You can use the LEVEL pseudocolumn in a SELECT statement to perform a 
hierarchical query. For more information, see LEVEL pseudocolumn. A hierarchical 
query cannot perform a join, nor can it select data from a view.

When you select columns with an expression, those columns must have an alias. An 
alias specifies names for the column expressions selected by the query. The number of 
aliases must match the number of expressions selected by the query. Aliases must be 
unique within the query. 

GROUP BY Groups the selected rows based on the value of the expr 
argument for each row, and returns a single row of summary 
information for each group.

HAVING Restricts the groups of rows returned to those groups for which 
the specified condition is TRUE. If you omit this clause, Oracle 
Lite returns summary rows for all groups. For more 
information, see Section 1.7, "Specifying SQL Conditions".

INTERSECT Returns all distinct rows selected by both queries. INTERSECT 
has a higher precedence than UNION.

INTERSECT ALL Returns all distinct rows selected by both queries, the same 
result as INTERSECT. This syntax is supported, but has no 
function.

UNION Returns all distinct rows selected by either query.

UNION ALL Returns all rows selected by either query, including duplicates.

MINUS Returns all distinct rows selected by the first query but not the 
second.

command Refers to all parameters of a SELECT command which is itself 
a parameter of another SELECT command. When entering 
parameters for a SELECT command within a SELECT 
command, you cannot use the WHERE statement.

ORDER BY Orders rows returned by the SELECT statement, according to 
the following arguments:

expr (expression) orders rows based on their value for expr. The 
expression is based on columns in the select list, or based on 
columns in the tables, views, or snapshots in the FROM clause.

position orders rows based on their value for the expression in 
this position in the select list.

ASC specifies an ascending sort order. ASC is the default.

DESC specifies a descending sort order.

FOR UPDATE Locks the selected rows. 

The column list in the FOR UPDATE clause is ignored.

The FOR UPDATE clause can be used either before or after the 
ORDER BY clause.

column The column to be updated.

Table 4–48 (Cont.) Arguments Used with the SELECT Command 

Argument Description



SQL Commands Alphabetical Listing

SQL Commands 4-79

4.3.46.2 The SUBQUERY Expression

subquery::=
The syntax for the subquery expression is displayed in Figure 4–52.

Figure 4–52 The subquery Expression

BNF Notation
{query_spec | "("subquery")" }
 [{ INTERSECT | INTERSECT ALL | UNION | UNION ALL | MINUS } 
  {query_spec |"(" subquery ")" } ] 

query_spec::=
The syntax for the query_spec expression is displayed in Figure 4–53.



SQL Commands Alphabetical Listing

4-80 Oracle Database Lite SQL Reference

Figure 4–53 The query spec Expression

BNF Notation
SELECT [ hint ] [ { DISTINCT | ALL ]
{ * 
| { [schema.] { table | view } .* 
     | expr [[AS] c_alias]
  } 
  [, { 
     | [schema .] { table | view  } .* 
     | expr [[AS] c_alias]
     }
  ]...
}
FROM  [schema .] { "("subquery [order_by_clause] ")" | table | view  }
[ t_alias ] [ WHERE condition]
[
 { [ START WITH condition ] CONNECT BY condition
 | GROUP BY expr [, expr]...
 | [HAVING condition]
  }]

4.3.46.3 The FOR_UPDATE Clause

for_update_clause::=
The syntax for the update_clause expression is displayed in Figure 4–54.



SQL Commands Alphabetical Listing

SQL Commands 4-81

Figure 4–54 The for_update_clause Expression

BNF Notation
FOR UPDATE
[OF [[schema .] { table | view } .] column 
 [, [[schema .] { table | view } .] column]...] 

4.3.46.4 The ORDER_BY Clause

order_by_clause::=
The syntax for the order_by_clause expression is displayed in Figure 4–55.

Figure 4–55 The order_by_clause Expression

BNF Notation
ORDER  BY 
{ expr | position | c_alias } [ ASC | DESC ] 
[, { expr | position | c_alias } [ ASC | DESC ] ]...

4.3.46.5 The TABLE_REFERENCE Expression

table_reference::=
The syntax for the table_reference expression is displayed in Figure 4–56.

Figure 4–56 The table_reference Expression



SQL Commands Alphabetical Listing

4-82 Oracle Database Lite SQL Reference

BNF Notation
{ [schema .] {table | view}
 | "("subquery [order_by_clause] ")"
} [[AS] t_alias]

4.3.46.6 The ODBC_JOIN_TABLE Expression

odbc_join_table::=
The syntax for the odbc_join_table expression is displayed in Figure 4–57.

Figure 4–57 The odbc_join_table Expression

BNF Notation
"{" OJ joined_table "}"

4.3.46.7 The JOINED_TABLE Expression

joined_table::=
The syntax for the joined_table expression is displayed in Figure 4–58.

Figure 4–58 The join_table Expression

BNF Notation
"{"
  { table_reference
   | OJ table_refernce { LEFT | RIGHT } [OUTER] JOIN joined_table ON conditon
  }
"}"

4.3.46.8 The HINT Expression
You can use comments in a SQL statement to pass instructions, or hints, to the Oracle 
Database Lite optimizer. The optimizer uses these hints as suggestions for choosing an 
execution plan for the statement.

A statement block can have only one comment containing hints, and that comment 
must follow the SELECT, UPDATE, INSERT, or DELETE keyword. The following 
syntax shows hints contained in the styles of comments that Oracle Database Lite 
supports within a statement block.

{DELETE|INSERT|SELECT|UPDATE} /*+ hint [text] [hint[text]]... */
or

{DELETE|INSERT|SELECT|UPDATE} // hint [text] [hint[text]]... //
or



SQL Commands Alphabetical Listing

SQL Commands 4-83

{DELETE|INSERT|SELECT|UPDATE} /*% hint [text] [hint[text]]...%*/

Where:

DELETE, INSERT, SELECT or UPDATE is a DELETE, INSERT, SELECT or UPDATE 
keyword that beings a statement block. Comments containing hints ca nappear only 
after these keywords. the /*+, //, or /*% causes Oracle to interpret the comment as a 
list of hints. The plus sign must follow immediately after the comment delimiter and 
no space is permitted. However, the space between the plus sign and the hint is 
optional. If the comment contains multiple hints, then separate the hints by at least one 
space.

The text is other commenting text that can be interspersed with the hints. Oracle 
Database Lite treats misspelled hints as regular comments and does not return an 
error.

To share the same code between Oracle Database Lite and Oracle database and to 
specify a hint to Oracle Database Lite only, use the syntax /*% hint %*/. To give 
hints to both Oracle Database Lite and Oracle optimizers, use the syntax /*+ hint 
*/.

4.3.46.8.1 ORDERED Hints  The ORDERED hint causes Oracle Database Lite to join 
tables in the order in which they appear in the FROM clause. If you omit the 
ORDERED hint from a SQL statemetn performing a join, then the optimizer chooses 
the order in which to join the tables. You can use the ORDERED hint to specify a join 
order if you know how the number of rows are selected from each table. You can 
choose an inner and outer table for best performance.

ordered_hint::=/*+ ORDERED */

The following query is an example of the use of the ORDERED hint:

SELECT /*+ORDERED */ o.order_id, c.customer_id, 1.unit_price * 1.quantity
FROM customers c, order_items 1, orders o
WHERE c.cust_last_name = ?
AND o.customer_id = c.customer_id
AND o.order_id = 1.order_id;

4.3.46.8.2 INDEX Hints  Index hints explicitly choose an index scan for the specified 
table. The following are Index hints:

■ INDEX

■ INDEX_ASC

■ INDEX_DESC

Each INDEX hint is fully described in the Oracle Database SQL Reference. 

The INDEX hint explicitly chooses an index scan for the specified table. 

index_hint::= table_name index_name

where 

/*+ INDEX ( tablename
indexname

) */



SQL Commands Alphabetical Listing

4-84 Oracle Database Lite SQL Reference

■ index specifies an index name 

■ table specifies the name or alias of the table

Either name cannot be a qualified name, such as SYSTEM.EMP. Only one index_name 
can be provided for a given table_name. If you provide more than one index 
name,then only the first one is selected for optimization.

For example:

SELECT /*+ INDEX (employees emp_department_ix)*/ 
       employee_id, department_id 
  FROM employees 
  WHERE department_id > 50;

4.3.46.9 The LIMIT and OFFSET Clauses
Because client devices have software and hardware limitations—such as CPU, 
memory, screen size, and so on—you may wish to limit the number of rows returned 
from your SQL query, especially if the returned result set contains a huge number of 
rows. The retrieval of all rows could take a long time to complete and affect 
performance. Also, your application may not be able to display all results, due to the 
limitation of the device, the requirement of the business logic, or the slow response 
time of the query.

You can limit the number of rows returned by a query, as follows:

■ LIMIT clause: Enables you to return only a specified number of rows, so that you 
do not overwhelm the limitations of your device or application.

■ OFFSET clause: Enables you to start at a certain point within the returned result 
set.

■ ORDER BY clauses: Enables you to retrieve rows in a specified order.

■ Creating indexes: If you create the right indexes, the performance can be improved 
significantly for small devices.

Syntax
Cursor_spec::=subquery [order_by_clause][for_update_clause][limit_clause]
subquery::= see Section 4.3.46.2, "The SUBQUERY Expression" for more details
limit_clause::={LIMIT number [offset_clause] | offset_clause}
offset_clause::=OFFSET number

The LIMIT clause can be used to limit the number of rows returned by a query. LIMIT 
takes an integer constant between 0 and 4294967295, which specifies the maximum 
number of rows to return. The OFFSET clause takes an integer constant between 0 and 
4294967295, which specifies the offset of the first row to return. If OFFSET clause is not 
present, it defaults to 0. 

For example, the following SQL statement retrieves rows from 5 to 9:

SELECT * FROM table LIMIT 5 OFFSET 4;

With only the LIMIT argument,  the value specifies the number of rows to return from 
the beginning of the result set. The following SQL statement retrieves rows from 1 to 5;

SELECT * FROM table LIMIT 5;

Note: For full details on the INDEX hint, see the Oracle Database 
SQL Reference. 



SQL Commands Alphabetical Listing

SQL Commands 4-85

If the LIMIT argument is 0, the OFFSET value is ignored even if it was specified. The 
following SQL statement retrieves nothing:

SELECT * FROM table LIMIT 0 OFFSET 4;

If only the OFFSET clause is present, then there is not a limit on the number of rows 
returned. The following SQL statement retrieves rows starting from the second row of 
the result set:

SELECT * FROM table OFFSET 1;

You can use the ORDER BY clause together with LIMIT clause to constrain the order of 
the output rows. That is, when both the LIMIT and ORDER BY clauses are present in a 
statement, then the optimizer takes this into account when generating the execution 
plan. By creating indexes on the ORDER BY column(s), you can avoid inserting the 
whole result set into a temporary table and performing the sorting just to retrieve a 
few rows from the query. The EXPLAIN PLAN command can be used to see wheather 
a sorting is performed when LIMIT and ORDER BY are used in a query. See 
Section 1.11, "Tuning SQL Statement Execution Performance With the EXPLAIN 
PLAN" for more information on the EXPLAIN PLAN.

Limit and Offset Clause Example
A customer uses an order entry application, where there is a product table with over 
3,000 rows with a primary index on the product number. The user can select an 
individual product by scanning a barcode with a scanner, or by entering a product 
number manually in a text field. The script opens a cursor to select one product using 
the barcode or product number as an equality selection (both are indexed). In this case, 
Oracle Database Lite performs well. However, the database access is very slow in other 
actions. After a product is selected, the user can click a "next" or "prev" button to find 
the next or previous product number, with product number being the primary index. 
This is necessary because the customer often wants to view related items with similar 
product numbers. 

The SQL statement when user clicks a "next" button is as follows:

SELECT * FROM PRODUCT WHERE PARTNUM > partnum ORDER BY PARTNUM;

Where partnum is the product number scanned or entered by the end user. 

When the current product is the first one (in the index) doing a "next" takes a long 
time, since there are more than 3,000 rows that need to be sorted and returned by this 
query. On the other hand, the actual SQL statement when the user clicks a "prev" 
button is similar to the one above. In addition, when the current product is the last one 
or near the end of the product table, the response time is also slow for the same reason.

SELECT * FROM PRODUCT WHERE PARTNUM < partnum ORDER BY PARTNUM DESC;

Where partnum is the product number scanned or entered by the end user.

What the customer wants is a SELECT statement that will do the equivalent of "find 
the first few products where partnum > [value]", so it reads a few records using 
the primary index, not 3000. 

With the LIMIT clause, the customer can rewrite the query and use the LIMIT clause to 
limit the number of rows returned by the query, as follows:

SELECT * FROM PRODUCT WHERE PARTNUM > partnum ORDER BY PARTNUM LIMIT 5;



SQL Commands Alphabetical Listing

4-86 Oracle Database Lite SQL Reference

This limits the number of rows returned by this query to 5 rows. When an ORDER BY 
clause is used with proper indexes created, the performance is faster than the original 
query. 

4.3.46.10 Examples For the SELECT Command
The following examples demonstrate how you can use the select command:

■ Example 1

■ Example 2

■ Example 3

■ Example 4

■ Example 5

■ Example 6

Example 1
SELECT * FROM EMP WHERE SAL = 1300;

Returns the following result:

    EMPNO ENAME      JOB             MGR HIREDATE        SAL      COMM    DEPTNO
--------- ---------- --------- --------- --------- --------- --------- ---------
     7782 CLARK      MANAGER        7839 1981-06-0      1300                  10
     7934 MILLER     CLERK          7782 1982-01-2      1300                  10

Example 2
SELECT 'ID=',EMPNO, 'Name=',ENAME, 'Dept=',DEPTNO
FROM EMP ORDER BY DEPTNO;

Returns the following result:

'ID     EMPNO 'NAME ENAME      'DEPT    DEPTNO
--- --------- ----- ---------- ----- ---------
ID=      7839 Name= KING       Dept=        10
ID=      7934 Name= MILLER     Dept=        10
ID=      7782 Name= CLARK      Dept=        10
ID=      7566 Name= JONES      Dept=        20
ID=      7876 Name= ADAMS      Dept=        20
ID=      7788 Name= SCOTT      Dept=        20
ID=      7369 Name= SMITH      Dept=        20
ID=      7902 Name= FORD       Dept=        20
ID=      7521 Name= WARD       Dept=        30
ID=      7900 Name= JAMES      Dept=        30
ID=      7844 Name= TURNER     Dept=        30
ID=      7499 Name= ALLEN      Dept=        30
ID=      7654 Name= MARTIN     Dept=        30
ID=      7698 Name= BLAKE      Dept=        30

14 rows selected.

Example 3
SELECT 'ID=', EMPNO, 
'Name=', ENAME, 
'Dept=', DEPTNO
FROM EMP WHERE SAL >= 1300;



SQL Commands Alphabetical Listing

SQL Commands 4-87

Returns the following result:

'ID     EMPNO 'NAME ENAME      'DEPT    DEPTNO
--- --------- ----- ---------- ----- ---------
ID=      7839 Name= KING       Dept=        10
ID=      7698 Name= BLAKE      Dept=        30
ID=      7782 Name= CLARK      Dept=        10
ID=      7566 Name= JONES      Dept=        20
ID=      7499 Name= ALLEN      Dept=        30
ID=      7844 Name= TURNER     Dept=        30
ID=      7902 Name= FORD       Dept=        20
ID=      7788 Name= SCOTT      Dept=        20
ID=      7934 Name= MILLER     Dept=        10

9 rows selected.

Example 4
SELECT * FROM (SELECT ENAME FROM EMP WHERE JOB = 'CLERK'
UNION
SELECT ENAME FROM EMP WHERE JOB = 'ANALYST');

Returns the following result:

ENAME
----------
ADAMS
FORD
JAMES
MILLER
SCOTT
SMITH

Example 5
In this example, the "ordered" hint selects the EMP table as the outermost table in the 
join ordering. The optimizer still attempts to pick the best possible indexes to use for 
execution. All other optimizations, such as view replacement and subquery unnesting 
are still attempted.

Select //ordered//  Eno, Ename, Loc from Emp, Dept
where Dept.DeptNo = Emp.DeptNo and Emp.Sal > 50000;

Example 6
In this example, the hint joins the tables (Product, Item, and Ord) in the given order: 
Product, Item, and Ord. The hint is limited only to the subquery.

Select CustId, Name, Phone from Customer
Where CustId In ( Select //ordered// Ord.CustId from Product, Item, Ord
Where Ord.OrdId = Item.OrdId And
Item.ProdId = Product.ProdId And
Product.Descrip like '%TENNIS%')

4.3.47 SET TRANSACTION

Syntax
The syntax for SET TRANSACTION is displayed in Figure 4–59.



SQL Commands Alphabetical Listing

4-88 Oracle Database Lite SQL Reference

Figure 4–59 The SET TRANSACTION Command

BNF Notation
SET TRANSACTION ISOLATION LEVEL
{ READ COMMITTED
 | REPEATABLE READ
 | SERIALIZABLE
 | SINGLE USER}
;

Prerequisite
If you use a SET TRANSACTION statement, it must be the first statement in your 
transaction. However, a transaction need not have a SET TRANSACTION statement. 

Purpose
Establishes the isolation level of the current transaction. 

The arguments for the SET TRANSACTION command are listed in Table 4–49.

Note: Oracle Lite implicitly commits the current transaction 
before and after executing a data definition language statement.

Table 4–49 Arguments Used with the SET TRANSACTION Command

Argument Description

SET TRANSACTION Establishes the isolation level of the current transaction. The 
operations performed by a SET TRANSACTION statement 
affect only your current transaction, not other users or other 
transactions. Your transaction ends whenever you issue a 
COMMIT or ROLLBACK statement.

ISOLATION LEVEL Specifies how transactions containing database modifications 
are handled.

READ COMMITTED An isolation level. The transaction does not take place until 
rows write locked by other transactions are unlocked. The 
transaction holds a read lock when it reads the current row and 
a write lock when it updates or deletes the current row. This 
prevents other transactions from updating or deleting it. The 
transaction releases read locks when it moves off the current 
row, and releases write locks when it is either committed or 
rolled back. 

REPEATABLE READ An isolation level. The transaction does not take place until 
rows write locked by other transactions are unlocked. The 
transaction maintains read locks on all rows it returns to the 
application, and maintains write locks on all rows it inserts, 
updates, or deletes. The transaction only releases its locks 
when it is committed or rolled back.



SQL Commands Alphabetical Listing

SQL Commands 4-89

Usage Notes
None.

Example
SET TRANSACTION ISOLATION LEVEL SINGLEUSER;

Related Topics
COMMIT, ROLLBACK

4.3.48 TRUNCATE TABLE

Syntax
The syntax for TRUNCATE TABLE is displayed in Figure 4–60.

Figure 4–60 The TRUNCATE TABLE Command

BNF Notation
TRUNCATE TABLE [schema .] table ;

Purpose
This command deletes all rows from the table. The statement is provided to be 
compatible with Oracle database. This statement performs the same action as the 
following:

DELETE FROM table_name ;

The arguments for the TRUNCATE TABLE command are listed in Table 4–50.

SERIALIZABLE An isolation level. The transaction does not take place until 
rows write locked by other transactions are unlocked. The 
transaction holds a read lock when it reads a range of rows and 
a write lock when it updates or deletes a range of rows. This 
prevents other transactions from updating or deleting the 
rows.

SINGLEUSER An isolation level. The transaction has no locks and therefore 
consumes less memory. This is recommended for bulk loading 
of the database.

Table 4–50 Arguments Used with the TRUNCATE TABLE Command

Argument Description

schema The schema that contains the table.

table The name of the table to be truncated.

Table 4–49 (Cont.) Arguments Used with the SET TRANSACTION Command

Argument Description



SQL Commands Alphabetical Listing

4-90 Oracle Database Lite SQL Reference

Usage Notes
A table cannot be truncated if it has a primary key and there are rows in the dependent 
tables.

Example
TRUNCATE TABLE emp;

4.3.49 UPDATE

Syntax
The syntax for UPDATE is displayed in Figure 4–61.

Figure 4–61 The Update Command

BNF Notation
UPDATE [schema .] { table | view} [ alias ] 
SET column = { expr | subquery }
  [, column = { expr | subquery }]...
[WHERE condition] ;

Prerequisite
To update existing values in a database table or view, you must be logged into the 
database as SYSTEM, or the table(s) and view(s) must be part of your schema.

Purpose
Changes existing values in a table or in a view's base table.

The arguments for the UPDATE command are listed in Table 4–51.

Table 4–51 Arguments Used with the UPDATE Command

Argument Description

schema The schema that contains the table or view. If you omit schema, 
Oracle Lite assumes that the table or view resides in your own 
schema.

table The name of the table to be updated.

view The name of the view whose base tables you want to update.

alias Relabels the name of the table or view in the other clauses of 
the UPDATE command.

SET Indicates that the columns that follow be set to specific values.



SQL Commands Alphabetical Listing

SQL Commands 4-91

Usage Notes
■ The same column name may not appear more than once in the SET clause.

■ If no WHERE clause is specified, then all rows of the table are updated.

■ A positioned UPDATE requires that the cursor be updatable.

Example
UPDATE EMP SET SAL = SAL * .45 WHERE JOB = 'PRESIDENT';

ODBC 2.0
The ODBC SQL syntax for UPDATE is the same as specified. In addition, the following 
syntax is supported:

WHERE CURRENT OF CURSOR cursor_name

Related Topics
DELETE, INSERT

column The name of a column of the table or view to be updated. If 
you omit one of the table's columns in the SET clause, that 
column's value remains unchanged.

expr The new values assigned to the corresponding column. This 
can contain host variables.

subquery The subquery to be updated.

WHERE Restricts the rows updated to those for which the specified 
condition is TRUE. If you omit the WHERE clause, Oracle Lite 
updates all rows in the table or view.

condition A search condition. For more information about creating a 
valid condition, see Section 1.7, "Specifying SQL Conditions".

Table 4–51 (Cont.) Arguments Used with the UPDATE Command

Argument Description



SQL Commands Alphabetical Listing

4-92 Oracle Database Lite SQL Reference



Oracle Database Lite Keywords and Reserved Words A-1

A
Oracle Database Lite Keywords and

Reserved Words

This appendix lists Oracle Database Lite keywords and reserved words.

A.1 Oracle Database Lite Keywords
Keywords are not reserved words, but have special meanings in certain contexts. They 
can be used to define table and column names.

Oracle Database Lite keywords are listed in Table A–1:

Note: Exercise caution when defining a new method for a Java 
class as aggregate names (AVG, MAX, MIN, COUNT, SUM) and 
function names (UPPER, LOWER, and so on) take precedence over 
user defined method names.

Table A–1 Oracle Database Lite Keywords

Letter Keywords

A ADD_MONTHS

AFTER

ARGS

ASCII

AUTOCOMMIT

AVG

B BEFORE

BIGINT

BINARY

BIT

BIT_LENGTH

C CASCADE

CAST

CATALOG

CEIL

CHAR

CHAR_LENGTH

CHARACTER

CHR

COMMIT

COMMITTED

COMPILE

CONCAT

CONSTRUCTOR

CONVERT

COUNT

CURDATE

CURTIME

CURTIMESTAMP

CURVAL



Oracle Database Lite Keywords

A-2 Oracle Database Lite SQL Reference

D DATABASE_ID

DATABASE_SIZE

DATE

DAY

DAYOFMONTH

DAYOFWEEK

DAYOFYEAR

DEBUG_LITE

DEC

DECIMAL

DOUBLE

DUAL (Do not use as a table 
name as this is already the 
name of a dummy table.)

DUMP$

E EXTENT_SIZE

EXTRACT

F FLOOR

G GREATEST

H HIDE

HOUR

I IFNULL

INITCAP

INSTR

INSTRB

INT

INTERVAL

ISOLATION

K KEY

L LAST_DAY

LCASE

LEAST

LENGTH

LENGTHB

LEVEL

LOCATE

LOWER

LPAD

LTRIM

M MAX

MAXVALUE

MIN

MINUTE

MINVALUE

MOD

MONTH

MONTHS_BETWEEN

N NEXT_DAY

NEXTVAL

NOMAXVALUE

NOMINVALUE

NOW

NUMBER

NUMERIC

NVL

O OCTET_LENGTH

OJ

P POSITION

PRECISION

Q QUARTER

Table A–1 (Cont.) Oracle Database Lite Keywords

Letter Keywords



Oracle Database Lite Reserved Words

Oracle Database Lite Keywords and Reserved Words A-3

A.2 Oracle Database Lite Reserved Words
Reserved words cannot be used as the name of any database object or part. The Oracle 
Database Lite reserved words are listed in Table A–2. Some Oracle Database Lite 
reserved words are also Oracle reserved words. Any words followed by an asterisk (*) 
are only Oracle Database Lite reserved words (not Oracle):

R READ

REAL

REPEATABLE

REPLACE

RESTRICT

ROUND

ROWID

RPAD

RTRIM

S SAVEPOINT

SCHEMA

SECOND

SEQUENCE

SERIALIZABLE

SMALLINT

SOURCE

SQL_TSI_DAY

SQL_TSI_FRAC_SECOND

SQL_TSI_HOUR

SQL_TSI_MINUTE

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_SECOND

SQL_TSI_WEEK

SQL_TSI_YEAR

START

STDDEV

SUBSTR

SUBSTRB

SUBSTRING

SUM

T TIME

TIMESTAMP

TIMESTAMPADD

TIMESTAMPDIFF

TINYINT

TO_CHAR

TO_DATE

TO_NUMBER

TRANSACTION

TRANSLATE

TRIMBOTH

TRUNC

U UCASE

UNCOMMITTED 

UPPER

V VARBINARY

VARIANCE

VARYING

W WEEK

WORK

Y YEAR

Z ZONE

Note: You can use the keywords NEXTVAL and CURVAL as 
column names of a table. However, Oracle Database Lite treats 
tablename.NEXTVAL and tablename.CURVAL as referring to a 
sequence.

Table A–1 (Cont.) Oracle Database Lite Keywords

Letter Keywords



Oracle Database Lite Reserved Words

A-4 Oracle Database Lite SQL Reference

Table A–2 Oracle Database Lite Reserved Words

Letter Reserved Words

A ADD

ALL

ALTER

AND

ANY

AS

ASC

ATTACH*

B BETWEEN

BOTH*

BY

C CALL*

CASE*

CAST*

CHECK

CLASS*

COLUMN

COMMENT

CONNECT

CONSTRAINT*

CONSTRAINTS*

CREATE

CURRENT

CURRENT_DATE*

CURRENT_TIME*

CURRENT_TIMESTAMP*

D DATABASE

DECODE*

DEFAULT

DELETE

DESC

DETACH*

DISTINCT

DROP

E EACH*

ELSE

END*

ESCAPE*

EXISTS

F FLOAT

FOR

FOREIGN*

FROM

FULL*

G GRANT

GROUP

H HAVING

I IN

INCREMENT

INDEX

INSERT

INTEGER

INTERSECT

INTERVAL*

INTO

IS

J JOIN*

JAVA

L LEADING*

LEFT*

LIKE

LOCK

LONG

M MINUS

N NOT

NOWAIT

NULL



Oracle Database Lite Reserved Words

Oracle Database Lite Keywords and Reserved Words A-5

O OF

OFF*

ON

OR

ORDER, 

OUTER*

OPTION

P PRIMARY*

PRIOR

PUBLIC

R RAW

REFERENCES*

REVOKE

RIGHT*

ROLLBACK*

ROW

S SELECT

SESSION

SET

SOME*

SQL_BIGINT*

SQL_CHAR*

SQL_DATE*

SQL_DECIMAL*

SQL_DOUBLE*

SQL_FLOAT*

SQL_INTEGER*

SQL_LONGVARCHAR*

SQL_REAL*

SQL_SMALLINT*

SQL_TIME*

SQL_TIMESTAMP*

SQL_VARCHAR*

START

SYNONYM

SYSDATE

T TABLE

THEN

TIMESTAMPADD*

TIMESTAMPDIFF*

TIMEZONE_HOUR*

TIMEZONE_MINUTE*

TO

TRAILING*

TRIGGER

TRIM*

U UNION

UNIQUE

UPDATE

USER

V VALUES

VARCHAR

VARCHAR2

VIEW

W WHEN*

WHERE

WITH

Table A–2 (Cont.) Oracle Database Lite Reserved Words

Letter Reserved Words



Oracle Database Lite Reserved Words

A-6 Oracle Database Lite SQL Reference



SQL Limitations For Oracle Database Lite B-1

B
SQL Limitations For Oracle Database Lite

There are limitations to SQL that is different than the Oracle database, as follows:

Table B–1 Datatype Limits

Datatypes Limit Comments

BFILE Maximum size: 2 GB

Maximum size of the directory or file names: no 
database imposed limit

All BFILE objects are stored as LOB

BLOB Maximum size: 2 GB

CHAR Maximum size: 4096 bytes

CHAR VARYING Maximum size: 4096 bytes

CLOB Maximum size: 2 GB

Literals No limit

LONG Maximum size: 2 GB A table can have any number of long 
columns

NUMBER Operating system limit NUMBER is converted to a double 
precision number on the native platform

NUMBER (p, s) 999 ... (38 9’s) x 10 ^ 125 maximum

-999... (38 9’s) x 10 ^125 minimum

Maximum precision of 38 decimal digits

VARCHAR Maximum size: 4096 bytes

VARCHAR2 Maximum size: 4096 bytes

Table B–2 Physical Database Limits

Item Limit Comments

Database Block Size 4096 bytes Fixed size

Database File 1 database file for each catalog An application can open any number of catalogs.

Database File Size 4 GB Affected by the operating system. Maximum file size 
allowed by the operating system.

Max Object or Row Length 4040 When an object (row) exceeds this length, it is 
converted into a binary long object. So, UNION will 
not work on this table.

DSN Name 31 bytes (31 US chars) Limit is 31 bytes

Database Path Name 129 bytes _MAX_PATH -5, which is 255 on Win32

Database filename 129 bytes _MAX_PATH -8, which is 252 on Win32.



B-2 Oracle Database Lite SQL Reference

Table B–3 Logical Database Limits

Item Limit Comments

Indexes Maximum for each table unlimited

Columns table 1000

index 32 columns maximum

Constraints Maximum for each column unlimited

Nested queries Maximum number unlimited

Rows Maximum number for the table no limit

SQL statement length Maximum length of statements unlimited, particular tools may impose 
lower limits

Table B–4 Process/Runtime Limits

Item Limit Comments

Shared Memory 128 MB Maximum

Cache 64 4K blocks by default Used for caching database pages



Oracle Database Lite Datatypes C-1

C
Oracle Database Lite Datatypes

Oracle Lite supports the datatypes listed in Table C–1:

Table C–1 Datatypes Supported by Oracle Database Lite

Datatype Description

BIGINT An integer datatype with a precision of 19 decimal digits.

BINARY Enables storage of binary data up to 4,096 bytes.

BIT Enables your application to store a bit unconstrained by 
character semantics. 

BLOB A binary large object. Maximum size is 2 gigabytes. 

CHAR Fixed length character data of length size bytes. Maximum size 
is 4,096 bytes. Default and minimum size is 1 byte. 

CLOB A character large object containing single-byte characters. Both 
fixed-width and variable-width character sets are supported, 
both using the CHAR database character set. Maximum size is 
2 gigabytes.

DATE Valid date range from January 1, 4712 BC to December 31, 4712 
AD.

DECIMAL A number that can be measured in terms of precision (decimal 
value) or scale (fractional value). You can measure precision by 
using DECIMAL (p). You can measure scale by using 
NUMERIC (p, s). Precisions larger than the one you specify are 
acceptable, but smaller ones are not.

DOUBLE PRECISION Contains a precision defined during implementation which 
must be greater than the precision of REAL.

FLOAT Enables you to specify the precision. The resulting precision 
must be at least as large as the precision you request. You can 
specify a precision of some value by typing FLOAT (p). For 
example, a portable application, may use a single precision on 
one platform and double precision on another.

INTEGER An integer value whose precision (the number of decimal 
values or bits that can be stored) is defined upon 
implementation.

LONG Character data of variable length up to 2 gigabytes, or 231 -1 
bytes.

LONG RAW Raw binary data of variable length up to 2 gigabytes. 

LONG VARBINARY Stores but does not interpret up to 2 gigabytes of variable 
binary data.



BIGINT

C-2 Oracle Database Lite SQL Reference

C.1 BIGINT
[ODBC]

Big integer type. Binds with SQL_C_CHAR or SQL_C_BINARY variables.

Syntax
BIGINT

Usage Notes
A BIGINT is an exact numeric value with precision 19 and scale 0, typically 8 bytes. 
-10^19 < n < 10^19, where n is the value of a BIGINT.

LONG VARCHAR Variable-length character string having maximum length size 
bytes. Maximum size is 2 gigabytes, and minimum is 1. You 
must specify size for a VARCHAR2.

NUMBER Number having precision p and scale s. The precision p can 
range from 1 to 38. The scale s can range from -84 to 127. A 
number with no precision now maps to DOUBLE PRECISION 
in Oracle compatibility mode.

NUMERIC A number that can be measured in terms of precision (decimal 
value) or scale (fractional value). You can measure precision by 
using DECIMIAL (p). You can measure scale by using 
NUMERIC (p, s). The scale cannot be negative and cannot be 
larger than the number itself.

RAW Raw binary data of length size bytes. Maximum size is 4,096 
bytes. You must specify size for a RAW value.

REAL Enables you to request a single-precision floating point with no 
options. The precision is chosen by the implementation and is 
normally the default single-precision datatype on the hardware 
platform. 

ROWID A 16-byte hexadecimal string representing the unique address 
of a row in its table. ROWID is primarily for values returned by 
the ROWID pseudocolumn.

SMALLINT An integer value whose precision is defined upon 
implementation but whose value is no greater than the 
implementation of INTEGER.

TIME Stores a time value in terms of hours minutes and seconds. 
Hours are represented by two digits ranging from 00 through 
23. Minutes are also represented by two digits ranging from 00 
through 59. The seconds value ranges from 00 through 60.

TIMESTAMP Stores the year, month, and day values of a date and the hour, 
minute, second value of time. TIMESTAMP length and 
restrictions correspond to DATE and TIME values, except that 
in TIME the default is 0 and in TIMESTAMP it is 6.

TINYINT An integer with a precision of 1 byte (-128 to +127).

VARBINARY Stores but does not interpret variable binary data. 

VARCHAR See VARCHAR2

VARCHAR2 Variable-length character string with a maximum length size of 
4,096 bytes (minimum is 1). You must specify size for a 
VARCHAR2.

Table C–1 (Cont.) Datatypes Supported by Oracle Database Lite

Datatype Description



BLOB

Oracle Database Lite Datatypes C-3

Example
BIGINT

C.2 BINARY
[ODBC] 

Variable length binary datatype. Binds with a SQL_C_CHAR or SQL_C_BINARY 
array.

Syntax
BINARY [( <precision> )]

Keywords and Parameters
<precision> is the maximum number of bytes.

Usage Notes
BINARY is synonymous with VARBINARY and RAW.

Example
BINARY(1024)

C.3 BIT
Bit datatype. 

Syntax
BIT 

Usage Notes
Precision is 1. 

Example
BIT

C.4 BLOB
The BLOB datatype can store large and unstructured data such as text, image, video, 
and spatial data up to 2 gigabytes in size.

Syntax
BLOB

Usage Notes
When creating a table, you can optionally specify different tablespace and storage 
characteristics for BLOB columns.

You can initialize a column with the BLOB datatype by inserting an EMPTY_BLOB. 
See Example 2. 

BLOB columns contain LOB locators that can refer to out-of-line or in-line LOB values. 
Selecting a LOB from a table actually returns the LOB's locator and not the entire LOB 
value. 



CHAR

C-4 Oracle Database Lite SQL Reference

BLOB is similar to LONG and LONG RAW types, but differs in the following ways: 

■ BLOBs can be attributes of a user-defined datatype (object). 

■ The BLOB locator is stored in the table column, either with or without the actual 
BLOB value. BLOB values can be stored in separate tablespaces.

■ When you access a BLOB column, the locator is returned. 

■ A BLOB can be up to 2 gigabytes in size. 

■ BLOBs permit efficient, random, piece-wise access to and manipulation of data. 

■ You can define more than one BLOB column in a table. 

■ You can define one or more BLOB attributes in an object. 

■ You can declare BLOB bind variables. 

■ You can select BLOB columns and BLOB attributes. 

■ You can insert a new row or update an existing row that contains one or more 
BLOB columns and/or an object with one or more BLOB attributes. (You can set 
the internal BLOB value to NULL, empty, or replace the entire BLOB with data.

■ You can update a BLOB row/column intersection or a BLOB attribute with 
another BLOB row/column intersection or BLOB attribute. 

■ You can delete a row containing a BLOB column or BLOB attribute. This also 
deletes the BLOB value.

To access and populate rows of an internal BLOB column (a BLOB column stored in 
the database), use the INSERT statement first to initialize the internal BLOB value to 
empty.

Example 1
The following example creates a table with a BLOB column: 

CREATE TABLE  PERSON_TABLE (NAME CHAR(40),
                            PICTURE BLOB);

Example 2
The following example initializes a column with the BLOB datatype by inserting an 
EMPTY_BLOB:

INSERT INTO PERSON_TABLE (NAME, PICTURE) VALUES ('Steve', EMPTY_BLOB());

C.5 CHAR
[ODBC] [SQL-92] [Oracle]

Fixed length character string type. CHAR columns allocate a fixed space in a database 
row, allowing for the maximum length. Strings shorter than the maximum are padded 
with trailing blanks.

Syntax
CHAR
CHARACTER
CHAR ( <length> )
CHARACTER ( <length> )



CLOB

Oracle Database Lite Datatypes C-5

Keywords and Parameters
<length> is the number of characters in a string. The limit is 4,096 bytes.

Usage Notes
If <length> is omitted, 1 is assumed.

Examples
CHAR
CHAR(20)

C.6 CLOB
The CLOB datatype can store large and unstructured data, such as text and spatial 
data up to 2 gigabytes in size.

Syntax
CLOB

Usage Notes
When creating a table, you can optionally specify different tablespace and storage 
characteristics for CLOB columns.

You can initialize a column with the CLOB datatype by inserting an EMPTY_CLOB. 
See Example 2.

CLOB columns contain LOB locators that can refer to out-of-line or in-line LOB values. 
Selecting a LOB from a table actually returns the LOB's locator and not the entire LOB 
value. 

CLOB is similar to LONG and LONG RAW types, but differs in the following ways: 

■ CLOBs can be attributes of a user-defined datatype (object). 

■ The CLOB locator is stored in the table column, either with or without the actual 
CLOB value. CLOB values can be stored in separate tablespaces.

■ When you access a CLOB column, the locator is returned. 

■ A CLOB can be up to 2 gigabytes in size. 

■ CLOBs permit efficient, random, piece-wise access to and manipulation of data. 

■ You can define more than one CLOB column in a table. 

■ You can define one or more CLOB attributes in an object. 

■ You can declare CLOB bind variables. 

■ You can select CLOB columns and CLOB attributes. 

■ You can insert a new row or update an existing row that contains one or more 
CLOB columns and/or an object with one or more CLOB attributes. (You can set 
the internal CLOB value to NULL, empty, or replace the entire CLOB with data.

■ You can update a CLOB row/column intersection or a CLOB attribute with 
another CLOB row/column intersection or CLOB attribute. 

■ You can delete a row containing a CLOB column or CLOB attribute and thereby 
also delete the BLOB value.



DATE

C-6 Oracle Database Lite SQL Reference

To access and populate rows of an internal CLOB column (a CLOB column stored in 
the database), use the INSERT statement first to initialize the internal CLOB value to 
empty.

Example 1
The following example creates a table with a CLOB column:

CREATE TABLE WORK_HISTORY (NAME CHAR (40),
                            RESUME CLOB);

Example 2
The following example initializes a column with the CLOB datatype by inserting 
EMPTY_CLOB:

INSERT INTO WORK_HISTORY (NAME, RESUME) VALUES ('Steve', EMPTY_CLOB());

C.7 DATE
[ODBC] [SQL-92] 

Stores day, month, and year in SQL-92 and ODBC. In Oracle, it also stores the time.

Syntax
DATE

Example
DATE

C.8 DECIMAL
[ODBC] [SQL-92] 

Decimal number type.

Syntax
DECIMAL [ ( <precision>[, <scale> ] ) ] | DEC [ ( <precision>[, <scale> ] ) ]

Keywords and Parameters
<precision> is the precision of a decimal number.

<scale> is the scale of a decimal number (the number of digits to the right of the 
decimal point).

Usage Notes
A DECIMAL is an exact numeric value. By default, DECIMAL data is returned as a 
character string or SQL_C_CHAR, but conversion into SQL_C_LONG or SQL_C_
FLOAT or other datatypes is supported. If <precision> is not specified, 38 is assumed. If 
<scale> is not specified, 0 is assumed. 0 <= <scale> <= <precision> <= 38. 

DECIMAL is synonymous with NUMERIC and NUMBER.

Examples
DECIMAL
DEC (5)
DECIMAL (10, 5)



INTEGER

Oracle Database Lite Datatypes C-7

C.9 DOUBLE PRECISION
[ODBC] 

Double precision floating point number type. Binds with a SQL_C_DOUBLE variable.

Syntax
DOUBLE PRECISION

Usage Notes
A DOUBLE PRECISION is a signed, approximate, numeric value with a mantissa 
decimal precision 15. Its absolute value is either zero or between 10^-308 and 10^308.

Example
DOUBLE PRECISION

C.10 FLOAT
[ODBC]

Floating point number type. Binds with a SQL_C_DOUBLE variable.

Syntax
FLOAT [ ( <precision> ) ]

Keywords and Parameters
<precision> is the precision of a floating point number.

Usage Notes
A FLOAT is a signed approximate numeric value with a mantissa decimal precision 
15. Its absolute value is either zero or between 10^-308 and 10^308. In the current 
implementation, the precision of a FLOAT is always set to 15.

Examples
FLOAT
FLOAT (10)

C.11 INTEGER
[ODBC] [SQL-92] 

Integer type.

Syntax
INTEGER
INT

Usage Notes
An INTEGER is an exact numeric value with precision 10 and scale 0, typically 4 bytes. 
Binds with SQL_C_LONG or SQL_C_ULONG and SQL_C_SLONG. -2^31 < n < 2^31, 
where n is the value of an INTEGER.

Examples
INTEGER



LONG

C-8 Oracle Database Lite SQL Reference

INT

C.12 LONG
[Oracle]

Variable-length character string type. Used when the length of the string exceeds 4,096 
bytes. 

Syntax
LONG

Keywords and Parameters
<length> is the maximum number of characters in a string.

Usage Notes
The maximum length of a LONG is 2 billion bytes. If <length> is omitted, 2 megabytes 
is assumed. You can create an index on a LONG column, but only the first 2,000 bytes 
are used in the index.

Example
LONG

C.13 LONG RAW
[Oracle]

Variable length binary datatype. Similar to LONG VARBINARY. Use this type when a 
VARBINARY column exceeds 4,096 bytes.

Syntax
LONG RAW [( <precision> )]

Keywords and Parameters
<precision> is the maximum number of bytes. If not specified, the default is 2 
megabytes.

Usage Notes
The maximum length of a LONG RAW is 2 billion bytes.

Examples
LONG RAW(1048576)

C.14 LONG VARBINARY
[ODBC] 

Variable length binary datatype.

Syntax
LONG BINARY [( <precision> )]



NUMBER

Oracle Database Lite Datatypes C-9

Keywords and Parameters
<precision> is the maximum number of bytes. If not specified, the default is 2 
megabytes.

Usage Notes
1 <= <precision> <= 2G.

Examples
LONG VARBINARY(1048576)

C.15 LONG VARCHAR
[ODBC]

Variable-length character string type. Used when the length of the string exceeds 4,096 
bytes.

Syntax
LONG VARCHAR
LONG VARCHAR ( <length> )

Keywords and Parameters
<length> is the maximum number of characters in a string.

Usage Notes
The maximum length of a LONG VARCHAR is 2 billion bytes. If <length> is omitted, 2 
megabytes is assumed. You can create an index on a LONG VARCHAR column, but 
only the first 2,000 bytes are used in the index.

Example
LONG VARCHAR

C.16 NUMBER
[Oracle]

DECIMAL number type.

Syntax
NUMBER [ ( <precision>[, <scale> ] ) ]

Keywords and Parameters
<precision> is the precision of a decimal number.

<scale> is the scale of a decimal number (the number of digits to the right of the 
decimal point).

Usage Notes
A NUMBER is an exact numeric value. By default, NUMBER data is returned as a 
character string or SQL_C_CHAR, but conversion into SQL_C_LONG or SQL_C_
FLOAT or other datatypes is supported. If <precision> is not specified, 38 is assumed. If 
<scale> is not specified, 0 is assumed. 0 <= <scale> <= <precision> <= 38.

NUMBER is synonymous with DECIMAL and NUMERIC.



NUMERIC

C-10 Oracle Database Lite SQL Reference

Examples
NUMBER
NUMBER (10, 5)

C.17 NUMERIC
[ODBC] [SQL-92] 

DECIMAL number type.

Syntax
NUMERIC [ ( <precision>[, <scale> ] ) ]

Keywords and Parameters
<precision> is the precision of a decimal number.

<scale> is the scale of a decimal number (the number of digits to the right of the 
decimal point).

Usage Notes
A NUMERIC is an exact numeric value. By default, NUMERIC data is returned as a 
character string or SQL_C_CHAR, but conversion into SQL_C_LONG or SQL_C_
FLOAT or other datatypes is supported. If <precision> is not specified, 38 is assumed. If 
<scale> is not specified, 0 is assumed. 0 <= <scale> <= <precision> <= 38.

NUMERIC is synonymous with DECIMAL and NUMBER.

Examples
NUMERIC
NUMERIC (10, 5)

C.18 RAW
[Oracle]

Variable length binary datatype. Binds with a SQL_C_CHAR or SQL_C_BINARY 
array.

Syntax
RAW [( <precision> )]

Keywords and Parameters
<precision> is the maximum number of bytes.

Usage Notes
RAW is synonymous with BINARY and VARBINARY, but has a limit of 4,096 bytes.

Examples
RAW(1024)

C.19 REAL
[ODBC] 



TIME

Oracle Database Lite Datatypes C-11

Floating point number type. Binds with SQL_C_REAL variables.

Syntax
REAL

Usage Notes
A REAL is a signed approximate numeric value with a mantissa decimal precision 7. 
Its absolute value is either zero or between 10^-38 and 10^38.

Example
5600E+12

C.20 ROWID
A 16-byte hexadecimal string representing the unique address of a row in its table. 
ROWID is primarily for values returned by the ROWID pseudocolumn.

Usage Notes
In Oracle Lite, the ROWID is the hexadecimal string representing the unique object 
identifier. It is not compatible with the Oracle ROWID, but it may be used to uniquely 
identify a row for updating. ROWID literals should be enclosed in single quotes.

Example
A80000.00.03000000

C.21 SMALLINT
[ODBC] [SQL-92] 

Small integer type.

Syntax
SMALLINT

Usage Notes
A SMALLINT is an exact numeric value with precision 5 and scale 0, typically 2 bytes 
or 16 bits. If signed, the range can be -32,768 to +32,767 (SQL_C_SSHORT or SQL_C_
SHORT) or, if unsigned, 0 to 65,535 (SQL_C_USHORT). -32,768 <= n <= 32,767, where 
n is the value of a SMALLINT.

Example
SMALLINT

C.22 TIME
[ODBC] [SQL-92] 

Stores hour, minutes, seconds, and possibly, fractional seconds.

Syntax
TIME
TIME ( <precision> ) [SQL-92]



TIMESTAMP

C-12 Oracle Database Lite SQL Reference

Keywords and Parameters
<precision> is the number of fractional digits in seconds.

Examples
TIME
TIME (3)

C.23 TIMESTAMP
[ODBC] [SQL-92] 

Stores both date and time in SQL-92 and is comparable to the Oracle DATE datatype.

Syntax
TIMESTAMP [ ( <precision> ) ]

Keywords and Parameters
<precision> is the number of fractional digits in seconds. 0 <= <precision> <= 6

Usage Notes
During replication of an Oracle table, DATE columns in Oracle are stored as 
TIMESTAMP columns in Oracle Lite.

Examples
TIMESTAMP
TIMESTAMP (3)

C.24 TINYINT
[ODBC] 

A one byte integer type.

Syntax
TINYINT

Usage Notes
A one byte integer with range 0 to 127. If unsigned (SQL_C_UTINYINT) or - 128 to + 
127, and if signed (SQL_C_STINYINT).

Example
TINYINT

C.25 VARBINARY
[ODBC] 

Variable length binary datatype. Binds with a SQL_C_CHAR or SQL_C_BINARY 
array.

Syntax
VARBINARY [( <precision> )]



VARCHAR2

Oracle Database Lite Datatypes C-13

Keywords and Parameters
<precision> is the maximum number of bytes.

Usage Notes
VARBINARY is synonymous with BINARY and RAW.

Example
VARBINARY(1024)

C.26 VARCHAR
[ODBC] [SQL-92] [Oracle]

Variable-length character string type.

Syntax
VARCHAR ( <length> )
CHAR VARYING ( <length> )
CHARACTER VARYING ( <length> )

Keywords and Parameters
<length> is the maximum number of characters in a string, between 1 and 4,096.

Usage Notes
If <length> is omitted, 1 is assumed.

Examples
VARCHAR(20)
CHAR VARYING(20)
CHARACTER VARYING(20)

C.27 VARCHAR2
[Oracle]

Variable-length character string type. VARCHAR and VARCHAR2 are stored exactly 
as passed, provided the length does not exceed the maximum. No blank padding is 
added. VARCHAR and VARCHAR2 are equivalent.

Syntax
VARCHAR2 ( <length> )
CHAR VARYING ( <length> )
CHARACTER VARYING ( <length> )

Keywords and Parameters
<length> is the maximum number of characters in a string, between 1 and 4,096.

Usage Notes
If <length> is omitted, 1 is assumed.

Examples
VARCHAR2(20)
CHAR VARYING(20)



VARCHAR2

C-14 Oracle Database Lite SQL Reference

CHARACTER VARYING(20)



Oracle Database Lite Literals D-1

D
Oracle Database Lite Literals

Oracle Lite supports the following literals:

■ Section D.1, "CHAR, VARCHAR"

■ Section D.2, "DATE"

■ Section D.3, "DECIMAL, NUMERIC, NUMBER"

■ Section D.4, "REAL, FLOAT, DOUBLE PRECISION"

■ Section D.5, "SMALLINT, INTEGER, BIGINT, TINYINT"

■ Section D.6, "TIME"

■ Section D.7, "TIMESTAMP"

D.1 CHAR, VARCHAR
Character string literal value.

Syntax
'<letters>'

Keywords and Parameters
<letters> a sequence of zero or more printable characters excluding new-line.

Usage Notes
If a single quote is part of a literal, it must be preceded by another single quote (used 
as an escape character). The maximum length of a character literal is 1024.

Examples
'a string'
'a string containing a quote '''

D.2 DATE
Date literal value.

Syntax
[DATE] ' <year1 ><month1 ><day >' [SQL-92]
{ d ' <year1 ><month1 ><day >' [ODBC]
--(* d ' <year1 ><month1 ><day >' *)-- [ODBC]
' <day ><month2 ><year2 >' [Oracle]



DECIMAL, NUMERIC, NUMBER

D-2 Oracle Database Lite SQL Reference

' <day ><month2 ><year1 >' [Oracle]
' <month1 ><day ><year2 >' [Oracle]
' <month1 ><day ><year1 >' [Oracle]

Keywords and Parameters
<year1> a four-digit number representing a year, for example, 1994.

<year2> a two-digit number representing the last two digits of a year.

<month1> a two-digit number between 01 and 12.

<month2> a three-letter initial of a month (this is not case-sensitive).

<day> a two-digit number between 01 and 31 (depending on the month).

Examples
'1994-11-07' [SQL-92]
{ d '1994-11-07' }
--(* d '1994-11-07' *)--
DATE '10-23-94'
'23-Nov-1994' [Oracle]
'23-Nov-94'

D.3 DECIMAL, NUMERIC, NUMBER
Decimal number literal value.

Syntax
[+|- ]<digits>
[+|- ]<digits>.[<digits>]
[+|- ].<digits>

Keywords and Parameters
<digits> a sequence of one or more digits.

Examples
54321
-123.
+456
64591.645
+.12345
0.12345

D.4 REAL, FLOAT, DOUBLE PRECISION
Floating point number literal value.

Syntax
[+|- ]<digits ><exp >[+|- ]<digits >
[+|- ]<digits >. [<digits >]<exp >[+|- ]<digits >
[+|- ].<digits ><exp >[+|- ]<digits >

Keywords and Parameters
<digits> a sequence of one or more digits.

<exp>'E' or 'e'.



TIMESTAMP

Oracle Database Lite Literals D-3

Examples
+1.5e-7
12E-5
-.12345e+6789

D.5 SMALLINT, INTEGER, BIGINT, TINYINT
[ODBC]

Integer literal value.

Syntax
[+|- ]<digits>

Keywords and Parameters
<digits> a sequence of one or more digits.

Usage Notes
Let n be the number the literal represents.

For TINYINT, -128 <= n <= 127

For a SMALLINT, -32768 <= n <= 32767

For an INTEGER, -2^31 < n < 2^31

For a BIGINT, -10^19 < n < 10^19

Example
12345

D.6 TIME
Time literal value.

Syntax
[TIME]' <hour>:<minute>:<second>[.[<fractional_second>]]'

Keywords and Parameters
<hour> a two-digit number between 00 and 23.

<minute> a two-digit number between 00 and 59.

<second> a two-digit number between 00 and 59.

<fractional_second> a number containing up to 6 digits.

Examples
'23:00:00'
TIME '23:00:00.'
TIME '23:01:59.134343'

D.7 TIMESTAMP
Timestamp literal value. 



TIMESTAMP

D-4 Oracle Database Lite SQL Reference

Syntax
TIMESTAMP ' <DATE_literal_value > <TIME_literal_value >'

Keywords and Parameters
<DATE_literal_value> a Date literal.

<TIME_literal_value> a Time literal.

Usage Notes
In a timestamp literal, there is exactly one space character between the Date literal and 
the Time literal.

Examples
TIMESTAMP '1994-11-07 23:00:00'
'94-06-01 12:02:00'
Examples: CHAR (10)



Index Creation Options E-1

E
Index Creation Options

In prior releases, Oracle Lite enforced uniqueness on a set of columns by creating a 
unique index on all table columns. This method required a large volume of disk space 
for long keys or for keys containing many columns.

E.1 Uniqueness Constraint in Oracle Lite
With Oracle Lite, applications can now enforce a uniqueness constraint on a large 
number of columns without using a large volume of disk space. This benefits 
applications that require a uniqueness constraint on a large number of columns, but 
have table rows with the same values in a smaller subset of these columns. 

E.1.1 The Address Table Example
The explanations and examples in this section all refer to the following table:

ADDRESS (STREET VARCHAR(40), CITY VARCHAR(40), STATE VARCHAR(20), ZIP 
VARCHAR(12));

E.1.2 Using Uniqueness Constraints
If you want to enforce a uniqueness constraint to prevent any two rows in the 
ADDRESS from containing identical values for all columns, you can create a unique 
index on all the table’s columns. However, this method requires a large volume of disk 
space.

If you know that very few rows have the same values in the STREET and CITY 
columns, you can create a unique index on STREET and CITY only. If two rows have 
the same values for the STREET and CITY columns, then Oracle Lite locks them and 
tests the rows’ remaining column values for uniqueness.

Although this method requires less disk space, it also has some disadvantages. Since 
the database must search all records to ensure that no unique or primary key columns 
are identical, the following actions decrease database performance:

■  inserting and updating rows

■  querying rows based on primary keys

When Oracle Lite locks indexed columns that have the same values, those columns 
cannot be accessed by concurrent database users.

E.1.3 Specifying the Number of Columns in an Index
You can specify the number of columns in an index in the POLITE.INI file, or in one of 
the following SQL statements:



Uniqueness Constraint in Oracle Lite

E-2 Oracle Database Lite SQL Reference

■ CREATE INDEX

■ CREATE TABLE

■ ALTER TABLE

E.1.3.1 The POLITE.INI File
The MAXINDEXCOLUMNS value in the POLITE.INI file specifies the maximum number 
of columns in an index. When a user creates a new index, the index only contains the 
number of columns specified in the MAXINDEXCOLUMNS variable. For example, the 
following line in the POLITE.INI file specifies that any newly created index must 
contain the first two columns of the table it refers to:

MAXINDEXCOLUMNS=2

When you apply the preceding example to the ADDRESS table, the following 
statement creates an index that contains the columns STREET and CITY.

CREATE INDEX IDX1 ON ADDRESS(STREET, CITY, STATE, ZIP);

The following statement also creates a unique index that contains the columns, 
STREET and CITY:

CREATE UNIQUE INDEX IDX1 ON ADDRESS(STREET, CITY, STATE, ZIP);

Since the statement contains the UNIQUE clause, Oracle Lite designates all of the 
specified columns as a unique key.

E.1.3.2 The CREATE UNIQUE INDEX Statement
In Oracle Lite, the CREATE UNIQUE INDEX statement contains the following 
optional clause for specifying the number of indexed columns:

KEY COLUMNS = <number_of_columns> 

Oracle Lite creates an index that contains the number of columns you specify in the 
KEY COLUMNS clause. For example, the following statement creates an index that 
contains two columns, STREET and CITY: 

CREATE UNIQUE INDEX IDX1 ON ADDRESS (STREET, CITY, STATE, ZIP) KEY COLUMNS = 2;

Since the statement contains the UNIQUE clause, Oracle Lite designates all of the 
specified columns as a unique key

E.1.3.3 The CREATE TABLE and ALTER TABLE Statements
The PRIMARY KEY clause in the statements, CREATE TABLE and ALTER TABLE 
supports the following clause for specifying the number of indexed columns:

KEY COLUMNS = <number_of_columns>

The following example creates a table and designates four of its columns as primary 
keys. However the index that enforces the primary key only contains the first two 
columns:

CREATE TABLE ADDRESS (STREET VARCHAR(40), CITY VARCHAR(40), STATE VARCHAR(20), ZIP 
VARCHAR(12), PRIMARY KEY(STREET, CITY, STATE, ZIP)  KEY COLUMNS = 2);



Uniqueness Constraint in Oracle Lite

Index Creation Options E-3

E.1.3.4 Usage Notes
If the POLITE.INI file does not include a value for the MAXINDEXCOLUMNS variable 
and the SQL statements do not use the KEY COLUMNS option, then Oracle Lite uses 
all of the specified columns to create an index.

If the POLITE.INI file specifies a MAXINDEXCOLUMNS value, then Oracle Lite uses this 
value to create all indexes and primary keys unless the KEY COLUMNS clause in a 
SQL statement overrides it.



Uniqueness Constraint in Oracle Lite

E-4 Oracle Database Lite SQL Reference



Syntax Diagram Conventions F-1

F
Syntax Diagram Conventions

This document discusses the syntax diagrams used in the Oracle Database Lite SQL 
Reference. Topics include:

■ Section F.1, "Introduction"

■ Section F.2, "Required Keywords and Parameters"

■ Section F.3, "Optional Keywords and Parameters"

■ Section F.4, "Syntax Loops"

■ Section F.5, "Multipart Diagrams"

■ Section F.6, "Database Objects"

F.1 Introduction
Syntax diagrams are drawings that illustrate valid SQL syntax. To read a diagram, 
trace it from left to right, in the direction shown by the arrows. 

Commands and other keywords appear in UPPERCASE inside rectangles. Type them 
exactly as shown in the rectangles. Parameters appear in lowercase inside ovals. 
Variables are used for the parameters. Punctuation, operators, delimiters, and 
terminators appear inside circles. 

If the syntax diagram has more than one path, you can choose any path to travel. 

If you have the choice of more than one keyword, operator, or parameter, your options 
appear in a vertical list. 

F.2 Required Keywords and Parameters
Required keywords and parameters can appear singly or in a vertical list of 
alternatives. Single required keywords and parameters appear on the main path, that 
is, on the horizontal line you are currently traveling. In Figure F–1, user and password 
are required parameters: 

Figure F–1 Syntax for Required Keywords and Parameters

BNF Notation
CREATE USER user IDENTIFIED  BY password;



Optional Keywords and Parameters

F-2 Oracle Database Lite SQL Reference

According to the diagram, the following syntax is valid:

CREATE USER hannibal IDENTIFIED BY hanna;

In Figure F–2, either DELETE, SELECT, or UPDATE is a required parameter:

Figure F–2 Syntax for Required Parameters

BNF Notation
{ DELETE | SELECT | UPDATE } //hint// ;

F.3 Optional Keywords and Parameters
If keywords and parameters appear in a vertical list above the main path, they are 
optional. In Figure F–3, you can choose from the vertical list of options or you can 
continue along the main path:

Figure F–3 Syntax for Required Optional Keywords and Parameters

BNF Notation
ROLLBACK [{ WORK | TO savepoint_name }] ;

According to the diagram, all of the following statements are valid: 

ROLLBACK WORK;
ROLLBACK TO savepoint_1;
ROLLBACK;

F.4 Syntax Loops
Loops enable you to repeat the syntax within them as many times as you like. In 
Figure F–4, after choosing one expression, you can go back repeatedly to choose 
another, separated by commas.



BNF Notation

Syntax Diagram Conventions F-3

Figure F–4 A Syntax Loop

BNF Notation
[ expr [, expr]...]

F.5 Multipart Diagrams
Read a multipart diagram as if all the main paths were joined end to end. The example 
in Figure F–5 is a two-part diagram: 

Figure F–5 Syntax for a Multipart Diagram

BNF Notation
CREATE [PUBLIC] SYNONYM [schema ] synonym 
FOR [schema ] object ;

According to the diagram, the following statements are valid: 

CREATE SYNONYM prod FOR product;
CREATE SYNONYM prod FOR scott.product;
CREATE SYNONYM scott.prod FOR scott.product;

F.6 Database Objects
The names of Oracle Lite identifiers, such as tables and columns, must not exceed 30 
characters in length. The first character must be a letter, but the rest can be any 
combination of letters, numerals, dollar signs ($), pound signs (#), and underscores (_). 

However, if an Oracle Lite identifier is enclosed by double quotation marks ("), it can 
contain any combination of legal characters, including spaces but excluding quotation 
marks. Oracle Lite identifiers are not case-sensitive except when enclosed by double 
quotation marks.

F.7 BNF Notation
The syntax diagrams in this document use a variation of Backus-Nauer Form (BNF) 
notation. For a description of the convention used in this document, please see 
Section 4.2.6, "BNF Notation Conventions".



BNF Notation

F-4 Oracle Database Lite SQL Reference



Glossary-1

Glossary

base table

A source of data, either a table or a view, that underlies a view. When you access data 
in a view, you are really accessing data from its base tables. You specify a view's base 
tables in CREATE VIEW.

database object

A database object is a named database structure: a table, view, sequence, index, 
snapshot, or synonym. 

foreign key

A foreign key is a column or group of columns in one table or view whose values 
provide a reference to the rows in another table or view. A foreign key generally 
contains a value that matches a primary key value in another table.

index

An index is a database object that provides fast access to individual rows in a table. 
You create an index to accelerate the queries and sorting operations performed against 
the table’s data. You also use indexes to enforce certain constraints on tables, such as 
unique and primary key constraints.

Indexes, once created, are automatically maintained and used for data access by the 
database engine whenever possible.

integrity constraint

An integrity constraint is a rule that restricts the values that can be entered into one or 
more columns of a table. 

join

A relationship established between keys (both primary and foreign) in two different 
tables or views. Joins are used to link tables that have been normalized to eliminate 
redundant data in a relational database. A common type of join links the primary key 
in one table to the foreign key in another table to establish a master-detail relationship. 
A join corresponds to a WHERE clause condition in a SQL statement.

master-detail relationship

A master-detail relationship exists between tables or views in a database when 
multiple rows in one table or view (the detail table or view) are associated with a 
single master row in another table or view (the master table or view).

Master and detail rows are normally joined by a primary key column in the master 
table or view that matches a foreign key column in the detail table or view.



positioned DELETE

Glossary-2

When you change values for the primary key, the application should query a new set 
of detail records, so that values in the foreign key match values in the primary key. For 
example, if detail records in the EMP table are to be kept synchronized with master 
records in the DEPT table, the primary key in DEPT should be DEPTNO, and the 
foreign key in EMP should be DEPTNO.

positioned DELETE

A positioned DELETE statement deletes the current row of the cursor. Its format is:

DELETE FROM table
   WHERE CURRENT OF cursor_name

positioned UPDATE

A positioned UPDATE statement updates the current row of the cursor. Its format is:

UPDATE table SET set_list
   WHERE CURRENT OF cursor_name

primary key

A table's primary key is a column or group of columns used to uniquely identify each 
row in the table. The primary key provides fast access to the table’s records, and is 
frequently used as the basis of a join between two tables or views. Only one primary 
key may be defined for each table.

To satisfy a PRIMARY KEY constraint, no primary key value can appear in more than 
one row of the table, and no column that is part of the primary key can contain a 
NULL value. 

referential integrity

Referential integrity is defined as the accuracy of links between tables in a 
master-detail relationship that is maintained when records are added, modified, or 
deleted.

Carefully defined master-detail relationships promote referential integrity. Constraints 
in your database enforce referential integrity at the database (the server in a 
client/server environment). 

The goal of referential integrity is to prevent the creation of an orphan record, which is 
a detail record that has no valid link to a master record. Rules that enforce referential 
integrity prevent the deletion or update of a master record, or the insertion or update 
of a detail record, that creates an orphan record.

schema

A schema is a named collection of database objects, including tables, views, indexes, 
and sequences.

sequence

A sequence is a database object that generates a series of unique integers. Sequences 
are typically used to generate data values that are required to be unique, such as 
primary key values.

SQL

SQL, or Structured Query Language, is a non-procedural database access language 
used by most relational database engines. Statements in SQL describe operations to be 
performed on sets of data. When a SQL statement is sent to a database, the database 
engine automatically generates a procedure to perform the specified tasks. 



view

Glossary-3

synonym

A synonym is an alternative name, or alias, for a table, view, sequence, snapshot, or 
another synonym.

table

A table is a database object that stores data that is organized into rows and columns. In 
a well designed database, each table stores information about a single topic (such as 
company employees or customer addresses).

transaction

A set of changes made to selected data in a relational database. Transactions are 
usually executed with a SQL statement such as ADD, UPDATE, or DELETE. A 
transaction is complete when it is either committed (the changes are made permanent) 
or rolled back (the changes are discarded).

A transaction is frequently preceded by a query, which selects specific records from the 
database that you want to change.

unique key

A table's unique key is a column or group of columns that are unique in each row of a 
table. To satisfy a UNIQUE KEY constraint, no unique key value can appear in more 
than one row of the table. However, unlike the PRIMARY KEY constraint, a unique 
key made up of a single column can contain NULL values.

view

A view is a customized presentation of data selected from one or more tables (or other 
views). A view is like a "virtual table" that enables you to relate and combine data 
from multiple tables (called base tables) and views. A view is a kind of "stored query" 
because you can specify selection criteria for the data that the view displays.

Views, like tables, are organized into rows and columns. However, views contain no 
data themselves. Views allow you to treat multiple tables or views as one database 
object.



view

Glossary-4



Index-1

Index

A
ADD_MONTHS function, 3-4
ALTER SEQUENCE command, 4-4
ALTER SESSION command, 4-5
ALTER TABLE command, 4-6
ALTER TRIGGER, 4-12
ALTER USER command, 4-13
ALTER VIEW, 4-14
ASCII function, 3-4
AVG function, 3-4

B
Backus-Nauer Form, 4-3, F-3
BIGINT datatype, C-2
BINARY datatype, C-3
BIT datatype, C-3
BLOB datatype, C-3
BNF Notation, 4-3, F-3

C
CASE function, 3-5
CAST Expression, 1-20
CAST function, 3-6
CEIL function, 3-8
CHAR datatype, C-4
CHAR, literal, D-1
character strings

comparison rules, 1-21
CHR function, 3-9
Clauses, 4-2
CLOB datatype, C-5
Commands

Alphabetical listing, 4-3
Clauses, 4-2
DDL, 4-2
DML, 4-2
Overview, 4-2
Pseudocolumns, 4-3
Transaction Control, 4-2
Types of, 4-1

Comments, 1-21
commit

autocommit, 4-16

COMMIT command, 4-15
comparison semantics

blank-padded, 1-21
nonpadded, 1-21
of character strings, 1-21

compound conditions, 1-15
Compound Expression, 1-17
CONCAT function, 3-9
conditions

compound, 1-15
EXISTS, 1-14
group comparison, 1-12
LIKE, 1-15
membership, 1-13
NULL, 1-14
range, 1-14
simple comparison, 1-11

CONSTRAINT clause, 4-16
COUNT function, 3-10
CREATE DATABASE, 4-19
CREATE FUNCTION command, 4-21
CREATE GLOBAL TEMPORARY TABLE, 4-25
CREATE INDEX command, 4-26
CREATE JAVA, 4-28
CREATE PROCEDURE, 4-31
CREATE SCHEMA command, 4-35
CREATE SEQUENCE command, 4-37
CREATE SYNONYM command, 4-38
CREATE TABLE Command, 4-40
CREATE TRIGGER command, 4-43
CREATE USER, 4-45
CREATE VIEW, 4-47
CURDATE function, 3-11
CURRENT_DATE function, 3-12
CURRENT_TIME function, 3-12
CURRENT_TIMESTAMP function, 3-12
CURRVAL and NEXTVAL pseudocolumn, 4-49
CURTIME function, 3-13

D
DATABASE function, 3-13
DATE datatype, C-6
DATE literal, D-1
DAYOFMONTH function, 3-14
DAYOFWEEK function, 3-15



Index-2

DAYOFYEAR function, 3-15
DDL (Data Definition Language) Commands, 4-2
DECIMAL datatype, C-6
DECIMAL literal, D-2
DECODE Expression, 1-18
DECODE function, 3-16
DELETE command, 4-51
DML (Data Manipulation Language) 

Commands, 4-2
DOUBLE literal, D-2
DOUBLE PRECISION datatype, C-7
DROP clause, 4-52
DROP FUNCTION command, 4-53
DROP INDEX command, 4-54
DROP JAVA command, 4-55
DROP PROCEDURE command, 4-56
DROP SCHEMA command, 4-57
DROP SEQUENCE command, 4-57
DROP SYNONYM command, 4-58
DROP TABLE command, 4-59
DROP TRIGGER command, 4-60
DROP USER command, 4-61
DROP VIEW command, 4-62

E
EXISTS

conditions, 1-14
EXPLAIN PLAN, 1-22
EXPLAIN PLAN command, 4-63
Expression List, 1-19
EXTRACT function, 3-17
Extract function, 3-17

F
FLOAT datatype, C-7
FLOAT literal, D-2
FLOOR function, 3-18
Formats, 1-10
Function Expression, 1-17
Functions

Alphabetical Listing, 3-3
Character, 3-3
Character returning number values, 3-3
Conversion, 3-3
Date, 3-3
Number, 3-3
Overview, 3-2
Types of, 3-1

G
GRANT command, 4-64
GREATEST function, 3-18
group comparison conditions, 1-12

H
HOUR function, 3-18

I
INITCAP function, 3-19
INSERT, 4-66
INSTR function, 3-19
INSTRB function, 3-20
INTEGER datatype, C-7
INTEGER literal, D-3
Integrity constraints, 1-20

J
Java Function Expression, 1-17

K
Keywords, A-1

L
LAST_DAY function, 3-21
LEAST function, 3-21
LENGTH function, 3-22
LENGTHB function, 3-22
LEVEL pseudocolumn, 4-68
LIKE conditions, 1-15
LIMIT clause, 4-85
Linguistiic Sort, 4-20
LOCATE function, 3-23
LONG datatype, C-8
LONG RAW datatype, C-8
LONG VARBINARY datatype, C-8
LONG VARCHAR datatype, C-9
LOWER function, 3-24
LPAD function, 3-24
LTRIM function, 3-25

M
MAX function, 3-25
membership conditions, 1-13
MIN function, 3-25
MINUTE function, 3-26
MOD function, 3-26
MONTH function, 3-26, 3-27
MONTHS_BETWEEN function, 3-27

N
NEXT_DAY function, 3-28
NLS_SORT parameter, 4-20
NOW function, 3-28
NULL conditions, 1-14
NUMBER datatype, C-9
NUMBER literal, D-2
NUMERIC datatype, C-10
NUMERIC literal, D-2
NVL function, 3-29



Index-3

O
ODBC

commit, 4-16
OFFSET clause, 4-85
OL__ROW_STATUS pseudocolumn, 4-69
Operators

Arithmetic, 2-2
Character, 2-2
Comparison, 2-3
Logical, 2-4
Other, 2-6
Overview, 2-1
Set, 2-5

Oracle Database Lite Object Naming 
Conventions, 1-9

P
performance

EXPLAIN PLAN, 1-22
SQL operations

order of execution, 1-22
POLITE.INI, 4-20, E-2
POSITION function, 3-30
PRECISION literal, D-2
pseudocolumn

CURRVAL and NEXTVAL, 4-49
LEVEL, 4-68
OL__ROW_STATUS, 4-69
ROWID, 4-73

Pseudocolumns, 4-3

Q
QUARTER function, 3-31

R
range conditions, 1-14
RAW datatype, C-10
REAL datatype, C-10
REAL literal, D-2
REPLACE function, 3-31
Reserved Words, A-3
REVOKE command, 4-70
ROLLBACK command, 4-71
ROUND - Date function, 3-32
ROUND - Number function, 3-32
Row_Value_Constructor in a Subquery 

Comparison, 1-13
ROWID datatype, C-11
ROWID pseudocolumn, 4-73
ROWNUM pseudocolumn, pseudocolumn

ROWNUM, 4-73
RPAD function, 3-33
RTRIM function, 3-32

S
SAVEPOINT command, 4-74

SECOND function, 3-34
SELECT, 4-76
SELECT command, 4-79
SELECT statement

LIMIT clause, 4-85
OFFSET clause, 4-85
returning few records, 4-85

SET TRANSACTION command, 4-87
simple comparison conditions, 1-11
Simple Expression, 1-16
SMALLINT datatype, C-11
SMALLINT literal, D-3
SQL

limitations, B-1
ODBC syntax conventions, 1-9
Overview, 1-1
Specifying conditions, 1-11
Specifying expressions, 1-16

SQL operations
order of execution, 1-22

SQL_AUTOCOMMIT, 4-16
SQLEndTrans, 4-16
SQLTransact

results, 4-16
STDDEV function, 3-34
Subquery in Place of a Column, 1-13
SUBSTR function, 3-35
SUM function, 3-36
SYSDATE function, 3-36

T
TIME datatype, C-11
TIMESTAMP datatype, C-12
TIMESTAMPADD function, 3-36
TIMESTAMPDIFF function, 3-37
TINYINT datatype, C-12
TINYINT literal, D-3
TO_CHAR function, 3-39
TO_DATE function, 3-39
TO_NUMBER function, 3-40
Transaction Control Commands, 4-2
TRANSLATE function, 3-41
TRIM function, 3-41
TRUNC function, 3-42
TRUNCATE TABLE, 4-89

U
UPDATE command, 4-90
UPPER function, 3-43
USER function, 3-43

V
VARBINARY datatype, C-12
VARCHAR datatype, C-13
VARCHAR literal, D-1
VARCHAR2 datatype, C-13
Variable Expression, 1-19
VARIANCE function, 3-44



Index-4

W
WEEK function, 3-44

Y
YEAR function, 3-45


	Contents
	Send Us Your Comments
	Preface
	Documentation Accessibility
	Structure

	1 Using SQL
	1.1 SQL Overview
	1.1.1 Examples
	1.1.2 Oracle SQL and SQL-92
	1.1.2.1 Running SQL-92 on Oracle Lite


	1.2 Oracle Lite SQL and Oracle SQL Comparison
	1.2.1 Objects
	1.2.2 Operators
	1.2.3 Functions
	1.2.4 Commands
	1.2.5 Miscellaneous Data Definition Language (DDL)
	1.2.6 Datatypes
	1.2.7 Indicator Variables
	1.2.8 Data Precision During Arithmetic Operations
	1.2.9 Data Dictionaries
	1.2.10 Tables Not Installed with Oracle Database Lite
	1.2.11 Messages
	1.2.12 Sequences
	1.2.13 PL/SQL
	1.2.14 SQL Functions
	1.2.15 Locking and Transactions

	1.3 Oracle Database Lite SQL Conventions
	1.3.1 SQL Statement Syntax
	1.3.1.1 Capital Letters
	1.3.1.2 Lowercase
	1.3.1.3 Bracket Delimited
	1.3.1.4 Braces
	1.3.1.5 Vertical Bars
	1.3.1.6 Ellipsis
	1.3.1.7 Underline
	1.3.1.8 Block Letters
	1.3.1.9 Initial Colon

	1.3.2 SQL Tables
	1.3.3 SQL Object Names
	1.3.4 SQL Operator Precedence
	1.3.5 SQL Sessions
	1.3.6 SQL Transactions
	1.3.7 Issuing SQL Statements From a Program
	1.3.8 SQL and ODBC

	1.4 ODBC SQL Syntax Conventions
	1.5 Oracle Database Lite Database Object Naming Conventions
	1.6 Formats
	1.6.1 Number Format Elements
	1.6.2 Date Format Elements

	1.7 Specifying SQL Conditions
	1.7.1 Simple Comparison Conditions
	1.7.2 Group Comparison Conditions
	1.7.2.1 A Row_Value_Constructor in a Subquery Comparison
	1.7.2.2 Subquery in Place of a Column

	1.7.3 Membership Conditions
	1.7.4 Range Conditions
	1.7.5 NULL Conditions
	1.7.6 EXISTS Conditions
	1.7.7 LIKE Conditions
	1.7.8 Compound Conditions

	1.8 Specifying Expressions
	1.8.1 Form I, Simple Expression
	1.8.2 Form II, Function Expression
	1.8.3 Form III, Java Function Expression
	1.8.4 Form IV, Compound Expression
	1.8.5 Form V, DECODE Expression
	1.8.6 Form VI, Expression List
	1.8.7 Form VII, Variable Expression
	1.8.8 Form VIII, CAST Expression

	1.9 Oracle Database Lite SQL Datatypes and Literals
	1.9.1 Character String Comparison Rules
	1.9.1.1 Blank-Padded Comparison Semantics
	1.9.1.2 Non-Padded Comparison Semantics


	1.10 Comments Within SQL Statements
	1.11 Tuning SQL Statement Execution Performance With the EXPLAIN PLAN
	1.11.1 The PLAN Table
	1.11.2 EXPLAIN PLAN Examples
	1.11.2.1 Example for Select Distinct and Group By
	1.11.2.2 Example for Select Statement with Union
	1.11.2.3 Example for Select Statement With Multiple Qualifiers



	2 SQL Operators
	2.1 SQL Operators Overview
	2.1.1 Unary Operators
	2.1.2 Binary Operators
	2.1.3 Set Operators
	2.1.4 Other Operators

	2.2 Arithmetic Operators
	2.3 Character Operators
	2.3.1 Concatenating Character Strings

	2.4 Comparison Operators
	2.5 Logical Operators
	2.6 Set Operators
	2.7 Other Operators

	3 SQL Functions
	3.1 SQL Function Types
	3.2 SQL Functions Overview
	3.2.1 Number Functions
	3.2.2 Character Functions
	3.2.3 Character Functions Returning Number Values
	3.2.4 Date Functions
	3.2.5 Conversion Functions

	3.3 SQL Functions Alphabetical Listing
	3.3.1 ADD_MONTHS
	3.3.2 ASCII
	3.3.3 AVG
	3.3.4 CASE
	3.3.5 CAST
	3.3.6 CEIL
	3.3.7 CHR
	3.3.8 CONCAT
	3.3.9 CONVERT
	3.3.10 COUNT
	3.3.11 CURDATE
	3.3.12 CURRENT_DATE
	3.3.13 CURRENT_TIME
	3.3.14 CURRENT_TIMESTAMP
	3.3.15 CURTIME
	3.3.16 DATABASE
	3.3.17 DAYNAME
	3.3.18 DAYOFMONTH
	3.3.19 DAYOFWEEK
	3.3.20 DAYOFYEAR
	3.3.21 DECODE
	3.3.22 EXTRACT
	3.3.23 FLOOR
	3.3.24 GREATEST
	3.3.25 HOUR
	3.3.26 INITCAP
	3.3.27 INSTR
	3.3.28 INSTRB
	3.3.29 INTERVAL
	3.3.30 LAST_DAY
	3.3.31 LEAST
	3.3.32 LENGTH
	3.3.33 LENGTHB
	3.3.34 LOCATE
	3.3.35 LOWER
	3.3.36 LPAD
	3.3.37 LTRIM
	3.3.38 MAX
	3.3.39 MIN
	3.3.40 MINUTE
	3.3.41 MOD
	3.3.42 MONTH
	3.3.43 MONTHNAME
	3.3.44 MONTHS_BETWEEN
	3.3.45 NEXT_DAY
	3.3.46 NOW
	3.3.47 NVL
	3.3.48 POSITION
	3.3.49 QUARTER
	3.3.50 REPLACE
	3.3.51 ROUND - Date Function
	3.3.52 ROUND - Number Function
	3.3.53 RPAD
	3.3.54 RTRIM
	3.3.55 SECOND
	3.3.56 STDDEV
	3.3.57 SUBSTR
	3.3.58 SUBSTRB
	3.3.59 SUM
	3.3.60 SYSDATE
	3.3.61 TIMESTAMPADD
	3.3.62 TIMESTAMPDIFF
	3.3.63 TO_CHAR
	3.3.64 TO_DATE
	3.3.65 TO_NUMBER
	3.3.66 TRANSLATE
	3.3.67 TRIM
	3.3.68 TRUNC
	3.3.69 UPPER
	3.3.70 USER
	3.3.71 VARIANCE
	3.3.72 WEEK
	3.3.73 YEAR


	4 SQL Commands
	4.1 SQL Command Types
	4.2 SQL Commands Overview
	4.2.1 Data Definition Language (DDL) Commands
	4.2.2 Data Manipulation Language (DML) Commands
	4.2.3 Transaction Control Commands
	4.2.4 Clauses
	4.2.5 Pseudocolumns
	4.2.6 BNF Notation Conventions

	4.3 SQL Commands Alphabetical Listing
	4.3.1 ALTER SEQUENCE
	4.3.2 ALTER SESSION
	4.3.3 ALTER TABLE
	4.3.4 ALTER TRIGGER
	4.3.5 ALTER USER
	4.3.6 ALTER VIEW
	4.3.7 COMMIT
	4.3.8 CONSTRAINT clause
	4.3.9 CREATE DATABASE
	4.3.10 CREATE FUNCTION
	4.3.11 CREATE GLOBAL TEMPORARY TABLE
	4.3.12 CREATE INDEX
	4.3.13 CREATE JAVA
	4.3.14 CREATE PROCEDURE
	4.3.15 CREATE SCHEMA
	4.3.16 CREATE SEQUENCE
	4.3.17 CREATE SYNONYM
	4.3.18 CREATE TABLE
	4.3.19 CREATE TRIGGER
	4.3.20 CREATE USER
	4.3.21 CREATE VIEW
	4.3.22 CURRVAL and NEXTVAL pseudocolumns
	4.3.23 DELETE
	4.3.24 DROP clause
	4.3.25 DROP FUNCTION
	4.3.26 DROP INDEX
	4.3.27 DROP JAVA
	4.3.28 DROP PROCEDURE
	4.3.29 DROP SCHEMA
	4.3.30 DROP SEQUENCE
	4.3.31 DROP SYNONYM
	4.3.32 DROP TABLE
	4.3.33 DROP TRIGGER
	4.3.34 DROP USER
	4.3.35 DROP VIEW
	4.3.36 EXPLAIN PLAN
	4.3.37 GRANT
	4.3.38 INSERT
	4.3.39 LEVEL pseudocolumn
	4.3.40 OL__ROW_STATUS pseudocolumn
	4.3.41 REVOKE
	4.3.42 ROLLBACK
	4.3.43 ROWID pseudocolumn
	4.3.44 ROWNUM pseudocolumn
	4.3.45 SAVEPOINT
	4.3.46 SELECT
	4.3.46.1 SELECT Command Arguments
	4.3.46.2 The SUBQUERY Expression
	4.3.46.3 The FOR_UPDATE Clause
	4.3.46.4 The ORDER_BY Clause
	4.3.46.5 The TABLE_REFERENCE Expression
	4.3.46.6 The ODBC_JOIN_TABLE Expression
	4.3.46.7 The JOINED_TABLE Expression
	4.3.46.8 The HINT Expression
	4.3.46.8.1 ORDERED Hints
	4.3.46.8.2 INDEX Hints

	4.3.46.9 The LIMIT and OFFSET Clauses
	4.3.46.10 Examples For the SELECT Command

	4.3.47 SET TRANSACTION
	4.3.48 TRUNCATE TABLE
	4.3.49 UPDATE


	A Oracle Database Lite Keywords and Reserved Words
	A.1 Oracle Database Lite Keywords
	A.2 Oracle Database Lite Reserved Words

	B SQL Limitations For Oracle Database Lite
	C Oracle Database Lite Datatypes
	C.1 BIGINT
	C.2 BINARY
	C.3 BIT
	C.4 BLOB
	C.5 CHAR
	C.6 CLOB
	C.7 DATE
	C.8 DECIMAL
	C.9 DOUBLE PRECISION
	C.10 FLOAT
	C.11 INTEGER
	C.12 LONG
	C.13 LONG RAW
	C.14 LONG VARBINARY
	C.15 LONG VARCHAR
	C.16 NUMBER
	C.17 NUMERIC
	C.18 RAW
	C.19 REAL
	C.20 ROWID
	C.21 SMALLINT
	C.22 TIME
	C.23 TIMESTAMP
	C.24 TINYINT
	C.25 VARBINARY
	C.26 VARCHAR
	C.27 VARCHAR2

	D Oracle Database Lite Literals
	D.1 CHAR, VARCHAR
	D.2 DATE
	D.3 DECIMAL, NUMERIC, NUMBER
	D.4 REAL, FLOAT, DOUBLE PRECISION
	D.5 SMALLINT, INTEGER, BIGINT, TINYINT
	D.6 TIME
	D.7 TIMESTAMP

	E Index Creation Options
	E.1 Uniqueness Constraint in Oracle Lite
	E.1.1 The Address Table Example
	E.1.2 Using Uniqueness Constraints
	E.1.3 Specifying the Number of Columns in an Index
	E.1.3.1 The POLITE.INI File
	E.1.3.2 The CREATE UNIQUE INDEX Statement
	E.1.3.3 The CREATE TABLE and ALTER TABLE Statements
	E.1.3.4 Usage Notes



	F Syntax Diagram Conventions
	F.1 Introduction
	F.2 Required Keywords and Parameters
	F.3 Optional Keywords and Parameters
	F.4 Syntax Loops
	F.5 Multipart Diagrams
	F.6 Database Objects
	F.7 BNF Notation

	Glossary
	Index

