Oracle® Big Data Connectors
User's Guide

Release 4 (4.12)
E93614-07
December 2018

ORACLE"

Oracle Big Data Connectors User's Guide, Release 4 (4.12)
E93614-07

Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Frederick Kush

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience XV
Documentation Accessibility XV
Related Documents Y
Text Conventions XVi
Syntax Conventions XVi
Changes in Oracle Big Data Connectors Release 4.12 XVi
Part | Setup
1 Getting Started with Oracle Big Data Connectors
1.1 About Oracle Big Data Connectors 1-1
1.2 Big Data Concepts and Technologies 1-2
1.2.1 What is MapReduce? 1-3
1.2.2 What is Apache Hadoop? 1-3
1.3 Downloading and Installing Oracle Big Data Connectors 1-4
1.4 Certified Hadoop Platforms 1-5
1.5 Oracle SQL Connector for Hadoop Distributed File System Setup 1-5
1.5.1 Software Requirements 1-5
1.5.2 Installing and Configuring a Hadoop Client on the Oracle Database
System 1-6
1.5.3 Installing Oracle SQL Connector for HDFS 1-8
1.5.4 Oracle Database Privileges for OSCH Users 1-12
1.5.5 OS-Level Requirements for OSCH Users 1-13
1.5.6 Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster 1-13
1.5.7 Using OSCH in Oracle SQL Developer 1-14
1.6 Oracle Loader for Hadoop Setup 1-14
1.6.1 Software Requirements 1-14
1.6.2 Installing Oracle Loader for Hadoop 1-14
1.6.3 Providing Support for Offline Database Mode 1-15
1.6.4 Using Oracle Loader for Hadoop on a Secure Hadoop Cluster 1-16

ORACLE

1.7 Oracle Shell for Hadoop Loaders Setup 1-16

1.7.1 Installing Oracle Shell for Hadoop Loaders on a Hadoop Node 1-18
1.7.2 Configuring OHSH to Enable Job Monitoring 1-19

1.8 Oracle XQuery for Hadoop Setup 1-21
1.8.1 Software Requirements 1-21
1.8.2 Installing Oracle XQuery for Hadoop 1-21
1.8.3 Troubleshooting the File Paths 1-23
1.8.4 Configuring Oozie for the Oracle XQuery for Hadoop Action 1-24

1.9 Oracle R Advanced Analytics for Hadoop Setup 1-24
1.9.1 Installing the Software on Hadoop 1-25
1.9.1.1 Software Requirements for a Third-Party Hadoop Cluster 1-25

1.9.1.2 Installing Sqoop on a Third-Party Hadoop Cluster 1-26

1.9.1.3 Installing Hive on a Third-Party Hadoop Cluster 1-26

1.9.1.4 Installing R on a Hadoop Client 1-27

1.9.1.5 Installing R on a Third-Party Hadoop Cluster 1-27

1.9.1.6 Installing the ORCH Package on a Third-Party Hadoop Cluster 1-27

1.9.2 Installing Additional R Packages 1-28
1.9.3 Providing Remote Client Access to R Users 1-30
1.9.3.1 Software Requirements for Remote Client Access 1-30

1.9.3.2 Configuring the Server as a Hadoop Client 1-30

1.9.3.3 Installing Sqoop on a Hadoop Client 1-31

1.9.3.4 Installing R on a Hadoop Client 1-31

1.9.3.5 Installing the ORCH Package on a Hadoop Client 1-31

1.9.3.6 Installing the Oracle R Enterprise Client Packages (Optional) 1-31

1.10 Oracle Data Integrator 1-32
1.11 Oracle Datasource for Apache Hadoop Setup 1-32
1.11.1 Configuring HiveServer2 1-33

Part Il Oracle Database Connectors

2 Oracle SQL Connector for Hadoop Distributed File System

2.1 About Oracle SQL Connector for HDFS 2-1

2.2 Getting Started With Oracle SQL Connector for HDFS 2-2

2.3 Configuring Your System for Oracle SQL Connector for HDFS 2-6
2.4 Using Oracle SQL Connector for HDFS with Oracle Big Data Appliance and

Oracle Exadata 2-7

2.5 Using the ExternalTable Command-Line Tool 2-7

2.5.1 About ExternalTable 2-7

2.5.2 ExternalTable Command-Line Tool Syntax 2-7

2.6 Creating External Tables 2-9

ORACLE iv

2.6.1 Creating External Tables with the ExternalTable Tool 2-9

2.6.2 Creating External Tables from Data Pump Format Files 2-10
2.6.2.1 Required Properties 2-10

2.6.2.2 Optional Properties 2-10

2.6.2.3 Defining Properties in XML Files for Data Pump Format Files 2-11

2.6.2.4 Example 2-11

2.6.3 Creating External Tables from Hive Tables 2-12
2.6.3.1 Hive Table Requirements 2-13

2.6.3.2 Data Type Mappings 2-13

2.6.3.3 Required Properties 2-13

2.6.3.4 Optional Properties 2-14

2.6.3.5 Defining Properties in XML Files for Hive Tables 2-14

2.6.3.6 Example 2-15

2.6.3.7 Creating External Tables from Partitioned Hive Tables 2-16

2.6.4 Creating External Tables from Delimited Text Files 2-20
2.6.4.1 Data Type Mappings 2-20

2.6.4.2 Required Properties 2-20

2.6.4.3 Optional Properties 2-21

2.6.4.4 Defining Properties in XML Files for Delimited Text Files 2-21

2.6.4.5 Example 2-23

2.6.5 Creating External Tables in SQL 2-23

2.7 Updating External Tables 2-24
2.7.1 ExternalTable Syntax for Publish 2-24
2.7.2 ExternalTable Example for Publish 2-25

2.8 Exploring External Tables and Location Files 2-25
2.8.1 ExternalTable Syntax for Describe 2-25
2.8.2 ExternalTable Example for Describe 2-26

2.9 Dropping Database Objects Created by Oracle SQL Connector for HDFS 2-26
2.9.1 ExternalTable Syntax for Drop 2-26
2.9.2 ExternalTable Example for Drop 2-27
2.10 More About External Tables Generated by the ExternalTable Tool 2-27
2.10.1 About Configurable Column Mappings 2-27
2.10.1.1 Default Column Mappings 2-27
2.10.1.2 All Column Overrides 2-27
2.10.1.3 One Column Overrides 2-28
2.10.1.4 Mapping Override Examples 2-28

2.10.2 What Are Location Files? 2-29
2.10.3 Enabling Parallel Processing 2-29
2.10.3.1 Setting Up the Degree of Parallelism 2-29

2.10.4 Location File Management 2-30
2.10.5 Location File Names 2-30

ORACLE Y

2.11 Configuring Oracle SQL Connector for HDFS 2-31

2.11.1 Creating a Configuration File 2-31
2.11.2 Oracle SQL Connector for HDFS Configuration Property Reference 2-32
2.12 Performance Tips for Querying Data in HDFS 2-45
3 Oracle Loader for Hadoop

3.1 What Is Oracle Loader for Hadoop? 3-1
3.2 Interfaces to Oracle Loader For Hadoop 3-2
3.3 Getting Started With Oracle Loader for Hadoop 3-2
3.3.1 Additional Information 3-6

3.4 Using Oracle Loader for Hadoop With the Hadoop Command Line Utility 3-6
3.4.1 About the Modes of Operation 3-8
3.4.1.1 Online Database Mode 3-8

3.4.1.2 Offline Database Mode 3-10

3.4.2 Creating the Target Table 3-12
3.4.2.1 Supported Data Types for Target Tables 3-12

3.4.2.2 Supported Partitioning Strategies for Target Tables 3-12

3.4.2.3 Compression 3-13

3.4.3 Creating a Job Configuration File 3-13
3.4.4 About the Target Table Metadata 3-15
3.4.4.1 Providing the Connection Details for Online Database Mode 3-15

3.4.4.2 Generating the Target Table Metadata for Offline Database Mode 3-16

3.4.5 About Input Formats 3-18
3.4.5.1 Delimited Text Input Format 3-18

3.4.5.2 Complex Text Input Formats 3-19

3.4.5.3 Hive Table Input Format 3-20

3.4.5.4 Avro Input Format 3-21

3.4.5.5 Oracle NoSQL Database Input Format 3-21

3.4.5.6 Custom Input Formats 3-22

3.4.6 Mapping Input Fields to Target Table Columns 3-23
3.4.6.1 Automatic Mapping 3-23

3.4.6.2 Manual Mapping 3-24

3.4.6.3 Converting a Loader Map File 3-24

3.4.7 About Output Formats 3-26
3.4.7.1 JDBC Output Format 3-26

3.4.7.2 Oracle OCI Direct Path Output Format 3-27

3.4.7.3 Delimited Text Output Format 3-27

3.4.7.4 Oracle Data Pump Output Format 3-29

3.4.8 Running a Loader Job 3-30
3.4.8.1 Specifying Hive Input Format JAR Files 3-30

ORACLE vi

3.4.8.2 Specifying Oracle NoSQL Database Input Format JAR Files 3-31
3.4.8.3 Job Reporting 3-31
3.4.9 Handling Rejected Records 3-31
3.4.9.1 Logging Rejected Records in Bad Files 3-31
3.4.9.2 Setting a Job Reject Limit 3-32
3.4.10 Balancing Loads When Loading Data into Partitioned Tables 3-32
3.4.10.1 Using the Sampling Feature 3-32
3.4.10.2 Tuning Load Balancing 3-32
3.4.10.3 Tuning Sampling Behavior 3-33
3.4.10.4 When Does Oracle Loader for Hadoop Use the Sampler's
Partitioning Scheme? 3-33
3.4.10.5 Resolving Memory Issues 3-33
3.4.10.6 What Happens When a Sampling Feature Property Has an
Invalid Value? 3-34
3.4.11 Optimizing Communications Between Oracle Engineered Systems 3-34
3.5 Oracle Loader for Hadoop Configuration Property Reference 3-35
3.6 Licenses for Third-Party Software Bundled With OLH 3-54
3.6.1 Apache Avro 1.8.1 3-54
3.6.2 Apache Commons Mathematics Library 2.2 3-54
4 Ease of Use Tools for Oracle Big Data Connectors
4.1 Introducing Oracle Shell for Hadoop Loaders 4-1
4.1.1 Getting Started with Oracle Shell for Hadoop Loaders 4-2
4.1.2 Third-Party Licenses for Bundled Software 4-3
4.1.2.1 Apache Commons Exec 1.3 4-4
4.1.2.2 ANTLR 4.7 4-4
4.2 Using Oracle SQL Developer With Oracle Big Data Connectors 4-5
Part Ill Oracle XQuery for Hadoop
5 Using Oracle XQuery for Hadoop
5.1 What Is Oracle XQuery for Hadoop? 5-1
5.2 Getting Started With Oracle XQuery for Hadoop 5-3
5.2.1 Basic Steps 5-3
5.2.2 Example: Hello World! 5-3
5.3 About the Oracle XQuery for Hadoop Functions 5-4
5.3.1 About the Adapters 5-4
5.3.2 About Other Modules for Use With Oracle XQuery for Hadoop 5-6
5.4 Creating an XQuery Transformation 5-6

ORACLE

Vii

5.4.1 XQuery Transformation Requirements 5-6
5.4.2 About XQuery Language Support 5-7
5.4.3 Accessing Data in the Hadoop Distributed Cache 5-7
5.4.4 Calling Custom Java Functions from XQuery 5-8
5.4.5 Accessing User-Defined XQuery Library Modules and XML Schemas 5-8
5.4.6 XQuery Transformation Examples 5-9
5.5 Running Queries 5-14
5.5.1 Oracle XQuery for Hadoop Options 5-15
5.5.2 Generic Options 5-15
5.5.3 About Running Queries Locally 5-16
5.6 Running Queries from Apache Oozie 5-16
5.6.1 Getting Started Using the Oracle XQuery for Hadoop Oozie Action 5-17
5.6.2 Supported XML Elements 5-17
5.6.3 Example: Hello World 5-18
5.7 Oracle XQuery for Hadoop Configuration Properties 5-19
5.8 Third-Party Licenses for Bundled Software 5-22
5.8.1 ANTLR 3.2 5-22
5.8.2 Apache Ant 1.9.8 5-23
5.8.3 Stax2 API3.1.4 5-24
5.8.4 Xerces?2Java2.11.0 5-25
5.8.5 XMLBeans 2.6.4 5-25
5.8.6 Woodstox XML Parser 5.0.2 5-29

6 Oracle XQuery for Hadoop Reference
6.1 Avro File Adapter 6-1
6.1.1 Built-in Functions for Reading Avro Files 6-2
6.1.1.1 avro:collection-avroxml 6-2
6.1.1.2 avro:get 6-3
6.1.2 Custom Functions for Reading Avro Container Files 6-3
6.1.3 Custom Functions for Writing Avro Files 6-5
6.1.4 Examples of Avro File Adapter Functions 6-6
6.1.5 About Converting Values Between Avro and XML 6-7
6.1.5.1 Reading Avro as XML 6-7
6.1.5.2 Writing XML as Avro 6-12
6.2 JSON File Adapter 6-17
6.2.1 Built-in Functions for Reading JSON 6-17
6.2.1.1 json:collection-jsonxml 6-17
6.2.1.2 json:parse-as-xml 6-18
6.2.1.3 json:get 6-18
6.2.2 Custom Functions for Reading JSON Files 6-19
ORACLE viii

6.2.3 Examples of JSON Functions
6.2.4 JSON File Adapter Configuration Properties
6.2.5 About Converting JSON Data Formats to XML
6.2.5.1 About Converting JSON Objects to XML
6.2.5.2 About Converting JSON Arrays to XML
6.2.5.3 About Converting Other JSON Types
6.3 Oracle Database Adapter

6.3.1 Custom Functions for Writing to Oracle Database

6.3.2 Examples of Oracle Database Adapter Functions

6.3.3 Oracle Loader for Hadoop Configuration Properties and Corresponding

%oracle-property Annotations
6.4 Oracle NoSQL Database Adapter
6.4.1 Prerequisites for Using the Oracle NoSQL Database Adapter

6.4.2 Built-in Functions for Reading from and Writing to Oracle NoSQL

Database
6.4.2.1 kv:collection-text
6.4.2.2 kv:collection-avroxml
6.4.2.3 kv:collection-xml
6.4.2.4 kv:collection-binxml
6.4.2.5 kv:collection-tika
6.4.2.6 kv:put-text
6.4.2.7 kv:put-xml
6.4.2.8 kv:put-binxml
6.4.2.9 kv:get-text
6.4.2.10 kv:get-avroxml
6.4.2.11 kv:get-xml
6.4.2.12 kv:get-binxml
6.4.2.13 kv:get-tika
6.4.2.14 kv:key-range
6.4.2.15 kv:key-range

6.4.3 Built-in Functions for Reading from and Writing to Oracle NoSQL
Database using Table API

6.4.3.1
6.4.3.2
6.4.3.3

kv-table:collection-jsontext
kv-table:get-jsontext
kv-table:put-jsontext

6.4.4 Built-in Functions for Reading from and Writing to Oracle NoSQL
Database using Large Object API

6.4.4.1
6.4.4.2
6.4.4.3
6.4.4.4
6.4.4.5

ORACLE

kv-lob:get-text
kv-lob:get-xml
kv-lob:get-binxml
kv-lob:get-tika
kv-lob:put-text

6-19
6-21
6-22
6-22
6-22
6-23
6-23
6-24
6-27

6-29
6-31
6-32

6-33
6-33
6-34
6-34
6-35
6-35
6-35
6-36
6-36
6-36
6-36
6-36
6-36
6-37
6-37
6-37

6-37
6-38
6-39
6-39

6-39
6-40
6-40
6-40
6-40
6-41

6.4.4.6 kv-lob:put-xml
6.4.4.7 kv-lob:put-binxml

6.4.5
6.4.6

6.4.7

6.4.8

6.4.9

6.4.10
6.4.11

6.4.12

6.4.13
6.4.14

Custom Functions for Reading Values from Oracle NoSQL Database

Custom Functions for Retrieving Single Values from Oracle NoSQL
Database

Custom Functions for Reading Values from Oracle NoSQL Database
using Table API

Custom Functions for Reading Single Row from Oracle NoSQL
Database using Table API

Custom Functions for Retrieving Single Values from Oracle NoSQL
Database using Large Object API

Custom Functions for Writing to Oracle NoSQL Database

Custom Functions for Writing Values to Oracle NoSQL Database using
Table API

Custom Functions for Writing Values to Oracle NoSQL Database using
Large Object API

Examples of Oracle NoSQL Database Adapter Functions
Oracle NoSQL Database Adapter Configuration Properties

6.5 Sequence File Adapter

6.5.1

Built-in Functions for Reading and Writing Sequence Files

6.5.1.1 seq:collection

6.5.1.2 seq:collection-xml

6.5.1.3 seq:collection-binxml

6.5.1.4 seq:collection-tika

6.5.1.5 seq:put

6.5.1.6 seq:put-xml

6.5.1.7 seq:put-binxml

6.5.2
6.5.3
6.5.4

Custom Functions for Reading Sequence Files
Custom Functions for Writing Sequence Files
Examples of Sequence File Adapter Functions

6.6 Solr Adapter

6.6.1

Prerequisites for Using the Solr Adapter

6.6.1.1 Configuration Settings

6.6.1.2 Example Query Using the Solr Adapter

6.6.2

Built-in Functions for Loading Data into Solr Servers

6.6.2.1 solr:put

6.6.3
6.6.4
6.6.5

Custom Functions for Loading Data into Solr Servers
Examples of Solr Adapter Functions
Solr Adapter Configuration Properties

6.7 Text File Adapter

6.7.1

Built-in Functions for Reading and Writing Text Files

6.7.1.1 text:collection

6.7.1.2 text:collection-xml

ORACLE

6-41
6-41
6-41

6-44

6-45

6-46

6-47
6-47

6-48

6-49
6-49
6-54
6-57
6-58
6-58
6-58
6-59
6-59
6-60
6-60
6-61
6-62
6-63
6-65
6-67
6-67
6-67
6-67
6-68
6-68
6-68
6-69
6-70
6-72
6-72
6-73
6-73

6.7.1.3 text:put
6.7.1.4 text:put-xml
6.7.1.5 textitrace
6.7.2 Custom Functions for Reading Text Files
6.7.3 Custom Functions for Writing Text Files
6.7.4 Examples of Text File Adapter Functions
6.8 Tika File Adapter
6.8.1 Built-in Library Functions for Parsing Files with Tika
6.8.1.1 tika:collection
6.8.1.2 tika:parse
6.8.2 Custom Functions for Parsing Files with Tika
6.8.3 Tika Parser Output Format
6.8.4 Tika Adapter Configuration Properties
6.8.5 Examples of Tika File Adapter Functions
6.9 XML File Adapter
6.9.1 Built-in Functions for Reading XML Files
6.9.1.1 xmlf:collection (Single Task)
6.9.1.2 xmlf:collection-multipart (Single Task)
6.9.1.3 xmlf:collection (Multiple Tasks)
6.9.2 Custom Functions for Reading XML Files
6.9.3 Examples of XML File Adapter Functions
6.10 Utility Module
6.10.1 Oracle XQuery Functions for Duration, Date, and Time
6.10.1.1 ora-fn:date-from-string-with-format
6.10.1.2 ora-fn:date-to-string-with-format
6.10.1.3 ora-fn:dateTime-from-string-with-format
6.10.1.4 ora-fn:dateTime-to-string-with-format
6.10.1.5 ora-fn:time-from-string-with-format
6.10.1.6 ora-fn:time-to-string-with-format
6.10.1.7 Format Argument
6.10.1.8 Locale Argument
6.10.2 Oracle XQuery Functions for Strings
6.10.2.1 ora-fn:pad-left
6.10.2.2 ora-fn:pad-right
6.10.2.3 ora-fn:trim
6.10.2.4 ora-fn:trim-left
6.10.2.5 ora-fn:trim-right
6.11 Hadoop Module
6.11.1 Built-in Functions for Using Hadoop
6.11.1.1 oxh:find
6.11.1.2 oxh:increment-counter

ORACLE

6-74
6-74
6-75
6-75
6-76
6-77
6-80
6-81
6-81
6-81
6-82
6-83
6-83
6-84
6-85
6-85
6-85
6-86
6-86
6-87
6-89
6-91
6-91
6-91
6-92
6-92
6-93
6-94
6-94
6-95
6-95
6-95
6-95
6-96
6-97
6-97
6-98
6-98
6-98
6-98
6-99

Xi

6.11.1.3 oxh:println 6-99

6.11.1.4 oxh:println-xml 6-99
6.11.1.5 oxh:property 6-100

6.12 Serialization Annotations 6-100

7 Oracle XML Extensions for Hive

7.1 What are the XML Extensions for Hive? 7-1
7.2 Using the Hive Extensions From the Command Line 7-2
7.3 Using the Hive Extensions in HiveServer2 7-3
7.4 About the Hive Functions 7-6
7.5 Permanently Declaring the Hive Functions 7-6
7.6 Creating XML Tables 7-6
7.6.1 Hive CREATE TABLE Syntax for XML Tables 7-7
7.6.2 CREATE TABLE Configuration Properties 7-7
7.6.3 CREATE TABLE Examples 7-9
7.6.3.1 Syntax Example 7-9

7.6.3.2 Simple Examples 7-10

7.6.3.3 OpenStreetMap Examples 7-12

7.7 Oracle XML Functions for Hive Reference 7-14
7.7.1 Data Type Conversions 7-15
7.7.2 Hive Access to External Files 7-15

7.8 Online Documentation of Functions 7-16
7.9 xml_exists 7-16
7.10 xml_query 7-18
7.11 xml_query_as_primitive 7-20
7.12 xml_table 7-23

Part IV Oracle R Advanced Analytics for Hadoop

8 Using Oracle R Advanced Analytics for Hadoop

8.1 About Oracle R Advanced Analytics for Hadoop 8-1
8.1.1 Oracle R Advanced Analytics for Hadoop Architecture 8-2
8.1.2 Oracle R Advanced Analytics for Hadoop packages and functions 8-2
8.1.3 Oracle R Advanced Analytics for Hadoop APIs 8-3
8.1.4 Inputs to Oracle R Advanced Analytics for Hadoop 8-4

8.2 Access to HDFS Files 8-5

8.3 Access to Apache Hive 8-5
8.3.1 ORCH Functions for Hive 8-5
8.3.2 ORE Functions for Hive 8-5

ORACLE Xii

8.3.3 Generic R Functions Supported in Hive 8-6

8.3.4 Support for Hive Data Types 8-8
8.3.5 Usage Notes for Hive Access 8-9
8.3.6 Example: Loading Hive Tables into Oracle R Advanced Analytics for
Hadoop 8-10
8.4 Access to Oracle Database 8-10
8.4.1 Usage Notes for Oracle Database Access 8-11
8.4.2 Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle
R Enterprise 8-11
8.5 Oracle R Advanced Analytics for Hadoop Functions 8-11
8.5.1 Native Analytical Functions 8-12
8.5.2 Using the Hadoop Distributed File System (HDFS) 8-13
8.5.3 Using Apache Hive 8-13
8.5.4 Using Aggregate Functions in Hive 8-14
8.5.5 Making Database Connections 8-14
8.5.6 Copying Data and Working with HDFS Files 8-15
8.5.7 Converting to R Data Types 8-16
8.5.8 Using MapReduce 8-17
8.5.9 Debugging Scripts 8-17
8.6 Demos of Oracle R Advanced Analytics for Hadoop Functions 8-18
8.7 Security Notes for Oracle R Advanced Analytics for Hadoop 8-19
8.8 Third-Party Licenses for ORAAH 8-19
8.8.1 ANTLR 4.7 8-20
8.8.2 Scala12.11.11 8-20
8.8.3 Scala 12.11.12 8-21
8.8.4 MPICH 3.3a2 8-26

Part \V Oracle DataSource for Apache Hadoop

O Oracle DataSource for Apache Hadoop (OD4H)

9.1 Operational Data, Big Data and Requirements 9-1
9.2 Overview of Oracle DataSource for Apache Hadoop (OD4H) 9-1
9.2.1 Opportunity with Hadoop 2.x 9-2
9.2.2 Oracle Tables as Hadoop Data Source 9-2
9.2.3 External Tables 9-3
9.2.3.1 TBLPROPERTIES 9-4

9.2.3.2 SERDE PROPERTIES 9-6

9.2.4 List of jars in the OD4H package 9-6

9.3 How does OD4H work? 9-6
9.3.1 Create a new Oracle Database Table or Reuse an Existing Table 9-7

ORACLE Xiii

9.3.2 Hive DDL 9-7
9.3.3 Creating External Tables in Hive 9-8
9.4 Features of OD4H 9-9
9.4.1 Performance And Scalability Features 9-9
9.4.1.1 Splitters 9-10
9.4.1.2 Choosing a Splitter 9-12
9.4.1.3 Predicate Pushdown 9-13
9.4.1.4 Projection Pushdown 9-13
9.4.1.5 Partition Pruning 9-14
9.4.2 Smart Connection Management 9-14
9.4.3 Security Features 9-15
9.4.3.1 Improved Authentication 9-15
9.5 Using HiveQL with OD4H 9-18
9.6 Using Spark SQL with OD4H 9-18
9.7 Writing Back to Oracle Database 9-19
Part VI Appendices
A Using Oracle's Hive Storage Handler for Kafka to Create a Hive
External Table for Kafka Topics
B Apache License
B.1 Apache Licensed Code B-4
C Additional Big Data Connector Resources
Index
ORACLE Xiv

Preface

Audience

The Oracle Big Data Connectors User's Guide describes how to install and use Oracle

Big Data Connectors:

e Oracle Loader for Hadoop

e Oracle SQL Connector for Hadoop Distributed File System
e Oracle XQuery for Hadoop

e Oracle R Advanced Analytics for Hadoop

e Oracle Datasource for Apache Hadoop

« Oracle Data Integrator?

This document is intended for users of Oracle Big Data Connectors, including the
following:

* Application developers
¢ Java programmers

* XQuery programmers
e System administrators

« Database administrators

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/

lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

if you are hearing impaired.

Related Documents

For more information, see the following documents:

1 Oracle Big Data Connectors includes a restricted use license for the Oracle Data Integrator when licensed on an
Oracle Big Data Appliance. However, additional licensing is required for using it on other Hadoop clusters.

ORACLE

XV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle Loader for Hadoop Java API Reference

* Oracle Big Data Appliance Software User's Guide

Text Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Syntax Conventions

The syntax is presented in a simple variation of Backus-Naur Form (BNF) that uses
the following symbols and conventions:

Symbol or Convention Description

[] Brackets enclose optional items.
{} Braces enclose a choice of items, only one of which is required.
| A vertical bar separates alternatives within brackets or braces.

Ellipses indicate that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, and vertical bars must be
entered as shown.

Changes in Oracle Big Data Connectors Release 4.12

The following are changes in Oracle Big Data Connectors for Release 4.12.

Software Updates in This Release

Connector Version
Oracle SQL Connector for HDFS (OSCH) 3.8.2
Oracle Loader for Hadoop (OLH) 3.9.2
Oracle Shell for Hadoop Loaders (OHSH) 1.3.2
Oracle XQuery for Hadoop (OXH) 49.1
Oracle R Advanced Analytics for Hadoop (ORAAH) 2.8.0
Oracle DataSource for Apache Hadoop (OD4H) 131
Oracle Data Integrator (ODI) 12.2.1.2.6

ORACLE XVi

Preface

New Commands for Monitoring OHSH Jobs
OHSH includes four new commands to monitor jobs and a command to remove jobs.
* ohsh> show job <job_id>
Shows detailed information about the job specified by ID.
e ohsh> show job summary <job_id>
Shows the performance of the completed job specified by ID.
* ohsh> show job abstract <job_id>
Provides a functional description of the job .
e ohsh> show jobs [failed|running|conpleted|finished] [extended] [<integer>]
Shows the last n jobs of a particular job status.

— The first parameter specifies job status. If the status is not specified, all jobs
are shown, regardless of job status.

— The second parameter specifies whether to show details.

— The third parameter specifies that the last n jobs of the specified status should
be shown. If n is not specified, then all jobs of that status are shown.

* ohsh> truncate jobs [<integer>]

Removes the last n jobs from the database. If the integer is not specified, the
command removes all jobs

¢ See Also:

e See the OHSH help for descriptions of all OHSH commands:
ohsh> hel p

e When OHSH is installed in on-premises environments (outside of Oracle
Big Data cloud services), edits to the smart | oader - conf. xnl configuration
file are required in order to enable these commands.

Other Changes

In earlier releases, usage examples for each of the Oracle Big Data Connectors are
automatically installed into an exanpl es directory under the home directory for the
connector. In this release, the installation zip file for each connector includes an
exanpl es. zi p file which you can unpack when you are ready to start working with the
examples.

ORACLE Vi

Setup

Part | contains the following chapter:

e Getting Started with Oracle Big Data Connectors

ORACLE

Getting Started with Oracle Big Data
Connectors

This chapter describes the Oracle Big Data Connectors and provides installation
instructions.

This chapter contains the following sections:

About Oracle Big Data Connectors

Big Data Concepts and Technologies

Downloading and Installing Oracle Big Data Connectors

Oracle SQL Connector for Hadoop Distributed File System Setup
Oracle Loader for Hadoop Setup

Oracle Shell for Hadoop Loaders Setup

Oracle XQuery for Hadoop Setup

Oracle R Advanced Analytics for Hadoop Setup

Oracle Data Integrator

Oracle Datasource for Apache Hadoop Setup

1.1 About Oracle Big Data Connectors

Oracle Big Data Connectors facilitate access to data stored in an Apache Hadoop
cluster. They can be licensed for use on either Oracle Big Data Appliance or a Hadoop
cluster running on commodity hardware.

ORACLE

These are the connectors:

Oracle SQL Connector for Hadoop Distributed File System: Enables an Oracle
external table to access data stored in Hadoop Distributed File System (HDFS)
files or a table in Apache Hive. The data can remain in HDFS or the Hive table, or
it can be loaded into an Oracle database.

Oracle Loader for Hadoop: Provides an efficient and high-performance loader for
fast movement of data from a Hadoop cluster into a table in an Oracle database.
Oracle Loader for Hadoop prepartitions the data if necessary and transforms it into
a database-ready format. It optionally sorts records by primary key or user-defined
columns before loading the data or creating output files.

Oracle XQuery for Hadoop: Runs transformations expressed in the XQuery
language by translating them into a series of MapReduce jobs, which are executed
in parallel on the Hadoop cluster. The input data can be located in a file system
accessible through the Hadoop File System API, such as the Hadoop Distributed
File System (HDFS), or stored in Oracle NoSQL Database. Oracle XQuery for
Hadoop can write the transformation results to HDFS, Oracle NoSQL Database,
Apache Solr, or Oracle Database. An additional XML processing capability is
through XML Extensions for Hive.

1-1

Chapter 1
Big Data Concepts and Technologies

» Oracle Shell for Hadoop Loaders: A helper shell that provides a simple-to-use
command line interface to Oracle Loader for Hadoop, Oracle SQL Connector for
HDFS, and Copy to Hadoop (a feature of Big Data SQL). It has basic shell
features such as command line recall, history, inheriting environment variables
from the parent process, setting new or existing environment variables, and
performing environmental substitution in the command line.

» Oracle R Advanced Analytics for Hadoop: Provides a general computation
framework, in which you can use the R language to write your custom logic as
mappers or reducers. A collection of R packages provides predictive analytic
techniques that run as MapReduce jobs. The code executes in a distributed,
parallel manner using the available compute and storage resources on the
Hadoop cluster. Oracle R Advanced Analytics for Hadoop includes interfaces to
work with Apache Hive tables, the Apache Hadoop compute infrastructure, the
local R environment, and Oracle database tables.

» Oracle Data Integrator: Extracts, loads, and transforms data from sources such
as files and databases into Hadoop and from Hadoop into Oracle or third-party
databases. Oracle Data Integrator provides a graphical user interface to utilize the
native Hadoop tools and transformation engines such as Hive, HBase, Sqoop,
Oracle Loader for Hadoop, and Oracle SQL Connector for Hadoop Distributed File
System.

» Oracle Datasource for Hadoop: Provides direct, fast, parallel, secure and
consistent access to master data in Oracle Database using Hive SQL, Spark SQL,
as well as Hadoop APIs that support SerDes, HCatalog, InputFormat and
StorageHandler.

Individual connectors may require that software components be installed in Oracle
Database and either the Hadoop cluster or an external system set up as a Hadoop
client for the cluster. Users may also need additional access privileges in Oracle
Database. For details on integrating Oracle Database and Apache Hadoop visit the
Certification Matrix.

¢ See Also:

My Oracle Support Information Center: Big Data Connectors (ID 1487399.2)
and its related information centers.

1.2 Big Data Concepts and Technologies

ORACLE

Enterprises are seeing large amounts of data coming from multiple sources. Click-
stream data in web logs, GPS tracking information, data from retail operations, sensor
data, and multimedia streams are just a few examples of vast amounts of data that
can be of tremendous value to an enterprise if analyzed. The unstructured and semi-
structured information provided by raw data feeds is of little value in and of itself. The
data must be processed to extract information of real value, which can then be stored
and managed in the database. Analytics of this data along with the structured data in
the database can provide new insights into the data and lead to substantial business
benefits.

1-2

http://www.oracle.com/us/products/database/big-data-connectors/certifications/index.html

Chapter 1
Big Data Concepts and Technologies

1.2.1 What is MapReduce?

MapReduce is a parallel programming model for processing data on a distributed
system. It can process vast amounts of data quickly and can scale linearly. It is
particularly effective as a mechanism for batch processing of unstructured and semi-
structured data. MapReduce abstracts lower level operations into computations over a
set of keys and values.

A simplified definition of a MapReduce job is the successive alternation of two phases,
the map phase and the reduce phase. Each map phase applies a transform function
over each record in the input data to produce a set of records expressed as key-value
pairs. The output from the map phase is input to the reduce phase. In the reduce
phase, the map output records are sorted into key-value sets so that all records in a
set have the same key value. A reducer function is applied to all the records in a set
and a set of output records are produced as key-value pairs. The map phase is
logically run in parallel over each record while the reduce phase is run in parallel over
all key values.

Note:

Oracle Big Data Connectors 3.0 and later supports the Yet Another
Resource Negotiator (YARN) implementation of MapReduce.

1.2.2 What is Apache Hadoop?

Apache Hadoop is the software framework for the development and deployment of
data processing jobs based on the MapReduce programming model. At the core,
Hadoop provides a reliable shared storage and analysis system?. Analysis is provided
by MapReduce. Storage is provided by the Hadoop Distributed File System (HDFS), a
shared storage system designed for MapReduce jobs.

The Hadoop ecosystem includes several other projects including Apache Avro, a data
serialization system that is used by Oracle Loader for Hadoop.

Cloudera's Distribution including Apache Hadoop (CDH) is installed on Oracle Big
Data Appliance. You can use Oracle Big Data Connectors on a Hadoop cluster
running CDH or the equivalent Apache Hadoop components, as described in the setup
instructions in this chapter.

1 Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly Media Inc., 2012, 978-1449311520).

ORACLE 1-3

Chapter 1
Downloading and Installing Oracle Big Data Connectors

" See Also:

* For conceptual information about the Hadoop technologies, the following
third-party publication:

Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly
Media Inc., 2012, ISBN: 978-1449311520).

e For information about Cloudera's Distribution including Apache Hadoop
(CDHb), the Oracle Cloudera website at

http://oracle.cloudera. con
e For information about Apache Hadoop, the website at

http://hadoop. apache. or g/

1.3 Downloading and Installing Oracle Big Data Connectors

You can download Oracle Big Data Connectors from Oracle Technology Network or
Oracle Software Delivery Cloud. Both sites are cross-browser compatible.

Note:

Oracle Big Data Appliance customers do not need to download Oracle Big
Data Connectors from an external source. Oracle Big Data Connectors are
included in the Oracle Big Data Appliance deployment bundle. See Enabling
and Disabling Oracle Big Data Connectors in the Oracle Big Data Appliance
Owner’s Guide. All other customers should download the software as
described here.

To download from Oracle Technology Network:

1. Goto
http:// ww. oracl e. coni t echnet wor k/ bdc/ bi g- dat a- connect or s/ downl oads/ i ndex. ht

2. Click the name of each connector to download a zip file containing the installation
files.

To download from Oracle Software Delivery Cloud:

1. Gotohttps://edelivery.oracle.con

2. Sign in and accept the Export Restrictions.

3. Type in the product name in the Product field and select the platform:
Product: Oracle Big Data Connectors
Platform: Linux x86-64

4. When Oracle Big Data Connectors appears in the Product List, click Continue.
The most recent major release of Oracle Big Data Connectors will appear as the
selected option.

5. To choose a different release, click Select Alternate Release and choose another
package from the list. Click Continue.

ORACLE 1-4

http://www.oracle.com/pls/lookup?ctx=E71937-01&id=cloudera
http://hadoop.apache.org/
http://www.oracle.com/pls/topic/lookup?ctx=E87334-01&id=bdc_downloads
https://edelivery.oracle.com/

Chapter 1
Certified Hadoop Platforms

6. Read the Terms and Conditions. Click the checkbox if you accept them, then click
Continue.

7. On the download site, select the zip files for individual Oracle Big Data Connectors
or click Download All.

Each download package includes a README file with installation instructions and a
set of examples.

1.4 Certified Hadoop Platforms

All Oracle Big Data Connectors run on both CDH (Cloudera Distribution Including
Apache Hadoop) and HDP (Hortonworks Data Platform).

See the Oracle Big Data Connectors Certification Matrix for currently supported
releases of CDH and HDP

1.5 Oracle SQL Connector for Hadoop Distributed File
System Setup

You install and configure Oracle SQL Connector for Hadoop Distributed File System
(HDFS) on the system where Oracle Database runs. If Hive tables are used as the
data source, then you must also install and run Oracle SQL Connector for HDFS on a
Hadoop client where users access Hive.

On Oracle Big Data Appliance, there is an option to include Oracle Big Data
Connectors in the installation. If this was selected in the Configuration Generation
Utility, then Oracle SQL Connector for HDFS is already available on the appliance.
(See Chapter 4, Using Oracle Big Data Appliance Configuration Generation Utility, in
the Big Data Appliance Owner’s Guide.)

This section contains the following topics:

e Software Requirements

e Installing and Configuring a Hadoop Client on the Oracle Database System
e Installing Oracle SQL Connector for HDFS

e Oracle Database Privileges for OSCH Users

e OS-Level Requirements for OSCH Users

e Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster

1.5.1 Software Requirements

ORACLE

Oracle SQL Connector for HDFS requires the following software:

Hadoop Requirements:

e A certified release of either CDH (Cloudera Distribution Including Apache Hadoop)
or HDP (Hadoop Data Platform).

e Apache Hive 1.1.0, or 1.2.1 (required for Hive table access, otherwise optional)

1-5

https://www.oracle.com/database/big-data-connectors/certifications.html

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

» Java Development Kit (JDK). Consult the distributor of your Hadoop software
(Cloudera or Apache) for the recommended version.

For supported CDH and HDP releases, see the Oracle Big Data Connectors
Certification Matrix

Oracle Big Data Appliance already meets these requirements. If you are using CDH or
HDP on a commaodity server platform, check to ensure that the system meets them.

Oracle Database System and Hadoop Client System Requirements:

» Aversion of Oracle Database that is currently supported by Oracle.

» The same version of Hadoop that is installed on your Hadoop cluster: CDH5, or
Hortonworks Data Platform 2.4.0 and 2.5.0. .

If you have a secure Hadoop cluster configured with Kerberos, then the Hadoop
client on the database system must be set up to access a secure cluster.

* The same version of the JDK that is installed on your Hadoop cluster.

Note:

Oracle SQL Connector for HDFS requires a Hadoop client on the OS
platform of the database system. This is straightforward for Linux systems.
Platforms other than Linux require a tarball installation of the Hadoop client.
Refer to this Oracle Blog post Connecting Hadoop with Oracle. See the
following documents in My Oracle Support for details:

e Installation Instructions for Oracle SQL Connector for HDFS on Solaris
(Doc ID 2101331.1)

e Using Oracle Big Data Connectors with Hadoop clusters on commodity
hardware and Oracle Databases on commodity hardware (Doc ID
2101354.1)

e Configuring Oracle SQL Connector for HDFS for Oracle Database
systems on IBM AIX (Doc ID 2152000.1)

See Also:

Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster.

1.5.2 Installing and Configuring a Hadoop Client on the Oracle
Database System

ORACLE

Oracle SQL Connector for HDFS requires a Hadoop client on the Oracle Database
System. The Hadoop installation can be minimally configured for Hadoop client use
only. The full configuration of Hadoop is not needed. The only parts of Hadoop needed
for Oracle SQL Connector for HDFS are the Hadoop JAR files and the configuration
files from the Hadoop installation.

1-6

https://www.oracle.com/database/big-data-connectors/certifications.html
https://www.oracle.com/database/big-data-connectors/certifications.html
https://blogs.oracle.com/bigdataconnectors/entry/oracle_sql_connector_for_hdfs
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57643753237655&id=2101331.1&_adf.ctrl-state=ea0w96whc_77
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57643753237655&id=2101331.1&_adf.ctrl-state=ea0w96whc_77
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57692826018296&id=2101354.1&_adf.ctrl-state=ea0w96whc_134
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57692826018296&id=2101354.1&_adf.ctrl-state=ea0w96whc_134
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57692826018296&id=2101354.1&_adf.ctrl-state=ea0w96whc_134
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57766110119717&id=2152000.1&_adf.ctrl-state=ea0w96whc_191
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=57766110119717&id=2152000.1&_adf.ctrl-state=ea0w96whc_191

ORACLE

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

Note:

Even if there is a complete Hadoop installation on the Oracle Database
system, do not start Hadoop on this system at any time. If Hadoop is running
locally, then Oracle SQL Connector for HDFS attempts to connect to it
instead of to the Hadoop cluster.

For Oracle RAC systems including Oracle Exadata Database Machine, you must
install and configure Oracle SQL Connector for HDFS using identical paths on all
systems running Oracle instances.

Adding a Hadoop Client for use with Oracle Big Data Appliance

Oracle Big Data Appliance requires that you follow its own system-supported
procedures for installing a Hadoop client. If your Hadoop system is an Oracle Big Data
Appliance, see Providing Remote Access to CDH in the Oracle Big Data Appliance
Software User's Guide. This section describes how to install the CDH client, configure
it for use in a Kerberos-secured or non-secured environment, and verify HDFS access.

Adding a Hadoop Client for use with Other Hadoop Systems

For connections to Hadoop systems other than Oracle Big Data Appliance, download
and install the Hadoop client provide by the Hadoop distributor (Cloudera or Apache).
The following example shows how to connect a Hadoop client to a CDH system that is
not an Oracle Big Data Appliance. You can use these steps to install the client,
configure it for use in Kerberos-secured or a non-secured environment, and test to
verify HDFS access.

In this case also you need set up Kerberos access (if Kerberos is installed) and should
include a final test to make sure HDFS access is working.

1. Use one of these methods to obtain the files:

» Download the tarball from the Cloudera tarball downloads page. Check that
the Hadoop version in the filename (as in hadoop-2.5.0-cdh5.2.5.tar.gz) that
matches the version of the Hadoop cluster.

» Click on the hdfs service in Cloudera Manager, and select the action
Download Client Configuration.

2. Extract the files and copy them to a permanent path of your choice on the
database system.

3. Setthe HADOOP_HOME environment variable to this path and add
HADOOP_HOME/bin to the PATH variable.

4. Ensure that JAVA_HOME points to a JDK installation with the version required by
the Hadoop installation.

5. If your cluster is secured with Kerberos, then configure the Oracle system to
permit Kerberos authentication. See "Using Oracle SQL Connector for HDFS on a
Secure Hadoop Cluster."

6. Test HDFS access from the Oracle Database system:

a. Login to the system where Oracle Database is running by using the Oracle
Database account.

b. Open a Bash shell and enter this command:

1-7

http://docs.oracle.com/cd/E63064_01/doc.42/e63063/start.htm#CIHHEEFD
http://docs.oracle.com/cd/E63064_01/doc.42/e63063/start.htm#CIHHEEFD

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

$ hdfs dfs -1s /user

You might need to add the directory containing the Hadoop executable file to
the environment variable. The default path for CDH is / usr/ bi n.

You should see the same list of directories that you see when you run the
command directly on the Hadoop cluster. If not, then first ensure that the
Hadoop cluster is up and running. If the problem persists, then you must
correct the Hadoop client configuration so that Oracle Database has access to
the Hadoop cluster file system.

7. For an Oracle RAC system, repeat this procedure for every Oracle Database
instance.

Setting up Hadoop Clients on Additional Systems

You have the option to set up Hadoop clients on other servers in addition to the Oracle
Database system. If you do, use the procedure provided in this section and install the
same version of CDH or Apache Hadoop consistently.

1.5.3 Installing Oracle SQL Connector for HDFS

ORACLE

Follow this procedure to install Oracle SQL Connector for HDFS on the Oracle
Database system.

In addition to this required installation on the database system, you can also install
Oracle SQL Connector for HDFS on any system configured as a compatible Hadoop
client. This will give you the option to create Oracle Database external tables from that
node.

To install Oracle SQL Connector for HDFS on the Oracle Database system:

1. Download the zip file to a directory on the system where Oracle Database runs.
2. Unpack the content of or aosch- <versi on>. zi p.

$ unzip oraosch-<version>.zip
Archive: oraosch-<version>.zip
extracting: orahdfs-<version>.zip
inflating: README.txt

3. Unpack orahdf s- <versi on>. zi p into a permanent directory:

$ unzip orahdfs-<version>.zip

unzi p orahdfs-<version>. zip

Archive: orahdfs-<version>. zip
creating: orahdfs-<version>/
creating: orahdfs-<version>/|og/
inflating: orahdfs-<version>/exanples. zip
creating: orahdfs-<version>/doc/
inflating: orahdfs-<version>/ doc/ README. t xt
creating: orahdfs-<version>/jlib/
inflating: orahdfs-<version>/jlib/osdt _cert.jar
inflating: orahdfs-<version>/jlib/oraclepki.jar
inflating: orahdfs-<version>/jlib/osdt_core.jar
inflating: orahdfs-<version>/jlib/ojdbc7.jar
inflating: orahdfs-<version>/jlib/orahdfs.jar
inflating: orahdfs-<version>/jlib/ora-hadoop-commn.jar
creating: orahdfs-<version>/bin/
inflating: orahdfs-<version>/bin/hdfs_stream
inflating: orahdfs-<version>/bin/hdfs_stream cml

1-8

ORACLE

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

The unzipped files have the structure shown in Example 1-1. The exanpl es. zi p file
is not unzipped. Unzip that file later when you want to work with the examples.

Open the or ahdf s- <ver si on>/ bi n/ hdf s_st reamBash shell script in a text editor, and
make the changes indicated by the comments in the script, if necessary

The hdfs_stream script does not inherit any environment variable settings, and so
they are set in the script if Oracle SQL Connector for HDFS needs them:

* PATH: If the hadoop script is not in / usr/ bi n: bi n (the path initially set in
hdf s_stream), then add the Hadoop bin directory, such as / usr/1i b/ hadoop/ bi n.

* JAVA HOME: If Hadoop does not detect Java, then set this variable to the Java
installation directory. For example, / usr/ bi n/j ava.

See the comments in the script for more information about these environment
variables.

The hdf s_st reamscript is the preprocessor for the Oracle Database external table
created by Oracle SQL Connector for HDFS.

If your cluster is secured with Kerberos and the account does not already have a
Kerberos ticket, then obtain one:

$ kinit
See Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster in this
guide for information on acquiring and maintaining Kerberos tickets.

Run hdf s_st reamfrom the Oracle SQL Connector for HDFS / bi n directory. You
should see this usage information:

$./hdfs_stream
Usage: hdfs_stream|ocationFile

If you do not see the usage statement, then ensure that the operating system user
that Oracle Database is running under (such as or acl e) has the following
permissions:

* Read and execute permissions on the hdfs_stream script:

$ Is -1 OSCH HOVE/bin/hdfs_stream
-rwxr-xr-x 1 oracle oinstall Nov 27 15:51 hdfs_stream

* Read permission on orahdfs.jar.

$ Is -1 OSCH HOVE/jlib/orahdfs. jar
-rwxr-xr-x 1 oracle oinstall Nov 27 15:51 orahdfs.jar

If you do not see these permissions, then enter a chmod command to fix them, for
example:

$ chmod 755 OSCH HOVE/bin/hdfs_stream
In the previous commands, 0SCH HOME represents the Oracle SQL Connector for
HDFS home directory.

For an Oracle RAC system, repeat the previous steps for every Oracle instance,
using identical path locations.

Log in to Oracle Database and create a database directory for the or ahdf s-
<ver si on>/ bi n directory where hdfs_stream resides. For Oracle RAC systems, this
directory must be accessible by all Oracle instances through identical paths.

In this example, Oracle SQL Connector for HDFS is installed in / et c:

1-9

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

SQ.> CREATE OR REPLACE DI RECTORY osch_bin_path AS '/etc/orahdfs-<version>/ bin';
9. To support access to Hive tables:
a. Ensure that the system is configured as a Hive client.

b. Add the Hive JAR files and the Hive conf directory to the HADOOP_CLASSPATH
environment variable. To avoid JAR conflicts among the various Hadoop
products, Oracle recommends that you set HADOOP_CLASSPATH in your local shell
initialization script instead of making a global change to HADOOP_CLASSPATH. If
there are multiple JAR file paths in HADOOP_CLASSPATH ensure that the JARs for
the current product are listed first.

The following figure illustrates shows the flow of data and the components locations.

ORACLE 1-10

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

Figure 1-1 Oracle SQL Connector for HDFS Installation for HDFS and Data Pump Files

Hadoop
Client

Oracle Oracle
Database Database
System

Oracle SQL

Connector

for HDFS

Hadoop Cluster |

ORACLE" 1-11

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

The unzipped files have the structure shown in the following example.
Example 1-1 Structure of the orahdfs Directory

or ahdf s- <ver si on>
bi n/
hdf s_stream
hdf s_stream cnu
doc/
README. t xt
jlibl/
oj dbc7.j ar
oral oader.jar
or a- hadoop- comrmon. j ar
oracl epki . jar
orahdfs.jar
osdt _cert.jar
osdt _core.jar
| og/
exanpl es. zi p

1.5.4 Oracle Database Privileges for OSCH Users

Oracle Database users require these privileges in order to use Oracle SQL Connector
for HDFS to create external tables:

* CREATE SESSI ON

* CREATE TABLE

e CREATE VI EW

e EXECUTE on the UTL_FI LE PL/SQL package

* READ and EXECUTE on the OSCH_BI N_PATH directory created during the installation of
Oracle SQL Connector for HDFS. Do not grant write access to anyone. Grant
EXECUTE only to those who intend to use Oracle SQL Connector for HDFS.

* READ and WRI TE on a database directory for storing external tables, or the CREATE
ANY DI RECTORY system privilege. For Oracle RAC systems, this directory must be on
a shared disk that all Oracle instances can access.

» Atablespace and quota for copying data into the Oracle database. Optional.

The following example shows the SQL commands granting these privileges to
HDFSUSER.

Note:

To query an external table that uses Oracle SQL Connector for HDFS, users
need READ privilege for Oracle Database 12c or later and SELECT privilege for
older versions of the database.

Example 1-2 Granting Users Access to Oracle SQL Connector for HDFS

CONNECT / AS sysdba

CREATE USER hdf suser | DENTI FI ED BY password
DEFAULT TABLESPACE hdf sdat a
QUOTA UNLI M TED ON hdf sdat a

ORACLE 1-12

Chapter 1
Oracle SQL Connector for Hadoop Distributed File System Setup

GRANT CREATE SESSI ON, CREATE TABLE, CREATE VI EW TO hdf suser;
GRANT EXECUTE ON sys.utl _file TO hdfsuser;

GRANT READ, EXECUTE ON DI RECTORY osch_bi n_path TO hdf suser;
GRANT READ, WRI TE ON DI RECTORY external _table_dir TO hdf suser;

1.5.5 OS-Level Requirements for OSCH Users

Wherever Oracle SQL Connector for HDFS is installed (on the Oracle Database
system, a Hadoop cluster node, or a separate system set up as a Hadoop client), the
OS-level user account that logs in to use OSCH requires access to the shell variable
HADOOP_CLASSPATH. This variable must include the OSCH path on the Hadoop cluster —
pat h/ or ahdf s-<version>/jlib/*

Set the HADOOP_CLASSPATH as shown in the following example, where the OSCH
path is prepended to the current HADOOP_CLASSPATH. Putting OSCH first gives it
precedence over other JARs in the path.

$ export HADOOP_CLASSPATH="/ et c/ or ahdf s- <versi on>/j | i b/ *: $HADOOP_CLASSPATH"

1.5.6 Using Oracle SQL Connector for HDFS on a Secure Hadoop

Cluster

ORACLE

When users access an external table that was created using Oracle SQL Connector
for HDFS, the external table behaves like a Hadoop client. On the system where the
Oracle database is running, it connects as the OS user of the Oracle process
(usuallyor acl e). For OSCH to work, this account requires read permission on the files
of all OSCH users. On a non-secure cluster these files are world-readable, but on a
Kerberos-secured cluster this access requires a Kerberos ticket.

For a user to authenticate using ki nit:

* A Hadoop administrator must register the operating system user (such as or acl e)
and password in the Key Distribution Center (KDC) for the cluster.

e A system administrator for the Oracle Database system must configure /et c/
krb5. conf and add a domain definition that refers to the KDC managed by the
secure cluster.

These steps enable the operating system user to authenticate with the ki ni t utility
before submitting Oracle SQL Connector for HDFS jobs. The ki ni t utility typically uses
a Kerberos keytab file for authentication without an interactive prompt for a password.

The system should run ki ni t on a regular basis, before letting the Kerberos ticket
expire, to enable Oracle SQL Connector for HDFS to authenticate transparently. Use
cron or a similar utility to run ki ni t. For example, if Kerberos tickets expire every two
weeks, then set up a cron job to renew the ticket weekly.

Be sure to schedule the cron job to run when Oracle SQL Connector for HDFS is not
actively being used.

Do not call ki ni t within the Oracle SQL Connector for HDFS preprocessor script
(hdf s_st ream), because it could trigger a high volume of concurrent calls to ki nit and
create internal Kerberos caching errors.

1-13

Chapter 1
Oracle Loader for Hadoop Setup

Note:

Oracle Big Data Appliance configures Kerberos security automatically as a
configuration option.

1.5.7 Using OSCH in Oracle SQL Developer

Oracle SQL Developer is a free graphical IDE that includes integration with Oracle
Database and Oracle Big Data Connectors (among many other products). It provides
wizards to help you access and use Oracle Big Data Connectors. See Using Oracle
SQL Developer With Oracle Big Data Connectors in this guide for instructions on
downloading Oracle SQL Developer and configuring it for use with Oracle Big Data
Connectors.

1.6 Oracle Loader for Hadoop Setup

Follow the instructions in these sections for setting up Oracle Loader for Hadoop:
e Software Requirements

* Installing Oracle Loader for Hadoop

* Providing Support for Offline Database Mode

e Using Oracle Loader for Hadoop on a Secure Hadoop Cluster

1.6.1 Software Requirements

Oracle Loader for Hadoop requires the following software:

* A certified release of CDH or HDP.
See the Oracle Big Data Connectors Certification Matrix

e Atarget database system running a version of Oracle Database that is currently
supported by Oracle.

Oracle Big Data Appliance already meets these requirements. If you are using CDH or
HDP on a commodity server platform, check to ensure that the system meets them.

1.6.2 Installing Oracle Loader for Hadoop

ORACLE

Oracle Loader for Hadoop is packaged with the Oracle Database 12c (12.1.0.2 and
12.2.0.1) client libraries and Oracle Instant Client libraries for connecting to Oracle
Database 11.2.0.4, 12.1.0.2, or 12.2.0.1.

To install Oracle Loader for Hadoop:

1. Unpack the content of or al oader - <ver si on>. x86_64. zi p into a directory on your
Hadoop cluster or on a system configured as a Hadoop client.

2. Unzip oral oader - <ver si on>-h2. x86_64. zi p into a directory on your Hadoop cluster.

A directory named or al oader - <ver si on>-h2 is created with the following
subdirectories along with the exanpl es. zi p file, which you must unzip yourself.

1-14

https://www.oracle.com/database/big-data-connectors/certifications.html

Chapter 1
Oracle Loader for Hadoop Setup

doc
jlib
lib
exanples. zip

3. Create a variable named OLH_HOVE and set it to the installation directory.

4. Add the following paths to the HADOOP_CLASSPATH variable:

e For all installations:
$OLH HOVE/ j | b/ *
When using OLH, $OLH_HOME/jlib/* should always be listed first in

HADOOP_CLASSPATH. Alternatively, you can avoid conflict with other scripts by
defining HADOOP_CLASSPATH within a script that uses it.

e To support data loads from Hive tables:

fusr/lib/hivellibl*
[etc/ hivel conf

See "oracle.hadoop.xquery.lib.share.”
e Toread data from Oracle NoSQL Database Release 2:

$KVHOVE/ | i b/ kvstore. jar

1.6.3 Providing Support for Offline Database Mode

ORACLE

In a typical installation, Oracle Loader for Hadoop can connect to the Oracle Database
system from the Hadoop cluster or a Hadoop client. If this connection is impossible—
for example, the systems are located on distinct networks—then you can use Oracle
Loader for Hadoop in offline database mode.

To support offline database mode, you must install Oracle Loader for Hadoop on two
systems:

* The Hadoop cluster or a system set up as a Hadoop client.

* The Oracle Database system or a system with network access to Oracle
Database, as described in the following procedure.

To support Oracle Loader for Hadoop in offline database mode:

1. Unpack the content of or al oader - <ver si on>. zi p into a directory on the Oracle
Database system or a system with network access to Oracle Database. You must
use the same version of the software as you installed on the Hadoop cluster.

2. Unzip oral oader - <ver si on>- h2. x86_64. zi p.

3. Create a variable named OLH_HOVE and set it to the installation directory. This
example uses the Bash shell syntax:

$ export OLH HOVE="/usr/hin/oral oader - <versi on>-h2/"

4. Add the Oracle Loader for Hadoop JAR files to the HADOOP_CLASSPATH environment
variable. If there are other JAR file paths in HADOOP_CLASSPATH, ensure that the
Oracle Loader for Hadoop JAR file path is listed first when using Oracle Loader for
Hadoop . This example uses the Bash shell syntax:

$ export HADOOP_CLASSPATH=$OLH HOME/ | | i b/ *: $HADOOP_CLASSPATH

1-15

Chapter 1
Oracle Shell for Hadoop Loaders Setup

Related Topics
* About the Modes of Operation

1.6.4 Using Oracle Loader for Hadoop on a Secure Hadoop Cluster

A secure Hadoop cluster has Kerberos installed and configured to authenticate client
activity. An operating system user must be authenticated before initiating an Oracle
Loader for Hadoop job to run on a secure Hadoop cluster. For authentication, the user
must log in to the operating system where the job will be submitted and use the
standard Kerberos ki ni t utility.

For a user to authenticate using ki ni t:

e A Hadoop administrator must register the operating system user and password in
the Key Distribution Center (KDC) for the cluster.

e A system administrator for the client system, where the operating system user will
initiate an Oracle Loader for Hadoop job, must configure / et ¢/ krb5. conf and add a
domain definition that refers to the KDC managed by the secure cluster.

Typically, the ki ni t utility obtains an authentication ticket that lasts several days.
Subsequent Oracle Loader for Hadoop jobs authenticate transparently using the
unexpired ticket.

Oracle Big Data Appliance configures Kerberos security automatically as a
configuration option.

1.7 Oracle Shell for Hadoop Loaders Setup

ORACLE

Oracle Shell for Hadoop Loaders (OHSH) is integrated with Big Data Connectors. It
provides a set of declarative commands you can use to load content from Hadoop and
Hive to Oracle Database tables using Oracle Loader for Hadoop (OLH) and Oracle
SQL Connector for Hadoop Distributed File System (OSCH). It also enables you to
load contents from Oracle Database tables to Hadoop and Hive using Copy to
Hadoop.

Prerequisites

OHSH can work with OLH and OSCH to load data into Oracle Database tables from
any of these environments:

e A Hadoop client

e An edge node

e A Hadoop node

* The Oracle Database server

OHSH can be set up in any of the environments above (Hadoop client, Hadoop node,
edge node, or Oracle Database server). To use OHSH, you need to install the
software in only one of these environments.

Each environment has its own prerequisites. Check the relevant column in table below
and install any software packages that are missing from the environment where you
choose to run OHSH. As the table indicates, JDBC connectivity is required in all
cases.

1-16

Chapter 1
Oracle Shell for Hadoop Loaders Setup

Table 1-1 Prerequisites for Running OHSH

__|
If You Plan to run OHSH From... The Prerequisites are...

A Hadoop node, a Hadoop client, oran edge ¢ SQL*Plus
node. + OLHand OSCH
* JDBC access to Oracle Database

Note:

When Big Data
Connectors is
licensed on
Oracle Big Data
Appliance, all of
the prerequisite
software and
OHSH itself are
pre-installed.

The Oracle Database server. « Hadoop and Hive libraries (installed and
configured).

e OLHand OSCH
« JDBC access to Oracle Database

Installing Oracle Shell for Hadoop Loaders

Follow these instructions for setting up Oracle Shell for Hadoop Loaders. The
instructions are applicable to set up on a Hadoop client, an edge node, a Hadoop
node, or, on the Oracle Database server.

1. Extract the contents of ohsh-<version>.zip to a directory on the system where you
plan to run OHSH.

The extraction creates a directory named ohsh-<version> with a README. t xt file,
the examples package (exanpl es. zi p) and four subdirectories:

README. t xt
exanpl es. zi p
/bin

|/ conf

/ doc

ljlib

You must unzip exanpl es. zi p yourself.

The directory ohsh-<version> is referred to as <OHSH_HOME> later in these
instructions.

2. Follow the instructions contained in README. t xt to configure Oracle Shell for
Hadoop Loaders. Below are instructions to install and configure Oracle Shell for
Hadoop Loaders on a Hadoop node.

ORACLE 1-17

Chapter 1
Oracle Shell for Hadoop Loaders Setup

1.7.1 Installing Oracle Shell for Hadoop Loaders on a Hadoop Node

This procedure applies to installation on a Hadoop Node only. See the OHSH README. t xt
file for installation on other systems.

Note:

These instructions use placeholders for the absolute paths that you will set
as the value of some variables. These are in italic font and are framed in
brackets. For example, <OHSH_HOME?> is the path where OHSH is
installed.

1. Install and set up SQL*Plus if it is not already on the node.

a. Download the Oracle Instant Client for Linux along with the corresponding
Instant Client Package for SQL*Plus from the Oracle Technology Network.
Select the client version that matches the version of the Oracle Database.

For example, you can find the client downloads for Oracle Database 12.2.0.1.0
at this address:
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277 .html

2. Extract both clients into the same directory (<SQLPLUS DI R>).

3. Copy the tnsnanes. ora and sql net . or a files from ${ TNS_ADM N} on the Oracle
Database host to a directory of your choice on the Hadoop node (<TNS_ADM N_DI R>).

If an Oracle Wallet is created for the Oracle Database host, copy the wallet file to a
directory of your choice on the Hadoop node (<WALLET_LOCATI ON_DI R>.).

4. Editsqglnet.ora . Set WALLET_LOCATI ON to <WALLET_LOCATI ON_DI R>. Also check to be
sure that sqgl net. wal | et _override is setto “true”.

WALLET_LOCATI ON=
(SOURCE=(METHOD=FI LE) (METHOD_DATA=
(DI RECTORY=<WALLET_LOCATION DI R>)))
sql net.wal | et _override=true

5. Install OLH and OSCH on the Hadoop node if they are not already installed.

Note that OSCH requires installation and configuration steps on the Oracle
Database host as well as on the Hadoop node. For both OLH and OSCH, follow
the setup instructions in the Big Data Connectors User’s Guide.

6. [Edit <OHSH HOME>/ bi n/ ohsh_confi g. sh, to configure the home directories of OHSH
dependencies

export HADOOP_HOVE=<HADOOP_CLI ENT_KI T>

export HADOOP_CONF_DI R=<HADOOP_CONF>

export H VE_HOVE=<H VE_CLI ENT_KI T>

export H VE_CONF_DI R=<HI VE_CONF>

export OLH_HOVE=<OLH_HOVE>

export OSCH_HOVE=<OSCH_HOVE>

export CP2HADOCOP_HOVE=<CP2HADOOP_HOVE>

export HS2_HOST_PORT=<HS2_HOST>: <HS2_PORT>

export H VE_SESS VAR LI ST=<seni col on_separated_variable_|ist>

7. If TNS admin and Oracle Wallet are enabled, then also set the following variables:

ORACLE 1-18

http://www.oracle.com/technetwork/database/database-technologies/instant-client/downloads/index.html
http://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html

Chapter 1
Oracle Shell for Hadoop Loaders Setup

export WALLET LOCATI ON=" <WALLET LOCATI ON_DI R>"
export TNS_ADM N="<TNS_ADM N_DI R>"

These values are assigned to OHSH t nsadni n and wal | et ocat i on defaults at the
start of an OHSH session. They are used for all TNS and Oracle Wallet
authentication in the session.

Add <OHSH HOVE>/ bi n to the PATH environment variable.
Start an OHSH session.

$ ohsh

Under the banner you should see a list of the kits that were found (OSCH, OLH,
and CP2HADOOP).

You can use the show resources command to see what resources are available.

ohsh> show resources

You will always see the three predefined resources: hadoop0, hi ve0, and bash0.

¢ See Also:

e Unzip exanpl es. zi p into the installation directory at <OHSH HOVE>. The
README. t xt file in the unzipped examples directory shows how to run
OHSH load methods in the examples.

* Inthe Big Data Connectors User’s Guide:

Oracle Loader for Hadoop Setup

Oracle SQL Connector for Hadoop Distributed FileSystem Setup
e Inthe Oracle Big Data Connectors blog space:

— How to Load Oracle and Hive Tables using OHSH (Part 1 -
Introduction)

— How to Load Oracle and Hive Tables using OHSH (Part 2 - OHSH
Configuration and CLI Usage)

1.7.2 Configuring OHSH to Enable Job Monitoring

ORACLE

When OHSH jobs are executed, status and other information about the job is recorded
into a back-end database. To access information from the OHSH command line, you
must first configure the connection to the database.

Configuration Steps

Configure the following properties in conf/ smart | oader - conf. xm in order to enable a
database instance where job history is stored.

oracl e. hadoop. snart | oader. di agnosti cs. j obhi story. jdbc. driver

Specifies the JDBC driver for the supported back-end database type. Currently,
MYSQL and ORACLE are valid values. If this property is not specified, the job history
commands fail.

1-19

https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-1-introductionGUID-03254C3C-3C8F-4C88-AD9D-91ADFDBC488D
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-1-introductionGUID-03254C3C-3C8F-4C88-AD9D-91ADFDBC488D
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-2-ohsh-configuration-and-cli-usageGUID-03254C3C-3C8F-4C88-AD9D-91ADFDBC488D
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-2-ohsh-configuration-and-cli-usageGUID-03254C3C-3C8F-4C88-AD9D-91ADFDBC488D

ORACLE

Chapter 1
Oracle Shell for Hadoop Loaders Setup

Additional properties must be set. These differ, depending upon which database type
is defined as the supported back-end database

If j dc. driver = ORACLE:

oracl e. hadoop. smart | oader. di agnosti cs. j obhi story. j dbc. oracl eConnect 1 d
A TNS entry name defined in the t nsnanes. or a file.
oracl e. hadoop. snart | oader. di agnosti cs. j obhi story.jdbc. oracl eVall etDir

The OS directory containing the Oracle Wallet used to connect to an Oracle
Database schema through JDBC.

oracl e. hadoop. smar t | oader . di agnosti cs. j obhi story. jdbc. oracl eTnsDi r

The file path to a directory on the node where OHSH runs. This directory
contains SQL*Net configuration files such as sql net. ora and t nsnanes. or a.
Typically, this is ${ ORACLE_HOVE} / net wor k/ admi n.

Note:

If you are running OHSH from a Hadoop client and want to use
Oracle Wallet, copy t nsnanes. or a and the wallet files to any directory
on the Hadoop client.

If j dbc. driver = MYSQL:

oracl e. hadoop. smart | oader. di agnosti cs. j obhi st ory. j dbc. mysql Connect Ur |
The URL used to make a JDBC connection to the MySQL database
oracl e. hadoop. snart| oader. di agnosti cs. j obhi story. j dbc. mysql User
MySQL user of job history schema

oracl e. hadoop. smart | oader. di agnosti cs. j obhi story. j dbc. mysql PW

Password of the MySQL user account.

Commands for Monitoring OHSH Jobs

After this configuration is completed, you will be able to execute the following OHSH
commands:

ohsh> show job <job_id>

Shows the detailed information of the job specified by ID.

ohsh> show job sunmary <job_id>

Shows the performance of the completed job specified by ID.

ohsh> show job abstract <job_id>

Provides a functional description of the job.

ohsh> show jobs [fail ed|running|conpleted|finished] [extended] [<integer>]

Shows the last n jobs of a particular job status.

The first parameter specifies job status. If the status is not specified, all jobs
are shown, regardless of job status.

1-20

Chapter 1
Oracle XQuery for Hadoop Setup

— The second parameter specifies whether to show details.

— The third parameter specifies that the last n jobs of the specified status should
be shown. If n is not specified, then all jobs of that status are shown.

e ohsh> truncate jobs [<integer>]

Removes the last n jobs from the database. If the integer is not specified, the
command removes all jobs

1.8 Oracle XQuery for Hadoop Setup

You install and configure Oracle XQuery for Hadoop on the Hadoop cluster. If you are
using Oracle Big Data Appliance, then the software is already installed.

The following topics describe the software installation:
* Software Requirements

* Installing Oracle XQuery for Hadoop

* Troubleshooting the File Paths

* Configuring Oozie for the Oracle XQuery for Hadoop Action

1.8.1 Software Requirements

Oracle Big Data Appliance Release 4.3 and later releases meet the requirements
below. However, if you are installing Oracle XQuery for Hadoop on a third-party
cluster, then you must ensure that these components are installed.

e Java 8.xor 7.X.

» A certified release of either CDH (Cloudera's Distribution including Apache
Hadoop) or HDP (Hortonworks Data Platform).

e Oracle NoSQL Database 3.x or 2.x to support reading and writing to Oracle
NoSQL Database

e Oracle Loader for Hadoop 3.8.0 or greater to support writing tables in Oracle
databases

¢ See Also:

For supported CDH and HDP version, see the Oracle Big Data Connectors
Certification Matrix

1.8.2 Installing Oracle XQuery for Hadoop

ORACLE

Take the following steps to install Oracle XQuery for Hadoop.
To install Oracle XQuery for Hadoop:

1. Unpack the contents of oxh- <versi on>. zi p into the installation directory:

$ unzip oxh-<versi on>-cdh- <version>. zi p
Archive: oxh-<version>-cdh-<version>. zi p
creating: oxh-<version>-cdh<version>/

1-21

https://www.oracle.com/database/big-data-connectors/certifications.html
https://www.oracle.com/database/big-data-connectors/certifications.html

ORACLE

Chapter 1
Oracle XQuery for Hadoop Setup

creating: oxh-<version>-cdh<version>/1ib/
creating: oxh-<version>-cdh<version>/ oozi e/
creating: oxh-<version>-cdh<version>/ooziellib/

inflating: oxh-<version>cdh<version>/|ib/ant-|auncher.jar
inflating: oxh-<version>cdh<version>/lib/ant.jar

You can now run Oracle XQuery for Hadoop.

For the fastest execution time, copy the libraries into the Hadoop distributed
cache:

a.

Copy all Oracle XQuery for Hadoop and third-party libraries into an HDFS
directory. To use the -export|iboozi e option to copy the files, see "Oracle
XQuery for Hadoop Options". Alternatively, you can copy the libraries
manually using the HDFS command line interface.

If you use Oozie, then use the same folder for all files. See "Configuring Oozie
for the Oracle XQuery for Hadoop Action"

Set the oracle.hadoop.xquery.lib.share property or use the -sharel i b option on the
command line to identify the directory for the Hadoop distributed cache.

To support data loads into Oracle Database, install Oracle Loader for Hadoop:

a.

Unpack the content of or al oader - <ver si on>. x86_64. zi p into a directory on your
Hadoop cluster or on a system configured as a Hadoop client. This archive
contains an archive and a README file.

Unzip the archive into a directory on your Hadoop cluster:

unzi p oral oader-<version>h2.x86_64. zi p

A directory named or al oader - <ver si on>- h2 is created with the following
subdirectories and the examples.zip file:

doc

jlib

lib

exanpl es. zip

Unzip the exanpl e. zi p file yourself.

Create an environment variable named OLH HOME and set it to the installation
directory. Do not set HADOOP_CLASSPATH.

To support data loads into Oracle NoSQL Database, install it, and then set an
environment variable named KvHOVEto the Oracle NoSQL Database installation
directory.

Note:

Do not add NoSQL Database jar files to a HADOOP_CLASSPATH.

To support indexing by Apache Solr:

1-22

Chapter 1
Oracle XQuery for Hadoop Setup

Ensure that Solr is installed and configured in your Hadoop cluster. Solr is
included in Cloudera Search, which is installed automatically on Oracle Big
Data Appliance.

Create a collection in your Solr installation into which you will load documents.
To create a collection, use the sol rct! utility.

¢ See Also:

For the sol rct! utility, Cloudera Search User Guide at

http://ww. cl ouder a. cond cont ent/ cl ouder a- cont ent/ cl ouder a- docs/
Search/ | at est/ C ouder a- Sear ch- User - Qui de/ csug_sol rct| _ref. htm

Configure Oracle XQuery for Hadoop to use your Solr installation by setting
the OXH_SOLR_MR_HOME environment variable to the local directory containing
search-nr-<versi on>.jar and sear ch-nr - <versi on>-j ob. j ar. For example:

$ export OXH_SOLR_MR_HOVE="/usr/lib/solr/contrib/nr"

< Note:

Configure Oracle XQuery for Hadoop and set the OXH SOLR_MR_HOVE
environment variable to the local directory before using Apache Tika
adapter as well.

1.8.3 Troubleshooting the File Paths

ORACLE

If Oracle XQuery for Hadoop fails to find its own or third-party libraries when running
queries, first ensure that the environment variables were set correctly during Oracle
XQuery for Hadoop installation.

< Note:

The HADOOP_CLASSPATH environment variable or -1 i bj ars command line option
must not contain either an OXH or third-party library.

If they are set correctly, then you may need to edit | i b/ oxh-1ib. xm . This file identifies
the location of Oracle XQuery for Hadoop system JAR files and other libraries, such as
Avro, Oracle Loader for Hadoop, and Oracle NoSQL Database.

If necessary, you can reference environment variables in this file as ${env. vari abl e},
such as ${env. OLH_HOME} . You can also reference Hadoop properties as ${ property},
such as ${mapred. output. dir}.

Related Topics
Installing Oracle XQuery for Hadoop

1-23

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_solrctl_ref.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_solrctl_ref.html

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1.8.4 Configuring Oozie for the Oracle XQuery for Hadoop Action

You can use Apache Oozie workflows to run your queries, as described in "Running
Queries from Apache Oozie". The software is already installed and configured on
Oracle Big Data Appliance.

For other Hadoop clusters, you must first configure Oozie to use the Oracle XQuery for
Hadoop action. These are the general steps to install the Oracle XQuery for Hadoop
action:

1. Modify the Oozie configuration. If you run CDH on third-party hardware, then use
Cloudera Manager to change the Oozie server configuration. For other Hadoop
installations, edit oozi e-site. htm

e Add oracl e. hadoop. xquery. oozi e. OXHAct i onExecut or to the value of the
00zi e. servi ce. ActionServi ce. executor. ext. cl asses property.

* Add oxh-action-v1. xsd to the value of the
00zi e. servi ce. SchemaSer vi ce. wf . ext . schemas property.

2. Add oxh-oozie.jar to the Oozie server class path. For example, in a CDH5
installation, copy oxh-oozi e.jar to/var/lib/oozi e on the server.

3. Add all Oracle XQuery for Hadoop dependencies to the Oozie shared library in a
subdirectory named oxh. You can use the CLI - export| i boozi e option. See "Oracle
XQuery for Hadoop Options".

4. Restart Oozie for the changes to take effect.

The specific steps depend on your Oozie installation, such as whether Oozie is
already installed and which version you are using.

1.9 Oracle R Advanced Analytics for Hadoop Setup

ORACLE

An overview of Oracle R Advanced Analytics for Hadoop (ORAAH) is provided in Part
IV of this guide .

Release notes, installation instructions, comprehensive reference material, and a list of
changes in the current release are published separately on the Oracle Technology
Network.

* ORAAH 2.8.0 Installation Guide.

e Oracle R Advanced Analytics for Hadoop 2.8.0 Release Notes .

e Oracle R Advanced Analytics for Hadoop 2.8.0 Reference Manual.
¢ ORAAH 2.8.0 Change List Summary.

¢ ORAAH 2.8.0 Oracle Formula and Data Preprocessing

e Supported Features for Apache Hive/Impala in ORAAH 2.8.0

Each ORAAH release is compatible with a number of Oracle Big Data Appliance
releases and releases of CDH running on non-Oracle platforms.

For a complete ORAAH compatibility matrix, see Document 2225633.1 on My Oracle
Support.

1-24

http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/documentation/oraah-2-8-0-install-guide-4861774.pdf
http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/documentation/oraah-2-8-0-release-notes-4861780.pdf
http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/documentation/oraah-2-8-0-reference-manual-4861778.pdf
http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/documentation/oraah-2-8-0-change-list-4861775.pdf
http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/documentation/oraah-2-8-0-formula-4861781.pdf
http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/documentation/oraah-2-8-0-hive-impala-support-4861782.pdf
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=408679426765807&id=2225633.1&_adf.ctrl-state=1bu5xt4y9c_77

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1.9.1 Installing the Software on Hadoop

Oracle Big Data Appliance supports Oracle R Advanced Analytics for Hadoop without
any additional software installation or configuration. However, to use Oracle R
Advanced Analytics for Hadoop on a third-party Hadoop cluster, you must create the
necessary environment.

1.9.1.1 Software Requirements for a Third-Party Hadoop Cluster

You must install several software components on a third-party Hadoop cluster to
support Oracle R Advanced Analytics for Hadoop.

Install these components on third-party servers:

ORACLE

A certified release of CDH (Cloudera's Distribution including Apache Hadoop) or
HDP (Hadoop Data Platform), or, Apache Hadoop 0.20.2+923.479 or later. See
the Oracle Big Data Connectors Certification Matrix.

Complete the instructions provided by the distributor.
Apache Hive 0.10.0+67 or later
See "Installing Hive on a Third-Party Hadoop Cluster."

Sqgoop 1.3.0+5.95 or later for the execution of functions that connect to Oracle
Database. Oracle R Advanced Analytics for Hadoop does not require Sqoop to
install or load.

See "Installing Sqoop on a Third-Party Hadoop Cluster."

Mahout for the execution of (orch_I nf _nahout _al s. R).

Java Virtual Machine (JVM), preferably Java HotSpot Virtual Machine 6.
Complete the instructions provided at the download site at

http://wwmv. oracl e. conl t echnetwor k/ j aval j avase/ downl oads/ i ndex. ht m

Oracle R Distribution 3.0.1 with all base libraries on all nodes in the Hadoop
cluster.

See "Installing R on a Third-Party Hadoop Cluster."

The ORCH package on each R engine, which must exist on every node of the
Hadoop cluster.

See "Installing the ORCH Package on a Third-Party Hadoop Cluster".
Oracle Loader for Hadoop to support the OLH driver (optional).

See "Oracle Loader for Hadoop Setup."

1-25

https://www.oracle.com/database/big-data-connectors/certifications.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

Note:

Do not set HADOOP_HOVE on the Hadoop cluster. CDH5 does not need it, and it
interferes with Oracle R Advanced Analytics for Hadoop. If you must set
HADOOP_HOME for another application, then also set HADOOP_LI BEXEC DI Rin

the / et ¢/ bashr ¢ file. For example:

export HADOOP_LI BEXEC DI R=/usr/|i b/ hadoop/|i bexec

1.9.1.2 Installing Sqoop on a Third-Party Hadoop Cluster

Sqgoop provides a SQL-like interface to Hadoop, which is a Java-based environment.
Oracle R Advanced Analytics for Hadoop uses Sqoop for access to Oracle Database.

Note:

Sqoop is required even when using Oracle Loader for Hadoop as a driver for
loading data into Oracle Database. Sqoop performs additional functions,
such as copying data from a database to HDFS and sending free-form
queries to a database. The driver also uses Sqoop to perform operations that
Oracle Loader for Hadoop does not support.

To install and configure Sqoop for use with Oracle Database:

1.

Install Sqoop if it is not already installed on the server.

For Cloudera's Distribution including Apache Hadoop, see the Sqoop installation
instructions in the CDH Installation Guide at

http://oracle. cl oudera. conf

Download the appropriate Java Database Connectivity (JDBC) driver for Oracle
Database from Oracle Technology Network at

http:// ww. oracl e. conl t echnet wor k/ dat abase/ f eat ures/ j dbc/ i ndex-091264. ht m

Copy the driver JAR file to $SQooP_HOME/lib, which is a directory such as /usr/1ib/
sqoop/ li b.

Provide Sqoop with the connection string to Oracle Database.

$ sgoop inport --connect jdbc_connection_string

For example, sqoop import --connect jdbc:oracle:thi n@yhost: 1521/ orcl .

1.9.1.3 Installing Hive on a Third-Party Hadoop Cluster

Hive provides an alternative storage and retrieval mechanism to HDFS files through a
guerying language called HiveQL. Oracle R Advanced Analytics for Hadoop uses the
data preparation and analysis features of HiveQL, while enabling you to use R
language constructs.

ORACLE

To install Hive:

1-26

http://www.oracle.com/pls/lookup?ctx=E71937-01&id=cloudera
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1. Follow the instructions provided by the distributor (Cloudera or Apache) for
installing Hive.

2. Verify that the installation is working correctly:

3. $ hive -H usage: hive -d,--define <key=value> Variable subsitution to apply to hive
commands. e.g. -d A=B or --define A=B . . .

4. If the command fails or you see warnings in the output, then fix the Hive
installation.

1.9.1.4 Installing R on a Hadoop Client

You can download R 2.13.2 and get the installation instructions from the Oracle R
Distribution website at

http://oss.oracl e. coml ORD

When you are done, ensure that users have the necessary permissions to connect to
the Linux server and run R.

You may also want to install RStudio Server to facilitate access by R users. See the
RStudio website at

http://rstudio.org/

1.9.1.5 Installing R on a Third-Party Hadoop Cluster

You can download Oracle R Distribution 3.0.1 and get the installation instructions from
the website at

http://wwmv. oracl e. conl t echnet wor k/ dat abase/ dat abase-t echnol ogi es/r/r-distribution/
downl oads/ i ndex. ht m

1.9.1.6 Installing the ORCH Package on a Third-Party Hadoop Cluster

ORACLE

ORCH is the name of the Oracle R Advanced Analytics for Hadoop package.
To install the ORCH package:

1. Loginasroot to the first node of the cluster.
2. Set the environment variables for the supporting software:

$ export JAVA HOVE="/usr/lib/jdk7"
$ export R_HOMVE="/usr/lib64/R'
$ export SQOOP_HOME "/usr/lib/sqoop"

3. Unzip the downloaded file:

$ unzip orch-<version>.zip
$ unzip orch-linux-x86_64-<version>. zip
Archive: orch-1inux-x86_64-<version>.zip
creating: ORCH<version>/
extracting: ORCH<version>/ ORCH <versi on>_R x86_64- unknown- | i nux- gnu. tar. gz
inflating: ORCH<version>/ ORCHcore_<versi on>_R x86_64- unknown- | i nux- gnu. tar. gz

4. Change to the new directory:

1-27

http://www.oracle.com/pls/lookup?ctx=E83411_01&id=ord_downloads
http://www.oracle.com/pls/lookup?ctx=E83411_01&id=rstudio
http://www.oracle.com/technetwork/database/database-technologies/r/r-distribution/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-distribution/downloads/index.html

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

$ cd ORCHkversi on>
Install the packages in the exact order shown here:

--vanilla CVD INSTALL OREbase_<version>_R x86_64- unknown- | i nux-gnu.tar. gz
--vanilla CVD INSTALL OREstats_<version>_R x86_64- unknown- | i nux-gnu.tar. gz
--vanilla CVD I NSTALL OREnpdel s_<versi on>_R x86_64- unknown- | i nux-gnu.tar. gz
--vanilla CVD I NSTALL OREserver_<version>_R x86_64- unknown- | i nux-gnu.tar. gz
--vanilla CVMD INSTALL ORCHcore_<version>_R x86_64- unknown- | i nux-gnu. tar. gz
--vanilla CVD I NSTALL ORCHstats_<versi on>_R x86_64- unknown- | i nux-gnu.tar. gz
--vanilla CVD I NSTALL ORCH <version>_R _x86_64- unknown- | i nux-gnu.tar. gz

00 X00XVXIODO

You must also install these packages on all other nodes of the cluster:
* OREbase

* OREmodels

* OREserver

* OREstats

The following examples use the dcli utility, which is available on Oracle Big Data
Appliance but not on third-party clusters, to copy and install the OREser ver
package:

$ dcli -C-f OREserver_<version>_R x86_64-unknown-|inux-gnu.tar.gz -d /tnp/
OREserver_<versi on>_R x86_64- unknown- | i nux-gnu. tar. gz

$ dcli -C" R--vanilla CVMD INSTALL /tnp/ OREserver_<version>_R x86_64- unknown-
l'inux-gnu.tar.gz"

1.9.2 Installing Additional R Packages

Your Hadoop cluster must have | i bpng- devel installed on every node. If you are using
a cluster running on commodity hardware, then you can follow the same basic
procedures. However, you cannot use the dcli utility to replicate the commands
across all nodes. See Oracle Big Data Appliance Owner's Guide for the syntax of the
deli utility.

ORACLE

To install libpng-devel:

1.
2.

Log in as root to any node in your Hadoop cluster.
Check whether | i bpng- devel is already installed:
dcli rpm -gi libpng-devel

bdalnode0l: package |ibpng-devel is not installed
bdalnode02: package |ibpng-devel is not installed

If the package is already installed on all servers, then you can skip this procedure.

If you need a proxy server to go outside a firewall, then set the HTTP_PROXY
environment variable. This example uses dcli, which is available only on Oracle
Big Data Appliance:

dcli export HTTP_PROXY="http://proxy.exanpl e. con
Change to the yumdirectory:

cd /etc/yumrepos. d

1-28

ORACLE

5.

7.

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

Download and configure the appropriate configuration file for your version of Linux:

For Enterprise Linux 5 (EL5):

a.

Download the yum configuration file:

wget http://public-yum oracle.confpublic-yumel5.repo

Open publ i c-yum el 5. repo in a text editor and make these changes:
Under el 5_| at est, set enabl ed=1

Under el 5_addons, set enabl ed=1

Save your changes and exit.

Copy the file to the other Oracle Big Data Appliance servers:

dcli -d /etc/yumrepos.d -f public-yumel5.repo

For Oracle Linux 6 (OL6):

a.

Download the yum configuration file:

wget http://public-yum oracle.con public-yumol6.repo

Open publ i c-yum ol 6. repo in a text editor and make these changes:
Under ol 6_| at est, set enabl ed=1

Under ol 6_addons, set enabl ed=1

Save your changes and exit.

Copy the file to the other Oracle Big Data Appliance servers:

dcli -d /etc/yumrepos.d -f public-yumol6.repo

Install the package on all servers:

dcli yum -y install libpng-devel

bdalnode0l: Loaded plugins: rhnplugin, security

bdalnode0l: Repository 'bda’ is missing name in configuration, using id
bdalnode0l: This systemis not registered with ULN

bdalnode0l: ULN support will be disabl ed.

bdalnode0l: http://bdalnode0l- master. abcd. com bda/ repodat a/ repond. xni :
bdalnode0l: [Errno 14] HTTP Error 502: notresol vable

bdalnode0l: Trying other mrror.

bdalnode0l: Running Transaction
bdalnode0l: Installing : 1'ibpng- devel 1/2
bdalnode0l: Installing . 1'ibpng- devel 2/2

bdalnode0l: Install ed:
bdalnode0l: |ibpng-devel.i386 2:1.2.10-17.el5_8 ibpng-devel.x86_64
2:1.2.10-17.el5 8

bdalnode0l: Conpl et e!
bdalnode02: Loaded plugins: rhnplugin, security

Verify that the installation was successful on all servers:

1-29

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

dcli rpm -qi libpng-devel

bdalnode0l: Nane . l'ibpng-devel Relocations: (not relocatable)
bdalnode0l: Version 0 1.2.10 Vendor: Oracle America

bdalnode0l: Rel ease : 17.el5_8 Build Date: Wed 25 Apr 2012 06:51:15 AM
PDT

bdalnode0l: Install Date: Tue 05 Feb 2013 11:41:14 AMPST Build Host: ca-
bui | d56. abcd. com

bdalnode0l: G oup . Devel opnent/Libraries Source RPM
libpng-1.2.10-17. el 5_8.src.rpm
bdalnode0l: Size . 482483 License: zlib

bdalnode0l: Signature : DSA/SHAL, Wed 25 Apr 2012 06:51:41 AM PDT, Key ID
66ced3dele5e0159

bdalnode0l: URL : http://ww. |ibpng. org/ pub/png/

bdalnode0l: Summary : Devel opnent tools for programs to manipul ate PNG i mage
format files.

bdalnode0l: Description :

bdalnode0l: The |ibpng-devel package contains the header files and static
bdalnode0l: libraries necessary for devel oping programs using the PNG (Portable
bdalnode0l: Network Graphics) library.

1.9.3 Providing Remote Client Access to R Users

Whereas R users will run their programs as MapReduce jobs on the Hadoop cluster,
they do not typically have individual accounts on that platform. Instead, an external
Linux server provides remote access.

1.9.3.1 Software Requirements for Remote Client Access

To provide access to a Hadoop cluster to R users, install these components on a Linux
server:

The same version of Hadoop as your Hadoop cluster; otherwise, unexpected
issues and failures can occur

The same version of Sqoop as your Hadoop cluster; required only to support
copying data in and out of Oracle databases

Mahout; required only for the or ch. I s function with the Mahout ALS-WS algorithm
The same version of the Java Development Kit (JDK) as your Hadoop cluster
Oracle R distribution 3.0.1 with all base libraries

ORCH R package

To provide access to database objects, you must have the Oracle Advanced Analytics
option to Oracle Database. Then you can install this additional component on the
Hadoop client:

Oracle R Enterprise Client Packages

1.9.3.2 Configuring the Server as a Hadoop Client

You must install Hadoop on the client and minimally configure it for HDFS client use.

To install and configure Hadoop on the client system:

ORACLE

1-30

Chapter 1
Oracle R Advanced Analytics for Hadoop Setup

1. Install and configure CDH5 or Apache Hadoop 2.2.0 on the client system. This
system can be the host for Oracle Database. If you are using Oracle Big Data
Appliance, then complete the procedures for providing remote client access in the
Oracle Big Data Appliance Software User's Guide. Otherwise, follow the
installation instructions provided by the distributor (Cloudera or Apache).

2. Loginto the client system as an R user.
3. Open a Bash shell and enter this Hadoop file system command:
$HADOOP_HOVE/ bi n/ hdf s dfs -1s /user

4. If you see a list of files, then you are done. If not, then ensure that the Hadoop
cluster is up and running. If that does not fix the problem, then you must debug
your client Hadoop installation.

1.9.3.3 Installing Sgoop on a Hadoop Client

Complete the same procedures on the client system for installing and configuring
Sqoop as those provided in "Installing Sqoop on a Third-Party Hadoop Cluster".

1.9.3.4 Installing R on a Hadoop Client

You can download R 2.13.2 and get the installation instructions from the Oracle R
Distribution website at

http://oss.oracle. conf ORD

When you are done, ensure that users have the necessary permissions to connect to
the Linux server and run R.

You may also want to install RStudio Server to facilitate access by R users. See the
RStudio website at

http://rstudio.org/

1.9.3.5 Installing the ORCH Package on a Hadoop Client

To install ORCH on your Hadoop client system:

1. Download the ORCH package and unzip it on the client system.
2. Change to the installation directory.

3. Run the client script:

.linstall-client.sh

1.9.3.6 Installing the Oracle R Enterprise Client Packages (Optional)

To support full access to Oracle Database using R, install the Oracle R Enterprise
client packages. Without them, Oracle R Advanced Analytics for Hadoop does not
have access to the advanced statistical algorithms provided by Oracle R Enterprise.

ORACLE 1-31

http://www.oracle.com/pls/lookup?ctx=E83411_01&id=ord_downloads
http://www.oracle.com/pls/lookup?ctx=E83411_01&id=rstudio

Chapter 1
Oracle Data Integrator

" See Also:

Oracle R Enterprise User's Guide for information about installing R and
Oracle R Enterprise

1.10 Oracle Data Integrator

For the instructions to set up and use Oracle Data Integrator refer to Oracle Fusion
Middleware Integrating Big Data with Oracle Data Integrator.

1.11 Oracle Datasource for Apache Hadoop Setup

ORACLE

Software Requirements
Oracle Datasource for Apache Hadoop requires the following software:

e Atarget database system running Oracle Database 12c, 11.2.0.4, or earlier Oracle
database releases that can be queried with the Oracle JDBC driver for 12c.

Note that Oracle Database 11.2.0.4 and potentially earlier Oracle Database
release may work. However, some of the SPLIT patterns have dependencies on
Oracle Database 12c and might not provide accurate splits for parallel hadoop
jobs when used to query earlier releases of Oracle Database.

* Cloudera's Distribution including Apache Hadoop version 5 (CDH5), Hortonworks
Data Platform (HDP) 2.x, or, Apache Hadoop 2.2.0 to 2.6.0.

* Apache Hive 0.13.0, 0.13.1 or 1.1.0 (in order to query data from Oracle Database
tables).

Installing Oracle Datasource for Apache Hadoop

Set HADOOP_CLASSPATH to include $0D4H HOME/ j | i b/ * in the Hadoop node where you are
running the Hive client. Ensure that this is listed first in HADOOP_CLASSPATH.

Ensure that the OD4H jars in $OD4H_HOME/]lib are accessible to Hive commands
using OD4H. You can do this in one of the following ways:

1. Configure HiveServer 2 and make jars available cluster wide. This will enable Hive
client beeline and other tools (such as SQL Developer) to work with OD4H.

2. To isolate configuration to a particular session, add jars manually. You can use this
method for situations when you use OD4H and do not want the OD4H jars to interfere
with other applications.

Add jar files to Hive CLI

To enable jar files to be present locally to a Hive CLI session, add the jar files via Hive
as follows:

$hive

hive> Add jar <jar name>

1-32

http://docs.oracle.com/middleware/1221/odi/odi-big-data/index.html
http://docs.oracle.com/middleware/1221/odi/odi-big-data/index.html

Chapter 1
Oracle Datasource for Apache Hadoop Setup

hive> Add jar <jar name>

1.11.1 Configuring HiveServer2

Following are the steps to configure HiveServer?2:
1. Login to Cloudera Manager

2. Click on Hive.

Figure 1-2 Hive Ul

@ Cluster 1 (coH5.11.1, Parcels - Charts

@ :EHosts ¥ 2 Cluster CPU

® (JEcho . 100%

® B HDors p - E

® < Hive YE 2 - 2

. 'E‘“ Hue . SER - A
® ‘Eﬁ kafka - mCluster 1 1.1% =
® 0oz - Cluster Disk 10

® @ Recordser... - .

@ <1Spark . 3_3 577

@ I YARN (MR... . :;

@ [# ZooKeeper - S

m Cluster 1, Total Di
= Cluster Kerb, Total

Figure 1-3 Cloudera Manager

3. Under Status Summary, click HiveServer2.

ORACLE" 1-33

Chapter 1
Oracle Datasource for Apache Hadoop Setup

Figure 1-4 Hive Server2

Status Summary

Gateway

Hive Metastore
Server

HiveServerz
WebHCat Server

Hosts

4. Click on Configuration.

@ 7 None

@ 1 Good Health

@ 1 Good Health
@ 1 Good Health

@ 1 Good Health

ORACLE"

1-34

COTE

m Hive Metastor...
WebHCat Serv..

Health &

percent
1]
3

mbad health 0
m disabled health

Chapter 1
Oracle Datasource for Apache Hadoop Setup

Figure 1-5 Configuring HiveServer2

. HiveServer2 (Cluster 1, Hive, nshgc0604) | Actions ~

Status Configuration Processes Commands

Health Tests

@ show 7 Good

) show 3 Disabled

Health History

> @®332PM

> ®330PM

> @ 3:26:58 PM

> @ 3:26:53 PM

> @ Apr30 23313 PM

> @ Apr 30 2:32:32 PM

5. Click on Service Configuration.

4 Bacame Good

2 Became Good

2 Became Disabled

4 Became Disabled

Pause Duration Good

1 Became Unknown

2 Rarama Gnnd

Charts Library Audits

Create Trigger

Show

Show

Show

Show

Show

Show

ORACLE"

1-35

Log Files =

Charts

Open Conn

onnections

Lr

Role CPU U

100,

percent
o
=

0 -

= (Cpu_sy

JVM Heap |

Chapter 1
Oracle Datasource for Apache Hadoop Setup

Figure 1-6 Service Configuration

Alert

There is only one instance of this role in this service. W
configuration changes on the service configuration pag

Cancel

6. Type ‘AUX’ in the search box. Under the property ‘Service-Wide/Advanced’, add the
directory containing jars you want to add in HiveServer2.

ORACLE"

1-36

Chapter 1
Oracle Datasource for Apache Hadoop Setup

Figure 1-7 Adding Jars

. H iVE (Cluster 1) Actions =

Status Instances Eonﬁguration Commands Charts Library Audits

|' AUX] X

/\ 1 validation warning below.

Category Property

Service-Wide / Hive Auxiliary JARs Directory

Advanced

Service-Wide / Suppress Parameter Validation: Hive Auxiliary JARs
Suppressions Directory

7. Restart Hive.

Add Jars to Hive CLI

To enable jars to be present locally to a Hive CLI session, add the jars via Hive CLI as
follows:

ORACLE" 1-37

Hives

Value

[opt/

Reset to

O

default s

Chapter 1
Oracle Datasource for Apache Hadoop Setup

$ hive
hive> Add jar <jar name>

hive> Add jar <jar name>

ORACLE" 1-38

Oracle Database Connectors

This part contains the following chapters:

Oracle SQL Connector for Hadoop Distributed File System

Oracle Loader for Hadoop

ORACLE

Oracle SQL Connector for Hadoop
Distributed File System

This chapter describes how to use Oracle SQL Connector for Hadoop Distributed File
System (HDFS) to facilitate data access between Hadoop and Oracle Database.

This chapter contains the following sections:

e About Oracle SQL Connector for HDFS

e Getting Started With Oracle SQL Connector for HDFS

e Configuring Your System for Oracle SQL Connector for HDFS

e Using the ExternalTable Command-Line Tool

e Creating External Tables

e Updating External Tables

* Exploring External Tables and Location Files

* Dropping Database Objects Created by Oracle SQL Connector for HDFS
* More About External Tables Generated by the ExternalTable Tool
* Configuring Oracle SQL Connector for HDFS

e Performance Tips for Querying Data in HDFS

2.1 About Oracle SQL Connector for HDFS

ORACLE

Using Oracle SQL Connector for HDFS, you can use Oracle Database to access and
analyze data residing in Apache Hadoop in these formats:

o Data Pump files in HDFS
* Delimited text files in HDFS
» Delimited text files in Apache Hive tables

For other file formats, such as JSON files, you can stage the input as delimited text in
a new Hive table and then use Oracle SQL Connector for HDFS. Partitioned Hive
tables are supported, enabling you to represent a subset of Hive table partitions in
Oracle Database, instead of the entire Hive table.

Oracle SQL Connector for HDFS uses external tables and database views to provide
Oracle Database with read access to Hive tables, and to delimited text files and Data
Pump files in HDFS. An external table is an Oracle Database object that identifies the
location of data outside of a database. Oracle Database accesses the data by using
the metadata provided when the external table was created. Oracle SQL Connector for
HDFS creates database views over external tables to support access to partitioned
Hive tables. By querying the external tables or views, you can access data stored in
HDFS and Hive tables as if that data were stored in tables in an Oracle database.

2-1

Chapter 2
Getting Started With Oracle SQL Connector for HDFS

To create these objects in Oracle Database, you use the Ext er nal Tabl e command-line
tool provided with Oracle SQL Connector for HDFS. You provide Ext er nal Tabl e with
information about the data source in Hadoop and about your schema in an Oracle
Database. You provide this information either as options to the Ext er nal Tabl e
command or in an XML file. The ExternalTable command-line tool can be used from
either a shell or from SQL Developer.

When the external table is ready, you can query the data the same as any other
database table. You can query and join data in HDFS or a Hive table with other
database-resident data.

You can also perform bulk loads of data into Oracle database tables using SQL.You
may prefer that the data resides in an Oracle database (either all of it or just a
selection) if it is queried routinely. Oracle SQL Connector for HDFS functions as a
Hadoop client running on the Oracle database and uses the external table
preprocessor hdf s_streamto access data in HDFS. Oracle Shell for Hadoop Loaders
has commands to create and external table and do a bulk load in one step.

" See Also:

The following Oracle blog provides information on using Oracle SQL
Developer: https://blogs.oracle.com/bigdataconnectors/move-data-between-
apache-hadoop-and-oracle-database-with-sql-developer

2.2 Getting Started With Oracle SQL Connector for HDFS

ORACLE

The following list identifies the basic steps that you take when using Oracle SQL
Connector for HDFS.

1. Loginto a system where Oracle SQL Connector for HDFS is installed, which can
be the Oracle Database system, a node in the Hadoop cluster, or a system set up
as a remote client for the Hadoop cluster.

See "Installing and Configuring a Hadoop Client on the Oracle Database System."

2. The first time you use Oracle SQL Connector for HDFS, ensure that the software
is configured.

See "Configuring Your System for Oracle SQL Connector for HDFS." You might
also need to edit hdf s_st r eamif your environment is unique. See "Installing Oracle
SQL Connector for HDFS".

3. If you are connecting to a secure cluster, then run ki ni t to authenticate yourself.
See "Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster."

4. Create an XML document describing the connections and the data source, unless
you are providing these properties in the Ext er nal Tabl e command.

See "Exploring External Tables and Location Files.”

5. Create a shell script containing an Ext er nal Tabl e command.
See "Using the ExternalTable Command-Line Tool."

6. Run the shell script.

7. If the job fails, then use the diagnostic messages in the output to identify and
correct the error. Depending on how far the job progressed before failing, you may

2-2

https://blogs.oracle.com/bigdataconnectors/move-data-between-apache-hadoop-and-oracle-database-with-sql-developer
https://blogs.oracle.com/bigdataconnectors/move-data-between-apache-hadoop-and-oracle-database-with-sql-developer

Chapter 2
Getting Started With Oracle SQL Connector for HDFS

need to delete the table definition from the Oracle database before rerunning the
script.

8. After the job succeeds, connect to Oracle Database as the owner of the external
table. Query the table to ensure that the data is accessible.

9. |If the data will be queried frequently, then you may want to load it into a database
table to improve querying performance. External tables do not have indexes or
partitions.

If you want the data to be compressed as it loads into the table, then create the
table with the COVPRESS option.

10. To delete the Oracle Database objects created by Oracle SQL Connector for
HDFS, use the -drop command.

See "Dropping Database Objects Created by Oracle SQL Connector for HDFS".

Example 2-1 Accessing HDFS Data Files from Oracle Database
The following illustrates these steps:

$ cat moviefact_hdfs.sh
Add environment variables
export OSCH_HOME="/u01/ connect or s/ or ahdf s- <ver si on>"

hadoop jar $OSCH HOME/jlib/orahdfs.jar \
oracl e. hadoop. extt ab. Ext ernal Tabl e \
-conf /home/ oracl e/ movi es/ novi ef act _hdfs. xm \
-createTabl e

$ cat moviefact_hdfs.xml
<?xm version="1.0"?>
<configuration>
<property>
<name>or acl e. hadoop. ext t ab. t abl eName</ nane>
<val ue>MVI E_FACTS_EXT</ val ue>
</ property>
<property>
<name>or acl e. hadoop. extt ab. | ocat i onFi | eCount </ nane>
<val ue>4</val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. dat aPat hs</ nane>
<val ue>/ user/ oracl e/ movi ewor k/ dat a/ part *</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. fi el dTer ni nat or </ name>
<val ue>\ u0009</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. def aul t Di r ect or y</ name>
<val ue>MoVI EDEMO DI R</ val ue>
</ property>
<property>
<name>or acl e. hadoop. exttab. nul I | f Speci fi er </ name>
<val ue>\ N</ </ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. col umNanes</ name>
<val ue>CUST_I D, MOVI E_I D, GENRE_I D, TI ME_| D, RECOMVENDED, ACTI VI TY_I D, RATI NG, SALES</
val ue>
</ property>

ORACLE 2-3

ORACLE

Chapter 2
Getting Started With Oracle SQL Connector for HDFS

<property>
<name>or acl e. hadoop. ext t ab. col Map. TI ME_I D. col umType</ name>
<val ue>TI MESTAMP</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. col Map. ti nest anpMask</ name>
<val ue>YYYY- M DD: HH: M : SS</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. col Map. RECOWENDED. col umType</ name>
<val ue>NUMBER</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. col Map. ACTI VI TY_I D. col umType</ name>
<val ue>NUMBER</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. col Map. RATI NG col umType</ name>
<val ue>NUMBER</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. col Map. SALES. col umType</ nane>
<val ue>NUMBER</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. sour ceType</ nane>
<val ue>t ext </ val ue>

</ property>

<property>
<name>or acl e. hadoop. connecti on. url </ name>
<val ue>j dbc: oracl e: t hi n: @ocal host : 1521: or cl </ val ue>

</ property>

<property>
<name>or acl e. hadoop. connecti on. user </ name>
<val ue>MOVI EDEMX</ val ue>

</ property>

</ confi guration>

$ sh moviefact_hdfs.sh
Oracle SQL Connector for HDFS Release 3.4.0 - Production

Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved

[Enter Database Password: password]
The create table command succeeded

CREATE TABLE " MOVI EDEMD'. " MOVI E_FACTS_EXT"

(

)

" CUST_I D' VARCHAR2(4000) ,
“MOVI E_| D' VARCHAR2(4000) ,
" GENRE_| D' VARCHAR2(4000) ,
“TIME_| D' TI MESTAVP(9) ,

" RECOMVENDED" NUVBER,
“ACTIVITY_I D' NUMBER

" RATI NG' NUVBER,

"SALES" NUVBER

ORGANI ZATI ON EXTERNAL

(

TYPE ORACLE_LQADER
DEFAULT DI RECTORY "MVl EDEMO DI R

2-4

Chapter 2
Getting Started With Oracle SQL Connector for HDFS

ACCESS PARAVETERS
(
RECORDS DELI M TED BY 0X' OA
CHARACTERSET AL32UTF8
PREPROCESSCR " OSCH BI N_PATH': ' hdf s_st r ean
FI ELDS TERM NATED BY 0X' 09'
M SSI NG FI ELD VALUES ARE NULL
(
"CUST_I D' CHAR(4000)
"MV E_I D' CHAR(4000),
"GENRE_| D' CHAR(4000),
"TIME_ID' CHAR
" RECOVVENDED' CHAR
"ACTIVITY I D' CHAR

"RATING' CHAR
"SALES' CHAR
)
)
LOCATI ON

(
" osch- 20141114064206- 5250- 1

' 0sch-20141114064206- 5250- 2'
' 0sch-20141114064206- 5250- 3'
' 0sch-20141114064206- 5250- 4

) PLRALLEL REJECT LIM T UNLI M TED;
The following location files were created
0sch-20141114064206-5250-1 contains 1 URl, 12754882 hytes
12754882 hdfs://|ocal host. | ocal domai n: 8020/ user/ or acl e/ novi ewor k/ dat a/ part - 00001

0sch-20141114064206-5250-2 contains 1 URI, 438 hytes

438 hdfs://local host. | ocal domai n: 8020/ user/ or acl e/ movi ewor k/ dat a/ part - 00002
0sch-20141114064206-5250-3 contains 1 URI, 432 hytes

432 hdfs://1ocal host. | ocal domai n: 8020/ user/ or acl e/ movi ewor k/ dat a/ part - 00003
0sch-20141114064206-5250-4 contains 1 URI, 202 bytes

202 hdfs://local host. | ocal domai n: 8020/ user/ or acl e/ novi ewor k/ dat a/ par t - 00004
$ sqlplus moviedemo
SQ*Plus: Release 12.1.0.1.0 Production on Fri Apr 18 09:24:18 2014
Copyright (c) 1982, 2013, Oracle. Al rights reserved

Enter password: password
Last Successful login time: Thu Apr 17 2014 18:42:01 -05:00

Connected to:
Oracl e Database 12¢ Enterprise Edition Release 12.1.0.1.0 - 64bit Production
Wth the Partitioning, OLAP, Advanced Anal ytics and Real Application Testing options

SQL> DESCRIBE movie_facts_ext;
Nane Nul I ? Type

ORACLE 2-5

Chapter 2
Configuring Your System for Oracle SQL Connector for HDFS

CUST_I D VARCHAR?(4000)
MMV E_I D VARCHAR?(4000)
GENRE_I D VARCHAR?(4000)
TIME_ID TI MESTAVP(9)
RECOVVENDED NUMBER
ACTIVITY_ID NUMBER

RATI NG NUMBER

SALES NUMBER

SQ.> CREATE TABLE movie_facts AS SELECT * FROM movie_facts_ext;
Tabl e created.

SQ.> SELECT movie_id, time_id, recommended, rating FROM movie_facts WHERE rownum < 5;

MM E_ID TIME_ID RECOMVENDED RATI NG
205 03- DEC-10 03. 14.54. 000000000 AM 1 1
77 14- AUG 11 10. 46. 55. 000000000 AM 1 3
116 24-NOV- 11 05. 43. 00. 000000000 AM 1 5
141 01- JAN-11 05.17.57.000000000 AM 1 4

2.3 Configuring Your System for Oracle SQL Connector for

HDFS

ORACLE

You can run the Ext er nal Tabl e command-line tool provided with Oracle SQL Connector
for HDFS on either the Oracle Database system or the Hadoop cluster:

» For Hive sources, log in to either a node in the Hadoop cluster or a system set up
as a Hadoop client for the cluster.

* For text and Data Pump format files, log in to either the Oracle Database system
or a node in the Hadoop cluster.

Oracle SQL Connector for HDFS requires additions to the HADOOP_CLASSPATH
environment variable on the system where you log in to run the tool. Your system
administrator may have set them up for you when creating your account, or may have
left that task for you. See "OS-Level Requirements for OSCH Users".

Setting up the environment variables:

e Verify that HADOOP_CLASSPATH includes the path to the JAR files for Oracle SQL
Connector for HDFS:

pat h/ or ahdf s- <versi on>/jlib/*

* If you are logged in to a Hadoop cluster with Hive data sources, then verify that
HADOOP_CLASSPATH also includes the Hive JAR files and conf directory. For example:

fusr/lib/hivellibl*
[etc/ hivel conf

e For your convenience, you can create an OSCH_HOVE environment variable. The
following is the Bash command for setting it on Oracle Big Data Appliance:

$ export OSCH HOVE="/opt/ oracl e/ or ahdf s- <ver si on>"

2-6

2.4 Using

Chapter 2
Using Oracle SQL Connector for HDFS with Oracle Big Data Appliance and Oracle Exadata

" See Also:

e "Oracle SQL Connector for Hadoop Distributed File System Setup" for
instructions for installing the software and setting up user accounts on
both systems.

e OSCH_HOWE/ doc/ README. t xt for information about known problems with
Oracle SQL Connector for HDFS.

Oracle SQL Connector for HDFS with Oracle Big

Data Appliance and Oracle Exadata

2.5 Using

Oracle SQL Connector for HDFS is a command-line utility that accepts generic
command line arguments supported by the org.apache.hadoop.util. Tool interface. It
also provides a preprocessor for Oracle external tables. See the Oracle Big Data
Appliance Software User's Guide for instructions on configuring Oracle Exadata
Database Machine for Use with Oracle Big Data Appliance.

the ExternalTable Command-Line Tool

Oracle SQL Connector for HDFS provides a command-line tool named Ext er nal Tabl e.
This section describes the basic use of this tool. See "Creating External Tables" for the
command syntax that is specific to your data source format.

2.5.1 About ExternalTable

The Ext er nal Tabl e tool uses the values of several properties to do the following tasks:

* Create an external table

* Populate the location files

* Publish location files to an existing external table
e List the location files

» Describe an external table

You can specify these property values in an XML document or individually on the
command line. .

Related Topics
e Configuring Oracle SQL Connector for HDFS

2.5.2 ExternalTable Command-Line Tool Syntax

ORACLE

This is the full syntax of the Ext er nal Tabl e command-line tool, which is run using the
hadoop command:

hadoop jar OSCH HOWVE/jlib/orahdfs.jar \
oracl e. hadoop. extt ab. External Tabl e \
[-conf config_file]... \

2-7

ORACLE

Chapter 2
Using the ExternalTable Command-Line Tool

[-D property=val ue]... \

-createTabl e [--noexecute [--output filename.sql]]
| -drop [--noexecute]

| -describe

| -publish [--noexecute]

| -listlocations [--details]

| -getDDL

You can either create the 0OSCH_HOMVE environment variable or replace OSCH HOME in the

command syntax with the full path to the installation directory for Oracle SQL

Connector for HDFS. On Oracle Big Data Appliance, this directory is:

[opt/ oracl e/ or ahdf s- <ver si on>

For example, you might run the Ext er nal Tabl e command-line tool with a command like
this:

hadoop jar /opt/oracle/orahdfs-<version>/jlib/orahdfs.jar \
oracl e. hadoop. extt ab. External Tabl e \

Generic Options and User Commands

-conf config_file
Identifies the name of an XML configuration file containing properties needed by the
command being executed.

-D property=value
Assigns a value to a specific property.

-createTable [--noexecute [--output filename]]

Creates an external table definition and publishes the data URIs to the location files of
the external table. The output report shows the DDL used to create the external table
and lists the contents of the location files. Oracle SQL Connector for HDFS also
checks the database to ensure that the required database directories exist and that
you have the necessary permissions.

For partitioned Hive tables, Oracle SQL Connector for HDFS creates external tables,
views, and a metadata table. See Table 2-2.

Specify the metadata table name for partitioned Hive tables, or the external table
name for all other data sources.

Use the - - noexecut e option to see the execution plan of the command. The operation
is not executed, but the report includes the details of the execution plan and any
errors. The --out put option writes the table DDL from the - creat eTabl e command to a
file. Oracle recommends that you first execute a - creat eTabl e command with - -
noexecut e.

-drop [--noexecute]

Deletes one or more Oracle Database objects created by Oracle SQL Connector for
HDFS to support a particular data source. Specify the metadata table name for
partitioned Hive tables, or the external table name for all other data sources. An error
occurs if you attempt to drop a table or view that Oracle SQL Connector for HDFS did
not create.

Use the - - noexecut e option to list the objects to be deleted.

2-8

Chapter 2
Creating External Tables

-describe
Provides information about the Oracle Database objects created by Oracle SQL
Connector for HDFS. Use this command instead of - get DDL or - | i st Locat i ons.

-publish [--noexecute]

Publishes the data URIs to the location files of an existing external table. Use this
command after adding new data files, so that the existing external table can access
them.

Use the - - noexecut e option to see the execution plan of the command. The operation
is not executed, but the report shows the planned SQL ALTER TABLE command and
location files. The report also shows any errors.

Oracle recommends that you first execute a - publ i sh command with - - noexecut e.
See "Updating External Tables."

-listLocations [--details]

Shows the location file content as text. With the --det ai | s option, this command
provides a detailed listing. This command is deprecated in release 3.0. Use “-
describe” instead.

-getDDL
Prints the table definition of an existing external table. This command is deprecated in
release 3.0. Use “-describe” instead.

Related Topics
* Configuring Oracle SQL Connector for HDFS

" See Also:

"Syntax Conventions"

2.6 Creating External Tables

You can create external tables automatically using the Ext er nal Tabl e tool provided in
Oracle SQL Connector for HDFS.

2.6.1 Creating External Tables with the ExternalTable Tool

ORACLE

To create an external table using the Ext er nal Tabl e tool, follow the instructions for your
data source:

e Creating External Tables from Data Pump Format Files
e Creating External Tables from Hive Tables
e Creating External Tables from Delimited Text Files

When the Exter nal Tabl e -creat eTabl e command finishes executing, the external table
is ready for use. Ext er nal Tabl e also manages the location files for the external table.
See "Location File Management.”

To create external tables manually, follow the instructions in "Creating External Tables
in SQL."

2-9

Chapter 2
Creating External Tables

ExternalTable Syntax for -createTable
Use the following syntax to create an external table and populate its location files:

hadoop jar OSCH HOME/jlib/orahdfs.jar oracle.hadoop. exttab. External Tabl e \
[-conf config file]... \

[-D property=value]... \

-createTabl e [--noexecute]

2.6.2 Creating External Tables from Data Pump Format Files

Oracle SQL Connector for HDFS supports only Data Pump files produced by Oracle
Loader for Hadoop, and does not support generic Data Pump files produced by Oracle
Utilities.

Oracle SQL Connector for HDFS creates the external table definition for Data Pump
files by using the metadata from the Data Pump file header. It uses the ORACLE_LOADER
access driver with the preprocessor access parameter. It also uses a special access
parameter named EXTERNAL VARI ABLE DATA, which enables ORACLE LOADER to read the
Data Pump format files generated by Oracle Loader for Hadoop.

To delete the external tables and location files created by Oracle SQL Connector for
HDFS, use the - drop command. See "Dropping Database Objects Created by Oracle
SQL Connector for HDFS".

" Note:

Oracle SQL Connector for HDFS requires a patch to Oracle Database
11.2.0.2 before the connector can access Data Pump files produced by
Oracle Loader for Hadoop. To download this patch, go to http://
support . oracl e. comand search for bug 14557588.

Release 11.2.0.3 and later releases do not require this patch.

2.6.2.1 Required Properties

These properties are required:

* oracle.hadoop.exttab.tableName

e oracle.hadoop.exttab.defaultDirectory

* oracle.hadoop.exttab.dataPaths

e oracle.hadoop.exttab.sourceType=dat apunp
* oracle.hadoop.connection.url

e oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" for descriptions of the properties
used for this data source.

2.6.2.2 Optional Properties

This property is optional:

ORACLE 2-10

http://support.oracle.com
http://support.oracle.com

Chapter 2
Creating External Tables

e oracle.hadoop.exttab.logDirectory
* oracle.hadoop.exttab.createLogFiles

e oracle.hadoop.exttab.createBadFiles

2.6.2.3 Defining Properties in XML Files for Data Pump Format Files

The following example is an XML template containing the properties that describe a
Data Pump file. To use the template, cut and paste it into a text file, enter the
appropriate values to describe your Data Pump file, and delete any optional properties
that you do not need. For more information about using XML templates, see "Creating
a Configuration File."

Example 2-2 XML Template with Properties for a Data Pump Format File

<?xml version="1.0"?>
<l-- Required Properties -->

<configuration>

<property>
<nane>or acl e. hadoop. ext t ab. t abl eName</ nane>
<val ue>val ue</ val ue>

</ property>

<property>
<nane>or acl e. hadoop. ext t ab. def aul t Di r ect or y</ nane>
<val ue>val ue</ val ue>

</ property>

<property>
<nane>or acl e. hadoop. ext t ab. dat aPat hs</ nane>
<val ue>val ue</ val ue>

</ property>

<property>
<nane>or acl e. hadoop. ext t ab. sour ceType</ nane>
<val ue>dat apunp</ val ue>

</ property>

<property>
<nane>or acl e. hadoop. connecti on. ur| </ nane>
<val ue>val ue</ val ue>

</ property>

<property>
<nane>or acl e. hadoop. connect i on. user </ nane>
<val ue>val ue</ val ue>

</ property>

<l-- Optional Properties -->
<property>
<nane>or acl e. hadoop. ext t ab. | ogDi r ect or y</ name>
<val ue>val ue</ val ue>

</ property>
</ confi guration>

2.6.2.4 Example

The following example creates an external table named SALES_DP_XTAB to read Data
Pump files.

ORACLE 2-11

Chapter 2
Creating External Tables

Example 2-3 Defining an External Table for Data Pump Format Files

Log in as the operating system user that Oracle Database runs under (typically the
oracl e user), and create a file-system directory. For Oracle RAC, you must create a
clusterwide directory on a distributed file system.

$ mkdir /data/sales_dp_ dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DI RECTORY sal es_dp_dir AS '/datal/sales_dp_dir'
SQL> GRANT READ, WRI TE ON DI RECTORY sal es_dp_dir TO scott;

Create the external table:

$ export OSCH HOVE="/opt/ oracl e/ or ahdf s- <ver si on>"

$ export HADOOP_CLASSPATH="$OSCH HOVE/ j | i b/ *: $HADOOP_CLASSPATH'

$ hadoop jar OSCH HOVE jlib/orahdfs.jar \

oracl e. hadoop. ext t ab. Ext ernal Tabl e \

-D oracl e. hadoop. extt ab. t abl eNanme=SALES_DP_XTAB \

-D oracl e. hadoop. extt ab. sour ceType=dat apunp \

-D oracl e. hadoop. extt ab. dat aPat hs=hdfs: ///user/scott/ol h_sal es_dpout put/ \
-D oracl e. hadoop. ext t ab. def aul t Di rect or y=SALES_DP_DI R \

-D oracl e. hadoop. connecti on. url =j dbc: oracl e: t hi n: @/ nyhost : 1521/ nyservi cenane \
-D oracl e. hadoop. connect i on. user=SCOTT \

-createTabl e

2.6.3 Creating External Tables from Hive Tables

ORACLE

Oracle SQL Connector for HDFS creates the external table definition from a Hive table
by contacting the Hive metastore client to retrieve information about the table columns
and the location of the table data. In addition, the Hive table data paths are published
to the location files of the Oracle external table.

To read Hive table metadata, Oracle SQL Connector for HDFS requires that the Hive
JAR files are included in the HADOOP_CLASSPATH variable. Oracle SQL Connector for
HDFS must be installed and running on a computer with a working Hive client.

Ensure that you add the Hive configuration directory to the HADOOP_CLASSPATH
environment variable. You must have a correctly functioning Hive client.

For Hive managed tables, the data paths come from the warehouse directory.

For Hive external tables, the data paths from an external location in HDFS are
published to the location files of the Oracle external table. Hive external tables can
have no data, because Hive does not check if the external location is defined when the
table is created. If the Hive table is empty, then one location file is published with just a
header and no data URIs.

The Oracle external table is not a "live" Hive table. After changes are made to a Hive
table, you must use the Ext er nal Tabl e tool to drop the existing external table and
create a new one.

To delete the external tables and location files created by Oracle SQL Connector for
HDFS, use the - drop command. See "Dropping Database Objects Created by Oracle
SQL Connector for HDFS".

2-12

Chapter 2
Creating External Tables

2.6.3.1 Hive Table Requirements

Oracle SQL Connector for HDFS supports Hive tables that are defined using ROW
FORMAT DELI M TED and FI LE FORMAT TEXTFI LE clauses. Both Hive-managed tables and
Hive external tables are supported.

Oracle SQL Connector for HDFS also supports partitioned Hive tables. In this case
Oracle SQL Connector for HDFS creates one or more external tables and database
views. See "Creating External Tables from Partitioned Hive Tables".

Hive tables can be either bucketed or not bucketed. All primitive types from Hive
0.10.0 are supported.

2.6.3.2 Data Type Mappings

The following table shows the default data-type mappings between Hive and Oracle.
To change the data type of the target columns created in the Oracle external table, set
the oracl e. hadoop. ext t ab. hi ve. col umType. * properties listed under "Optional
Properties.".

Table 2-1 Hive Data Type Mappings

|
Data Type of Source Hive Column Default Data Type of Target Oracle Column

I NT, Bl G NT, SMALLI NT, TI NYI NT | NTEGER
DECI MAL NUMBER
DECI MAL(p, S) NUMBER(p, s)
DOUBLE, FLOAT NUMBER
DATE DATE with format mask YYYY- M DD
TI MESTAWP TIMESTAMP wi th format mask YYYY- M
DD HH24: M : SS. FF
BOOLEAN VARCHAR2(5)
CHAR(si ze) CHAR(si ze)
STRI NG VARCHAR2(4000)
VARCHAR VARCHAR2(4000)
VARCHAR(si ze) VARCHAR2(si ze)
2.6.3.3 Required Properties

ORACLE

These properties are required for Hive table sources:

e oracle.hadoop.exttab.tableName

e oracle.hadoop.exttab.defaultDirectory

* oracle.hadoop.exttab.sourceType=hi ve
e oracle.hadoop.exttab.hive.tableName

* oracle.hadoop.exttab.hive.databaseName

e oracle.hadoop.connection.url

2-13

Chapter 2
Creating External Tables

e oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" for descriptions of the properties
used for this data source.

2.6.3.4 Optional Properties

These properties are optional for Hive table sources:

e oracle.hadoop.exttab.hive.columnType.*

* oracle.hadoop.exttab.hive.partitionFilter

e oracle.hadoop.exttab.locationFileCount

» oracle.hadoop.exttab.colMap.columnLength

e oracle.hadoop.exttab.colMap.column_name.columnLength

* oracle.hadoop.exttab.colMap.columnType

e oracle.hadoop.exttab.colMap.column_name.columnType

* oracle.hadoop.exttab.colMap.dateMask

* oracle.hadoop.exttab.colMap.column_name.dateMask

e oracle.hadoop.exttab.colMap.fieldLength

e oracle.hadoop.exttab.colMap.column_name.fieldLength

e oracle.hadoop.exttab.colMap.timestampMask

* oracle.hadoop.exttab.colMap.column_name.timestampMask
e oracle.hadoop.exttab.colMap.timestampTZMask

* oracle.hadoop.exttab.colMap.column_name.timestampTZMask
e oracle.hadoop.exttab.createLogFiles

e oracle.hadoop.exttab.createBadFiles

e oracle.hadoop.exttab.logDirectory

2.6.3.5 Defining Properties in XML Files for Hive Tables

The following example is an XML template containing the properties that describe a
Hive table. To use the template, cut and paste it into a text file, enter the appropriate
values to describe your Hive table, and delete any optional properties that you do not
need. For more information about using XML templates, see "Creating a Configuration
File."

Example 2-4 XML Template with Properties for a Hive Table

<?xm version="1.0"?>
<l-- Required Properties -->

<configuration>
<property>
<name>or acl e. hadoop. ext t ab. t abl eName</ nane>
<val ue>val ue</ val ue>
</ property>
<property>

ORACLE 2-14

Chapter 2
Creating External Tables

<name>or acl e. hadoop. ext t ab. def aul t Di r ect or y</ name>
<val ue>val ue</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. sour ceType</ name>
<val ue>hi ve</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. exttab. hi ve. partitionFilter</name>
<val ue>val ue</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. hi ve. t abl eNane</ name>
<val ue>val ue</ val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. hi ve. dat abaseNanme</ nane>
<val ue>val ue</val ue>
</ property>
<property>
<nane>or acl e. hadoop. connecti on. ur | </ nane>
<val ue>val ue</ val ue>
</ property>
<property>
<name>or acl e. hadoop. connecti on. user </ nane>
<val ue>val ue</ val ue>
</ property>

<l-- Optional Properties -->

<property>
<nane>or acl e. hadoop. exttab. | ocati onFi | eCount </ nane>
<val ue>val ue</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. hi ve. col umType. TYPE</ name>
<val ue>val ue</ val ue>

</ property>

</ confi guration>

2.6.3.6 Example

ORACLE

This example creates an external table named SALES H VE_XTAB to read data from a
Hive table. The example defines all the properties on the command line instead of in
an XML file.

Example 2-5 Defining an External Table for a honpartitioned Hive Table

Log in as the operating system user that Oracle Database runs under (typically the
oracl e user), and create a file-system directory:

$ nkdir /data/sal es_hive_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DI RECTORY sal es_hive dir AS '/datal/sales_hive dir'
SQL> GRANT READ, WRI TE ON DI RECTORY sal es_hive_dir TO scott

Create the external table:

2-15

Chapter 2
Creating External Tables

$ export OSCH_HOVE="/opt/oracl e/ or ahdf s- <versi on>"
$ export HADOOP_CLASSPATH="$COSCH HOVE/j i b/ *:/usr/lib/hivel/libl*:/etclhivel
conf : $SHADOOP_CLASSPATH'

$ hadoop jar OSCH HOVE/jlib/orahdfs.jar \

oracl e. hadoop. ext t ab. Ext ernal Tabl e \

-D oracl e. hadoop. ext t ab. t abl eNanme=SALES_H VE_XTAB \

-D oracl e. hadoop. extt ab. sour ceType=hi ve \

-D oracl e. hadoop. exttab. | ocati onFi | eCount=2 \

-D oracl e. hadoop. extt ab. hi ve. t abl eNane=sal es_country_us \
-D oracl e. hadoop. ext t ab. hi ve. dat abaseNane=sal esdb \

-D oracl e. hadoop. ext t ab. def aul t Di rect or y=SALES_HI VE_DIR \
-D oracl e. hadoop. connecti on. url =j dbc: oracl e: t hi n: @/ nyhost: 1521/ nyservi cenane \
-D oracl e. hadoop. connect i on. user=SCOTT \

-createTabl e

Note:

For nonpartitioned Hive tables and other data sources the value for property
or acl e. hadoop. ext t ab. t abl eNane is the name of the external table.

2.6.3.7 Creating External Tables from Partitioned Hive Tables

Oracle SQL Connector for HDFS supports partitioned Hive tables, enabling you to
guery a single partition, a range of partitions, or all partitions. You can represent all
Hive partitions or a subset of them in Oracle Database.

" See Also:

"Creating External Tables from Hive Tables" for required properties, data
type mappings, and other details applicable to all Hive table access using
Oracle SQL Connector for HDFS.

2.6.3.7.1 Database Objects that Support Access to Partitioned Hive Tables

To support a partitioned Hive table, Oracle SQL Connector for HDFS creates the
objects described in the following table.

Table 2-2 Oracle Database Objects for Supporting a Partitioned Hive Table

Database Object Description Naming Conventionl
External Tables One for each Hive partition OSCHt abl e_nane_n
For example, OSCHDAI LY_1 and
OSCHDAI LY_2
Views One for each external table. Used for tabl e_name_n
querying the Hive data. For example, DAl LY_1 and
DAILY 2

ORACLE 2-16

Chapter 2
Creating External Tables

Table 2-2 (Cont.) Oracle Database Objects for Supporting a Partitioned Hive
Table

__|
Database Object Description Naming Conventionl

Metadata Table One for the Hive table. Identifies all tabl e_name
external tables and views associated
with a particular Hive table. Specify this
table when creating, describing, or
dropping these database objects.

For example, DAI LY

1 The"_n" suffixed with table name indicates a numeric value.

For example, if a Hive table comprises five partitions, then Oracle SQL Connector for
HDFS creates five external tables, five views, and one metadata table in Oracle
Database.

To drop the objects described in Table 2-2 and the location files, use the - drop
command. See "Dropping Database Objects Created by Oracle SQL Connector for
HDFS".

" Note:

For partitioned Hive tables and other data sources the value for property
or acl e. hadoop. ext t ab. t abl eNane is the name of the metadata table.

2.6.3.7.2 Querying the Metadata Table

ORACLE

The metadata table provides critical information about how to query the Hive table.
The following table describes the columns of a metadata table.

Table 2-3 Metadata Table Columns

Column Description

VI EW NAME The Oracle Database view used to access a single Hive table
partition. The view contains both Hive table and partition
columns.

EXT_TABLE_NAMVE An Oracle external table that represents a Hive table partition.

The external table contains only the Hive table columns and
not the Hive partition columns.

To access all the data in a Hive partition, use the
corresponding Oracle Database view.

H VE_TABLE_NAME The partitioned Hive table being accessed through Oracle
Database.

H VE_DB_NAMVE The Hive database where the table resides.

H VE_PART_FI LTER The Hive partition filter used to select a subset of partitions for

access by Oracle Database. A NULL value indicates that all
partitions are accessed.

2-17

H VE_SALES_DATA 1
H VE_SALES_DATA 2
H VE_SALES_DATA 3

Chapter 2
Creating External Tables

Table 2-3 (Cont.) Metadata Table Columns

___|
Column Description

Partition Columns Each column used to partition the Hive table has a separate
column in the metadata table. For example, the metadata table
has columns for COUNTRY, STATE, and Cl TY for a Hive table
partitioned by a combination of COUNTRY, STATE, and CI TY
values.

The following SELECT statement queries a metadata table named H VE_SALES DATA:

SQL> SELECT view nane, ext_table_nane, Hive_ table_nane, \
hive_db_name, country, city \
FROM hive_sal es_data \
WHERE state = ' TEXAS' ;

The results of the query identify three views with data from cities in Texas:

EXT_TABLE_NAME H VE_TABLE_NAME H VE_DB_NAME COUNTRY CITY
OSCHHI VE_SALES DATA 1 hive_sales_data db_sales us AUSTI N
OSCHHI VE_SALES DATA 2 hive_sales_data db_sales us HOUSTON
OSCHHI VE_SALES DATA 3 hive_sales_data db_sales us DALLAS

The views include partition column values. Oracle recommends that you use the views
while querying a partitioned Hive table, as the external tables do not include the
partition column values.

2.6.3.7.3 Creating UNION ALL Views for Querying

ORACLE

To facilitate querying, you can create UNION ALL views over the individual partition
views. Use the nkhi ve_uni onal | _vi ew. sgl script, which is provided in the OSCH_HOVE/
exanpl e/ sql directory. To maintain performance, do not create UNI ON ALL views over
more than 50 to 100 views (depending on their size).

To use nkhi ve_uni onal | _vi ew. sgl , use the following syntax:

@rkhi ve_uni onal | _view.sql] table schema view predicate

MKHIVE_UNIONALL_VIEW Script Parameters

table
The name of the metadata table in Oracle Database that represents a partitioned Hive
table. Required.

schema
The owner of the metadata table. Optional; defaults to your schema.

view
The name of the UNI ON ALL view created by the script. Optional; defaults to t abl e_ua.

predicate
A WHERE condition used to select the partitions in the Hive table to include in the UNION
ALL view. Optional; defaults to all partitions.

2-18

Chapter 2
Creating External Tables

Example 2-6 Union All Views for Partitioned Hive Tables

The following example creates a UNI ON ALL view named H VE_SALES DATA UA, which
accesses all partitions listed in the H VE_SALES DATA metadata table:

SQ> @khive_unional | _view sql H VE SALES DATA null null null

This example creates a UNION ALL view named ALL_SALES, which accesses all partitions
listed in the H VE_SALES DATA metadata table:

SQ> @rkhive_unional | _view sql H VE_SALES DATA nul | ALL_SALES nul |

The next example creates a UNTON ALL view named TEXAS_SALES_DATA, which accesses
the rows of all partitions where STATE = ' TEXAS' .

SQ> @khive_uni onal | vi ew. sql H VE_SALES DATA nul| TEXAS_SALES DATA ' (STATE =
UUTEXAS)Y

2.6.3.7.4 Error Messages

table name too long, max limit /length
Cause: The names generated for the database objects exceed 30 characters.

Action: Specify a name that does not exceed 24 characters in the
oracle.hadoop.exttab.tableName property. Oracle SQL Connector for HDFS generates
external table names using the convention OSCH: abl e_name_n. See Table 2-2.

table/view names containing string table_name found in schema schema_name
Cause: An attempt was made to create external tables for a partitioned Hive table, but
the data objects already exist.

Action: Use the hadoop -drop command to drop the existing tables and views, and
then retry the - creat eTabl e command. If this solution fails, then you might have
"dangling" objects. See "Dropping Dangling Objects".

2.6.3.7.5 Dropping Dangling Objects

ORACLE

Always use Oracle SQL Connector for HDFS commands to manage objects created
by the connector to support partitioned Hive tables. Dangling objects are caused when
you use the SQL drop tabl e command to drop a metadata table instead of the - drop
command. If you are unable to drop the external tables and views for a partitioned
Hive table, then they are dangling objects.

Notice the schema and table names in the error message generated when you
attempted to drop the objects, and use them in the following procedure.

To drop dangling database objects:

1. Open a SQL session with Oracle Database, and connect as the owner of the
dangling objects.

2. ldentify the location files of the external table by querying the
ALL_EXTERNAL_LOCATI ONS and ALL_EXTERNAL_TABLES data dictionary views:

SELECT a.table_name, a.directory_nanme, a.location\
FROM al | _external _l ocations a, all_external _tables b\
VWHERE a.tabl e_nane = b.table_name AND a.tabl e_nane \

2-19

Chapter 2
Creating External Tables

LI KE ' OSCHt abl €% AND a. owner =' schema' ;

In the LI KE clause of the previous syntax, replace table and schema with the
appropriate values.

In the output, the location file names have an osch- prefix, such as
osch-20140408014604- 175- 1.

3. Identify the external tables by querying the ALL_EXTERNAL_TABLES data dictionary
view:

SELECT tabl e_nane FROM al | _external _tables \
VWHERE tabl e_nane \
LI KE ' OSCHt abl e% AND owner =scheng;

4. Identify the database views by querying the ALL_VI EWs data dictionary view:

SELECT vi ew_nanme FROM al | _vi ews
VHERE vi ew_nane
LIKE 'tabl e% AND owner='schema';

5. Inspect the tables, views, and location files to verify that they are not needed,
using commands like the following:

DESCRI BE schens. t abl e;
SELECT * FROM schema. tabl e;

DESCRI BE schema. vi ew;
SELECT * FROM schenm. vi ew,

6. Delete the location files, tables, and views that are not needed, using commands
like the following:

EXECUTE utl _file.fremove('directory', 'location_file');

DROP TABLE schenm. tabl e;
DROP VI EW schenm. vi ew,

2.6.4 Creating External Tables from Delimited Text Files

Oracle SQL Connector for HDFS creates the external table definition for delimited text
files using configuration properties that specify the number of columns, the text
delimiter, and optionally, the external table column names. By default, all text columns
in the external table are VARCHAR2. If column names are not provided, they default to C1
to Cn, where n is the number of columns specified by the oracle.hadoop.exttab.columnCount

property.

2.6.4.1 Data Type Mappings

All text data sources are automatically mapped to VARCHAR2(4000) . To change the data
type of the target columns created in the Oracle external table, set the
oracl e. hadoop. ext t ab. col Map. * properties listed under "Optional Properties."

2.6.4.2 Required Properties

These properties are required for delimited text sources:

ORACLE 2-20

Chapter 2
Creating External Tables

oracle.hadoop.exttab.tableName

oracle.hadoop.exttab.defaultDirectory

oracle.hadoop.exttab.dataPaths

oracle.hadoop.exttab.columnCount Or oracle.hadoop.exttab.columnNames
oracle.hadoop.connection.url

oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" for descriptions of the properties
used for this data source.

2.6.4.3 Optional Properties

These properties are optional for delimited text sources:

oracle.hadoop.exttab.recordDelimiter
oracle.hadoop.exttab.fieldTerminator
oracle.hadoop.exttab.initialFieldEncloser
oracle.hadoop.exttab.trailingFieldEncloser
oracle.hadoop.exttab.locationFileCount
oracle.hadoop.exttab.colMap.columnLength
oracle.hadoop.exttab.colMap.column_name.columnLength
oracle.hadoop.exttab.colMap.columnType
oracle.hadoop.exttab.colMap.column_name.columnType
oracle.hadoop.exttab.colMap.dateMask
oracle.hadoop.exttab.colMap.column_name.dateMask
oracle.hadoop.exttab.colMap.fieldLength
oracle.hadoop.exttab.colMap.column_name.fieldLength
oracle.hadoop.exttab.colMap.column_name.nulllfSpecifier
oracle.hadoop.exttab.colMap.timestampMask
oracle.hadoop.exttab.colMap.column_name.timestampMask
oracle.hadoop.exttab.colMap.timestampTZMask
oracle.hadoop.exttab.colMap.column_name.timestampTZMask
oracle.hadoop.exttab.createLogFiles
oracle.hadoop.exttab.createBadFiles
oracle.hadoop.exttab.logDirectory

oracle.hadoop.exttab.nulllfSpecifier

2.6.4.4 Defining Properties in XML Files for Delimited Text Files

This example is an XML template containing all the properties that describe a
delimited text file. To use the template, cut and paste it into a text file, enter the
appropriate values to describe your data files, and delete any optional properties that

ORACLE

2-21

ORACLE

Chapter 2
Creating External Tables

you do not need. For more information about using XML templates, see "Creating a
Configuration File."

Example 2-7 XML Template with Properties for a Delimited Text File

<?xm version="1.0"?>
<l-- Required Properties -->

<configuration>

<property>
<name>or acl e. hadoop. ext t ab. t abl eName</ nane>
<val ue>val ue</val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. def aul t Di r ect or y</ name>
<val ue>val ue</val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. dat aPat hs</ nane>
<val ue>val ue</val ue>

</ property>

<l-- Use either columCount or col umNanes -->

<property>
<name>or acl e. hadoop. ext t ab. col umCount </ name>
<val ue>val ue</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. col umNanes</ name>
<val ue>val ue</ val ue>

</ property>

<property>
<name>or acl e. hadoop. connecti on. ur| </ name>
<val ue>val ue</val ue>

</ property>

<property>
<name>or acl e. hadoop. connect i on. user </ nane>
<val ue>val ue</ val ue>

</ property>

<l-- Optional Properties -->

<property>
<name>or acl e. hadoop. ext t ab. col Map. TYPE</ name>
<val ue>val ue</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. recordDel i mi t er </ name>
<val ue>val ue</val ue>

</ property>

<property>
<name>or acl e. hadoop. ext t ab. fi el dTer ni nat or </ name>
<val ue>val ue</ val ue>

</ property>

<property>
<name>or acl e. hadoop. ext tab. i nitial Fi el dEncl oser </ name>
<val ue>val ue</ val ue>

</ property>

2-22

Chapter 2
Creating External Tables

<property>
<nane>or acl e. hadoop. exttab. trail i ngFi el dEncl oser </ name>
<val ue>val ue</ val ue>

</ property>

<property>
<nane>or acl e. hadoop. exttab. | ocati onFi | eCount </ nane>
<val ue>val ue</ val ue>

</ property>

</ confi guration>

2.6.4.5 Example

This example creates an external table named SALES DT_XTAB from delimited text files.
Example 2-8 Defining an External Table for Delimited Text Files

Log in as the operating system user that Oracle Database runs under (typically the
oracl e user), and create a file-system directory:

$ nkdir /data/sales_dt_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DI RECTORY sales_dt _dir AS '/datal/sales_dt dir'
SQL> GRANT READ, WRITE ON DI RECTCRY sal es_dt _dir TO scott;

Create the external table:

$ export OSCH HOVE="/opt/ oracl e/ or ahdf s- <ver si on>"
$ export HADOOP_CLASSPATH="$COSCH HOVE j | i b/ *: $HADOOP_CLASSPATH'

$ hadoop jar OSCH HOWE jlib/orahdfs.jar \

oracl e. hadoop. ext t ab. Ext ernal Tabl e \

-D oracl e. hadoop. extt ab. t abl eNanme=SALES_DT_XTAB \

-D oracl e. hadoop. exttab. | ocati onFi | eCount =2 \

-D oracl e. hadoop. extt ab. dat aPat hs="hdfs:///user/scott/ol h_sal es/*.dat" \

-D oracl e. hadoop. extt ab. col umCount =10 \

-D oracl e. hadoop. extt ab. def aul t Di rect ory=SALES DT DIR \

-D oracl e. hadoop. connection. url =j dbc: oracl e: thin: @/ nyhost: 1521/ nyservi cenane \
-D oracl e. hadoop. connect i on. user =SCOTT \

-createTabl e

2.6.5 Creating External Tables in SQL

ORACLE

You can create an external table manually for Oracle SQL Connector for HDFS. For
example, the following procedure enables you to use external table syntax that is not
exposed by the External Tabl e -creat eTabl e command.

Additional syntax might not be supported for Data Pump format files.

To create an external table manually:
1. Use the -createTabl e --noexecute command to generate the external table DDL.
2. Make whatever changes are needed to the DDL.

3. Run the DDL from the previous step to create the table definition in the Oracle
database.

2-23

Chapter 2
Updating External Tables

4. Use the External Tabl e -publish command to publish the data URIs to the location
files of the external table.

2.7 Updating External Tables

The - publ i sh option provides a way to update the location files (that point to HDFS
data paths) of existing Oracle external tables based on text, Data Pump, or Hive
sources.

The Ext ernal Tabl e command line tool with the - cr eat eTabl e option creates the external
table and related metadata in Oracle Database. It also populates the external table’s
location files with the Universal Resource Identifiers (URIs) of the data files in HDFS.

To “publish” updates to the location files of existing external tables,

use Ext er nal Tabl e with the - publ i sh option. This operation updates the location files of
external tables with new URIs of HDFS data paths, and adds external tables and
views for new partitions when the source is a partitioned Hive table

Use - publi sh in order to:

» Publish new data into an already existing external table.

-creat eTabl e takes a snapshot of the HDFS or Hive source at the time of external
table creation. However the source may change later. The - publ i sh option enables
you to update the existing external table from the source.

* Publish new data when the source is a partitioned Hive table.

When new partitions are added to a source that is a partitioned Hive table, the -
publ i sh option enables you to add new database objects required to access the
new partitions. This option detects the new Hive partitions and creates the
additional external tables and views for the partitions and updates the metadata
table created with the - creat eTabl e command.

e Populate an external table that you created manually using the -createTable
command with the - - noexecut e option.

" Note:

The publ i sh option now fully supports partitioned Hive tables. It is no longer
necessary to use -drop and - creat eTabl e as a workaround to update external
tables derived from partitioned Hive tables.

¢ See Also:

Location File Management

2.7.1 ExternalTable Syntax for Publish

hadoop jar OSCH HOWVE/jlib/orahdfs.jar \
oracl e. hadoop. ext t ab. Ext ernal Tabl e \
[-conf config file]... \

ORACLE 2-24

Chapter 2
Exploring External Tables and Location Files

[-D property=val ue]... \
-publish [--noexecute]

2 See Also:

"ExternalTable Command-Line Tool Syntax"

2.7.2 ExternalTable Example for Publish

This example sets HADOOP_CLASSPATH and publishes the HDFS data paths to the
external table created in Example 2-3. See "Configuring Your System for Oracle SQL
Connector for HDFS" for more information about setting this environment variable.

Example 2-9 Publishing HDFS Data Paths to an External Table for Data Pump
Format Files

This example uses the Bash shell.

$ export HADOOP_CLASSPATH="COSCH_HOVE/ j i b/ *"

$ hadoop jar OSCH HOWE jlib/orahdfs.jar oracle.hadoop. exttab. External Tabl e \
-D oracl e. hadoop. ext t ab. t abl eNanme=SALES_DP_XTAB \

-D oracl e. hadoop. extt ab. sour ceType=dat apunp \

-D oracl e. hadoop. extt ab. dat aPat hs=hdf s: / user/scott/data/ \

-D oracl e. hadoop. connecti on. url =j dbc: oracl e: t hi n: @/ nyhost : 1521/ nyservi cenane \
-D oracl e. hadoop. connecti on. user=scott -publish

In this example:

e OSCH_HOME is the full path to the Oracle SQL Connector for HDFS installation
directory.

e SALES DP_XTABis the external table created in Example 2-3.
e hdfs:/user/scott/datal isthe location of the HDFS data.

e @uvhost: 1521 is the database connection string.

2.8 Exploring External Tables and Location Files

The -descri be command is a debugging and diagnostic utility that prints the definition
of an existing external table. It also enables you to see the location file metadata and
contents. You can use this command to verify the integrity of the location files of an
Oracle external table.

These properties are required to use this command:

* oracle.hadoop.exttab.tableName

* The JDBC connection properties; see "Connections using url, user, and password
Properties.”

2.8.1 ExternalTable Syntax for Describe

hadoop jar OSCH HOVE/jlib/orahdfs.jar \
oracl e. hadoop. ext t ab. Ext ernal Tabl e \
[-conf config file]... \

ORACLE 2-25

Chapter 2
Dropping Database Objects Created by Oracle SQL Connector for HDFS

[-D property=val ue]... \
-describe

See Also:

"ExternalTable Command-Line Tool Syntax"

2.8.2 ExternalTable Example for Describe

This example shows the command syntax to describe the external tables and location
files associated with SALES DP_XTAB.

Example 2-10 Exploring External Tables and Location Files

$ export HADOOP_CLASSPATH="COSCH_HOVE/j i b/ *"

$ hadoop jar OSCH HOWE jlib/orahdfs.jar oracle.hadoop. exttab. External Tabl e \
-D oracl e. hadoop. extt ab. t abl eNanme=SALES_DP_XTAB \

-D oracl e. hadoop. connection. url =j dbc: oracl e: thin: @/ nyhost: 1521/ nyservi cenane \
-D oracl e. hadoop. connecti on. user=scott -describe

2.9 Dropping Database Objects Created by Oracle SQL
Connector for HDFS

The -drop command deletes the database objects created by Oracle SQL Connector
for HDFS. These objects include external tables, location files, and views. If you delete
objects manually, problems can arise as described in "Dropping Dangling Objects".

The -drop command only deletes objects created by Oracle SQL Connector for HDFS.
Oracle recommends that you always use the - drop command to drop objects created
by Oracle SQL Connector for HDFS.

These properties are required to use this command:

» oracle.hadoop.exttab.tableName. For partitioned Hive tables, this is the name of the
metadata table. For other data source types, this is the name of the external table.

e The JDBC connection properties; see "Connections using url, user, and password
Properties.”

2.9.1 ExternalTable Syntax for Drop

hadoop jar OSCH HOWVE/jlib/orahdfs.jar \
oracl e. hadoop. ext t ab. Ext ernal Tabl e \

[-conf config file]... \
[-D property=value]... \
-drop

" See Also:

"ExternalTable Command-Line Tool Syntax"

ORACLE 2-26

Chapter 2
More About External Tables Generated by the ExternalTable Tool

2.9.2 ExternalTable Example for Drop

This example shows the command syntax to drop the database objects associated
with SALES DP_XTAB.

Example 2-11 Dropping Database Objects

$ export HADOOP_CLASSPATH="OSCH HOVE/ j | i b/ *"

$ hadoop jar OSCH HOWE/ jlib/orahdfs.jar oracle.hadoop. exttab. External Table \
-D oracl e. hadoop. extt ab. t abl eNane=SALES_DP_XTAB \

-D oracl e. hadoop. connection. url =j dbc: oracl e: thin: @/ nyhost: 1521/ nyservi cenane \
-D oracl e. hadoop. connecti on. user=scott -drop

2.10 More About External Tables Generated by the
ExternalTable Tool

Because external tables are used to access data, all of the features and limitations of
external tables apply. Queries are executed in parallel with automatic load balancing.
However, update, insert, and delete operations are not allowed and indexes cannot be
created on external tables. When an external table is accessed, a full table scan is
always performed.

Oracle SQL Connector for HDFS uses the ORACLE_LOADER access driver. The
hdf s_st reampreprocessor script (provided with Oracle SQL Connector for HDFS)
modifies the input data to a format that ORACLE_LOADER can process.

2.10.1 About Configurable Column Mappings

Oracle SQL Connector for HDFS uses default data type mappings to create columns
in an Oracle external table with the appropriate data types for the Hive and text
sources. You can override these defaults by setting various configuration properties,
for either all columns or a specific column.

For example, a field in a text file might contain a timestamp. By default, the field is
mapped to a VARCHAR2 column. However, you can specify a TI MESTAMP column and
provide a datetime mask to cast the values correctly into the TI MESTAVP data type. The
TI MESTAMP data type supports time-based queries and analysis that are unavailable
when the data is presented as text.

2.10.1.1 Default Column Mappings

Text sources are mapped to VARCHAR2 columns, and Hive columns are mapped to
columns with the closest equivalent Oracle data type. Table 2-1 shows the default
mappings.

2.10.1.2 All Column Overrides

The following properties apply to all columns in the external table. For Hive sources,
these property settings override the or acl e. hadoop. ext t ab. hi ve. * property settings.

* oracle.hadoop.exttab.colMap.columnLength

* oracle.hadoop.exttab.colMap.columnType

ORACLE 2-27

Chapter 2
More About External Tables Generated by the ExternalTable Tool

e oracle.hadoop.exttab.colMap.dateMask
* oracle.hadoop.exttab.colMap.fieldLength
* oracle.hadoop.exttab.colMap.timestampMask

* oracle.hadoop.exttab.colMap.timestampTZMask

2.10.1.3 One Column Overrides

The following properties apply to only one column, whose name is the column_name
part of the property name. These property settings override all other settings.

* oracle.hadoop.exttab.colMap.column_name.columnLength

e oracle.hadoop.exttab.colMap.column_name.columnType

* oracle.hadoop.exttab.colMap.column_name.dateMask

* oracle.hadoop.exttab.colMap.column_name.fieldLength

* oracle.hadoop.exttab.colMap.column_name.timestampMask

* oracle.hadoop.exttab.colMap.column_name.timestampTZMask

2.10.1.4 Mapping Override Examples

ORACLE

The following properties create an external table in which all columns are the default
VARCHAR? data type:

oracl e. hadoop. extt ab. t abl eName=MOVI E_FACT_EXT_TAB_TXT
oracl e. hadoop. ext t ab. col urmNames=CUST_| D, MOVI E_| D, GENRE_| D, TI ME_| D, RECOMVENDED, ACTI VI
TY_I D, RATI NG, SALES

In this example, the following properties are set to override the data type of several
columns:

oracl e. hadoop. ext t ab. col Map. TI ME_I D. col umType=TI MESTAMP
oracl e. hadoop. ext t ab. col Map. RECOVWENDED. col urmType=NUMBER
oracl e. hadoop. ext t ab. col Map. ACTI VI TY_I D. col umType=NUMBER
oracl e. hadoop. ext t ab. col Map. RATI NG. col umType=NUMBER
oracl e. hadoop. ext t ab. col Map. SALES. col umType=NUMBER

Oracle SQL Connector for HDFS creates an external table with the specified data
types:

SQ.> DESCRIBE movie_facts_ext

Name Nul | ? Type

CUST_ID VARCHAR2(4000)
MOVIE_ID VARCHAR2(4000)
GENRE_ID VARCHAR2(4000)
TIME_ID TI NESTAMP(9)
RECOMMENDED NUMBER
ACTIVITY_ID NUMBER

RATI NGS NUMBER

SALES NUMBER

The next example adds the following property settings to change the length of the
VARCHAR2 columns:

2-28

Chapter 2
More About External Tables Generated by the ExternalTable Tool

oracl e. hadoop. extt ab. col Map. CUST_I D. col umLengt h=12
oracl e. hadoop. ext t ab. col Map. MOVI E_I D. col umLengt h=12
oracl e. hadoop. ext t ab. col Map. GENRE_I D. col umLengt h=12

All columns now have custom data types:

SQ.> DESCRIBE movie_facts_ext

Name Nul | ? Type
CUST_ID VARCHAR2(12)
MOVI E_I D VARCHAR2(12)
GENRE_ID VARCHAR2(12)
TIME_ID TI NESTAMP(9)
RECOMVENDED NUMBER
ACTIVITY_ID NUMBER

RATI NGS NUMBER
SALES NUMBER

2.10.2 What Are Location Files?

A location file is a file specified in the location clause of the external table. Oracle
SQL Connector for HDFS creates location files that contain only the Universal
Resource ldentifiers (URIs) of the data files. A data file contains the data stored in
HDFS.

2.10.3 Enabling Parallel Processing

To enable parallel processing with external tables, you must specify multiple files in
the location clause of the external table. The number of files determines the number of
child processes started by the external table during a table read, which is known as
the degree of parallelism or DOP.

2.10.3.1 Setting Up the Degree of Parallelism

ORACLE

Ideally, you can decide to run at a particular degree of parallelism and create a
number of location files that are a multiple of the degree of parallelism, as described in
the following procedure.

To set up parallel processing for maximum performance:

1. ldentify the maximum DOP that your Oracle DBA will permit you to use when
running Oracle SQL Connector for HDFS.

When loading a huge amount of data into an Oracle database, you should also
work with the DBA to identify a time when the maximum resources are available.

2. Create a number of location files that is a small multiple of the DOP. For example,
if the DOP is 8, then you might create 8, 16, 24, or 32 location files.

3. Create a number of HDFS files that are about the same size and a multiple of the
number of location files. For example, if you have 32 location files, then you might
create 128, 1280, or more HDFS files, depending on the amount of data and the
minimum HDFS file size.

4. Set the DOP for the data load, using either the ALTER SESSI ON command or hints in
the SQL SELECT statement.

This example sets the DOP to 8 using ALTER SESSI ON:

2-29

Chapter 2
More About External Tables Generated by the ExternalTable Tool

ALTER SESSI ON FORCE PARALLEL DM. PARALLEL 8;
ALTER SESSI ON FORCE PARALLEL QUERY PARALLEL 8;

The next example sets the DOP to 8 using the PARALLEL hint:

INSERT /*+ paral lel (ny_db_table,8) */ INTO ny_db_table \
SELECT /*+ paral | el (my_hdfs_external _table,8) */ * \
FROM my_hdf s_ext ernal _tabl e;

An APPEND hint in the SQL | NSERT statement can also help improve performance.

2.10.4 Location File Management

The Oracle SQL Connector for HDFS command-line tool, Ext er nal Tabl e, creates an
external table and publishes the HDFS URI information to location files. The external
table location files are stored in the directory specified by the
oracle.hadoop.exttab.defaultDirectory property. For an Oracle RAC database, this directory
must reside on a distributed file system that is accessible to each database server.

Ext er nal Tabl e manages the location files of the external table, which involves the
following operations:

* Generating new location files in the database directory after checking for name
conflicts

» Deleting existing location files in the database directory as necessary
e Publishing data URIs to new location files
* Altering the LOCATI ON clause of the external table to match the new location files

Location file management for the supported data sources is described in the following
topics.

Data Pump File Format

The ORACLE_LOADER access driver is required to access Data Pump files. The driver
requires that each location file corresponds to a single Data Pump file in HDFS.
Empty location files are not allowed, and so the number of location files in the external
table must exactly match the number of data files in HDFS.

Oracle SQL Connector for HDFS automatically takes over location file management
and ensures that the number of location files in the external table equals the number
of Data Pump files in HDFS.

Delimited Files in HDFS and Hive Tables

The ORACLE_LOADER access driver has no limitation on the number of location files.
Each location file can correspond to one or more data files in HDFS. The number of
location files for the external table is suggested by the

oracl e. hadoop. extt ab. | ocati onFi | eCount configuration property.

See "Connections using url, user, and password Properties".

2.10.5 Location File Names

This is the format of a location file name:
osch-ti mest anp- nunber-n

In this syntax:

ORACLE 2-30

Chapter 2
Configuring Oracle SQL Connector for HDFS

* tinestanp has the format yyyyMwidhhmss, for example, 20121017103941 for
October 17, 2012, at 10:39:41.

e nunber is a random number used to prevent location file name conflicts among
different tables.

* nisanindex used to prevent name conflicts between location files for the same
table.

For example, osch-20121017103941-6807-1.

2.11 Configuring Oracle SQL Connector for HDFS

You can pass configuration properties to the Ext er nal Tabl e tool on the command line
with the - D option, or you can create a configuration file and pass it on the command
line with the - conf option. These options must precede the command to be executed.

For example, this command uses a configuration file named exanpl e. xn :

hadoop jar OSCH HOWVE/jlib/orahdfs.jar \
oracl e. hadoop. extt ab. Ext ernal Tabl e \
-conf /hone/ oracl e/ exanpl e. xn \
-createTabl e

See "ExternalTable Command-Line Tool Syntax".

2.11.1 Creating a Configuration File

ORACLE

A configuration file is an XML document with a very simple structure as follows:

<?xm version="1.0"?>
<configuration>
<property>
<nane>pr oper t y</ name>
<val ue>val ue</ val ue>
</ property>

</ confi guration>

The following example shows a configuration file. See "Oracle SQL Connector for
HDFS Configuration Property Reference" for descriptions of these properties.

Example 2-12 Configuration File for Oracle SQL Connector for HDFS

<?xm version="1.0"?>
<configuration>
<property>
<name>or acl e. hadoop. ext t ab. t abl eName</ nane>
<val ue>SH. SALES EXT DI R</val ue>
</ property>
<property>
<name>or acl e. hadoop. ext t ab. dat aPat hs</ nane>
<val ue>/data/sl1/*.csv,/datals2/*.csv</val ue>
</ property>
<property>
<name>or acl e. hadoop. connecti on. ur | </ name>
<val ue>j dbc: oracl e: thin: @/ nyhost: 1521/ nyser vi cenanme</ val ue>
</ property>

2-31

Chapter 2
Configuring Oracle SQL Connector for HDFS

<property>
<name>or acl e. hadoop. connect i on. user </ nane>
<val ue>SHk/ val ue>
</ property>
</ confi guration>

2.11.2 Oracle SQL Connector for HDFS Configuration Property

Reference
The following is a complete list of the configuration properties used by the
Ext er nal Tabl e command-line tool. The properties are organized into these categories:
* General Properties
* Connections using url, user, and password Properties
General Properties
Property Description

oracle.hadoop.exttab.badFi
leFormatUsePercentA

oracle.hadoop.exttab.colM
ap.columnLength

ORACLE

Indicates whether an external table bad file name contains '%a’. This is an optional
property for the - cr eat eTabl e command.

Valid values: TRUE,FALSE

Default value: FALSE

The default bad file name is<ext ernal _t abl e_nane>_%. bad. If the value is TRUE,

this generates deterministic bad file names of the form <ext ernal _t abl e_name>_
%. bad. For example: 'nyt abl e_000. bad’, and 'myt abl e_001. bad'.

If . bad files exist then diagnostic external tables can be created over the . bad files
to review the rejected rows. No . bad files are generated if there are no rejected
rows.

¢ See Also:

e oracle.hadoop.exttab.logFileFormatUsePercentA

* BADFILE | NOBADFILE in Oracle Database
Utilities.

Specifies the length of all external table columns of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, and RAW Optional.

Default Value: The maximum length allowed by the column type

For Oracle Database 12c¢, Oracle SQL Connector for HDFS sets the length of
VARCHAR2, NVARCHAR?2, and RAWcolumns depending on whether the database
MAX_STRI NG_SI ZE option is set to STANDARD or EXTENDED.

Valid values: Integer

2-32

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property

Description

oracle.hadoop.exttab.colM
ap.columnType

oracle.hadoop.exttab.colM
ap.dateMask

oracle.hadoop.exttab.colM
ap.fieldLength

oracle.hadoop.exttab.colM
ap.timestampMask

ORACLE

Specifies the data type mapping of all columns for Hive and text sources. Optional.
You can override this setting for specific columns by setting
oracle.hadoop.exttab.colMap.column_name.columnType.

Default value: VARCHAR? for text; see Table 2-1 for Hive

Valid values: The following Oracle data types are supported:

VARCHAR?2

NVARCHAR2

CHAR

NCHAR

CLOB

NCLOB

NUMBER

| NTEGER

FLOAT

Bl NARY_DOUBLE

Bl NARY_FLOAT

RAW

DATE

TI MESTAMP

TI MESTAMP W TH TI ME ZONE

TI MESTAMP W TH LOCAL TI ME ZONE
| NTERVAL DAY TO SECOND

| NTERVAL YEAR TO MONTH

* RAWbinary data in delimited text files must be encoded in hexadecimal.

Specifies the format mask used in the date_format_spec clause of the external
table for all DATE columns. This clause indicates that a character data field contains
a date in the specified format.

Default value: The default globalization format mask, which is set by the
NLS_DATE_FORMAT database parameter

Valid values: A datetime format model as described in Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

Sets the character buffer length used by the ORACLE_LOADER access driver for all
CLOB columns. The value is used in the field_list clause of the external table
definition, which identifies the fields in the data file and their data types.

Default value: 4000 bytes
Valid values: Integer

Specifies the format mask used in the date_format_spec clause of the external
table for all TI MESTAMP and TI MESTAMP W TH LOCAL TI ME ZONE columns. This clause
indicates that a character data field contains a timestamp in the specified format.

Default value: The default globalization format mask, which is set by the
NLS_TI MESTAMP_FORMAT database parameter

Valid values: A datetime format model as described in Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

2-33

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property

Description

oracle.hadoop.exttab.colM
ap.timestampTZMask

oracle.hadoop.exttab.colM
ap.column_name.columnL
ength

oracle.hadoop.exttab.colM
ap.column_name.columnT

ype

oracle.hadoop.exttab.colM
ap.column_name.dateMask

oracle.hadoop.exttab.colM
ap.column_name.fieldLeng
th

ORACLE

Specifies the format mask used in the date_format_spec clause of the external
table for all TI MESTAMP W TH TI ME ZONE columns. This clause indicates that a
character data field contains a timestamp in the specified format.

Default value: The default globalization format mask, which is set by the
NLS_TI MESTAMP_TZ_FORMAT database parameter

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

Specifies the length of all external table columns of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, and RAW Optional.

Default Value: The value of oracle.hadoop.exttab.colMap.columnLength; if that property
is not set, then the maximum length allowed by the data type

Valid values: Integer
Overrides the data type mapping for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.columnType; if that property is
not set, then the default data type identified in Table 2-1

Valid values: See oracle.hadoop.exttab.colMap.columnType

Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.dateMask.

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

Overrides the character buffer length used by the ORACLE_LOADER access driver for
column_name. This property is especially useful for CLOB and extended data type
columns. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: Oracle SQL Connector for HDFS sets the default field lengths as
shown in the following table.

Table 2-4 Field Length Calculations
|

Data Type of Target Column Field Length

VARCHAR2, NVARCHAR2, CHAR, Value of

NCHAR oracle.hadoop.exttab.colMap.column_name.columnLen
gth

RAW 2 *col utmLengt h property

CLOB, NCLOB Value of oracle.hadoop.exttab.colMap.fieldLength

All other types 255 (default size for external tables)

Valid values: Integer

2-34

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property

Description

oracle.hadoop.exttab.colM
ap.column_name.nulllfSpe
cifier

oracle.hadoop.exttab.colM
ap.column_name.timestam
pMask

oracle.hadoop.exttab.colM
ap.column_name.timestam
pTZMask

oracle.hadoop.exttab.colu
mnCount

oracle.hadoop.exttab.colu
mnNames

ORACLE

This property is applied to a column identified by column_name in an external table.
Optional. Overrides the property or acl e. hadoop. exttab. nul | | f Speci fier.

Type: string

Valid values: same as for the property or acl e. hadoop. exttab. nul | | f Speci fier.
Default values: none.

This property applies only to Delimited Text sources.

Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.timestampMask.

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in
a Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.timestampTZMask.

Valid values: A datetime format model as described in Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

Specifies the number of columns for the external table created from delimited text
files. The column names are setto C1, C2,... Cn, where n is value of this property.
This property is ignored if or acl e. hadoop. extt ab. col unmNanes is set.

The - cr eat eTabl e command uses this property when
oracle.hadoop.exttab.sourceType=t ext .

You must set either this property or oracle.hadoop.exttab.columnNames when creating
an external table from delimited text files.

Specifies a comma-separated list of column names for an external table created
from delimited text files. If this property is not set, then the column names are set to
C1, C2,... Cn, where n is the value of the or acl e. hadoop. ext t ab. col utmCount
property.

The column names are read as SQL identifiers: unquoted values are capitalized,
and double-quoted values stay exactly as entered.

The - creat eTabl e command uses this property when

oracl e. hadoop. extt ab. sour ceType=t ext.

You must set either this property or oracle.hadoop.exttab.columnCount when creating an
external table from delimited text files.

2-35

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property

Description

oracle.hadoop.exttab.data
CompressionCodec

ORACLE

" Notice:

This property is deprecated.

OSCH discovers the compression code of each file at
runtime. The dataset can contain both compressed
and uncompressed files and can also contain files
compressed with different codecs.

Specifies the name of the compression codec class used to decompress the data
files. Specify this property when the data files are compressed. Optional.

This property specifies the class name of any compression codec that implements
the or g. apache. hadoop. i 0. conpr ess. Conpr essi onCodec interface. This codec
applies to all data files.

Several standard codecs are available in Hadoop, including the following:
e bzip2: org. apache. hadoop. i 0. conpr ess. BZi p2Codec

e gzip: org. apache. hadoop. i 0. conpr ess. Gzi pCodec

Default value: None

2-36

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property Description

oracle.hadoop.exttab.data Specifies a comma-separated list of fully qualified HDFS paths. This property
Paths enables you to restrict the input by using special pattern-matching characters in the
path specification. See the following table. This property is required for the -
creat eTabl e and - publ i sh commands using Data Pump or delimited text files. The
property is ignored for Hive data sources.

For example, to select all files in / dat a/ s2/, and only the CSV files in / dat a/ s7/,/
dat a/ s8/, and / dat a/ s9/, enter this expression:

/datals2/,/datals[7-9]/*.csv

The external table accesses the data contained in all listed files and all files in listed
directories. These files compose a single data set.

The data set can contain compressed files or uncompressed files, but not both.

Table 2-5 Pattern-Matching Characters
]

Character Description

? Matches any single character

* Matches zero or more characters

[abc] Matches a single character from the character set {a, b, c}

[a- b] Matches a single character from the character range {a...b}. The

character a must be less than or equal to b.

[~a] Matches a single character that is not from character set or range {a}.
The carat (*) must immediately follow the left bracket.

\c Removes any special meaning of character c. The backslash is the
escape character.

{ab\,cd} Matches a string from the string set {ab, cd}. Precede the comma with
an escape character (\) to remove the meaning of the comma as a
path separator.

{ab\,c{de\ ,f h}} Matches a string from the string set {ab, cde, cfh}. Precede the
comma with an escape character () to remove the meaning of the
comma as a path separator.

oracle.hadoop.exttab.data Specifies the path filter class. This property is ignored for Hive data sources.

PathFilter Oracle SQL Connector for HDFS uses a default filter to exclude hidden files, which
begin with a dot or an underscore. If you specify another path filter class using the
this property, then your filter acts in addition to the default filter. Thus, only visible
files accepted by your filter are considered.

oracle.hadoop.exttab.defau Specifies the default directory for the Oracle external table. This directory is used

ItDirectory for all input and output files that do not explicitly name a directory object. In Oracle
RAC, this directory must be on a shared directory accessible by all Oracle
instances.

Valid value: The name of an existing database directory

Unquoted names are changed to upper case. Double-quoted names are not
changed; use them when case-sensitivity is desired. Single-quoted names are not
allowed for default directory names.

The - creat eTabl e command requires this property.

ORACLE 2-37

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property Description

oracle.hadoop.exttab.fieldT Specifies the field terminator for an external table when
erminator oracl e. hadoop. extt ab. sour ceType=t ext . Optional.
Default value: , (comma)
Valid values: A string in one of the following formats:
e One or more regular printable characters; it cannot start with \ u. For example,
\'t represents a tab.

e One or more encoded characters in the format \ uHHHH, where HHHH is a big-
endian hexadecimal representation of the character in UTF-16. For example,
\ u0009 represents a tab. The hexadecimal digits are case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.hive. Maps a Hive data type to an Oracle data type. The property name identifies the

columnType.* Hive data type, and its value is an Oracle data type. The target columns in the
external table are created with the Oracle data type indicated by this property.
When Hive TI MESTAWP column is mapped to an Oracle TI MESTAMP column, then the
format mask is YYYY- M DD H24: M : SS. FF. When a Hive STRI NG column is mapped
to an Oracle TI MESTAMP column, then the NLS parameter settings for the database
are used by default. You can override these defaults by using either the
oracle.hadoop.exttab.colMap.timestampMask or oracle.hadoop.exttab.colMap.timestampTZMask
properties.
Default values: The following table lists the Hive column type properties and their
default values.

Valid values: See the valid values for oracle.hadoop.exttab.colMap.columnType.

Table 2-6 Hive Column Type Mapping Properties
]

Property Default Value
oracl e. hadoop. extt ab. hi ve. col umType. Bl G NT | NTEGER
oracl e. hadoop. extt ab. hi ve. col umType. BOOLEAN VARCHAR2
oracl e. hadoop. ext t ab. hi ve. col uimType. DECl MAL NUMBER
oracl e. hadoop. extt ab. hi ve. col umType. DOUBLE NUMBER
oracl e. hadoop. extt ab. hi ve. col umType. FLOAT NUMBER
oracl e. hadoop. extt ab. hi ve. col umType. | NT | NTEGER
oracl e. hadoop. extt ab. hi ve. col umType. SMALLI NT | NTEGER
oracl e. hadoop. ext t ab. hi ve. col umType. STRI NG VARCHAR2
oracl e. hadoop. extt ab. hi ve. col umType. TI MESTAMP TI MESTAWP
oracl e. hadoop. extt ab. hi ve. col umType. TI NYI NT | NTEGER

oracle.hadoop.exttab.hive. Specifies the name of a Hive database that contains the input data table.

databaseName The - creat eTabl e command requires this property when
oracl e. hadoop. extt ab. sour ceType=hi ve.

ORACLE 2-38

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property

Description

oracle.hadoop.exttab.hive.
partitionFilter

ORACLE

Specifies a valid HiveQL expression that is used to filter the source Hive table
partitions. This property is ignored if the table is not partitioned.

Type: String

Default value: None. All partitions of the Hive table are mapped to external tables.
Valid values: A valid HiveQL expression.

Description: Specifies a valid HiveQL expression that is used to filter the source
Hive table partitions. This property is ignored if the Hive table is not partitioned.

Including other columns does not raise an error, but unintended consequences can
result. Oracle recommends that you exclude other columns.

The expression must conform to the following restrictions:

e Selects partitions and not individual records inside the partitions.

* Does not include columns that are not used to partition the table, because they
might cause unintended consequences.

e Does not include subqueries.

e Does not include user-defined functions (UDFs). Built-in functions are
supported.

« Does not support Hive variable name spaces (such as env:, systen,
hi veconf:, and hi vevar:) because Hive variable expansion is disabled when
OSCH processes this string. Expand all variables in Hive CLI before setting this
property. For example:

CREATE VI EWvi ew _nane AS SELECT * from dat abase. t abl e_nane WHERE
expressi on;
DESCRI BE FORMATTED vi ew_narne;

The View Original Text field contains the query with all variables expanded.
Copy the wher e clause, starting after wher e.

Since all variable expansions are resolved at the Hadoop level, define any
Hadoop variables used in the expression using generic options (- Dand - conf).
Use the Hive CLI to test the expression and ensure that it returns the expected
results. The following examples assume a source table defined with this
command:

CREATE TABLE t(c string)
PARTI TI ONED BY (pl string, p2 int, p3 boolean, p4 string, p5
timestamp);

Example 1: Nested Expressions

pl like "abc% or (p5 >= '2010-06-20" and p5 <= '2010-07-03")
Example 2: Built-in Functions
year (p5) = 2014

Example 3: Bad Usage: Columns That Are Not Used to Partition the Table

These examples show that using ¢, a column that is not used to partition the table,
is unnecessary and can cause unexpected results.

This example is equivalentto p2 > 35:

p2 > 35 and c like "abc%

This example loads all partitions. All partitions could contain ¢ |ike 'abc% so
partitions are filtered out:

p2 > 35 or ¢ like 'abc%

2-39

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property Description

oracle.hadoop.exttab.hive.r Only applies when the source is a Hive partitioned table, is ignored otherwise. This

efreshTables property specifies whether the - publ i sh operation should refresh HDFS data paths
in existing external tables when adding new external tables and views for new Hive
partitions in the source.

Set this property to TRUE to enable refresh. Note that enabling such a refresh can
slow down the - publ i sh operation. If the existing Hive partitions in the source table
have not changed, set the property to FALSE.

Default value: FALSE

oracle.hadoop.exttab.hive.t Specifies the name of an existing Hive table.

ableName The - creat eTabl e command requires this property when
oracl e. hadoop. extt ab. sour ceType=hi ve.

oracle.hadoop.exttab.hive. Specifies whether the - publ i sh operation should drop the views and external tables
deleteObsoleteTables that do not map to any partition in the partitioned Hive table. The property only
applies when the source is a Hive-partitioned table and is otherwise ignored. This
property is also ignored if the original - cr eat eTabl e operation for the Hive
partitioned source table included the oracle.hadoop.exttab.hive.partitionFilter
property
Set this property to TRUE to enable dropping obsolete objects.
Default value: FALSE
oracle.hadoop.exttab.initial Specifies the initial field encloser for an external table created from delimited text
FieldEncloser files. Optional.
Default value: null; no enclosers are specified for the external table definition.

The - creat eTabl e command uses this property when

oracl e. hadoop. ext t ab. sour ceType=t ext.

Valid values: A string in one of the following formats:

e One or more regular printable characters; it cannot start with \ u.

. One or more encoded characters in the format \ uHHHH, where HHHH is a big-
endian hexadecimal representation of the character in UTF-16. The
hexadecimal digits are case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.locati Specifies the desired number of location files for the external table. Applicable only
onFileCount to non-Data-Pump files.

Default value: 4

This property is ignored if the data files are in Data Pump format. Otherwise, the
number of location files is the lesser of:

¢ The number of data files
e The value of this property
At least one location file is created.

See "Enabling Parallel Processing” for more information about the number of
location files.

ORACLE 2-40

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property

Description

oracle.hadoop.exttab.logDi
rectory

oracle.hadoop.exttab.nulllf
Specifier

oracle.hadoop.exttab.prepr
ocessorDirectory

oracle.hadoop.exttab.prepr
ocessorScript

ORACLE

Specifies a database directory where log files and bad files are stored. The file
names are the default values used by external tables. For example, the name of a
log file is the table name followed by _%. | og.

This is an optional property for the - cr eat eTabl e command.
These are the default file name extensions:

e Logfiles: | og

e Bad files: bad

Valid values: An existing Oracle directory object name.

Unquoted names are changed to uppercase. Quoted names are not changed. The
following table provides examples of how values are transformed.

Table 2-7 Examples of Quoted and Unquoted Values
]

Specified Value Interpreted Value

my_log_dir:'sales_tab_%.! og' MY_LOG DI Risal es_tab_%. | og
"ny_log_dir':'sales_tab_%.I og' my_log_dir/sales_tab _%.log
"my_log_ dir":"sales_tab_%.10g" my_log_dir/sales_tab _%. | og

Specifies the NULLIF clause of the external table definition. Optional.

This property is applied to all the columns in an external table.

Type: string

Valid values: a string in following formats:

e One or more regular, printable characters, for example:\ N

e One or more encoded characters in the format \ uHHHH, where HHHH is a big-

endian hexadecimal representation of the character in UTF-16. For example:
\ uO00A represents a newline. The hexadecimal digits are case insensitive.

Default values: none.
This property applies only to Delimited Text sources.

" See Also:

Example 2—1 . This example shows how to use
nul | | f Speci fi er when accessing HDFS data files
From Oracle Database.

Specifies the database directory for the preprocessor. The file-system directory
must contain the hdf s_st r eamscript.

Default value: OSCH_BI N_PATH
The preprocessor directory is used in the PREPROCESSCR clause of the external table.

Specifies the name of the preprocessor script for the external table.
Default value: hdf s_stream

The preprocessor script name is used in the PREPROCESSCR clause of the external
table. This property is required only for Oracle Database running on Microsoft
Windows platforms and is optional for all other Oracle Database platforms. On
Microsoft Windows, the value must be set to hdfs_stream cnd.

2-41

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property Description

oracle.hadoop.exttab.recor Specifies the record delimiter for an external table created from delimited text files.
dDelimiter Optional.

Default value: \ n

The - cr eat eTabl e command uses this property when
oracle.hadoop.exttab.sourceType=t ext .

Valid values: A string in one of the following formats:

* One or more regular printable characters; it cannot start with \ u.

e One or more encoded characters in the format \ uHHHH, where HHHH is a big-
endian hexadecimal representation of the character in UTF-16. The
hexadecimal digits are case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.sour Specifies the type of source files. The - creat eTabl e and - publ i sh operations
ceType require the value of this property.

Default value: t ext

Valid values: dat apunp, hi ve, ort ext
oracle.hadoop.exttab.strin Indicates whether the lengths specified for character strings are bytes or characters.

gSizes This value is used in the STRING S| ZES ARE | N clause of the external table. Use
characters when loading multibyte character sets. See Oracle Database Ultilities.

Default value: BYTES
Valid values: BYTES or CHARACTERS
oracle.hadoop.exttab.creat Specifies whether the log files should be created when the external tables are
eLogFiles queried. Oracle recommends enabling log file creation during development and
disabling log file creation during production for best performance.
Default value: TRUE
Log files are created by default. To stop creating log files you must drop the table,

set this property to FALSE, and then recreate the table. Use the -drop and -
createTable commands to drop and recreate the table.

oracle.hadoop.exttab.print Specifies whether to print verbose reports on the console during a - publ i sh
Verbose operation. Set the value to TRUE to see verbose reports on the console. This
property should only be used for debugging.

Default value: FALSE
oracle.hadoop.exttab.creat Specifies whether bad files should be created when the external tables are queried.

eBadFiles Bad files contain information on rows with bad data. Bad files are created only when
there is bad data. Oracle recommends creating bad files.

Default value: TRUE

Bad files are created by default. To stop creating bad files you must drop the table,
set this property to FALSE, and then recreate the table. Use the -drop and -
createTable commands to drop and recreate the table.

This property applies only to Hive and Delimited Text sources.

ORACLE 2-42

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property

Description

oracle.hadoop.exttab.logFil
eFormatUsePercentA

oracle.hadoop.exttab.table
Name

oracle.hadoop.exttab.traili
ngFieldEncloser

Indicates whether an external table log file name contains '%a'’. This is an optional
property for the - cr eat eTabl e command.

Valid values: TRUE,FALSE
Default value: FALSE

The default log file name is<ext er nal _t abl e_name>_%. | og. If the value is TRUE,
this generates deterministic log file names of the form <ext ernal _t abl e_nane>_
%. | og. For example: 'nyt abl e_000. | og', and 'myt abl e_001. 1 og'.

Diagnostic external tables can be created over the . | og files in order to determine
whether the load was successful or to review the reason for the rejected rows.

¢ See Also:

e oracle.hadoop.exttab.badFileFormatUsePercentA

* LOGFILE | NOLOGFILE in Oracle Database
Utilities.

Specifies the metadata table for partitioned Hive tables or schema-qualified name of
the external table for all other data sources, in this format:

schemaName.tableName

If you omit schemaName, then the schema name defaults to the connection user
name.

Default value: none

Required property for all operations.

Specifies the trailing field encloser for an external table created from delimited text
files. Optional.

Default value: null; defaults to the value of oracle.hadoop.exttab.initialFieldEncloser

The - creat eTabl e command uses this property when

oracle.hadoop.exttab.sourceType=t ext .

Valid values: A string in one of the following formats:

e One or more regular printable characters; it cannot start with \ u.

. One or more encoded characters in the format \ uHHHH, where HHHH is a big-
endian hexadecimal representation of the character in UTF-16. The
hexadecimal digits are case insensitive.

Do not mix the two formats.

Connections using url, user, and password Properties

The url, user, and password properties provide a distinct connection method. Do not
mix these properties with those required for a connection using an Oracle Wallet.

ORACLE

2-43

http://docs.oracle.com/database/121/SUTIL/GUID-D4313319-B751-4AA5-B92B-DF6990FD10A2.htm#SUTIL1396

Chapter 2
Configuring Oracle SQL Connector for HDFS

Property Description

oracle.hadoop.connection.url Specifies the database connection string in the thin-style
service name format:

jdbc: oracl e:thin: @/host _nane: port/servi ce_name

If you are unsure of the service name, then enter this
SQL command as a privileged user:

SQ.> show paraneter service

This property takes precedence over all other
connection properties.

Default value: Not defined
Valid values: A string

oracle.hadoop.connection.user Specifies an Oracle database log-in name. The
ext er nal Tabl e tool prompts for a password if the
oracle.hadoop.connection.password is not specified .

Default value: Not defined
Valid values: A string

oracle.hadoop.connection.password Password for the Oracle Database user. Oracle
recommends that you do not use this property to store a
clear text password outside of non-sensitive test or
demo environments. You can force a password prompt/
response by excluding the password property from the
connection. In that case, the externalTable tool prompts
for the password. If you require a connection with no
prompt/response, use the Oracle Wallet connection
method described in the next section instead.

Default value: Not defined.
Valid values: A string

Connections Using Oracle Wallet

When using Oracle Wallet as an external password store, set the properties shown in
the following table.

Table 2-8 Properties Required for Connections Using Oracle Wallet

__|
Property Description

oracle.hadoop.connection.tnseEntryName Specifies a TNS entry name defined in the
tnsnames.ora file.

This property is used with the
oracl e. hadoop. connection. tns_adnin

property.
Default value: Not defined
Valid values: A string

ORACLE 2.44

Chapter 2
Performance Tips for Querying Data in HDFS

Table 2-8 (Cont.) Properties Required for Connections Using Oracle Wallet

__|
Property Description

oracle.hadoop.connection.tns_admin Specifies the directory that contains the
tnsnames.ora file. Define this property to use
transparent network substrate (TNS) entry
names in database connection strings. When
using TNSNames with the JDBC thin driver,
you must set either this property or the Java
oracl e. net.tns_adni n property. When both
are set, this property takes precedence over
oracl e.net.tns_admin.

This property must be set when using Oracle
Wallet as an external password store.

Default value: The value of the Java
oracl e. net.tns_adm n system property

Valid values: A string

oracle.hadoop.connection.wallet_location Specifies a file path to an Oracle Wallet
directory where the connection credential is
stored.

Default value: Not defined
Valid values: A string

Tip:

Connections using Oracle Wallet can accommodate many TNS entries and
are therefore recommended over those using the user, password and url
properties which are restricted to a single machine/port/servicename
combination.

For a simple step-by-step demonstration, see the posting Using Oracle SQL
Connector for HDFS with Oracle Wallet in the Connecting Hadoop With
Oracle blog.

2.12 Performance Tips for Querying Data in HDFS

ORACLE

Parallel processing is extremely important when you are working with large volumes of
data. When you use external tables, always enable parallel query with this SQL
command:

ALTER SESSI ON ENABLE PARALLEL QUERY;

Before loading the data into an Oracle database from the external files created by
Oracle SQL Connector for HDFS, enable parallel DDL:

ALTER SESSI ON ENABLE PARALLEL DDL;

Before inserting data into an existing database table, enable parallel DML with this
SQL command:

ALTER SESSI ON ENABLE PARALLEL DM,

2-45

https://blogs.oracle.com/bigdataconnectors/entry/using_oracle_sql_connector_for
https://blogs.oracle.com/bigdataconnectors/entry/using_oracle_sql_connector_for
https://blogs.oracle.com/bigdataconnectors/
https://blogs.oracle.com/bigdataconnectors/

Chapter 2
Performance Tips for Querying Data in HDFS

Hints such as APPEND and PQ DI STRI BUTE also improve performance when you are
inserting data.

SeeMy Oracle Support Document 2111850.1 for additional details and examples for
improving performance.

ORACLE 2-46

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=393560290853415&id=2111850.1&_adf.ctrl-state=xfdztztm_77

Oracle Loader for Hadoop

This chapter explains how to use Oracle Loader for Hadoop to load data from Apache
Hadoop into tables in an Oracle database. It contains the following sections:

* What Is Oracle Loader for Hadoop?
e About the Modes of Operation
e Getting Started With Oracle Loader for Hadoop
e Using Oracle Loader for Hadoop With the Hadoop Command Line Utility
— Creating the Target Table
— Creating a Job Configuration File
— About the Target Table Metadata
— About Input Formats
— Mapping Input Fields to Target Table Columns
— About Output Formats
— Running a Loader Job
— Handling Rejected Records
— Balancing Loads When Loading Data into Partitioned Tables
— Optimizing Communications Between Oracle Engineered Systems
e Oracle Loader for Hadoop Configuration Property Reference
e Licenses for Third-Party Software Bundled With OLH

3.1 What Is Oracle Loader for Hadoop?

ORACLE

Oracle Loader for Hadoop is an efficient and high-performance loader for fast loading
of data from a Hadoop cluster into a table in an Oracle database. It pre-partitions the
data if necessary and transforms it into a database-ready format. It can also sort
records by primary key or user-specified columns before loading the data or creating
output files. Oracle Loader for Hadoop uses the parallel processing framework of
Hadoop to perform these preprocessing operations, which other loaders typically
perform on the database server as part of the load process. Off-loading these
operations to Hadoop reduces the CPU requirements on the database server, thereby
lessening the performance impact on other database tasks.

Oracle Loader for Hadoop is a Java MapReduce application that balances the data
across reducers to help maximize performance. It works with a range of input data
formats that present the data as records with fields. It can read from sources that have
the data already in a record format (such as Avro files or Apache Hive tables), or it can
split the lines of a text file into fields.

3-1

Chapter 3
Interfaces to Oracle Loader For Hadoop

If you have Java programming skills, you can extend the types of data that the loader
can handle by defining custom input formats. Then Oracle Loader for Hadoop uses
your code to extract the fields and records.

3.2 Interfaces to Oracle Loader For Hadoop

There are three ways to use Oracle Loader for Hadoop:

Oracle Shell for Hadoop Loaders (OHSH)

OHSH is the preferred way to use Oracle Loader for Hadoop. It includes a CLI
(whose simple command syntax can also be scripted) for moving data between
Hadoop and Oracle Database using various resources, including OLH.

Oracle SQL Developer.

Oracle SQL Developer is a free graphical IDE that includes integration with Oracle
Database and Oracle Big Data Connectors (among many other products). It
provides wizards to help you access and use Oracle Big Data Connectors.

The hadoop command-line utility

On the command line, you provide configuration settings with the details of the job.
You typically provide these settings in a job configuration file. This is a more direct
method, but also requires in-depth familiarity with OLH.

" See Also:

Using Oracle SQL Developer With Oracle Big Data Connectors in this guide
provides instructions for downloading Oracle SQL Developer and configuring
it for use with Oracle Big Data Connectors.

3.3 Getting Started With Oracle Loader for Hadoop

These instructions show how to use Oracle Loader for Hadoop through OHSH.

ORACLE

Before You Start

This is what you need to know before using OLH to load an Oracle Database table
with data stored in Hadoop:

The password of the database schema you are connecting to (which is implied by
the database connection URL).

The name of the Oracle Database table.

The source of the data living in Hadoop (either a path to an HDFS directory or the
name of a Hive table).

The preferred method for loading. Choose either JDBC or direct path. Direct path
load is faster, but requires partitioning of the target table. JDBC does not.

About Resources

In OHSH, the term resources refers to the interfaces that OHSH presents for defining
the data source, destination, and command language. Four types of resources are
available:

3-2

ORACLE

Chapter 3
Getting Started With Oracle Loader for Hadoop

» Hadoop resources — for executing HDFS commands to navigate HDFS and use
HDFS as a source or destination.

* Hive resources — for executing Hive commands and specifying Hive as a source or
destination.

» JDBC resources — for making JDBC connections to a database.
* SQL*Plus resources — for executing SQL commands in a database schema.

Two resources are created upon OHSH startup:

* hive0 — enables access to the Hive database default.
* hadoop0 — enables access to HDFS.

You can create SQL*Plus and JDBC resources with a session, as well as additional
Hive resources (for example, to connect to other Hive databases). Assign a resource
any name that is meaningful to you. In the examples below, we use the names
ora_nydat abase and sql 0 .

Where resources are invoked in the commands below, the percent sign (%) prefix
identifies a resource name.

Loading an Oracle Database Table

1. Start an OHSH session.

$ ohsh
ohsh>

2. Create the following resources:
e SQL*Plus resource

ohsh> create sqglplus resource sgl 0 connectid="<database connection url>"

At prompt, enter the database password.
* JDBC resource.

You can provide any name. A name that indicates the target schema is
recommended.

ohsh> create jdbc resource ora_nydatabase connectid="<database connection
ur1>"

At the prompt, enter the database password.

» Additional Hive resources (if required). The default Hive resource hi ve0
connects to the default database in Hive. If you want to connect to another
Hive database, create another resource:

ohsh> create hive resource hive_nydatabase connectionurl="jdbc: hive2:///
<Hi ve database name>

3. Use the |l oad command to load files from HDFS into a target table in the Oracle
database.

The following command loads data from a delimited text file in HDFS <HDFS pat h>
into the target table in Oracle Database using the direct path option.

ohsh> | oad oracle table ora_nydatabase: <target table in the Oracle database>
from path hadoopO: /user/ <HDFS pat h> using directpath

3-3

ORACLE

Chapter 3
Getting Started With Oracle Loader for Hadoop

Note:

The default direct path method is the fastest way to load a table.
However, it requires partitioned target table. Direct path is always
recommended for use with partition tables. Use the JDBC option to load
into a non-partitioned target table.

If the command does not explicitly state the load method, then OHSH
automatically uses the appropriate method. If the target Oracle table is
partitioned, then by default, OHSH uses direct path (i.e. Oracle OCI). If
the Oracle table is not partitioned, it uses JDBC.

4. After loading, check the number of rows.
You can do this conveniently from the OHSH command line:

ohsh> %ql 0 select count(*) from<target table in Oacle Database>

Loading a Hive Table Into an Oracle Database Table

You can use OHSH to load a Hive table into a target table in an Oracle database. The
command below shows how to do this using the direct path method.

ohsh> | oad oracle table ora_nydatabase: <target table in Oracle Database> from hive
tabl e hive0: <H ve table nane>

Note that if the target table is partitioned, then OHSH uses direct path automatically.
You do not need to enter using direct pat h explicitly in the command.

If the target table is non-partitioned, then specify the JDBC method instead:

ohsh> | oad oracle table ora_nydatabase: <target table in Oracle Database> from hive
tabl e hive0: <H ve table name> using jdbc

Note:

The | oad command assumes that the column names in the Hive table and in
the Oracle Database table are identically matched. If they do not match, then
use OHSH | oader map.

Using OHSH Loadermaps
The simple load examples in this section assume the following:

* Where we load data from a text file in Hadoop into an Oracle Database table, the
declared order of columns in the target table maps correctly to the physical
ordering of the delimited text fields in the file.

« Where we load Hive tables in to Oracle Database tables, the Hive and Oracle
Database column names are identically matched.

However, in less straightforward cases where the column names (or the order of
column names and delimited text fields) do not match, use the OHSH | oader map
construct to correct these mismatches.

You can also use a loadermap to specify a subset of target columns to load into table
or in the case of a load from a text file, specify the format of a field in the load.

3-4

ORACLE

Chapter 3
Getting Started With Oracle Loader for Hadoop

Loadermaps are not covered in this introduction.

Performance Tuning Oracle Loader for Hadoop in OHSH

Aside from network bandwidth, two factors can have significant impact on Oracle
Loader for Hadoop performance. You can tune both in OHSH.

» Degree of parallelism

The degree of parallelism affects performance when Oracle Loader for Hadoop
runs in Hadoop. For the default method (direct path), parallelism is determined by
the number of reducer tasks. The higher the number of reducer tasks, the faster
the performance. The default value is 4. To set the number of tasks:

ohsh> set reducetasks 18

For the JDBC option, parallelism is determined by the number of map tasks and
the optimal number is determined automatically. However, remember that if the
target table is partitioned, direct path is faster than JDBC.

* Load balancing

Performance is best when the load is balanced evenly across reduce tasks. The
load is detected by sampling. Sampling is always enabled by default for loads
using the JDBC and the default copy method.

Debugging in OHSH
Several OHSH settings control the availability of debugging information:

° outputlevel

The out put | evel is set to i ni mal by default. Set it to ver bose in order to return a
stack trace when a command fails:

ohsh> set outputlevel verbose
* | ogbadrecords

ohsh> set |ogbadrecords true
This is set to true by default.
These log files are informative for debugging:

* Oracle Loader for Hadoop log files.

[user/ <username>/ smart| oader/j obhi story/oracl e/ <target table schema>/<target
tabl e name>/ <OHSH job I D>/ ol h

* Log files generated by the map and reduce tasks.

Other OHSH Properties That are Useful for Oracle Loader for Hadoop
You can set these properties on the OHSH command line or in a script.

e dateformat

ohsh> set dateformat “yyyy-M#dd HH mm ss”

The syntax for this command is dictated by the Java date format.

e rejectlinit

3-5

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

The number of rows that can be rejected before the load of a delimited text file
fails.

e fieldterninator

The field terminator in loads of delimited text files.
* hadoopt nsadni n

Location of an Oracle TNS admin directory in the Hadoop cluster
* hadoopwal | et| ocation

Location of the Oracle Wallet directory in the Hadoop cluster.

3.3.1 Additional Information

Using the exttab (External Table) Method to Load Data

A third option to load data from Hadoop into Oracle Database is exttab.

< Note:

The exttab option is available in on-premises deployments of OHSH only. It
is not available in Oracle cloud services

In the exttab, data is loaded via external tables. OHSH creates the external table using
Oracle SQL Connector for HDFS, and then uses a Create tabl e as Sel ect statement
to load the data into the target table:

ohsh> | oad oracle table ora_nydatabase: <target table in Oracl e Database> from hive
tabl e hive0: <H ve tabl e name> using exttab

Learning Resources
These OHSH blog entries can help you get started.
e How to Load Oracle and Hive Tables with OHSH (Part 3 - Loading Oracle Tables)

e How to Load Oracle and Hive tables using OHSH (Part 5 - Using "loadermap"”
when loading Oracle tables)

e How to Load Oracle and Hive tables using OHSH (Part 6 - Using the "etl" method
for loading Oracle tables)

e Oracle Loader for Hadoop and Performance Tuning

See the Java™ Platform, Standard Edition 7 API Specification for documentation on
the SimpleDateFormat class.

3.4 Using Oracle Loader for Hadoop With the Hadoop
Command Line Utility

You take the following basic steps when using Oracle Loader for Hadoop:

1. The first time you use Oracle Loader for Hadoop, ensure that the software is
installed and configured.

ORACLE 3-6

https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-with-ohsh-part-3-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-5-using-loadermap-when-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-5-using-loadermap-when-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-6-using-the-etl-method-for-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/how-to-load-oracle-and-hive-tables-using-ohsh-part-6-using-the-etl-method-for-loading-oracle-tables
https://blogs.oracle.com/bigdataconnectors/oracle-loader-for-hadoop-and-performance-tuning-v3
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

ORACLE

10.
11.

12.

13.

14.

15.

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

See "Oracle Loader for Hadoop Setup.”

Connect to Oracle Database and create the target table.

See "Creating the Target Table."

If you are using offline database mode, then generate the table metadata.
See "Generating the Target Table Metadata for Offline Database Mode."

Log in to either a node in the Hadoop cluster or a system set up as a Hadoop
client for the cluster.

If you are using offline database mode, then copy the table metadata to the
Hadoop system where you are logged in.

Create a configuration file. This file is an XML document that describes
configuration information, such as access to the target table metadata, the input
format of the data, and the output format.

See "Creating a Job Configuration File."

Create an XML document that maps input fields to columns in the Oracle database
table. Optional.

See "Mapping Input Fields to Target Table Columns ."
Create a shell script to run the Oracle Loader for Hadoop job.
See "Running a Loader Job."

If you are connecting to a secure cluster, then you run ki nit to authenticate
yourself.

Run the shell script.

If the job fails, then use the diagnostic messages in the output to identify and
correct the error.

See "Job Reporting."

After the job succeeds, check the command output for the number of rejected
records. If too many records were rejected, then you may need to modify the input
format properties.

If you generated text files or Data Pump-format files, then load the data into Oracle
Database using one of these methods:

e Create an external table using Oracle SQL Connector for HDFS (online
database mode only).

See Oracle SQL Connector for Hadoop Distributed File System .

e Copy the files to the Oracle Database system and use SQL*Loader or external
tables to load the data into the target database table. Oracle Loader for
Hadoop generates scripts that you can use for these methods.

See "About DelimitedTextOutputFormat" or "About DataPumpOutputFormat."

Connect to Oracle Database as the owner of the target table. Query the table to
ensure that the data loaded correctly. If it did not, then modify the input or output
format properties as needed to correct the problem.

Before running the OralLoader job in a production environment, employ these
optimizations:

e Balancing Loads When Loading Data into Partitioned Tables

3-7

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

* Optimizing Communications Between Oracle Engineered Systems

3.4.1 About the Modes of Operation

Oracle Loader for Hadoop operates in two modes:

* Online Database Mode

» Offline Database Mode

3.4.1.1 Online Database Mode

ORACLE

In online database mode, Oracle Loader for Hadoop can connect to the target
database using the credentials provided in the job configuration file or in an Oracle
wallet. The loader obtains the table metadata from the database. It can insert new
records directly into the target table or write them to a file in the Hadoop cluster. You
can load records from an output file when the data is needed in the database, or when

the database system is less busy.

The following figure shows the relationships among elements in online database
mode.

3-8

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

Figure 3-1 Online Database Mode

|
Hadoop Cluster Database System

Input Oracle Loader

|
|
|
|
|
Data for Hadoop |
|

I Table
| Metadata

s

Job
Configuration

Oracle
Database

W \\\\\\

ORACLE 3-9

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

3.4.1.2 Offline Database Mode

Offline database mode enables you to use Oracle Loader for Hadoop when the Oracle
Database system is on a separate network from the Hadoop cluster, or is otherwise
inaccessible. In this mode, Oracle Loader for Hadoop uses the information supplied in
a table metadata file, which you generate using a separate utility. The loader job
stores the output data in binary or text format output files on the Hadoop cluster.
Loading the data into Oracle Database is a separate procedure using another utility,
such as Oracle SQL Connector for Hadoop Distributed File System (HDFS) or
SQL*Loader.

The following figure shows the relationships among elements in offline database
mode. The figure does not show the separate procedure of loading the data into the
target table.

ORACLE 3-10

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

Hadoop Cluster

Table
Metadata

Oracle Loader
for Hadoop

W \\\\
LN

AN

\
\

Input Oracle Loader
Data for Hadoop

17

Jo
~— Configuration

Oracle
Database

ORACLE" 3-11

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

3.4.2 Creating the Target Table

Oracle Loader for Hadoop loads data into one target table, which must exist in the
Oracle database. The table can be empty or contain data already. Oracle Loader for
Hadoop does not overwrite existing data.

Create the table the same way that you would create one for any other purpose. It
must comply with the following restrictions:

e Supported Data Types for Target Tables
e Supported Partitioning Strategies for Target Tables

3.4.2.1 Supported Data Types for Target Tables

You can define the target table using any of these data types:

e Bl NARY_DOUBLE
* BINARY_FLOAT

e CHAR
e DATE
e FLOAT

* | NTERVAL DAY TO SECOND
* INTERVAL YEAR TO MONTH

e NCHAR

* NUMBER

* NVARCHAR2
° RAW

e Tl MESTAWP

e TIMESTAWP WTH LOCAL TIME ZONE
e TIMESTAVP WTH TI ME ZONE
* VARCHAR2

The target table can contain columns with unsupported data types, but these columns
must be nullable, or otherwise set to a value.

3.4.2.2 Supported Partitioning Strategies for Target Tables

ORACLE

Partitioning is a database feature for managing and efficiently querying very large
tables. It provides a way to decompose a large table into smaller and more
manageable pieces called partitions, in a manner entirely transparent to applications.

You can define the target table using any of the following single-level and composite-
level partitioning strategies.

e Hash
e Hash-Hash
e Hash-List

3-12

Hash-Range
Interval
Interval-Hash
Interval-List
Interval-Range
List
List-Hash
List-List
List-Range
Range
Range-Hash
Range-List

Range-Range

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

Oracle Loader for Hadoop does not support reference partitioning or virtual column-
based partitioning.

See Also:

Oracle Database VLDB and Partitioning Guide

3.4.2.3 Compression

Oracle Loader for Hadoop does not compress data. Compressing data during load is
defined by the table and database properties. To load data into a compressed table
define the table and database properties accordingly.

3.4.3 Creating a Job Configuration File

A configuration file is an XML document that provides Hadoop with all the information
it needs to run a MapReduce job. This file can also provide Oracle Loader for Hadoop
with all the information it needs. See "Oracle Loader for Hadoop Configuration

ORACLE

Property Reference".

Configuration properties provide the following information, which is required for all
Oracle Loader for Hadoop jobs:

How to obtain the target table metadata.

See "About the Target Table Metadata."

The format of the input data.

See "About Input Formats."

The format of the output data.

See "About Output Formats."

3-13

ORACLE

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

OraLoader implements the or g. apache. hadoop. util . Tool interface and follows the
standard Hadoop methods for building MapReduce applications. Thus, you can supply
the configuration properties in a file (as shown here) or on the hadoop command line.
See "Running a Loader Job."

You can use any text or XML editor to create the file. The following example provides
an example of a job configuration file.

Example 3-1 Job Configuration File

<?xm version="1.0" encodi ng="UTF-8" ?>
<configuration>

<l-- I nput settings -->
<property>

<name>napr educe. j ob. i nput f or mat . cl ass</ nane>

<val ue>oracl e. hadoop. | oader. li b.input. Del i m tedText | nput For mat </ val ue>
</ property>

<property>
<name>napr educe. i nput. fil ei nput format.inputdir</name>
<val ue>/ user/ or acl e/ movi edeno/ sessi on/ *00000</ val ue>
</ property>

<property>
<nanme>or acl e. hadoop. | oader . i nput. fi el dTer m nat or </ name>
<val ue>\ u0009</ val ue>

</ property>

<property>
<nanme>or acl e. hadoop. | oader . i nput. fi el dNanes</ nane>

<val ue>SESS|I ON_I D, TI ME_I DDATE, CUST_| D, DURATI ON_SESSI ON, NUM_RATED, DURATI ON_RATED, NUM C
OVPLETED, DURATI ON_COVPLETED, TI ME_TO_FI RST_START, NUM_STARTED, NUM_BROWSED, DURATI ON_BROW
SED, NUM_LI STED, DURATI ON_LI STED, NUM | NCOMPLETE, NUM_SEARCHED</ val ue>

</ property>

<property>
<nane>or acl e. hadoop. | oader . def aul t Dat eFor mat </ nane>
<val ue>yyyy- M dd: HH: nm ss</ val ue>

</ property>

<l-- Qut put settings -->
<property>

<nanme>napr educe. j ob. out put f or mat . cl ass</ name>

<val ue>or acl e. hadoop. | oader. | i b. out put . OCl Qut put For mat </ val ue>
</ property>

<property>
<nane>napr educe. out put. fil eout put f or mat . out put di r </ nane>
<val ue>t enp_out _sessi on</val ue>

</ property>

<l-- Tabl e information -->
<property>

<nane>or acl e. hadoop. | oader. | oader Map. t ar get Tabl e</ name>

<val ue>novi e_sessi ons_t ab</ val ue>
</ property>

3-14

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

<I-- Connection information -->

<property>

<nane>or acl e. hadoop. | oader . connecti on. url </ name>

<val ue>j dbc: oracl e: t hi n: @{ HOST} : ${ TCPPORT}/ ${ SERVI CE_NAME} </ val ue>
</ property>

<property>
<nanme>TCPPORT</ nane>
<val ue>1521</ val ue>
</ property>

<property>

<name>HOST</ nanme>

<val ue>nyor acl ehost . exanpl e. conx/ val ue>
</ property>

<property>
<nane>SERVI CE_NAME</ nane>
<val ue>orcl </ val ue>

</ property>

<property>
<nane>or acl e. hadoop. | oader . connecti on. user </ name>
<val ue>MoVI EDEMXX/ val ue>

</ property>

<property>

<nane>or acl e. hadoop. | oader. connect i on. passwor d</ name>

<val ue>or acl e</ val ue>

<description> A password in clear text is NOT RECOWENDED. Use an Oracle wall et
i nst ead. </ descri ption>
</ property>

</ confi guration>

3.4.4 About the Target Table Metadata

You must provide Oracle Loader for Hadoop with information about the target table.
The way that you provide this information depends on whether you run Oracle Loader
for Hadoop in online or offline database mode. See "About the Modes of Operation."

3.4.4.1 Providing the Connection Details for Online Database Mode

ORACLE

Oracle Loader for Hadoop uses table metadata from the Oracle database to identify
the column names, data types, partitions, and so forth. The loader automatically
fetches the metadata whenever a JDBC connection can be established.

Oracle recommends that you use a wallet to provide your credentials. To use an
Oracle wallet, enter the following properties in the job configuration file:

e oracle.hadoop.loader.connection.wallet_location
* oracle.hadoop.loader.connection.tns_admin
* oracle.hadoop.loader.connection.url or oracle.hadoop.loader.connection.tnsEntryName

Oracle recommends that you do not store passwords in clear text; use an Oracle
wallet instead to safeguard your credentials. However, if you are not using an Oracle
wallet, then enter these properties:

3-15

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

e oracle.hadoop.loader.connection.url
» oracle.hadoop.loader.connection.user

* oracle.hadoop.loader.connection.password

3.4.4.2 Generating the Target Table Metadata for Offline Database Mode

Under some circumstances, the loader job cannot access the database, such as when
the Hadoop cluster is on a different network than Oracle Database. In such cases, you
can use the OralLoaderMetadata utility to extract and store the target table metadata in
a file.

To provide target table metadata in offline database mode:

1. Log in to the Oracle Database system.

2. The first time you use offline database mode, ensure that the software is installed
and configured on the database system.

See "Providing Support for Offline Database Mode."

3. Export the table metadata by running the O aLoader Met adat a utility program. See
"OraLoaderMetadata Utility."

4. Copy the generated XML file containing the table metadata to the Hadoop cluster.

5. Use the oracle.hadoop.loader.tableMetadataFile property in the job configuration file to
specify the location of the XML metadata file on the Hadoop cluster.

When the loader job runs, it accesses this XML document to discover the target
table metadata.

3.4.4.2.1 OralL.oaderMetadata Utility

ORACLE

Use the following syntax to run the O aLoader Met adat a utility on the Oracle Database
system. You must enter the j ava command on a single line, although it is shown here
on multiple lines for clarity:

java oracl e. hadoop. | oader. net adat a. Or aLoader Met adat a
-user userNane
-connection_url connection
[-schema schenmaNane]
-tabl e tabl eName
-output fileNane. xm

To see the OraLoaderMetadata Help file, use the command with no options.
Options

-user userName
The Oracle Database user who owns the target table. The utility prompts you for the
password.

-connection_url connection
The database connection string in the thin-style service name format:

jdbc: oracl e:thin: @/ host Nare: port/ servi ceName

3-16

ORACLE

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

If you are unsure of the service name, then enter this SQL command as a privileged
user:
show parameter service

servi ce_nanes string orcl

-schema schemaName

The name of the schema containing the target table. Unquoted values are capitalized,
and unquoted values are used exactly as entered. If you omit this option, then the
utility looks for the target table in the schema specified in the - user option.

-table tableName
The name of the target table. Unquoted values are capitalized, and unquoted values
are used exactly as entered.

-output fileName.xml
The output file name used to store the metadata document.

The following example shows how to store the target table metadata in an XML file.
Example 3-2 Generating Table Metadata
Run the OralLoaderMetadata utility:

$ java -cp “/tmp/oraloader-<version>-h2/jlib/*"

oracle.hadoop. loader.metadata.OralLoaderMetadata -user HR -connection_url
jdbc:oracle:thin://@localhost:1521/orcl.example.com -table EMPLOYEES -output
employee_metadata.xml

The OralLoaderMetadata utility prompts for the database password.

Oracl e Loader for Hadoop Rel ease <version> - Production
Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
[Enter Database Password:] password

OralLoaderMetadata creates the XML file in the same directory as the script.

$ more employee_metadata.xml

<?xm version="1.0" encodi ng="UTF-8"?>

<I--

Oracl e Loader for Hadoop Rel ease <version> - Production

Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.

-->
<DATABASE>
<ROMBET><ROW
<TABLE T>
<VERS_MAJOR>2</ VERS_MAJCR>
<VERS_M NCR>5 </ VERS_M NOR>
<OBJ_NUM>78610</ OBJ_NUM>
<SCHEMA_CBJ>
<OBJ_NUM>78610</ OBJ_NUM>
<DATAOBJ_NUMb78610</ DATACBJ_NUM>
<OMKER_NUM>87</ OAKER NUM>
<OMER NAVE>HR</ OMNER NAME>
<NANE>ENPLOYEES</ NAVE>

3-17

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

3.4.5 About Input Formats

An input format reads a specific type of data stored in Hadoop. Several input formats
are available, which can read the data formats most commonly found in Hadoop:

e Delimited Text Input Format

e Complex Text Input Formats

e Hive Table Input Format

* Avro Input Format

e Oracle NoSQL Database Input Format

You can also use your own custom input formats. The descriptions of the built-in
formats provide information that may help you develop custom Java | nput For mat
classes. See "Custom Input Formats."

You specify a particular input format for the data that you want to load into a database
table, by using the mapreduce.job.inputformat.class configuration property in the job
configuration file.

< Note:

The built-in text formats do not handle header rows or newline characters
(\n) embedded in quoted values.

3.4.5.1 Delimited Text Input Format

To load data from a delimited text file, set mapreduce.job.inputformat.class to

oracl e. hadoop. | oader. | i b.input. DelintedText!| nput For mat

3.4.5.1.1 About DelimitedTextInputFormat

ORACLE

The input file must comply with these requirements:
* Records must be separated by newline characters.
» Fields must be delimited using single-character markers, such as commas or tabs.

A null replaces any empty-string token, whether enclosed or unenclosed.

Del i ni t edText | nput For mat emulates the tokenization method of SQL*Loader:
Terminated by t, and optionally enclosed by ie, or by ie and te.

Del i ni t edText | nput For mat uses the following syntax rules, where t is the field
terminator, ie is the initial field encloser, te is the trailing field encloser, and c is one
character.

e Line = Token t Line | Token\n

* Token = EnclosedToken | UnenclosedToken

3-18

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

* EnclosedToken = (white-space)* ie [(non-te)* te te]* (non-te)* te (white-space)*
* UnenclosedToken = (white-space)* (non-t)*
* white-space = {c | Character.isWhitespace(c) and c!=t}

White space around enclosed tokens (data values) is discarded. For unenclosed
tokens, the leading white space is discarded, but not the trailing white space (if any).

This implementation enables you to define custom enclosers and terminator
characters, but it hard codes the record terminator as a newline, and white space as
Java Charact er. i s\Wi t espace. A white space can be defined as the field terminator, but
then that character is removed from the class of white space characters to prevent
ambiguity.

Hadoop automatically decompresses compressed text files when they are read.

3.4.5.1.2 Required Configuration Properties

None. The default format separates fields with commas and has no field enclosures.

3.4.5.1.3 Optional Configuration Properties

Use one or more of the following properties to define the field delimiters for
Del i mit edText | nput For mat :

* oracle.hadoop.loader.input.fieldTerminator
* oracle.hadoop.loader.input.initialFieldEncloser
* oracle.hadoop.loader.input.trailingFieldEncloser

Use the following property to provide names for the input fields:

e oracle.hadoop.loader.input.fieldNames

3.4.5.2 Complex Text Input Formats

To load data from text files that are more complex than Del i ni t edText | nput For nat can
handle, set mapreduce.job.inputformat.class to

oracl e. hadoop. | oader. | i b. i nput. RegexI| nput For mat

For example, a web log might delimit one field with quotes and another field with
square brackets.

3.4.5.2.1 About RegexInputFormat

ORACLE

Regex| nput For mat requires that records be separated by newline characters. It identifies
fields in each text line by matching a regular expression:

* The regular expression must match the entire text line.
* The fields are identified using the capturing groups in the regular expression.

Regex| nput For mat uses the java. util.regex regular expression-based pattern matching
engine. Hadoop automatically decompresses compressed files when they are read.

3-19

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

" See Also:

Java Platform Standard Edition 6 Java Reference for more information about
java.util.regex at

http://docs. oracl e. contjavase/ 6/ docs/ api/javal util/regex/ package-
sumary. ht ni

3.4.5.2.2 Required Configuration Properties
Use the following property to describe the data input file:

* oracle.hadoop.loader.input.regexPattern

3.4.5.2.3 Optional Configuration Properties
Use the following property to identify the names of all input fields:

* oracle.hadoop.loader.input.fieldNames

Use this property to enable case-insensitive matches:

e oracle.hadoop.loader.input.regexCaselnsensitive

3.4.5.3 Hive Table Input Format

To load data from a Hive table, set mapreduce.job.inputformat.class to

oracl e. hadoop. | oader. |'i b.input.H veToAvr ol nput For mat

3.4.5.3.1 About HiveToAvrolnputFormat

For nonpartitioned tables, H veToAvr ol nput For mat imports the entire table, which is all
files in the Hive table directory.

For partitioned tables, H veToAvr ol nput For mat imports one or more of the partitions. You
can either load or skip a partition. However, you cannot partially load a partition.

Oracle Loader for Hadoop rejects all rows with complex (non-primitive) column values.
UNI ONTYPE fields that resolve to primitive values are supported. See "Handling Rejected
Records."

Hi veToAvr ol nput For mat transforms rows in the Hive table into Avro records, and
capitalizes the Hive table column names to form the field names. This automatic
capitalization improves the likelihood that the field names match the target table
column names. See "Mapping Input Fields to Target Table Columns ".

ORACLE 3-20

http://docs.oracle.com/javase/6/docs/api/java/util/regex/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/package-summary.html

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

Note:

This input format does not support Hive tables using quoted identifiers for
column names. See HIVE-6013

Also note that Hi veToAvr ol nput For rat does not enforce the SQL Standard
Based Hive Authorization. For more information, see https://

cwi ki . apache. or g/ conf | uence/ di spl ay/ H ve/ SQL+St andar d+Based+Hi ve

+Aut hori zati on.

3.4.5.3.2 Required Configuration Properties

You must specify the Hive database and table names using the following configuration
properties:

e oracle.hadoop.loader.input.hive.databaseName

e oracle.hadoop.loader.input.hive.tableName

3.4.5.3.3 Optional Configuration Properties
To specify a subset of rows in the input Hive table to load, use the following property:

* oracle.hadoop.loader.input.hive.rowFilter

3.4.5.4 Avro Input Format

To load data from binary Avro data files containing standard Avro-format records, set
mapreduce.job.inputformat.class to

oracl e. hadoop. | oader . |'i b. i nput. Avrol nput For mat

To process only files with the .avro extension, append *. avr o to directories listed in the
mapr educe. i nput. filei nput format.inputdir configuration property.

3.4.5.4.1 Configuration Properties

None

3.4.5.5 Oracle NoSQL Database Input Format

To load data from Oracle NoSQL Database, set mapreduce.job.inputformat.class to
oracl e. kv. hadoop. KVAvr ol nput For mat

This input format is defined in Oracle NoSQL Database 11g, Release 2 and later
releases.

3.4.5.5.1 About KVAvrolnputFormat

Oracle Loader for Hadoop uses KVAvr ol nput For mat to read data directly from Oracle
NoSQL Database.

KVAvr ol nput For mat passes the value but not the key from the key-value pairs in Oracle
NoSQL Database. If you must access the Oracle NoSQL Database keys as Avro data

ORACLE 3-21

https://issues.apache.org/jira/browse/HIVE-6013
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization
https://cwiki.apache.org/confluence/display/Hive/SQL+Standard+Based+Hive+Authorization

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

values, such as storing them in the target table, then you must create a Java

I nput For mat class that implements or acl e. kv. hadoop. Avr oFor mat t er . Then you can
specify the oracl e. kv. format t er Ol ass property in the Oracle Loader for Hadoop
configuration file.

The KVAvr ol nput For mat class is a subclass of
or g. apache. hadoop. mapr educe. | nput For mat <or acl e. kv. Key,
org. apache. avro. generi c. | ndexedRecor d>

¢ See Also:
Javadoc for the KVI nput For mat Base class at

http://docs. oracl e. com cd/ NOSQL/ ht m / j avadoc/ i ndex. ht m

3.4.5.5.2 Required Configuration Properties

You must specify the name and location of the key-value store using the following
configuration properties:

e oracle.kv.hosts
e oracle.kv.kvstore

See "Oracle NoSQL Database Configuration Properties."

3.4.5.6 Custom Input Formats

If the built-in input formats do not meet your needs, then you can write a Java class for
a custom input format. The following information describes the framework in which an
input format works in Oracle Loader for Hadoop.

3.4.5.6.1 About Implementing a Custom Input Format

Oracle Loader for Hadoop gets its input from a class extending
or g. apache. hadoop. mapr educe. | nput For mat . You must specify the name of that class in
the mapr educe. j ob. i nput f or mat . cl ass configuration property.

The input format must create Recor dReader instances that return an Avro | ndexedRecord
input object from the get Current Val ue method. Use this method signature:

public org.apache. avro. generic. | ndexedRecord get Current Val ue()
throws | CException, InterruptedException;

Oracle Loader for Hadoop uses the schema of the | ndexedRecor d input object to
discover the names of the input fields and map them to the columns of the target table.

3.4.5.6.2 About Error Handling

ORACLE

If processing an | ndexedRecor d value results in an error, Oracle Loader for Hadoop
uses the object returned by the get Current Key method of the Recor dReader to provide
feedback. It calls the t oSt ri ng method of the key and formats the result in an error
message. | nput For mat developers can assist users in identifying the rejected records
by returning one of the following:

3-22

http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

» Data file URI
* InputSplit information
« Data file name and the record offset in that file

Oracle recommends that you do not return the record in clear text, because it might
contain sensitive information; the returned values can appear in Hadoop logs
throughout the cluster. See "Logging Rejected Records in Bad Files."

If a record fails and the key is null, then the loader generates no identifying
information.

3.4.5.6.3 Supporting Data Sampling

Oracle Loader for Hadoop uses a sampler to improve performance of its MapReduce
job. The sampler is multithreaded, and each sampler thread instantiates its own copy
of the supplied | nput For mat class. When implementing a new | nput For mat , ensure that
it is thread-safe. See "Balancing Loads When Loading Data into Partitioned Tables."

3.4.5.6.4 InputFormat Source Code Example

Oracle Loader for Hadoop provides the source code for an | nput For mat example.

In order to access the examples, unzip file exanpl es. zi p, which is in $OLH_HOME. You
can find the InputFormat example in the exanpl es/ j src directory.

The sample format loads data from a simple, comma-separated value (CSV) file. To
use this input format, add $OLH HOVE/ exanpl es/ or al oader - exanpl es. j ar to
HADOOP_CLASSPATH and specify or acl e. hadoop. | oader . exanpl es. CSVI nput For mat as the
value of mapreduce.job.inputformat.class in the job configuration file.

This input format automatically assigns field names of FO, F1, F2, and so forth. It does
not have configuration properties.

3.4.6 Mapping Input Fields to Target Table Columns

Mapping identifies which input fields are loaded into which columns of the target table.
You may be able to use the automatic mapping facilities, or you can always manually
map the input fields to the target columns.

3.4.6.1 Automatic Mapping

ORACLE

Oracle Loader for Hadoop can automatically map the fields to the appropriate columns
when the input data complies with these requirements:

* All columns of the target table are loaded.

* The input data field names in the | ndexedRecor d input object exactly match the
column names.

e Allinput fields that are mapped to DATE columns can be parsed using the same
Java date format.

Use these configuration properties for automatic mappings:
e oracle.hadoop.loader.loaderMap.targetTable: Identifies the target table.

» oracle.hadoop.loader.defaultDateFormat: Specifies a default date format that applies to all
DATE fields.

3-23

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

3.4.6.2 Manual Mapping

For loads that do not comply with the requirements for automatic mapping, you must
define additional properties. These properties enable you to:

* Load data into a subset of the target table columns.

* Create explicit mappings when the input field names are not identical to the
database column names.

» Specify different date formats for different input fields.

Use these properties for manual mappings:

e oracle.hadoop.loader.loaderMap.targetTable configuration property to identify the target
table. Required.

e oracle.hadoop.loader.loaderMap.columnNames: Lists the columns to be loaded.

e oracle.hadoop.loader.defaultDateFormat: Specifies a default date format that applies to all
DATE fields.

» oracle.hadoop.loader.loaderMap.column_name.format: Specifies the data format for a
particular column.

e oracle.hadoop.loader.loaderMap.column_name field: Identifies the name of an Avro record
field mapped to a particular column.

3.4.6.3 Converting a Loader Map File

ORACLE

The following utility converts a loader map file from earlier releases to a configuration
file:

hadoop oracl e. hadoop. | oader . met adat a. Loader Map -convert map_file conf _file
Options

map_file
The name of the input loader map file on the local file system (not HDFS).

conf_file
The name of the output configuration file on the local file system (not HDFS).

The following example shows a sample conversion.
Example 3-3 Converting a Loader File to Configuration Properties

$ HADOOP_CLASSPATH="$0LH_HOME/j lib/*:$HADOOP_CLASSPATH"
$ hadoop oracle.hadoop. loader.metadata.LoaderMap -convert loadermap.xml conf.xml
Oracl e Loader for Hadoop Release 3.8.1 - Production

Copyright (c) 2012, 2017, Oracle and/or its affiliates. Al rights reserved.

Input Loader Map File loadermap.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<LOADER_MAP>
<SCHEMA>HR</ SCHEMA>
<TABLE>EMPLOYEES</ TABLE>
<COLUWN fi el d="F0" >EMPLOYEE_| D</ COLUMN>
<COLUWN fi el d="F1">LAST_NAME</ COLUWN\>

3-24

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

<COLUWN fi el d="F2">EMAI L</ COLUMN>
<COLUWN fiel d="F3" format="Mdd-yyyy">H RE_DATE</ COLUMN>
<COLUWN fi el d="F4">JOB_| D</ COLUM\>

</ LOADER_NAP>

Output Configuration File conf.xml

<?xml version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<configuration>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. t ar get Tabl e</ nane>
<val ue>HR. EMPLOYEES</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. col urmNanes</ nane>
<val ue>EMPLOYEE_| D, LAST_NAME, EMAI L, Hl RE_DATE, JOB_| D</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. EMPLOYEE | D. fi el d</ nane>
<val ue>F0</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. EMPLOYEE_|I D. f or mat </ name>
<val ue></ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. LAST_NAME. fi el d</ nane>
<val ue>F1</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. LAST_NAME. f or mat </ nane>
<val ue></ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. EMAI L. fi el d</ nanme>
<val ue>F2</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. EMAI L. f or mat </ name>
<val ue></ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. H RE_DATE. fi el d</ nane>
<val ue>F3</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. H RE_DATE. f or mat </ nane>
<val ue>MM dd- yyyy</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. JOB_I D. fi el d</ name>
<val ue>F4</ val ue>
</ property>
<property>
<nane>or acl e. hadoop. | oader . | oader Map. JOB_I D. f or mat </ nane>
<val ue></ val ue>
</ property>
</ configuration>

ORACLE 3-25

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

3.4.7 About Output Formats

In online database mode, you can choose between loading the data directly into an
Oracle database table or storing it in a file. In offline database mode, you are restricted
to storing the output data in a file, which you can load into the target table as a
separate procedure. You specify the output format in the job configuration file using
the mapreduce job.outputformat.class property.

Choose from these output formats:

» JDBC Output Format: Loads the data directly into the target table.

» Oracle OCI Direct Path Output Format: Loads the data directly into the target
table.

* Delimited Text Output Format: Stores the data in a local file.

* Oracle Data Pump Output Format: Stores the data in a local file.

3.4.7.1 JDBC Output Format

You can use a JDBC connection between the Hadoop system and Oracle Database to
load the data. The output records of the loader job are loaded directly into the target
table by map or reduce tasks as part of the OraLoader process, in online database
mode. No additional steps are required to load the data.

A JDBC connection must be open between the Hadoop cluster and the Oracle
Database system for the duration of the job.

To use this output format, set mapreduce.job.outputformat.class to

oracl e. hadoop. | oader. | i b. out put . JDBCQut put For mat

3.4.7.1.1 About JDBCOutputFormat

JDBCCQut put For mat uses standard JDBC batching to optimize performance and
efficiency. If an error occurs during batch execution, such as a constraint violation, the
JDBC driver stops execution immediately. Thus, if there are 100 rows in a batch and
the tenth row causes an error, then nine rows are inserted and 91 rows are not.

The JDBC driver does not identify the row that caused the error, and so Oracle Loader
for Hadoop does not know the insert status of any of the rows in the batch. It counts all
rows in a batch with errors as "in question,” that is, the rows may or may not be
inserted in the target table. The loader then continues loading the next batch. It
generates a load report at the end of the job that details the number of batch errors
and the number of rows in question.

One way that you can handle this problem is by defining a unique key in the target
table. For example, the HR EMPLOYEES table has a primary key named EMPLOYEE | D. After
loading the data into HR. EMPLOYEES, you can query it by EMPLOYEE | D to discover the
missing employee IDs.Then you can locate the missing employee IDs in the input
data, determine why they failed to load, and try again to load them.

3.4.7.1.2 Configuration Properties

To control the batch size, set this property:

ORACLE 3-26

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

oracle.hadoop.loader.connection.defaultExecuteBatch

3.4.7.2 Oracle OCI Direct Path Output Format

You can use the direct path interface of Oracle Call Interface (OCI) to load data into
the target table. Each reducer loads into a distinct database partition in online
database mode, enabling the performance gains of a parallel load. No additional steps
are required to load the data.

The OCI connection must be open between the Hadoop cluster and the Oracle
Database system for the duration of the job.

To use this output format, set mapreduce.job.outputformat.class to

oracl e. hadoop. | oader. | i b. out put . OCl Qut put For mat

3.4.7.2.1 About OCIOutputFormat

OCl Qut put For mat has the following restrictions:

e ltis available only on the Linux x86.64 platform.
e The MapReduce job must create one or more reducers.
e The target table must be partitioned.

e For Oracle Database 11g (11.2.0.3), apply the patch for bug 13498646 if the target
table is a composite interval partitioned table in which the subpartition key contains
a CHAR, VARCHAR2, NCHAR, or NVARCHAR2 column. Later versions of Oracle Database do
not require this patch.

3.4.7.2.2 Configuration Properties

To control the size of the direct path stream buffer, set this property:

oracle.hadoop.loader.output.dirpathBufsize

3.4.7.3 Delimited Text Output Format

You can create delimited text output files on the Hadoop cluster. The map or reduce
tasks generate delimited text files, using the field delimiters and enclosers that you
specify in the job configuration properties. Afterward, you can load the data into an
Oracle database as a separate procedure. See "About DelimitedTextOutputFormat."

This output format can use either an open connection to the Oracle Database system
to retrieve the table metadata in online database mode, or a table metadata file
generated by the O al oader Met adat a utility in offline database mode.

To use this output format, set mapreduce.job.outputformat.class to

oracl e. hadoop. | oader. | i b. out put. Del i m t edText Qut put For mat

3.4.7.3.1 About DelimitedTextOutputFormat

ORACLE

Output tasks generate delimited text format files, and one or more corresponding
SQL*Loader control files, and SQL scripts for loading with external tables.

If the target table is not partitioned or if oracle.hadoop.loader.loadByPartition is f al se, then
Del i mi t edText Qut put For mat generates the following files:

3-27

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

* A data file named or al oader - t askl d- csv- 0. dat .
e A SQL*Loader control file named oraloader-csv.ctl for the entire job.

e A SQL script named or al oader - csv. sql to load the delimited text file into the target
table.

For partitioned tables, multiple output files are created with the following names:
e Datafiles: oral oader-taskl d-csv-partitionld. dat

* SQL*Loader control files: or al oader -t askl d-csv-partitionld. ctl

e SQL script: oral oader-csv. sql

In the generated file names, taskl/d is the mapper or reducer identifier, and partitionld
is the partition identifier.

If the Hadoop cluster is connected to the Oracle Database system, then you can use
Oracle SQL Connector for HDFS to load the delimited text data into an Oracle
database. See Oracle SQL Connector for Hadoop Distributed File System .

Alternatively, you can copy the delimited text files to the database system and load the
data into the target table in one of the following ways:

* Use the generated control files to run SQL*Loader and load the data from the
delimited text files.

* Use the generated SQL scripts to perform external table loads.

The files are located in the ${ mapr educe. out put . fi | eout put f or mat . out putdir}/_ol h
directory.

3.4.7.3.2 Configuration Properties

ORACLE

The following properties control the formatting of records and fields in the output files:

e oracle.hadoop.loader.output.escapeEnclosers

» oracle.hadoop.loader.output.fieldTerminator

e oracle.hadoop.loader.output.initialFieldEncloser
» oracle.hadoop.loader.output.trailingFieldEncloser

The following example shows a sample SQL*Loader control file that might be
generated by an output task.

Example 3-4 Sample SQL*Loader Control File

LOAD DATA CHARACTERSET AL32UTF8

I NFI LE ' oral oader-csv-1-0. dat'

BADFI LE ' or al oader - csv- 1- 0. bad'

DI SCARDFI LE ' or al oader - csv- 1-0. dsc'

| NTO TABLE "SCOTT". " CSV_PART" PARTI TI ON(10) APPEND
FI ELDS TERM NATED BY ',"' OPTI ONALLY ENCLOSED BY ' "'

(

"D DECI MAL EXTERNAL,
" NAME" CHAR,
" DOB" DATE ' SYYYY-MM DD HH24: M : SS

3-28

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

3.4.7.4 Oracle Data Pump Output Format

You can create Data Pump format files on the Hadoop cluster. The map or reduce
tasks generate Data Pump files. Afterward, you can load the data into an Oracle
database as a separate procedure. See "About DataPumpOutputFormat."

This output format can use either an open connection to the Oracle Database system
in online database mode, or a table metadata file generated by the O al oader Met adat a
utility in offline database mode.

To use this output format, set mapreduce.job.outputformat.class to

oracl e. hadoop. | oader. | i b. out put . Dat aPunpQut put For mat

3.4.7.4.1 About DataPumpOutputFormat

ORACLE

Dat aPunpQut put For mat generates data files with names in this format:
or al oader -t askl d-dp- partitionld. dat

In the generated file names, taskl/d is the mapper or reducer identifier, and partitionid
is the partition identifier.

If the Hadoop cluster is connected to the Oracle Database system, then you can use
Oracle SQL Connector for HDFS to load the Data Pump files into an Oracle database.
See Oracle SQL Connector for Hadoop Distributed File System .

Alternatively, you can copy the Data Pump files to the database system and load them
using a SQL script generated by Oracle Loader for Hadoop. The script performs the
following tasks:

1. Creates an external table definition using the ORACLE_DATAPUMP access driver. The
binary format Oracle Data Pump output files are listed in the LOCATI ON clause of the
external table.

2. Creates a directory object that is used by the external table. You must uncomment
this command before running the script. To specify the directory name used in the
script, set the oracle.hadoop.loader.extTabDirectoryName property in the job configuration
file.

3. Insert the rows from the external table into the target table. You must uncomment
this command before running the script.

The SQL script is located in the ${ mapr educe. out put . fi | eout put f or mat . out putdir}/_ol h
directory.

¢ See Also:

e Oracle Database Administrator's Guide for more information about
creating and managing external tables

e Oracle Database Ultilities for more information about the ORACLE_DATAPUWP
access driver

3-29

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

3.4.8 Running a Loader Job

To run a job using Oracle Loader for Hadoop, you use the O aLoader utility in a hadoop
command.

The following is the basic syntax:

hadoop jar $OLH HOVE/jlib/oral oader.jar oracle. hadoop.|oader.OraLoader \
-conf job_config.xm \
-libjars input_file formatl.jar[,input_file format2.jar...]

You can include any generic hadoop command-line option. O aLoader implements the
org. apache. hadoop. util . Tool interface and follows the standard Hadoop methods for
building MapReduce applications.

Unzip the exanpl es. zi p file in $OLH_HOME in order to use the or al oader - exanpl es. j ar file
in the instructions below.

Basic Options

-conf job_config.xml
Identifies the job configuration file. See "Creating a Job Configuration File."

-libjars
Identifies the JAR files for the input format.

* When using the example input format, specify $0LH HOVE/ j | i b/ or al oader -
exanpl es. jar. (You will first need to set up the example for use as described in
InputFormat Source Code Example.)

* When using the Hive or Oracle NoSQL Database input formats, you must specify
additional JAR files, as described later in this section.

* When using a custom input format, specify its JAR file. Also remember to add the
JAR to HADOOP_CLASSPATH.

Separate multiple file names with commas, and list each one explicitly. Wildcard
characters and spaces are not allowed.

Oracle Loader for Hadoop prepares internal configuration information for the
MapReduce tasks. It stores table metadata information and the dependent Java
libraries in the distributed cache, so that they are available to the MapReduce tasks
throughout the cluster.

Example of Running OraLoader
The following uses a built-in input format and a job configuration file named MyConf . xni .

HADOOP_CLASSPATH="$OLH HOME/ j | i b/ *: $OLH_HOME/ exanpl es/ or al oader -
exanpl es. j ar: $HADOOP_CLASSPATH'

hadoop jar $O.H HOVE/jlib/oral oader.jar oracle. hadoop.|oader.OraLoader \
-conf MyConf.xm -1ibjars $OLH HOVE/j i b/ oral oader-exanpl es. | ar

3.4.8.1 Specifying Hive Input Format JAR Files

When using Hi veToAvr ol nput For mat , you must add the Hive configuration directory to
the HADOOP_CLASSPATH environment variable:

ORACLE 3-30

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

HADOOP_CLASSPATH="$OLH HOVE/ j 11 b/ *: hi ve_home/ i b/ *: hi ve_conf _dir: $HADOOP_CLASSPATH'

You must also add the following Hive JAR files, in a comma-separated list, to the -
l'i bj ars option of the hadoop command. Replace the stars (*) with the complete file
names on your system:

* hive-exec-*.jar
e hive-metastore-*.jar
* |ibfb303*.jar

This example shows the full file names in Cloudera's Distribution including Apache
Hadoop (CDH) 5.8:

hadoop jar $OLH HOVE/ jlib/ oral oader.jar oracle.hadoop. | oader. OraLoader \
-conf MyConf.xnl \

-libjars hive-exec-1.1.0-cdh5.8.0.jar, hive-netastore-1.1.0-cdh5.8.0.]jar,
l'i bfb303-0.9.3.jar

3.4.8.2 Specifying Oracle NoSQL Database Input Format JAR Files

When using KVAvr ol nput For nat from Oracle NoSQL Database 11g, Release 2, you
must include $KVHOVE/ | i b/ kvst ore. j ar in your HADOOP_CLASSPATH and you must include
the -1i bj ars option in the hadoop command:

hadoop jar $O.H HOME/j i b/ oral oader.jar oracle. hadoop. | oader. OralLoader \
-conf MyConf.xnl \
-libjars $KVHOVE/ | i b/ kvstore.jar

3.4.8.3 Job Reporting

Oracle Loader for Hadoop consolidates reporting information from individual tasks into
a file named ${ mapr educe. out put . fi | eout put f or mat . out put di r}/_ol h/ or al oader -
report.txt. Among other statistics, the report shows the number of errors, broken out
by type and task, for each mapper and reducer.

3.4.9 Handling Rejected Records

Oracle Loader for Hadoop may reject input records for a variety of reasons, such as:

» Errors in the mapping properties
* Missing fields in the input data
* Records mapped to invalid table partitions

* Badly formed records, such as dates that do not match the date format or records
that do not match regular expression patterns

3.4.9.1 Logging Rejected Records in Bad Files

ORACLE

By default, Oracle Loader for Hadoop does not log the rejected records into Hadoop
logs; it only logs information on how to identify the rejected records. This practice
prevents user-sensitive information from being stored in Hadoop logs across the
cluster.

You can direct Oracle Loader for Hadoop to log rejected records by setting the
oracle.hadoop.loader.logBadRecords configuration property to true. Then Oracle Loader for

3-31

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

Hadoop logs bad records into one or more "bad" files in the _ol h/ directory under the
job output directory.

3.4.9.2 Setting a Job Reject Limit

Some problems can cause Oracle Loader for Hadoop to reject every record in the
input. To mitigate the loss of time and resources, Oracle Loader for Hadoop aborts the
job after rejecting 1000 records.

You can change the maximum number of rejected records allowed by setting the
oracle.hadoop.loader.rejectLimit configuration property. A negative value turns off the reject
limit and allows the job to run to completion regardless of the number of rejected
records.

3.4.10 Balancing Loads When Loading Data into Partitioned Tables

The goal of load balancing is to generate a MapReduce partitioning scheme that
assigns approximately the same amount of work to all reducers.

The sampling feature of Oracle Loader for Hadoop balances loads across reducers
when data is loaded into a partitioned database table. It generates an efficient
MapReduce partitioning scheme that assigns database partitions to the reducers.

The execution time of a reducer is usually proportional to the number of records that it
processes—the more records, the longer the execution time. When sampling is
disabled, all records from a given database partition are sent to one reducer. This can
result in unbalanced reducer loads, because some database partitions may have more
records than others. Because the execution time of a Hadoop job is usually dominated
by the execution time of its slowest reducer, unbalanced reducer loads slow down the
entire job.

3.4.10.1 Using the Sampling Feature

You can turn the sampling feature on or off by setting the
oracle.hadoop.loader.sampler.enableSampling configuration property. Sampling is turned on by
default.

3.4.10.2 Tuning Load Balancing

ORACLE

These job configuration properties control the quality of load balancing:

e oracle.hadoop.loader.sampler.maxLoadFactor
* oracle.hadoop.loader.sampler.loadCl

The sampler uses the expected reducer load factor to evaluate the quality of its
partitioning scheme. The load factor is the relative overload for each reducer,
calculated as (assigned_load - ideal_load)/ideal_load. This metric indicates how much
a reducer's load deviates from a perfectly balanced reducer load. A load factor of 1.0
indicates a perfectly balanced load (no overload).

Small load factors indicate better load balancing. The maxLoadFact or default of 0.05
means that no reducer is ever overloaded by more than 5%. The sampler guarantees
this maxLoadFact or with a statistical confidence level determined by the value of | cadCl .
The default value of | oadCl is 0.95, which means that any reducer's load factor
exceeds maxLoadFact or in only 5% of the cases.

3-32

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

There is a trade-off between the execution time of the sampler and the quality of load
balancing. Lower values of maxLoadFact or and higher values of | oadCl achieve more
balanced reducer loads at the expense of longer sampling times. The default values of
maxLoadFact or =0. 05 and | oadCl =0. 95 are a good trade-off between load balancing
guality and execution time.

3.4.10.3 Tuning Sampling Behavior

By default, the sampler runs until it collects just enough samples to generate a
partitioning scheme that satisfies the naxLoadFact or and | oadCl criteria.

However, you can limit the sampler running time by setting the
oracle.hadoop.loader.sampler.maxSamplesPct property, which specifies the maximum number of
sampled records.

3.4.10.4 When Does Oracle Loader for Hadoop Use the Sampler's Partitioning

Scheme?

Oracle Loader for Hadoop uses the generated partitioning scheme only if sampling is
successful. A sampling is successful if it generates a partitioning scheme with a
maximum reducer load factor of (1+ naxLoadFact or) guaranteed at a statistical
confidence level of | cadCl .

Partition report identifies the keys that are assigned to the various mappers. This
report is saved in XML for the sampler to use; it does not contain information of use to
you. The report is named ${ mapr educe. out put . fi | eout put f or mat . out put di r}/ _bal ancer/
orabal ancer _report.xni . It is only generated for sampled jobs. This xml file contains the
information about how to assign map output to different reducers, as well as the
sampling statistics.

The default values of maxLoadFact or, | oadCl , and maxSanpl esPct allow the sampler to
successfully generate high-quality partitioning schemes for a variety of different input
data distributions. However, the sampler might be unsuccessful in generating a
partitioning scheme using custom property values, such as when the constraints are
too rigid or the number of required samples exceeds the user-specified maximum of
maxSanpl esPct . In these cases, Oracle Loader for Hadoop generates a log message
identifying the problem, partitions the records using the database partitioning scheme,
and does not guarantee load balancing.

Alternatively, you can reset the configuration properties to less rigid values. Either
increase maxSanpl esPct, or decrease maxLoadFact or or | oadCl, or both.

3.4.10.5 Resolving Memory Issues

ORACLE

A custom input format may return input splits that do not fit in memory. If this happens,
the sampler returns an out-of-memory error on the client node where the loader job is
submitted.

To resolve this problem:

* Increase the heap size of the JVM where the job is submitted.
* Adjust the following properties:
— oracle.hadoop.loader.sampler.hintMaxSplitSize

— oracle.hadoop.loader.sampler.hintNumMapTasks

3-33

Chapter 3
Using Oracle Loader for Hadoop With the Hadoop Command Line Utility

If you are developing a custom input format, then see "Custom Input Formats."

3.4.10.6 What Happens When a Sampling Feature Property Has an Invalid

Value?

If any configuration properties of the sampling feature are set to values outside the
accepted range, an exception is not returned. Instead, the sampler prints a warning
message, resets the property to its default value, and continues executing.

3.4.11 Optimizing Communications Between Oracle Engineered

Systems

ORACLE

If you are using Oracle Loader for Hadoop to load data from Oracle Big Data
Appliance to Oracle Exadata Database Machine, then you can increase throughput by
configuring the systems to use Sockets Direct Protocol (SDP) over the InfiniBand
private network. This setup provides an additional connection attribute whose sole
purpose is serving connections to Oracle Database to load data.

To specify SDP protocol:

1.

Add JVM options to the HADOOP_OPTS environment variable to enable JDBC SDP
export:

HADOOP_OPTS="- Dor acl e. net. SDP=true - Dj ava. net. prefer| Pv4St ack=t r ue"
Set this Hadoop configuration property for the child task JVMs:

-D mapred. chil d.java. opts="-Doracl e. net. SDP=true -Djava. net.preferlPv4Stack=true"

¢ Note:

This Hadoop configuration property can be either added to the OLH
command line or set in the configuration file.

Configure standard Ethernet communications. In the job configuration file, set
oracle.hadoop.loader.connection.url using this syntax:

jdbc: oracl e: thin: @DESCR PTI ON=(ADDRESS_LI ST=
(ADDRESS=(PROTOCOL=TCP) (HOST=host Nane) (PORT=por t Nunber)))
(CONNECT_DATA=(SERVI CE_NAME=ser vi ceNane)))

Configure the Oracle listener on Exadata to support the SDP protocol and bind it
to a specific port address (such as 1522). In the job configuration file, specify the
listener address as the value of oracle.hadoop.loader.connection.oci_url using this syntax:

(DESCRI PTI ON=(ADDRESS=(PROTOCOL=SDP)
(HOST=host Nane) (PORT=port Nunber))
(CONNECT_DATA=(SERVI CE_NAME=ser vi ceNane)))

Replace hostName, portNumber, and serviceName with the appropriate values to
identify the SDP listener on your Oracle Exadata Database Machine.

3-34

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

" See Also:

Oracle Big Data Appliance Software User's Guide for more information about
configuring communications over InfiniBand

3.5 Oracle Loader for Hadoop Configuration Property
Reference

OraLoader uses the standard methods of specifying configuration properties in the
hadoop command. You can use the - conf option to identify configuration files, and the
- D option to specify individual properties.

This section describes the OraLoader configuration properties, the Oracle NoSQL
Database configuration properties, and a few generic Hadoop MapReduce properties
that you typically must set for an OraLoader job:

* MapReduce Configuration Properties
* Oraloader Configuration Properties
e Oracle NoSQL Database Configuration Properties

A configuration file showing all OralLoader properties is in $0LH_HOME/ doc/ or al oader -
conf.xm .

See Also:
Hadoop documentation for job configuration files at

http://wi ki .apache. or g/ hadoop/ JobConf Fi | e

MapReduce Configuration Properties

Property

Description

mapreduce.job.name Type: String

Default Value: O alLoader

Description: The Hadoop job name. A unique name
can help you monitor the job using tools such as the
Hadoop JobTracker web interface and Cloudera
Manager.

mapreduce.input.fileinputformat.inputdir Type: String

ORACLE

Default Value: Not defined

Description: A comma-separated list of input
directories.

3-35

http://wiki.apache.org/hadoop/JobConfFile

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property Description

mapreduce.job.inputformat.class Type: String
Default Value: Not defined
Description: Identifies the format of the input data. You

can enter one of the following built-in input formats, or
the name of a custom | nput For nat class:

e oracle. hadoop. | oader. lih.input.Avrol nput Form
at

e oracle. hadoop. | oader.lib.input.DelimtedText
| nput For mat

e oracle. hadoop. | oader.|ib.input.H veToAvrol np
ut For mat

e oracle. hadoop. | oader.lib.input.Regexl nput For
mat

e oracl e. kv. hadoop. KVAvr ol nput For mat

See "About Input Formats" for descriptions of the built-in
input formats.

mapreduce.output.fileoutputformat.outputdir Type: String
Default Value: Not defined
Description: A comma-separated list of output
directories, which cannot exist before the job runs.
Required.

mapreduce.job.outputformat.class Type: String
Default Value: Not defined
Description: Identifies the output type. The values can
be:
e oracl e. hadoop. | oader. i b. out put. Dat aPunpQut p

ut For mat

Writes data records into binary format files that can
be loaded into the target table using an external
table.

e oracle. hadoop. | oader.lib. output.DelinitedTex
t Qut put For mat
Writes data records to delimited text format files

such as comma-separated values (CSV) format
files.

e oracl e. hadoop. | oader. i b. out put. JDBCQut put Fo
r mat
Inserts rows into the target table using a JDBC
connection.

e oracle. hadoop. | oader. i b. out put. QCl Qut put For
mat
Inserts rows into the target table using the Oracle
OCI Direct Path interface.

See "About Output Formats."

ORACLE 3-36

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

mapreduce.job.reduces

Type: Integer
Default Value: 1

Description: The number of reduce tasks used by the
Oracle Loader for Hadoop job. The default value of 1
does not support parallel processing, therefore
performance improves when the value is increased to
support multiple parallel data loads. Choose a value that
provides an ample, but not excessive, number of reduce
tasks for the job. At a point dictated by the available
resources, an excessive increase in the number of
reduce tasks result in diminishing improvements, while
potentially degrading the performance of other jobs.

OraLoader Configuration Properties

Property

Description

oracle.hadoop.loader.badRecordFI
ushinterval

oracle.hadoop.loader.compressio
nFactors

oracle.hadoop.loader.connection.
defaultExecuteBatch

ORACLE

Type: Integer
Default Value: 500

Description: Sets the maximum number of records that a task attempt can
log before flushing the log file. This setting limits the number of records that
can be lost when the record reject limit (oracle.hadoop.loader.rejectLimit) is
reached and the job stops running.

The oracle.hadoop.loader.logBadRecords property must be set to t r ue for a
flush interval to take effect.
Type: Decimal

Default Value:
BASI C=5. 0, OLTP=5. 0, QUERY_LOW£10. 0, QUERY_H GH=10. 0, ARCH VE_LOA=10.
0, ARCHI VE_H G+10.0

Description: These values are used by Oracle Loader for Hadoop when
sampling is enabled and the target table is compressed. They are the
compression factors of the target table. For best performance, the values of
this property should match the compression factors of the target table. The
values are a comma-delimited list of name=value pairs. The names must be
one of the following keywords:

ARCHI VE_HI CH
ARCH VE_LOW

BASI C

OLTP

QUERY_HI CH
QUERY_LOW

Type: Integer
Default Value: 100

Description: The number of records inserted in one trip to the database. It
applies only to JDBCQut put For mat and OCl Qut put For nat .

Specify a value greater than or equal to 1. Although the maximum value is
unlimited, very large batch sizes are not recommended because they result
in a large memory footprint without much increase in performance.

A value less than 1 sets the property to the default value.

3-37

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.connection.
oci_url

oracle.hadoop.loader.connection.
password

oracle.hadoop.loader.connection.
sessionTimeZone

oracle.hadoop.loader.connection.
cluster.tns_admin

oracle.hadoop.loader.connection.t
ns_admin

ORACLE

Type: String
Default Value: Value of or acl e. hadoop. | oader. connecti on. url
Description: The database connection string used by OCl Qut put For mat .

This property enables the OCI client to connect to the database using
different connection parameters than the JDBC connection URL.

The following example specifies Socket Direct Protocol (SDP) for OCI
connections.

(DESCRI PTI ON=(ADDRESS_LI ST=

(ADDRESS=(PROTOCOL=SDP) (HOST=nyhost) (PORT=1521)))

(CONNECT_DATA=(SERVI CE_NAME=ny_db_servi ce_nane)))

This connection string does not require a "jdbc:oracle:thin:@" prefix. All
characters up to and including the first at-sign (@) are removed.

Type: String

Default Value: Not defined

Description: Password for the connecting user. Oracle recommends that
you do not store your password in clear text. Use an Oracle wallet instead.
Type: String

Default Value: LOCAL

Description: Alters the session time zone for database connections. Valid
values are:

e [+]-]hh:mm: Hours and minutes before or after Coordinated Universal
Time (UTC), such as - 5: 00 for Eastern Standard Time
e LOCAL: The default time zone of the JVM

* time_zone_region: A valid JVM time zone region, such as EST (for
Eastern Standard Time) or America/New_York

This property also determines the default time zone for input data that is
loaded into TI MESTAMP W TH TI ME ZONE and Tl MESTAMP W TH LOCAL TI ME
ZONE database column types.

Type: String
Default Value: Not defined.

Description: The TNS admin location on the cluster node if it is different
from the client side location.

By default, the client-side TNS admin location is the same as the location
on cluster nodes and it is specified by
oracle.hadoop.loader.connection.tns_admin.

It is invalid to specify this property without specifying

oracl e. hadoop. | oader . connecti on. tns_admi n.

Type: String
Default Value: Not defined

Description: File path to a directory on each node of the Hadoop cluster,
which contains SQL*Net configuration files such as sql net. ora and

t nsnanes. or a. Set this property so that you can use TNS entry names in
database connection strings.

You must set this property when using an Oracle wallet as an external
password store (as Oracle recommends). See
oracle.hadoop.loader.connection.wallet_location.

3-38

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.connection.t
nsEntryName

oracle.hadoop.loader.connection.
url

oracle.hadoop.loader.connection.
user

oracle.hadoop.loader.connection.
wallet_location

oracle.hadoop.loader.connection.
cluster.wallet_location

ORACLE

Type: String

Default Value: Not defined

Description: A TNS entry name defined in the t nsnanes. or a file. Use this
property with oracle.hadoop.loader.connection.tns_admin.

Type: String

Default Value: Not defined

Description: The URL of the database connection. This property overrides
all other connection properties.

If an Oracle wallet is configured as an external password store (as Oracle
recommends), then the property value must start with the

j dbc: oracl e: t hi n: @driver prefix, and the database connection string must
exactly match the credential in the wallet. See
oracle.hadoop.loader.connection.wallet_location.

The following examples show valid values of connection URLS:
e Oracle Net Format:

j dbc: oracl e: thin: @ DESCRI PTI ON=(ADDRESS_LI ST=
(ADDRESS=(PROTOCOL=TCP) (HOST=nyhost) (PORT=1521)))
(CONNECT_DATA=(SERVI CE_NAME=exanpl e_servi ce_nane)))
* TNS Entry Format:

jdbc: oracl e: t hi n: @ryTNSEnt r yName
* Thin Style:

jdbc:oracle:thin: @/ myhost: 1521/ ny_db_servi ce_nanme
Type: String
Default Value: Not defined

Description: A database user name. This property requires that you also
set oracle.hadoop.loader.connection.password. However, Oracle recommends
that you use an Oracle wallet to store your password. Do not store it in clear
text.

When using online database mode, you must set either this property or
oracle.hadoop.loader.connection.wallet_location.

Type: String

Default Value: Not defined

Description: File path to an Oracle wallet directory on each node of the
Hadoop cluster, where the connection credentials are stored.

When using an Oracle wallet, you must also set the following properties:
» oracle.hadoop.loader.connection.tns_admin

» oracle.hadoop.loader.connection.url or
oracle.hadoop.loader.connection.tnsEntryName

Type: String
Default Value: Not defined.

Description: The wallet location on the cluster node if it is different from the
client-side location.

By default, the client-side wallet location is the same as the location on
cluster node and it is specified by
oracle.hadoop.loader.connection.wallet_location.

It is invalid to specify this property without specifying

oracl e. hadoop. | oader. connection. wal |l et _| ocati on.

3-39

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.defaultDateF
ormat

oracle.hadoop.loader.enableSortin
9

oracle.hadoop.loader.enforceClas
spath

oracle.hadoop.loader.extTabDirect
oryName

oracle.hadoop.loader.input.fieldNa
mes

oracle.hadoop.loader.input.fieldTe
rminator

oracle.hadoop.loader.input.hive.d
atabaseName

ORACLE

Type: String
Default Value: yyyy- Mi dd HH: mm ss

Description: Parses an input field into a DATE column using a

java.text. Sinpl eDat ef or mat pattern and the default locale. If the input file
requires different patterns for different fields, then use the manual mapping
properties. See "Manual Mapping."

Type: Boolean

Default Value: t rue

Description: Controls whether output records within each reducer group
are sorted. Use the oracle.hadoop.loader.sortKey property to identify the
columns of the target table to sort by. Otherwise, Oracle Loader for Hadoop
sorts the records by the primary key.

Type: Boolean

Default Value: t rue

To prevent mismatched versions of its JARs from being added to the
classpath, Oracle Loader for Hadoop checks that its internal classes are
loaded from ${ or acl e. hadoop. | oader. ol h_hone}/jlib/jars.

To disable this check, set the property to f al se.
Type: String
Default Value: OLH EXTTAB DI R

Description: The name of the database directory object for the external
table LOCATI ON data files. Oracle Loader for Hadoop does not copy data
files into this directory; the file output formats generate a SQL file containing
external table DDL, where the directory name appears.

This property applies only to Del i ni t edText Qut put For mat and
Dat aPunpQut put For mat .

Type: String

Default Value: FO, F1, F2, . ..

Description: A comma-delimited list of names for the input fields.

For the built-in input formats, specify names for all fields in the data, not just
the fields of interest. If an input line has more fields than this property has
field names, then the extra fields are discarded. If a line has fewer fields
than this property has field names, then the extra fields are set to null. See
"Mapping Input Fields to Target Table Columns " for loading only selected
fields.

The names are used to create the Avro schema for the record, so they must
be valid JSON name strings.

This property applies to Del i m t edText | nput For mat and RegexI| nput For mat
only.

Type: String

Default Value:, (comma)

Description: A character that indicates the end of an input field for

Del i mi t edText | nput For mat . The value can be either a single character or

\ uHHHH, where HHHH is the character's UTF-16 encoding.

Type: String

Default Value: Not defined

Description: The name of the Hive database where the input table is stored

3-40

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.input.hive.p

artitionFilter

ORACLE

" Note:

This
propert
yis
deprec
ated.
Use
oracle
. hadoo
p. | oad
er.inp
ut.hiv
e.row
ilter
instead

Type: String

Default Value: Not defined

Description: A valid HiveQL expression that is used to filter the source
Hive table partitions for H veToAvr ol nput For mat . The expression must
contain only partition columns. Including other columns does not raise an
error, but unintended consequences can result. Oracle recommends that
you not include other columns. If the value is not set, then Oracle Loader for
Hadoop loads the data from all partitions of the source Hive table. This
property is ignored if the table is not partitioned. It is also ignored if

oracl e. hadoop. | oader. i nput. hi ve. rowFil ter is set.

The expression must conform to the following restrictions:

e Selects partitions and not individual records inside the partitions.

» Does not include columns that are not used to partition the table,
because they might cause unintended consequences.

* Does not include subqueries.

» Does not include user-defined functions (UDFs), which are not
supported; built-in functions are supported.

* Resolves all variable expansions at the Hadoop level. Hive variable
name spaces (such as env:, system , hiveconf:, and hi vevar:) have
no meaning. Oracle Loader for Hadoop sets
hi ve. vari abl e. substi tute to f al se, which disables Hive variable
expansion. You can choose between these expansion methods:
Expand all variables before setting this property: In the Hive CLI,
use the following commands:

CREATE VI EWvi ew name AS SELECT * from dat abase. tabl e_nane
VHERE expr essi on;
DESCRI BE FORMATTED vi ew_nare;

The View Original Text field contains the query with all variables
expanded. Copy the wher e clause, starting after wher e.

Define all variables in Oracle Loader for Hadoop: In the hadoop
command to run Oracle Loader for Hadoop, use the generic options (- D
and - conf).

You can use the Hive CLI to test the expression and ensure that it returns
the expected results.

The following examples assume a source table defined with this command:

CREATE TABLE t(c string)

PARTI TI ONED BY (pl string, p2 int, p3 boolean, p4 string, p5
timestanp);
Example 1: Nested Expressions

pl like "abc% or (p5 >= '2010-06-20" and p5 <= '2010-07-03")

Example 2: Built-in Functions

year (p5) = 2014

Example 3: Bad Usage: Columns That Are Not Used to Partition the
Table

These examples show that using ¢, a column that is not used to partition the
table, is unnecessary and can cause unexpected results.

This example is equivalent to p2 > 35:

3-41

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property Description

p2 > 35 and ¢ like 'abc%

This example loads all partitions. All partitions could contain ¢ |ike 'abc%
so partitions are filtered out:

p2 > 35 or c like "abc%

ORACLE 3-42

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.input.hive.ro
wFilter

oracle.hadoop.loader.input.hive.ta
bleName

ORACLE

Type: String
Default Value: Not defined

Description: A valid HiveQL expression that is used to filter the rows of the
source Hive table for HiveToAvrolnputFormat. If this value is not set
(default), Oracle Loader for Hadoop attempts to use the value of
oracle.hadoop.loader.input.hive.partitionFilter (provided the table is
partitioned). Otherwise, Oracle Loader for Hadoop loads the entire source
hive table.

The expression must conform to the following restrictions:

» Does not include subqueries.

» Does not include user-defined functions (UDFs), which are not
supported; built-in functions are supported.

* Resolves all variable expansions at the Hadoop level. Hive variable
name spaces (such as env:, system:, hiveconf:, and hivevar:) have no
meaning. Oracle Loader for Hadoop sets hive.variable.substitute to
false, which disables Hive variable expansion. You can choose
between these expansion methods:

— Expand all variables before setting this property: In the Hive
CLlI, use the following commands:

CREATE VI EWvi ew nane AS SELECT * from dat abase. t abl e_name
VHERE expr essi on;
DESCRI BE FORMATTED vi ew_nane;

The View Original Text field contains the query with all variables
expanded. Copy the expression within the WHERE clause. (Do not
include the WHERE keyword itself.)

— Define all variables in Oracle Loader for Hadoop. In the
Hadoop command to run Oracle Loader for Hadoop, use the
generic options (- Dand - conf).

In both cases you can use the Hive CLI to test the expression and ensure
that it returns the expected results. The following examples assume a
source table defined with this command:

CREATE TABLE t(c string)
PARTI TI ONED BY (pl string, p2 int, p3 boolean, p4 string, p5
ti mestanp);

Example #1: nested expressions

c like "abc% and (p5 <= '2010-06-20" and p5 <= '2010-07-03")

Example #2: built-in functions

year (p5) = 2013)

Oracle recommends that you turn on hi ve. opti ni ze.index. filter when
importing a subset of rows from a native Hive table (a table that is not
managed by a storage handler). This is known to help input formats such as
ORC and PARQUET, however there are several caveats:

» The property must be set with a - D (using - conf will not work).
Alternatively, the property can be set in hive-site.xml.
» This does not work for ORC tables in Hive 0.12.

Type: String
Default Value: Not defined
Description: The name of the Hive table where the input data is stored.

3-43

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property Description

oracle.hadoop.loader.input.initialF Type: String
ieldEncloser Default Value: Not defined

Description: A character that indicates the beginning of a field. The value
can be either a single character or \ uHHHH, where HHHH is the character's
UTF-16 encoding. To restore the default setting (no encloser), enter a zero-
length value. A field encloser cannot equal the terminator or white-space
character defined for the input format.

When this property is set, the parser attempts to read each field as an
enclosed token (value) before reading it as an unenclosed token. If the field
enclosers are not set, then the parser reads each field as an unenclosed
token.

If you set this property but not oracle.hadoop.loader.input.trailingFieldEncloser,
then the same value is used for both properties.

oracle.hadoop.loader.input.regexC Type: Boolean

aselnsensitive Default Value: f al se
Description: Controls whether pattern matching is case-sensitive. Set to
t rue to ignore case, so that "string" matches "String", "STRING", "string",
"StRiNg", and so forth. By default, "string" matches only "string".

This property is the same as thei nput . r egex. case. i nsensi ti ve property
of or g. apache. hadoop. hi ve. contrib. serde2. RegexSer De.

oracle.hadoop.loader.input.regexP Type: String

attern Default Value: Not defined
Description: The pattern string for a regular expression.
The regular expression must match each text line in its entirety. For
example, a correct regex pattern for input line "a, b, c, " is" ([,]*),
(I~ 1%), (0~ 1%), . However, " ([~,]1*)," is invalid, because the
expression is not applied repeatedly to a line of input text.
Regex!| nput For mat uses the capturing groups of regular expression
matching as fields. The special group zero is ignored because it stands for
the entire input line.

This property is the same as the i nput . r egex property of
org. apache. hadoop. hi ve. contri b. serde2. RegexSer De.

" See Also:

For descriptions of regular expressions and
capturing groups, the entry for
java.util.regex inthe Java Platform
Standard Edition 6 API Specification at

http://docs. oracl e. com j avase/ 6/
docs/ api/javal util/regex/ Pattern. htn

ORACLE 3-44

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property Description

oracle.hadoop.loader.input.trailing Type: String
FieldEncloser Default Value: The value of oracle.hadoop.loader.input.initialFieldEncloser

Description: Identifies a character that marks the end of a field. The value
can be either a single character or \ uHHHH, where HHHH is the character's
UTF-16 encoding. For no trailing encloser, enter a zero-length value.

A field encloser cannot be the terminator or a white-space character defined
for the input format.

If the trailing field encloser character is embedded in an input field, then the
character must be doubled up to be parsed as literal text. For example, an
input field must have ' ' (two single quotes) to load ' (one single quote).

If you set this property, then you must also set
oracle.hadoop.loader.input.initialFieldEncloser.

oracle.hadoop.loader.loadByPartit Type: Boolean
ion Default Value: t r ue

Description: Specifies a partition-aware load. Oracle Loader for Hadoop
organizes the output by partition for all output formats on the Hadoop
cluster; this task does not impact the resources of the database system.

Del i mi t edText Qut put For mat and Dat aPunpQut put For mat generate multiple
files, and each file contains the records from one partition. For

Del i mi t edText Qut put For mat , this property also controls whether the

PARTI TI ON keyword appears in the generated control files for SQL*Loader.

OCl Qut put For mat requires partitioned tables. If you set this property to

fal se, then OCl Qut put For mat turns it back on. For the other output formats,
you can set | oadByPartitiontofal se, sothat Oracle Loader for Hadoop
handles a partitioned table as if it were nonpartitioned.

oracle.hadoop.loader.loaderMap.c Type: String
olumnNames Default Value: Not defined

Description: A comma-separated list of column names in the target table,
in any order. The names can be quoted or unquoted. Quoted names begin
and end with double quotes (") and are used exactly as entered. Unquoted
names are converted to upper case.

You must set oracle.hadoop.loader.loaderMap.targetTable, or this property is
ignored. You can optionally set
oracle.hadoop.loader.loaderMap.column_name.field and
oracle.hadoop.loader.loaderMap.column_name.format.

oracle.hadoop.loader.loaderMap.c Type: String
olumn_name field Default Value: Normalized column name

Description: The name of a field that contains Avro records, which is
mapped to the column identified in the property name. The column name
can be quoted or unquoted. A quoted name begins and ends with double
quotes (") and is used exactly as entered. An unquoted name is converted
to upper case. Optional.

You must set oracle.hadoop.loader.loaderMap.columnNames, or this property is
ignored.

ORACLE 3-45

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property Description

oracle.hadoop.loader.loaderMap.c Type: String
olumn_name.format Default Value: Not defined

Description: Specifies the data format of the data being loaded into the
column identified in the property name. Use a

j ava.text. Sinpl eDat ef or mat pattern for a date format or regular
expression patterns for text. Optional.

You must set oracle.hadoop.loader.loaderMap.columnNames, or this property is
ignored.

oracle.hadoop.loader.loaderMap.t Type: String
argetTable Default Value: Not defined

Description: A schema-qualified name for the table to be loaded. This
property takes precedence over oracle.hadoop.loader.loaderMapFile.

To load a subset of columns, set the
oracle.hadoop.loader.loaderMap.columnNames property. With col utmNanes, you
can optionally set oracle.hadoop.loader.loaderMap.column_name field to specify
the names of the fields that are mapped to the columns, and
oracle.hadoop.loader.loaderMap.column_name.format to specify the format of the
data in those fields. If all the columns of a table will be loaded, and the input
field names match the database column names, then you do not need to set
col umNanes.

oracle.hadoop.loader.loaderMapFi Loader maps are deprecated starting with Release 2.3. The
le oracl e. hadoop. | oader . | oader Map. * configuration properties replace
loader map files. See "Manual Mapping."

oracle.hadoop.loader.logdj.propert Type: String
yPrefix Default Value: | og4j . | ogger. oracl e. hadoop. | oader

Description: Identifies the prefix used in Apache | og4j properties loaded
from its configuration file.

Oracle Loader for Hadoop enables you to specify | og4j properties in the
hadoop command using the - conf and - D options. For example:

-D | og4j .1 ogger. oracl e. hadoop. | oader. Or aLoader =DEBUG
-D l og4j .1 ogger. oracl e. hadoop. | oader . net adat a=I NFO

All configuration properties starting with this prefix are loaded into | 0g4j .
They override the settings for the same properties that | og4j loaded from $
{1l 0og4j . configuration}. The overrides apply to the Oracle Loader for
Hadoop job driver, and its map and reduce tasks.

The configuration properties are copied to | og4j with RAWvalues; any
variable expansion is done for | 0g4j . Any configuration variables to be used
in the expansion must also start with this prefix.
oracle.hadoop.loader.logBadReco Type: Boolean
rds Default Value: f al se

Description: Controls whether Oracle Loader for Hadoop logs bad records
to a file.

This property applies only to records rejected by input formats and
mappers. It does not apply to errors encountered by the output formats or
by the sampling feature.

ORACLE 3-46

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property Description

oracle.hadoop.loader.logRetention Type: String
Policy Default Value: ALVWAYS
Description: Specifies when Oracle Loader for Hadoop logs should be

generated/retained at the end of a job. Valid values are:
* ALWAYS - logs are generated and retained at the end of all jobs.

* NEVER- logs are never retained.

* ON_ERROR- logs are discarded unless an error is identified.

The following situations are considered errors for the purposes of

| ogRet enti onPol i cy:

* Any non-zero exit code.

* Any input record parse error (See or acl e. hadoop. | oader.rejectLimt
and or acl e. hadoop. | oader . | ogBadRecor ds).

* Any rejected rows (for OCIOutputFormat or JDBCOutputFormat).

The following files are covered by this property:

e ${mapreduce. output.fileoutputformat.outputdir}/_ol h/*
with the exception of *. ct| and *. sql files.

e ${mapreduce. out put.fileoutputformat.outputdir}/_bal ancer/

oracle.hadoop.loader.olh_home Type: String
Default Value: Value of the OLH_HOMVE environment variable

Description: The path of the Oracle Loader for Hadoop home directory on
the node where you start the OraLoader job. This path identifies the location
of the required libraries.

oracle.hadoop.loader.olhcachePat Type: String

h Default Value: ${ mapr educe. out put. fil eout putformat.outputdir}/../
ol hcache

Description: Identifies the full path to an HDFS directory where Oracle
Loader for Hadoop can create files that are loaded into the MapReduce
distributed cache.

The distributed cache is a facility for caching large, application-specific files
and distributing them efficiently across the nodes in a cluster.

See Also:

The description of
or g. apache. hadoop. fi | ecache. Di stri but ed
Cache in the Java documentation at

http://hadoop. apache. or g/

ORACLE 3-47

http://hadoop.apache.org/

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property Description

oracle.hadoop.loader.output.degre Type: String
eOfParallelism Default Value: Not defined
Description: If set, the value of this property controls either:

» The number of reduce tasks (if Oracle Loader for Hadoop triggers a
map-reduce job), or,

* The number of map tasks (if Oracle Loader for Hadoop triggers a map-
only job).

If this property is not set, then the value of ${ mapr educe. j ob. reduces} is

used for the number of reduce tasks.

* If the value for ${ mapr educe. j ob. reduces} was set explicitly for the job
(set through a - D, a - conf, or set programmatically), then that value will
be used as is.

e Ifthe value for ${ mapr educe. j ob. reduces} was not set explicitly for the
job (e.g. setin one of the *- {site| defaul t}.xm configuration files),
then the value is considered to be a cluster-wide setting and is limited
to a maximum value of 64. You can avoid this by explicitly setting
oracl e. hadoop. | oader. out put . degreeOf Paral | el i smor
mapr educe. j ob. reduces explicitly.

This property provides a unified way to limit the number of database

connections made by OCl Qut put For mat and JDBCQut put For nat . However,

the property is enforced on all output formats in order to facilitate debugging
scenarios. For example, you can replace OCl Qut put For mat with

Del i mi t edText Qut put For mat in order to see what data is being processed

by a particular reduce task.

oracle.hadoop.loader.output.dirpa Type: Integer
thBufsize Default Value: 131072 (128 KB)
Description: Sets the size in bytes of the direct path stream buffer for
OCl Qut put For mat . Values are rounded up to the next multiple of 8 KB.
oracle.hadoop.loader.output.esca Type: Boolean
peEnclosers Default Value: f al se

Description: Controls whether the embedded trailing encloser character is
handled as literal text (that is, escaped). Set this property to t r ue when a
field may contain the trailing enclosure character as part of the data value.
See oracle.hadoop.loader.output.trailingFieldEncloser.

oracle.hadoop.loader.output.fieldT Type: String
erminator Default Value: , (comma)

Description: A character that indicates the end of an output field for
Del i mi t edText | nput For mat . The value can be either a single character or
\ uHHHH, where HHHH is the character's UTF-16 encoding.

ORACLE 3-48

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.output.gran
uleSize

oracle.hadoop.loader.output.initial
FieldEncloser

oracle.hadoop.loader.output.trailin
gFieldEncloser

oracle.hadoop.loader.rejectLimit

ORACLE

Type: Integer
Default Value: 10240000
Description: The granule size in bytes for generated Data Pump files.

A granule determines the work load for a parallel process (PQ slave) when
loading a file through the ORACLE_DATAPUMP access driver.

" See Also:

Oracle Database Utilities for more information
about the ORACLE_DATAPUWP access driver.

Type: String
Default Value: Not defined

Description: A character generated in the output to identify the beginning
of a field. The value must be either a single character or \ uHHHH, where
HHHH is the character's UTF-16 encoding. A zero-length value means that no
enclosers are generated in the output (default value).

Use this property when a field may contain the value of
oracle.hadoop.loader.output.fieldTerminator. If a field may also contain the value
of oracle.hadoop.loader.output.trailingFieldEncloser, then set
oracle.hadoop.loader.output.escapeEnclosers to t r ue.

If you set this property, then you must also set
oracle.hadoop.loader.output.trailingFieldEncloser.

Type: String
Default Value: Value of oracle.hadoop.loader.output.initialFieldEncloser

Description: A character generated in the output to identify the end of a
field. The value must be either a single character or \ uHHHH, where HHHH is
the character's UTF-16 encoding. A zero-length value means that there are
no enclosers (default value).

Use this property when a field may contain the value of
oracle.hadoop.loader.output.fieldTerminator. If a field may also contain the value
of oracle.hadoop.loader.output.trailingFieldEncloser, then set
oracle.hadoop.loader.output.escapeEnclosers to t r ue.

If you set this property, then you must also set
oracle.hadoop.loader.output.initialFieldEncloser.

Type: Integer
Default Value: 1000

Description: The maximum number of rejected or skipped records allowed
before the job stops running. A negative value turns off the reject limit and
allows the job to run to completion.

If mapr educe. map. specul ati ve is true (the default), then the number of

rejected records may be inflated temporarily, causing the job to stop
prematurely.

Input format errors do not count toward the reject limit because they are
irrecoverable and cause the map task to stop. Errors encountered by the
sampling feature or the online output formats do not count toward the reject
limit either.

3-49

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.sampler.ena
bleSampling

oracle.hadoop.loader.sampler.hint
MaxSplitSize

oracle.hadoop.loader.sampler.hint
NumMapTasks

oracle.hadoop.loader.sampler.loa
dcl

ORACLE

Type: Boolean
Default Value: t rue

Description: Controls whether the sampling feature is enabled. Set this
property to f al se to disable sampling.

Even when enabl eSanpl i ng is set to t r ue, the loader automatically disables
sampling if it is unnecessary, or if the loader determines that a good sample
cannot be made. For example, the loader disables sampling if the table is
not partitioned, the number of reducer tasks is less than two, or there is too
little input data to compute a good load balance. In these cases, the loader
returns an informational message.

Type: Integer
Default Value: 1048576 (1 MB)

Description: Sets the Hadoop mapr ed. max. split. si ze property for the
sampling process; the value of mapr ed. max. split. si ze does not change
for the job configuration. A value less than 1 is ignored.

Some input formats (such as Fi | el nput For mat) use this property as a hint
to determine the number of splits returned by get Spl i t s. Smaller values
imply that more chunks of data are sampled at random, which results in a
better sample.

Increase this value for data sets with tens of terabytes of data, or if the input
format get Spl i t s method throws an out-of-memory error.

Although large splits are better for I/O performance, they are not necessarily
better for sampling. Set this value small enough for good sampling
performance, but no smaller. Extremely small values can cause inefficient
I/0O performance, and can cause get Spl i t's to run out of memory by
returning too many splits.

The or g. apache. hadoop. mapreduce. | i b. i nput. Fi | el nput For rat method
always returns splits at least as large as the minimum split size setting,
regardless of the value of this property.

Type: Integer
Default Value: 100
Description: Sets the value of the Hadoop mapr ed. map. t asks configuration

property for the sampling process; the value of mapr ed. map. t asks does not
change for the job configuration. A value less than 1 is ignored.

Some input formats (such as DBl nput For mat) use this property as a hint to
determine the number of splits returned by the get Spl i t s method. Higher
values imply that more chunks of data are sampled at random, which
results in a better sample.

Increase this value for data sets with more than a million rows, but
remember that extremely large values can cause get Splits to run out of
memory by returning too many splits.

Type: Decimal
Default Value: 0. 95

Description: The statistical confidence indicator for the maximum reducer
load factor.

This property accepts values greater than or equal to 0. 5 and less than 1
(0.5 <=value < 1). A value less than 0. 5 resets the property to the default
value. Typical values are 0. 90, 0. 95, and 0. 99.

See oracle.hadoop.loader.sampler.maxLoadFactor.

3-50

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.sampler.max
HeapBytes

oracle.hadoop.loader.sampler.max
LoadFactor

oracle.hadoop.loader.sampler.max
SamplesPct

oracle.hadoop.loader.sampler.min
Splits

ORACLE

Type: Integer

Default Value: - 1

Description: Specifies in bytes the maximum amount of memory available

to the sampler.

Sampling stops when one of these conditions is true:

* The sampler has collected the minimum number of samples required
for load balancing.

* The percent of sampled data exceeds
oracle.hadoop.loader.sampler.maxSamplesPct.

* The number of sampled bytes exceeds
oracle.hadoop.loader.sampler.maxHeapBytes. This condition is not imposed
when the property is set to a negative value.

Type: Float

Default Value: 0. 05 (5%)

Description: The maximum acceptable load factor for a reducer. A value of

0. 05 indicates that reducers can be assigned up to 5% more data than their

ideal load.

This property accepts values greater than 0. A value less than or equal to 0

resets the property to the default value. Typical values are 0. 05 and 0. 1.

In a perfectly balanced load, every reducer is assigned an equal amount of

work (or load). The load factor is the relative overload for each reducer,

calculated as (assigned_load - ideal_load)/ideal_load. If load balancing is

successful, the job runs within the maximum load factor at the specified
confidence.

See oracle.hadoop.loader.sampler.loadCl.

Type: Float
Default Value: 0. 01 (1%)
Description: Sets the maximum sample size as a fraction of the number of

records in the input data. A value of 0. 05 indicates that the sampler never
samples more than 5% of the total number of records.

This property accepts a range of 0 to 1 (0% to 100%). A negative value

disables it.

Sampling stops when one of these conditions is true:

* The sampler has collected the minimum number of samples required
for load balancing, which can be fewer than the number set by this
property.

* The percent of sampled data exceeds
oracle.hadoop.loader.sampler.maxSamplesPct.

e The number of sampled bytes exceeds
oracle.hadoop.loader.sampler.maxHeapBytes. This condition is not imposed
when the property is set to a negative value.

Type: Integer
Default Value: 5

Description: The minimum number of input splits that the sampler reads
from before it makes any evaluation of the stopping condition. If the total
number of input splits is less than mi nSpl i t s, then the sampler reads from
all the input splits.

A number less than or equal to 0 is the same as a value of 1.

3-51

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.hadoop.loader.sampler.nu
mThreads

oracle.hadoop.loader.sortKey

oracle.hadoop.loader.tableMetadat
aFile

oracle.hadoop.loader.targetTable

Type: Integer
Default Value: 5

Description: The number of sampler threads. A higher number of threads
allows higher concurrency in sampling. A value of 1 disables multithreading
for the sampler.

Set the value based on the processor and memory resources available on
the node where you start the Oracle Loader for Hadoop job.

Type: String

Default Value: Not defined

Description: A comma-delimited list of column names that forms a key for
sorting output records within a reducer group.

The column names can be quoted or unquoted identifiers:

* A quoted identifier begins and ends with double quotation marks ().
* Anunquoted identifier is converted to uppercase before use.

Type: String

Default Value: Not defined

Description: Path to the target table metadata file. Set this property when
running in offline database mode.

Use thefile:// syntax to specify a local file, for example:

file:///home/jdoe/ met adat a. xm

To create the table metadata file, run the Or aLoader Met adat a utility. See
"OraLoaderMetadata Utility."

Deprecated. Use oracle.hadoop.loader.loaderMap.targetTable.

Oracle NoSQL Database Configuration Properties

Property

Description

oracle.kv.kvstore

oracle.kv.hosts

oracle.kv.batchSize

ORACLE

Type: String

Default Value: Not defined

Description: The name of the KV store with the source
data.

Type: String

Default Value: Not defined

Description: An array of one or more hostname:port
pairs that identify the hosts in the KV store with the
source data. Separate multiple pairs with commas.

Type: Key
Default Value: Not defined

Description: The desired nhumber of keys for

KVAvr ol nput For mat to fetch during each network round
trip. A value of zero (0) sets the property to a default
value.

3-52

Chapter 3
Oracle Loader for Hadoop Configuration Property Reference

Property

Description

oracle.kv.parentKey

oracle.kv.subRange

oracle.kv.depth

oracle.kv.consistency

oracle.kv.timeout

ORACLE

Type: String

Default Value: Not defined

Description: Restricts the returned values to only the
child key-value pairs of the specified key. A major key
path must be a partial path, and a minor key path must
be empty. A null value (the default) does not restrict the
output, and so KVAvr ol nput For mat returns all keys in
the store.

Type: KeyRange
Default Value: Not defined
Description: Further restricts the returned values to a

particular child under the parent key specified by
oracle.kv.parentKey.

Type: Depth

Default Value: PARENT_AND DESCENDENTS
Description: Restricts the returned values to a
particular hierarchical depth under the value of

oracle.kv.parentkey. The following keywords are valid
values:

e CHI LDREN_ONLY: Returns the children, but not the
specified parent.

o DESCENDANTS_ONLY: Returns all descendants, but
not the specified parent.

e PARENT_AND CHI LDREN: Returns the children and the
parent.

e PARENT_AND DESCENDANTS: Returns all descendants
and the parent.

Type: Consistency

Default Value: NONE_REQUI RED

Description: The consistency guarantee for reading

child key-value pairs. The following keywords are valid
values:

* ABSCLUTE: Requires the master to service the
transaction so that consistency is absolute.

* NONE_REQUI RED: Allows replicas to service the
transaction, regardless of the state of the replicas
relative to the master.

Type: Long

Default Value:

Description: Sets a maximum time interval in

milliseconds for retrieving a selection of key-value pairs.
A value of zero (0) sets the property to its default value.

3-53

Chapter 3
Licenses for Third-Party Software Bundled With OLH

Property Description

oracle.kv.formatterClass Type: String
Default Value: Not defined

Description: Specifies the name of a class that
implements the Avr oFor mat t er interface to format
KeyVal ueVer si on instances into Avro | ndexedRecor d
strings.

Because the Avro records from Oracle NoSQL
Database pass directly to Oracle Loader for Hadoop, the
NoSQL keys are not available for mapping into the
target Oracle Database table. However, the formatter
class receives both the NoSQL key and value, enabling
the class to create and return a new Avro record that
contains both the value and key, which can be passed to
Oracle Loader for Hadoop.

3.6 Licenses for Third-Party Software Bundled With OLH

Oracle Loader for Hadoop includes the following third-party products:

e Apache Avro 1.8.1
e Apache Commons Mathematics Library 2.2

These software packages are licensed under the Apache 2.0 License.

Oracle Loader for Hadoop includes Oracle 12¢ Release 1(12.1) client libraries. For
information about third party products included with Oracle Database 12c¢ Release 1
(12.1), refer to Oracle Database Licensing Information.

Oracle Loader for Hadoop builds and tests with Hadoop 2.2.0.

Unless otherwise specifically noted, or as required under the terms of the third
party license (e.g., LGPL), the licenses and statements herein, including all
statements regarding Apache-licensed code, are intended as notices only.

3.6.1 Apache Avro 1.8.1

Licensed under the Apache License, Version 2.0 (the "License"); you may not use
Apache Avro except in compliance with the License. You may obtain a copy of the
License at

http:// ww. apache. org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

3.6.2 Apache Commons Mathematics Library 2.2

Copyright 2001-2011 The Apache Software Foundation

ORACLE 3-54

http://www.apache.org/licenses/LICENSE-2.0

Chapter 3
Licenses for Third-Party Software Bundled With OLH

Licensed under the Apache License, Version 2.0 (the "License"); you may not use the
Apache Commons Mathematics library except in compliance with the License. You
may obtain a copy of the License at

http:// ww. apache. org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

ORACLE 3-55

http://www.apache.org/licenses/LICENSE-2.0

Ease of Use Tools for Oracle Big Data
Connectors

Oracle Big Data Connectors are a powerful toolset for data interchange between
Hadoop and Oracle Database. Learning how to set up the environment for these tools
and use them to full potential is worthwhile, but there are ways to get started and be
productive without fully completing that learning curve. Oracle is developing a set of
ease-of-use tools for this purpose.

Oracle Shell for Hadoop Loaders is the first ease-of-use tool for Oracle Big Data
Connectors.

4.1 Introducing Oracle Shell for Hadoop Loaders

ORACLE

What is Oracle Shell for Hadoop Loaders?

Oracle Shell for Hadoop Loaders (OHSH) is a helper shell that provides an easy-to-
use command line interface to Oracle Loader for Hadoop, Oracle SQL Connector for
HDFS, and Copy to Hadoop. It has basic shell features such as command line recall,
history, inheriting environment variables from the parent process, setting new or
existing environment variables, and performing environmental substitution in the
command line.

The core functionality of Oracle Shell for Hadoop Loaders includes the following:

» Defining named external resources with which Oracle Shell for Hadoop Loaders
interacts to perform loading tasks.

» Setting default values for load operations.
* Running load commands.

* Delegating simple pre and post load tasks to the Operating System, HDFS, Hive
and Oracle. These tasks include viewing the data to be loaded, and viewing the
data in the target table after loading.

" See Also:

e To set up OHSH, follow the instructions in the Oracle Big Data SQL
Installation Guide.

e The examples directory in the OHSH kit contains many examples that
define resources and load data using Oracle Shell for Hadoop Loaders.
See <CHSH_KI T>/ exanpl es/ README. t xt for a description of the
examples and instructions on how to run OHSH load methods.

4-1

Chapter 4
Introducing Oracle Shell for Hadoop Loaders

4.1.1 Getting Started with Oracle Shell for Hadoop Loaders

ORACLE

Starting an OHSH Interactive Session

To start an interactive session, enter ohsh on the command line. This brings you to the
OHSH shell (if you have ohsh in your path):

$ ohsh
ohsh>

You can execute OHSH commands in this shell (using the OHSH syntax). You can
also execute commands for Beeline/Hive, Hadoop, Bash, and SQL*Plus. For non-
OHSH commands, you add a delegation operator prefix (“%”") to the name of the
resource used to execute the command. For example:

ohsh> %ash0 |'s —+

Scripting OHSH

You can also script the same commands that work in the CLI. The ohsh command
provides three parameters for working with scripts.

e ohsh — <filename>. ohsh

The - parameter tells OHSH to initialize an interactive session with the
commands in the script before the prompt appears. This is a useful way to set up
the required session resources and automate other preliminary tasks before you
start working within the shell.

$ ohsh —i initresources.ohsh
e ohsh —f <filename>. ohsh

The ohsh command with the £ parameter starts a non-interactive session and runs
the commands in the script.

$ ohsh —f nyunattended] obs. ohsh
e ohsh 4 — <filename>. ohsh

You can use —+ and - together to initialize a non-interactive session and then run
another script in the session.

$ ohsh -i nysetup.ohsh —f nyunattendedj obs. ohsh

e ohsh —
This command dumps all Hadoop configuration properties that an OHSH session
inherits at start up.

Working With OHSH Resources

A resource is some named entity that OHSH interacts with. For example: a Hadoop
cluster is a resource, as is a JDBC connection to an Oracle database, a Hive
database, a SQL*Plus session with an Oracle database, and a Bash shell on the local
Os.

OHSH provides two default resources at start up: hi ve0 (to connect to the defaul t Hive
database) and hadoop0.

4-2

Chapter 4
Introducing Oracle Shell for Hadoop Loaders

» Using hi ve0 resource to execute a Hive command:

ohsh> %i ve0 show tabl es;

You can create additional Hive resources to connect to other Hive databases.
e Using the hadoop0 resource to execute a Hadoop command:
ohsh> %adoop0 fs -Is

Within an interactive or scripted session, you can create instances of additional
resources, such as SQL*Plus and JDBC. You need to create these two resources in
order to connect to Oracle Database through OHSH.

e Creating an SQL*Plus resource:

ohsh> create sql plus resource sql 0 connectid="bigdatalite.|ocal domain: 1521/ orcl”

e Creating a JDBC resource:
ohsh> create jdbc resource jdbcO connectid=<database connection URL>
e Showing resources:

ohsh> show resources

This command lists default resources and any additional resources created within
the session.

Getting Help

The OHSH shell provides online help for all commands.

To get a list of all OHSH commands:

ohsh> hel p

To get help on a specific command, enter hel p, followed by the command:

ohsh> hel p show

The table below describes the help categories available.

Help Command Description

hel p | oad Describes load commands for Oracle and
Hadoop tables.

hel p set Shows help for setting defaults for load

operations. It also describes what load
methods are impacted by a particular setting.

hel p show Shows help for inspecting default settings.
hel p shel | Shows shell-like commands.
hel p resource Show commands for creating and dropping

named resources.

4.1.2 Third-Party Licenses for Bundled Software

Oracle Shell for Hadoop Loaders includes the following third-party products:

e ANTLRA4.7

ORACLE 4.3

Chapter 4
Introducing Oracle Shell for Hadoop Loaders

e Apache Commons Exec 1.3

These software packages are licensed under the Apache 2.0 License

Unless otherwise specifically noted, or as required under the terms of the third
party license (e.g., LGPL), the licenses and statements herein, including all
statements regarding Apache-licensed code, are intended as notices only.

4.1.2.1 Apache Commons Exec 1.3

Include the following License ONLY ONCE in the documentation even if there are
multiple products licensed under the license.

The following applies to all products licensed under the Apache 2.0 License:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.").

You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0. A copy of the license is also reproduced below.

4.1.2.2 ANTLR 4.7

Copyright (c) 2015 Terence Parr, Sam Harwell
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

ORACLE 4-4

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Chapter 4
Using Oracle SQL Developer With Oracle Big Data Connectors

4.2 Using Oracle SQL Developer With Oracle Big Data
Connectors

ORACLE

Oracle SQL Developer is an essentially a graphical version SQL*Plus. Among its
features is a user-friendly interface to tools for moving data between Hadoop and
Oracle Database. It includes support for Copy to Hadoop, Oracle Loader for Hadoop,
and Oracle SQL Connector for Hadoop Distributed File System (as well as Oracle Big
Data SQL). There are wizards in the interface to assist with use of all of of these tools.

Follow these steps to set up Oracle SQL Developer to work with Oracle Big Data
Connectors.

1. Download and install Oracle SQL Developer.

2. Download the Hive JDBC Drivers.

3. Add the new Hive JDBC Drivers to Oracle SQL Developer.

4. Set environment variables required for Oracle Big Data Connectors.
5. Set up the necessary connections.

After you have installed the drivers, configured the environment, and created
connections between Oracle Database and Hadoop, you can start using Oracle Big
Data Connectors from within Oracle SQL Developer.

Downloading and Installing Oracle SQL Developer

Install Oracle SQL Developer 4.2 or greater. Release 4.2 is recommended, because it
is the first release to include support for Copy To Hadoop.

The installation is simple. Just download the package and extract it.

1. Go to the Oracle SQL Developer download site on the Oracle Technology Network
(OTN).

2. Accept the license agreement and download the version that is appropriate for
your platform.

3. Extract the downloaded ZIP file to your local drive.

You can extract to any folder name.
See Installing and Getting Started with SQL Developer in the Oracle SQL Developer
User’s Guide for further installation and configuration details.

Downloading and Installing the Hive JDBC Drivers for Cloudera Enterprise

To connect Oracle SQL Developer to Hive in the Hadoop environment, you need to
download and install the Hive JDBC drivers for Cloudera Enterprise. These drivers are
not included in the Oracle SQL Developer download package.

" Note for HDP Users:

At this time, SQL Developer 4.2 requires the Cloudera JDBC drivers for Hive.
However, these drivers appear to work against Hortonworks clusters as well.
HDP users should test to determine if these drivers meet their needs.

4-5

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

ORACLE

Chapter 4
Using Oracle SQL Developer With Oracle Big Data Connectors

Download the latest Cloudera JDBC drivers for Hive from the Cloudera website to
any local directory.

You can search for “cl oudera hive jdbc drivers downl oad” on the Cloudera
website to locate the available driver packages.

You are prompted to select the driver version, OS, and OS version (32/64 bhit). At
this time, the latest drive version is 2.5.18. You can choose the newest version
available.

Unzip the archive:
unzip hive_jdbc_<version>. zip

View the extracted content. Notice that under the top-level folder there are multiple
ZIP files. Each is for a different JDBC version. For this setup, only JBDC 4.0 is
usable. Select the IDBC4__ ZIP file (JDBCA_<ver si on>. zi p).

@© Important:

Choose only the JIDBC4_ ZIP file, which contains the drivers for JDBC
4.0. This is the only compatible version. The drivers in other packages,
such as JDBC41_*, are not compatible with SQL Developer 4.2 and will
return errors upon connection attempts.

Unzip the JDBC4 archive to a target directory that is accessible to Oracle SQL
Developer, for example, ./ home/ oracl e/ j dbc :

unzip O oudera_H veJDBCA_<version>.zip -d /hone/oracl e/ j dbc/

The extracted content should be similar to this:

Cl oudera_H veJDBCA_2.5.18. 1050\ Cl ouder a- JDBC- Dri ver - f or - Apache- Hi ve- I nstal | -
Qui de. pdf

Cl oudera_H veJDBCA_2
Not es. pdf

Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2
Cl oudera_H veJDBCA_2

o

. 18. 1050\ C ouder a- JDBC- Dri ver - f or - Apache- Hi ve- Rel ease-

18. 1050\ comons- codec- 1. 3. j ar
18. 1050\ commons- | oggi ng-1. 1. 1. j ar
18. 1050\ Hi veJDBCA. j ar

18. 1050\ hi ve_net astore. j ar

18. 1050\ hi ve_service.jar

18. 1050\ httpclient-4.1.3.jar

18. 1050\ httpcore-4.1.3.jar

18. 1050\ | i bf b303-0.9. 0. j ar

18. 1050\ libthrift-0.9.0.jar

18. 1050\ | og4j - 1. 2. 14.jar

18. 1050\ out . t xt

18.1050\ql . j ar

18. 1050\ sl f4j-api-1.5.11. jar

18. 1050\ s f 4j -1 0g4j 12-1. 5. 11. j ar
18. 1050\ TCLI Servi ceClient.jar

. 18. 1050\ zookeeper-3.4.6.j ar

oo O o ao oo oo

Adding the new Hive JDBC Drivers to Oracle SQL Developer

Next, start up SQL Developer and copy all of the extracted driver files into “Third Party
JDBC Drivers” in the Preferences window.

Navigate to the folder where you downloaded and extracted Oracle SQL
Developer.

4-6

https://www.cloudera.com

ORACLE

Chapter 4
Using Oracle SQL Developer With Oracle Big Data Connectors

2. Click the sql devel oper subfolder. Then, click sql devel oper . exe in this

folder.

3. Inthe SQL Developer menu bar, select Tools>Preferences.

4. In the file explorer of the Preferences window, expand Database and then click
Third Party JDBC Drivers.

5. Click Add Entry.

6. Navigate to the folder where you sent the files extracted from
C ouder a_Hi veJDBC4_<versi on>. zi p. Copy all of the JAR files from the ZIP extraction
into this window and then click OK.

7. Restart Oracle SQL Developer.

Setting up Environment Variables for Using Oracle Big Data Connectors With
Oracle SQL Developer

SQL Developer with Oracle Big Data Connectors requires the user to make an SSH
connection from SQL Developer to a Hadoop client, Hadoop node, or Hadoop edge
node. The home directory of this account requires a specific environment file for each
of the Big Data Connectors it runs

" Note:

If you want to do staged copies in Copy to Hadoop, then Copy to Hadoop
requires an additional SSH connection to the oracl e OS account on the
database system.

You must create and populate the environment files. The following table provides the
exact filenames and the content you must add to each file. The file must be readable
by the account using the Big Data Connector.

Environment Contents
File Name
For Copyto 4 iy bash
Hadoop:

.sql dev_cp2ha
doop_env

Environnment file for Copy to Hadoop

export CP2HADOOP_HOVE=<Parent directory of the directory containing
Copy to Hadoop JARs>

On Oracle Big Data Appliance, the Copy to Hadoop JARs are in /opt/
oracl e/ bi gdat asql / bdcel | -12. 1

export HADOOP_CLASSPATH=${ CP2HADOOP_HOME} / j I i b/ *

1f using Oracle Wallet, add the follow ng four variables:
export WALLET LOCATI ON=<Location of the Oracle Wallet files>
#For exanple: export WALLET LOCATI ON=/ hore/ ${ USER}/ wal | et
export TNS_ADM Ne<Li ke WALLET_LOCATION, this also points to the
| ocation of the Oracle Wllet files>

export CLUSTER WALLET_LOCATI ON=${ WALLET_LOCATI ON}

export CLUSTER _TNS_ADM N=${ TNS_ADM N}

4-7

ORACLE

Chapter 4
Using Oracle SQL Developer With Oracle Big Data Connectors

Environment Contents

File Name
Fororace i binibash
) # Environnent file for Oracle Loader for Hadoop
Hadoop:
.sql dev_ol h_e export HIVE_HOME=<For exanple: /opt/clouderalparcels/ COH | i b/ hive>
nv export H VE_CONF_DI R=<For exanple: /etc/hivelconf>
export OLH HOVE=<For exanple (on Oracle Big Data Appliance): /opt/
oracl e/ ol h>
export HADOOP_CLASSPATH=${ OLH HOVE}/jlib/*: ${H VE_CONF_ DIR}: $
{H VE_HOVE}/ | i b/ *

export OLH LI B JARS=${H VE_HOVE}/li b/ hive-exec.jar, ${ H VE_HOVE}/ | i b/
hi ve-netastore.jar, ${H VE_HOVE}/lib/1ibfb303-0.9.2.]ar

If using Oracle Wallet, add the follow ng four variables:
export WALLET_LOCATI ON=<Location of the Cracle Wallet files>
export TNS_ADM Ne<Sane path as WALLET_LOCATI ON>

export CLUSTER WALLET LOCATI ON=${ WALLET_LCCATI ON}

export CLUSTER TNS_ADM N=${ TNS_ADM N}

gorLOracIe #!/ bi n/ bash

Q # Environment file for Oracle SQ Connector for HDFS
Connector for

HDFS:

export H VE_HOVE=<For exanple: /opt/clouderalparcel s/ COH |i b/ hive>
.sql dev_osch_ export HI VE_CONF_DI R=<For exanple: /etc/hive/conf>
env export OSCH HOMVE=<For exanple (on Oracle Big Data Appliance): /opt/
oracl e/ osch>
export HADOOP_CLASSPATH=${ OSCH HOVE}/jlib/*: ${H VE_CONF DIR}: $
{H VE_HOVE}/ | i b/ *

If using Oracle Wallet, add the follow ng four variables:
export WALLET_LOCATI ON=<Location of the Cracle Wallet files>
export TNS_ADM Ne<Sane path as WALLET_LOCATI ON>

export CLUSTER WALLET LOCATI ON=${ WALLET_LCCATI ON}

export CLUSTER TNS_ADM N=${ TNS_ADM N}

Setting Up Secure Connections for Oracle Big Data Connectors

See Apache Hadoop Connectors Support in SQL Developer in the Oracle SQL
Developer User’s Guide for instructions on how to create SSH connections required
for Oracle Big Data Connectors access to Hadoop.

4-8

Oracle XQuery for Hadoop

This part contains the following chapters:

e Using Oracle XQuery for Hadoop
e Oracle XQuery for Hadoop Reference

e Oracle XML Extensions for Hive

ORACLE

Using Oracle XQuery for Hadoop

This chapter explains how to use Oracle XQuery for Hadoop to extract and transform
large volumes of semistructured data. It contains the following sections:

e What Is Oracle XQuery for Hadoop?

e Getting Started With Oracle XQuery for Hadoop

e About the Oracle XQuery for Hadoop Functions

e Creating an XQuery Transformation

* Running Queries

* Running Queries from Apache Oozie

e Oracle XQuery for Hadoop Configuration Properties

e Third-Party Licenses for Bundled Software

5.1 What Is Oracle XQuery for Hadoop?

Oracle XQuery for Hadoop is a transformation engine for semistructured big data.
Oracle XQuery for Hadoop runs transformations expressed in the XQuery language by
translating them into a series of MapReduce jobs, which are executed in parallel on an
Apache Hadoop cluster. You can focus on data movement and transformation logic,
instead of the complexities of Java and MapReduce, without sacrificing scalability or
performance.

The input data can be located in a file system accessible through the Hadoop File
System API, such as the Hadoop Distributed File System (HDFS), or stored in Oracle
NoSQL Database. Oracle XQuery for Hadoop can write the transformation results to
Hadoop files, Oracle NoSQL Database, or Oracle Database.

Oracle XQuery for Hadoop also provides extensions to Apache Hive to support
massive XML files.

Oracle XQuery for Hadoop is based on mature industry standards including XPath,
XQuery, and XQuery Update Facility. It is fully integrated with other Oracle products,
which enables Oracle XQuery for Hadoop to:

e Load data efficiently into Oracle Database using Oracle Loader for Hadoop.
e Provide read and write support to Oracle NoSQL Database.

The following figure provides an overview of the data flow using Oracle XQuery for
Hadoop.

ORACLE 5-1

Chapter 5

What Is Oracle XQuery for Hadoop?

Figure 5-1 Oracle XQuery for Hadoop Data Flow

\ 4

Oracle XQuery
for Hadoop

G

>
>

Oracle NoSQL
Database

=

Avro
| Text
XML

Hadoop File System Hadoop File System
Avro Files Avro Files

CSV Files CSV Files

Sequence Files > | Sequence Files

Text Files Text Files

XML Files XML Files

JSON Files*

\T

Oracle
Database

Oracle NoSQL
Database

Avro
Text
XML
Binary XML

ﬂ Binary XML

Apache
Solr

* Parallel processing of a single JSON file is
not supported. See the JSON File Adapter.

ORACLE"

5-2

Chapter 5
Getting Started With Oracle XQuery for Hadoop

5.2 Getting Started With Oracle XQuery for Hadoop

Oracle XQuery for Hadoop is designed for use by XQuery developers. If you are
already familiar with XQuery, then you are ready to begin. However, if you are new to
XQuery, then you must first acquire the basics of the language. This guide does not
attempt to cover this information.

¢ See Also:

e Wa3schools XQuery Tutorial
e XQuery 3.1: An XML Query Language

5.2.1 Basic Steps

Take the following basic steps when using Oracle XQuery for Hadoop:

1.

The first time you use Oracle XQuery for Hadoop, ensure that the software is
installed and configured.

See "Oracle XQuery for Hadoop Setup."

Log in to either a node in the Hadoop cluster or a system set up as a Hadoop
client for the cluster.

Create an XQuery transformation that uses the Oracle XQuery for Hadoop
functions. It can use various adapters for input and output.

See "About the Oracle XQuery for Hadoop Functions" and "Creating an XQuery
Transformation."

Execute the XQuery transformation.

See "Running Queries."

5.2.2 Example: Hello World!

Follow these steps to create and run a simple query using Oracle XQuery for Hadoop:

ORACLE

1.

Create a text file named hel | 0. t xt in the current directory that contains the line
Hel | o.

$ echo "Hello" > hello.txt
Copy the file to HDFS:
$ hdfs dfs -copyFroniocal hello.txt

Create a query file named hel | 0. xq in the current directory with the following
content:

inport nodul e "oxh:text";
for $line in text:collection("hello.txt")
return text:put($line || " World™")

5-3

http://www.w3schools.com/xml/xquery_intro.asp
https://www.w3.org/TR/xquery-31/

Chapter 5
About the Oracle XQuery for Hadoop Functions

4. Run the query:

$ hadoop jar $OXH_HOME/lib/oxh.jar hello.xq -output ./myout -print

13/11/21 02:41: 57 |1 NFO hadoop. xquery: OXH. Oracle XQuery for Hadoop 4.2.0
((build 4.2.0-cdh5.0.0-nr1 @r2). Copyright (c) 2014, Oracle. Al rights
reserved.

13/11/21 02:42: 01 | NFO hadoop. xquery: Subnitting map-reduce job "oxh: hel | 0. xq#0"
i d="3593921f - ¢50c- 4bb8- 88c0- 6b63b439572h. 0", inputs=[hdfs://

bi gdatalite. | ocal donai n: 8020/ user/oracl e/ hel l o.txt], output=myout

5. Check the output file:

$ hdfs dfs -cat ./myout/part-m-00000
Hel l o Worl d!

5.3 About the Oracle XQuery for Hadoop Functions

Oracle XQuery for Hadoop reads from and writes to big data sets using collection and
put functions:

* A collection function reads data from Hadoop files or Oracle NoSQL Database
as a collection of items. A Hadoop file is one that is accessible through the
Hadoop File System API. On Oracle Big Data Appliance and most Hadoop
clusters, this file system is Hadoop Distributed File System (HDFS).

* A put function adds a single item to a data set stored in Oracle Database, Oracle
NoSQL Database, or a Hadoop file.

The following is a simple example of an Oracle XQuery for Hadoop query that reads
items from one source and writes to another:

for $x in collection(...)
return put($x)

Oracle XQuery for Hadoop comes with a set of adapters that you can use to define put
and collection functions for specific formats and sources. Each adapter has two
components:

* A set of built-in put and collection functions that are predefined for your
convenience.

* A set of XQuery function annotations that you can use to define custom put and
collection functions.

Other commonly used functions are also included in Oracle XQuery for Hadoop.

5.3.1 About the Adapters

ORACLE

Following are brief descriptions of the Oracle XQuery for Hadoop adapters.

Avro File Adapter

The Avro file adapter provides access to Avro container files stored in HDFS. It
includes collection and put functions for reading from and writing to Avro container
files.

5-4

ORACLE

Chapter 5
About the Oracle XQuery for Hadoop Functions

JSON File Adapter

The JSON file adapter provides access to JSON files stored in HDFS. It contains a
collection function for reading JSON files, and a group of helper functions for parsing
JSON data directly. You must use another adapter to write the output.

Oracle Database Adapter

The Oracle Database adapter loads data into Oracle Database. This adapter supports
a custom put function for direct output to a table in an Oracle database using JDBC or
OCI. If a live connection to the database is not available, the adapter also supports
output to Data Pump or delimited text files in HDFS; the files can be loaded into the
Oracle database with a different utility, such as SQL*Loader, or using external tables.
This adapter does not move data out of the database, and therefore does not have
collection or get functions.

See "Software Requirements" for the supported versions of Oracle Database.

Oracle NoSQL Database Adapter

The Oracle NoSQL Database adapter provides access to data stored in Oracle
NoSQL Database. The data can be read from or written as Table, Avro, XML, binary
XML, or text. This adapter includes collection, get, and put functions.

Sequence File Adapter

The sequence file adapter provides access to Hadoop sequence files. A sequence file
is a Hadoop format composed of key-value pairs.

This adapter includes collection and put functions for reading from and writing to
HDFS sequence files that contain text, XML, or binary XML.

Solr Adapter
The Solr adapter provides functions to create full-text indexes and load them into
Apache Solr servers.

Text File Adapter

The text file adapter provides access to text files, such as CSV files. It contains
collection and put functions for reading from and writing to text files.

The JSON file adapter extends the support for JSON objects stored in text files.

XML File Adapter

The XML file adapter provides access to XML files stored in HDFS. It contains
collection functions for reading large XML files. You must use another adapter to write
the output.

Related Topics

e Avro File Adapter

e JSON File Adapter

* Oracle Database Adapter

e Oracle NoSQL Database Adapter

e Sequence File Adapter

e Solr Adapter

» Text File Adapter

XML File Adapter

5-5

Chapter 5
Creating an XQuery Transformation

5.3.2 About Other Modules for Use With Oracle XQuery for Hadoop

You can use functions from these additional modules in your queries:

Standard XQuery Functions
The standard XQuery math functions are available.

Hadoop Functions
The Hadoop module is a group of functions that are specific to Hadoop.

Duration, Date, and Time Functions
This group of functions parse duration, date, and time values.

String-Processing Functions

These functions add and remove white space that surrounds data values.
Related Topics

e About XQuery Language Support

e Hadoop Module

e Oracle XQuery Functions for Duration, Date, and Time
You can manipulate durations, dates, and times in XQuery using Oracle XQuery
functions.

e Oracle XQuery Functions for Strings
You can manipulate strings in XQuery using Oracle XQuery functions.

5.4 Creating an XQuery Transformation

This chapter describes how to create XQuery transformations using Oracle XQuery for
Hadoop. It contains the following topics:

e XQuery Transformation Requirements

* About XQuery Language Support

* Accessing Data in the Hadoop Distributed Cache

e Calling Custom Java Functions from XQuery

* Accessing User-Defined XQuery Library Modules and XML Schemas

e XQuery Transformation Examples

5.4.1 XQuery Transformation Requirements

ORACLE

You create a transformation for Oracle XQuery for Hadoop the same way as any other
XQuery transformation, except that you must comply with these additional
requirements:

* The main XQuery expression (the query body) must be in one of the following
forms:

FLVOR,

or

5-6

Chapter 5
Creating an XQuery Transformation

(FLWOR;, FLVWOR,,... , FLVORY

In this syntax FLWOR is a top-level XQuery FLWOR expression "For, Let, Where,
Order by, Return" expression.

Each top-level FLWOR expression must have a f or clause that iterates over an
Oracle XQuery for Hadoop col | ecti on function. This f or clause cannot have a
positional variable.

See Oracle XQuery for Hadoop Reference for the col | ecti on functions.

Each top-level FLWOR expression can have optional | et , where, and group by
clauses. Other types of clauses are invalid, such as order by, count, and w ndow
clauses.

Each top-level FLWOR expression must return one or more results from calling an
Oracle XQuery for Hadoop put function. See Oracle XQuery for Hadoop
Reference for the put functions.

The query body must be an updating expression. Because all put functions are
classified as updating functions, all Oracle XQuery for Hadoop queries are
updating queries.

In Oracle XQuery for Hadoop, a % : put annotation indicates that the function is
updating. The %pdat i ng annotation or updat i ng keyword is not required with it.

¢ See Also:

"FLWOR Expressions" in XQuery 3.1: An XML Query Language

— For a description of updating expressions, "Extensions to XQuery
1.0" in W3C XQuery Update Facility 1.0

5.4.2 About XQuery Language Support

Oracle XQuery for Hadoop supports W3C XQuery 3.1, except for the following:

FLWOR window clause
FLWOR count clause
namespace constructors
fn:parse-ietf-date
fn:transform

higher order XQuery functions

For the language, see W3C XQuery 3.1: An XML Query Language .

For the functions, see W3C XPath and XQuery Functions and Operators .

5.4.3 Accessing Data in the Hadoop Distributed Cache

You can use the Hadoop distributed cache facility to access auxiliary job data. This
mechanism can be useful in a join query when one side is a relatively small file. The
guery might execute faster if the smaller file is accessed from the distributed cache.

ORACLE

5-7

https://www.w3.org/TR/xquery-31/#id-flwor-expressions
http://www.w3.org/TR/xquery-update-10/#dt-updating-expression
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xpath-functions-31/

Chapter 5
Creating an XQuery Transformation

To place a file into the distributed cache, use the -fil es Hadoop command line option
when calling Oracle XQuery for Hadoop. For a query to read a file from the distributed
cache, it must call the f n: doc function for XML, and either f n: unpar sed-t ext or

fn: unparsed-text-1ines for text files. See Example 5-7.

5.4.4 Calling Custom Java Functions from XQuery

Oracle XQuery for Hadoop is extensible with custom external functions implemented in
the Java language. A Java implementation must be a static method with the parameter
and return types as defined by the XQuery API for Java (XQJ) specification.

A custom Java function binding is defined in Oracle XQuery for Hadoop by annotating
an external function definition with the %r a- j ava: bi ndi ng annotation. This annotation
has the following syntax:

%r a- j ava: bi ndi ng("j ava. cl ass. nane[#met hod] ")

java.class.name
The fully qualified name of a Java class that contains the implementation method.

method
A Java method name. It defaults to the XQuery function name. Optional.

See Example 5-8 for an example of %r a-j ava: bi ndi ng.

All JAR files that contain custom Java functions must be listed in the -1i bj ars
command line option. For example:

hadoop jar $OXH HOME/lib/oxh.jar -libjars nyfunctions.jar query.xq

¢ See Also:
"XQuery API for Java (XQJ)" at

http://ww.jcp.org/en/jsr/detail ?i d=225

5.4.5 Accessing User-Defined XQuery Library Modules and XML

Schemas

ORACLE

Oracle XQuery for Hadoop supports user-defined XQuery library modules and XML
schemas when you comply with these criteria:

* Locate the library module or XML schema file in the same directory where the
main query resides on the client calling Oracle XQuery for Hadoop.

* Import the library module or XML schema from the main query using the location
URI parameter of the i nport nodul e or i nport schema statement.

e Specify the library module or XML schema file in the -fi | es command line option
when calling Oracle XQuery for Hadoop.

For an example of using user-defined XQuery library modules and XML schemas, see
Example 5-9.

5-8

http://www.jcp.org/en/jsr/detail?id=225

Chapter 5
Creating an XQuery Transformation

¢ See Also:

"Location URIs" in XQuery 3.1: An XML Query Language

5.4.6 XQuery Transformation Examples

ORACLE

For these examples, the following text files are in HDFS. The files contain a log of
visits to different web pages. Each line represents a visit to a web page and contains
the time, user name, page visited, and the status code.

mydat a/ visitsl. | og

2013- 10- 28T06: 00: 00, john, index.htm, 200
2013- 10- 28T08: 30: 02, kel ly, index.htm, 200
2013- 10- 28T08: 32: 50, kel ly, about.htm, 200
2013-10-30T10: 00: 10, nike, index.htm, 401

mydat a/ vi sits2. 1 og

2013-10-30T10: 00: 01, john, index.htm, 200
2013-10-30T10: 05: 20, john, about.htnm, 200
2013-11-01708: 00: 08, laura, index.htnl, 200
2013-11-04T06: 12: 51, kelly, index.htm, 200
2013-11-04T06: 12: 40, kelly, contact.htnl, 200

Example 5-1 Basic Filtering
This query filters out pages visited by user kel | y and writes those files into a text file:

import nodul e "oxh:text"

for $line in text:collection("nydatal/visits*.log")
let $split := fn:tokenize($line, "\s* \s*")

where $split[2] eq "kelly"

return text:put($line)

The query creates text files in the output directory that contain the following lines:

2013-11-04706: 12: 51, kelly, index.htnml, 200
2013-11-04T06: 12: 40, kelly, contact.htm, 200
2013-10-28T08: 30: 02, kelly, index.htn, 200
2013-10-28T08: 32: 50, kelly, about.htni, 200

Example 5-2 Group By and Aggregation
The next query computes the number of page visits per day:

import nodul e "oxh:text";

for $line in text:collection("nydata/visits*.log")
let $split := fn:tokenize($line, "\s* \s*")

let $time := xs:dateTime($split[1])

let $day := xs:date($tine)

group by $day

return text:put($day || " =>" || fn:count($line))

5-9

https://www.w3.org/TR/xquery-31/

ORACLE

Chapter 5
Creating an XQuery Transformation

The query creates text files that contain the following lines:

2013-10-28 => 3
2013-10-30 => 3
2013-11-01 => 1
2013-11-04 => 2

Example 5-3 Inner Joins

This example queries the following text file in HDFS, in addition to the other files. The
file contains user profile information such as user ID, full name, and age, separated by
colons (2).

mydat a/ users. t xt

j ohn: John Doe: 45

kel l'y: Kel 'y Johnson: 32
| aura: Laura Snith:
phil:Phil Johnson: 27

The following query performs a join between users. t xt and the log files. It computes
how many times users older than 30 visited each page.

import nodul e "oxh:text"

for $userLine in text:collection("nydata/users.txt")

let $userSplit := fn:tokenize($userLine, "\s*:\s*")

let $userld := $userSplit[1]

et $userAge := xs:integer($userSplit[3][. castable as xs:integer])

for $visitLine in text:collection("nydatalvisits*.log")
let $visitSplit := fn:tokenize($visitLine, "\s* \s*")
let $visitUserld := $visitSplit[2]

where $userld eq $visitUserld and $userAge gt 30

group by $page := $visitSplit[3]

return text:put($page || " " || fn:count(S$userLine))

The query creates text files that contain the following lines:

about.htm 2
contact. htm 1
index. htm 4

The next query computes the number of visits for each user who visited any page; it
omits users who never visited any page.

i mport nodul e "oxh:text";

for $userLine in text:collection("nydata/users.txt")
et $userSplit := fn:tokenize($userLine, "\s*:\s*")
et $userld := $userSplit[1]

for $visitLine in text:collection("nydata/visits*.log")
[$userld eq fn:tokenize(., "\s* \s*")[2]]

group by $userld

return text:put($userid || " " || fn:count($visitLine))

The query creates text files that contain the following lines:

5-10

ORACLE

Chapter 5
Creating an XQuery Transformation

john 3
kel ly 4
laura 1

Note:

When the results of two collection functions are joined, only equijoins are
supported. If one or both sources are not from a col | ecti on function, then
any join condition is allowed.

Example 5-4 Left Outer Joins

This example is similar to the second query in Example 5-3, but also counts users who
did not visit any page.

import nodul e "oxh:text"

for $userLine in text:collection("nydatalusers.txt")
let SuserSplit := fn:tokenize($userLine, "\s*:\s*")
et $userld := $userSplit[1]

for $visitLine allow ng enpty in text:collection("nydatalvisits*.log")
[$userld eq fn:tokenize(., "\s* \s*")[2]]

group by $userld
return text:put($userld || " " || fn:count($visitLine))

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1
phil 0

Example 5-5 Semijoins
The next query finds users who have ever visited a page:
import nodul e "oxh:text"

for $userLine in text:colIection(”nydata/users txt")
et $userld := fn:tokenize($userLine, "\s*:\s*")[1]

where sone $visitlLine in text:colIection("nydata/visits* | og")
satisfies $userld eq fn:tokenize($visitLine, "\s* \s*")[2]

return text: put($userld)

The query creates text files that contain the following lines:
john

kel l'y
| aura

5-11

ORACLE

Chapter 5
Creating an XQuery Transformation

Example 5-6 Multiple Outputs

The next query finds web page visits with a 401 code and writes them to trace* files
using the XQuery text:trace() function. It writes the remaining visit records into the
default output files.

i mport nodul e "oxh:text"

for $visitLine in text:collection("nydata/visits*.log")
et $visitCode := xs:integer(fn:tokenize($visitLine, "\s* \s*")[4])
return if ($visitCode eq 401) then text:trace($visitLine) else text:put($visitLine)

The query generates a trace* text file that contains the following line:

2013-10-30T10: 00: 10, nike, index.htm, 401

The query also generates default output files that contain the following lines:

2013-10-30T10: 00: 01, john, index.htm, 200
2013-10-30T10: 05: 20, john, about.htm, 200
2013-11-01708: 00: 08, laura, index.htm, 200
2013-11-04706: 12: 51, kelly, index.htm, 200
2013-11-04T706: 12: 40, kelly, contact.htm, 200
2013-10- 28T06: 00: 00, john, index.htm, 200
2013-10-28T08: 30: 02, kelly, index.htm, 200
2013-10-28T08: 32: 50, kelly, about.htnl, 200

Example 5-7 Accessing Auxiliary Input Data

The next query is an alternative version of the second query in Example 5-3, but it
uses the f n: unpar sed-t ext - | i nes function to access a file in the Hadoop distributed
cache:

inmport nodul e "oxh:text"

for $visitLine in text:collection("nydatal/visits*.log")
let $visitUserld := fn:tokenize($visitLine, "\s* \s*")[2]

for $userLine in fn:unparsed-text-lines("users.txt")
et $userSplit := fn:tokenize($userLine, "\s*:\s*")
et $userld := $userSplit[1]

where $userld eq $visitUserld

group by $userld
return text:put($userld [| " " || fn:count($visitLine))

The hadoop command to run the query must use the Hadoop -fil es option. See
"Accessing Data in the Hadoop Distributed Cache."

hadoop jar $OXH HOME/lib/oxh.jar -files users.txt query.xq

The query creates text files that contain the following lines:

john 3
kel ly 4
laura 1

5-12

ORACLE

Chapter 5
Creating an XQuery Transformation

Example 5-8 Calling a Custom Java Function from XQuery
The next query formats input data using the j ava. | ang. St ri ng#f or mat method.

inport nodule "oxh:text";

decl are %ra-java: bi nding("java.lang. String#format")
function local:string-format($pattern as xs:string, $data as xs:anyAtom cType*)
as xs:string external;

for $line in text:collection("nydatalusers*.txt")
let $split := fn:tokenize($line, "\s*:\s*")
return text:put(local:string-format ("%, %, %", $split))

The query creates text files that contain the following lines:

j ohn, John Doe, 45

kel l'y, Kel 'y Johnson, 32
| aura, Laura Smth,

phi |, Phil Johnson, 27

¢ See Also:

Java Platform Standard Edition 7 API Specification for Class String.

Example 5-9 Using User-Defined XQuery Library Modules and XML Schemas
This example uses a library module named nyt ool s. xq:

modul e namespace nytools = "urn: nytool s";

decl are %ra-java: binding("java.lang. String#format")
function nytool s:string-format($pattern as xs:string, $data as xs:anyAtom cType*)
as xs:string external;

The next query is equivalent to the previous one, but it calls a string-format function
from the myt ool s. xq library module:

i mport nodul e namespace nytools = "urn:nytool s" at "nmytool s.xq";
inport nodul e "oxh:text";

for $line in text:collection("nydatalusers*.txt")
let $split := fn:tokenize($line, "\s*:\s*")
return text:put(nytools:string-format("%, %, %", $split))

The query creates text files that contain the following lines:

j ohn, John Doe, 45

kel l'y, Kel 'y Johnson, 32
| aura, Laura Snith,

phi |, Phil Johnson, 27

5-13

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String,java.lang.Object...)

Chapter 5
Running Queries

Example 5-10 Filtering Dirty Data Using a Try/Catch Expression

The XQuery try/catch expression can be used to broadly handle cases where input
data is in an unexpected form, corrupted, or missing. The next query finds reads an
input file, ages.txt, that contains a username followed by the user’s age.

USER AGE
j ohn 45
kel l'y

laura 36
phi | oD

Notice that the first two lines of this file contain header text and that the entries for
Kelly and Phil have missing and dirty age values. For each user in this file, the query
writes out the user name and whether the user is over 40 or not.

inport nodul e "oxh:text";

for $line in text:collection("ages.txt")
let $split := fn:tokenize($line, "\s+")
return

try {

let $user := $split[1]
let $age := $split[2] cast as xs:integer
return
if ($age gt 40) then
text:put($user ||
el se
text:put($user ||

is over 40")

is not over 40")

} catch * {
text:trace($err:code [| " : " || $line)

}

The query generates an output text file that contains the following lines:

john is over 40
laura is not over 40

The query also generates a trace* file that contains the following lines:

err: FORA001 : USER AGE
err: XPTY0004 : ---------nmmmmnnnn
err: XPTY0004 : kelly

err: FORA001 : phil oD

5.5 Running Queries

To run a query, call the oxh utility using the hadoop jar command. The following is the
basic syntax:

hadoop jar $OXH HOME/li b/ oxh.jar [generic options] query.xq -output directory [-
clean] [-1s] [-print] [-sharelib hdfs_dir][-skiperrors] [-version]

ORACLE 5-14

Chapter 5
Running Queries

5.5.1 Oracle XQuery for Hadoop Options

query.xq
Identifies the XQuery file. See "Creating an XQuery Transformation."

-clean

Deletes all files from the output directory before running the query. If you use the
default directory, Oracle XQuery for Hadoop always cleans the directory, even when
this option is omitted.

-exportliboozie directory

Copies Oracle XQuery for Hadoop dependencies to the specified directory. Use this
option to add Oracle XQuery for Hadoop to the Hadoop distributed cache and the
Oozie shared library. External dependencies are also copied, so ensure that
environment variables such as KVHOMVE, OLH HOVE, and OXH_SOLR MR _HOVE are set for use
by the related adapters (Oracle NoSQL Database, Oracle Database, and Solr).

-Is
Lists the contents of the output directory after the query executes.

-output directory

Specifies the output directory of the query. The put functions of the file adapters
create files in this directory. Written values are spread across one or more files. The
number of files created depends on how the query is distributed among tasks. The
default output directory is / t np/ oxh- user _nane/ out put .

See "About the Oracle XQuery for Hadoop Functions" for a description of put
functions.

-print
Prints the contents of all files in the output directory to the standard output (your
screen). When printing Avro files, each record prints as JSON text.

-sharelib hdfs_dir
Specifies the HDFS folder location containing Oracle XQuery for Hadoop and third-
party libraries.

-skiperrors

Turns on error recovery, so that an error does not halt processing.

All errors that occur during query processing are counted, and the total is logged at
the end of the query. The error messages of the first 20 errors per task are also
logged. See these configuration properties:

oracle.hadoop.xquery.skiperrors.counters
oracle.hadoop.xquery.skiperrors.max
oracle.hadoop.xquery.skiperrors.log.max

-version
Displays the Oracle XQuery for Hadoop version and exits without running a query.

5.5.2 Generic Options

You can include any generic hadoop command-line option. Oracle XQuery for Hadoop
implements the or g. apache. hadoop. util . Tool interface and follows the standard
Hadoop methods for building MapReduce applications.

ORACLE 5-15

Chapter 5
Running Queries from Apache Oozie

The following generic options are commonly used with Oracle XQuery for Hadoop:

-conf job_config.xml

Identifies the job configuration file. See "Oracle XQuery for Hadoop Configuration
Properties.”

When you work with the Oracle Database or Oracle NoSQL Database adapters, you
can set various job properties in this file. See "Oracle Loader for Hadoop
Configuration Properties and Corresponding %oracle-property Annotations " and
"Oracle NoSQL Database Adapter Configuration Properties".

-D property=value
Identifies a configuration property. See "Oracle XQuery for Hadoop Configuration
Properties.”

-files
Specifies a comma-delimited list of files that are added to the distributed cache. See
"Accessing Data in the Hadoop Distributed Cache.”

¢ See Also:
For full descriptions of the generic options, go to

htt p: // hadoop. apache. or g/ docs/ current/ hadoop- pr oj ect - di st/ hadoop- common/
CommandsManual . ht m #Generi c_Opti ons

5.5.3 About Running Queries Locally

When developing queries, you can run them locally before submitting them to the
cluster. A local run enables you to see how the query behaves on small data sets and
diagnose potential problems quickly.

In local mode, relative URIs resolve against the local file system instead of HDFS, and
the query runs in a single process.

To run a query in local mode:

1. Setthe Hadoop-jt and -fs generic arguments to | ocal . This example runs the
guery described in "Example: Hello World!" in local mode:

$ hadoop jar $OXH HOVE/ lib/oxh.jar -jt local -fs local ./hello.xq -output ./
myout put -print

2. Check the result file in the local output directory of the query, as shown in this
example:

$ cat ./myoutput/part-m-00000
Hello Vorld!

5.6 Running Queries from Apache Oozie

Apache Oozie is a workflow tool that enables you to run multiple MapReduce jobs in a
specified order and, optionally, at a scheduled time. Oracle XQuery for Hadoop
provides an Oozie action node that you can use to run Oracle XQuery for Hadoop
gueries from an Oozie workflow.

ORACLE 5-16

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#Generic_Options
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#Generic_Options

Chapter 5
Running Queries from Apache Oozie

5.6.1 Getting Started Using the Oracle XQuery for Hadoop Oozie

Action

Follow these steps to execute your queries in an Oozie workflow:

1. The first time you use Oozie with Oracle XQuery for Hadoop, ensure that Oozie is
configured correctly. See "Configuring Oozie for the Oracle XQuery for Hadoop
Action".

2. Develop your queries in Oracle XQuery for Hadoop the same as always.

3. Create a workflow XML file like the one shown in Example 5-11. You can use the
XML elements listed in "Supported XML Elements".

4. Set the Oozie job parameters. The following parameter is required:

00zi e. use. system | i bpat h=t rue

See Example 5-13.
5. Run the job using syntax like the following:

0ozie job -name http://exanpl e.com 11000/ oozie -config filenane -run

¢ See Also:

"Oozie Command Line Usage" in the Apache Oozie Command Line
Interface Utilities at

https://oozie. apache. org/ docs/ 4. 0. 0/
DG_ComandLi neTool . ht ml #0ozi e_Comrand_Li ne_Usage

5.6.2 Supported XML Elements

ORACLE

The Oracle XQuery for Hadoop action extends Oozie's Java action. It supports the
following optional child XML elements with the same syntax and semantics as the
Java action:

* archive

e configuration
o file

* job-tracker

* job-xn

* narme- node

e prepare

5-17

https://oozie.apache.org/docs/4.0.0/DG_CommandLineTool.html#Oozie_Command_Line_Usage
https://oozie.apache.org/docs/4.0.0/DG_CommandLineTool.html#Oozie_Command_Line_Usage

Chapter 5
Running Queries from Apache Oozie

¢ See Also:
The Java action description in the Oozie Specification at

https://oo0zi e. apache. org/ docs/ 4. 0. 0/
Wr kf | owFunct i onal Spec. ht ml #a3. 2. 7_Java_Action

In addition, the Oracle XQuery for Hadoop action supports the following elements:

e script: The location of the Oracle XQuery for Hadoop query file. Required.

The query file must be in the workflow application directory. A relative path is
resolved against the application directory.

Example: <scri pt >nyquery. xq</ scri pt >
e output: The output directory of the query. Required.

The out put element has an optional cl ean attribute. Set this attribute to true to
delete the output directory before the query is run. If the output directory already
exists and the cl ean attribute is either not set or set to f al se, an error occurs. The
output directory cannot exist when the job runs.

Example: <out put cl ean="true">/ user/j doe/ myout put </ out put >

Any error raised while running the query causes Oozie to perform the error transition
for the action.

5.6.3 Example: Hello World

ORACLE

This example uses the following files:

* workflow. xn : Describes an Oozie action that sets two configuration values for the
query in hel | 0. xq: an HDFS file and the string Wr | d!

The HDFS input file is / user/j doe/ dat a/ hel | 0. t xt and contains this string:

Hel | o

See Example 5-11.
e hello.xq: Runs a query using Oracle XQuery for Hadoop.

See Example 5-12.
e job.properties: Lists the job properties for Oozie. See Example 5-13.
To run the example, use this command:

00zie job -oozie http://exanple.com 11000/ oozie -config job. properties -run

After the job runs, the / user/j doe/ nyout put output directory contains a file with the text
"Hello World!"

Example 5-11 The workflow.xml File for Hello World

This file is named / user/j doe/ hel | 0- 00zi e- oxh/ wor kf | ow. xni . It uses variables that are
defined in the j ob. properti es file.

<wor kf | ow-app xm ns="uri: oozi e: workfl ow: 0. 4" name="oxh- hel | owor | d- wf ">
<start to="hello-node"/>

5-18

https://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.html#a3.2.7_Java_Action
https://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.html#a3.2.7_Java_Action

Chapter 5
Oracle XQuery for Hadoop Configuration Properties

<action nane="hel | 0- node" >
<oxh xm ns="oxh: oozi e-action:vl">
<j ob-tracker>${j obTracker}</job-tracker>
<nane- node>${ naneNode} </ name- node>

<l--
The configuration can be used to paraneterize the query.
-->
<configuration>
<property>
<nane>nyi nput </ name>
<val ue>${ naneNode} / user/j doe/ dat a/ src. t xt </ val ue>
</ property>
<property>
<nane>nysuf fi x</ name>
<val ue> Wrl d! </ val ue>
</ property>
</ configuration>

<script>hell 0. xq</script>
<out put cl ean="true">${nameNode}/ user/jdoe/ myout put </ out put >

</ oxh>
<ok to="end"/>
<error to="fail"/>
</action>
<ki Il name="fail">
<nessage>OXH failed: [${wf:errorMessage(w :|astErrorNode())}]</message>
<kill>
<end nane="end"/>
</ wor kf | ow app>

Example 5-12 The hello.xq File for Hello World
This file is named / user/j doe/ hel | 0- 0ozi e- oxh/ hel | 0. xq.

inport nodule "oxh:text";

decl are variable $input := oxh:property("nyinput");
declare variable $suffix := oxh:property("nysuffix");

for $line in text:collection($input)
return
text:put($line || $suffix)

Example 5-13 The job.properties File for Hello World

oozi e. wf. application. pat h=hdfs: //exanpl e. com 8020/ user/j doe/ hel | 0- 00zi e- oxh
naneNode=hdf s: / / exanpl e. com 8020

j obTracker =hdf s: / / exanpl e. com 8032

00zi e. use. system | i bpat h=t rue

5.7 Oracle XQuery for Hadoop Configuration Properties

ORACLE

Oracle XQuery for Hadoop uses the generic methods of specifying configuration
properties in the hadoop command. You can use the - conf option to identify
configuration files, and the - D option to specify individual properties. See "Running
Queries."

5-19

Chapter 5
Oracle XQuery for Hadoop Configuration Properties

" See Also:
Hadoop documentation for job configuration files at

http://wi ki .apache. org/ hadoop/ JobConf Fi | e

Property Description

oracle.hadoop.xquery.lib.share Type: String
Default Value: Not defined.
Description: Identifies an HDFS directory that contains

the libraries for Oracle XQuery for Hadoop and third-
party software. For example:

http://path/tolshared/fol der

All HDFS files must be in the same directory.

Alternatively, use the - shar el i b option on the command
line.

Pattern Matching: You can use pattern matching
characters in a directory name. If multiple directories
match the pattern, then the directory with the most
recent modification timestamp is used.

To specify a directory name, use alphanumeric
characters and, optionally, any of the following special,
pattern matching characters:

Pattern Description

? Matches any one character.

* Matches zero or more characters.

[abc] Matches one character from character set
{a,b,c}.

[a-b] Matches one character from the character

range from a to b. Character a must be less
than or equal to character b.

[ra] Matches one character that is not from the a
character set or range. The carat (") must
follow the opening bracket immediately (no
spaces).

\c Removes (escapes) any special meaning of
character c.

{ab,cd} Matches a string from the string set {ab, cd}.

{ab,c{de,fh}} Matches a string from the string set {ab, cde,
cfh}.

Oozie libraries: The value oxh: oozi e expands
automatically to / user/ { oozi e, user}/share/lib/
{oxh, */ oxh*}, which is a common search path for
supported Oozie versions. The user is the current user
name. However, the Oracle XQuery for Hadoop Oozie
action ignores this setting when running queries,
because all libraries are preinstalled in HDFS.

ORACLE 5-20

http://www.oracle.com/pls/topic/lookup?ctx=E87334-01&id=apache_hadoop_config

Chapter 5
Oracle XQuery for Hadoop Configuration Properties

Property

Description

oracle.hadoop.xquery.output

oracle.hadoop.xquery.scratch

oracle.hadoop.xquery.timezone

oracle.hadoop.xquery.skiperrors

oracle.hadoop.xquery.skiperrors.counters

oracle.hadoop.xquery.skiperrors.max

oracle.hadoop.xquery.skiperrors.log.max

log4j.logger.oracle.hadoop.xquery

Type: String
Default Value: / t mp/ oxh- user _name/ out put . The

user_name is the name of the user running Oracle
XQuery for Hadoop.

Description: Sets the output directory for the query.
This property is equivalent to the - out put command line
option. See "Oracle XQuery for Hadoop Options."

Type: String

Default Value: / t np/ oxh- user _nane/ scrat ch. The

user_name is the name of the user running Oracle
XQuery for Hadoop.

Description: Sets the HDFS temp directory for Oracle
XQuery for Hadoop to store temporary files.

Type: String

Default Value: Client system time zone

Description: The XQuery implicit time zone, which is
used in a comparison or arithmetic operation when a
date, time, or datetime value does not have a time zone.
The value must be in the format described by the Java
Ti meZone class. See the TimeZone class description in
Java 7 API Specification at

http://docs. oracl e. conjavase/ 7/ docs/ api / j aval
util/TimeZone. ht m

Type: Boolean

Default Value: f al se

Description: Set to t r ue to turn on error recovery, or set
to f al se to stop processing when an error occurs. This
property is equivalent to the - ski perrors command line
option.

Type: Boolean

Default Value: t rue

Description: Set to t r ue to group errors by error code,
or set to f al se to report all errors in a single counter.
Type: Integer

Default Value: Unlimited

Description: Sets the maximum number of errors that a
single MapReduce task can recover from.

Type: Integer

Default Value: 20

Description: Sets the maximum number of errors that a
single MapReduce task logs.

Type: String

Default Value: Not defined

Description: Configures the | 0g4j logger for each task
with the specified threshold level. Set the property to
one of these values: OFF, FATAL, ERROR, WARN, | NFQ,
DEBUG, or ALL. If this property is not set, then Oracle
XQuery for Hadoop does not configure | 0g4j .

ORACLE

5-21

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html
http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

Chapter 5
Third-Party Licenses for Bundled Software

5.8 Third-Party Licenses for Bundled Software

Oracle XQuery for Hadoop depends on the following third-party products:
* Apache Ant 1.9.8

e ANTLR 3.2

e Stax2 AP13.1.4

* Woodstox XML Parser 5.0.2

» Xerces 2 Java 2.11.0

» XMLBeans 2.6.4

These software packages are licensed under the Apache 2.0 License.

Unless otherwise specifically noted, or as required under the terms of the third
party license (e.g., LGPL), the licenses and statements herein, including all
statements regarding Apache-licensed code, are intended as notices only.

5.8.1 ANTLR 3.2

ORACLE

[The BSD License]
Copyright © 2010 Terence Parr
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

* Neither the name of the author nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

5-22

Chapter 5
Third-Party Licenses for Bundled Software

5.8.2 Apache Ant 1.9.8

ORACLE

Copyright 1999-2008 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://vwww. apache. or g).

This product includes also software developed by:

e the W3C consortium (htt p: // wwv. wc. or g)
* the SAX project (http://ww. saxpr oj ect. org)

The <sync> task is based on code Copyright (c) 2002, Landmark Graphics Corp that
has been kindly donated to the Apache Software Foundation.

Portions of this software were originally based on the following:

» software copyright (c) 1999, IBM Corporation, http://www.ibm.com.
» software copyright (¢) 1999, Sun Microsystems, http://www.sun.com.

* voluntary contributions made by Paul Eng on behalf of the Apache Software
Foundation that were originally developed at iClick, Inc., software copyright (c)
1999

W3C® SOFTWARE NOTICE AND LICENSE
http://www.w3.0org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMES, or other related
items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or
without modification, for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or
derivative work.

2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions.
If none exist, the W3C Software Short Notice should be included (hypertext is
preferred, text is permitted) within the body of any redistributed or derivative code.

3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code
is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND
COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

5-23

http://www.apache.org
http://www.w3c.org
http://www.saxproject.org

Chapter 5
Third-Party Licenses for Bundled Software

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission. Title to
copyright in this software and any associated documentation will at all times remain
with copyright holders.

This formulation of W3C's notice and license became active on December 31 2002.
This version removes the copyright ownership notice such that this license can be
used with materials other than those owned by the W3C, reflects that ERCIM is now a
host of the W3C, includes references to this specific dated version of the license, and
removes the ambiguous grant of "use". Otherwise, this version is the same as the
previous version and is written so as to preserve the Free Software Foundation's
assessment of GPL compatibility and OSl's certification under the Open Source
Definition. Please see our Copyright FAQ for common questions about using materials
from our site, including specific terms and conditions for packages like libwww, Amaya,
and Jigsaw. Other questions about this notice can be directed to site-policy@w3.org.

Joseph Reagle <site-policy@w3.org>

This license came from: http://lwww.megginson.com/SAX/copying.html

However please note future versions of SAX may be covered under http://
saxproject.org/?selected=pd

SAX2 is Free!

| hereby abandon any property rights to SAX 2.0 (the Simple API for XML), and
release all of the SAX 2.0 source code, compiled code, and documentation contained
in this distribution into the Public Domain. SAX comes with NO WARRANTY or
guarantee of fitness for any purpose.

David Megginson, david@megginson.com

2000-05-05

5.8.3 Stax2 AP13.1.4

ORACLE

Copyright © 2004-2010, Woodstox Project (ht t p: / / woodst ox. codehaus. or g/)
All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS," AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

5-24

Chapter 5
Third-Party Licenses for Bundled Software

5.8.4 Xerces 2 Java 2.11.0

Apache Xerces Java Copyright 1999-2010 The Apache Software Foundation This
product includes software developed at The Apache Software Foundation (http://
www.apache.org/). Portions of this software were originally based on the following:

- software copyright (c) 1999, IBM Corporation., http://www.ibm.com. - software
copyright (c) 1999, Sun Microsystems., http://www.sun.com.

- voluntary contributions made by Paul Eng on behalf of the Apache Software
Foundation that were originally developed at iClick, Inc., software copyright (c) 1999

5.8.5 XMLBeans 2.6.4

ORACLE

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License” shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source” form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object” form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in
or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

5-25

ORACLE

Chapter 5
Third-Party Licenses for Bundled Software

"Contribution" shall mean any work of authorship, including the original version of
the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor” shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if
and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the

5-26

ORACLE

Chapter 5
Third-Party Licenses for Bundled Software

License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for,
acceptance of support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such obligations, You
may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description

5-27

ORACLE

Chapter 5
Third-Party Licenses for Bundled Software

of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

ADDITIONAL LICENSES COVERING PARTS OF THIS DISTRIBUTION:

This distribution includes W3C XML Schema documents Copyright (¢) 2001-2003
World Wide Web Consortium. These schemas are licensed under the W3C Software
License, which is included in the same directory as the schemas. The license can also
be found at: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231.

License

By obtaining and/or copying this work, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this work, with or without modification, for
any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the work or portions thereof, including modifications:

The full text of this NOTICE in a location viewable to users of the redistributed or
derivative work. Any pre-existing intellectual property disclaimers, notices, or terms
and conditions. If none exist, the W3C Software and Document Short Notice should be
included.

Notice of any changes or modifications, through a copyright statement on the new
code or document such as "This software or document includes material copied from
or derived from [title and URI of the W3C document]. Copyright © [YEAR] W3C® (MIT,
ERCIM, Keio, Beihang)."

Disclaimers

THIS WORK IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR
DOCUMENT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SOFTWARE OR DOCUMENT.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the work without specific, written prior permission. Title to
copyright in this work will at all times remain with copyright holders.

5-28

Chapter 5
Third-Party Licenses for Bundled Software

5.8.6 Woodstox XML Parser 5.0.2

ORACLE

This copy of Woodstox XML processor is licensed under the Apache (Software)
License, version 2.0 ("the License"). See the License for details about distribution
rights, and the specific rights regarding derivate works.

You may obtain a copy of the License at:
http:// ww. apache. org/licenses/

A copy is also included with both the downloadable source code package and jar that
contains class bytecodes, as file "ASL 2.0". In both cases, that file should be located
next to this file: in source distribution the location should be "release-notes/asl"; and in
jar "META-INF/"

This product currently only contains code developed by authors of specific
components, as identified by the source code files.

Since product implements StAX API, it has dependencies to StAX API classes.

For additional credits (generally to people who reported problems) see CREDITS file.

5-29

http://www.apache.org/licenses/

Oracle XQuery for Hadoop Reference

This chapter describes the adapters available in Oracle XQuery for Hadoop:

Avro File Adapter

JSON File Adapter

Oracle Database Adapter

Oracle NoSQL Database Adapter
Sequence File Adapter

Solr Adapter

Text File Adapter

Tika File Adapter

XML File Adapter

Serialization Annotations

This chapter also describes several other library modules:

Hadoop Module
Utility Module

6.1 Avro File Adapter

The Avro file adapter provides functions to read and write Avro container files in
HDFS. It is described in the following topics:

ORACLE

Built-in Functions for Reading Avro Files

Custom Functions for Reading Avro Container Files
Custom Functions for Writing Avro Files

Examples of Avro File Adapter Functions

About Converting Values Between Avro and XML

6-1

Chapter 6
Avro File Adapter

Note:
Additional Configuration Steps for HDP Users

Oracle XQuery for Hadoop has been verified to run on both Cloudera’s
CDH5 and Hortonwork’s HDP 2.3.3. However, to run queries that write to
Avro container files in HDP 2.3.2, you must change the OXH classpath
definition to use avro-mapred-1.7.4-hadoop?2.jar.

1. Download the JAR from the Apache archive https://archive.apache.org/
dist/avro/avro-1.7.4/java/

2. In $OXH_HOME/lib/oxh-lib.xml locate the following path tag:

<path id="oracl e. hadoop. xquery. avro.|ib">
<fileset dir="${oracle.hadoop.|oader.ol h_hone}/jlib"
erroronm ssingdir="fal se">
<include name="avro-mapred*.jar"/>
</fileset>
</ pat h>

Replace the path tag above with the following revision.[DI RECTCRY] in this
example is a placeholder. Replace it with the directory path to the JAR.

<path id="oracl e. hadoop. xquery. avro.|ib">
<fileset dir="[D RECTORY]">
<incl ude name="avro- mapred- 1. 7. 4-hadoop2.jar"/>\
</fileset>
</ pat h>

6.1.1 Built-in Functions for Reading Avro Files

To use the built-in functions in your query, you must import the Avro file module as
follows:

i mport nodul e "oxh:avro";

The Avro file module contains the following functions:
e avro:collection-avroxml
* avro:get

There are no built-in functions for writing Avro container files. To write Avro files, you
must use a custom function that specifies the Avro writer schema.

6.1.1.1 avro:collection-avroxml

ORACLE

Accesses a collection of Avro files in HDFS. The files might be split up and processed
in parallel by multiple tasks. The function returns an XML element for each object. See
"About Converting Values Between Avro and XML."

Signature

decl are %vro: col | ection("avroxm ") function
avro: col lection-avroxm ($uris as xs:string*) as elenment()* external;

6-2

https://archive.apache.org/dist/avro/avro-1.7.4/java/
https://archive.apache.org/dist/avro/avro-1.7.4/java/

Chapter 6
Avro File Adapter

Parameters

$uris: The Avro file URIs

Returns

One XML element for each Avro object.

6.1.1.2 avro:get

Retrieves an entry from an Avro map modeled as XML

If you omit the $map parameter, then the behavior is identical to calling the two-
argument function and using the context item for $map.

Signature

avro: get ($key as xs:string?, $map as node()?) as el enent(oxh:entry)?
avro: get ($key as xs:string?) as el ement(oxh:entry)?

Returns

The value of this XPath expression:

$map/ oxh: entry[@ey eq $key]

Example
These function calls are equivalent:

$var/avro: get ("key")
avro: get ("key", $var)
$var/oxh:entry[@ey eq "key"]

In this example, $var is an Avro map modeled as XML. See "Reading Maps."

6.1.2 Custom Functions for Reading Avro Container Files

ORACLE

You can use the following annotations to define functions that read collections of Avro
container files in HDFS. These annotations provide additional functionality that is not
available using the built-in functions.

Signature
Custom functions for reading Avro files must have the following signature:

decl are %vro:col | ection("avroxn ") [additional annotations]
function local :myFuncti onName($uris as xs:string*) as elenent()* external;

Annotations

%avro:collection("avroxml")
Declares the avroxm collection function. Required.

6-3

ORACLE

Chapter 6
Avro File Adapter

A collection function accesses Avro files in HDFS. The files might be split up and
processed in parallel by multiple tasks. The function returns an XML element for each
object. See "About Converting Values Between Avro and XML."

%avro:schema("avro-schema")

Provides the Avro reader schema as the value of the annotation. Optional.

The objects in the file are mapped to the reader schema when it is specified. For
example:

Y%vro: schema('

{

"type": "record",
"name": "Person",

“fields" : |
{"name": "full _name", "type": "string"},
{"nane": "age", "type": ["int", "null"] }

]
}
")

You cannot combine this annotation with %avr o: schema-fil e or %vr o: schema- kv.

¢ See Also:

"Schema Resolution" in the Apache Avro Specification at
http://avro. apache. org/ docs/ current/spec. ht Ml #Schema+Resol uti on

%avro:schema-file("avro-schema-uri")

Like %vr o: schenm, but the annotation value is a file URI that contains the Avro reader
schema. Relative URIs are resolved against the current working directory of the
client's local file system. Optional.

For example, %vr o: schema-fi | e("schemas/ person. avsc").

You cannot combine this annotation with %avr o: schema or %avr o: schena- kv.

%avro:schema-kv("schema-name")

Like %avr o: schema, but the annotation value is a fully qualified record name. The record
schema is retrieved from the Oracle NoSQL Database catalog. Optional.

For example, %vr o: schema- kv(" or g. exanpl e. Per sonRecord") .

You must specify the connection parameters to Oracle NoSQL Database when you
use this annotation. See "Oracle NoSQL Database Adapter Configuration Properties."
You cannot combine this annotation with %avr o: schema or %avr o: schema-fil e.

%avro:split-max("split-size")

Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-mn, min($split-mx, $block-size)). Optional.

In a string value, you can append K, k, M m G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

Y%vro:split-max(1024)
Y%vro:split-max("1024")
Y%vro:split-mx("1K")

6-4

http://avro.apache.org/docs/current/spec.html#Schema+Resolution

Chapter 6
Avro File Adapter

%avro:split-min("split-size"

Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-mn, min($split-mx, $block-size)). Optional.

In a string value, you can append K, k, M\ m G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

Yvro: split-mn(1024)
Yavro: split-mn("1024")
Yavro:split-mn("1K")

6.1.3 Custom Functions for Writing Avro Files

ORACLE

You can use the following annotations to define functions that write Avro files.

Signature
Custom functions for writing Avro files must have the following signature:

declare %vro: put ("avroxm ") [additional annotations]
I ocal : myFunctionNanme($val ue as iten{)) external;

Annotations

%avro:put("avroxmi)
Declares the avroxm put function. Required.
An Avro schema must be specified using one of the following annotations:

e %avro:schem
* Y%vro:schema-file
* Yavro:schema- kv

The input XML value is converted to an instance of the schema. See "Writing XML as
Avro."

%avro:schema("avro-schema")
Specifies the schema of the files. For example:

Y%vro: schema('

{
"type": "record",
"name": "Person",
“fields" : [
{"name": "full_name", "type": "string"},
{"nane": "age", "type": ["int", "null"] }
]
}

")

You cannot combine this annotation with %vr o: schema-fi | e Or %avr o: schema- kv.
%avro:schema-file("avro-schema-uri")

Like %avr o: schema, but the annotation value is a file URI that contains the Avro reader
schema. Relative URIs are resolved against the current working directory of the

client's local file system.
For example: %avr o: schema-fi | e("schemas/ person. avsc")

6-5

Chapter 6
Avro File Adapter

You cannot combine this annotation with %avr o: schema or %avr o: schema- kv.

%avro:schema-kv("schema-name")

Like %avr o: schema, but the annotation value is a fully qualified record name. The record
schema is retrieved from the Oracle NoSQL Database catalog.

For example: %avr o: schena- kv(" or g. exanpl e. Per sonRecor d")

You must specify the connection parameters to Oracle NoSQL Database when you
use this annotation. See "Oracle NoSQL Database Adapter Configuration Properties."
You cannot combine this annotation with %avr o: schema or %avr o: schema-fil e.

%avro:compress("method", [level]?)
Specifies the compression format used on the output.
The codec is one of the following string literal values:

- deflate: The level controls the trade-off between speed and compression. Valid
values are 1 to 9, where 1 is the fastest and 9 is the most compressed.

e snappy: This algorithm is designed for high speed and moderate compression.

The default is no compression.
The level is an integer value. It is optional and only supported when codec is def | ate.
For example:

Y%vr o: conpress("snappy")
Y%vro: conpress("deflate")
Y%vro: conpress("deflate", 3)

%avro:file("name")
Specifies the output file name prefix. The default prefix is part.

6.1.4 Examples of Avro File Adapter Functions

These examples use the following text file in HDFS:

mydat a/ ages. t xt

j ohn, 45

kel l'y, 36
| aura,

m ke, 27

Example 6-1 Converting a Text File to Avro
The following query converts the file into compressed Avro container files:

inport nodule "oxh:text";

declare
Yavro: put ("avroxm ")
Y%avr o: conpress("snappy")
Y%avro: schema('

{
"type": "record",
"name": "AgeRec",
"fields" : |
{"nane": "user", "type": "string"},
{"name": "age", "type": ["int", "null"] }
]
1

")

ORACLE 6-6

Chapter 6
Avro File Adapter

function local:put($arg as iten()) external;

for $line in text:collection("nydatalages.txt")
let $split := fn:tokenize($line, ",")
return
| ocal : put (
<rec>
<user>{$split[1]}</user>

if ($split[2] castable as xs:int) then
<age>{$split[2]}</age>
el se
()
}

</rec>

)

The query generates an Avro file with the following records, represented here as
JSON:

"user":"john","age":{"int":45}}
"user":"kelly","age":{"int":36}}
"user":"laura","age":null}
“user":"mke", "age": {"int":27}}

e e e R

Example 6-2 Querying Records in Avro Container Files

The next query selects records in which the age is either null or greater than 30, from
the myoutput directory. The query in Example 6-1generated the records.

inport nodul e "oxh:text";
i mport nodul e "oxh:avro";

for $rec in avro:collection-avroxm ("nmyoutput/part*.avro")
where $rec/age/nilled() or $rec/age gt 30
return

text: put ($rec/ user)

This query creates files that contain the following lines:

j ohn
kel l'y
| aura

6.1.5 About Converting Values Between Avro and XML

This section describes how Oracle XQuery for Hadoop converts data between Avro
and XML:

e Reading Avro as XML
e Writing XML as Avro

6.1.5.1 Reading Avro as XML

ORACLE

Both the Avro file adapter and the Oracle NoSQL Database adapter have an avr oxn
method, which you can use with the collection functions to read Avro records as XML.
After the Avro is converted to XML, you can query and transform the data using
XQuery.

6-7

Chapter 6
Avro File Adapter

The following topics describe how Oracle XQuery for Hadoop reads Avro:
* Reading Records

* Reading Maps

* Reading Arrays

* Reading Unions

* Reading Primitives

6.1.5.1.1 Reading Records

ORACLE

An Avro record is converted to an <oxh: i t en» element with one child element for each
field in the record.

For example, consider the following Avro schema:

{
"type": "record",
"name": "Person",
“fields" : [
{"name": "full _nanme", "type": "string"},
{"name": "age", "type": ["int", "null"] }
]
}

This is an instance of the record modeled as XML:

<oxh:itenmr
<full _name>John Doe</ful | _name>
<age>46</ age>

</ oxh:item

Converting Avro records to XML enables XQuery to query them. The next example
gueries an Avro container file named person.avro, which contains Person records. The
guery converts the records to a CSV text file in which each line contains the ful | _nane
and age values:

inport nodul e "oxh:avro";
inport nodule "oxh:text";

for $x in avro:collection-avroxm ("person.avro")
return
text:put($x/full_name || "," || $x/age)

Null values are converted to nilled elements. A nilled element has an xsi : ni | attribute
set to true; it is always empty. You can use the XQuery fn: ni | | ed function to test if a
record field is null. For example, the following query writes the name of Person records
that have a null value for age:

i mport nodul e "oxh:avro";
import nodul e "oxh:text";

for $x in avro:collection-avroxm ("person.avro")
where $x/age/nilled()
return

text: put ($x/ful | _name)

6-8

Chapter 6
Avro File Adapter

For nested records, the fields of the inner schema become child elements of the
element that corresponds to the field in the outer schema. For example, this schema
has a nested record:

{

"type": "record",
"name": "PersonAddress",
"fields" : [
{"name": "full_pane", "type": "string"},
{"name": "address", "type":
{ "type" : "record",
"name" : "Address",
"fields" : [
{ "name" : "street", "type" : "string" },
{ "name" : "city", "type" : "string" }
]
}
}
]
}

This is an instance of the record as XML:

<oxh:itenp
<full _name>John Doe</ful | _name>
<addr ess>
<street>123 First St.</street>
<city>New York</city>
</ addr ess>
</ oxh:itenp

The following example queries an Avro container file named people-address.avro that
contains Per sonAddr ess records, and writes the names of the people that live in New
York to a text file:

import nodul e "oxh:avro";
inmport nodul e "oxh:text";

for $person in avro:collection-avroxn ("exanpl es/ person-address. avro")
where $person/address/city eq "New York"
return

text: put ($person/ful | _name)

6.1.5.1.2 Reading Maps

Avro map values are converted to an element that contains one child <oxh: ent ry>
element for each entry in the map. For example, consider the following schema:

{
"type": "record",
"nane": "PersonProperties",
"fields" : [
{"name": "full_pane", "type": "string"},
{"name": "properties", "type":
{"type": "map", "values": "string"}
}
]
}

This is an instance of the schema as XML:

ORACLE 6-9

Chapter 6
Avro File Adapter

<oxh:itenmp
<full _name>John Doe</ful | _name>
<properties>
<oxh:entry key="enpl oyer">Exanpl e | nc</oxh:entry>
<oxh:entry key="hair col or">brown</oxh: entry>
<oxh:entry key="favorite author">George RR Martin</oxh:entry>
</ properties>
</oxh:itenmp

The following example queries a file named per son- properti es. avr o that contains
Per sonAddr ess records, and writes the names of the people that are employed by
Example Inc. The query shows how regular XPath expressions can retrieve map
entries. Moreover, you can use the avro: get function as a shortcut to retrieve map
entries.

i mport nodul e "oxh:avro";
inport nodul e "oxh:text";

for $person in avro:collection-avroxm ("person-properties.avro")
where $person/ properties/oxh:entry[@ey eq "enpl oyer"] eq "Exanple Inc"
return

text: put ($person/ful | _nane)

The following query uses the avro: get function to retrieve the enpl oyer entry. It is
equivalent to the previous query.

import nodul e "oxh:avro";
inport nodul e "oxh:text";

for $person in avro:collection-avroxm ("person-properties.avro")
where $person/ properties/avro: get("enployer") eq "Exanple Inc"
return

text: put ($person/full _name)

You can use XQuery fn:nil | ed function to test for null values. This example returns
true if the map entry is null:

$var/avro: get ("key")/nilled()

6.1.5.1.3 Reading Arrays

ORACLE

Oracle XQuery for Hadoop converts Avro array values to an element that contains a
child <oxh: i t em> element for each item in the array. For example, consider the
following schema:

{
"type": "record",
"name": "PersonScores",
“fields" : [
{"name": "full _nanme", "type": "string"},
{"name": "scores", "type":
{"type": "array", "items": "int"}
1
]
}

This is an instance of the schema as XML:

<oxh:itenp
<full _name>John Doe</ful | _name>

6-10

Chapter 6
Avro File Adapter

<scores>
<oxh:item»128</oxh:itenmp
<oxh:itempl151</oxh:itenp
<oxh:item>110</ oxh:itenp
</ scores>
</oxh:itenmp

The following example queries a file named person-scores.avro that contains
Per sonScor es records, and writes the sum and count of scores for each person:

i mport nodul e "oxh:avro";
import nodul e "oxh:text";

for $person in avro:collection-avroxm ("person-scores.avro")
et $scores := $person/scores/*
return

text:put($person/full_name || "," || sum($scores) || "," || count($scores))

You can access a specific element of an array by using a numeric XPath predicate.
For example, this path expression selects the second score. XPath indexing starts at 1
(not 0).

$person/ scor es/ oxh:itenf 2]

6.1.5.1.4 Reading Unions

ORACLE

Oracle XQuery for Hadoop converts an instance of an Avro union type based on the
actual member type of the value. The name of the member type is added as an XML
avro: type attribute to the enclosing element, which ensures that queries can
distinguish between instances of different member types. However, the attribute is not
added for trivial unions where there are only two member types and one of them is
null.

For example, consider the following union of two records:

[

{
"type": "record",
"name": "Personl",
"fields" : [
{"name": "full_pane", "type": "string"}
]
}
{
"type": "record",
"name": "Person2",
"fields" : [
{"name": "fname", "type": "string"}
]
}

This is an instance of the schema as XML:

<oxh:item avro:type="Person2">
<f nanme>John Doe</f name>
</oxh:item

6-11

Chapter 6
Avro File Adapter

The following example queries a file named person-union.avro that contains instances
of the previous union schema, and writes the names of the people from both record
types to a text file:

i mport nodul e "oxh: avro";
i mport nodul e "oxh:text";

for $person in avro:collection-avroxm ("exanpl es/ person-union.avro")
return
if ($person/ @vro:type eq "Personl") then
text: put ($person/full _nanme)
else if ($person/ @vro:type eq "Person2") then
text: put ($person/f nane)
el se
error(xs: QName(" UNEXPECTED"), "Unexpected record type:" || $person/ @vro:type)

6.1.5.1.5 Reading Primitives

The following table shows how Oracle XQuery for Hadoop maps Avro primitive types
to XQuery atomic types.

Table 6-1 Mapping Avro Primitive Types to XQuery Atomic Types

Avro XQuery

bool ean Xs: bool ean
int Xs:int

| ong xs: 1 ong

fl oat xs: float
doubl e xs: doubl e
byt es xs: hexBi nary
string Xs:string

Avro null values are mapped to empty nilled elements. To distinguish between a null
string value and an empty string value, use the XQuery ni | | ed function. This path
expression only returns true if the field value is null:

$record/field/ fn:nilled()

Avro fixed values are mapped to xs: hexBi nary, and enuns are mapped to xs: stri ng.

6.1.5.2 Writing XML as Avro

ORACLE

Both the Avro file adapter and the Oracle NoSQL Database adapter have an avr oxn
method, which you can use with the put functions to write XML as Avro. The following
topics describe how the XML is converted to an Avro instance:

e Writing Records
e Writing Maps

e Writing Arrays

e Writing Unions

e Writing Primitives

6-12

Chapter 6
Avro File Adapter

6.1.5.2.1 Writing Records

ORACLE

Oracle XQuery for Hadoop maps the XML to an Avro record schema by matching the
child element names to the field names of the record. For example, consider the
following Avro schema:

{
"type": "record",
"name": "Person",
“fields" : [
{"name": "full _nanme", "type": "string"},
{"name": "age", "type": ["int", "null"] }
]
}

You can use the following XML element to write an instance of this record in which the
full _nane field is John Doe and the age field is 46. The name of the root element

(Per son) is inconsequential. Only the names of the child elements are used to map to
the Avro record fields (ful | _nane and age).

<per son>
<full _name>John Doe</ful | _name>
<age>46</ age>

</ per son>

The next example uses the following CSV file named peopl e. csv:

John Doe, 46
Jane Doe, 37

This query converts values from the CSV file to Avro Per son records:

i mport nodul e "oxh:avro";
inport nodul e "oxh:text";

declare
Yvro: put ("avroxm ")
Y%vro: schema('

{
"type": "record",
“name". "Person",
"fields" : [
{"name": "full_name", "type": "string"},
{"name": "age", "type": ["int", "null"] }
]
1

function |ocal:put-person($person as element()) external;

for $line in text:collection("people.csv")
let $split := tokenize($line, ",")
return
| ocal : put - per son(
<person>
<full _name>{$split[1]}</full_name>
<age>{$split[2]}</age>

6-13

Chapter 6
Avro File Adapter

</ person>

For null values, you can omit the element or set the xsi : ni | ="true" attribute. For
example, this modified query sets age to null when the value is not numeric:

for $line in text:collection("people.csv")
let $split ;= tokenize($line, ", ")

return
| ocal : put - per son(
<person>
<full _name>{$split[1]}</full_name>
if ($split[2] castable as xs:int) then
<age>{$split[2]}</age>
el se
()
}
</ person>
)

In the case of nested records, the values are obtained from nested elements. The next
example uses the following schema:

{
"type": "record"
"nane": "PersonAddress"
"fields" : [
{"name": "full _name", "type": "string"}
{"name": "address", "type":
{ "type" : "record",

"nane" : "Address"

"fields" : [
{ "name" : "street", "type" : "string" }
{ "name" : "city", "type" : "string" }

You can use following XML to write an instance of this record:

<per son>
<full _name>John Doe</ful | _name>
<address>
<street>123 First St.</street>
<ci ty>New York</city>
</ addr ess>
</ person>

6.1.5.2.2 Writing Maps

Oracle XQuery for Hadoop converts XML to an Avro map with one map entry for each
<oxh: entry> child element. For example, consider the following schema:

ORACLE 6-14

Chapter 6
Avro File Adapter

{
"type": "record",
"name": "PersonProperties”,
“fields" : [
{"nanme": "full_pame", "type": "string"},
{"name": "properties", "type":
{"type": "map", "values": "string"}
1
]
}

You can use the following XML element to write an instance of this schema in which
the ful | _nane field is John Doe, and the properties field is set to a map with three
entries:

<person>
<full _name>John Doe</ful | _name>
<properties>
<oxh:entry key="hair col or">brown</oxh: entry>
<oxh:entry key="favorite author">Ceorge RR Martin</oxh:entry>
<oxh:entry key="enpl oyer">Exanpl e | nc</oxh:entry>
</ properties>
</ person>

6.1.5.2.3 Writing Arrays

Oracle XQuery for Hadoop converts XML to an Avro array with one item for each
<oxh: i t em> child element. For example, consider the following schema:

{
"type": "record",
"name": "PersonScores",
“fields" : |
{"nanme": "full_name", "type": "string"},
{"nanme": "scores", "type":
{"type": "array", "items": "int"}
1
]
}

You can use the following XML element to write an instance of this schema in which
the ful | _nane field is John Doe and the scores field is set to [128, 151, 110]:

<per son>
<full _name>John Doe</ful | _name>
<scores>
<oxh:itenr128</oxh:itenp
<oxh:itenrl51</oxh:itenp
<oxh:iten,110</ oxh:itenp
</ scor es>
</ person>

6.1.5.2.4 Writing Unions

When writing an Avro union type, Oracle XQuery for Hadoop bases the selection of a
member type on the value of the avro: t ype attribute.

This example uses the following schema:

[

ORACLE 6-15

Chapter 6
Avro File Adapter

"type": "record",
“"name". "Personl",
“fields" : [
{"name": "full_pame", "type": "string"}

]

}
{
"type": "record",
"nane": "Person2",
“fields" : [
{"nane": "fnane", "type": "string"}
]
}

]

The following XML is mapped to an instance of the Personl record:

<person avro:type="Personl">
<full _name>John Doe</ful | _name>
</ person>

This XML is mapped to an instance of the Person2 record:

<person avro:type="Person2">
<f nane>John Doe</f name>
</ person>

The avro: t ype attribute selects the member type of the union. For trivial unions that
contain a null and one other type, the avro: t ype attribute is unnecessary. If the
member type cannot be determined, then an error is raised.

6.1.5.2.5 Writing Primitives

To map primitive values, Oracle XQuery for Hadoop uses the equivalent data types
shown in Table 6-1 to cast an XML value to the corresponding Avro type. If the value
cannot be converted to the Avro type, then an error is raised.

This example uses the following schema:

{
"type": "record",
"name": "Person",
“fields" : [
{"name": "full _nanme", "type": "string"},
{"name": "age", "type": ["int", "null"] }
]
}

Attempting to map the following XML to an instance of this schema raises an error,
because the string value appl e cannot be converted to anint:

<person>
<full _name>John Doe</ful | _name>
<age>appl e</ age>

</ per son>

ORACLE 6-16

Chapter 6
JSON File Adapter

6.2 JSON File Adapter

The JSON file adapter provides access to JSON files stored in HDFS. It also contains
functions for working with JSON data embedded in other file formats. For example,
you can query JSON that is stored as lines in a large text file by using j son: par se- as-
xn with the text: col | ecti on function.

Processing a single JSON file in parallel is not currently supported. A set of JSON files
can be processes in parallel, with sequential processing of each file.

The JSON module is described in the following topics:
e Built-in Functions for Reading JSON

e Custom Functions for Reading JSON Files

* Examples of JSON Functions

e JSON File Adapter Configuration Properties

* About Converting JSON Data Formats to XML

6.2.1 Built-in Functions for Reading JSON

To use the built-in functions in your query, you must import the JSON file adapter as
follows:

import nodul e "oxh:json";

The JSON module contains the following functions:

e json:collection-jsonxml
e json:parse-as-xml
e json:get

As of Big Data Connectors Release 4.9, Oracle XQuery for Hadoop also supports
XQuery 3.1 including the standard facilities for processing JSON, including: f n: par se-
json, fn:json-to-xn, and fn:xm-to-json

" See Also:

XPath and XQuery Functions and Operators 3.1

6.2.1.1 json:collection-jsonxml

ORACLE

Accesses a collection of JSON files in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task.

The JSON file adapter automatically decompresses files compressed with a Hadoop-
supported compression codec.

Signature

json:col lection-jsonxm ($uris as xs:string*) as elenment()* external;

6-17

https://www.w3.org/TR/xpath-functions-31/

Chapter 6
JSON File Adapter

Parameters

$uris: The JSON file URIs

Returns

XML elements that model the JSON values. See "About Converting JSON Data
Formats to XML."

6.2.1.2 json:parse-as-xml

Parses a JSON value as XML.

Signature

j son: parse-as-xnl ($arg as xs:string?) as elenment(*)?
Parameters

$ar g: Can be the empty sequence.

Returns

An XML element that models the JSON value. An empty sequence if $ar g is an empty
sequence. See "About Converting JSON Data Formats to XML."

6.2.1.3 json:get

ORACLE

Retrieves an entry from a JSON object modeled as XML. See "About Converting
JSON Data Formats to XML."

Signature

json: get($key as xs:string?, $obj as node()?) as el ement(oxh:entry)?
json: get($key as xs:string?) as el ement(oxh:entry)?

Parameters

$key: The JSON data key
$obj : The JSON object value

Returns
The value of the following XPath expression:

$obj / oxh: entry[@ey eq $key]

If $i nput not present, then the behavior is identical to calling the two-argument function
using the context item for $obj . See the Notes.

Notes
These function calls are equivalent:
$var/json: get ("key")

json:get("key", $var)

6-18

Chapter 6
JSON File Adapter

$var/oxh: entry[@xey eq "key"]

$var is a JSON object modeled as XML. See "Reading Maps."

6.2.2 Custom Functions for Reading JSON Files

You can use the following annotations to define functions that read collections of
JSON files in HDFS. These annotations provide additional functionality that is not
available using the built-in functions.

Signature
Custom functions for reading JSON files must have the following signature:

declare % son:coll ection("jsonxm ") [additional annotations]
function local:myFunctionNanme($uris as xs:string*) as elenent()* external;

Annotations

%json:collection("jsonxml")
Declares the collection function. The annotation parameter must be j sonxni .

%output:encoding("charset")

Identifies the text encoding of the input files.

The valid encodings are those supported by the JVM. If this annotation is omitted,
then the encoding is automatically detected from the JSON file as UTF-8, UTF-16 big-
endian serialization (BE) or little-endian serialization (LE), or UTF-32 (BE or LE).

For better performance, omit the encoding annotation if the actual file encoding is
specified by JSON Request for Comment 4627, Section 3 "Encoding," on the Internet
Engineering Task Force (IETF) website at

http://ww.ietf.org/rfc/rfcd627.txt

Parameters

$uris as xs:string*
Lists the JSON file URIs. Required.

Returns

A collection of XML elements. Each element models the corresponding JSON value.
See "About Converting JSON Data Formats to XML."

6.2.3 Examples of JSON Functions

ORACLE

Example 6-3
This example uses the following JSON text files stored in HDFS:

mydat a/ usersl. j son

[

{ "user" : "john", "full name" : "John Doe", "age" : 45},

{ "user" : "kelly", "full name" : "Kelly Johnson", "age" : 32}
]

mydat a/ users2. j son

[

6-19

http://www.ietf.org/rfc/rfc4627.txt

ORACLE

Chapter 6
JSON File Adapter

{ "user" : "laura", "full name" : "Laura Smith", "age" : null },
{ "user" : "phil", "full name" : "Phil Johnson", "age" : 27 }
]

The following query selects names of users whose last name is Johnson from
usersl.json and users2.json

inport nodul e "oxh:text";
i mport nodul e "oxh:json";

for $user in json:collection-jsonxm ("nydata/users*.json")/oxh:item
et $fullname := $user/json:get("full nane")
where tokeni ze($ful I name, "\s+")[2] eq "Johnson"
return
text: put-text ($ful | nane)

This query generates text files that contain the following lines:

Phi | Johnson
Kel Iy Johnson

The remaining examples query the following text file in HDFS:

mydat a/ user s-j son. t xt

{ "user" : "john", "full name" : "John Doe", "age" : 45}

{ "user" : "kelly", "full name" : "Kelly Johnson", "age" : 32}
{ "user" : "laura", "full name" : "Laura Smith", "age" : null }
{ "user" : "phil", "full name" : "Phil Johnson", "age" : 27 }
Example 6-4

The following query selects the names of users that are older than 30 from users-
json.txt:

inport nodule "oxh:text";
inport nodul e "oxh:json";

for $line in text:collection("nydatalusers-json.txt")
I et $user := json:parse-as-xm ($line)
where $user/json:get("age") gt 30
return
text: put ($user/json:get("full nanme"))

This query generates text files that contain the following lines:

John Doe
Kel Iy Johnson

Example 6-5

The next query selects the names of employees that have a null value for age from
users-json. txt:

inmport nodul e "oxh:text";
import nodul e "oxh:json";

for $line in text:collection("nydata/users-json.txt")
l et $user := json:parse-as-xni ($line)

where $user/json:get("age")/nilled()

return

6-20

Chapter 6
JSON File Adapter

text: put (Suser/json: get("full name"))

This query generates a text file that contains the following line:

Laura Smith

6.2.4 JSON File Adapter Configuration Properties

ORACLE

Oracle XQuery for Hadoop uses the generic options for specifying configuration
properties in the hadoop command. You can use the - conf option to identify
configuration files, and the - D option to specify individual properties.

The following configuration properties are equivalent to the Jackson parser options
with the same names. You can enter the option name in either upper or lower case.
For example,

oracl e. hadoop. xquery. j son. par ser. ALLOW BACKSLASH ESCAPI NG_ANY_CHARACTER and

oracl e. hadoop. xquery. j son. par ser. al | ow_backs| ash_escapi ng_any_charact er are equal.

oracle.hadoop.xquery.json.parser.ALLOW_BACKSLASH_ESCAPING_ANY_CHA
RACTER

Type: Boolean

Default Value: f al se

Description: Enables any character to be escaped with a backslash (\). Otherwise,
only the following characters can be escaped: quotation mark("), slash (/), backslash
(\), backspace, form feed (f), new line (n), carriage return (r), horizontal tab (t), and
hexadecimal representations (unnnn)

oracle.hadoop.xquery.json.parser. ALLOW_COMMENTS

Type: Boolean

Default Value: f al se

Description: Allows Java and C++ comments (/* and //) within the parsed text.

oracle.hadoop.xquery.json.parser. ALLOW_NON_NUMERIC_NUMBERS
Type: Boolean

Default Value: f al se

Description: Allows Not a Number (NaN) tokens to be parsed as floating number
values.

oracle.hadoop.xquery.json.parser. ALLOW_NUMERIC_LEADING_ZEROS

Type: Boolean

Default Value: f al se

Description: Allows integral numbers to start with zeroes, such as 00001. The zeros
do not change the value and can be ignored.

oracle.hadoop.xquery.json.parser. ALLOW_SINGLE_QUOTES
Type: Boolean

Default Value: f al se

Description: Allow single quotes (') to delimit string values.

oracle.hadoop.xquery.json.parser. ALLOW_UNQUOTED_CONTROL_CHARS
Type: Boolean

Default Value: f al se

Description: Allows JSON strings to contain unquoted control characters (that is,
ASCII characters with a decimal value less than 32, including the tab and line feed).

6-21

Chapter 6
JSON File Adapter

oracle.hadoop.xquery.json.parser. ALLOW_UNQUOTED_FIELD_NAMES
Type: Boolean

Default Value: f al se

Description: Allows unquoted field names, which are allowed by Javascript but not
the JSON specification.

Related Topics

* Running Queries

6.2.5 About Converting JSON Data Formats to XML

This section describes how JSON data formats are converted to XML. It contains the
following topics:

e About Converting JSON Objects to XML
e About Converting JSON Arrays to XML
e About Converting Other JSON Types

As of Big Data Connectors Release 4.9, Oracle XQuery for Hadoop also supports
XQuery 3.1 including the standard facilities for processing JSON, including: f n: par se-
json, fn:json-to-xn, and fn:xm-to-json

See Also:

XPath and XQuery Functions and Operators 3.1

6.2.5.1 About Converting JSON Objects to XML

JSON objects are similar to Avro maps and are converted to the same XML structure.
See "Reading Maps."

For example, the following JSON object is converted to an XML element:

{

"user" : "john",
“full _name" : "John Doe",
“age" : 45

}

The object is modeled as the following element:

<oxh:itenp
<oxh:entry key="user">j ohn</ oxh: entry>
<oxh:entry key="full _nanme">John Doe</ oxh: entry>
<oxh:entry key="age">45</ oxh: entry>

</oxh:itenp

6.2.5.2 About Converting JSON Arrays to XML

JSON arrays are similar to Avro arrays and are converted to the same XML structure.
See "Reading Arrays."

For example, the following JSON array is converted to an XML element:

ORACLE 6-22

https://www.w3.org/TR/xpath-functions-31/

Chapter 6
Oracle Database Adapter

["red", "blue", "green"]

The array is modeled as the following element:

<oxh:item
<oxh:itenpred</oxh:itemr
<oxh:itenpbl ue</ oxh:item
<oxh: i t en>gr een</ oxh: i tenp
</oxh:itenmr

6.2.5.3 About Converting Other JSON Types

The other JSON values are mapped as shown in the following table.

Table 6-2 JSON Type Conversions

JSON XML

null An empty (nilled) element
true/false Xs: bool ean

number xs: deci nal

string xs:string

6.3 Oracle Database Adapter

The Oracle Database adapter provides custom functions for loading data into tables in
Oracle Database.

A custom put function supported by this adapter automatically calls Oracle Loader for
Hadoop at run time, either to load the data immediately or to output it to HDFS. You
can declare and use multiple custom Oracle Database adapter put functions within a
single query. For example, you might load data into different tables or into different
Oracle databases with a single query.

Ensure that Oracle Loader for Hadoop is installed on your system, and that the
OLH_HOME environment variable is set to the installation directory. See Step 3 of
"Installing Oracle XQuery for Hadoop." Although not required, you might find it helpful
to familiarize yourself with Oracle Loader for Hadoop before using this adapter.

The Oracle Database adapter is described in the following topics:

e Custom Functions for Writing to Oracle Database
* Examples of Oracle Database Adapter Functions

» Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-
property Annotations

¢ See Also:

"Software Requirements" for the versions of Oracle Database that Oracle
Loader for Hadoop supports

ORACLE 6-23

Chapter 6
Oracle Database Adapter

6.3.1 Custom Functions for Writing to Oracle Database

ORACLE

You can use the following annotations to define functions that write to tables in an
Oracle database either directly or by generating binary or text files for subsequent
loading with another utility, such as SQL*Loader.

Signature

Custom functions for writing to Oracle database tables must have the following
signature:

declare %racle:put(["jdbc" | "oci" | "text" | "datapunp"])
[Y%racl e: col ums(col 1 [, col2...])] [%racle-property annotations]
function |ocal:nmyPut($columl [as xs:allowed_type_nane[?]], [$colum2 [as
xs:al l owed_type_nane[?]], ...]) external;

Annotations

%oracle:put("output_mode"?)
Declares the put function and the output mode. Required.
The optional output_mode parameter can be one of the following string literal values:

* jdbc: Writes to an Oracle database table using a JDBC connection. Default.
See "JDBC Output Format."

* oci: Writes to an Oracle database table using an Oracle Call Interface (OCI)
connection.

See "Oracle OCI Direct Path Output Format."

e datapunp: Creates Data Pump files and associated scripts in HDFS for subsequent
loading by another utility.

See "Oracle Data Pump Output Format."
» text: Creates delimited text files and associated scripts in HDFS.
See "Delimited Text Output Format."

For Oracle XQuery for Hadoop to write directly to an Oracle database table using
either JDBC or OCI, all systems involved in processing the query must be able to
connect to the Oracle Database system. See "About the Modes of Operation."

%oracle:columns(coll [, col2...])

Identifies a selection of one or more column names in the target table. The order of
column names corresponds to the order of the function parameters. See
"Parameters." Optional.

This annotation enables loading a subset of the table columns. If omitted, the put
function attempts to load all columns of the target table.

%oracle-property:property_name (value)

Controls various aspects of connecting to the database and writing data. You can
specify multiple %r acl e- property annotations. These annotations correspond to the
Oracle Loader for Hadoop configuration properties. Every %r acl e- pr operty annotation
has an equivalent Oracle Loader for Hadoop configuration property. "Oracle Loader
for Hadoop Configuration Properties and Corresponding %oracle-property
Annotations " explains this relationship in detail.

6-24

ORACLE

Chapter 6
Oracle Database Adapter

The %r acl e- proper ty annotations are optional. However, the various loading
scenarios require you to specify some of them or their equivalent configuration
properties. For example, to load data into an Oracle database using JDBC or OCI,
you must specify the target table and the connection information.

The following example specifies a target table named Vi SI TS, a user name of db, a
password of passwor d, and the URL connection string:

Y%r acl e-property:target Tabl e(' visits')

%r acl e- property: connection. user (' db")

Y%r acl e- property: connection. passwor d(' password')

Y%r acl e- property: connection.url ('jdbc:oracle:thin: @/ ocal host: 1521/
orcl . exanpl e. con)

Parameters

$columni [as xs:allowed_type_name[?]], [$column2 [as
xs:allowed_type_name[?]],...]

Enter a parameter for each column in the same order as the Oracle table columns to
load all columns, or use the %r acl e: col utms annotation to load selected columns.
Because the correlation between parameters and database columns is positional, the
name of the parameter (columnl in the parameter syntax) is not required to match the
name of the database column.

You can omit the explicit as xs: al | owed_t ype_name type declaration for any parameter.
For example, you can declare the parameter corresponding to a NUMBER column simply
as $col uml. In this case, the parameter is automatically assigned an XQuery type of
iten()*. At run time, the input value is cast to the allowed XQuery type for the
corresponding table column type, as described in the following table. For example,
data values that are mapped to a column with a NUVBER data type are automatically
cast as xs: deci mal . An error is raised if the cast fails.

Alternatively, you can specify the type or its subtype for any parameter. In this case,
compile-time type checking is performed. For example, you can declare a parameter
corresponding to a NUMBER column as $col unm as xs: deci mal . You can also declare it
as any subtype of xs: deci nal , such as xs: i nt eger.

You can include the ? optional occurrence indicator for each specified parameter type.
This indicator allows the empty sequence to be passed as a parameter value at run
time, so that a null is inserted into the database table. Any occurrence indicator other
than ? raises a compile-time error.

The following table describes the appropriate mappings of XQuery data types with the
supported Oracle Database data types. In addition to the listed XQuery data types,
you can also use the subtypes, such as xs: i nt eger instead of xs: deci mal . Oracle data
types are more restrictive than XQuery data types, and these restrictions are identified
in the table.

Table 6-3 Data Type Mappings Between Oracle Database and XQuery

Database Type XQuery Type
VARCHAR2 Xs:string

Limited by the VARCHAR2 maximum size of 4000 bytes.
CHAR Xs:string

Limited by the CHAR maximum size of 2000 bytes.
NVARCHAR2 xs:string

Limited by the NVARCHAR2 maximum size of 4000 bytes.

6-25

ORACLE

Chapter 6
Oracle Database Adapter

Table 6-3 (Cont.) Data Type Mappings Between Oracle Database and XQuery

Database Type XQuery Type

NCHAR Xs:string
Limited by the NCHAR maximum size of 2000 bytes.

DATE xs: dat eTi ne
Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. If a time zone is specified in the xs: dat eTi ne value,
then the time zone information is dropped. Fractional seconds
are also dropped. A time value of 24:00:00 is not valid.

TI MESTAMP xs: dat eTi ne

Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. If a time zone is specified in the xs: dat eTi ne value,
then the time zone information is dropped. Fractional seconds
are limited to a precision of 0 to 9 digits. A time value of
24:00:00 is not valid.

TI MESTAMP W LOCAL TI ME
ZONE

xs: dat eTi me

Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. In the offset from UTC, the time-zone hour field is
limited to -12:00 to 14:00. Fractional seconds are limited to a
precision of 0 to 9 digits.

See "About Session Time Zones."

TI MESTAMP W TI ME ZONE

xs: dat eTi me

Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. In the offset from UTC, the time-zone hour field is
limited to -12:00 to 14:00. Fractional seconds are limited to a
precision of 0 to 9 digits.

See "About Session Time Zones."

I NTERVAL DAY TO SECOND

xs: dat eTi meDur ati on

The day and fractional seconds are limited by a precision of O
to 9 digits each. The hour is limited to a range of 0 to 23, and
minutes and seconds are limited to a range of 0 to 59.

I NTERVAL YEAR TO MONTH

Xs: year Mont hDur ati on

The year is limited by a precision of 0 to 9 digits, and the
month is limited to a range of 0 to 11.

Bl NARY _FLOAT xs: fl oat

Bl NARY_DOUBLE xs: doubl e

NUMBER xs: deci mal
Limited by the NUMBER precision of 1 to 38 decimal digits and
scale of -84 to 127 decimal digits.

FLOAT xs: deci mal
Limited by the FLOAT precision of 1 to 126 binary digits.

RAW Xs: hexBi nary

Limit by the RAWmaximum size of 2000 bytes.

About Session Time Zones

If an xs: dat eTi me value with no time zone is loaded into TI MESTAMP W TI ME ZONE or
TI MESTAMP W LOCAL TI ME ZONE, then the time zone is set to the value of the

6-26

Chapter 6
Oracle Database Adapter

sessi onTi neZone parameter, which defaults to the JVM time zone. Using Oracle XQuery
for Hadoop, you can set the sessi onTi meZone property, as described in "Oracle Loader
for Hadoop Configuration Properties and Corresponding %oracle-property

Annotations ."

Notes

With JDBC or OCI output modes, the Oracle Database Adapter loads data directly into
the database table. It also creates a directory with the same name as the custom put
function name, under the query output directory. For example, if your query output
directory is myoutput, and your custom function is nyPut , then the nyout put / nyPut
directory is created.

For every custom Oracle Database Adapter put function, a separate directory is
created. This directory contains output produced by the Oracle Loader for Hadoop job.
When you use dat apunp or text output modes, the data files are written to this
directory. The control and SQL scripts for loading the files are written to the _ol h
subdirectory, such as nyout put/myPut/ ol h.

For descriptions of the generated files, see "Delimited Text Output Format" and
"Oracle Data Pump Output Format."

6.3.2 Examples of Oracle Database Adapter Functions

ORACLE

These examples use the following text files in HDFS. The files contain a log of visits to
different web pages. Each line represents a visit to a web page and contains the time,
user name, and page visited:

mydat a/ visitsl. | og

2013- 10- 28T06: 00: 00, john, index.htm, 200
2013-10-28T08: 30: 02, kelly, index.htn, 200
2013-10-28T08: 32: 50, kelly, about.htn, 200
2013-10-30T10: 00: 10, mi ke, index.htm, 401

mydat a/ vi sits2. 1 og

2013-10-30T10: 00: 01, john, index.htm, 200
2013-10-30T10: 05: 20, john, about.htm , 200
2013-11-01708: 00: 08, laura, index.htm, 200
2013-11-04T06: 12: 51, kelly, index.htm, 200
2013-11-04T06: 12: 40, kelly, contact.htm, 200

The examples also use the following file in HDFS, which contains anonymous page
visits:

mydat a/ anonvi sits. | og

2011-10-30T10: 01: 01, index.htm, 401
2011-11-04T06: 15: 40, contact.htm, 401

This SQL command creates the VI SI TS table in the Oracle database:

CREATE TABLE visits (tinme TIMESTAWP, name VARCHAR2(15), page VARCHAR2(15), code
NUMVBER)

6-27

ORACLE

Chapter 6
Oracle Database Adapter

Example 6-6 Loading All Columns

The first query loads all information related to the page visit (time of visit, user name,
page visited, and status code) to the VI SI TS table. For anonymous access, the user
name is missing, therefore the query specifies () to insert a null into the table. The
target table name, user name, password, and connection URL are specified with

%r acl e- property annotations.

The example uses a clear-text user name and password, which is insecure but
acceptable in a development environment. Oracle recommends that you use a wallet
instead for security, especially in a production application. You can configure an
Oracle wallet using either Oracle Loader for Hadoop properties or their equivalent

%r acl e- pr operty annotations. The specific properties that you must set are described
in "Providing the Connection Details for Online Database Mode."

inport nodule "oxh:text";

declare

Y%r acl e: put

Y%r acl e-property:target Tabl e('visits')

Y%r acl e- property: connection. user('db")

Y%r acl e- property: connecti on. passwor d(' password')

Y%r acl e- property: connection.url ('jdbc:oracle:thin: @/ ocal host: 1521/
orcl.exanple.con)
function local:nyPut($cl, $c2, $c3, $c4) external;

for $line in text:collection("nydata/*visits*.log")
let $split := fn:tokenize($line, "\s* \s*")
return
if (count($split) > 3) then
local : nyPut ($split[1], $split[2], $split[3], $split[4])
el se
local : nyPut ($split[1], (), $split[2], $split[3])

The VI SI TS table contains the following data after the query runs:

TI ME NAVE PAGE CCDE
30- OCT-13 10.00.01. 000000 AM john i ndex. ht m 200
30- OCT-13 10. 05. 20. 000000 AM j ohn about . ht m 200
01-NOv-13 08.00.08.000000 AM laura i ndex. ht m 200
04-NOv-13 06.12.51.000000 AM kel ly i ndex. ht m 200
04-NOV-13 06.12.40.000000 AM kel l'y contact. ht m 200
28- OCT- 13 06. 00. 00. 000000 AM j ohn i ndex. ht m 200
28- OCT- 13 08. 30. 02. 000000 AM kel |y i ndex. ht m 200
28- OCT- 13 08. 32. 50. 000000 AM kel |y about . ht m 200
30- OCT-13 10.00. 10. 000000 AM ni ke i ndex. ht m 401
30-OCT-11 10.01.01. 000000 AM i ndex. ht m 401
04- NOv-11 06. 15. 40. 000000 AM contact. ht m 401

Example 6-7 Loading Selected Columns

This example uses the %r acl e: col unms annotation to load only the ti ne and nane
columns of the table. It also loads only visits by j ohn.

The column names specified in %or acl e: col ums are positionally correlated to the put
function parameters. Data values provided for the $c1 parameter are loaded into the

TI ME column, and data values provided for the $c2 parameter are loaded into the NAVE
column.

6-28

Chapter 6
Oracle Database Adapter

import nodul e "oxh:text"

declare

Y%r acl e: put

Y%racl e: colums('time', 'nane')

Y%r acl e-property:target Tabl e('visits')

Y%r acl e- property: connection. user('db")

Y%r acl e- property: connection. passwor d(' password')

Y%r acl e- property: connection.url ('jdbc:oracle:thin: @/ ocal host: 1521/
orcl.exanple.con)
function local:myPut ($cl, $c2) external

for $line in text:collection("nydatal*visits*.log")
let $split := fn:tokenize($line, "\s* \s*")
where $split[2] eq 'john
return
| ocal : myPut ($split[1], $split[2])

If the VI SI TS table is empty before the query runs, then it contains the following data
afterward:

TIME NAME PAGE CODE
30- OCT-13 10.00.01. 000000 AM john
30- OCT-13 10. 05. 20. 000000 AM j ohn
28- OCT- 13 06. 00. 00. 000000 AM j ohn

6.3.3 Oracle Loader for Hadoop Configuration Properties and
Corresponding %oracle-property Annotations

ORACLE

When you use the Oracle Database adapter of Oracle XQuery for Hadoop, you
indirectly use Oracle Loader for Hadoop. Oracle Loader for Hadoop defines
configuration properties that control various aspects of connecting to Oracle Database
and writing data. Oracle XQuery for Hadoop supports many of these properties, which
are listed in the last column of the table below.

You can specify these properties with the generic - conf and - D hadoop command-line
options in Oracle XQuery for Hadoop. Properties specified using this method apply to
all Oracle Database adapter put functions in your query. See "Running Queries" and
especially "Generic Options" for more information about the hadoop command-line
options.

Alternatively, you can specify these properties as Oracle Database adapter put
function annotations with the %r acl e- property prefix. These annotations are listed in
the second column of the table below. Annotations apply only to the particular Oracle
Database adapter put function that contains them in its declaration.

For example, you can set the target table to VI SI TS by adding the following lines to the
configuration file, and identifying the configuration file with the - conf option:

<property>
<name>or acl e. hadoop. | oader. t ar get Tabl e</ name>
<val ue>vi si t s</val ue>

</ property>

6-29

Chapter 6
Oracle Database Adapter

You can also set the target table to VI SI TS with the - D option, using the same Oracle
Loader for Hadoop property:

-D oracl e. hadoop. | oader . t arget Tabl e=visits

Both methods set the target table to Vi SI TS for all Oracle Database adapter put
functions in your query.

Alternatively, this annotation sets the target table to Vi SI TS only for the particular put
function that has the annotation in the declaration:

Y%r acl e- property: connection.url ('visits')

This flexibility is provided for convenience. For example, if a query has multiple Oracle
Database adapter put functions, each writing to a different table in the same database,
then the most convenient way to specify the necessary information is like this:

* Use the oracle.hadoop.loader.connection.url property in the configuration file to specify the
database connection URL. Then identify the configuration file using the - conf
option. This option sets the same database connection URL for all Oracle
Database adapter put functions in your query.

» Set a different table name using the %r acl e- property: t ar get Tabl e annotation in
each Oracle Database adapter put function declaration.

The following table identifies the Oracle Loader for Hadoop properties and their
equivalent Oracle XQuery for Hadoop annotations by functional category. Oracle
XQuery for Hadoop supports only the Oracle Loader for Hadoop properties listed in
this table.

Table 6-4 Configuration Properties and Corresponding %oracle-property Annotations
|

Category Property Annotation
Connection oracle.hadoop.loader.connection.defaultExecuteBatch Y%or acl e-

property: connection. def aul t Execut eBat ch
Connection oracle.hadoop.loader.connection.oci_url %r acl e- property: connection. oci _url
Connection oracle.hadoop.loader.connection.password %r acl e- property: connection. password
Connection oracle.hadoop.loader.connection.sessionTimeZone Y%or acl e-

property: connection. sessi onTi meZone
Connection oracle.hadoop.loader.connection.tns_admin %r acl e- property: connection. tns_adnin
Connection oracle.hadoop.loader.connection.tnsEntryName Y%r acl e- property: connection. t nsEnt r yNane
Connection oracle.hadoop.loader.connection.url Y%r acl e- property: connection. url
Connection oracle.hadoop.loader.connection.user %r acl e- property: connecti on. user
Connection oracle.hadoop.loader.connection.wallet_location Y%r acl e-

property: connection.wallet_|ocation
General oracle.hadoop.loader.badRecordFlushinterval %r acl e- property: badRecor dFl ushl nt erval
General oracle.hadoop.loader.compressionFactors %r acl e- property: conpressi onFact ors
General oracle.hadoop.loader.enableSorting %r acl e- property: enabl eSorting
General oracle.hadoop.loader.extTabDirectoryName %r acl e- property: ext TabDi r ect or yName
General oracle.hadoop.loader.loadByPartition Y%r acl e-property: | oadByPartition

ORACLE 6-30

Chapter 6
Oracle NoSQL Database Adapter

Table 6-4 (Cont.) Configuration Properties and Corresponding %oracle-property Annotations

Category Property Annotation
General oracle.hadoop.loader.logBadRecords Y%r acl e- property: | ogBadRecor ds
General oracle.hadoop.loader.rejectLimit Y%racl e-property:rejectLint
General oracle.hadoop.loader.sortkey %r acl e- property: sortKey
General oracle.hadoop.loader.tableMetadataFile Y%r acl e-property:tabl eMet adat aFil e
General oracle.hadoop.loader.targetTable %r acl e-property:target Tabl e
Output oracle.hadoop.loader.output.dirpathBufsize %or acl e- property: dirpat hBuf si ze
Output oracle.hadoop.loader.output.escapeEnclosers Y%r acl e- property: out put. escapeEncl osers
Output oracle.hadoop.loader.output.fieldTerminator %r acl e-property:output.fiel dTerm nator
Output oracle.hadoop.loader.output.granuleSize %r acl e- property: out put. granul eSi ze
Output oracle.hadoop.loader.output.initialFieldEncloser Y%r acl e-

property:output.initialFiel dEncl oser
Output oracle.hadoop.loader.output.trailingFieldEncloser Y%or acl e-

property:output.trailingFiel dEncl oser
Sampler oracle.hadoop.loader.sampler.enableSampling Y%r acl e- property: sanpl er. enabl eSanpl i ng
Sampler oracle.hadoop.loader.sampler.hintMaxSplitSize Y%or acl e-

property: sanpl er. hi nt MaxSpl it Si ze
Sampler oracle.hadoop.loader.sampler.hintNumMapTasks Y%or acl e- property: sanmpl er. hi nt NunmvapTask
Sampler oracle.hadoop.loader.sampler.loadCl Y%r acl e- property: sanpl er. | oadCl
Sampler oracle.hadoop.loader.sampler.maxHeapBytes %r acl e- property: sanpl er. maxHeapByt es
Sampler oracle.hadoop.loader.sampler.maxLoadFactor Y%or acl e- property: sanmpl er. naxLoadFact or
Sampler oracle.hadoop.loader.sampler.maxSamplesPct Y%r acl e- property: sanpl er. maxSanpl esPct
Sampler oracle.hadoop.loader.sampler.minSplits Y%racl e-property: sanpler.nmnSplits
Sampler oracle.hadoop.loader.sampler.numThreads Y%r acl e- property: sanpl er. nunirhr eads

6.4 Oracle NoSQL Database Adapter

This adapter provides functions to read and write values stored in Oracle NoSQL

Database.

This adapter is described in the following topics:

* Prerequisites for Using the Oracle NoSQL Database Adapter

» Built-in Functions for Reading from and Writing to Oracle NoSQL Database

» Built-in Functions for Reading from and Writing to Oracle NoSQL Database using

Table API

e Custom Functions for Reading Values from Oracle NoSQL Database

» Custom Functions for Retrieving Single Values from Oracle NoSQL Database

* Custom Functions for Reading Values from Oracle NoSQL Database using Table

API

ORACLE

6-31

Chapter 6
Oracle NoSQL Database Adapter

» Custom Functions for Reading Single Row from Oracle NoSQL Database using
Table API

e Custom Functions for Retrieving Single Values from Oracle NoSQL Database
using Large Object API

e Custom Functions for Writing to Oracle NoSQL Database
e Custom Functions for Writing Values to Oracle NoSQL Database using Table API

e Custom Functions for Writing Values to Oracle NoSQL Database using Large
Object API

* Examples of Oracle NoSQL Database Adapter Functions

* Oracle NoSQL Database Adapter Configuration Properties

6.4.1 Prerequisites for Using the Oracle NoSQL Database Adapter

Before you write queries that use the Oracle NoSQL Database adapter, you must
configure Oracle XQuery for Hadoop to use your Oracle NoSQL Database server.

You must set the following:

e The KVHOME environment variable to the local directory containing the Oracle
NoSQL database lib directory.

* The oracle.kv.hosts and oracle.kv.kvstore configuration properties.

e The OXH SOLR MR_HOME environment variable to the local directory containing sear ch-
nv - <versi on>. j ar and sear ch-nr - <ver si on>-j ob. j ar, only when Tika parser is
invoked. That is, only when kv: col | ection-tika() or kv: get-tika() functions are
invoked or, %v: col | ection('tika') or %v:get('tika') annotations are used with
external functions.

You can set the configuration properties using either the - D or - conf options in the
hadoop command when you run the query. See "Running Queries."

This example sets KVHOME and uses the hadoop - D option in a query to set
oracl e. kv. kvstore:

$ export KVHOVE=/Iocal / pat h/t o/ kvst ore/
$ hadoop jar $OXH HOVE/|i b/ oxh.jar -D oracl e. kv. host s=exanpl e. com 5000 -D
oracl e. kv. kvstore=kvstore ./nyquery.xq -output ./nyout put

This example sets OXH_ SOLR_MR_HOME environment variable when the Tika parser is
invoked:

$ export OXH SOLR_MR _HOMVE=/usr/lib/solr/contrib/nr

Note:

The HADOOP_CLASSPATH environment variable or - | i bj ars command line option
must not contain NoSQL DB jars.

See "Oracle NoSQL Database Adapter Configuration Properties."

ORACLE 6-32

Chapter 6
Oracle NoSQL Database Adapter

6.4.2 Built-in Functions for Reading from and Writing to Oracle NoSQL

Database

To use the built-in functions in your query, you must import the Oracle NoSQL
Database module as follows

i mport nodul e "oxh: kv";

The Oracle NoSQL Database module contains the following functions:

* kv:collection-text

e kv:collection-avroxml
e kv:collection-xml

e kv:collection-hinxml
e kv:collection-tika

* kv:put-text

e kv:put-xml

* kv:put-hinxml

* kv:get-text

* kv:get-avroxml

e kv:get-xml

e kv:get-hinxml

* kv:get-tika

* kvikey-range

6.4.2.1 kv:collection-text

ORACLE

Accesses a collection of values in the database. Each value is decoded as UTF-8 and
returned as a string.

Signature

decl are %v: col l ection("text") function
kv: col | ection-text($parent-key as xs:string?, $depth as xs:int?, $subrange as
Xs:string?) as xs:string* external;

decl are %v: col l ection("text") function
kv:col | ection-text($parent-key as xs:string?, $depth as xs:int?) as xs:string*
external ;

decl are %v: col l ection("text") function
kv:col I ection-text($parent-key as xs:string?) as xs:string* external;

Parameters

See "Parameters." Omitting $subr ange is the same as specifying $subrange() . Likewise,
omitting $dept h is the same as specifying $dept h() .

6-33

Chapter 6
Oracle NoSQL Database Adapter

Returns

One string for each value

6.4.2.2 kv:collection-avroxml

Accesses a collection of values in the database. Each value is read as an Avro record
and returned as an XML element. The records are converted to XML as described in
"Reading Records ."

Signature

declare %v: col l ection("avroxm") function
kv:col | ection-avroxm ($parent-key as xs:string?, $depth as xs:int?, $subrange as
xs:string?) as elenent()* external;

decl are %v: col l ection("avroxm ") function
kv:col | ection-avroxm ($parent-key as xs:string?, $depth as xs:int?) as elenent()*
external;

declare %v: col l ection("avroxm ") function
kv: col | ection-avroxm ($parent-key as xs:string?) as elenent()* external;

Parameters

See "Parameters." Omitting $subr ange is the same as specifying $subrange() . Likewise,
omitting $dept h is the same as specifying $dept h() .

Returns

One XML element for each Avro record

6.4.2.3 kv:collection-xml

ORACLE

Accesses a collection of values in the database. Each value is read as a sequence of
bytes and parsed as XML.

Signature

decl are %v: col lection("xm ") function

kv: col | ection-xnl ($parent-key as xs:string?, $depth as xs:int?, $subrange as
xs:string?) as docunent-node()* external;
decl are %v: col l ection("xm ") function

kv: col l ection-xn ($parent-key as xs:string?, $depth as xs:int?) as docunent-
node()* external;

decl are %v: col l ection("xm ") function
kv:col I ection-xm ($parent-key as xs:string?) as document-node()* external;

Parameters

See "Parameters." Omitting $subr ange is the same as specifying $subrange() . Likewise,
omitting $dept h is the same as specifying $dept h() .

Returns

One XML document for each value.

6-34

Chapter 6
Oracle NoSQL Database Adapter

6.4.2.4 kv:collection-binxml

Accesses a collection of values in the database. Each value is read as XDK binary
XML and returned as an XML document.

Signature

decl are %v: col | ection("binxm™") function

kv: col | ection-bi nxm ($parent-key as xs:string?, $depth as xs:int?, S$subrange as
xs:string?) as docunent-node()* external;
decl are %v: col | ection("binxm™") function

kv: col | ection-bi nxm ($parent-key as xs:string?, $depth as xs:int?) as docunent-
node()* external;

decl are %v: col | ection("binxm™") function
kv: col | ection-bi nxm ($parent-key as xs:string?) as docunent-node()* external;

Parameters

See "Parameters." Omitting $subr ange is the same as specifying $subrange() . Likewise,
omitting $dept h is the same as specifying $dept h() .

Returns

One XML document for each value.

6.4.2.5 kv:collection-tika
Uses Tika to parse the specified value when invoked and returns as a document node.

Signature

decl are %v: col l ection("tika") function
kv:col l ection-tika($parent-key as xs:string?, $depth as xs:int?, $subrange as
xs:string?) $content Type as xs:string?) as document-node()* external;

Parameters

See "Parameters." Omitting $subr ange is the same as specifying $subrange() . Likewise,
omitting $dept h is the same as specifying $dept h() .

Returns

One document node for each value.

6.4.2.6 kv:put-text
Writes a key-value pair. The $val ue is encoded as UTF-8.

Signature

declare %v: put("text") function
kv: put-text ($key as xs:string, $value as xs:string) external;

ORACLE 6-35

Chapter 6
Oracle NoSQL Database Adapter

6.4.2.7 kv:put-xml

Writes a key/value pair. The $xnl is serialized and encoded as UTF-8.

Signature

declare %v: put("xm") function
kv: put-xnl ($key as xs:string, $xnl as node()) external;

6.4.2.8 kv:put-binxml

Puts a key/value pair. The $xni is encoded as XDK binary XML. See Oracle XML
Developer's Kit Programmer's Guide.

Signature

decl are %v: put kv: put - bi nxm ("binxm ") function
($key as xs:string, $xm as node()) external;

6.4.2.9 kv:get-text

Obtains the value associated with the key. The value is decoded as UTF-8 and
returned as a string.

Signature

declare 9%v: get("text") function
kv: get-text ($key as xs:string) as xs:string? external;

6.4.2.10 kv:get-avroxml

Obtains the value associated with the key. The value is read as an Avro record and
returned as an XML element. The records are converted to XML as described in
"Reading Records .".

Signature

decl are %v: get("avroxm") function
kv: get-avroxm ($key as xs:string) as element()? external;

6.4.2.11 kv:get-xm|

Obtains the value associated with the key. The value is read as a sequence of bytes
and parsed as XML.

Signature

declare %v:get("xm") function
kv: get-xnl ($key as xs:string) as document-node()? external;

6.4.2.12 kv:get-binxml

Obtains the value associated with the key. The value is read as XDK binary XML and
returned as an XML document.

ORACLE 6-36

Chapter 6
Oracle NoSQL Database Adapter

Signature

declare %v: get("binxm") function
kv: get - bi nxm ($key as xs:string) as docunent-node()? external;

6.4.2.13 kv:get-tika

Obtains the value associated with the key. The value is parsed as byte array and
returned as a document node.

Signature

declare %v: get("tika") function
kv: get-tika($key as xs:string, $contentType as xs:string?) as docunent-node()?
external;

6.4.2.14 kv:key-range

Defines a prefix range. The prefix defines both the lower and upper inclusive
boundaries.

Use this function as the subrange argument of a kv: col | ecti on function.

Signature

kv: key-range($prefix as xs:string) as xs:string;

6.4.2.15 kv:key-range

Specifies a key range.

Use this function as the subrange argument of a kv: col | ecti on function.

Signature

kv:key-range($start as xs:string, $start-inclusive as xs:bool ean, $end as
xs:string, $end-inclusive as xs:bool ean) as xs:string;

Parameters

$start: Defines the lower boundary of the key range.

$start-inclusive: A value of true includes $start in the range, or f al se omits it.
$end: Defines the upper boundary of the key range. It must be greater than $start .

$end- i ncl usi ve: A value of true includes $end in the range, or false omits it.

6.4.3 Built-in Functions for Reading from and Writing to Oracle NoSQL
Database using Table API

ORACLE

To use the built-in functions in your query, you must have declared the name space
and imported the module as follows:

decl are nanmespace kv-table = "oxh: kv-table";
import nodul e "oxh: kv-table";

6-37

Chapter 6
Oracle NoSQL Database Adapter

The Oracle NoSQL Database through Table APl module contains the following
functions:

» kv-table:collection-jsontext
» kv-table:get-jsontext

» kv-table:put-jsontext

6.4.3.1 kv-table:collection-jsontext

ORACLE

These functions iterate over all or a subset of rows stored in a single table in the
NoSQL Database. Each row is returned in a form of a JSON string.

Signature

decl are %v-tabl e:col |l ection-jsontext("jsontext") function
kv-tabl e: col | ection-j sontext ($tabl eNane as xs:string) as xs:string*

decl are %v-tabl e:collection(“jsontext") function

kv-tabl e: col | ection-jsontext ($tabl eNane as xs:string, $prinaryKeyJsonVal ue as
Xs:string?) as xs:string*
decl are %v-tabl e:collection(“jsontext") function

kv-tabl e: col | ection-j sontext ($tabl eNane as xs:string, $primaryKeyJsonVal ue as
xs:string?, $fieldRangeJsonVal ue as xs:string?) as xs:string*

Parameters
$t abl eNane as xs: string — name of the table in NoSQL Database

$pri mar yKeyJsonval ue as xs: string? — a partial primary key specified as JSON text

" See Also:

http://docs. oracl e. com cd/ NOSQL/ ht M / Get ti ngSt art edGui deTabl es/
pri maryshar dkeys. ht m #parti al pri marykeys

$fi el dRangeJsonVal ue as xs: string? — field range for a remaining field of the given
primary key specified as JSON text

{
"name": “fiel dname",
"start": “startVal",
“startlnclusive": true|false,
"end" : "endVal",
“endl nclusive": true|fal se

}

Returns

JSON value of each row

Use "json:parse-as-xml" function to parse JSON string into an XML document

6-38

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/primaryshardkeys.html#partialprimarykeys
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/primaryshardkeys.html#partialprimarykeys

Chapter 6
Oracle NoSQL Database Adapter

6.4.3.2 kv-table:get-jsontext

This function reads a single row stored in a table in NoSQL Database. The row is
returned in a form of a JSON string. If the row is not found, then an empty sequence is
returned.

Signature

declare %v-table:get(“jsontext") function
kv-tabl e: get -j sont ext ($t abl eName as xs:string, $primaryKeyJsonVal ue as xs:string)
as xs:string?

Parameters

$t abl eNane as xs: string — name of the table in NoSQL Database

$pri maryKeyJsonVal ue as xs: string? — a full primary key specified as JSON text

¢ See Also:

http://docs. oracl e. com cd/ NOSQL/ ht ml / Get ti ngSt art edCui deTabl es/
pri maryshar dkeys. ht m #pri mar ykeys

Returns
JSON value of the row or an empty sequence, if the row is not found.

Use "json:parse-as-xml" function to parse JSON string into an XML document

6.4.3.3 kv-table:put-jsontext

This function writes a row into NoSQL Database using its Table API

Signature

decl are %v-tabl e:put (“jsontext") function
kv-tabl e: put -j sont ext ($t abl eNanme as xs:string, $jsonValue as xs:string);

Parameters
$t abl eNane as xs: stri ng — name of the table in NoSQL Database

$j sonVal ue as xs: string — row specified as JSON text

6.4.4 Built-in Functions for Reading from and Writing to Oracle NoSQL
Database using Large Object API

ORACLE

To use the built-in functions in your query you must have declared the name space
and imported the module as follows:

decl are nanespace kv-1ob = "oxh: kv-1ob";
i nport nodul e "oxh: kv-1ob";

6-39

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/primaryshardkeys.html#primarykeys
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuideTables/primaryshardkeys.html#primarykeys

Chapter 6
Oracle NoSQL Database Adapter

The Oracle NoSQL Database through Large Object APl module contains the following
functions:

e kv-lob:get-text
* kv-lob:get-xml
e kv-lob:get-binxml
* kv-lob:get-tika
e kv-lob:put-text
e kv-lob:put-xml

e kv-lob:put-binxml

6.4.4.1 kv-lob:get-text

Obtains the value associated with the key. The value is decoded as UTF-8 and
returned as a string.

Signature

decl are %v-1ob: get("text")
function kv-1ob: get-text($key as xs:string) as xs:string?

6.4.4.2 kv-lob:get-xml

Obtains the value associated with the key. The value is read as a sequence of bytes
and parsed as XML.

Signature

decl are 9%v-1ob: get("xm")
function kv-1ob:get-xn ($key as xs:string) as docunent-node()?

6.4.4.3 kv-lob:get-binxml

Obtains the value associated with the key. The value is read as XDK binary XML and
returned as an XML document. See Oracle XML Developer's Kit Programmer's Guide.

Signature

decl are %v-1ob: get ("binxm ")
function kv-1ob: get-binxm ($key as xs:string) as docunent-node()?

6.4.4.4 kv-lob:get-tika

ORACLE

Obtains the value associated with the key. The value is parsed as byte array and
returned as a document node.

Signature

decl are %v-1ob: get("tika")
function kv-1ob:get-tika($key as xs:string) as docunent-node()?

decl are %v-1ob: get("tika")

function kv-1ob:get-tika($key as xs:string, $contentType as xs:string?) as docunent-
node() ?

6-40

Chapter 6
Oracle NoSQL Database Adapter

6.4.4.5 kv-lob:put-text

Writes a key-value pair. The $val ue is encoded as UTF-8.

Signature

decl are %v-1ob: put("text")
function kv-1ob: put-text($key as xs:string, $value as xs:string)

6.4.4.6 kv-lob:put-xml

Writes a key/value pair. The $xnl is serialized and encoded as UTF-8.

Signature

decl are %v-1ob: put("xn")
function kv-1ob: put-xm ($key as xs:string, $document as node())

6.4.4.7 kv-lob:put-binxml

Puts a key/value pair. The $xni is encoded as XDK binary XML.

Signature

decl are %v-1ob: put ("binxm")
function kv-1ob: put-binxm ($key as xs:string, $docunent as node()

6.4.5 Custom Functions for Reading Values from Oracle NoSQL
Database

You can use the following functions to read values from Oracle NoSQL Database.
These annotations provide additional functionality that is not available using the built-in
functions.

Signature

Custom functions for reading collections of NoSQL values must have one of the
following signatures:

declare %v:col lection("text") [additional annotations]
function |ocal:nyFunctionName($parent-key as xs:string?, $depth as
xs:int?, $subrange as xs:string?) as xs:string* external;

declare %v: col lection(["xm"|"binxm "|"tika"]) [additional annotations]
function |ocal:nyFunctionName($parent-key as xs:string?, $depth as
xs:int?, $subrange as xs:string?) as document-node()* external;

declare %v:col lection("tika") [additional annotations]

function |ocal:nyFuncti onName($parent-key as xs:string?, $depth as
xs:int?, $subrange as xs:string?, $contentType as xs:string?) as document-node()*
external ;

ORACLE 6-41

Chapter 6
Oracle NoSQL Database Adapter

Annotations

%kv:collection("method")
Declares the NoSQL Database collection function. Required.
The method parameter is one of the following values:

e avroxnl : Each value is read as an Avro record and returned as an XML element.
The records are converted to XML as described in "Reading Records ."

e binxnl: Each value is read as XDK binary XML and returned as an XML
document.

e text: Each value is decoded using the character set specified by the
Y%ut put : encodi ng annotation.

e tika: Each value is parsed by Tika, and returned as a document node.

e xnl: Each value is parsed as XML, and returned as an XML document.

%kv:key("true" | "false")

Controls whether the key of a key-value pair is set as the docunent -uri of the returned
value. Specify true to return the key.

The default setting is true when method is xni , avroxmi , or bi nxn , and f al se when it is
text. Text functions with this annotation set to t r ue must be declared to return text () ?
instead of xs: string?. Atomic xs: string values are not associated with a document
node, but text nodes are. For example:

declare %v:col lection("text") 9%v:key("true")
function local:col ($parent-key as xs:string?) as text()* external;

When the key is returned, you can obtain its string representation by using the
kv: key() function. For example:

for $value in local:col(...)
et $key := $val uel/ kv: key()
return ...

%avro:schema-kv("schema-name")

Specifies the Avro reader schema. This annotation is valid only when method is
avroxm . Optional.

The schema-name is a fully qualified record name. The record schema is retrieved
from the Oracle NoSQL Database catalog. The record value is mapped to the reader
schema. For example, %vr o: schena- kv("or g. exanpl e. Per sonRecord").

¢ See Also:

For information about Avro schemas, the Oracle NoSQL Database Getting
Started Guide at

http://docs. oracl e. com cd/ NOSQL/ ht m / Getti ngSt art edCui de/

schemaevol ution. ht ni

%output:encoding
Specifies the character encoding of text values. UTF-8 is assumed when this
annotation is not used. The valid encodings are those supported by the JVM.

ORACLE 6-42

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html

ORACLE

Chapter 6
Oracle NoSQL Database Adapter

This annotation currently only applies to the text method. For XML files, the
document's encoding declaration is used if it is available.

2 See Also:

"Supported Encodings" in the Oracle Java SE documentation at
http://docs. oracle. conljavase/ 7/ docs/t echnot es/ gui des/intl/
encodi ng. doc. ht m

Parameters

Parameter 1: $parent-key as xs:string?

Specifies the parent key whose child KV pairs are returned by the function. The major
key path must be a partial path and the minor key path must be empty. An empty
sequence results in fetching all keys in the store.

¢ See Also:

For the format of the key, Oracle NoSQL Database Java Reference at
http://docs. oracl e. coml cd/ NOSQL/ ht m / j avadoc/ or acl e/ kv/ Key. ht ml #t oSt ri ng

Parameter 2: $depth as xs:int?
Specifies whether parents, children, descendants, or a combination are returned. The
following values are valid:

e kv:depth-parent-and- descendant s() : Selects the parents and all descendants.

e kv:depth-children-only(): Selects only the immediately children, but not the
parent.

e kv:depth-descendants-onl y(): Selects all descendants, but not the parent.
e kv:depth-parent-and-chil dren(): Selects the parent and the immediate children.

An empty sequence implies kv: dept h- par ent - and- descendant s() .
This example selects all the descendants, but not the parent:

kv:collection-text("/parent/key", kv:depth-descendants-only(), ...

Parameter 3: $subRange as xs:string?
Specifies a subrange to further restrict the range under par ent Key to the major path
components. The format of the string is:

<start Type>/ <start >/ <end>/ <endType>

The start Type and endType are either | for inclusive or E for exclusive.

The start and end are the starting and ending key strings.

If the range does not have a lower boundary, then omit the leading st art Type/ st art
specification from the string representation. Similarly, if the range does not have an
upper boundary, then omit the trailing end/ endType specification. A KeyRange requires at
least one boundary, thus at least one specification must appear in the string
representation.

The kv:key-range function provides a convenient way to create a range string.

The value can also be the empty sequence.

6-43

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.html#toString

Chapter 6
Oracle NoSQL Database Adapter

The following examples are valid subrange specifications:

Example Description

I/ al pha/ beta/ E From alpha inclusive to beta exclusive
E//0123/1 From " exclusive to 0123 inclusive
I/chil From chi inclusive to infinity

=) From " exclusive to infinity

/chilE From negative infinity to chi exclusive
/11 From negative infinity to ™ inclusive

6.4.6 Custom Functions for Retrieving Single Values from Oracle
NoSQL Database

ORACLE

The Oracle NoSQL Database adapter has get functions, which enable you to retrieve
a single value from the database. Unlike collection functions, calls to get functions are
not distributed across the cluster. When a get function is called, the value is retrieved
by a single task.

Signature
Custom get functions must have one of the following signatures:

declare 9%v: get("text") [additional annotations]
function |ocal:myFunctionName($key as xs:string) as xs:string? external;

decl are %v: get("avroxm ") [additional annotations]
function |ocal:myFunctionName($key as xs:string) as element()? external;

declare %v:get(["xm"|"binxm"|"tika"]) [additional annotations]
function |ocal:myFunctionName($key as xs:string) as document-node()?

declare %v:get(["tika"]) [additional annotations]
function |ocal:myFunctionName($key as xs:string $content Type as xs:string?) as
docunent - node() ?

Annotations

%kv:get("method")
Declares the NoSQL Database get function. Required.
The method parameter is one of the following values:

* avroxnl : The value is read as an Avro record and returned as an XML element.
The records are converted to XML as described in "Reading Records ."

e binxnl: The value is read as XDK binary XML and returned as an XML document.

* text: The value is decoded using the character set specified by the
Y%ut put : encodi ng annotation.

* tika: Each value is parsed by Tika, and returned as a document node.

e xnl: The value is parsed as XML and returned as an XML document.

%kv:key("true" | "false")
Controls whether the key of a key-value pair is set as the docunent -uri of the returned
value. Specify true to return the key.

6-44

Chapter 6
Oracle NoSQL Database Adapter

The default setting is t rue when method is xm , avroxnl , or bi nxnl , and f al se when it is
text. Text functions with this annotation set to t rue must be declared to return text () ?
instead of xs: string?. Atomic xs: string values are not associated with a document
node, but text nodes are.

When the key is returned, you can obtain its string representation by using the

kv: key() function.

%avro:schema-kv("schema-name")

Specifies the Avro reader schema. This annotation is valid only when method is
avroxnl . Optional.

The schema-name is a fully qualified record name. The record schema is retrieved
from the Oracle NoSQL Database catalog. The record value is mapped to the reader
schema. For example, %vr o: schena- kv("or g. exanpl e. Per sonRecord").

" See Also:

For information about Avro schemas, the Oracle NoSQL Database Getting
Started Guide at

http://docs. oracl e. com cd/ NOSQL/ ht M / Getti ngSt art edGui de/

schemaevol ution. ht m

%output:encoding

Specifies the character encoding of text values. UTF-8 is assumed when this
annotation is not used. The valid encodings are those supported by the JVM.

This annotation currently only applies to the text method. For XML files, the document
encoding declaration is used, if it is available.

¢ See Also:

"Supported Encodings" in the Oracle Java SE documentation at
http://docs. oracl e. contjavase/ 7/ docs/ t echnot es/ gui des/intl/
encodi ng. doc. ht nl

6.4.7 Custom Functions for Reading Values from Oracle NoSQL
Database using Table API

ORACLE

You can use the following functions to read values from Oracle NoSQL Database
using Table API. These annotations provide additional functionality that is not available
using the built-in functions.

Signature

Custom functions for reading collections of NoSQL values using Table APl must have
one of the following signatures:

decl are %v-table:collection(“jsontext")
function local:myFunctionNane($t abl eNane as xs:string) as xs:string* external;

declare %v-table:collection("“jsontext")

function local:myFunctionNane($t abl eNane as xs:string, $primaryKeyJsonVal ue as
xs:string?) as xs:string* external;

6-45

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

Chapter 6
Oracle NoSQL Database Adapter

decl are %v-table:collection("jsontext")

function |ocal: myFunctionNanme($tabl eNane as xs:string, $primaryKeyJsonVal ue as
xs:string?, $fieldRangeJsonVal ue as xs:string?) as xs:string* external
Annotations

%kv-table:collection(“jsontext")
Declares the collection function that uses Table API.

Note:

j sontext is the only supported and required annotation value.

Parameters

Same as "Parameters."

Returns

Same as "Returns.”

6.4.8 Custom Functions for Reading Single Row from Oracle NoSQL
Database using Table API

ORACLE

You can use the following functions to read single row from Oracle NoSQL Database
using Table API. These annotations provide additional functionality that is not available
using the built-in functions.

Signature

Custom functions to read single row from Oracle NoSQL Database using Table API
must have one of the following signatures:

decl are %v-tabl e:get(“jsontext")
function |ocal: nyFuncti onNane($t abl eNane as xs:string, $primaryKeyJsonVal ue as
Xs:string?) as xs:string? external;

Annotations

%kv-table:get(“jsontext")
Declares the get function that uses Table API.

Note:

j sontext is the only supported and required annotation value.

Parameters

Same as "Parameters."”

Returns

Same as "Returns.”

6-46

Chapter 6
Oracle NoSQL Database Adapter

6.4.9 Custom Functions for Retrieving Single Values from Oracle
NoSQL Database using Large Object API

You can use the following functions to read values from Oracle NoSQL Database
using Large Object API. These annotations provide additional functionality that is not
available using the built-in functions.

Signature

Custom functions for reading single values using Large Object API must have one of
the following signatures:

declare %v-1ob:get("text") [additional annotations]
function |ocal: nyFuncti onNane($key as xs:string) as xs:string? external;

decl are 9%v-1ob:get(["xm"|"binxm"|"tika"]) [additional annotations]
function |ocal: nyFuncti onNane($key as xs:string) as docunent-node()?

declare %v-1ob:get(["tika"]) [additional annotations]
function |ocal: nyFuncti onNane($key as xs:string $content Type as xs:string?) as
docunent - node() ?

Annotations

%kv-lob:get(“method")

Declares the NoSQL Database get function that uses Large Object API. Required.
Supported method parameters are bi nxm , text, tika, and xni —same as in
%kv:get(“method").

Note:

avroxml method is not supported with Large Object API.

%kv-lob:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the key. Same as %kv:key().

%output:encoding

Specifies the character encoding of text values. UTF-8 is assumed when this
annotation is not used. The valid encodings are those supported by the JVM. This
annotation currently only applies to the text method. For XML files, the document
encoding declaration is used, if it is available.

6.4.10 Custom Functions for Writing to Oracle NoSQL Database

ORACLE

You can use the following annotations to define functions that write to Oracle NoSQL
Database.

Signature

Custom functions for writing to Oracle NoSQL Database must have one of the
following signatures:

6-47

declare %v: put("text") function

Chapter 6
Oracle NoSQL Database Adapter

| ocal : nyFuncti onName($key as xs:string, $value as xs:string) external;

declare 9%v: put(["xm"|"binxm "|"avroxm "]) function
| ocal : nyFuncti onNane($key as xs:string, $xm as node()) external;

Annotations

Annotation

Description

%kv:put("method")

%avro:schema-kv("schema-name")

%output:*

Declares the NoSQL Database module put
function. Required.

The method determines how the value is
stored. It must be one of the following values:

e text:$val ue is serialized and encoded
using the character set specified by the
Y%ut put : encodi ng annotation.

e avroxm : $xnl is mapped to an instance of
the Avro record specified by the
%vr o: schema- kv annotation. See "Writing
XML as Avro."

e binxn : $xml is encoded as XDK binary
XML.

e xnl:$xnl is serialized and encoded using
the character set specified by the
%ut put : encodi ng annotation. You can
specify other XML serialization
parameters using %output:*.

Specifies the record schema of the values to
be written. The annotation value is a fully
qualified record name. The record schema is
retrieved from the Oracle NoSQL Database
catalog.

For example: %avr o: schema-
kv("org. exanpl e. PersonRecord")

A standard XQuery serialization parameter for
the output method (text or XML) specified in
%v: put . See "Serialization Annotations."

6.4.11 Custom Functions for Writing Values to Oracle NoSQL

Database using Table API

You can use the following annotations to define functions that write to Oracle NoSQL

Database using Table API.

Signature

Custom functions for writing rows using Table APl must have one of the following

signatures:

decl are 9%v-tabl e: put (“jsontext")

function |ocal: nyFuncti onNane($t abl eName as xs:string, $jsonValue as xs:string?)

external ;

ORACLE

6-48

Chapter 6
Oracle NoSQL Database Adapter

Annotations

%kv-table:put(“jsontext")
Declares the put function that uses Table API.

Note:

j sontext is the only supported and required annotation value.

Parameters

Same as "Parameters."

6.4.12 Custom Functions for Writing Values to Oracle NoSQL
Database using Large Object API

You can use the following annotations to define functions that write to Oracle NoSQL
Database using Large Object API.

Signature

Custom functions for writing values using Large Object API must have one of the
following signatures:

decl are %v-1ob: put("text")
function |ocal:nyFuncti onNane($key as xs:string, $value as xs:string) external;

decl are 9%v-1ob: put(["xm"|"binxm "])
function |ocal: nyFuncti onNane($key as xs:string, $xm as node()) external;

Annotations

%kv-lob:put("method")
Declares the NoSQL Database put function. Required. Supported method parameters
are binxnl , text, and xm —same as in "%v: put (" net hod")"

Note:

avroxnl method is not supported with Large Object API.

%output:*
A standard XQuery serialization parameter for the output method (text or XML)
specified in %v- | ob: put . See "Serialization Annotations."

6.4.13 Examples of Oracle NoSQL Database Adapter Functions

Example 6-8 Writing and Reading Text in Oracle NoSQL Database

This example uses the following text file is in HDFS. The file contains user profile
information such as user ID, full name, and age, separated by colons (:).

ORACLE 6-49

ORACLE

Chapter 6
Oracle NoSQL Database Adapter

mydat a/ users. t xt

j ohn: John Doe: 45

kel l'y: Kel 'y Johnson: 32
laura: Laura Smth:
phil:Phil Johnson: 27

The first query stores the lines of this text file in Oracle NoSQL Database as text
values.

i mport nodul e "oxh:text";
i mport nodul e "oxh: kv";

for $line in text:collection("nydata/users.txt")
let $split := fn:tokenize($line, ":")
let $key := "Jusers/text/" || $split[1]
return
kv: put -t ext ($key, $line)

The next query reads the values from the database:

inmport nodul e "oxh:text";
i mport nodul e "oxh: kv";

for $value in kv:collection-text("/users/text")

let $split := fn:tokenize($value, ":")
where $split[2] eq "Phil Johnson"
return

text: put ($val ue)

The query creates a text file that contains the following line:

phil:Phil Johnson: 27

Example 6-9 Writing and Reading Avro in Oracle NoSQL Database
In this example, the following Avro schema is registered with Oracle NoSQL Database:

{

"type": "record",

“name": "User",

"namespace": "com exanpl e",

“fields" : [
{"name": "id", "type": "string"},
{"name": "full _nanme", "type": "string"},
{"name": "age", "type": ["int", "null"] }

]

}

The next query writes the user names to the database as Avro records.

import nodul e "oxh:text";

decl are %v: put ("avroxm ") %vro: schema- kv("com exanpl e. User")
function local:put-user($key as xs:string, $value as node()) external;

for $line in text:collection("nydatalusers.txt")
let $split := fn:tokenize($line, ":")
let $id = $split[1]
let $key := "/users/avro/" || $id
return
| ocal : put - user (

6-50

ORACLE

Chapter 6
Oracle NoSQL Database Adapter

$key,
<user >
<id>{$id}</id>
<full _name>{$split[2]}</full_name>

if ($split[3] castable as xs:int) then
<age>{$split[3]}</age>
el se

()
}

</ user>

)

This query reads the values from the database:

i mport nodul e "oxh:text";
i mport nodul e "oxh: kv";

for $user in kv:collection-avroxn ("/users/avro")
where $user/age gt 30
return

text: put($user/full_nane)

The query creates a text files with the following lines:

John Doe
Kel Iy Johnson

Example 6-10 Storing XML in NoSQL Database

The following query uses the XML files shown in Example 6-24 of "Examples of XML
File Adapter Functions" as input. It writes each comment element as an Oracle NoSQL
Database value:

inport nodul e "oxh:xmf";
i mport nodul e "oxh: kv";

for $comment in xmf:collection("nydatal/conments*.xm")/coments/coment
let $key := "/coments/" || $comment/@d
return

kv: put-xn ($key, $comment)

The query writes the five comment elements as XML values in Oracle NoSQL Database.

For very large XML files, modify the query as follows to improve performance and disk
space consumption:

* Use the following for clause, which causes each XML file to be split and
processed in parallel by multiple tasks:

for $comment in xnmif:collection("mydatal/coments*.xm", "comment")

* Inthe return clause, use kv: put - bi nxnl instead of kv: put - xm to store the values as
binary XML instead of plain text.

Use the kv: col I ection-xm function to read the values in the database. For example:

i mport nodul e "oxh:text";
i mport nodul e "oxh: kv";

for $comment in kv:collection-xm ("/coments")/comment
return

6-51

ORACLE

Chapter 6
Oracle NoSQL Database Adapter

text:put ($coment/@d || " " || $comment/ @ser)

The query creates text files that contain the following lines:

12345 john
23456 j ohn
54321 m ke
56789 kel l'y
87654 m ke

Example 6-11 Storing XML as Avro in Oracle NoSQL Database
This example converts the XML values to Avro before they are stored.

Add the following Avro schema to Oracle NoSQL Database:

{
"type": "record",
"name": "Comment",
"namespace”: "com exanpl e",
"fields" : |
{"nane": "cid", "type": "string"},
{"nane": "user", "type": "string"},
{"nane": "content", "type": "string"},
{"name": "likes", "type" : { "type" : "array", "itenms" : "string" } }
]
}

The following query writes five comment elements as Avro values in Oracle NoSQL
Database:

inport nodul e "oxh:xmf";
i mport nodul e "oxh: kv";

declare %v: put("avroxm ") %vro: schema-kv("com exanpl e. Comrent ")
function local:put-coment ($key as xs:string, $value as node()) external;

for $comment in xmf:collection("nydata/coments*.xn", "coment")
let $key := "/coments/" || $coment/@d
let $value : =

<comment >

<ci d>{$coment/ @d/ data()}</cid>
<user>{$coment / @ser/ dat a() } </ user >
<cont ent >{ $comment / @ ext/ data() } </ cont ent >
<likes>{
for $like in $coment/Iike
return <oxh:itemd{$like/ @Qser/data()}</oxh:itenr

}</likes>
</ comrent >
return

| ocal : put - comrent ($key, $val ue)

Use the kv: col | ection-avroxn function to read the values in the database. For
example:

inport nodul e "oxh:text";
i mport nodul e "oxh: kv";

for $comment in kv:collection-avroxn ("/coments")
return
text: put($coment/cid ||

|| $comment/user || || count($comrent/likes/*))

6-52

ORACLE

Chapter 6
Oracle NoSQL Database Adapter

The query creates text files that contain the following lines:

12345 john 0
23456 john 2
54321 mke 1
56789 kel ly 2
87654 nmike 0

Example 6-12 Reading and writing data using Oracle NoSQL Database Table
API

This example uses the following text file is in HDFS. The file contains user profile
information such as user ID, full name, and age, separated by colons (;).

mydat a/ users. t xt

j ohn: John Doe: 45

kel l'y: Kel 'y Johnson: 32
| aura: Laura Snith:
phil:Phil Johnson: 27

Let us create a table called users in NoSQL DB as follows:

CREATE TABLE users (id STRING nane STRING age |NTEGER, PRI MARY KEY (id));

The first query stores users age into this table.

import nodul e "oxh:text";
i mport nodul e "oxh: kv-table";

for $line in text:collection("nydata/users.txt")
let $split := tokenize($line, ":")

let $id := $split[1]

et $name := $split[2]

let $age := $split[3]

where string-1ength($age) gt 0

let $row :=

RO
cd] sid]
"name”:"" || $name || ", ||
“rage’: || Sage ||

'y

return

kv-tabl e: put-jsontext(“users", $row)

After running this query the table contains the following records:

Id name age
john John Doe 45
kelly Kelly Johnson 32
phil Phil Johnson 27

The second query reads row from the table and returns ids of users whose name ends
with Johnson.

i mport nodul e "oxh: text
i mport nodul e "oxh:json";
i mport nodul e "oxh: kv-table";

6-53

Chapter 6
Oracle NoSQL Database Adapter

for $row in kv-table:collection("users")
| et $user := json:parse-as-xm ($row)
let $id := $user/json:get(“id")

et $nane := $user/json: get (“nane")
wher e ends-wi t h($name, “Johnson")

return text:put($id)

The query creates a text file that contains the following lines:

kel Iy
phi |

Example 6-13 Reading data using Oracle NoSQL Database Large Object API

Assuming Oracle NoSQL Database contains the following information:

1. Table userlmages

CREATE TABLE userimages (imageFileName STRING, imageVersion STRING,
imageDescription INTEGER, PRIMARY KEY (imageFileName))

imageFileName imageVersion imageDescription
IMG_001.JPG 1 Sunrise
IMG_002.JPG 1 Sunrise

2. Key/Value data loaded with Large Object API where:
e Key is the lob/ i mageFi | eNare/ i mage. | ob
* Value is a JPEG image data that contains geolocation metadata in EXI F format

The following query extracts that metadata and converts it to CSV format as
imageFileName, latitude, and longitude.

i mport nodul e “oxh: kv-table";
i mport nodul e “oxh: kv-1ob";
import nodul e "oxh:tika";
import nodul e "oxh:json";
inport nodul e "oxh:text ";

for $row in kv-table:collection("userlmages")

I et $i mageFileNanme : = json: parse-as-xm ($row)/json: get (“i mageFi | eName")
et $imageKey := “lob/" || $inageFileNane || “/inage.!|ob"

et $doc := kv-1ob: get-tika($i mageKey, “image/|peg")

let $lat := $doc/tika: metadataltika: property[@ane eq "GPS Latitude"]
let $lon := $doc/tika: metadata/tika: property[@anme eq "GPS Longitude"]
where exists($lat) and exists($lon)

return text:put($inmageFileNane || "," || $lat || "," || $lon)

6.4.14 Oracle NoSQL Database Adapter Configuration Properties

ORACLE

Oracle XQuery for Hadoop uses the generic options for specifying configuration
properties in the Hadoop command. You can use the - conf option to identify
configuration files, and the - D option to specify individual properties. See "Running
Queries."

6-54

Chapter 6
Oracle NoSQL Database Adapter

You can set various configuration properties for the Oracle NoSQL Database adapter
that control the durability characteristics and timeout periods. You must set
oracle.kv.hosts and oracle.kv.kvstore. The following properties configure the Oracle NoSQL

Database adapter.

Property

Description

oracle.hadoop.xquery.kv.config.durability

ORACLE

Type: String

Default Value: NO_SYNC, NO_SYNC, SIMPLE MAJORITY
Description: Defines the durability characteristics
associated with %v: put operations. The value consists

of three parts, which you specify in order and separate
with commas (,):

MasterPolicy, ReplicaPolicy, ReplicaAck

MasterPolicy: The synchronization policy used
when committing a transaction to the master
database. Set this part to one of the following
constants:

NO_SYNC: Do not write or synchronously flush the log
on a transaction commit.

SYNC: Write and synchronously flush the log on a
transaction commit.

VRl TE_NO_SYNC: Write but do not synchronously
flush the log on a transaction commit.
ReplicaPolicy: The synchronization policy used
when committing a transaction to the replica
databases. Set this part to NO_SYNC, SYNC, or

VRl TE_NO_SYNC, as described under MasterPolicy.
ReplicaAck: The acknowledgment policy used to
obtain transaction acknowledgments from the
replica databases. Set this part to one of the
following constants:

ALL: All replicas must acknowledge that they have
committed the transaction.

NONE: No transaction commit acknowledgments are
required, and the master does not wait for them.

SI MPLE_MAJORI TY: A simple majority of replicas

(such as 3 of 5) must acknowledge that they have
committed the transaction.

6-55

Chapter 6
Oracle NoSQL Database Adapter

Property

Description

oracle.hadoop.xquery.kv.config.requestLimit

oracle.hadoop.xquery.kv.config.requestTimeout

oracle.hadoop.xquery.kv.config.socketOpenTimeout

oracle.hadoop.xquery.kv.config.socketReadTimeout

oracle.kv.batchSize

ORACLE

Type: Comma-separated list of integers
Default Value: 100, 90, 80

Description: Limits the number of simultaneous
requests to prevent nodes with long service times from
consuming all threads in the KV store client. The value
consists of three integers, which you specify in order
and separate with commas:

maxActiveRequests, requestThresholdPercent,
nodeLimitPercent

* maxActiveRequests: The maximum number of
active requests permitted by the KV client. This
number is typically derived from the maximum
number of threads that the client has set aside for
processing requests.

* requestThresholdPercent: The percentage of
maxActiveRequests at which requests are limited.

* nodelLimitPercent: The maximum number of active
requests that can be associated with a node when
the number of active requests exceeds the
threshold specified by requestThresholdPercent.

Type: Long

Default Value: 5000 ms

Description: Configures the request timeout period in
milliseconds. The value must be greater than zero (0).
Type: Long

Default Value: 5000 ms

Description: Configures the open timeout used when
establishing sockets for client requests, in milliseconds.
Shorter timeouts result in more rapid failure detection

and recovery. The default open timeout is adequate for
most applications. The value must be greater than zero

(0).

Type: Long

Default Value: 30000 ms

Description: Configures the read timeout period
associated with the sockets that make client requests, in
milliseconds. Shorter timeouts result in more rapid
failure detection and recovery. Nonetheless, the timeout

period should be sufficient to allow the longest timeout
associated with a request.

Type: Key
Default Value: Not defined

Description: The desired number of keys for the
InputFormat to fetch during each network round trip. A
value of zero (0) sets the property to a default value.

6-56

Chapter 6
Sequence File Adapter

Property

Description

oracle.kv.consistency

oracle.kv.hosts

oracle.kv.kvstore

oracle.kv.timeout

oracle.hadoop.xquery.kv.config.LOBSuffix

oracle.hadoop.xquery.kv.config.LOBTimeout

oracle.hadoop.xquery.kv.config.readZones

oracle.hadoop.xquery.kv.config.security

Type: Consistency
Default Value: NONE_REQUI RED

Description: The consistency guarantee for reading
child key-value pairs. The following keywords are valid
values:

e ABSCOLUTE: Requires the master to service the
transaction so that consistency is absolute.

* NONE_REQUI RED: Allows replicas to service the
transaction, regardless of the state of the replicas
relative to the master.

Type: String

Default Value: Not defined

Description: An array of one or more hostname:port
pairs that identify the hosts in the KV store with the
source data. Separate multiple pairs with commas.
Type: String

Default Value: Not defined

Description: The name of the KV store with the source
data.

Type: Long

Default Value: Not defined

Description: Sets a maximum time interval in
milliseconds for retrieving a selection of key-value pairs.
A value of zero (0) sets the property to its default value.
Type: String

Default Value: .lob

Description: Configures the default suffix associated
with LOB keys.

Necessary or FYI? Also, hard-coded link.

Type: Comma separated list of strings

Default Value: Not defined

Description: Sets the zones in which nodes must be
located to be used for read operations.

Type: String

Default Value: Not defined

Description: Configures security properties for the
client.

6.5 Sequence File Adapter

The sequence file adapter provides functions to read and write Hadoop sequence files.
A sequence file is a Hadoop-specific file format composed of key-value pairs.

The functions are described in the following topics:

» Built-in Functions for Reading and Writing Sequence Files

* Custom Functions for Reading Sequence Files

e Custom Functions for Writing Sequence Files

ORACLE

6-57

Chapter 6
Sequence File Adapter

* Examples of Sequence File Adapter Functions

6.5.1 Built-in Functions for Reading and Writing Sequence Files

To use the built-in functions in your query, you must import the sequence file module
as follows:

i mport nodul e "oxh: seq";

The sequence file module contains the following functions:

* seq:collection

* seq:collection-xml

e seq:collection-binxml
* seq:collection-tika

° seq:put

* seq:put-xml

* seq:put-binxml

For examples, see "Examples of Sequence File Adapter Functions."

6.5.1.1 seq:collection

Accesses a collection of sequence files in HDFS and returns the values as strings.
The files may be split up and processed in parallel by multiple tasks.

Signature

decl are %eq: col l ection("text") function
seq: col l ection($uris as xs:string*) as xs:string* external;

Parameters

$uris: The sequence file URIs. The values in the sequence files must be either
org. apache. hadoop. i 0. Text or org. apache. hadoop. i 0. BytesWi t abl e. For BytesWritable
values, the bytes are converted to a string using a UTF-8 decoder.

Returns

One string for each value in each file.

6.5.1.2 seq:collection-xml

ORACLE

Accesses a collection of sequence files in HDFS, parses each value as XML, and
returns it. Each file may be split up and processed in parallel by multiple tasks.

Signature

decl are %eq: collection("xm ") function
seq: col | ection-xm ($uris as xs:string*) as docunent-node()* external;

6-58

Chapter 6
Sequence File Adapter

Parameters

$uris: The sequence file URIs. The values in the sequence files must be either
org. apache. hadoop. i 0. Text Or org. apache. hadoop. i 0. Byt esWitabl e. For Byt esWitabl e
values, the XML document encoding declaration is used, if it is available.

Returns

One XML document for each value in each file. See "Tika Parser Output Format."

6.5.1.3 seq:collection-binxml

Accesses a collection of sequence files in the HDFS, reads each value as binary XML,
and returns it. Each file may be split up and processed in parallel by multiple tasks.

Signature

decl are %eq: col I ection("binxm") function
seq: col | ection-binxm ($uris as xs:string*) as document-node()* external;

Parameters

$uris: The sequence file URIs. The values in the sequence files must be
org. apache. hadoop. i 0. BytesWi t abl e. The bytes are decoded as binary XML.

Returns

One XML document for each value in each file.

Notes

You can use this function to read files that were created by seq: put - bi nxnl in a
previous query. See "seq:put-binxml."

6.5.1.4 seq:collection-tika

ORACLE

Uses Tika to parse the sequence files in the HDFS. The values in the sequence files
must be either or g. apache. hadoop. i 0. Text or or g. apache. hadoop. i 0. Byt esWi t abl e. For
each value a document node returned produced by Tika.

Signature

decl are %eq: col | ection("tika") function

seq: col lection-tika($uris as xs:string*) as docunent-node()* external;
decl are %eq: col | ection("tika") function

seq: col lection-tika($uris as xs:string*, $contentType as xs:string?) as docunent-
node()* external;

Parameters

$uri s: The sequence file URIs. The values in the sequence files must be either

org. apache. hadoop. i 0. Text or or g. apache. hadoop. i 0. Byt esWi t abl e. Tika library
automatically detects character encoding. Alternatively, the encoding can be passed
in $contentType parameter as charset attribute.

$cont ent Type: Specifies the media type of the content to parse, and may have the
charset attribute.

6-59

Chapter 6
Sequence File Adapter

Returns

One document node for each value in each file.

6.5.1.5 seq:put

Writes either the string value or both the key and string value of a key-value pair to a
sequence file in the output directory of the query.

This function writes the keys and values as or g. apache. hadoop. i 0. Text .

When the function is called without the $key parameter, it writes the values as
org. apache. hadoop. i 0. Text and sets the key class to
org. apache. hadoop. i 0. Nul | Wi t abl e, because there are no key values.

Signature

declare %eq: put("text") function
seq: put ($key as xs:string, $value as xs:string) external;

declare %eq: put("text") function
seq: put ($val ue as xs:string) external;

Parameters
$key: The key of a key-value pair

$val ue: The value of a key-value pair

Returns

enpt y- sequence()

Notes

The values are spread across one or more sequence files. The number of files created
depends on how the query is distributed among tasks. Each file has a name that starts
with part, such as part-m 00000. You specify the output directory when the query
executes. See "Running Queries."

6.5.1.6 seq:put-xml

ORACLE

Writes either an XML value or a key and XML value to a sequence file in the output
directory of the query.

This function writes the keys and values as or g. apache. hadoop. i 0. Text .

When the function is called without the $key parameter, it writes the values as
org. apache. hadoop. i 0. Text and sets the key class to
org. apache. hadoop. i 0. Nul | Wi t abl e, because there are no key values.

Signature

declare %eq: put("xm™") function
seq: put-xm ($key as xs:string, $xm as node()) external;

declare %eq: put("xm™") function
seq: put-xm ($xm as node()) external;

6-60

Chapter 6
Sequence File Adapter

Parameters
$key: The key of a key-value pair

$val ue: The value of a key-value pair

Returns

enpt y- sequence()

Notes

The values are spread across one or more sequence files. The number of files created
depends on how the query is distributed among tasks. Each file has a name that starts
with "part," such as part-m-00000. You specify the output directory when the query
executes. See "Running Queries."

6.5.1.7 seq:put-binxml

ORACLE

Encodes an XML value as binary XML and writes the resulting bytes to a sequence file
in the output directory of the query. The values are spread across one or more
sequence files.

This function writes the keys as or g. apache. hadoop. i 0. Text and the values as
org. apache. hadoop. i 0. BytesWitabl e.

When the function is called without the $key parameter, it writes the values as
org. apache. hadoop. i 0. BytesWi t abl e and sets the key class to
org. apache. hadoop. i 0. Nul | Wi t abl e, because there are no key values.

Signature

declare %eq: put ("binxm ") function
seq: put - bi nxnl ($key as xs:string, $xm as node()) external;

decl are %eq: put ("binxm ") function
seq: put - bi nxm ($xm as node()) external;

Parameters
$key: The key of a key-value pair

$val ue: The value of a key-value pair

Returns

enpt y- sequence()

Notes

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with part, such as part-m 00000. You specify the
output directory when the query executes. See "Running Queries."

You can use the seq: col | ecti on-hi nxnl function to read the files created by this
function. See "seq:collection-binxml."

6-61

Chapter 6
Sequence File Adapter

6.5.2 Custom Functions for Reading Sequence Files

You can use the following annotations to define functions that read collections of
sequence files. These annotations provide additional functionality that is not available
using the built-in functions.

Signature

Custom functions for reading sequence files must have one of the following
signatures:

decl are %eq: col l ection("text") [additional annotations]
function local:nmyFuncti onName($uris as xs:string*) as xs:string* external;

decl are %eq: col lection(["xm"|"binxm"|"tika"]) [additional annotations]

function | ocal:myFunctionName($uris as xs:string*) as document-node()* external;
decl are %eq: col lection(["tika"]) [additional annotations]

function |ocal:nyFuncti onName($uris as xs:string*, $contentType as xs:string?) as
docunent - node() * external;

Annotations

%seq:collection(["method"])
Declares the sequence file collection function, which reads sequence files. Required.
The optional method parameter can be one of the following values:

* text: The values in the sequence files must be either or g. apache. hadoop. i 0. Text
or org. apache. hadoop. i 0. BytesWi t abl e. Bytes are decoded using the character set
specified by the %ut put : encodi ng annotation. They are returned as xs: string.
Default.

e xnl: The values in the sequence files must be either or g. apache. hadoop. i 0. Text or
org. apache. hadoop. i 0. BytesWi t abl e. The values are parsed as XML and returned
by the function.

e hinxnl: The values in the sequence files must be
org. apache. hadoop. i 0. BytesWi t abl e. The values are read as XDK binary XML and
returned by the function.

e tika: The values in the sequence files must be either or g. apache. hadoop. i 0. Text
or or g. apache. hadoop. i 0. BytesWi t abl e. The values are parsed by Tika and
returned by the function.

%output:encoding("charset")
Specifies the character encoding of the input values. The valid encodings are those
supported by the JVM. UTF-8 is the default encoding.

¢ See Also:

"Supported Encodings" in the Oracle Java SE documentation at
http://docs. oracl e. conljavase/ 7/ docs/ t echnot es/ gui des/intl/
encodi ng. doc. ht m

ORACLE 6-62

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

Chapter 6
Sequence File Adapter

%seq:key("true" | "false")

Controls whether the key of a key-value pair is set as the docunent -uri of the returned
value. Specify true to return the keys. The default setting is t rue when method is

bi nxm or xm , and f al se when it is t ext .

Text functions with this annotation set to t rue must return text () * instead of

xs: string* because atomic xs: string is not associated with a document.

When the keys are returned, you can obtain their string representations by using

seq: key function.

This example returns text instead of string values because %eq: key is set to true.

declare %eq: col | ection("text") %eq: key("true")
function local:col ($uris as xs:string*) as text()* external;

The next example uses the seq: key function to obtain the string representations of the
keys:

for $value in local:col(...)
et $key := $val ue/ seq: key()
return

%seq:split-max("split-size"

Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-mn, min($split-mx, $block-size)). Optional.

In a string value, you can append K, k, M m G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

Yseq: split-mx(1024)
Yseq: split-mx("1024")
Yseq: split-mx("1K")

%seq:split-min("split-size™)

Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-nin, nmin($split-mx, $block-size)). Optional.

In a string value, you can append K, k, M m G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

Y%eq: split-nin(1024)
Yseq: split-nin("1024")
Yseq: split-mn("1K")

6.5.3 Custom Functions for Writing Sequence Files

ORACLE

You can use the following annotations to define functions that write collections of
sequence files in HDFS.

Signature

Custom functions for writing sequence files must have one of the following signatures.
You can omit the $key argument when you are not writing a key value.

declare %eq: put("text") [additional annotations]
function local : myFuncti onName($key as xs:string, $value as xs:string) external;

6-63

Chapter 6
Sequence File Adapter

declare %eq: put (["xm "|"binxm "]) [additional annotations]
function |ocal: nyFunctionNane($key as xs:string, $xml as node()) external;

Annotations

%seq:put("method")

Declares the sequence file put function, which writes key-value pairs to a sequence
file. Required.

If you use the $key argument in the signature, then the key is written as

org. apache. hadoop. i 0. Text . If you omit the $key argument, then the key class is set to
org. apache. hadoop.io. Nul | Wi tabl e.

Set the method parameter to text, xnl, or bi nxnl . The method determines the type
used to write the value:

e text: String written as or g. apache. hadoop. i 0. Text
e xnl : XML written as or g. apache. hadoop. i 0. Text

e binxnl : XML encoded as XDK binary XML and written as
org. apache. hadoop. i o. BytesWitabl e

%seq:compress('codec", "compressionType")

Specifies the compression format used on the output. The default is no compression.
Optional.

The codec parameter identifies a compression codec. The first registered
compression codec that matches the value is used. The value matches a codec if it
equals one of the following:

1. The fully qualified class name of the codec

2. The unqualified class name of the codec

3. The prefix of the unqualified class hame before Codec (case insensitive)
Set the compressionType parameter to one of these values:

* bl ock: Keys and values are collected in groups and compressed together. Block
compression is generally more compact, because the compression algorithm can
take advantage of similarities among different values.

e record: Only the values in the sequence file are compressed.
All of these examples use the default codec and block compression:

Yseq: conpress("org. apache. hadoop. i 0. conpr ess. Def aul t Codec", "bl ock")
Yseq: conpress("Def aul t Codec", "bl ock")
Yseq: conpress("default", "block")

%seq:file("name")
Specifies the output file name prefix. The default prefix is part.

%output:parameter
A standard XQuery serialization parameter for the output method (text or XML)
specified in %eq: put . See "Serialization Annotations."

ORACLE 6-64

Chapter 6
Sequence File Adapter

" See Also:

SequenceFile at Apache’s Hadoop Wiki.
"The Influence of Serialization Parameters" sections for XML and text output
methods in XSLT and XQuery Serialization 3.1

6.5.4 Examples of Sequence File Adapter Functions

ORACLE

These examples queries three XML files in HDFS with the following contents. Each
XML file contains comments made by users on a specific day. Each comment can
have zero or more "likes" from other users.

mydat a/ coment s1. xn

<comment s dat e="2013- 12- 30" >
<comment id="12345" user="john" text="It is raining :("/>
<comment id="56789" user="kelly" text="I won the lottery!">
<like user="john"/>
<like user="m ke"/>
</ comment >
</ comment s>

mydat a/ coment s2. xn

<comments date="2013-12-31">
<comment id="54321" user="mi ke" text="Happy New Year!">
<like user="laura"/>
</ comrent >
</ conment s>

mydat a/ coment s3. xn

<comment s dat e="2014-01-01">
<comment id="87654" user="mke" text="l don't feel so good."/>
<comment id="23456" user="john" text="What a beautiful day!">
<like user="kelly"/>
<l'ike user="phil"/>
</ comment >
</ comment s>

Example 6-14
The following query stores the comment elements in sequence files.

inmport nodul e "oxh: seq";
inport nodul e "oxh:xmf";

for $comment in xmf:collection("nmydata/ coments*.xm", "comment")
return
seq: put - xm ($commrent)

Example 6-15

The next query reads the sequence files generated by the previous query, which are
stored in an output directory named nyout put . The query then writes the names of
users who made multiple comments to a text file.

6-65

https://wiki.apache.org/hadoop/SequenceFile
http://www.w3.org/TR/xslt-xquery-serialization-31/

ORACLE

Chapter 6
Sequence File Adapter

i mport nodul e "oxh: seq";
inport nodul e "oxh:text";

for $comment in seq:collection-xm ("myoutput/part*")/coment
et Suser := $comment/ @ser
group by S$user
| et $count := count($comment)
where $count gt 1
return
text:put($user || " " || $count)

The text file created by the previous query contain the following lines:

john 2
m ke 2

See "XML File Adapter."

Example 6-16

The following query extracts comment elements from XML files and stores them in
compressed sequence files. Before storing each comment, it deletes the i d attribute
and uses the value as the key in the sequence files.

i mport nodul e "oxh: xm f";

declare
Y%eq: put ("xm ")
Y%eq: compress("defaul t", "block")
Y%eq: file("comments")
function local:nyPut($key as xs:string, $value as node()) external;

for $coment in xnf:collection("nydata/coments*.xm", "coment")
let $id = Scomment/@d
et $newComment : =
copy $c := $comment
modi fy del ete node $c/ @d
return $c
return
| ocal : myPut ($i d, $newComment)

Example 6-17

The next query reads the sequence files that the previous query created in an output
directory named nyout put . The query automatically decompresses the sequence files.

inmport nodul e "oxh:text";
import nodul e "oxh: seq";

for $comment in seq:collection-xm ("nmyoutput/comments*")/comment
let $id := $coment/seq: key()
where $id eq "12345"
return
text: put-xm ($comment)

The query creates a text file that contains the following line:

<comment id="12345" user="john" text="It is raining :("/>

6-66

Chapter 6
Solr Adapter

6.6 Solr Adapter

This adapter provides functions to create full-text indexes and load them into Apache
Solr servers. These functions call the Solr

org. apache. sol r. hadoop. MapReducel ndexer Tool at run time to generate a full-text index
on HDFS and optionally merge it into Solr servers. You can declare and use multiple
custom put functions supplied by this adapter and the built-in put function within a
single query. For example, you can load data into different Solr collections or into
different Solr clusters.

This adapter is described in the following topics:

» Prerequisites for Using the Solr Adapter

e Built-in Functions for Loading Data into Solr Servers
e Custom Functions for Loading Data into Solr Servers
* Examples of Solr Adapter Functions

e Solr Adapter Configuration Properties

6.6.1 Prerequisites for Using the Solr Adapter

The first time that you use the Solr adapter, ensure that Solr is installed and configured
on your Hadoop cluster as described in "Installing Oracle XQuery for Hadoop".

6.6.1.1 Configuration Settings

Your Oracle XQuery for Hadoop query must use the following configuration properties
or the equivalent annotation:

* oracl e. hadoop. xquery. sol r. | oader. zk- host
e oracl e. hadoop. xquery. sol r. | oader. col | ection

If the index is loaded into a live set of Solr servers, then this configuration property or
the equivalent annotation is also required:

e oracl e. hadoop. xquery. sol r. | oader. go-1live

You can set the configuration properties using either the - D or - conf options in the
hadoop command when you run the query. See "Running Queries" and "Solr Adapter
Configuration Properties"

6.6.1.2 Example Query Using the Solr Adapter

ORACLE

This example sets OXH_ SOLR_MR_HOME and uses the hadoop - D option in a query to set the
configuration properties:

$ export OXH SOLR_MR _HOMVE=/usr/lib/solr/contrib/nr

$ hadoop jar $OXH HOVE i b/ oxh.jar -D oracle. hadoop. xquery. sol r. | oader. zk- host =/ sol r
-D oracl e. hadoop. xquery. sol r. | oader. col | ecti on=col | ectionl -D

oracl e. hadoop. xquery. sol r. | oader. go-live=true ./nyquery.xq -output ./nyoutput

6-67

Chapter 6
Solr Adapter

6.6.2 Built-in Functions for Loading Data into Solr Servers

To use the built-in functions in your query, you must import the Solr module as follows:
import nodul e "oxh:solr";
The Solr module contains the following functions:

* solrput

The sol r prefix is bound to the oxh: sol r namespace by default.

6.6.2.1 solr:put

Writes a single document to the Solr index.
This document XML format is specified by Solr at

https://wiki.apache. org/sol r/ Updat eXnl Messages

Signature

declare %ol r:put function
sol r: put ($val ue as el enent(doc)) external;

Parameters

$val ue: A single XML element named doc, which contains one or more fi el d elements,
as shown here:

<doc>
<field name="fiel d_nanme_1">fiel d_val ue_1</fiel d>

<field name="fiel d_name_N'>fiel d_val ue_N</fiel d>
</ doc>

Returns

A generated index that is written into the out put _di r/sol r- put directory, where
output_dir is the query output directory

6.6.3 Custom Functions for Loading Data into Solr Servers

You can use the following annotations to define functions that generate full-text
indexes and load them into Solr.

Signature
Custom functions for generating Solr indexes must have the following signature:

declare %ol r:put [additional annotations]
function | ocal: myFunctionName($val ue as node()) external;

ORACLE 6-68

https://wiki.apache.org/solr/UpdateXmlMessages

Chapter 6
Solr Adapter

Annotations

%solr:put
Declares the solr put function. Required.

%solr:file(directory_name)
Name of the subdirectory under the query output directory where the index files will be
written. Optional, the default value is the function local name.

%solr-property:property_name(value)

Controls various aspects of index generation. You can specify multiple %ol r - property
annotations.

These annotations correspond to the command-line options of

org. apache. sol r. hadoop. MapReducel ndexer Tool . Each MapReducel ndexer Tool ? option has
an equivalent Oracle XQuery for Hadoop configuration property and a %ol r - property
annotation. Annotations take precedence over configuration properties. See "Solr
Adapter Configuration Properties” for more information about supported configuration
properties and the corresponding annotations.

¢ See Also:

For more information about MapReducel ndexer Tool ? command line options,
see Cloudera Search User Guide at

http://ww. cl oudera. coni cont ent/ cl ouder a- cont ent / cl ouder a- docs/ Sear ch/
| at est/ Cl ouder a- Sear ch- User - Gui de/ csug_napr educei ndexert ool . ht

Parameters

$val ue: An element or a document node conforming to the Solr XML syntax. See
"solr:put" for details.

6.6.4 Examples of Solr Adapter Functions

ORACLE

Example 6-18 Using the Built-in solr:put Function

This example uses the following HDFS text file. The file contains user profile
information such as user ID, full name, and age, separated by colons (:).

mydat a/ users. t xt

j ohn: John Doe: 45

kel l'y: Kel 'y Johnson: 32
| aura: Laura Snmith:
phil:Phil Johnson: 27

The first query creates a full-text index searchable by name.

inport nodul e "oxh:text";

import nodul e "oxh:solr";

for $line in text:collection("nydata/users.txt")
let $split := fn:tokenize($line, ":")

let $id := $split[1]

et $name := $split[2]

return solr:put(

<doc>

<field name="id">{ $id }</field>

6-69

http://www.oracle.com/pls/topic/lookup?ctx=E87334-01&id=cloudera_mapreduceindexertool
http://www.oracle.com/pls/topic/lookup?ctx=E87334-01&id=cloudera_mapreduceindexertool

Chapter 6
Solr Adapter

<field name="nanme">{ $nanme }</field>
</ doc>

)

The second query accomplishes the same result, but uses a custom put function. It
also defines all configuration parameters by using function annotations. Thus, setting
configuration properties is not required when running this query.

i mport nodul e "oxh:text"

declare %ol r:put %olr-property:go-live %olr-property:zk-host("/solr") %olr-
property:collection("collectionl")

function |ocal:ny-solr-put($doc as el ement(doc)) external
for $line in text:collection("nydata/users.txt")

let $split := fn:tokenize($line, ":")

let $id := $split[1]

et $name : = $split[2]

return |ocal:ny-solr-put(

<doc>

<field name="id">{ $id }</field>

<field name="name">{ $name }</field>

</ doc>

)

6.6.5 Solr Adapter Configuration Properties

The Solr adapter configuration properties correspond to the Solr MapReducel ndexer Tool
options.

MapReducel ndexer Tool is a MapReduce batch job driver that creates Solr index shards
from input files, and writes the indexes into HDFS. It also supports merging the output
shards into live Solr servers, typically a SolrCloud.

You can specify these properties with the generic - conf and - D hadoop command-line
options in Oracle XQuery for Hadoop. Properties specified using this method apply to
all Solr adapter put functions in your query. See "Running Queries" and especially
"Generic Options" for more information about the hadoop command-line options.

Alternatively, you can specify these properties as Solr adapter put function annotations
with the %ol r- property prefix. These annotations are identified in the property
descriptions. Annotations apply only to the particular Solr adapter put function that
contains them in its declaration.

See Also:

For discussions about how Solr uses the MapReducel ndexer Tool options, see
the Cloudera Search User Guide at

http:// ww. cl oudera. coni cont ent/ cl ouder a- cont ent/ cl ouder a- docs/ Sear ch/
| at est/ Cl ouder a- Sear ch- User - Gui de/ csug_napr educei ndexert ool . ht i

ORACLE 6-70

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html

Chapter 6
Solr Adapter

Property

Overview

oracle.hadoop.xquery.solr.loader.collection

oracle.hadoop.xquery.solr.loader.fair-scheduler-
pool

oracle.hadoop.xquery.solr.loader.go-live

oracle.hadoop.xquery.solr.loader.go-live-threads

oracle.hadoop.xquery.solr.loader.log4j

oracle.hadoop.xquery.solr.loader.mappers

oracle.hadoop.xquery.solr.loader.max-segments

ORACLE

Type: String
Default Value: Not defined
Equivalent Annotation: %ol r - property: col | ection

Description: The SolrCloud collection for merging the
index, such as nycol | ecti on. Use this property with
oracle.hadoop.xquery.solr.loader.go-live and
oracle.hadoop.xquery.solr.loader.zk-host. Required as either a
property or an annotation.

Type: String

Default Value: Not defined

Equivalent Annotation:%sol r - property: fair-
schedul er - pool

Description: The name of the fair scheduler pool for
submitting jobs. The job runs using fair scheduling
instead of the default Hadoop scheduling method.
Optional.

Type: String values true or fal se

Default Value: f al se

Equivalent Annotation: %ol r- property: go-1ive

Description: Set to t r ue to enable the final index to
merge into a live Solr cluster. Use this property with
oracle.hadoop.xquery.solr.loader.collection and
oracle.hadoop.xquery.solr.loader.zk-host. Optional.
Type: Integer

Default Value: 1000

Equivalent Annotation: %ol r - property: go-1ive-
t hr eads

Description: The maximum number of live merges that
can run in parallel. Optional.

Type: String
Default Value:
Equivalent Annotation: %sol r - property: | 0g4j

Description: The relative or absolute path to the

| og4j . properties configuration file on the local file
system For example, / pat h/ to/ | og4j . properti es.
Optional.

This file is uploaded for each MapReduce task.
Type: String

Default Value: - 1

Equivalent Annotation: %sol r - property: mappers

Description: The maximum number of mapper tasks
that Solr uses. A value of - 1 enables the use of all map
slots available on the cluster.

Type: String
Default Value: 1
Equivalent Annotation: %ol r - property: max- segnent s

Description: The maximum number of segments in the
index generated by each reducer.

6-71

Chapter 6
Text File Adapter

Property

Overview

oracle.hadoop.xquery.solr.loader.reducers

oracle.hadoop.xquery.solr.loader.zk-host

Type: String

Default Value: - 1

Equivalent Annotation: %ol r - property: reducers
Description: The number of reducers to use:

e -1: Uses all reduce slots available on the cluster.
e -2:Uses one reducer for each Solr output shard.

This setting disables the MapReduce M-tree merge
algorithm, which typically improves scalability.

Type: String
Default Value: Not defined
Equivalent Annotation: %ol r - property: zk- host

Description: The address of a ZooKeeper ensemble
used by the SolrCloud cluster. Specify the address as a
list of comma-separated host:port pairs, each
corresponding to a ZooKeeper server. For example,
127.0.0.1: 2181, 127. 0. 0. 1: 2182, 127. 0. 0. 1: 2183/

sol r. Optional.

If the address starts with a slash (/), such as/ sol r, then
Oracle XQuery for Hadoop automatically prefixes the
address with the ZooKeeper connection string.

This property enables Solr to determine the number of
output shards to create and the Solr URLSs in which to
merge them. Use this property with
oracle.hadoop.xquery.solr.loader.collection and
oracle.hadoop.xquery.solr.loader.golive. Required as either a
property or an annotation.

6.7 Text File Adapter

The text file adapter provides functions to read and write text files stored in HDFS. It is

described in the following topics:

Built-in Functions for Reading and Writing Text Files
Custom Functions for Reading Text Files
Custom Functions for Writing Text Files

Examples of Text File Adapter Functions

6.7.1 Built-in Functions for Reading and Writing Text Files

To use the built-in functions in your query, you must import the text file module as

ORACLE

follows:

inport nodule "oxh:text";

The text file module contains the following functions:

text:collection-xml

6-72

Chapter 6
Text File Adapter

* text:put-xml
* texttrace

For examples, see "Examples of Text File Adapter Functions ."

6.7.1.1 text:collection

Accesses a collection of text files in HDFS. The files can be compressed using a
Hadoop-supported compression codec. They are automatically decompressed when
read.

The files might be split up and processed in parallel by multiple tasks.

Signature

declare %ext:collection("text") function
text:collection($uris as xs:string*) as xs:string* external;

declare %ext:collection("text") function

function text:collection($uris as xs:string*, $delimter as xs:string?) as
xs:string* external;

Parameters
$uris: The text file URIs.

$del i mi ter: A custom delimiter on which the file is split. The default is the newline
character.

Returns

One string value for each file segment identified by the delimiter; for the default
delimiter, a string value for each line in each file

6.7.1.2 text:collection-xml

ORACLE

Accesses a collection of text files in HDFS. The files can be compressed using a
Hadoop-supported compression codec. They are automatically decompressed when
read.

The files might be split up and processed in parallel by multiple tasks. Each delimited
section of each file is parsed as an XML document and returned by the function.
Therefore, each segment must fully contain a single XML document, and any delimit
characters in the XML must be escaped with XML character references. By default,
the delimiter is a new line.

Signature

declare %ext:collection("xm") function
text:collection-xm ($uris as xs:string*) as docunent-node()* external;

declare %ext:collection("xm") function

text:collection-xm ($uris as xs:string*, $delimter as xs:string?) as document-
node()* external;

Parameters

$uri s: The text file URIs.

6-73

Chapter 6
Text File Adapter

$del i niter: A custom delimiter on which the file is split. The default is the newline
character.

Returns

One string value for each file segment identified by the delimiter; for the default
delimiter, a string value for each line in each file

6.7.1.3 text:put

Writes a line to a text file in the output directory of the query. The lines are spread
across one or more files.

Signature

declare %ext:put("text") function
text:put($val ue as xs:string) external;

Parameters

$val ue: The text to write

Returns
enpty- sequence()
Notes

The number of files created depends on how the query is distributed among tasks.
Each file has a nhame that starts with part, such as part-m 00000. You specify the
output directory when the query executes. See "Running Queries."

6.7.1.4 text:put-xml

ORACLE

Writes XML to a line in a text file. The lines are spread across one or more files in the
output directory of the query.

Newline characters in the serialized XML are replaced with character references to
ensure that the XML does not span multiple lines. For example,
 replaces the
linefeed character (\ n).

Signature

declare %ext:put("xm") function
text:put-xm ($val ue as node()) external;

Parameters

$val ue: The XML to write
Returns
enpt y- sequence()

Notes

The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with part, such as part-m 00000. You specify the
output directory when the query executes. See "Running Queries."

6-74

Chapter 6
Text File Adapter

6.7.1.5 text:trace

Writes a line to a text file named trace- * in the output directory of the query. The lines
are spread across one or more files.

This function provides you with a quick way to write to an alternate output. For
example, you might create a trace file to identify invalid rows within a query, while
loading the data into an Oracle database table.

Signature

declare %ext:put(“text") %ext:file("trace") function
text:trace($val ue as xs:string) external;

Parameters

$val ue: The text to write

Returns

enpt y- sequence()

6.7.2 Custom Functions for Reading Text Files

ORACLE

You can use the following annotations to define functions that read collections of text
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

The input files can be compressed with a Hadoop-supported compression codec. They
are automatically decompressed when read.

Signature
Custom functions for reading text files must have one of the following signatures:

declare %ext:collection("text") [additional annotations]
function |ocal:myFunctionName($uris as xs:string*, $delimter as xs:string?) as
xs:string* external;

declare %ext:collection("text") [additional annotations]
function |ocal :myFuncti onName($uris as xs:string*) as xs:string* external;

declare %ext:collection("xm") [additional annotations]
function |ocal:myFunctionName($uris as xs:string*, $delimter as xs:string?) as
docunent - node() * external

declare %ext:collection("xm") [additional annotations]
function |ocal:myFunctionName($uris as xs:string*) as document-node()* external;

Annotations

%text:collection(["method"])
Declares the text collection function. Required.
The optional method parameter can be one of the following values:

e text: Each line in the text file is returned as xs: stri ng. Default.

6-75

Chapter 6
Text File Adapter

e xnl: Each line in the text file is parsed as XML and returned as docunent - node.
Each XML document must be fully contained on a single line. Newline characters
inside the document must be represented by a numeric character reference.

%text:split("delimiter")

Specifies a custom delimiter for splitting the input files. The default delimiter is the
newline character.

Do not combine this annotation with the $del i ni t er parameter. To specify a custom
delimiter, use either this annotation or the $del i ni ter parameter.

%text:split-max("split-size"

Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-mn, min($split-mx, $block-size)). Optional.

In a string value, you can append K, k, M\ m G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

% ext:split-max(1024)

Y% ext:split-max("1024")

% ext:split-mx("1K")

%text:split-min("split-size")

Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-mn, min($split-mx, $block-size)). Optional.

In a string value, you can append K, k, M m G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

% ext:split-mn(1024)
% ext:split-mn("1024")
% ext:split-mn("1K")
Parameters

$uris as xs:string*
Lists the HDFS file URIs. The files can be uncompressed or compressed with a
Hadoop-supported codec. Required.

$delimiter as xs:string?
A custom delimiter on which the input text files are split. The default delimiter is a new
line. Do not combine this parameter with the % ext : spl it annotation.

Returns
xs: string* for the t ext method

docunent - node() * for the xm method

6.7.3 Custom Functions for Writing Text Files

You can use the following annotations to define functions that write text files in HDFS.

Signature

Custom functions for writing text files must have one of the following signatures:

ORACLE 6-76

Chapter 6
Text File Adapter

declare %ext:put("text") [additional annotations] function
text: myFunctionName($val ue as xs:string) external;

declare %ext:put("xm") [additional annotations] function
text: myFuncti onName($val ue as node()) external;

Annotations

%text:put(["method"])
Declares the text put function. Required.
The optional method parameter can be one of the following values:

e text: Writes data to a text file. Default.

e xm : Writes data to an XML file. The XML is serialized and newline characters are
replaced with character references. This process ensures that the resulting XML
document is one text line with no line breaks.

%text:compress("codec")

Specifies the compression format used on the output. The default is no compression.
Optional.

The codec parameter identifies a compression codec. The first registered
compression codec that matches the value is used. The value matches a codec if it
equals one of the following:

1. The fully qualified class name of the codec

2. The unqualified class name of the codec

3. The prefix of the unqualified class name before "Codec" (case insensitive)
All of these examples use the default codec and block compression:

% ext : conpress("org. apache. hadoop. i 0. conpress. Def aul t Codec", "bl ock")
% ext : conpress(" Def aul t Codec", "bl ock")
% ext: conpress("default", "block")

%text:file("name")
Specifies the output file name prefix. The default prefix is part.

%output:parameter

A standard XQuery serialization parameter for the output method (text or XML)
specified in % ext : put . See "Serialization Annotations."

UTF-8 is currently the only supported character encoding.

6.7.4 Examples of Text File Adapter Functions

ORACLE

Example 6-19 Using Built-in Functions to Query Text Files

This example uses following text files in HDFS. The files contain a log of visits to
different web pages. Each line represents a visit to a web page and contains the time,
user name, and page visited.

mydat a/ visitsl.|og

2013-10- 28T06: 00: 00, john, index.htm, 200
2013-10-28T08: 30: 02, kelly, index.htm, 200
2013-10-28T08: 32: 50, kelly, about.htn, 200
2013-10-30T10: 00: 10, mi ke, index.htm , 401

mydat a/ vi sits2. 1 og

6-77

ORACLE

Chapter 6
Text File Adapter

2013-10-30T10: 00: 01, john, index.htm, 200
2013-10-30T10: 05: 20, john, about.htm, 200
2013-11-01708: 00: 08, laura, index.htm, 200
2013-11-04T06: 12: 51, kelly, index.htm, 200
2013-11-04T06: 12: 40, kelly, contact.htm, 200

The following query filters out the pages visited by j ohn and writes only the date and
page visited to a new text file:

inport nodul e "oxh:text";

for $line in text:collection("nydatal/visits*.log")
let $split := fn:tokenize($line, "\s* \s*")
where $split[2] eq "john"
return
text:put($split[1] || " " || $split[3])

This query creates a text file that contains the following lines:

2013- 10- 28T06: 00: 00 i ndex. ht
2013- 10- 30T10: 00: 01 i ndex. ht
2013- 10- 30T10: 05: 20 about . ht

The next query computes the number of page visits per day:

inmport nodul e "oxh:text";

for $line in text:collection("nydata/visits*.log")
let $split := fn:tokenize($line, "\s* \s*")
let $time ;= xs:dateTime($split[1])
et $day := xs:date($tine)
group by $day
return
text:put($day || " =>" || count($line))

The query creates text files that contain the following lines:

2013-10-28 => 3
2013-10-30 => 3
2013-11-01 => 1
2013-11-04 => 2

Example 6-20 Querying Simple Delimited Formats

This example uses the f n: t okeni ze function to parse the lines of a text file. This
technique works well for simple delimited formats.

The following query declares custom put and collection functions. It computes the
number of hits and the number of unique users for each page in the logs.

inport nodule "oxh:text";

declare
Y% ext:collection("text")
Y% ext:split-max("32nt)
function local:col ($uris as xs:string*) as xs:string* external;

decl are
Yext:put("xm")

6-78

ORACLE

Chapter 6
Text File Adapter

% ext : conpress("gzip")
Yext:file("pages")
function local:out($arg as node()) external;

for $line in local:col("nydata/visits*.log")
let $split := fn:tokenize($line, "\s* \s*")
et $user := $split[2]
et $page := $split[3]
group by $page
return
| ocal : out (
<page>
<name>{ $page} </ name>
<hi ts>{count ($line)}</hits>
<user s>{fn: count (fn:distinct-val ues($user))}</users>
</ page>

)

The output directory of the previous query is named myout put . The following lines are
written to nyout put / pages-r-*. gz.

<page><nane>about . ht m </ name><hi t s>2</ hi t s><user s>2</ user s></ page>
<page><name>cont act . ht m </ name><hi t s>1</ hi t s><user s>1</ user s></ page>
<page><nane>i ndex. ht m </ name><hi t s>6</ hi t s><user s>4</ user s></ page>

The files are compressed with the gzi p codec. The following query reads the output
files, and writes the page name and total hits as plain text. The collection function
automatically decodes the compressed files.

inport nodule "oxh:text";

for $page in text:collection-xn ("nyoutput/page*.gz")/ page
return
text:put ($page/name || "," || $pagel/hits)

This query creates text files that contain the following lines:

about. htnl, 2
contact.htm, 1
index. htnml, 6

Example 6-21 Querying Complex Text Formats

The f n: t okeni ze function might not be adequate for complex formats that contain
variety of data types and delimiters. This example uses the f n: anal yze- st ri ng function
to process a log file in the Apache Common Log format.

A text file named mydata/access.log in HDFS contains the following lines:

192.0.2.0 - - [30/Sep/2013: 16: 39: 38 +0000] "GET /inddex.htm HITP/1.1" 404 284
192.0.2.0 - - [30/Sep/2013: 16: 40: 54 +0000] "GET /index.htm HITP/1.1" 200 12390
192.0.2.4 - - [01/Cct/2013:12:10: 54 +0000] "GET /index.htm HTTP/1.1" 200 12390
192.0.2.4 - - [01/Cct/2013:12:12: 12 +0000] "GET /about.htm HTTP/1.1" 200 4567
192.0.2.1 - - [02/Cct/2013:08: 39: 38 +0000] "GET /indexx.htm HITP/1.1" 404 284
192.0.2.1 - - [02/Cct/2013:08: 40: 54 +0000] "GET /index.htm HTTP/1.1" 200 12390
192.0.2.1 - - [02/Cct/2013:08: 42: 33 +0000] "GET /aobut.htm HITP/1.1" 404 283

The following query computes the requests made after September 2013 when the
server returned a status code 404 (Not Found) error. It uses a regular expression and

6-79

Chapter 6
Tika File Adapter

fn: anal yze- stri ng to match the components of the log entries. The time format cannot
be cast directly to xs: dat eTi ne, as shown in Example 6-20. Instead, the or a-

fn:dateTi me-fromstring-with-format function converts the string to an instance of

xs: dat eTi ne.

inmport nodul e "oxh:text";

declare variable $REGEX : =
C(VSH (VS (VSH ALCIMNITHA]L (M (VS (VS

for $line in text:collection("nydatalaccess.|og")
let $match := fn:anal yze-string($line, $REGEX)/fn:match
let $time :=
ora-fn:dateTi me-fromstring-wth-format(
"dd/ MW yyyy: HH: nrm ss Z",
$mat ch/ f n: group[4]

)
let $status := $match/fn:group| 6]
wher e
$status eq "404" and
$time ge xs:dateTime("2013-10-01T00: 00: 00")
l et $host := $match/fn:group[1]
let $request := $match/fn:group[5]
return
text:put($host || “," || $request)

The query creates text files that contain the following lines:

192.0.2. 1, GET /indexx. htm HTTP/1.1
192.0.2. 1, GET /aobut. htm HITP/1.1

" See Also:

e XPath and XQuery Functions and Operators 3.0 specification for
information about the f n: t okeni ze and f n: anal yze- st ri ng functions:

fn:tokenize
fn:analyze-string
e For information about the Apache Common log format:

http://httpd. apache. org/ docs/ current/| ogs. ht n

6.8 Tika File Adapter

ORACLE

This adapter provides functions to parse files stored in HDFS in various formats using
Apache Tika library. It is described in the following topics:

e Built-in Library Functions for Parsing Files with Tika
e Custom Functions for Parsing Files with Tika

e Tika Parser Output Format

e Tika Adapter Configuration Properties

e Examples of Tika File Adapter Functions

6-80

http://www.w3.org/TR/xpath-functions-31/#func-tokenize
http://www.w3.org/TR/xpath-functions-31/#func-analyze-string
http://httpd.apache.org/docs/current/logs.html

Chapter 6
Tika File Adapter

6.8.1 Built-in Library Functions for Parsing Files with Tika

To use the built-in functions in your query, you must import the Tika file module as
follows:

import nodul e "oxh:tika";
The Tika file module contains the following functions:

For examples, see "Examples of Tika File Adapter Functions ."

6.8.1.1 tika:collection

Parses files stored in HDFS in various formats and extracts the content or metadata
from them.

Signature

declare %ika:collection function
tika:collection($uris as xs:string*) as docunent-node()* external;

declare %ika: collection function

function tika:collection($uris as xs:string*, $contentType as xs:string?) as
docunent - node()* external;

Parameters
$uris: The HDFS file URIs.

$cont ent Type: Specifies the media type of the content to parse, and may have the
charset attribute. When the parameter is specified, then it defines both type and
encoding. When not specified, then Tika will attempt to auto-detect values from the file
extension. Oracle recommends you to specify the parameter.

Returns

Returns a document node for each value. See "Tika Parser Output Format".

6.8.1.2 tika:parse

ORACLE

Parses the data given to it as an argument.For example, it can parse an html fragment
within an XML or JSON document.

Signature

decl are function
tika: parse($data as xs:string?, $contentType as xs:string?) as document-node()*
external ;

Parameters
$dat a: The value to be parsed.

$cont ent Type: Specifies the media type of the content to parse, and may have the
charset attribute. When the parameter is specified, then it defines both type and
encoding. When not specified, then Tika will attempt to auto-detect values from the file
extension. Oracle recommends you to specify the parameter.

6-81

Chapter 6
Tika File Adapter

Returns

Returns a document node for each value. See "Tika Parser Output Format".

6.8.2 Custom Functions for Parsing Files with Tika

ORACLE

You can use the following annotations to define functions to parse files in HDFS with
Tika. These annotations provide additional functionality that is not available using the
built-in functions.

Signature

Custom functions for reading HDFS files must have one of the following signatures:

declare % ika:collection [additional annotations]

function |ocal:nyFuncti onName($uris as xs:string*, $contentType as xs:string?) as
docunent - node() * external;
declare % ika:collection [additional annotations]

function | ocal:myFunctionName($uris as xs:string*) as document-node()* external;

Annotations

%tika:collection(["method"])
Identifies an external function to be implemented by Tika file adapter. Required.
The optional method parameter can be one of the following values:

* tika: Each line in the tika file is returned as docunent - node() . Default.
%output:media-type

Declares the file content type. It is a MIME type and must not have the charset
attribute as per XQuery specifications. Optional.

%output:encoding
Declares the file character set. Optional.

¢ Note:

%ut put : nedi a-t ype and %ut put : econdi ng annotations specify the content
type or encoding when the $contentType parameter is not explicitly provided
in the signature.

Parameters

$uris as xs:string*
Lists the HDFS file URIs. Required.

$contentType as xs:string?
The file content type. It may have the charset attribute.

Returns

docunent - node() * with two root elements. See "Tika Parser Output Format".

6-82

Chapter 6
Tika File Adapter

6.8.3 Tika Parser Output Format

The result of Tika parsing is a document node with two root elements:

* Root element #1 is an XHTML content produced by Tika.
* Root element #2 is the document metadata extracted by Tika.

The format of the root elements look like these:

Root element #1

<htm xm ns="http://ww.w3. org/ 1999/ xht m " >
...textual content of Tika HTM...
</htm >

Root element #2

<tika:metadata xm ns:tika="oxh:tika">
<tika:property name="Nanme_1">VALUE 1</tika: property>
<tika:property name="NAME 2">VALUE 2</ti ka: property>
</ tika: met adat a>

6.8.4 Tika Adapter Configuration Properties
The following Hadoop properties control the behavior of Tika adapter:

oracle.hadoop.xquery.tika.html.asis

Type:Boolean

Default Value: false.

Description: When this is set to TRUE, then all the HTML elements are omitted
during parsing. When this is set to FALSE, then only the safe elements are omitted
during parsing.

oracle.hadoop.xquery.tika.locale

Type:Comma-separated list of strings

Default Value:Not Defined.

Description:Defines the locale to be used by some Tika parsers such as Microsoft
Office document parser. Only three strings are allowed: language, country, and
variant. The strings country and variant are optional. When locale is not defined, then
the system locale is used. When the strings are defined it must correspond to the
java.util. Local e specification format mentioned in http://docs. oracl e. cont j avase/ 7/
docs/ api/javalutil/Local e. ht i and the locale can be constructed as follows:

« If only language is specified, then the locale is constructed from the language.

» If the language and country are specified, then the locale is constructed from both
language and country

» If language, country, and variant are specified, then the locale is constructed from
language, country, and variant.

ORACLE 6-83

http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html

Chapter 6
Tika File Adapter

6.8.5 Examples of Tika File Adapter Functions

ORACLE

Example 6-22 Using Built-in Functions to Index PDF documents with Cloudera
Search

This example query uses Tika to parse PDF files into HTML form and then add the
HTML documents into Solr's full-text index.

bi gdat a. pdf

The following query indexes the HDFS files:

i mport nodul e "oxh:tika"
import nodul e "oxh:solr";

for $doc in tika:collection("*higdata*.pdf")
| et $docid := data($doc//*: neta] @ane eq "resourceNane"]/ @ontent)[1]
I et $body := $doc//*: body[1]
return
sol r: put (
<doc>
<field name="id">{ $docid }</field>
<field name="text">{ string($body) }</field>
<field nanme="content">{ serialize($doc/*:htm) }</field>
</ doc>

The HTML representation of the documents is added to Solr index and they become
searchable. Each document Id in the index is the file name.

Example 6-23 Using Built-in Functions to Index HTML documents with
Cloudera Search

This example query uses sequence files and Tika to parse, where key is an URL and
value is a html.

i mport nodul e "oxh:tika"
import nodul e "oxh:solr";
i mport nodul e "oxh: seq"

for $doc in seq:collection-tika(“/path/to/seq/files/*")
let $docid := docunent-uri ($doc)
et $body := $doc//*: body] 1]

return
sol r: put (
<doc>
<field name="id">{ $docid }</field>
<field name="text">{ string($body) }</field>
<field name="content">{ serialize($doc/*:htm) }</field>
</ doc>

)

The HTML representation of the documents is added to Solr index and they become
searchable. Each document Id in the index is the file name.

6-84

Chapter 6
XML File Adapter

6.9 XML File Adapter

The XML file adapter provides access to XML files stored in HDFS. The adapter
optionally splits individual XML files so that a single file can be processed in parallel by
multiple tasks.

This adapter is described in the following topics:

e Built-in Functions for Reading XML Files
e Custom Functions for Reading XML Files

e Examples of XML File Adapter Functions

6.9.1 Built-in Functions for Reading XML Files

To use the built-in functions in your query, you must import the XML file module as
follows:

inport nodul e "oxh:xmf";

The XML file module contains the following functions:
» xmlf:collection (Single Task)

« xmlf:collection-multipart (Single Task)

» xmlf:collection (Multiple Tasks)

See "Examples of XML File Adapter Functions."

6.9.1.1 xmlf:collection (Single Task)

ORACLE

Accesses a collection of XML documents in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task.

This function automatically decompresses files compressed with a Hadoop-supported
codec.

Note:

HDFS does not perform well when data is stored in many small files. For
large data sets with many small XML documents, use Hadoop sequence files
and the Sequence File Adapter.

Signature

declare %m f:collection function
xm f:collection($uris as xs:string*) as docunent-node()* external;

Parameters

$uris: The XML file URIs

6-85

Chapter 6
XML File Adapter

Returns

One XML document for each file

6.9.1.2 xmif:collection-multipart (Single Task)

Accesses a collection of XML documents in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task. This function is the

same as xmlf:collection except that each file may contain multiple well-formed XML
documents concatenated together.

This function automatically decompresses files compressed with a Hadoop-supported
codec. For example, a file containing multiple XML documents could be compressed
using GZIP and then accessed directly by this function.

Signature

declare %mif:collection("nultipart")
function xm f:collection($uris as xs:string*) as docunent-node()* external;

Parameters

$uris
The XML file URIs.

Returns

One or more XML documents for each file.

6.9.1.3 xmlf:collection (Multiple Tasks)

ORACLE

Accesses a collection of XML documents in HDFS. The files might be split and
processed by multiple tasks simultaneously, which enables very large XML files to be
processed efficiently. The function returns only elements that match a specified name.

This function does not automatically decompress files. It only supports XML files that
meet certain requirements. See "Restrictions on Splitting XML Files."

Signature

declare %mi f:collection function
xm f:collection($uris as xs:string*, $names as xs:anyAtom cTypet+) as el ement()*
external ;

Parameters

$uris
The XML file URIs

$names

The names of the elements to be returned by the function. The names can be either
strings or QNames. For QNames, the XML parser uses the namespace binding
implied by the QName prefix and namespace.

Returns

Each element that matches one of the names specified by the $names argument

6-86

Chapter 6
XML File Adapter

6.9.2 Custom Functions for Reading XML Files

ORACLE

You can use the following annotations to define functions that read collections of XML
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

Signature

Custom functions for reading XML files must have one of the following signatures:

declare %m f:collection(["xm"|"multipart"]) [additional annotations]
function local: nyFuncti onNane($uris as xs:string*) as node()* external;

declare %m f:collection("xm") [additional annotations]
function |ocal: nyFuncti onNane($uris as xs:string*, $names as xs:anyAtom cType+)
as elenment()* external;

Annotations

%xmlf:collection
Declares the collection function. Required.
The method parameter is one of the following values:

* xml: Each value is parsed as XML

* multipart: Each value (or, file) may contain a concatenation of multiple well-formed
XML documents. This method cannot be used with parallel XML parsing. (See
xmlif:split and the two-argument function signature.)

%xmlf:split("element-namel"[,... "element-nameN")

Specifies the element names used for parallel XML parsing. You can use this
annotation instead of the $names argument.

When this annotation is specified, only the single-argument version of the function is
allowed. This restriction enables the element names to be specified statically, so they
do not need to be specified when the function is called.

%output:encoding("charset")

Identifies the text encoding of the input documents.

When this encoding is used with the %ni f: spl i t annotation or the $nanes argument,
only 1ISO-8859-1, US-ASCII, and UTF-8 are valid encodings. Otherwise, the valid
encodings are those supported by the JVM. UTF-8 is assumed when this annotation
is omitted.

¢ See Also:

"Supported Encodings" in the Oracle Java SE documentation at
http://docs. oracl e. conljavase/ 7/ docs/ t echnot es/ gui des/intl/
encodi ng. doc. ht m

%xmlf:split-namespace("prefix", "namespace")

This annotation provides extra namespace declarations to the parser. You can specify
it multiple times to declare one or more namespaces.

Use this annotation to declare the namespaces of ancestor elements. When XML is
processed in parallel, only elements that match the specified names are processed by

6-87

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

ORACLE

Chapter 6
XML File Adapter

an XML parser. If a matching element depends on the namespace declaration of one
of its ancestor elements, then the declaration is not visible to the parser and an error
may occur.

These namespace declarations can also be used in element names when specifying
the split names. For example:

declare
o%m f: collection
om f:split("eg:foo")
o%m f:split-namespace("eg", "http://exanple.org")
function local:myFunction($uris as xs:string*) as document-node() external;

%xmlf:split-entity("entity-name", "entity-value")

Provides entity definitions to the XML parser. When XML is processed in parallel, only
elements that match the specified split names are processed by an XML parser. The
DTD of an input document that is split and processed in parallel is not processed.

In this example, the XML parser expands &f oo; entity references as "Hello World":

o%m f:split-entity("foo","Hello Wrld")

%xmlf:split-max("split-size")

Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-mn, min($split-mx, $block-size)). Optional.

In a string value, you can append K, k, M m G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit).These qualifiers are not
case sensitive. The following examples are equivalent:

om f:split-max(1024)
om f:split-max("1024")
om f:split-max("1K")

%xmlf:split-min("split-size")

Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-mn, min($split-mx, $block-size)). Optional.

In a string value, you can append K, k, M m G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent;

om f:split-mn(1024)
om f:split-min("1024")
om f:split-mn("1K")

Notes
Restrictions on Splitting XML Files

Individual XML documents can be processed in parallel when the element names are
specified using either the $nanes argument or the $xmi f: spl i t annotation.

The input documents must meet the following constraints to be processed in parallel:

XML cannot contain a comment, CDATA section, or processing instruction that
contains text that matches one of the specified element names (that is, a <
character followed by a name that expands to a QName). Otherwise, such content
might be parsed incorrectly as an element.

* An element in the file that matches a specified element name cannot contain a
descendant element that also matches a specified name. Otherwise, multiple

6-88

Chapter 6
XML File Adapter

processors might pick up the matching descendant and cause the function to
produce incorrect results.

* An element that matches one of the specified element names (and all of its
descendants) must not depend on the namespace declarations of any of its
ancestors. Because the ancestors of a matching element are not parsed, the
namespace declarations in these elements are not processed.

You can work around this limitation by manually specifying the namespace
declarations with the %m f: spl it - nanespace annotation.

Oracle recommends that the specified element names do not match elements in the
file that are bigger than the split size. If they do, then the adapter functions correctly
but not efficiently.

Processing XML in parallel is difficult, because parsing cannot begin in the middle of
an XML file. XML constructs like CDATA sections, comments, and hamespace
declarations impose this limitation. A parser starting in the middle of an XML document
cannot assume that, for example, the string <f oo> is a begin element tag, without
searching backward to the beginning of the document to ensure that it is not in a CDATA
section or a comment. However, large XML documents typically contain sequences of
similarly structured elements and thus are amenable to parallel processing. If you
specify the element names, then each task works by scanning a portion of the
document for elements that match one of the specified names. Only elements that
match a specified hame are given to a true XML parser. Thus, the parallel processor
does not perform a true parse of the entire document.

6.9.3 Examples of XML File Adapter Functions

ORACLE

Example 6-24 Using Built-in Functions to Query XML Files

This example queries three XML files in HDFS with the following contents. Each XML
file contains comments made by users on a specific day. Each comment can have
zero or more "likes" from other users.

mydat a/ coment s1. xn

<comment s dat e="2013- 12- 30" >
<commrent id="12345" user="john" text="It is raining :("/>
<comment id="56789" user="kelly" text="1 won the lottery!">
<like user="john"/>
<like user="m ke"/>
</ comment >
</ coment s>

mydat a/ coment s2. xn

<comments date="2013-12-31">
<comrent id="54321" user="m ke" text="Happy New Year!">
<like user="laura"/>
</ comrent >
</ conment s>

mydat a/ coment s3. xn

<comments dat e="2014-01-01">
<comment id="87654" user="m ke" text="1 don't feel so good."/>
<comment id="23456" user="john" text="Wat a beautiful day!">
<like user="kelly"/>
<like user="phil"/>

6-89

ORACLE

Chapter 6
XML File Adapter

</ comrent >
</ conment s>

This query writes the number of comments made each year to a text file. No element
names are passed to xni f: col | ecti on, and so it returns three documents, one for each
file. Each file is processed serially by a single task.

import nodul e "oxh:xmf";
inport nodul e "oxh:text";

for $comments in xnlf:collection("nydata/coments*.xnl")/comments
| et $date := xs:dat e($coment s/ @at e)
group by $year := fn:year-fromdate($date)
return
text:put($year || ", " || fn:count($comments/coment))

The query creates text files that contain the following lines:

2013, 3
2014, 2

The next query writes the number of comments and the average number of likes for
each user. Each input file is split, so that it can be processed in parallel by multiple
tasks. The xm f: col | ecti on function returns five elements, one for each comment.

inport nodul e "oxh:xmf";
inport nodul e "oxh:text";

for $comment in xmf:collection("nydata/coments*.xn", "coment")
let $likeCt := fn:count($coment/like)
group by S$user := $comment/ @iser
return
text:put($user || ", " || fn:count($coment) || ", " || fn:avg($likeCt))

This query creates text files that contain the following lines:

john, 2, 1
kelly, 1, 2
mke, 2, 0.5

Example 6-25 Writing a Custom Function to Query XML Files
The following example declares a custom function to access XML files:

inport nodul e "oxh:text";

declare
%mn f: collection
o%m f:split("comment")
om f:split-max("32M)
function local: comments($uris as xs:string*) as elenent()* external;

for $c in local:coments("nydata/coment*.xm")
where $c/ @Qser eq "m ke"
return text:put($c/ @d)

The query creates a text file that contains the following lines:

6-90

Chapter 6
Utility Module

54321
87654

Example 6-26 Accessing Compressed, Multipart XML Files

Assume that files comments1.xml, comments2.xml, and comments3.xml from example
5-24 are concatenated together and compressed using GZIP to create a single file
named comments.xml.gz. For example:

cat comrentsl.xm coments2.xm coments3.xm | gzip > comments.xnl.gz

The following query accesses this multipart, compressed XML file:

inport nodul e "oxh:text"; inport nmodule "oxh:xmf";
for $comment in xnif:collection-multipart("coments.xnl.gz")/coments/coment
return

text:put($comment/@d || "," || $comment/ @ser)

The query creates a text file that contains the following lines:

12345, j ohn
56789, kel |y
54321, mi ke
87654, m ke
23456, j ohn

6.10 Utility Module

The utility module contains or a- f n functions for handling strings and dates. These
functions are defined in XDK XQuery, whereas the oxh functions are specific to Oracle
XQuery for Hadoop.

The utility functions are described in the following topics:

e Oracle XQuery Functions for Duration, Date, and Time

* Oracle XQuery Functions for Strings

6.10.1 Oracle XQuery Functions for Duration, Date, and Time

You can manipulate durations, dates, and times in XQuery using Oracle XQuery
functions.

The Oracle XQuery functions are in namespace http://xm ns. oracl e. conf xdk/ xquer y/
function. Namespace prefixor a- f n is predeclared, and the module is automatically
imported.

6.10.1.1 ora-fn:date-from-string-with-format

ORACLE

This Oracle XQuery function returns a new date value from a string according to a
given pattern.

Signature

ora-fn:date-fromstring-wth-format($formt as xs:string?
$dateString as xs:string?
$l ocal e as xs:string*)
as xs:date?

6-91

Chapter 6
Utility Module

ora-fn:date-fromstring-wth-format($formt as xs:string?,
$dateString as xs:string?)
as xs:date?

Parameters
$f or mat : The pattern; see Format Argument
$dat eString: An input string that represents a date

$l ocal e: A one- to three-field value that represents the locale; see Locale Argument

Example
This example returns the specified date in the current time zone:

ora-fn:date-fromstring-wth-formt("yyyy-Midd G', "2013-06-22 AD')

6.10.1.2 ora-fn:date-to-string-with-format

This Oracle XQuery function returns a date string with a given pattern.

Signature

ora-fn:date-to-string-wth-formt($format as xs:string?,
$date as xs:date?,
*$l ocal e as xs:string?)
as xs:string?

ora-fn:date-to-string-wth-formt($format as xs:string?,

$date as xs:date?)
as xs:string?

Parameters
$f or mat : The pattern; see Format Argument
$dat e: The date

$l ocal e: A one- to three-field value that represents the locale; see Locale Argument

Example
This example returns the string 2013- 07- 15:

ora-fn:date-to-string-wth-format("yyyy-mmdd", xs:date("2013-07-15"))

6.10.1.3 ora-fn:date Time-from-string-with-format

ORACLE

This Oracle XQuery function returns a new date-time value from an input string,
according to a given pattern.

Signature

ora-fn:dateTime-fromstring-wth-format($format as xs:string?,
$dat eTi meString as xs:string?,
$l ocal e as xs:string?)
as xs:dateTi ne?

ora-fn:dateTinme-fromstring-wth-format($format as xs:string?,

6-92

Chapter 6
Utility Module

$dat eTi meString as xs:string?)
as xs:dateTi ne?

Parameters
$f or mat : The pattern; see Format Argument
$dat eTi meSt ri ng: The date and time

$l ocal e: A one- to three-field value that represents the locale; see Locale Argument

Examples
This example returns the specified date and 11:04:00AM in the current time zone:

ora-fn:dateTime-fromstring-wth-formt("yyyy-Mtdd "at' hh:mi,
"2013-06-22 at 11:04")

The next example returns the specified date and 12:00:00AM in the current time zone:
ora-fn:dateTime-fromstring-wth-format("yyyy-Mtdd G',
"2013-06-22 AD")

6.10.1.4 ora-fn:date Time-to-string-with-format

This Oracle XQuery function returns a date and time string with a given pattern.

Signature

ora-fn:dateTinme-to-string-wth-format($format as xs:string?,
$dat eTime as xs: dat eTi ne?,
$l ocal e as xs:string?)
as xs:string?

ora-fn:dateTine-to-string-wth-format($format as xs:string?,

$dat eTime as xs:dateTi ne?)
as xs:string?

Parameters
$f or mat : The pattern; see Format Argument
$dat eTi me: The date and time

$l ocal e: A one- to three-field value that represents the locale; see Locale Argument

Examples
This example returns the string 07 JAN 2013 10: 09 PM AD:

ora-fn:dateTinme-to-string-with-format("dd MW yyyy hh:.mma G',
xs: dat eTi me("2013-01-07T22: 09: 44"))

The next example returns the string "01-07-2013":

ora-fn:dateTi me-to-string-wth-format("Mtdd-yyyy",
xs: dat eTi me("2013- 01- 07722: 09: 44"))

ORACLE 6-93

Chapter 6
Utility Module

6.10.1.5 ora-fn:time-from-string-with-format

This Oracle XQuery function returns a new time value from an input string, according
to a given pattern.

Signature

ora-fn:time-fromstring-wth-format($formt as xs:string?,
$tinmeString as xs:string?,
$local e as xs:string?)
as xs:time?

ora-fn:time-fromstring-wth-format($formt as xs:string?,

$tinmeString as xs:string?)
as xs:time?

Parameters

$f or mat : The pattern; see Format Argument

$timeString: The time

$l ocal e: A one- to three-field value that represents the locale; see Locale Argument
Example

This example returns 9:45:22 PM in the current time zone:

ora-fn:time-fromstring-wth-formt("HH nmss", "21.45.22")

The next example returns 8:07:22 PM in the current time zone:

fn-bea:tinme-fromstring-wth-format("hh:mmss a", "8:07:22 PM)

6.10.1.6 ora-fn:time-to-string-with-format

ORACLE

This Oracle XQuery function returns a time string with a given pattern.

Signature

ora-fn:time-to-string-with-format($format as xs:string?,
$time as xs:tine?,
$l ocal e as xs:string?)
as xs:string?

ora-fn:time-to-string-with-format($format as xs:string?, $time as xs:tine?) as
xs:string?

Parameters
$f ormat : The pattern; see Format Argument
$tinme: The time

$l ocal e: A one- to three-field value that represents the locale; see Locale Argument

Examples

This example returns the string "10:09 PM":

6-94

Chapter 6
Utility Module

ora-fn:time-to-string-with-format("hh:mma", xs:time("22:09:44"))

The next example returns the string "22:09 PM":

ora-fn:time-to-string-with-format("HH nma", xs:time("22:09:44"))

6.10.1.7 Format Argument

The $f or mat argument identifies the various fields that compose a date or time value.

6.10.1.8 Locale Argument

The $l ocal e represents a specific geographic, political, or cultural region.
It is defined by up to three fields:

1. Language code: The ISO 639 alpha-2 or alpha-3 language code, or the
registered language subtags of up to eight letters. For example, en for English and
j a for Japanese.

2. Country code: The ISO 3166 alpha-2 country code or the UN M.49 numeric-3
area code. For example, Us for the United States and 029 for the Caribbean.

3. Variant: Indicates a variation of the locale, such as a particular dialect. Order
multiple values in order of importance and separate them with an underscore ().
These values are case sensitive.

" See Also:

* Class Locale in Java Standard Edition 7 Reference

6.10.2 Oracle XQuery Functions for Strings

You can manipulate strings in XQuery using Oracle XQuery functions.

The Oracle XQuery functions are in namespace http://xm ns. or acl e. conf xdk/ xquer y/
function. Namespace prefixor a- f n is predeclared, and the module is automatically
imported.

6.10.2.1 ora-fn:pad-left

ORACLE

Adds padding characters to the left of a string to create a fixed-length string. If the
input string exceeds the specified size, then it is truncated to return a substring of the
specified length. The default padding character is a space (ASCII 32).

Signature

ora-fn:pad-left($str as xs:string?,
$size as xs:integer?,
$pad as xs:string?)
as xs:string?

ora-fn:pad-left($str as xs:string?,

$size as xs:integer?)
as xs:string?

6-95

Chapter 6
Utility Module

Parameters
$str: The input string

$si ze: The desired fixed length, which is obtained by adding padding characters
to $str

$pad: The padding character

If either argument is an empty sequence, then the function returns an empty
sequence.

Examples

This example prefixes "01" to the input string up to the maximum of six characters. The
returned string is "010abc". The function returns one complete and one partial pad
character.

ora-fn:pad-left("abc", 6, "01")

The example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-left("abcd", 2, "01")

This example prefixes spaces to the string up to the specified maximum of six
characters. The returned string has a prefix of two spaces: " abcd":

ora-fn:pad-left("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified
fixed length:

ora-fn:pad-left("abcd", 2)

6.10.2.2 ora-fn:pad-right

ORACLE

Adds padding characters to the right of a string to create a fixed-length string. If the
input string exceeds the specified size, then it is truncated to return a substring of the
specified length. The default padding character is a space (ASCII 32).

Signature

ora-fn:pad-right($str as xs:string?,
$si ze as xs:integer?,
$pad as xs:string?)
as xs:string?

ora-fn:pad-right($str as xs:string?,

$size as xs:integer?)
as xs:string?

Parameters
$str: The input string

$si ze: The desired fixed length, which is obtained by adding padding characters
to $str

$pad: The padding character

6-96

Chapter 6
Utility Module

If either argument is an empty sequence, then the function returns an empty
sequence.

Examples

This example appends "01" to the input string up to the maximum of six characters.
The returned string is "abc010". The function returns one complete and one partial pad
character.

ora-fn:pad-right("abc", 6, "01")

This example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-right("abcd", 2, "01")

This example appends spaces to the string up to the specified maximum of six
characters. The returned string has a suffix of two spaces: "abcd "

ora-fn:pad-right("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified
fixed length:

ora-fn:pad-right("abcd", 2)

6.10.2.3 ora-fn:trim

Removes any leading or trailing white space from a string.

Signature
ora-fn:trim$input as xs:string?) as xs:string?
Parameters

$i nput : The string to trim. If $i nput is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Example
This example returns the string "abc":

ora-fn:trim(" abc ")

6.10.2.4 ora-fn:trim-left

ORACLE

Removes any leading white space.

Signature

ora-fn:trimleft($input as xs:string?) as xs:string?

Parameters

$i nput : The string to trim. If $i nput is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

6-97

Chapter 6
Hadoop Module

Example

This example removes the leading spaces and returns the string "abc

ora-fn:trimleft(" abc ")

6.10.2.5 ora-fn:trim-right

Removes any trailing white space.
Signature
ora-fn:trimright($input as xs:string?) as xs:string?

Parameters

$i nput : The string to trim. If $i nput is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Example
This example removes the trailing spaces and returns the string " abc":
ora-fn:trimleft(" abc ")

6.11 Hadoop Module

These functions are in the http://xn ns. oracl e. conl hadoop/ xquery hamespace. The oxh
prefix is predeclared and the module is automatically imported.

The Hadoop module is described in the following topic:

e Hadoop Functions

6.11.1 Built-in Functions for Using Hadoop

The following functions are built in to Oracle XQuery for Hadoop:
e oxh:find

e oxh:increment-counter

e oxh:printin

e oxh:printin-xml

e oxh:property

6.11.1.1 oxh:find

Returns a sequence of file paths that match a pattern.

Signature

oxh:find($pattern as xs:string?) as xs:string*

ORACLE 6-98

Chapter 6
Hadoop Module

Parameters

$pattern: The file pattern to search for

" See Also:
For the file pattern, the gl obSt at us method in the Apache Hadoop API at

http://hadoop. apache. or g/ docs/ current/ api/ or g/ apache/ hadoop/ f s/
Fi | eSyst em ht ni #gl obSt at us(or g. apache. hadoop. fs. Pat h)

6.11.1.2 oxh:increment-counter

Increments a user-defined MapReduce job counter. The default increment is one (1).

Signature

oxh:increnent - count er ($groupNane as xs:string, $counterNane as xs:string, $value as
Xs: i nteger

oxh:increnent - count er ($groupNane as xs:string, $counterName as xs:string
Parameters

$gr oupNane: The group of counters that this counter belongs to.

$count er Nane: The name of a user-defined counter

$val ue: The amount to increment the counter

6.11.1.3 oxh:printin

Prints a line of text to st dout of the Oracle XQuery for Hadoop client process. Use this
function when developing queries.

Signature
decl are %pdating function oxh:println($arg as xs:anyAtom cType?)
Parameters

$arg: A value to add to the output. A cast operation first converts it to stri ng. An empty
sequence is handled the same way as an empty string.

Example
This example prints the values of dat a. t xt to stdout :

for $i in text:collection("data.txt")
return oxh: println($i)

6.11.1.4 oxh:printin-xmi

Prints a line of text or XML to st dout of the Oracle XQuery for Hadoop client process.
Use this function when developing queries and printing nodes of an XML document.

ORACLE 6-99

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)

Chapter 6
Serialization Annotations

Signature

decl are %pdating function oxh:println-xnl($arg as item)?)

Parameters

$arg: A value to add to the output. The input item is converted into a text as defined by
XSLT 2.0 and XQuery 1.0 Serialization specifications. An empty sequence is handled
the same way as an empty string.

6.11.1.5 oxh:property

Returns the value of a Hadoop configuration property.

Signature

oxh: property($name as xs:string?) as xs:string?

Parameters

$nane: The configuration property

6.12 Serialization Annotations

Several adapters have serialization annotations (%eut put : *). The following lists identify
the serialization parameters that Oracle XQuery for Hadoop supports.

Serialization parameters supported for the t ext output method:
* encodi ng: Any encoding supported by the JVM
e normalization-forn none, NFC, NFD, NFKC, NFKD

Serialization parameters supported for the xnl output method, using any values
permitted by the XQuery specification:

* cdata-section-el ements
* doctype-public

° doctype-system

e encoding

° indent

* normalization-form

e omt-xm-declaration

* standal one

ORACLE 6-100

Chapter 6
Serialization Annotations

" See Also:

"The Influence of Serialization Parameters" sections for XML and text output
methods in XSLT and XQuery Serialization, at locations like the following:

http:// ww. w3. org/ TR/ xsl t - xquery-serial i zati on/ #XM._DOCTYPE

http:// ww. w3. or g/ TR/ xsl t - xquery-seri al i zat i on/ #XM._CDATA- SECTI O\
ELEMENTS

ORACLE 6-101

http://www.w3.org/TR/xslt-xquery-serialization/#XML_DOCTYPE
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS

Oracle XML Extensions for Hive

This chapter explains how to use the XML extensions for Apache Hive provided with
Oracle XQuery for Hadoop. The chapter contains the following sections:

What are the XML Extensions for Hive?

Using the Hive Extensions From the Command Line
About the Hive Functions

Creating XML Tables

Oracle XML Functions for Hive Reference

7.1 What are the XML Extensions for Hive?

The XML Extensions for Hive provide XML processing support that enables you to do
the following:

Query large XML files in HDFS as Hive tables

Query XML strings in Hive tables

Query XML file resources in the Hadoop distributed cache

Efficiently extract atomic values from XML without using expensive DOM parsing
Retrieve, generate, and transform complex XML elements

Generate multiple table rows from a single XML value

Manage missing and dirty data in XML

The XML extensions also support these W3C modern standards:

XQuery 3.1

XQuery Update Facility 1.0 (transform expressions)
XPath 3.1

XML Schema 1.0

XML Namespaces

The XML extensions have two components:

ORACLE

XML InputFormat and SerDe for creating XML tables
See "Creating XML Tables."
XML function library

See "About the Hive Functions."

7-1

Chapter 7
Using the Hive Extensions From the Command Line

7.2 Using the Hive Extensions From the Command Line

To enable the Oracle XQuery for Hadoop extensions, use the - - auxpath and - i
arguments when starting Hive:

$ hive --auxpath \

$OXH_HOVE/ hi ve/ i b/ oxh-hive.jar,\

$OXH_HOVE/ hi ve/ | i b/ oxh- mapr educe. j ar,\
$OXH_HOVE/ hi ve/ | i b/ oxquery.jar,\

$OXH_HOVE/ hi ve/ |'i b/ xqj api . j ar, \

$OXH_HOVE/ hi ve/ | i b/ apache-xnl beans. jar, \
$OXH_HOVE/ hi ve/ | i b/ woodst ox- core-asl -*.jar,\
$OXH HOME/ hi vel | i b/ st ax2-api-*.jar \

-1 $OXH_HOME/ hi ve/init. sql

Note:

On the Oracle BigDataLite VM, H VE_AUX_JARS PATH contains the Hive
extensions by default and hence specifying - - auxpat h is unnecessary.

The first time you use the extensions, verify that they are accessible. The following
procedure creates a table named SRC, loads one row into it, and calls the xm _query
function.

To verify that the extensions are accessible:

1. Loginto a server in the Hadoop cluster where you plan to work.
2. Start the Hive command-line interface (CLI):

$ hive --auxpath \

$OXH_HOVE/ hi ve/ li b/ oxh-hive.jar,\

$OXH_HOVE/ hi ve/ | i b/ oxh- mapr educe. j ar, \
$OXH_HOME/ hi ve/ i b/ oxquery. j ar, \

$OXH_HOME/ hi ve/ i b/ xqj api . j ar, \

$OXH_HOVE/ hi ve/ | i b/ apache- xnl beans. j ar, \
$OXH_HOVE/ hi ve/ | i b/ woodst ox- core-asl -*.jar,\
$OXH_HOME/ hi ve/ | i b/ stax2-api-*.jar \

-i $OXH_HOME hi ve/init. sql

Theinit.sql file contains the CREATE TEMPCRARY FUNCTI ON statements that declare
the XML functions.

3. Call an Oracle XQuery for Hadoop function for Hive. This example calls the
xm _query function to parse an XML string:

hi ve> SELECT xml_query("x/y", "'<x><y>123</y><z>456</z></x>");

["123"]
If the extensions are accessible, then the query returns ["123"], as shown in the
example.

ORACLE 7-2

Chapter 7
Using the Hive Extensions in HiveServer2

7.3 Using the Hive Extensions in HiveServer2

To enable the XML Extensions for Hive in HiveServer2, you must add the following
JARSs to the environment variable H VE_AUX_JARS_PATH and to the configuration property
hi ve. aux.j ars. pat h.

$OXH_HOVE/ hi ve/ | i b/ woodst ox- core-asl-*.jar
$OXH_HOVE/ hi ve/ | i b/ apache- xnl beans. j ar
$OXH_HOMVE/ hi ve/ | i bl oxh-hi ve. j ar

$OXH_HOVE/ hi vel | i b/ oxh- mapreduce. j ar

$OXH _HOME/ hi ve/ | i bl stax2-api-*.jar
$OXH_HOVE/ hi vel | i bl xqj api . j ar

$OXH _HOMVE/ hi vel | i bl oxquery. j ar

If you are using Cloudera's distribution including Apache Hadoop (on Oracle Big Data
Appliance or commodity hardware) you can add the JARs as follows:

1. In Cloudera Manager, click hive:

I= Hosts

[o

<1 Spark on yarmn -
B hdfs -
3+ hive -

2. Click Configuration to go to the Configuration tab.

Status Instances Configuration Commands Charts Library Audits HiveSery

3. Inthe search field, enter hi ve_aux. Then, add the following text after whatever
value is in Gateway Client Environment Advanced Configuration Snippet
(Safety Valve) for hive-env.sh . Be sure to include the leading comma. It is
advisable to save the text of the original path before editing this field in case you
need to revert at a later time.

, [opt/oracl e/ oxh-*/hivellib/woodst ox-core-asl -oxh-*.jar,/opt/oracl e/ oxh-*/

hi ve/li b/ apache-xm beans. j ar,/opt/oracl e/ oxh-*/hive/libloxh-hive.jar,/opt/oracle/
oxh-*/hivel/l'i b/ oxh- mapreduce. jar,/opt/oracl e/ oxh-*/hivel/liblstax2-api-*.jar,/opt/
oracl e/ oxh-*/hivellib/xqjapi.jar,/opt/oraclel/oxh-*/hivellibloxquery.jar

Note that the JAR version numbers in the paths above are wildcarded (*). Replace
the wildcards with the correct JAR versions for the OXH release you are working
with.

ORACLE' 7.3

Chapter 7
Using the Hive Extensions in HiveServer2

hive_aux
Hive Auxiliary JARs hive (Service-Wide)
FARCOrY loptioracle/bigdatasqlibdeeil-12.1/lib
Gateway Client Gateway Default Group +

Environment Advanced
Configuration Snippet
(Safety Valve) for hive-
env.sh

HIVE_AUX_JARS PATH=SHIVE_AUX_JARS_PATH /opticloudera/parcel
/hivedib/hive-contrib_jar /opt/oraclie/oxh-4.8.0-1_cdh5. 0. 0/Mivellib/orail €
foptloraciefoxh-4.8.0-1.cdh5.0.0/hiveflibiwoodstox-core-ask-4.2 .0 jar/o
foxh-4.8.0-1.cdh5.0.0/Mivedlib/apac he-xmibeans jar foptforacie/oxh-4.8
fhiveflibloxh-hive jar foptforaciefoxh-4.8.0-1.cdh5.0.0/hiveflib/foxh-mapr
foptioraciefoxh-4.8.0-1.cdh5.0.0/hiveflib/orail 8n-mapping.jar,/optiorac

4. Search for hi ve. aux. j ars. pat h. Add the following text after whatever value is in
Hive Client Advanced Configuration Snippet (Safety Valve) for hive-site.xml .
Be sure to add the text to the value field in the Gateway Default Group panel:

hive.aux jars.path|

Hive Auxiliary JARs hive (Sendce-Wide)

STRCiory foptioracle/bigdatasqibdcell-12.1/jlib

Hive Service Advanced hive (Semnvice-Wide) <+
Configuration Snippet
(Safety Valve) for hive- Name hive.aux jars. path
site.xml
Value file:/{fopticloudera’parcels/COH/ib/hive/lib/hive-contrib. j
Description
[J Final
Hive Client Advanced Gateway Default Group +
Configuration Snippet
(Safety Valve) for hive- Name hive.aux jars.path
site.xml
—}‘u’alue file://foptioracie/oxh-4.8.0-1.cdh5.0.0/hive/lib/orail Sn-uf
Description Descript
[Final

5. Click Save Changes.

ORACLE' 7.4

Chapter 7
Using the Hive Extensions in HiveServer2

6. Click Actions and then click Deploy Client Configuration.

Actions -

Stop
Restart

Add Role Instances

Rename
Enter Maintenance Mode

Deploy Client Configuration
Create Hive User Directory

Create Hive W

7. After the service restarts, check the status to ensure that it is working correctly.

8. To verify that the extensions are accessible, use Beeline:
a. Start Beeline:

$ beeline -i $OXH_HOME/ hive/init. sql

Note:

You can useinit.sgl as shown above to temporarily declare the
functions xml_query, xml_table, et cetera. You can also enable the
functions permanently as described in Permanently Declaring the
Hive Functions.

b. At the Beeline CLI, enter the following. (Fill in the placeholders host andport
with the host and port of hi veserver2.)

beel i ne> !connect jdbc: hive2: //[host]:[port]

When prompted for a username and password, you can press Enter.

c. All the XML extension functions should be created when you connected to
Hive. Try the following command to test if they are working correctly:

beel i ne> SELECT xm _query("x/y", "<x><y>123</y><z>456</z></x>");

The results returned should be similar to this example:

If this test is successful, then you are ready to use the Oracle XQuery for Hadoop
functions for Hive in HiveServer2.

ORACLE' 7.5

Chapter 7
About the Hive Functions

" See Also:

* Permanently Declaring the Hive Functions.

You can useinit.sqgl totemporarily declare the functions, as shown in
previous examples. You can also permanently declare them.

7.4 About the Hive Functions

The Oracle XQuery for Hadoop extensions enable you to query XML strings in Hive
tables and XML file resources in the Hadoop distributed cache. These are the
functions:

e xml_query: Returns the result of a query as an array of STRI NG values.

* xml_query_as_primitive: Returns the result of a query as a Hive primitive value. Each
Hive primitive data type has a separate function named for it.

e xml_exists: Tests if the result of a query is empty

e xml_table: Maps an XML value to zero or more table rows, and enables nested
repeating elements in XML to be mapped to Hive table rows.

See "Oracle XML Functions for Hive Reference."

7.5 Permanently Declaring the Hive Functions

In the examples in the previous section, $OXH_HOME/ hi ve/init. sql is used to temporarily
declare the XML extensions for Hive functions. However, as an alternative, you can
permanently declare the functions so thatinit. sqgl is not needed. Use the following
commands to permanently declare the functions.

CREATE FUNCTI ON xm _query AS ' oracl e. hadoop. xquery. hi ve. OXM.Quer yUDF' ;

CREATE FUNCTI ON xm _query_as_bi gint AS

"oracl e. hadoop. xquery. hi ve. OXM_Quer yBi gi nt UDF' ;

CREATE FUNCTI ON xm _query_as_int AS 'oracle. hadoop. xquery. hi ve. OXM.Quer yl nt UDF' ;
CREATE FUNCTI ON xm _query_as_smal lint AS

"oracl e. hadoop. xquery. hi ve. OXML.Quer ySnal | i nt UDF' ;

CREATE FUNCTI ON xm _query_as_tinyint AS

"oracl e. hadoop. xquery. hi ve. OXM_Quer yTi nyi nt UDF' ;

CREATE FUNCTI ON xm _query_as_float AS 'oracl e. hadoop. xquery. hi ve. OXM.Quer yFl oat UDF' ;
CREATE FUNCTI ON xm _query_as_doubl e AS

"oracl e. hadoop. xquery. hi ve. OXM_Quer yDoubl eUDF' " ;

CREATE FUNCTI ON xm _query_as_bool ean AS

"oracl e. hadoop. xquery. hi ve. OXM_Quer yBool eanUDF' ;

CREATE FUNCTI ON xm _query_as_string AS

"oracl e. hadoop. xquery. hi ve. OXM_Quer yStri ngUDF' ;

CREATE FUNCTI ON xm _exi sts AS 'oracl e. hadoop. xquery. hi ve. OXMLExi sts' ;

CREATE FUNCTI ON xm _table AS 'oracl e. hadoop. xquery. hi ve. OXM_Tabl eUDTF' ;

7.6 Creating XML Tables

This section describes how you can use the Hive CREATE TABLE statement to create
tables over large XML documents.

ORACLE 7-6

Chapter 7
Creating XML Tables

Hive queries over XML tables scale well, because Oracle XQuery for Hadoop splits up
the XML so that the MapReduce framework can process it in parallel.

To support scalable processing and operate in the MapReduce framework, the table
adapter scans for elements to use to create table rows. It parses only the elements
that it identifies as being part of the table; the rest of the XML is ignored. Thus, the
XML table adapter does not perform a true parse of the entire XML document, which
imposes limitations on the input XML. Because of these limitations, you can create
tables only over XML documents that meet the constraints listed in "XQuery
Transformation Requirements." Otherwise, you might get errors or incorrect results.

7.6.1 Hive CREATE TABLE Syntax for XML Tables

The following is the basic syntax of the Hive CREATE TABLE statement for creating a Hive
table over XML files:

CREATE TABLE tabl e_name (col ums)
ROW FORMAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM.Ser De'
STORED AS
| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLI nput For mat '
QUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXM.Qut put For mat '
TBLPROPERTI ES(confi gurati on)

Parameters

Parameter Description

columns All column types in an XML table must be one
of the Hive primitive types given in "Data Type
Conversions."

configuration Any of the properties described in "CREATE
TABLE Configuration Properties." Separate
multiple properties with commas.

< Note:

Inserting data into XML tables is not supported.

7.6.2 CREATE TABLE Configuration Properties

Use these configuration properties in the configuration parameter of the CREATE TABLE
command.

oxh-default-namespace

Sets the default namespace for expressions in the table definition and for XML
parsing. The value is a URI.

This example defines the default namespace:

"oxh- def aul t - nanmespace" = "http://exanpl e. com f 00"

ORACLE .

ORACLE

Chapter 7
Creating XML Tables

oxh-charset

Specifies the character encoding of the XML files. The supported encodings are
UTF-8 (default), ISO-8859-1, and US-ASCII.

All XML files for the table must share the same character encoding. Any encoding
declarations in the XML files are ignored.

This example defines the character set:

"oxh-charset" = "|SO 8859-1"

oxh-column.name

Specifies how an element selected by the oxh- el ement s property is mapped to
columns in a row. In this property name, replace name with the name of a column in
the table. The value can be any XQuery expression. The initial context item of the
expression (the "." variable) is bound to the selected element.

Check the log files even when a query executes successfully. If a column expression
returns no value or raises a dynamic error, the column value is NULL. The first time an
error occurs, it is logged and query processing continues. Subsequent errors raised
by the same column expression are not logged.

Any column of the table that does not have a corresponding oxh- col unm property
behaves as if the following property is specified:

"oxh-col um. nane" = "(./nanme | ./@ane)[1]"

Thus, the default behavior is to select the first child element or attribute that matches
the table column name. See "Syntax Example."

oxh-elements

Identifies the names of elements in the XML that map to rows in the table, in a
comma-delimited list. This property must be specified one time. Required.

This example maps each element named f oo in the XML to a single row in the Hive
table:

"oxh-el enents" = "foo0"

The next example maps each element named either f oo or bar in the XML to a row in
the Hive table:

"oxh-el enents" = "foo, bar"

oxh-entity.name

Defines a set of entity reference definitions.

In the following example, entity references in the XML are expanded from &f oo; to
"foo value" and from &bar; to "bar value".

"foo val ue"
"bar val ue"

"oxh-entity.foo"
"oxh-entity.bar"

oxh-namespace.prefix
Defines a namespace binding.
This example binds the prefix nyns to the namespace http: // exanpl e. or g:

"oxh- namespace. nyns" = "http://exanple.org"

You can use this property multiple times to define additional namespaces. The
namespace definitions are used when parsing the XML. The oxh- el enent and oxh-

col um property values can also reference them.

In the following example, only f oo elements in the htt p:// exanpl e. or g namespace are
mapped to table rows:

7-8

Chapter 7
Creating XML Tables

"oxh- namespace. nyns" = "http://exanple.org",
"oxh-el enents" = "nyns: foo",
"oxh-col um. bar" = "./nyns: bar"

7.6.3 CREATE TABLE Examples

This section includes the following examples:
* Syntax Example
e Simple Examples

* OpenStreetMap Examples

7.6.3.1 Syntax Example

ORACLE

This example shows how to map XML elements to column names.
Example 7-1 Basic Column Mappings

In the following table definition, the oxh- el ement s property specifies that each element
named f oo in the XML is mapped to a single row in the table. The oxh- col um
properties specify that a Hive table column named BAR gets the value of the child
element named bar converted to STRI NG, and the column named zI P gets the value of
the child element named zi p converted to | NT.

CREATE TABLE exanpl e (bar STRING zip |NT)
RON FORMAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM_Ser De'
STORED AS
| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLI nput For mat '
QUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXM.Qut put For nat '
TBLPROPERTI ES(
"oxh-el ements" = "foo0",
"oxh-col um. bar" ="./bar",
"oxh-colum. zip" = "./zip"

)

Example 7-2 Conditional Column Mappings

In this modified definition of the zI P column, the column receives a value of -1 if the f oo
element does not have a child zi p element, or if the zi p element contains a
nonnumeric value:

"oxh-col um. zi p" ="
if (./zip castable as xs:int) then
xs:int(./zip)
el se
-1

Example 7-3 Default Column Mappings

The following two table definitions are equivalent. Table Definition 2 relies on the
default mappings for the BAR and zI P columns.

Table Definition 1

CREATE TABLE exanpl e (bar STRING zip INT)
ROW FORMAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM.Ser De'

7-9

Chapter 7
Creating XML Tables

STORED AS
| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLI nput For mat '
QUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXM.Qut put For nat '
TBLPROPERTI ES(
"oxh-el ements" = "foo0",
"oxh-colum. bar" = "(./bar | ./@ar)[1]",
"oxh-colum.zip" ="(./zip | ./@ip)[1]"
)

Table Definition 2

CREATE TABLE exanpl e (bar STRING zip INT)
ROW FORVAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM_Ser De'
STORED AS
| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLI nput For mat '
OUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXML.Qut put For mat '
TBLPROPERTI ES(
"oxh-el ements" = "foo"
)

7.6.3.2 Simple Examples

ORACLE

These examples show how to create Hive tables over a small XML document that
contains comments posted by users of a fictitious website. Each conment element in the
document (coment s. xni) has one or more | i ke elements that indicate that the user
liked the comment.

<conment s>
<comment id="12345" user="john" text="It is raining :("/>
<comment id="56789" user="kelly" text="I won the lottery!">
<l'ike user="john"/>
<like user="mke"/>
</ comment >
<comment id="54321" user="mi ke" text="Happy New Year!">
<like user="laura"/>
</ comment >
</ comment s>

In the CREATE TABLE examples, the coments. xnl input file is in the current working
directory of the local file system.

Example 7-4 Creating a Table

The following Hive CREATE TABLE command creates a table named COMMENTS with a row
for each comment containing the user names, text, and number of likes:

hi ve>
CREATE TABLE comments (usr STRING content STRING |ikeCt |NT)
RON FORMAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM.Ser De'
STORED AS

| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLI nput For mat '

OUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXM.CQut put For mat '
TBLPROPERTI ES(

"oxh-el enents" = "coment",

"oxh-colum.usr" = "./@ser",

"oxh-colum. content" = "./@ext",

"oxh-colum.likeCt" = "fn:count(./like)"

K

7-10

ORACLE

Chapter 7
Creating XML Tables

The Hive LOAD DATA command loads comment s. xm into the COWENTS table.

hi ve> LOAD DATA LOCAL | NPATH ' coments. xm' OVERWRI TE | NTO TABLE coments;
]

The following query shows the content of the COWENTS table.

hi ve> SELECT usr, content, likeCt FROM comments;

john It is raining :(0
kelly | won the lottery! 2
m ke Happy New Year! 1

Example 7-5 Querying an XML Column

This CREATE TABLE command is like the previous example, except that the | i ke
elements are produced as XML in a STRI NG column.

hi ve>
CREATE TABLE comments2 (usr STRING content STRING |ikes STRING
RON FORMAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM_Ser De'
STORED AS
| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLI nput For mat '
OUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLQut put For mat '
TBLPROPERTI ES(
"oxh-el enents" = "coment",
"oxh-colum. usr" = "./ @ser",
"oxh-colum. content" = "./@ext",
"oxh-colum. likes" = "fn:serialize(<likes>{./like}</likes>)"

)s

The Hive LOAD DATA command loads comment s. xni into the table. See "Simple
Examples" for the contents of the file.

hi ve> LOAD DATA LOCAL | NPATH ' comments. xml ' OVERWRI TE | NTO TABLE comment s2;

The following query shows the content of the COWENTS? table.

hi ve> SELECT usr, content, likes FROM comments2;

john It is raining :(<likes/>
kelly | won the lottery! <likes><like user="john"/><like user="mke"/></likes>
m ke Happy New Year! <likes><like user="laura"/></likes>

The next query extracts the user names from the | i ke elements:

hi ve> SELECT usr, t.user FROM comments2 LATERAL VIEW
> xml_table("likes/like", comments2.likes, struct(*./@user'™)) t AS user;

kel ly john
kel ly mike
mke laura

7-11

Chapter 7
Creating XML Tables

Example 7-6 Generating XML in a Single String Column

This command creates a table named COWENTS3 with a row for each comment, and
produces the XML in a single STRI NG column.

hi ve>
CREATE TABLE comments3 (xm STRING
RON FORMAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM_Ser De'
STORED AS

| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLI nput For mat
QUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLQut put For mat '
TBLPROPERTI ES(
"oxh-el enents" = "coment"
"oxh-colum.xm" = "fn:serialize(.)"

)

The Hive LOAD DATA command loads comment s. xni into the table. See "Simple
Examples" for the contents of the file.

hi ve> LOAD DATA LOCAL | NPATH ' comments. xml' OVERWRI TE | NTO TABLE conmment s3;

The following query shows the contents of the XML column:

hi ve> SELECT xml FROM comments3;

<comment id="12345" user="john" text="It is raining :("/>

<comment id="56789" user="kelly" text="I won the lottery!">
<l'ike user="john"/>
<l'ike user="nike"/>

</ conment >

<comment id="54321" user="nike" text="Happy New Year!">
<like user="laura"/>

</ conment >

The next query extracts the IDs and converts them to integers:

hi ve> SELECT xml_query_as_int("'comment/@id", xml) FROM comments3;

12345
56789
54321

7.6.3.3 OpenStreetMap Examples

ORACLE

These examples use data from OpenStreetMap, which provides free map data for the
entire world. You can export the data as XML for specific geographic regions or the
entire planet. An OpenStreetMap XML document mainly contains a sequence of node,
way, and rel ati on elements.

In these examples, the OpenStreetMap XML files are stored in the / user/ name/ osm
HDFS directory.

7-12

Chapter 7
Creating XML Tables

¢ See Also:

e To download OpenStreetMap data, go to
http:// ww. openstreet nap. or g/ expor t
e For information about the OpenStreetMap XML format, go to

http://w ki.openstreetmap. org/w ki / OSM XM

Example 7-7 Creating a Table Over OpenStreetMap XML

This example creates a table over OpenStreetMap XML with one row for each node
element as follows:

e Theid,lat,lon, and user attributes of the node element are mapped to table
columns.

e The year is extracted from the ti mest anp attribute and mapped to the YEAR column.
If a node does not have a ti nest anp attribute, then - 1 is used for the year.

e If the node element has any child t ag elements, then they are stored as an XML
string in the TAGS column. If node has no child t ag elements, then column value is
NULL.

hi ve>
CREATE EXTERNAL TABLE nodes (
id BIGNT,
| atitude DOUBLE,
| ongi t ude DOUBLE,
year SMALLINT,
tags STRI NG
)
ROW FORVAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM.Ser De'
STORED AS
| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLI nput For mat '
QUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLQut put For mat '
LOCATI ON ' / user / nane/ osm
TBLPROPERTI ES (

"oxh-el ements" = "node",
"oxh-colum.id" ="./@d",
"oxh-colum.latitude" ="./@at",
"oxh-col um. | ongi tude" = "./@on",

"oxh-col um. year" ="
if (fniexists(./@inestanp)) then
fn:year-fromdateTi me(xs: dateTinme(./@inestanp))
el se
-1

"oxh-col um. tags" ="
if (fniexists(./tag)) then
fn:serialize(<tags>{./tag}</tags>)
el se
()
)

The following query returns the number of nodes per year:

ORACLE 7-13

http://www.openstreetmap.org/export
http://wiki.openstreetmap.org/wiki/OSM_XML

Chapter 7
Oracle XML Functions for Hive Reference

hi ve> SELECT year, count(*) FROM nodes GROUP BY year;

This query returns the total number of tags across nodes:

hi ve> SELECT sun(xml _query_as_int("count(tags/tag)", tags)) FROM nodes:
Example 7-8

In OpenStreetMap XML, the node, way, and rel ati on elements share a set of common
attributes, such as the user who contributed the data. The next table produces one row
for each node, way, and rel ati on element.

hi ve>
CREATE EXTERNAL TABLE osm (
id Bl G NT,
uid BI G NT,
type STRING
)
ROV FORMAT
SERDE ' or acl e. hadoop. xquery. hi ve. OXM_Ser De'
STORED AS
| NPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXM.I nput For nat '
QUTPUTFORMAT ' or acl e. hadoop. xquery. hi ve. OXMLQut put For mat '
LOCATI ON ' / user/ name/ osn
TBLPROPERTI ES (

"oxh-el ements" = "node, way, relation",
"oxh-colum.id" ="./@d",

"oxh-colum. uid" ="./@id",

"oxh-col um. type" = "./nanme()"

)

The following query returns the number of node, way, and rel ati on elements. The TYPE
column is set to the name of the selected element, which is either node, way, or
rel ation.

hi ve> SELECT type, count(*) FROM osm GROUP BY type;

This query returns the number of distinct user IDs:

hi ve> SELECT count (*) FROM (SELECT uid FROM osm GROUP BY uid) t;

¢ See Also:
For a description of the OpenStreetMap elements and attributes, go to

http://wi ki.openstreetmap. org/w ki/El ements

7.7 Oracle XML Functions for Hive Reference

This section describes the Oracle XML Extensions for Hive. It describes the following
commands and functions:

e xml_exists
e xml_query

e xml_query_as_primitive

ORACLE 7-14

http://wiki.openstreetmap.org/wiki/Elements

Chapter 7
Oracle XML Functions for Hive Reference

« xml_table

7.7.1 Data Type Conversions

This table shows the conversions that occur automatically between Hive primitives and
XML schema types.

Table 7-1 Data Type Equivalents

Hive XML schema
TI NYI NT Xs: byte
SMALLI NT Xs: short

I NT Xs:int

Bl G NT xs: | ong
BOOLEAN xs: bool ean
FLOAT xs: f1 oat
DOUBLE xs: doubl e
STRI NG Xs:string

7.7.2 Hive Access to External Files

The Hive functions have access to the following external file resources:

e XML schemas

See http://ww. w3. or g/ TR/ xquer y/ #i d- schenma- i nport
* XML documents

See http://ww. w3. or g/ TR/ xpat h- f unct i ons/ #f unc- doc
e XQuery library modules

See http://wwv. w3. or g/ TR/ xquer y/ #i d- modul e-i nport

You can address these files by their URI from either HTTP (by using the http://...
syntax) or the local file system (by using the file://... syntax). In this example,
relative file locations are resolved against the local working directory of the task, so
that URIs such as bar.xsd can be used to access files that were added to the
distributed cache:

xm _query("
inport schema nanmespace tns='http://exanple.org" at 'bar.xsd";
validate { ... }

To access a local file, first add it to the Hadoop distributed cache using the Hive ADD
FI LE command. For example:

ADD FI LE /I ocal /nydir/thisfile.xsd;

ORACLE 7-15

http://www.w3.org/TR/xquery/#id-schema-import
http://www.w3.org/TR/xpath-functions/#func-doc
http://www.w3.org/TR/xquery/#id-module-import

Chapter 7
Online Documentation of Functions

Otherwise, you must ensure that the file is available on all nodes of the cluster, such
as by mounting the same network drive or simply copying the file to every node. The
default base URI is set to the local working directory.

2 See Also:

« For examples of accessing the distributed cache, see Example 7-15 for
xm _query, Example 7-22 for xm _query_as_prini tive, and Example 7-31
for xnl _table.

e For information about the default base URI, see XQuery 3.1: An XML
Query Language at

http:// ww. w3. or g/ TR/ xquer y/ #dt - base- uri

7.8 Online Documentation of Functions

You can get online Help for the Hive extension functions by using this command:

DESCRI BE FUNCTI ON [EXTENDED] function_nane;

This example provides a brief description of the xm _query function:

hi ve> describe function xml_query;
(03¢
xm _query(query, bindings) - Returns the result of the query as a STRING array

The EXTENDED option provides a detailed description and examples:

hi ve> describe function extended xml_query;

(04

xm _query(query, bindings) - Returns the result of the query as a STRING array

Eval uates an XQuery expression with the specified bindings. The query argument nust
be a STRING and the bindings argument nust be a STRING or a STRUCT. If the bindings
argument is a STRING it is parsed as XM and bound to the initial context item of

the query. For exanple:

> SELECT xm _query("x/y", "<x><y>hello</y><z/><y>worl|d</y></x>") FROMsrc LIMT 1;
["hello", "world"]

7.9 xml_exists

ORACLE

Tests if the result of a query is empty.
Signature
xm _exi st s(
STRING query,
{ STRING | STRUCT } bi ndings
) as BOOLEAN

7-16

https://www.w3.org/TR/xquery-31/#dt-static-base-uri

Chapter 7
xml_exists

Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.

You can access files that are stored in the Hadoop distributed cache and HTTP
resources (http://...). Use the XQuery f n: doc function for XML documents, and the
fn: unparsed-text and f n: parsed- t ext -1 i nes functions to access plain text files.

If an error occurs while compiling the query, the function raises an error. If an error
occurs while evaluating the query, the error is logged (not raised), and an empty array
is returned.

bindings
The input that the query processes. The value can be an XML STRI NG or a STRUCT of
variable values:

e STRING The string is bound to the initial context item of the query as XML.

e STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type
STRI NG, and the value fields can be any supported primitive. See "Data Type
Conversions."

Return Value

true if the result of the query is not empty; f al se if the result is empty or the query
raises a dynamic error

Notes

The first dynamic error raised by a query is logged, but subsequent errors are
suppressed.

Examples
Example 7-9 STRING Binding

This example parses and binds the input XML string to the initial context item of the
query x/y:

H ve> SELECT xml_exists("x/y", "<x><y>123</y></x>") FROM src LIMIT 1;

true

Example 7-10 STRUCT Binding
This example defines two query variables, $dat a and $val ue:

Hi ve> SELECT xml_exists(
"parse-xml ($data)/x/y[@id = $value]”,

struct(
"data", "<x><y id="1"/><y id="2"/></x>",
"value", 2

)

) FROM src LIMIT 1;

ORACLE 7-17

Chapter 7
xml_query

true

Example 7-11 Error Logging
In this example, an error is written to the log, because the input XML is invalid:

hi ve> SELECT xml_exists("x/y", "<x><y>123</invalid></x>"") FROM src LIMIT 1;

fal se

7.10 xml_query

ORACLE

Returns the result of a query as an array of STRI NG values.

Signature

xm _quer y(

STRI NG query,

{ STRING | STRUCT } bindings
) as ARRAY<STRI NG

Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.

You can access files that are stored in the Hadoop distributed cache and HTTP
resources (http://...). Use the XQuery f n: doc function for XML documents, and the
fn: unparsed-text and fn: parsed- t ext -1 i nes functions to access plain text files. See
Example 7-15.

If an error occurs while compiling the query, the function raises an error. If an error
occurs while evaluating the query, the error is logged (not raised), and an empty array
is returned.

bindings
The input that the query processes. The value can be an XML STRI NG or a STRUCT of
variable values:

e STRING The string is bound to the initial context item of the query as XML. See
Example 7-12.

e STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type
STRING, and the value fields can be any supported primitive. See "Data Type
Conversions" and Example 7-13.

Return Value

A Hive array of STRI NG values, which are the result of the query converted to a
sequence of atomic values. If the result of the query is empty, then the return value is
an empty array.

7-18

ORACLE

Chapter 7
xml_query

Examples
Example 7-12 Using a STRING Binding

This example parses and binds the input XML string to the initial context item of the
query x/y:

hi ve>
SELECT xml_query("x/y", "<x><y>hello</y><z/><y>world</y></x>")
FROM src LIMIT 1;

["hel I 0", "worl d"]
Example 7-13 Using a STRUCT Binding

In this example, the second argument is a STRUCT that defines two query
variables, $dat a and $val ue. The values of the variables in the STRUCT are converted to
XML schema types as described in "Data Type Conversions."

hi ve>
SELECT xml_query(
"fn:parse-xml($data)/x/y[@id = $value]",

struct(
"data", "<x><y id="1">hello</y><z/><y id="2">world</y></x>",
"value", 1

)

) FROM src LIMIT 1;

["hell0"]

Example 7-14 Obtaining Serialized XML

This example uses the fn: seri al i ze function to return serialized XML:
hi ve>

SELECT xml_query(

"for $y in x/y

return fn:serialize($y)

"<x><y>hello</y><z/><y>wor ld</y></x>"
) FROM src LIMIT 1;

[" <y>He| [o</y>", "<y>wor | d</y>"]
Example 7-15 Accessing the Hadoop Distributed Cache

This example adds a file named test.xml to the distributed cache, and then queries it
using the f n: doc function. The file contains this value:

<x><y>hel | o</ y><z/ ><y>wor | d</y></ x>
hive> ADD FILE test.xml;

Added resource: test.xn
hi ve> SELECT xml_query(*'fn:doc("test.xml")/x/y", NULL) FROM src LIMIT 1;

7-19

Chapter 7
xml_query_as_primitive

["hel I 0", "world"]
Example 7-16 Results of a Failed Query

The next example returns an empty array because the input XML is invalid. The XML
parsing error will be written to the log:

hi ve> SELECT xml_query("x/y", "<x><y>hello</y></invalid") FROM src LIMIT 1;

(]

7.11 xml_query_as_primitive

ORACLE

Returns the result of a query as a Hive primitive value. Each Hive primitive data type
has a separate function named for it:

e xnl_query_as_string

e xnl_query_as_hool ean
e xnl _query_as_tinyint

e xnl _query_as_snallint
e xm _query_as_int

e xnl _query_as_bigint

e xnl _query_as_doubl e

e xn _query_as_fl oat

Signature

xm _query_as_primtive (

STRI NG query,

{STRUCT | STRING bi ndi ngs,
} as printive

Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.

You can access files that are stored in the Hadoop distributed cache and HTTP
resources (http://...). Use the XQuery fn: doc function for XML documents, and the
fn: unparsed-text and fn: parsed-t ext -1i nes functions to access plain text files. See
Example 7-15.

If an error occurs while compiling the query, the function raises an error. If an error
occurs while evaluating the query, the error is logged (not raised), and an empty array
is returned.

bindings

The input that the query processes. The value can be an XML STRI NG or a STRUCT of
variable values:

7-20

ORACLE

Chapter 7
xml_query_as_primitive

e STRING The string is bound to the initial context item of the query as XML. See
Example 7-17.

e STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type
STRING, and the value fields can be any supported primitive. See "Data Type
Conversions" and Example 7-18.

The first item in the result of the query is cast to the XML schema type that maps
to the primitive type of the function. If the query returns multiple items, then all but
the first are ignored.

Return Value

A Hive primitive value, which is the first item returned by the query, converted to an
atomic value. If the result of the query is empty, then the return value is NULL.

Examples
Example 7-17 Using a STRING Binding

This example parses and binds the input XML string to the initial context item of the
query x/y:

hi ve> SELECT xml_query_as_string("x/y", "<x><y>hello</y></x>") FROM src LIMIT 1;

"hel | 0"

The following are string binding examples that use other primitive functions:

hi ve> SELECT xml_query_as_int("x/y", "<x><y>123</y></x>") FROM src LIMIT 1;

123

hi ve> SELECT xml_query_as_double("x/y", "<x><y>12.3</y></x>"") FROM src LIMIT 1;

12.3

hi ve> SELECT xml_query_as_boolean("x/y", "<x><y>true</y></x>") FROM src LIMIT 1;

true

Example 7-18 Using a STRUCT Binding

In this example, the second argument is a STRUCT that defines two query
variables, $dat a and $val ue. The values of the variables in the STRUCT are converted to
XML schema types as described in "Data Type Conversions."

hi ve>
SELECT xml_query_as_string(
"fn:parse-xml ($data)/x/y[@id = $value]”,
struct(
"data", "<x><y id="1">hello</y><z/><y id="2">world</y></x>",

7-21

ORACLE

Chapter 7
xml_query_as_primitive

"value", 2

)
) FROM src LIMIT 1;

wor | d

Example 7-19 Returning Multiple Query Results

This example returns only the first item (hello) from the query. The second item (world)
is discarded.

hi ve> SELECT xml_query_as_string("'x/y", "<x><y>hello</y><z/><y>world</y></x>"") FROM
src LIMIT 1;

hell o

Example 7-20 Returning Empty Query Results
This example returns NULL because the result of the query is empty:

hi ve> SELECT xml_query_as_string(""x/foo", "<x><y>hello</y><z/><y>world</y></x>")
FROM src LIMIT 1;

NULL

Example 7-21 Obtaining Serialized XML

These examples use the fn: seri al i ze function to return complex XML elements as a
STRI NG value:

hive> SELECT xml_query_as_string("fn:serialize(x/y[1])", "<x><y>hello</y><z/
><y>wor ld</y></x>") FROM src LIMIT 1;

"<y>hel | o</ y>"

hi ve> SELECT xml_query_as_string(
"fn:serialize(<html><head><title>{$desc}</title></head><body>Name: {$name}</
body></html>)",
struct(
"desc"”, "Employee Details™,
"name", "John Doe"

)
) FROM src LIMIT 1;
<ht m ><head><tit| e>Enpl oyee Details</title></head><body>Name: John Doe</body></htn >

Example 7-22 Accessing the Hadoop Distributed Cache

This example adds a file named test . xnl to the distributed cache, and then queries it
using the f n: doc function. The file contains this value:

<x><y>hel | o</ y><z/ ><y>wor | d</y></ x>

7-22

Chapter 7
xml_table

H ve> ADD FILE test.xml;
Added resource: test.xn
Hi ve> SELECT xml_query_as_string("fn:doc("test.xml")/x/y[1]", NULL) FROM src LIMIT 1;

hello

Example 7-23 Results of a Failed Query

This example returns NULL because </inval i d is missing an angle bracket. An XML
parsing error is written to the log:

H ve> SELECT xml_query_as_string("x/y", "<x><y>hello</invalid™) FROM src LIMIT 1;

NULL

This example returns NULL because f oo cannot be cast as xs: f1 oat . A cast error is
written to the log:

Hi ve> SELECT xml_query_as_float("x/y", "<x><y>foo</y></x>") FROM src LIMIT 1;

NULL

7.12 xml_table

ORACLE

A user-defined table-generating function (UDTF) that maps an XML value to zero or
more table rows. This function enables nested repeating elements in XML to be
mapped to Hive table rows.

Signature

xm _tabl e(
STRUCT? namespaces,
STRING query,
{STRUCT | STRING bi ndi ngs,
STRUCT? col ums
)

Description

namespaces

Identifies the namespaces that the query and column expressions can use. Optional.
The value is a STRUCT with an even number of STRI NG fields. Each pair of fields defines
a namespace binding (prefix, URI) that can be used by the query or the column
expressions. See Example 7-26.

query

An XQuery or XPath expression that generates a table row for each returned value. It
must be a constant value, because it is only read the first time the function is
evaluated. The initial query string is compiled and reused in all subsequent calls.

If a dynamic error occurs during query processing, then the function does not raise an
error, but logs it the first time. Subsequent dynamic errors are not logged.

7-23

ORACLE

Chapter 7
xml_table

bindings
The input that the query processes. The value can be an XML STRI NG or a STRUCT of
variable values:

e STRING The string is bound to the initial context item of the query as XML. See
Example 7-24.

e STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type
STRI NG, and the value fields can be any supported primitive. See "Data Type
Conversions."

columns

The XQuery or XPath expressions that define the columns of the generated rows.
Optional.

The value is a STRUCT that contains the additional XQuery expressions. The XQuery
expressions must be constant STRI NG values, because they are only read the first time
the function is evaluated. For each column expression in the STRUCT, there is one
column in the table.

For each item returned by the query, the column expressions are evaluated with the
current item as the initial context item of the expression. The results of the column
expressions are converted to STRI NG values and become the values of the row.

If the result of a column expression is empty or if a dynamic error occurs while
evaluating the column expression, then the corresponding column value is NULL. If a
column expression returns more than one item, then all but the first are ignored.
Omitting the columns argument is the same as specifying ' struct(".")' . See
Example 7-25.

Return Value

One table row for each item returned by the query argument.

Notes

The XML table adapter enables Hive tables to be created over large XML files in
HDFS. See "Hive CREATE TABLE Syntax for XML Tables".

Examples

Note:

You could use the xm _query_as_string function to achieve the same result in
this example. However, xnl _t abl e is more efficient, because a single function
call sets all three column values and parses the input XML only once for
each row. The xm _query_as_stri ng function requires a separate function call
for each of the three columns and reparses the same input XML value each
time.

Example 7-24 Using a STRING Binding

The query "x/y" returns two <y> elements, therefore two table rows are generated.

Because there are two column expressions ("./z", "./w"), each row has two columns.

hi ve> SELECT xml_table(
"X/y",

7-24

Chapter 7
xml_table

x>
<y>
<z>a</z>
<w>h</w>
</y>
<y>
<z>c</z>
</y>
</x>

struct(*./z", "./w")
) AS (z, w)
FROM src;

a b
c NULL

Example 7-25 Using the Columns Argument

The following two queries are equivalent. The first query explicitly specifies the value
of the columns argument:

hi ve> SELECT xml_table(

X1y,
"<x><y>hel lo</y><y>world</y></x>",
struct(".")

) AS ()

FROM src;

hel l o
wor | d

The second query omits the columns argument, which defaults to struct ("."):

hi ve> SELECT xml_table(
"x/y",
"<x><y>hel lo</y><y>world</y></x>"

) AS (¥)
FROM src;

hel l o
wor | d

Example 7-26 Using the Namespaces Argument

This example specifies the optional namespaces argument, which identifies an ns
prefix and a URI of http: // exanpl e. or g.

hi ve> SELECT xml_table(
struct('ns", "http://example.org"),
"ns:x/ns:y",
"<x xmlns="http://example.org”><y><z/></y><y><z/><z/></y></x>",
struct("count(./ns:z)")

) AS (¥)
FROM src;

ORACLE 7-25

ORACLE

Chapter 7
xml_table

1
2

Example 7-27 Querying a Hive Table of XML Documents

This example queries a table named COWENTS3, which has a single column named
XM__STR of type STRI NG. It contains these three rows:

hi ve> SELECT xml_str FROM comments3;

<comment id="12345" user="john" text="It is raining: ("/>

<coment id="56789" user="kelly" text="1 won the lottery!"><like user="john"/><like
user ="ni ke"/ ></ coment >

<comment id="54321" user="nike" text="Happy New Year!"><like user="|aura"/></coment>

The following query shows how to extract the user, text, and number of likes from the
COWMENTS3 table.

hi ve> SELECT t.id, t.usr, t.likes
FROM comments3 LATERAL VIEW xml_table(
"'comment™,
comments.xml_str,
struct("./@id", "./@user”, "fn:count(./like)")
) t AS id, usr, likes;

12345 john 0
56789 kelly 2
54321 nmike 1

Example 7-28 Mapping Nested XML Elements to Table Rows

This example shows how to use xnl _t abl e to flatten nested, repeating XML elements
into table rows. See the previous example for the COWENTS table.

> SELECT t.i, t.u, t.l
FROM comments3 LATERAL VIEW xml_table (

"let $comment := ./comment
for $like in $comment/like
return

<r>

<id>{$comment/@id/data()}</id>

<user>{$comment/@user/data()}</user>

<like>{$like/@user/data()}</like>
</r>

comments.xml_str
struct("./id", "./user”, "./like")
) tAS i, u, I;

56789 kelly john
56789 kelly mike
54321 nmike | aura

Example 7-29 Mapping Optional Nested XML Elements to Table Rows

This example is a slight modification of the previous example that produces a row
even when a comment has no likes. See Example 7-27 for the COWENTS table.

> SELECT t.i, t.u, t.I
FROM comments3 LATERAL VIEW xml_table (

7-26

Chapter 7
xml_table

"let $comment := ./comment
for $like allowing empty in $comment/like
return

<r>

<id>{$comment/@id/data()}</id>

<user>{$comment/@user/data()}</user>

<like>{$like/@user/data()}</like>
</r>

comments.xml_str,
struct("./id", "./user”, "./like")
) tAS i, u, I;

12345 john

56789 kelly john
56789 kelly mike
54321 mike | aura

Example 7-30 Creating a New View

You can create views and new tables using xn _t abl e, the same as any table-
generating function. This example creates a new view named COWENTS_LI KES from the
COWMENTS table:

hi ve> CREATE VI EW coments_|i kes AS
SELECT xm _tabl g(
"comment ",
comments. xnl _str,
struct("./@d", "count(./like)")
) AS (id, likeCt)
FROM conment s;

This example queries the new view:

> SELECT * FROM comments_likes
WHERE CAST(likeCt AS INT) != 0;

56789 2
54321 1

Example 7-31 Accessing the Hadoop Distributed Cache

You can access XML documents and text files added to the distributed cache by using
the fn: doc and f n: unpar sed-t ext functions.

This example queries a file named test.xml that contains this string:

<x><y>hel | o</ y><z/ ><y>wor | d</ y></ x>

hive> ADD FILE test.xml;
Added resource: test.xnl
hi ve> SELECT xml_table(""fn:doc("test.xml")/x/y", NULL) AS y FROM src;

hel l o
wor | d

ORACLE 7-27

Oracle R Advanced Analytics for Hadoop

This part contains the following chapter:

e Using Oracle R Advanced Analytics for Hadoop

ORACLE

Using Oracle R Advanced Analytics for

Hadoop

This chapter describes R support for big data. It contains the following sections:

About Oracle R Advanced Analytics for Hadoop

Access to HDFS Files

Access to Apache Hive

Access to Oracle Database

Oracle R Advanced Analytics for Hadoop Functions

Demos of Oracle R Advanced Analytics for Hadoop Functions
Security Notes for Oracle R Advanced Analytics for Hadoop
Third-Party Licenses for ORAAH

Note:

Oracle R Advanced Analytics for Hadoop was previously called Oracle R
Connector for Hadoop or ORCH. ORCH is still mentioned in this document
and in the product for backward compatibility.

8.1 About Oracle R Advanced Analytics for Hadoop

Oracle R Advanced Analytics for Hadoop provides:

ORACLE

A general computation framework, in which you can use the R language to write
your custom logic as mappers or reducers. The code executes in a distributed,
parallel manner using the available compute and storage resources on the
Hadoop cluster.

An R interface to manipulate Hive tables, which is similar to the transparency layer
of Oracle R Enterprise but with a restricted set of functionality.

A set of pre-packaged parallel-distributed algorithms.

Support for Apache Spark, with which you can execute predictive analytics
functions on a Hadoop cluster using YARN to dynamically form a Spark cluster or
on a dedicated stand-alone Spark cluster. You can switch on or off Spark
execution using spark.connect() and spark.disconnect() functions.

The ability to use Spark to execute neural network analytical function
(orch.neural), for significantly improved performance over MapReduce execution.

8-1

Chapter 8
About Oracle R Advanced Analytics for Hadoop

8.1.1 Oracle R Advanced Analytics for Hadoop Architecture

Oracle R Advanced Analytics for Hadoop:

is built upon Hadoop streaming, a utility that is a part of Hadoop distribution and
allows creation and execution of Map or Reduce jobs with any executable or script
as mapper or reducer.

is designed for R users to work with Hadoop cluster in a client-server
configuration. Client configurations must conform to the requirements of the
Hadoop distribution that Oracle R Advanced Analytics for Hadoop is deployed in.

uses command line interfaces to HDFS and HIVE to communicate from client
nodes to Hadoop clusters.

builds the logic required to transform an input stream of data into R data frame
object to be readily consumed by user-provided mapper and reducer functions
written into R.

allows R users to move data from an Oracle Database table or view into Hadoop
as an HDFS file, using the Sqoop utility. Similarly data can be moved back from an
HDFS file into Oracle Database, using the Sqoop utility or Oracle Loader for
Hadoop, depending on the size of data being moved and security requirements

support's R's binary RData representation for input and output, for performance
sensitive analytic workloads. Conversion utilities from delimiter separated
representation to and from RData representation is available as part of Oracle R
Advanced Analytics for Hadoop.

includes a Hadoop Abstraction Layer (HAL) which manages the similarities and
differences across various Hadoop distributions. ORCH will auto-detect the
Hadoop version at startup.

8.1.2 Oracle R Advanced Analytics for Hadoop packages and

functions

ORACLE

Oracle R Advanced Analytics for Hadoop includes a collection of R packages that
provides:

Interfaces to work with the:

— Apache Hive tables

— Apache Hadoop compute infrastructure

— local R environment

— Oracle Database tables

— -Proprietary binary RData representations
— Apache Spark RDD objects

Predictive analytic techniques for:

— linear regression

— generalized linear models

— neural networks

8-2

ORACLE

Chapter 8
About Oracle R Advanced Analytics for Hadoop

— matrix completion using low rank matrix factorization
— honnegative matrix factorization

— k-means clustering

— principal components analysis

— multivariate analysis

ORAAH 2.6 introduces full stack of predictive modeling algorithms on Spark. This
includes integration of many Spark MLIib capabilities, including Linear Model
techniques (Linear Regression, LASSO, Ridge Regression), as well as GLM,
SVM, k-Means, Gaussian Mixture clustering, Decision Trees, Random Forests and
Gradient Boosted Trees, PCA and SVD. Existing ORAAH custom Spark
algorithms are enhanced with the addition of Linear Models and Stepwise
capability for both LM and GLM.

While these techniques have R interfaces, Oracle R Advanced Analytics for
Hadoop implement them in either Java or R as distributed, parallel MapReduce
jobs, thereby leveraging all nodes of your Hadoop cluster.

You install and load this package as you would any other R package. Using simple R
functions, you can perform tasks like these:

Access and transform HDFS data using a Hive-enabled transparency layer
Use the R language for writing mappers and reducers

Copy data between R memory, the local file system, HDFS, Hive, and Oracle
Database instances

Manipulate Hive data transparently from R

Execute R programs as Hadoop MapReduce jobs and return the results to any of
those locations

— With Oracle R Advanced Analytics for Hadoop, MapReduce jobs can be
submitted from R for both non-cluster (local) execution and Hadoop cluster
execution

— When Oracle R Enterprise and Oracle R Advanced Analytics for Hadoop are
used together on a database server, you can schedule database jobs using
the DBMS_SCHEDULER to execute scripts containing ORCH functions

To use Oracle R Advanced Analytics for Hadoop, you should be familiar with
MapReduce programming, R programming, and statistical methods.

8.1.3 Oracle R Advanced Analytics for Hadoop APIs

Oracle R Advanced Analytics for Hadoop provides access from a local R client to
Apache Hadoop using functions with these prefixes:

hadoop: Identifies functions that provide an interface to Hadoop MapReduce
hdf s: Identifies functions that provide an interface to HDFS
or ch: ldentifies a variety of functions; or ch is a general prefix for ORCH functions

ore: ldentifies functions that provide an interface to a Hive data store

Oracle R Advanced Analytics for Hadoop uses data frames as the primary object type,
but it can also operate on vectors and matrices to exchange data with HDFS. The
APIs support the numeric, integer, and character data types in R.

8-3

Chapter 8
About Oracle R Advanced Analytics for Hadoop

All of the APlIs are included in the ORCH library. The functions are listed in "Oracle R
Advanced Analytics for Hadoop Functions".

¢ See Also:

The R Project website at ht t p: / / ww. r - pr oj ect . or g/

8.1.4 Inputs to Oracle R Advanced Analytics for Hadoop

ORACLE

Oracle R Advanced Analytics for Hadoop can work with delimited text files resident in
an HDFS directory, HIVE tables, or binary RData representations of data. If the input
data to an Oracle R Advanced Analytics for Hadoop orchestrated map-reduce
computation does not reside in HDFS, a copy of the data in HDFS is created
automatically prior to launching the computation.

Before Oracle R Advanced Analytics for Hadoop can work with delimited text files it
determines metadata associated with the files and captures the same in a file stored
alongside of the data files. This file is named _ ORCHMETA . The metadata
contains information such as:

» If the file contains key(s), then the delimiter that is the key separator
e The delimiter that is the value separator

* Number and data types of columns in the file

e Optional names of columns

» Dictionary information for categorical columns

* Other Oracle R Advanced Analytics for Hadoop-specific system data

Oracle R Advanced Analytics for Hadoop runs an automatic metadata discovery
procedure on HDFS objects as part of hdfs.attach() invocation to create the metadata
file. When working with HIVE tables, _ ORCHMETA__ file is created automatically
from the HIVE table definition2.

Oracle R Advanced Analytics for Hadoop can optionally convert input data into R's
binary RData representation for I1/O performance that is on par with a pure Java based
map-reduce implementation.

Oracle R Advanced Analytics for Hadoop captures row streams from HDFS files and
delivers them formatted as a data frame object (or optionally matrix, vector, or list
objects generated from the data frame object or AS IS, if RData representation is
used) to the mapped function written in R. To accomplish this, Oracle R Advanced
Analytics for Hadoop must recognize the tokens and data types of the tokens that
become columns of a data frame. Oracle R Advanced Analytics for Hadoop uses R's
facilities to parse and interpret tokens in input row streams. If missing values are not
represented using R's “NA" token, they can be explicitly identified by the na.strings
argument of hdfs.attach().

Delimited text files with the same key and value separator are preferred over files with
a different key delimiter and value delimiter. The Read performance of files with the
same key and value delimiter is roughly 2x better than that of files with different key
and value delimiter.

8-4

http://www.r-project.org/

Chapter 8
Access to HDFS Files

The key delimiter and value delimiter can be specified through the key.sep and val.sep
arguments of hdfs.attach() or when running a MapReduce job for its output HDFS
data.

Binary RData representation is the most performance efficient representation of input
data in Oracle R Advanced Analytics for Hadoop. When possible, users are
encouraged to use this binary data representation for performance sensitive analytics.

8.2 Access to HDFS Files

For Oracle R Advanced Analytics for Hadoop to access the data stored in HDFS, the
input files must comply with the following requirements:

e Allinput files for a MapReduce job must be stored in one directory as the parts of
one logical file. Any valid HDFS directory name and file name extensions are
acceptable.

e Any file in that directory with a name beginning with an underscore () is ignored.

All delimiters are supported, and key and value delimiters can be different.

You can also convert a delimited file into binary format, using the Rdata representation
from R, for the best I/O performance.

8.3 Access to Apache Hive

Apache Hive provides an alternative storage and retrieval mechanism to HDFS files
through a querying language called HiveQL, which closely resembles SQL. Hive uses
MapReduce for distributed processing. However, the data is structured and has
additional metadata to support data discovery. Oracle R Advanced Analytics for
Hadoop uses the data preparation and analysis features of HiveQL, while enabling you
to use R language constructs.

8.3.1 ORCH Functions for Hive

ORCH provides these conversion functions to help you move data between HDFS and
Hive:

hdfs. t oHi ve
hdfs. fronH ve

8.3.2 ORE Functions for Hive

You can connect to Hive and analyze and transform Hive table objects using R
functions that have an or e prefix, such as ore. connect . If you are also using Oracle R
Enterprise, then you will recognize these functions. The or e functions in Oracle R
Enterprise create and manage objects in an Oracle database, and the or e functions in
Oracle R Advanced Analytics for Hadoop create and manage objects in a Hive
database. You can connect to one database at a time, either Hive or Oracle Database,
but not both simultaneously.

ORACLE 8-5

Chapter 8
Access to Apache Hive

Note:

For information about requirements and instructions to set up and use Oracle
R Enterprise, refer to Oracle R Enterprise library at: https: //
docs. oracl e. con cd/ E83411 _01/i ndex. ht m

For example, the ore. connect (type="H VE"') establishes a connection with the default
HIVE dat abase. or e. hi veQpt i ons(dbnane=" dbt np') and allows you to change the default
database, while ore. showH veOpti ons() allows you to examine the current default HIVE
database.

See Table 8-7 for a list of ORE as. ore. * and i s. ore. * functions.

8.3.3 Generic R Functions Supported in Hive

ORACLE

Oracle R Advanced Analytics for Hadoop also overloads the following standard
generic R functions with methods to work with Hive objects.

Character methods
casefol d, chartr, gsub, nchar, substr, substring, tol ower, t oupper
This release does not support grepl or sub.

Frame methods

e attach, show

° [1$1 $<'1[[1[[<'

e Subset functions: head, t ai |

e Metadata functions: di m | engt h, NROW nrow, NCOL, ncol , nanes, names<-, col nanes,
col names<-

» Conversion functions: as. dat a. franme, as. env, as. | i st
e Arithmetic operators: +, -, *, », %94 %% /

* Conpare, Logic, xor, !

e Testfunctions:is.finite,is.infinite,is.na,is.nan

e Mathematical transformations: abs, acos, asi n, atan, cei | i ng, cos, exp, expnt, fl oor,
| og, | 0910, | 0glp, | 092, | ogb, round, sign, sin, sqrt, tan, trunc

e Basic statistics: col Means, col Suns, r owMeans, r owSums, Sunmary, sunmary, uni que
* by, nerge
e unlist,rbind, cbind, data.frane, eval

This release does not support di manes, i nt eracti on, max. col , r ow. names, r ow. names<-,
scal e, split, subset, transform with, orwthin.

Logical methods
i fel se, Logic, xor, !

Matrix methods
Not supported

8-6

https://docs.oracle.com/cd/E83411_01/index.htm
https://docs.oracle.com/cd/E83411_01/index.htm

Chapter 8
Access to Apache Hive

Numeric methods
e Arithmetic operators: +, -, *, ", W %% /
e Testfunctions:is.finite,is.infinite,is.nan

e abs, acos, asin, atan, ceiling, cos, exp, expnd, floor, | og, | oglp, | 0g2, | 0910, | ogb,
mean, round, sign, sin, sqrt, Sunmary, sunmary, tan, trunc, zapsnal |

This release does not support at an2, bessel |, bessel K, bessel J, bessel Y, di ff,
factorial,|factorial, pmax, pmn, Or tabul ate.

Vector methods

* show, length,c

e Test functions: is.vector,is.na

e Conversion functions: as. vector, as. charact er, as. nuneri ¢, as. i nt eger, as. | ogi cal
o [l

* by, Conpare, head, % n% paste, sort,table, tail, tapply, uni que

This release does not support i nteraction, | engt hb, rank, or split.
The following example shows simple data preparation and processing.

Example 8-1 Using R to Process Data in Hive Tables

Connect to Hive
ore. connect (type="H VE")

Attach the current envt. into search path of R
ore.attach()

create a Hive table by pushing the nunmeric colums of the iris data set
IRI'S TABLE <- ore.push(iris[1:4])

Create bins based on Petal Length
IR'S TABLE$Petal Bins = ifel se(|1 RIS_TABLE$Petal . Length < 2.0, "SMALL PETALS",

+ i fel se(I RIS_TABLE$Petal . Length < 4.0, "MEDI UM PETALS",
+ i fel se(I R S_TABLE$Petal . Length < 6.0,
+ "MEDI UM LARGE PETALS', "LARGE PETALS")))

#Petal Bins is now a derived col um of the H VE object
> nanes(| Rl S_TABLE)
[1] "Sepal.Length" "Sepal .Wdth" "Petal.Length" "Petal.Wdth" "Petal Bins"

Based on the bins, generate summary statistics for each group
aggregate(l RIS TABLE$Pet al . Length, by = Iist(Petal Bins = | RIS TABLE$Pet al Bi ns),

+ FUN = sunmary)

1 LARGE PETALS 6 6.025000 6.200000 6.354545 6.612500 6.9 0
2 MEDI UM LARGE PETALS 4 4.418750 4.820000 4.888462 5.275000 5.9 0
3 MEDI UM PETALS 3 3.262500 3.550000 3.581818 3.808333 3.9 0
4 SMALL PETALS 1 1.311538 1.407692 1.462000 1.507143 1.9 0

War ni ng nessage:
ORE obj ect has no uni que key - using random order

ORACLE .

Chapter 8
Access to Apache Hive

8.3.4 Support for Hive Data Types

ORACLE

Oracle R Advanced Analytics for Hadoop can access any Hive table containing
columns with string and numeric data types such as tinyint, smal li nt, bigint,int,
fl oat, and doubl e.

There is no support for these complex data types:

array
bi nary
map

struct
timestanp
uni on

If you attempt to access a Hive table containing an unsupported data type, you will
receive an error message. To access the table, you must convert the column to a
supported data type.

To convert a column to a supported data type:

1. Open the Hive command interface:

$ hive
hi ve>

2. Identify the column with an unsupported data type:
hive> descri be tabl e_nane;
3. View the data in the column:
hive> sel ect col um_name fromtabl e_nane;
4. Create a table for the converted data, using only supported data types.
5. Copy the data into the new table, using an appropriate conversion tool.

The first example below shows the conversion of an array. The other two examples
show the conversion of timestamp data.

Example 8-2 Converting an Array to String Columns

R> ore.sync(tabl e="t1")
VWrni ng nessage
table t1 contains unsupported data types

hi ve> describe t1;

coll int
col2 array<string>

hi ve> select * from t1;

b et
,,f]
it

wWw N -

["
["
[

(C!Q.QJ

hive> create table t2 (cl string, c2 string, c2 string);
hive> insert into table t2 select col2[0], col2[1], col2[2] from t1;

8-8

Chapter 8
Access to Apache Hive

R> ore.sync(table="t2")
R> ore.1s()

[l] Ht 2Il

R> t2%cl

[l] n an n dn n gn

The following example uses automatic conversion of the ti nest anp data type into
string. The data is stored in a table named t 5 with a column named t st np.

Example 8-3 Converting a Timestamp Column

hive> select * fromtb5;

hive> create table t6 (timestnp string);
hive> insert into table t6 SELECT tstnp fromtb5;

The following example uses the Hive get _j son_obj ect function to extract the two
columns of interest from the JSON table into a separate table for use by Oracle R
Advanced Analytics for Hadoop.

Example 8-4 Converting a Timestamp Column in a JSON File

hive> select * fromt3;
(04
{"custld":
1305981, "movi el d":nul |, "genreld":null,"time":"2010-12- 30: 23: 59: 32", "reconrended": nul |
,tactivity": 9}

hive> create table t4 (custid int, time string);

hive> insert into table t4 SELECT cast(get_json_object(cl, '$.custld) as int),
cast (get_json_object(cl, '$.time') as string) fromt3;

8.3.5 Usage Notes for Hive Access

ORACLE

The Hive command language interface (CLI) is used for executing queries and
provides support for Linux clients. There is no JDBC or ODBC support.

The ore. creat e function creates Hive tables only as text files. However, Oracle R
Advanced Analytics for Hadoop can access Hive tables stored as either text files or
sequence files.

You can use the or e. exec function to execute Hive commands from the R console. For
a demo, run the hive_sequencefil e demo.

Oracle R Advanced Analytics for Hadoop can access tables and views in the default
Hive database only. To allow read access to objects in other databases, you must
expose them in the default database. For example, you can create views.

Oracle R Advanced Analytics for Hadoop does not have a concept of ordering in Hive.
An R frame persisted in Hive might not have the same ordering after it is pulled out of
Hive and into memory. Oracle R Advanced Analytics for Hadoop is designed primarily
to support data cleanup and filtering of huge HDFS data sets, where ordering is not
critical. You might see warning messages when working with unordered Hive frames:

8-9

Chapter 8
Access to Oracle Database

\Mr ni ng nessages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order

To suppress these warnings, set the ore. war n. order option in your R session:

R> options(ore.warn.order = FALSE)

8.3.6 Example: Loading Hive Tables into Oracle R Advanced Analytics

for Hadoop

The following example provides an example of loading a Hive table into an R data
frame for analysis. It uses these Oracle R Advanced Analytics for Hadoop functions:

hdfs. attach
ore.attach

ore. connect
ore.create

ore. hiveOptions
ore.sync

Example 8-5 Loading a Hive Table

Connect to H VE netastore and sync the H VE input table into the R session.
ore. connect (type="Hl VE")

ore.sync(tabl e="dat at ab")

ore.attach()

The "datatab" object is a Hve table with colums named custid, novieid, activity,
and rating.
Performfiltering to renove missing (NA) values fromcustid and novieid col ums
Project out three colums: custid, movieid and rating
tl <- datatab[!is.na(datatab$custid) &
lis.na(datat ab$novieid) &
dat at ab$activity==1, c("custid","movieid", "rating")]

Set HVE field deliniters to',". By default, it is Ctrl+a for text files but
ORCH 2.0 supports only '," as a file separator.
ore. hiveOptions(delinm,")

Create another Hve table called "datatabl" after the transformations above.
ore.create (t1, table="datatabl")

Use the HDFS directory, where the table data for datatabl is stored, to attach
it to ORCH framework. By default, this location is "/user/hivelwarehouse"
dfs.id <- hdfs.attach("/user/hivel/warehouse/ dat atabl")

dfs.id can now be used with all hdfs.* orch.* and hadoop.* APls of ORCH for
further processing and anal ytics.

8.4 Access to Oracle Database

ORACLE

Oracle R Advanced Analytics for Hadoop provides a basic level of database access.
You can move the contents of a database table to HDFS, and move the results of
HDFS analytics back to the database.

You can then perform additional analysis on this smaller set of data using a separate
product named Oracle R Enterprise. It enables you to perform statistical analysis on

8-10

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

database tables, views, and other data objects using the R language. You have
transparent access to database objects, including support for Business Intelligence
and in-database analytics.

Access to the data stored in an Oracle database is always restricted to the access
rights granted by your DBA.

Oracle R Enterprise is included in the Oracle Advanced Analytics option to Oracle
Database Enterprise Edition. It is not included in the Oracle Big Data Connectors.

" See Also:

Oracle R Enterprise User's Guide

8.4.1 Usage Notes for Oracle Database Access

Oracle R Advanced Analytics for Hadoop uses Sqoop to move data between HDFS
and Oracle Database. Sqoop imposes several limitations on Oracle R Advanced
Analytics for Hadoop:

* You cannot import Oracle tables with Bl NARY_FLOAT or Bl NARY_DOUBLE columns. As a
work-around, you can create a view that casts these columns to NUMBER data type.

e All column names must be in upper case.

8.4.2 Scenario for Using Oracle R Advanced Analytics for Hadoop with
Oracle R Enterprise

The following scenario may help you identify opportunities for using Oracle R
Advanced Analytics for Hadoop with Oracle R Enterprise.

Using Oracle R Advanced Analytics for Hadoop, you can look for files that you have
access to on HDFS and execute R calculations on data in one such file. You can also
upload data stored in text files on your local file system into HDFS for calculations,
schedule an R script for execution on the Hadoop cluster using DBMS_SCHEDULER, and
download the results into a local file.

Using Oracle R Enterprise, you can open the R interface and connect to Oracle
Database to work on the tables and views that are visible based on your database
privileges. You can filter out rows, add derived columns, project new columns, and
perform visual and statistical analysis.

Again using Oracle R Advanced Analytics for Hadoop, you might deploy a MapReduce
job on Hadoop for CPU-intensive calculations written in R. The calculation can use
data stored in HDFS or, with Oracle R Enterprise, in an Oracle database. You can
return the output of the calculation to an Oracle database and to the R console for
visualization or additional processing.

8.5 Oracle R Advanced Analytics for Hadoop Functions

The Oracle R Advanced Analytics for Hadoop functions are described in R Help topics.
This section groups them into functional categories and provides brief descriptions.

ORACLE 8-11

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

* Native Analytical Functions

* Using the Hadoop Distributed File System (HDFS)

» Using Apache Hive

» Using Aggregate Functions in Hive

* Making Database Connections

e Copying Data and Working with HDFS Files

e Converting to R Data Types

* Using MapReduce
» Debugging Scripts

8.5.1 Native Analytical Functions

The following table describes the native analytic functions.

ORACLE

Table 8-1 Functions for Statistical Analysis

]
Function

Description

orch.

cor

Generates a correlation matrix with a Pearson's correlation
coefficients.

orch.

cov

Generates a covariance matrix.

orch.

get Xl evel s

Creates a list of factor levels that can be used in the x| ev
argument of a nodel . mat ri x call. It is equivalent to
the . get Xl evel s function in the stats package.

orch.

Fits and uses generalized linear models on data stored in
HDFS.

orch.

Perform k-means clustering on a data matrix that is stored as a
file in HDFS.

orch.

Fits a linear model using tall-and-skinny QR (TSQR)
factorization and parallel distribution. The function computes
the same statistical parameters as the Oracle R Enterprise
or e. | mfunction.

orch.

Fits a low rank matrix factorization model using either the
jellyfish algorithm or the Mahout alternating least squares with
weighted regularization (ALS-WR) algorithm.

orch.

neur al

Provides a neural network to model complex, nonlinear
relationships between inputs and outputs, or to find patterns in
the data.

orch.

nnf

Provides the main entry point to create a honnegative matrix
factorization model using the jellyfish algorithm. This function
can work on much larger data sets than the R NVF package,
because the input does not need to fit into memory.

orch.

nnf . NMFal go

Plugs in to the R NVF package framework as a custom
algorithm. This function is used for benchmark testing.

orch.

princonp

Analyzes the performance of principal component.

orch

. recomrend

Computes the top n items to be recommended for each user
that has predicted ratings based on the input
orch. mahout . | nf. asl model.

8-12

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

Table 8-1 (Cont.) Functions for Statistical Analysis
|

Function Description
orch. sanpl e Provides the reservoir sampling.
orch. scal e Performs scaling.

8.5.2 Using the Hadoop Distributed File System (HDFS)

The following table describes the functions that execute HDFS commands from within
the R environment.

Table 8-2 Functions for Using HDFS
|

Function Description

hdfs. cd Sets the default HDFS path.

hdfs. cp Copies an HDFS file from one location to another.

hdf s. descri be Returns the metadata associated with a file in HDFS.

hdf s. exi sts Verifies that a file exists in HDFS.

hdf s. head Copies a specified number of lines from the beginning of a file in HDFS.

hdfs.id Converts an HDFS path name to an R df s. i d object.

hdfs.ls Lists the names of all HDFS directories containing data in the specified
path.

hdf s. mkdi r Creates a subdirectory in HDFS relative to the current working
directory.

hdf s. nv Moves an HDFS file from one location to another.

hdfs. parts Returns the number of parts composing a file in HDFS.

hdf s. pwd Identifies the current working directory in HDFS.

hdfs.rm Removes a file or directory from HDFS.

hdfs. rndir Deletes a directory in HDFS.

hdf s. r oot Returns the HDFS root directory.

hdf s. setroot Sets the HDFS root directory.

hdfs. si ze Returns the size of a file in HDFS.

hdfs. tail Copies a specified number of lines from the end of a file in HDFS.

8.5.3 Using Apache Hive

ORACLE

The following table describes the functions available in Oracle R Advanced Analytics
for Hadoop for use with Hive. .

Table 8-3 Functions for Using Hive

]
Function Description

hdfs. fronti ve Converts a Hive table to a HDFS identifier in ORCH.

8-13

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

Table 8-3 (Cont.) Functions for Using Hive

Function Description

hdfs. toH ve Converts an HDFS object identifier to a Hive table represented by an
ore. franme object.

ore.create Creates a database table from a dat a. f rame or or e. f r ane object.

ore. drop Drops a database table or view.

ore. get Retrieves the specified or e. f r ane object.

ore.pul | Copies data from a Hive table to an R object.

ore. push Copies data from an R object to a Hive table.

ore.recode Replaces the values in an or e. vect or object.

Related Topics

ORE Functions for Hive

8.5.4 Using Aggregate Functions in Hive

The following table describes the aggregate functions from the OREstats package that
Oracle R Advanced Analytics for Hadoop supports for use with Hive data.

Table 8-4 Oracle R Enterprise Aggregate Functions

Function Description

aggregate Splits the data into subsets and computes summary statistics for each
subset.

fivenum Returns Tukey's five-number summary (minimum, lower hinge,
median, upper hinge, and maximum) for the input data.

IR Calculates an interquartile range.

medi an Calculates a sample median.

quantile Generates sample quantiles that correspond to the specified
probabilities.

sd Calculates the standard deviation.

varl Calculates the variance.

1 For vectors only

8.5.5 Making Database Connections

The following table describes the functions for establishing a connection to Oracle

ORACLE

Database.

Table 8-5 Functions for Using Oracle Database

Function

Description

or ch. connect

Establishes a connection to Oracle Database.

8-14

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

Table 8-5 (Cont.) Functions for Using Oracle Database

Function

Description

orch. connect ed

Checks whether Oracle R Advanced Analytics for Hadoop is connected
to Oracle Database.

orch. dbcon Returns a connection object for the current connection to Oracle
Database, excluding the authentication credentials.
orch. dbinfo Displays information about the current connection.

or ch. di sconnect

Disconnects the local R session from Oracle Database.

or ch. reconnect

Reconnects to Oracle Database with the credentials previously
returned by or ch. di sconnect .

8.5.6 Copying Data and Working with HDFS Files

The following table describes the functions for copying data between platforms,
including R data frames, HDFS files, local files, and tables in an Oracle database.

ORACLE

Table 8-6 Functions for Copying Data

Function

Description

hdfs. attach

Copies data from an unstructured data file in HDFS into the R
framework. By default, data files in HDFS are not visible to the
connector. However, if you know the name of the data file, you can
use this function to attach it to the Oracle R Advanced Analytics for
Hadoop name space.

hdf s. downl oad

Copies a file from HDFS to the local file system.

hdf s. get

Copies data from HDFS into a data frame in the local R environment.
All metadata is extracted and all attributes, such as column names
and data types, are restored if the data originated in an R
environment. Otherwise, generic attributes like vall and val2 are
assigned.

hdf s. pul |

Copies data from HDFS into an Oracle database. This operation
requires authentication by Oracle Database. See or ch. connect .

hdf s. push

Copies data from an Oracle database to HDFS. This operation
requires authentication by Oracle Database. See or ch. connect.

hdf s. put

Copies data from an R in-memory object (data.frame) to HDFS. All
data attributes, like column names and data types, are stored as
metadata with the data.

hdf s. sanpl e

Copies a random sample of data from a Hadoop file into an R in-
memory object. Use this function to copy a small sample of the
original HDFS data for developing the R calculation that you
ultimately want to execute on the entire HDFS data set on the
Hadoop cluster.

hdf s. upl oad

Copies a file from the local file system into HDFS.

is.hdfs.id

Indicates whether an R object contains a valid HDFS file identifier.

8-15

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

8.5.7 Converting to R Data Types

The following table describes functions for converting and testing data types. The
Oracle R Enterprise OREbase package provides these functions.

Table 8-7 Functions for Converting and Testing Data Types

|
Function

Description

as.

ore

Coerces an in-memory R object to an ORE object.

as.ore. character

Coerces an in-memory R object to an ORE character object.

as.ore.date Coerces an in-memory R object to an ORE date object.
as.ore.datetine Coerces an in-memory R object to an ORE datetime object.
as.ore.difftime Coerces an in-memory R object to an ORE difftime object.
as.ore.factor Coerces an in-memory R object to an ORE factor object.
as.ore.frane Coerces an in-memory R object to an ORE frame object.
as.ore.integer Coerces an in-memory R object to an ORE integer object.
as.ore.list Coerces an in-memory R object to an ORE list object.
as.ore. |l ogi cal Coerces an in-memory R object to an ORE logical object.
as.ore.matrix Coerces an in-memory R object to an ORE matrix object.
as.ore.nuneric Coerces an in-memory R object to an ORE numeric object.
as. ore. obj ect Coerces an in-memory R object to an ORE object.
as.ore.vector Coerces an in-memory R object to an ORE vector object.
is.ore Tests whether the specified value is an object of a particular Oracle
R Enterprise class.
i s.ore.character Tests whether the specified value is a character.
is.ore.date Tests whether the specified value is a date.
is.ore.datetime Tests whether the specified value is a datetime type.
is.ore.difftime Tests whether the specified value is a difftime type.
is.ore. factor Tests whether the specified value is a factor.
is.ore.frame Tests whether the specified value is a frame.
i s.ore.integer Tests whether the specified value is an integer.
is.ore.list Tests whether the specified value is a list.
i s.ore.|ogical Tests whether the specified value is a logical type.
is.ore.mtrix Tests whether the specified value is a matrix.
i S.ore.nuneric Tests whether the specified value is numeric.
i s.ore.object Tests whether the specified value is an object.
i s.ore.vector Tests whether the specified value is a vector.

ORACLE

8-16

8.5.8 Using MapReduce

The following table describes functions that you use when creating and running

MapReduce programs.

Chapter 8
Oracle R Advanced Analytics for Hadoop Functions

Table 8-8 Functions for Using MapReduce

]
Function

Description

hadoop. exec

Starts the Hadoop engine and sends the mapper, reducer,
and combiner R functions for execution. You must load the
data into HDFS first.

hadoop. j obs Lists the running jobs, so that you can evaluate the current
load on the Hadoop cluster.

hadoop. run Starts the Hadoop engine and sends the mapper, reducer,
and combiner R functions for execution. If the data is not
already stored in HDFS, then hadoop. r un first copies the data
there.

orch. dryrun Switches the execution platform between the local host and
the Hadoop cluster. No changes in the R code are required for
a dry run.

orch. export Makes R objects from a user's local R session available in the
Hadoop execution environment, so that they can be
referenced in MapReduce jobs.

or ch. keyval Outputs key-value pairs in a MapReduce job.

orch. keyval s Outputs a set of key-value pairs in a MapReduce job.

or ch. pack Compresses one or more in-memory R objects that the
mappers or reducers must write as the values in key-value
pairs.

orch. t enpPat h Sets the path where temporary data is stored.

or ch. unpack Restores the R objects that were compressed with a previous
call to or ch. pack.

orch.create.parttab Enables partitioned Hive tables to be used with ORCH

MapReduce framework.

8.5.9 Debugging Scripts

The following table lists the functions available to help you debug your R program
scripts.

ORACLE

Table 8-9 Functions for Debugging Scripts

Function Description

orch. dbg. | asterr Returns the last error message.

orch. dbg. of f Turns off debugging mode.

orch. dbg. on Turns on debugging mode, which prints out the interactions

between Hadoop and Oracle R Advanced Analytics for Hadoop
including the R commands.

8-17

Chapter 8
Demos of Oracle R Advanced Analytics for Hadoop Functions

Table 8-9 (Cont.) Functions for Debugging Scripts

Function Description

or ch. dbg. out put Directs the output from the debugger.

orch. version Identifies the version of the ORCH package.

or ch. debug Enables R style debugging of MapReduce R scripts.

8.6 Demos of Oracle R Advanced Analytics for Hadoop

Functions

ORACLE

Oracle R Advanced Analytics for Hadoop provides an extensive set of demos, which
you can access in the same way as any other R demos.

The deno function lists the functions available in ORCH:

R> demo(package="0RCH")
Dermos in package ' ORCH :

hdf s_cpnv ORCH s copy and nove APIs

hdfs_datatrans ORCH s HDFS data transfer APIs

hdfs dir ORCH s HDFS directory manipul ation APls

hdf s_put get ORCH s get and put APl usage

hi ve_aggregat e Aggregation in H VE

hi ve_anal ysi s Basi ¢ anal ysis & data processing operations
hi ve_basic Basi ¢ connectivity to H VE storage

hi ve_bi nni ng Binning logic

hi ve_col umf ns Col um function

hive_nulls Handling of NULL in SQ vs. NAin R

To run a demo from this list, use this syntax:

demo(" denmo_nane", package="ORCH")

For example, this package runs the Hive binning demo:

R> demo(*hive_binning", package = "ORCH")
deno(' hive_binning', package = 'ORCH)

deno(hi ve_bi nni ng)
ORACLE R CONNECTOR FOR HADOOP DEMOS

Name: hi ve_binning. R
Description: Denonstrates binning logic in R

V V V V V V V
H H H H HF HF K

8-18

Chapter 8
Security Notes for Oracle R Advanced Analytics for Hadoop

If an error occurs, exit from R without saving the workspace image and start a new
session. You should also delete the temporary files created in both the local file
system and the HDFS file system:

rm-r /tnp/orch*
hdfs dfs -rm-r /tnp/orch*

Upon completion run these:

1. hadoop. exec to cleanup or remove all empty part files and Hadoop log files.

2. hadoop. run to allow overwriting of HDFS objects with the same name.

8.7 Security Notes for Oracle R Advanced Analytics for
Hadoop

Oracle R Advanced Analytics for Hadoop can invoke the Sgoop utility to connect to
Oracle Database either to extract data or to store results.

Sqoop is a command-line utility for Hadoop that imports and exports data between
HDFS or Hive and structured databases. The nhame Sqgoop comes from “SQL to
Hadoop." The following explains how Oracle R Advanced Analytics for Hadoop stores
a database user password and sends it to Sqoop.

Oracle R Advanced Analytics for Hadoop stores a user password only when the user
establishes the database connection in a mode that does not require reentering the
password each time. The password is stored encrypted in memory. See the Help topic
for orch. connect .

Oracle R Advanced Analytics for Hadoop generates a configuration file for Sqoop and
uses it to invoke Sqoop locally. The file contains the user's database password
obtained by either prompting the user or from the encrypted in-memory representation.
The file has local user access permissions only. The file is created, the permissions
are set explicitly, and then the file is open for writing and filled with data.

Sqoop uses the configuration file to generate custom JAR files dynamically for the
specific database job and passes the JAR files to the Hadoop client software. The
password is stored inside the compiled JAR file; it is not stored in plain text.

The JAR file is transferred to the Hadoop cluster over a network connection. The
network connection and the transfer protocol are specific to Hadoop, such as port
5900.

The configuration file is deleted after Sqoop finishes compiling its JAR files and starts
its own Hadoop jobs.

8.8 Third-Party Licenses for ORAAH

Oracle R Advanced Analytics for Hadoop depends on the following third-party
products:

e ANTLR 4.7

ORACLE 8-19

Chapter 8
Third-Party Licenses for ORAAH

e JavaCPP 1.3.2 (Licensed under the Apache License, Version 2.0.)
¢ Scala12.11.11

 Scala12.11.12

 MPICH 3.3a2

8.8.1 ANTLR 4.7

Copyright (c) 2015 Terence Parr, Sam Harwell
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR TAS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

8.8.2 Scala 12.11.11

ORACLE

http://ww. scal a-1ang. org/license. ht m

Copyright (c) 2002-2013 EPFL
Copyright (c) 2011-2013 Typesafe, Inc.

All rights reserved.

Redi stribution and use in source and binary fornms, with or without nodification, are
permtted provided that the follow ng conditions are met:

* Redistributions of source code nust retain the above copyright notice, this Iist
of conditions and the follow ng disclainer.

* Redistributions in binary formnust reproduce the above copyright notice, this
list of conditions and the follow ng disclainmer in the docunentation and/or other
materials provided with the distribution.

* Neither the name of the EPFL nor the names of its contributors may be used to
endorse or pronote products derived fromthis software without specific prior
written pernission.

8-20

Chapter 8
Third-Party Licenses for ORAAH

TH' S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS “AS 1S AND ANY
EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES
OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE ARE DI SCLAI MED. | N NO EVENT
SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE LI ABLE FCR ANY DI RECT, | NDI RECT,

| NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (1 NCLUDI NG, BUT NOT LI M TED
TO, PROCUREMENT OF SUBSTI TUTE GOODS CR SERVI CES; LOSS OF USE, DATA, OR PROFITS;, CR
BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING IN
ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE POSSI BI LI TY OF SUCH
DAMAGE.

8.8.3 Scala 12.11.12

ORACLE

https://github. com scal a/ scal a/ bl ob/ 2. 11. x/ doc/ LI CENSE. nul

Scal a License
Copyright (c) 2002-2018 EPFL
Copyright (c) 2011-2018 Lightbend, Inc.

Al rights reserved.

Redi stribution and use in source and binary forms, with or without nodification, are
permtted provided that the followi ng conditions are net:

Redi stributions of source code must retain the above copyright notice, this list of
condi tions and the follow ng disclainer.

Redistributions in binary formmust reproduce the above copyright notice, this |ist
of conditions and the followi ng disclainer in the docunentation and/or other
materials provided with the distribution.

Nei ther the name of the EPFL nor the names of its contributors may be used to
endorse or pronote products derived fromthis software without specific prior
written pernmission.

TH'S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTCORS "AS |S" AND ANY
EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES
OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE DI SCLAI MED. | N NO EVENT
SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT,

| NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LI M TED
TO, PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS, OR
BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SING IN
ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE POSSI BI LI TY OF SUCH
DAMAGE.

The following third party code may be included in the distribution as part of Scala:
Apache 2.0 License

This license is used by the following third-party libraries:
-- jansi

- akka

- ant

BSD Li cense

This license is used by the following third-party libraries:
-- jline

BSD 3-C ause License

This license is used by the following third-party libraries:
- asm

MT License

This license is used by the following third-party libraries:
-- jquery

-- jquery-ui

8-21

ORACLE

Chapter 8
Third-Party Licenses for ORAAH

-- jquery-layout

-- sizzle

-- tools tooltip

Publ i ¢ Domai n

The following libraries are freely available in the public domain:
-- forkjoin

jline BSD License

https://github. comjline/jline3/blob/mster/LI CENSE. t xt

Copyright (c) 2002-2018, the original author or authors.
Al rights reserved.

http://ww:. opensource. org/licenses/bsd-1icense. php

Redi stribution and use in source and binary forms, with or
without nodification, are pernitted provided that the fol | owing
conditions are net:

Redi stributions of source code nust retain the above copyri ght
notice, this list of conditions and the follow ng disclainer.

Redi stributions in binary formnust reproduce the above copyright
notice, this list of conditions and the follow ng disclainer

in the documentation and/or other materials provided with

the distribution.

Nei ther the name of JLine nor the names of its contributors
may be used to endorse or pronote products derived fromthis
sof tware without specific prior witten pernission.

TH' S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS
"AS |S" AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG,

BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY
AND FI TNESS FOR A PARTI CULAR PURPCSE ARE DI SCLAIMED. IN NO
EVENT SHALL THE COPYRI GHT OANER OR CONTRI BUTORS BE LI ABLE

FOR ANY DI RECT, | NDI RECT, |NCIDENTAL, SPECI AL, EXEMPLARY,

OR CONSEQUENTI AL DAMAGES (I NCLUDI NG, BUT NOT LIM TED TOQ
PROCUREMENT OF SUBSTI TUTE GOODS CR SERVI CES; LOSS OF USE,

DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED
AND ON ANY THEORY OF LI ABILITY, WHETHER I N CONTRACT, STRICT

LI ABI LI TY, OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG
IN ANY WAY QUT OF THE USE OF TH S SOFTWARE, EVEN | F ADVI SED

OF THE PCSSI BI LITY OF SUCH DAMAGE.

ASM
https://asmow2.iol/license. htn

ASM a very small and fast Java bytecode manipul ation framework
Copyright (c) 2000-2011 INRIA, France Tel ecom
Al rights reserved.

Redi stribution and use in source and binary forms, with or wthout

modi fication, are permtted provided that the follow ng conditions

are met:

1. Redistributions of source code nust retain the above copyright
notice, this list of conditions and the followi ng disclainmer.

2. Redistributions in binary formnust reproduce the above copyright
notice, this list of conditions and the follow ng disclaimer in the
documentation and/or other materials provided with the distribution.

8-22

ORACLE

Chapter 8
Third-Party Licenses for ORAAH

3. Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or pronote products derived from
this software without specific prior witten permssion.

TH' S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND CONTRI BUTORS "AS | S
AND ANY EXPRESS OR | MPLI ED WARRANTI ES, INCLUDING BUT NOT LIMTED TO THE
| MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE
ARE DI SCLAI MED. | N NO EVENT SHALL THE COPYRI GHT OMNER OR CONTRI BUTORS BE
LI ABLE FOR ANY DI RECT, | NDI RECT, | NCIDENTAL, SPECI AL, EXEMPLARY, OR
CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF
SUBSTI TUTE GOCDS OR SERVI CES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS

| NTERRUPTI ON) HOMEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDI NG NEGLI GENCE OR OTHERW SE)

ARI SING I N ANY WAY QUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF

THE POSSI BI LI TY OF SUCH DAMAGE.

jquery, sizzle, tooltip MT License

https://github. comjquery/jquery/ bl ob/ master/LI CENSE. t xt
https://github. comjquery/sizzlel bl ob/ master/LI CENSE. t xt

Copyright JS Foundation and other contributors, https://js.foundation/

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated docunentation files (the
"Software"), to deal in the Software without restriction, including
without limtation the rights to use, copy, nodify, nerge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
pernmit persons to whomthe Software is furnished to do so, subject to
the foll owing conditions:

The above copyright notice and this pernission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE | S PROVIDED "AS IS, WTHOUT WARRANTY OF ANY KI ND,
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES OF
MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE AND

NONI NFRI NGEMENT. |N NO EVENT SHALL THE AUTHORS OR COPYRI GHT HOLDERS BE
LI ABLE FOR ANY CLAIM DAMAGES OR OTHER LI ABILITY, WHETHER IN AN ACTI ON
OF CONTRACT, TORT OR OTHERW SE, ARI SING FROM OUT OF OR I N CONNECTI ON
WTH THE SOFTWARE OR THE USE OR OTHER DEALI NGS IN THE SOFTWARE.

Version 2.0, January 2004
http://ww. apache. org/licenses/

TERVE AND CONDI TI ONS FOR USE, REPRCDUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this docunent.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall nean the union of the acting entity and all
other entities that control, are controlled by, or are under comon
control with that entity. For the purposes of this definition,
“control" neans (i) the power, direct or indirect, to cause the
direction or managenent of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50% or nmore of the

8-23

ORACLE

Chapter 8
Third-Party Licenses for ORAAH

outstandi ng shares, or (iii) beneficial ownership of such entity

“You" (or "Your") shall mean an individual or Legal Entity
exerci sing permssions granted by this License

"Source" formshall mean the preferred formfor making nodifications
including but not linmted to software source code, documentation
source, and configuration files

"(bject" formshall mean any formresulting from nechanical
transformation or translation of a Source form including but
not limted to conpiled object code, generated documentation
and conversions to other media types

"Wrk" shall nmean the work of authorship, whether in Source or
Object form made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an exanple is provided in the Appendix bel ow).

“Derivative Wrks" shall nmean any work, whether in Source or Object
form that is based on (or derived from) the Wrk and for which the
editorial revisions, annotations, elaborations, or other nodifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Wrks shall not include works that remain
separable from or nerely link (or bind by nane) to the interfaces of
the Work and Derivative Wrks thereof

“Contribution" shall nean any work of authorship, including

the original version of the Wrk and any nodifications or additions
to that Work or Derivative Wrks thereof, that is intentionally
subnmitted to Licensor for inclusion in the Wrk by the copyright owner
or by an individual or Legal Entity authorized to subnmit on behal f of
the copyright owner. For the purposes of this definition, "subnitted"
means any formof electronic, verbal, or witten communication sent

to the Licensor or its representatives, including but not linited to
communi cation on electronic mailing lists, source code control systens,
and issue tracking systens that are managed by, or on behal f of, the
Li censor for the purpose of discussing and inproving the Wrk, but
excludi ng comuni cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a Contribution."

“Contributor" shall mean Licensor and any individual or Legal Entity
on behal f of whoma Contribution has been received by Licensor and
subsequently incorporated within the Wrk

Gant of Copyright License. Subject to the terns and conditions of
this License, each Contributor hereby grants to You a perpetual
wor | dwi de, non-excl usive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Wrks of,
publicly display, publicly perform sublicense, and distribute the
Work and such Derivative Wrks in Source or Object form

Gant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual
wor | dwi de, non-excl usive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have made
use, offer to sell, sell, inport, and otherw se transfer the Wrk
where such |icense applies only to those patent clains |icensable

by such Contributor that are necessarily infringed by their
Contribution(s) alone or by conbination of their Contribution(s)
with the Work to which such Contribution(s) was subnmitted. If You

8-24

ORACLE

Chapter 8
Third-Party Licenses for ORAAH

institute patent litigation against any entity (including a
cross-claimor counterclaimin a lawsuit) alleging that the Wrk
or a Contribution incorporated within the Wrk constitutes direct
or contributory patent infringenent, then any patent |icenses
granted to You under this License for that Wrk shall terminate
as of the date such litigationis filed.

Redi stribution. You may reproduce and distribute copies of the
Vork or Derivative Wrks thereof in any medium with or without
modi fications, and in Source or Chject form provided that You
meet the follow ng conditions:

(a) You must give any other recipients of the Wrk or
Derivative Wrks a copy of this License; and

(b) You must cause any nodified files to carry promnent notices
stating that You changed the files; and

(c) You must retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source formof the Wrk,
excl uding those notices that do not pertain to any part of
the Derivative Wrks; and

(d) I'f the Wrk includes a "NOTICE" text file as part of its
distribution, then any Derivative Wrks that You distribute nust
include a readabl e copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Wrks, in at |east one
of the following places: within a NOTICE text file distributed
as part of the Derivative Wrks; within the Source formor
docurmentation, if provided along with the Derivative Wrks; or,
within a display generated by the Derivative Wrks, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not nmodify the License. You may add Your own attribution
notices within Derivative Wrks that You distribute, alongside
or as an addendumto the NOTICE text fromthe Wrk, provided
that such additional attribution notices cannot be construed
as modi fying the License.

You may add Your own copyright statenment to Your nodifications and
may provide additional or different |icense ternms and conditions
for use, reproduction, or distribution of Your nodifications, or
for any such Derivative Wrks as a whol e, provided Your use,
reproduction, and distribution of the Wrk otherw se conplies with
the conditions stated in this License.

Submi ssion of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submtted for inclusion in the Wrk
by You to the Licensor shall be under the terns and conditions of
this License, without any additional terns or conditions.

Not wi t hst andi ng the above, nothing herein shall supersede or nodify
the terms of any separate |icense agreenent you may have executed
with Licensor regarding such Contributions.

. Trademarks. This License does not grant perm ssion to use the trade

nanes, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Wrk and reproducing the content of the NOTICE file.

8-25

7.

Chapter 8
Third-Party Licenses for ORAAH

Di sclai mer of Warranty. Unless required by applicable law or

agreed to in witing, Licensor provides the Wrk (and each
Contributor provides its Contributions) on an "AS |S" BASIS,

W THOUT WARRANTI ES OR CONDI TIONS OF ANY KIND, either express or
inplied, including, without linmtation, any warranties or conditions
of TITLE, NON | NFRI NGEMENT, MERCHANTABILITY, or FITNESS FOR A

PARTI CULAR PURPCSE. You are solely responsible for determning the
appropriateness of using or redistributing the Wrk and assume any

ri sks associated with Your exercise of permssions under this License.

Linmtation of Liability. In no event and under no |egal theory,
whether in tort (including negligence), contract, or otherw se,

unl ess required by applicable |aw (such as deliberate and grossly
negligent acts) or agreed to in witing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Vork (including but not linited to damages for |oss of goodwill,
work stoppage, conputer failure or malfunction, or any and all
other commercial damages or |osses), even if such Contributor

has been advi sed of the possibility of such danages.

Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behal f
of any other Contributor, and only if You agree to indemify,
defend, and hol d each Contributor harmess for any liability
incurred by, or clains asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERVS AND CONDI Tl ONS

8.8.4 MPICH 3.3a2

ORACLE

COPYRI GHT
3
4 The following is a notice of limted availability of the code, and disclaimer
5 which nmust be included in the prol ogue of the code and in all source |istings
6 of the code.
7
8 Copyright Notice

11
12
13
14
15
16
17
18
19
20
21

+ 2002 University of Chicago

Permission is hereby granted to use, reproduce, prepare derivative works, and
to redistribute to others. This software was authored by:

Mat hemat i cs and Comput er Sci ence Divi sion
Argonne National Laboratory, Argonne IL 60439

(and)

Department of Conputer Science
University of Illinois at U bana- Chanpaign

8-26

ORACLE

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Chapter 8
Third-Party Licenses for ORAAH

GOVERNMENT LI CENSE

Portions of this material resulted fromwork devel oped under a U S

Governnent Contract and are subject to the following Iicense: the Government
is granted for itself and others acting on its behal f a paid-up, nonexclusive
irrevocabl e worldwi de Iicense in this conputer software to reproduce, prepare
derivative works, and performpublicly and display publicly.

DI SCLAI MER

This conputer code material was prepared, in part, as an account of work
sponsored by an agency of the United States Government. Neither the United
States, nor the University of Chicago, nor any of their enployees, nmakes any
warranty express or inplied, or assumes any legal liability or responsibility
for the accuracy, conpleteness, or usefulness of any information, apparatus
product, or process disclosed, or represents that its use would not infringe
privately owned rights

8-27

Oracle DataSource for Apache Hadoop

This part describes Oracle DataSource for Apache Hadoop (OD4H) storage handler
for Oracle Database. It contains the following chapters:

e Oracle DataSource for Apache Hadoop (OD4H)

ORACLE

Oracle DataSource for Apache Hadoop
(OD4H)

Oracle DataSource for Apache Hadoop (OD4H) allows direct, fast, parallel, secure and
consistent access to master data in Oracle Database using Spark SQL via Hive
metastore. This chapter discusses Oracle DataSource for Apache Hadoop (OD4H) in
the following sections:

* Operational Data, Big Data and Requirements

* Overview of Oracle DataSource for Apache Hadoop (OD4H)
* How Does OD4H Work?

* Features of OD4H

e Using Hive SQL with OD4H

e Using Spark SQL with OD4H

* Writing Back To Oracle Database

9.1 Operational Data, Big Data and Requirements

The common data architecture in most companies nowadays generally comprises of
the following components:

e Oracle Database(s) for operational, transactional, and master data, that is shared
business object such as customers, products, employees and so on

e Big Data

Hadoop applications such as Master Data Management (MDM), Events processing,
and others, need access to data in both Hadoop storages (such as HDFS and NoSQL
Database as a landing point for weblogs, and so on) and Oracle Database (as the
reliable and auditable source of truth). There are two approaches to process such data
that reside in both Hadoop storage and Oracle Database:

» ETL Copy using tools such as Oracle's Copy to BDA

» Direct Access using Oracle Big Data SQL and Oracle DataSource for Apache
Hadoop (OD4H).

In this chapter, we will discuss Oracle DataSource for Apache Hadoop (OD4H).

9.2 Overview of Oracle DataSource for Apache Hadoop
(OD4H)

Oracle DataSource for Apache Hadoop (OD4H) is the storage handler for Oracle
Database that uses HCatalog and InputFormat.

This section discusses the following concepts:

ORACLE 9-1

Chapter 9
Overview of Oracle DataSource for Apache Hadoop (OD4H)

e Opportunity with Hadoop 2.x
* Oracle Tables as Hadoop Data Source

e External Tables

9.2.1 Opportunity with Hadoop 2.x

Hadoop 2.x architecture decouples compute engines from cluster resources
management and storages. It enables:

» Avariety of SQL query engines. For instance, Hive SQL, Spark SQL, Big Data
SQL, and so on.

» Avariety of programmatic compute engines. For instance, MapReduce, Pig,
Storm, Solr, Cascading, and so on.

» Elastic allocation of compute resources (CPU, memory) through YARN.

* A variety of data stores such as HDFS, NoSQL, as well as remote storages
through HCatalog, InputFormat, OutputFormat and StorageHandler interfaces.

Oracle DataSource for Apache Hadoop (OD4H) is the storage handler for Oracle
Database that uses HCatalog and InputFormat.

Following is an illustration of Hadoop 2.0 Architecture:

Figure 9-1 Hadoop 2.0 Architecture

Compute Engines
Query Engines
Programming Modules
Applications

Batch
(MapReduce)

Interactive
(Tez)

In-Memory Graph Streaming
(Spark) (Giraph) (Storm)

Yarn (Cluster Resource Management)

Redundant and / or Reliable Storage

Data
HDFS NoSQL Other
Compute and Memory Inl-ri)StathIr?r?ét
StorageHandler jj :ij j

9.2.2 Oracle Tables as Hadoop Data Source

ORACLE

OD4H enables current and ad-hoc querying. This makes querying data faster and
more secure. You can query data directly and retrieve only the data that you need,

when you need it.

ODA4H also provides Oracle’s end-to-end security. This includes Identity Management,
Column Masking, and Label and Row Security.

OD4H also furnishes direct access for Hadoop and Spark APIs such as Pig,
MapReduce and others.

9-2

Chapter 9
Overview of Oracle DataSource for Apache Hadoop (OD4H)

9.2.3 External Tables

ORACLE

External Tables turn Oracle tables into Hadoop and/or Spark datasources. The DDL
for declaring External Tables is as follows:

CREATE[TEMPORARY] EXTERNAL TABLE [IF NOT EXI STS] [db_nane.]tabl e_name
[(col _name data_type [COWENTcol _coment],...)]

[COWVENT t abl e_coment]

STORED BY ' oracl e. hcat. osh. Oracl eSt orageHand! er' [W THSERDEPROPERTI ES(. . .)]
[TBLPROPERTI ES (property_nanme=property_val ue,...)]

data_type

| SMALLI NT

| INT

| BIG NT

| BOOLEAN

| FLOAT

| DOUBLE

| STRING

| BI NARY

| TI MESTAWP
| DECI MAL

| DECI MAL(pr eci si on, scal e)
| VARCHAR

| CHAR

¢ See Also:

Refer the following link for Hive External Table syntax https://
cwiki.apache.org/confluence/display/Hive/LanguageManual
+DDL#LanguageManualDDL-CreateTable

< Note:

Oracle supports only primitive types.

The following table shows the mappings between Oracle and Hive types.

Oracle Data Type [Hive Data Type

NUMBER INT when the scale is 0 and the precision is less than 10.
BIGNIT when the scale is 0 and precision is less than 19.

DECIMAL when the scale is greater than O or the precision is
greater than 19.

CLOB STRI NG

9-3

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable

Chapter 9
Overview of Oracle DataSource for Apache Hadoop (OD4H)

Bl NARY_DQUBLE DOUBLE

Bl NARY_FLOAT FLOAT
BLOB Bl NARY
CHAR CHAR
NCHAR

VARCHAR2 VARCHAR
NVARCHAR2

ROW D Bl NARY
UROW D

DATE Tl MESTAMP
TI MESTAMP Tl MESTAMP
TI MESTAMPTZ Unsupported
TI MESTAMPLTZ

RAW Bl NARY

The properties of external tables can be described as follows:

9.2.3.1 TBLPROPERTIES

Property

Use

oracle.hcat.osh.columns.mapping

mapreduce.jdbc.url
mapreduce.jdbc.username
mapreduce.jdbc.password
mapreduce.jdbc.input.table.name

mapreduce.jdbc.input conditions

mapreduce.jdbc.input.query

mapreduce.jdbc.input.orderby

ORACLE

Comma separated list to specify mapping between
Hive columns and Oracle table columns. All external
tables using OracleStorageHandler must define this.

Connection URL to connect to the database
Connection user name to connect to the database
Connection password to connect to the database
Oracle table name

To be used for querying the database. Must be used
for query pushdown.

To be used for querying the database. Query should
be used only when a subset of the columns is
selected.

ORDER BY clause to be specified for pushing ordering to
the database.

9-4

Chapter 9
Overview of Oracle DataSource for Apache Hadoop (OD4H)

Property

Use

oracle.hcat.osh.splitterKind

oracle.hcat.osh.rowsPerSplit

oracle.hcat.osh.authentication

sun.security.krb5.principal

To be used to specify how OracleStorageHandler must
create splits, so that they are a good match for the
physical structure of the target table in Oracle
Database. The splitter kind applicable could be
SINGLE_SPLI TTER, PARTI TI ON_SPLI TTER,

ROW SPLI TTER, BLOCK_SPLI TTER.

Used only when ROV SPLI TTER splitterKind is applied
on the table. Represents Number of rows per split for
LI M T_RANGE splitter. Default is 1000

Authentication method used to connect to Oracle
Database. Can be S| MPLE (default), ORACLE_WALLET,
KERBEROS

Kerberos principal. Used only when KERBERCS
authentication is applied.

oracle.hcat.osh.kerb.callback

Callback for Kerberos authentication. Used only when
Kerberos authentication is applied.

oracle.hcat.osh.maxSplits

Maximum number of splits for any splitter kind

oracle.hcat.osh.useChunkSplitter

Use chunk based ROW_SPLITTER and
BLOCK_SPLITTER that use
DBMS_PARALLEL_EXECUTE package to divide table
into chunks that will map to hadoop splits.The default
value is set to ‘true’.

oracle.hcat.osh.chunkSQL

Used by CUSTOM SPLI TTERto create splits. The SQL
string should be a SELECT statement that returns
range of each chunk must have two columns:
start _idandend_id The columns must be of RON D

type.

oracle.hcat.osh.useOracleParallelism

When configured, parallel queries will be executed
while fetching rows from Oracle. Default value: ‘f al se’

oracle.hcat.osh.fetchSize

JDBC fetchsize for generated select queries used to
fetch rows. Default value: 10 (set by Oracle JDBC
Driver)

¢ Note:

Note:

Oracle Tables.

ORACLE

In addition to the above, any JDBC connection properties (or acl e. j dbc. * and
oracl e. net. *) can be specified as TBLPROPERTI ES. They will be used while
establishing connection to Oracle Database using JDBC driver.

Oracle DataSource for Apache Hadoop (OD4H) works with Oracle View and

9-5

Chapter 9
How does OD4H work?

9.2.3.2 SERDE PROPERTIES
Property Use
oracle.hcat.osh.columns.mapping All external tables using

OracleStorageHandler must define this. Its a
comma separated list to specify mapping
between hive columns (specified in create
table) and oracle table columns.

W THSERDEPROPERT! ES also enables the
external table definition to refer only to select
columns in the actual Oracle table. In other
words, not all columns from the Oracle table
need to be part of the Hive external table. The
ordering of oracle columns in the mapping is
the same as ordering of hive columns
specified in create table.

9.2.4 List of jars in the OD4H package

Oracle DataSource for Apache Hadoop (OD4H) contains the following list of jars.

ODA4H consists of the following list of jars.

Table 9-1 List of jars in OD4H
|

Name of JAR Use

osh.jar Contains OracleStorageHandler
Implementation

ojdbc8.jar An OD4H specific JDBC driver (which is

optimized with internal calls), used by Spark or
Hadoop tasks to connect to the database.

ucp.jar For creating connection pools in
OracleStorageHandler

oraclepkil03.jar, osdt_core.jar, osdt_cert.jar, For Oracle Wallet authentication
osdt_jce.jar

orail8n.jar Oracle Globalization Support
xdb.jar Oracle XDB jar

9.3 How does OD4H work?

ORACLE

Oracle DataSource for Apache Hadoop (OD4H) does not require creating a new table.
You can start working with OD4H using the following steps:

1. Create a new Oracle table, or, reuse an existing table.
2. Create the Hive DDL for creating the external table referencing the Oracle Table.
3. Issue HiveSQL, SparkSQL, or other Spark/Hadoop queries and API calls.

The following sections show how to create a new Oracle Database Table, and a Hive
DDL:

e Create a New Oracle Database Table

9-6

Chapter 9
How does OD4H work?

 Hive DDL

» Creating External Table in Hive

9.3.1 Create a new Oracle Database Table or Reuse an Existing Table

Here is an illustration of a partitioned Oracle table that we will use to demo how
partition pruning works:

1. CREATE TABLE Enpl oyeeData (
First_Name VARCHAR2(20),
Last _Name VARCHAR2(20),
Job_Title VARCHAR2(40),
Sal ary NUMBER)

PARTI TI ON BY RANGE (Sal ary)

(PARTITION salary_1 VALUES LESS THAN (60000)
TABLESPACE tsa

, PARTITION sal ary_2 VALUES LESS THAN (70000)
TABLESPACE tsh

, PARTITION sal ary_3 VALUES LESS THAN (80000)
TABLESPACE tsc

, PARTITION sal ary_4 VALUES LESS THAN (90000)
TABLESPACE tsd

, PARTITION sal ary_5 VALUES LESS THAN (100000)
TABLESPACE tse

Enp_| D NUVBER,

¢ Note:

You can use this syntax for table creation, in the following examples
listed in this Book.

2. Issue queries from Hive, Spark, or any other Hadoop models (including joins with
local Hive Tables.)

9.3.2 Hive DDL

In this example, we will associate two Hive external tables to the same Oracle table,
using two different split patterns:

e SIMPLE_SPLITTER
e PARTITI ON_SPLI TTER

Note:

It is possible that the external table has fewer columns than the base Oracle
table.

Since columns can have different names, use TBLPROPERTY for mapping with
the base table.

In the following examples, we are using the following variables:

ORACLE 9.7

Chapter 9
How does OD4H work?

connection_string = jdbc:oracl e:thin: @ocal host: 1521/ <servi cenane>
oracl e_user=0d4h
oracl e_pwd=0d4h

The following command creates a Hive external table with the default split pattern, that
is SI MPLE_SPLI TTER.

CREATE EXTERNAL TABLE Enpl oyeeDat aSi mpl e (
Enmp_ID int,
First_Name string,
Last _Nane string,
Job_Title string,
Salary int
)
STORED BY ' oracl e. hcat. osh. Oracl eSt orageHand! er’
W TH SERDEPROPERTI ES (
"oracl e. hcat. osh. col uims. mapping' =
"Enp_I D, Fi rst_Nane, Last _Name, Job_Title, Salary')
TBLPROPERTI ES (
" mapreduce. jdbc.url’ = "${hiveconf:jdbc:oracle:thin: @ocal host: 1521/ <servi cename>}",
" mapreduce. j dbc. username’ ="' ${hiveconf: od4h}',
" mapreduce. j dbc. password' =" ${hi veconf: od4h}',
' mapreduce. j dbc. i nput.tabl e. name' = ' Enpl oyeeDat &'

)s

The following example creates a Hive external table using PARTI TI ON_SPLI TTER.

DROP TABLE Enpl oyeeDat aPartiti oned;
CREATE EXTERNAL TABLE Enpl oyeeDat aPartitioned (
Enp_IDint,
First_Nanme string,
Last _Nane string,
Job_Title string,
Salary int
)
STORED BY ' oracl e. hcat. osh. Oracl eSt or ageHandl er'
W TH SERDEPROPERTI ES (
"oracl e. hcat. osh. col ums. mapping' =
"Enp_I D, First_Nane, Last _Name, Job_Title, Salary')
TBLPROPERTI ES (
"mapreduce. jdbc.url' = "${hiveconf:jdbc:oracle:thin: @ocal host: 1521/ <servi cename>}",
" mapr educe. j dbc. usernane' = ' ${hi veconf: od4h}",
" mapr educe. j dbc. password' = ' ${hi veconf: od4h}",
" mapr educe. j dbc. i nput.tabl e.name' = 'Enpl oyeeData',
"oracle. hcat.osh.splitterKind' = 'PARTI TI ONED TABLE

);

9.3.3 Creating External Tables in Hive

ORACLE

You can create an external table in Hive in the following way:

DROP TABLE enpl oyees;

CREATE EXTERNAL TABLE enpl oyees (
EMPLOYEE_I D I NT,
FI RST_NAME STRI NG
LAST_NAME STRING
SALARY DOUBLE,

9-8

Chapter 9
Features of OD4H

HI RE_DATE TI MESTAWP,
JOBID STRI NG

)

STORED BY 'oracl e. hcat. osh. Oracl eSt or ageHand| er'
W TH SERDEPROPERTI ES (
"oracl e. hcat. osh. col ums. mappi ng' =
"enpl oyee_id, first_name, | ast_nane,salary, hire_date,job_id")

TBLPROPERTI ES (

"mapreduce. jdbc.url' = "jdbc:oracle:thin: @ocal host: 1521: orcl ',
"mapr educe. j dbc. username' = 'hr',
" mapr educe. j dbc. password' = "hr',

" mapreduce. j dbc. i nput. tabl e. name' = ' EMPLOYEES

Note:

Ensure that ucp. j ar, oj dbc8. jar and osh. jar are present in the Hive
CLASSPATH, for using OD4H. This is pre-configured on BDA. .

To learn more about CLASSPATH and other Hive configuration properties, refer
the following sources:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

For Cloudera distribution, refer to the steps for Cloudera Manager here:
https://www.cloudera.com/documentation/enterprise/5-14-x/topics/
cm_mc_hive_udf.html For other distributions, refer to the respective
documentation on adding additional jars to Hive/HiveServer2 environment.

9.4 Features of OD4H

The following topics discuss features of OD4H.

* Performance and Scalability Features
e Security Features

e Using Hive SQL with OD4H

e Using Spark SQL with OD4H

9.4.1 Performance And Scalability Features

ORACLE

Following sections discuss the performance and scalability features of OD4H:
e Splitters

* Predicate Pushdown

* Projection Pushdown

* Partition Pruning

e Smart Connection Management

9-9

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties
https://www.cloudera.com/documentation/enterprise/5-14-x/topics/cm_mc_hive_udf.html
https://www.cloudera.com/documentation/enterprise/5-14-x/topics/cm_mc_hive_udf.html

Chapter 9
Features of OD4H

HCatalog stores table metadata from Hive DDL. HiveSQI, Spark SQL and others, then
use this metadata while submitting queries.

The Oracle table is divided into granules determined by the spl i tterKi nd property.
These granules are then read into a split by O acl eSt or ageHand! er, by submitting
generated queries.

Oracl eSt or ageHand! er will not have to test all possible query types if the query plan
determines which splits need to be scanned.

Figure 9-2 ODA4H in a Nutshell

Hive DDL Hive
Voo
Hadoop
HCatalog

v \/
Oracle Table Oracle Storage Map Reduce Job
Handler
Rewritten
QueryC
by JDB
granule y split Map Task <«—
granule split Map Task <«
*‘ﬁracker
granule split
granule split Map Task <«
1

9.4.1.1 Splitters

ORACLE

While executing a query on a Hive external table through OD4H, the underlying Oracle
table is dynamically divided into granules, which correspond to splits on the Hadoop
side. Each split is processed by a single map task. With the help of the

ORACLE_SPLI TTER_KI ND property, you can specify how the splits are created. This
ensures that the splits are a good match for the physical structure of the target table in
Oracle Database.

The different kinds of splitters available are:

SINGLE_SPLITTER

Creates one split for the table. Use SI NGLE_SPLI TTER where a single task is sufficient to
process the query against the entire table.

ROW_SPLITTER

Limits the number of rows per Split. The default number of rows is 1000. You can
specify number of rows by setting the oracl e. hcat . osh. rowsPer Spl i t property. The

9-10

ORACLE

Chapter 9
Features of OD4H

default value of oracl e. hcat . osh. maxSplits is 1 when ROW SPLI TTER is used. You can
increase this value to enable parallel reads.

Based on the values provided in the rowsPer Spl i t property, OD4H will divide tables
into splits. If the number of splits obtained is higher than the maxSplits, then maxSplits
property will be used. The rows per split will be divided accordingly.

Note:

oracl e. hcat . osh. rowsPer Spl i t is used only by ROW SPLI TTER and not any other
splitter kind.

BLOCK_SPLITTER

Creates splits based on underlying storage of data blocks. With Block Splitter, you can
specify the maximum number of splits to be generated. The default value of

oracl e. hcat. osh. maxSplits is 1, when BLOCK_SPLI TTER is used. You can increase this
value to enable parallel reads. BLOCK_SPLI TTER requires SELECT privilege on the

SYS. DBA. EXTENTS table, granted to the schema containing the Oracle target table. In the
event that this permission does not exist, OD4H will use SI NGLE_SPLI TTER

¢ Note:

The actual number of splits under BLOCK_SPLI TTER may be lesser than the
value specified in the oracl e. hcat . osh. maxSplits property.

Do not use BLOCK_SPLITTER on partitioned tables or Index Organized
tables.

Note:

For ROW SPLI TTER and BLOCK_SPLI TTER types, use

oracl e. hcat. osh. useChunkSpli tter to specify splitting mechanism. The default
property value is true. This enables creating chunks corresponding to splits
using the DBMS_PARALLEL_EXECUTE package. When the property value is f al se,
custom SQL is generated for splitting. Since DBMS_PARALLEL_EXECUTE can only
be used for tables and not views, if mapr educe. j dbc. i nput. t abl e. nane points to
a view and not a table, then oracl e. hcat . osh. useChunkSpl i tter should be set
to fal se.

PARTITION_SPLITTER

Creates one split per partition. PARTI TI ON_SPLI TTER is used by default when the table is
partitioned. You can override this setting by specifying RON SPLI TTER in table properties.
With PARTI TI ON_SPLI TTER, the default value of oracl e. hcat . osh. maxSpl i t s table property
is 64.

Following is an illustration of ROW SPLI TTER:
DROP TABLE enpl oyees;

9-11

Chapter 9
Features of OD4H

CREATE EXTERNAL TABLE enpl oyees (
EMPLOYEE_| D | NT,
FI RST_NAME STRI NG,
LAST NAME STRING

SALARY DOUBLE,
HI RE_DATE TI MESTAWP,
JOBID STRI NG

)
STORED BY ' oracl e. hcat. osh. Oracl eSt or ageHand| er'

W TH SERDEPROPERTI ES (
"oracl e. hcat. osh. col ums. mappi ng' =
"enpl oyee_id, first_name, | ast_nane,salary, hire_date,job_id")

TBLPROPERTI ES (

"mapreduce. jdbc.url' = "jdbc:oracle:thin: @ocal host: 1521: orcl ',
"mapreduce. j dbc. username' = 'hr',
" mapr educe. j dbc. password' = "'hr',

" mapreduce. j dbc. i nput.tabl e. name' = ' EMPLOYEES',
"oracl e. hcat.osh.splitterKind' = 'ROVNSPLITTER ,
"oracl e. hcat. osh. rowsPerSplit' ="'1500'

)
CUSTOM_SPLITTER

Use CUSTOM SPLI TTER If you want to provide a custom split generation mechanism. You
can do this using CUSTOM SPLI TTER through or acl e. hcat . osh. spl i tt er Ki nd property and
a SELECT statement that emits ROWIDs corresponding to start and end of each split in
oracl e. hcat. osh. chunkSQL.

9.4.1.2 Choosing a Splitter

ORACLE

SINGLE_SPLI TTER is used by default if no splitter is specified in the table properties for
Hive external table, and the target Oracle table is not partitioned.

For an unpartitioned table, the default value of oracl e. hcat . osh. maxSplits will be 1. For
partitioned table, the default value of the same will be 64, and the default splitter will
be PARTI TI ON_SPLI TTER. The default for maxSpli ts is set to limit the number of
connections to the Oracle server. To increase this limit, you must increase the value of
oracl e. hcat . osh. maxSpl i t s explicitly in hive table properties.

Use the following guidelines while choosing a splitter kind for a hive external table:

Splitter Kind Use

SI NGLE_SPLI TTER When no parallelism is required.

PARTI TI ON_SPLI TTER Used by default when target table is
partitioned

BLOCK_SPLI TTER When Oracle user has SELECT privilege on
SYS. DBA_EXTENTS, and target table is not
partitioned.

ROWN SPLI TTER When Oracle user does not have SELECT

privilege on SYS. DBA EXTENTS.
CUSTOM SPLI TTER For fine grain control over generated splits.

9-12

Chapter 9
Features of OD4H

9.4.1.3 Predicate Pushdown

Predicate Pushdown is an optimization technique, in which you push predicates (WHERE
condition) down to be evaluated by Oracle Database at the time of querying. This
minimizes the amount of data fetched from Oracle Database to Hive, while performing
a query.

Set the configuration property hi ve. opti ni ze. ppd to either true or f al se for enabling
Predicate Pushdown. The default value on hive-1.1.0 is set to true. Hence, Predicate
Pushdown is always performed, unless you want to disable it.

Note:

OD4H does not push down all possible predicates. It considers only the part
of the execution plan pertaining to Oracle table declared as external table.
OD4H also rewrites sub-queries for the Oracle SQL engine and each split
task. At present conditions involving operators >,=,< and !=in a single
condition over a column (e.g. key > 10) or a combination of multiple
conditions separated by AND (e.g. key > 10 AND key < 20 AND key !=17)
are pushed down.

Another option to reduce the amount of data fetched from the Oracle Database is to
specify a condition at the time of table creation, using TBLPROPERTY
mapr educe. j dbc. i nput . condi ti ons. For instance:

mapr educe. j dbc.input.conditions = 'key > 10 OR key = 0'.

This will restrict the rows fetched from Oracle Database whenever any query is
performed based on the condition specified. The external table that gets created, is
analogous to a view on Oracle Database. This approach is only useful when you want
to push down complex predicates that cannot be analyzed and automatically pushed
down by OD4H.

" Note:

Due to incompatibilities between date and timestamp representation in Hive
and Oracle, these columns are not pushed down by default in a query. You
can enable this with certain limitations by setting the tableproperty

oracl e. hcat . dat et i ne. pushdown to t rue. When set to true, the date
representation in the query should be in the form YYYY- M\ DD and timetamp
should be in the form “Yyyy- M+ DD HH MM SS” with no decimal places. No other
date or timestamp representation is supported when

oracl e. hcat . dat eti me. pushdown is set to true.

9.4.1.4 Projection Pushdown

Projection Pushdown is an optimization technique that fetches only the required
columns from Oracle Database when a query is performed. If you want to fetch all
columns during a query (not recommended), you can disable it by setting the

ORACLE 9-13

Chapter 9
Features of OD4H

hive.io.file.read. all.col ums connection property to true. On Hive—1.1.0, this
property is f al se by default.

9.4.1.5 Partition Pruning

If you refer to Employee Data Partition table, the partitions irrelevant to the query are
removed from the partition list. This is done by executing an explain plan on the query
to obtain the list of partitions and sub-partitions that are relevant to the query.

Table level partition pruning uses table level predicate pushdown, on the other hand
partition pruning at the query level uses query level predicate pushdown.

Partition pruning is active when a SELECT query is run, in which the WHERE clause uses
the partitioning key. Following is an example of partition pruning:

To query the partition, where salary is in the above range and prune other partitions,
perform the following:

Hive External Table:

CREATE EXTERNAL TABLE Enpl oyeeDat aPartitioned (
Enp_IDint,
Fi rst_Nanme string,
Last _Nane string,
Job_Title string,
Salary int
)
STORED BY ' oracl e. hcat. osh. Oracl eSt or ageHandl er'
W TH SERDEPROPERTI ES (
"oracl e. hcat. osh. col ums. mapping' =
"Enp_I D, First_Nane, Last_Name, Job_Title, Salary')
TBLPROPERTI ES (
"mapreduce. jdbc.url' = "${hiveconf:connection_string}",
" mapr educe. j dbc. usernane' = ' ${hi veconf:oracl e_user}",
" mapreduce. j dbc. password' = ' ${hi veconf:oracl e_pwd}',
" mapreduce. j dbc. i nput.tabl e.name' = 'Enpl oyeeData',
"oracl e. hcat. osh. oosKi nd'" = ' PARTI TI ONED_TABLE'

The following SELECT statement shows how to query the partition, where salary is
between 72000 to 78000, and prunes other partitions:

select * from Enpl oyeeDataPartitioned where salary > 72000 and sal ary < 78000;

9.4.2 Smart Connection Management

ORACLE

Connection Caching

Each map task runs in its own JVM. Each JVM in turn caches a single connection to
the Oracle database that you can reuse within the same query. The Mapper checks
the cache before establishing a new connection and caching is not done once the
guery has completed executing.

Oracle RAC Awareness

JDBC and UCP are aware of various Oracle RAC instances. This can be used to split
gueries submitted to JDBC. The StorageHandler will depend on listener for load
balancing.

9-14

Chapter 9
Features of OD4H

Handling Logon Storms

Hadoop allows you to limit the number of mappers attempting to connect to the
Database. Hadoop allows you to limit the number of mappers attempting to connect to
the Database using or acl e. hcat . osh. maxSpl i ts. This parameter controls the degree of
concurrency. However, subsequent tasks of the same query are guaranteed to query
their table granule as per the System Commit Number (SCN) of the query. This
ensures consistency of the result sets.

Database Resident Connection Pooling (DRCP)

It is recommended to configure DRCP for OD4H, and limit the maximum number of
concurrent connections to the Oracle Database from OD4H.

Configuring Database Resident Connection Pooling
To configure DRCP, use the following steps:

1. Login as SYSDBA.

2. Start the default pool, SYS_DEFAULT_CONNECTI ON_POOL using
DBMS_CONNECTI ON_POQOL. START_POOL with the default settings.

You can use DBMS_CONNECTI ON_POOL. M NS| ZE and DBMS_CONNECTI ON_POOL. MAXSI ZE with
the default settings.

Note:

Oracle Database Administrator's Guide for more information on configuring
DRCP.

9.4.3 Security Features

Following are the security features of OD4H:

9.4.3.1 Improved Authentication

ORACLE

OD4H uses Oracle JDBC driver for connecting to Oracle Database. It provides all
authentication methods supported by Oracle JDBC. OD4H supports authentication
through use of basic authentication (username and password), Oracle Wallet, and
Kerberos. You can specify the authentication to be used for a table created in Hive,
through the oracl e. hcat . osh. aut henti cati on table property. This is useful only for
strong authentication.

 Kerberos
* Oracle Wallet

* Basic Authentication

Note:

Oracle recommends using strong authentication such as Kerberos.

9-15

ORACLE

Chapter 9
Features of OD4H

The various authentication processes are described with examples as follows:

Kerberos

Uses Kerberos credentials of the Hadoop engine process. This pri nci pal should
have access to the table.

See Also:

Oracle Database JDBC Developer's Guide for information on configuring
database for Kerberos and details of client parameters

You can enable Kerberos configuration on Hive, by adding to hi ve-env. sh the
following:

export HADOOP_OPTS="$HADOOP_OPTS - Dj ava. security. krb5. conf=<path to kerberos
configuration>

To enable child JVMs to use Kerberos configuration, edit the mapred-site. xnl to
include the following property on all nodes of the cluster:

<property><name>napr ed. chi | d. j ava. opt s</ name> <val ue>-
Dj ava. security. krb5. conf=<path to kerberos configuration>></val ue></property>

Enable these configurations on BDA using Cloudera manager..
Following is an illustration of Kerberos authentication:

CREATE EXTERNAL TABLE kerb_exanpl e (

id DECI MAL,

name STRI NG

sal ary DECI MAL

)

STORED BY ' oracl e. hcat . osh. Oracl eSt or ageHand! er'
W TH SERDEPROPERTI ES (

"oracl e. hcat. osh. col ums. mapping' = 'id, nane, sal ary')
TBLPROPERTI ES (
"mapreduce. jdbc.url' = "jdbc:oracle:thin: @ DESCR PTI ON=(ADDRESS=(PROTOCOL=t cp)

(HOST=adc******* xxxxxx. com) (PORT=5521)) (CONNECT_DATA=
(SERVI CE_NAME=pr oj ect _nane. xxx. r dbnms. xxxx. com))",

"mapreduce. j dbc. i nput.table.name' = 'kerb_exanple',

" mapreduce. j dbc. username' = ' CLI ENT@xxxxx. COM ,

"oracl e. hcat. osh. authentication' = 'KERBERCS ,
"oracle.net.kerberos5_cc_name' = '/tnp/krb5cc_xxxxx',
"java.security. krb5.conf' = "'/hone/user/kerberos/krb5.conf',
"oracl e. hcat. osh. kerb. cal I back' = 'KrbCal | backHandl er"',
"sun.security.krb5.principal' ="'CLI ENT@xxxx. COM

):

The path specified in oracl e. securi ty. krb5. conf should be accessible to all nodes
of the cluster. These paths should also match with the path of the corresponding
properties in Oracle Database sql net . ora. The keyt ab path provided in sql net. ora
should also be accessible from all nodes of the cluster.

If sun. security. krb5. princi pal is not specified, OD4H will attempt to authenticate
using default principal in Credential Cache specified by the
oracl e. net. kerberos5_cc_nane property.

9-16

https://docs.oracle.com/database/121/JJDBC/clntsec.htm#JJDBC28339

ORACLE

Chapter 9
Features of OD4H

Note:

The cal | back will be called only if the princi pal cannot be authenticated
using a ticket obtained from the credential cache specified in
oracl e. net. kerberos5_cc_naneproperty.

A simple callback handler class is described as follows (The callback class must
be available to the hive classpath):

class KrbCal | backHandl er
i mpl ement s Cal | backHand| er {

@verride
public void handl e(Cal | back[] cal | backs) throws |CException,
Unsupport edCal | backExcept i on{
for (int i =0; i < callbacks.length; i++){
if (callbacks[i] instanceof PasswordCall back){
Passwor dCal | back pc = (PasswordCal | back) cal | backs[i];
Systemout. println("set password to 'wel come'");
pc. set Passwor d((new String("wel cone")).toCharArray());
} else if (callbacks[i] instanceof NameCallback) {
((NameCal | back) cal | backs[i]).set Name("client @xxxx. COM");
}el se{
t hrow new Unsupport edCal | backExcepti on(cal | backs[i],
"Unrecogni zed Cal | back");

}

}
Oracle Wallet

The wallet should be available in the OS environment of each engine process.
Following is an illustration of how to add Wallet authentication:

CREATE EXTERNAL TABLE wal | et _exanpl e (
i d DECI MAL,
name STRI NG
sal ary DECI MAL

)
STORED BY ' oracl e. hcat . osh. Oracl eSt or ageHand! er’
W TH SERDEPROPERTI ES (

"oracl e. hcat. osh. col ums. mapping' = 'id, nane, sal ary')

TBLPROPERTI ES (
"mapreduce. jdbc.url’ = "jdbc:oracle:thin:/@nstl",
"mapreduce. j dbc.input.table. name' = 'wallet_exanple',
"oracle. hcat. osh. authentication' = ' ORACLE WALLET',
‘oracle.net.tns_admin' = '/scratch/user/view storage/ user_project6/work',
"oracle.net.wallet_location' = "'/scratch/user/view storage/ user_project 6/ work'
);

Note:

The paths specified in oracl e. net . t ns_adni n and
oracle.net.wal | et _| ocation should be accessible from all nodes of the
cluster.

9-17

9.5 Using

9.6 Using

ORACLE

Chapter 9
Using HiveQL with OD4H

" See Also:

Managing the Secure External Password Store for Password Credentials
section in the Oracle Database Security Guide.

3. Basic Authentication (for demo purposes only)
This is stored in HCatalog TBLPROPERTI ES or supplied on HiveQL SELECT statement.

When Basic Authentication is used, the username and password for Oracle
Schema is specified in Hive external Table properties.

< Note:

Oracle does not recommend this in the production environment, since
the password is stored in clear in HCatalog.

HiveQL with OD4H

HiveQL is a SQL like language provided by Hive. It can be used to query hive external
tables created using OD4H.

You can run the Resource Manager web interface in your browser (http://
bi gdat al i t e. | ocal donai n: 8088/ cl ust er), to track the status of a running query on BDA.

You can also see the logs of a query in Cloudera Manager, which also indicates the
actual query sent to Oracle Database corresponding to your query on HiveQL. Hive
and OD4H use slf4j framework for logging. You can control logging level for OD4H
related classes using logging configuration techniques of Hive.

Spark SQL with OD4H

Spark SQL enables relational queries expressed in SQL and HiveSQL to be executed
using Spark. Spark SQL allows you to mix SQL queries with programmatic data
manipulations supported by RDDs (Resilient Distributed Datasets) in Java, Python and
Scala, with a single application.

Spark SQL enables you to submit relational queries using SQL or HiveQL. You can
also use it to query external tables created using OD4H.

Perform the following steps to configure Spark-SQL on BigDataLite-4.2 VM, before
running queries:

1. Add ojdbc7.jar and osh.jar to CLASSPATH in/usr/1i b/ spark/ bi n/ comput e-
classpath. sh

CLASSPATH="$CLASSPATH: / opt / or acl e/ od4h/ i b/ osh.jar"
CLASSPATH="$CLASSPATH: / opt / or acl e/ od4h/ 1i b/ oj dbc7.jar"

2. Edit SPARK_HOME in / usr/ i b/ spark/ conf/ spark-env. sh

export SPARK HOVE=/usr/|i b/ spark:/etc/hivelconf

9-18

Chapter 9
Writing Back to Oracle Database

3. You will need to specify additional environment variables in / usr/li b/ spark/ conf/
spark-env. sh.

The Hive related variables that need to be added are marked in bold. The file
already contains Hadoop related environment variables.

export DEFAULT_HADOOP=/usr /| i b/ hadoop

export DEFAULT_HIVE=/usr/lib/hive

export DEFAULT_HADOOP_CONF=/ et ¢/ hadoop/ conf

export DEFAULT_HIVE_CONF=/etc/hive/conf

export HADOOP_HOVE=${ HADOOP_HOME: - $DEFAULT_HADOOP}

export HADOOP_HDFS_ HOVE=${ HADOOP_HDFS_HOME: - ${ HADOOP_HOME} / . . / hadoop- hdf s}
export HADOOP_MAPRED_HOVE=${ HADOOP_MAPRED HOVE: - ${ HADOOP_HOME} /. . / hadoop-
mapr educe}

export HADOOP_YARN HOVE=${ HADOOP_YARN HOME: - ${ HADOOP_HOVE}/ . . / hadoop- yar n}
export HADOOP_CONF_DI R=${ HADOCP_CONF_DI R: - $DEFAULT_HADOOP_CONF}

export HIVE_CONF_DIR=${HIVE_CONF_DIR:-$DEFAULT_HIVE_CONF}

CLASSPATH="$CLASSPATH:$HIVE_CONF_DIR"
CLASSPATH=" $CLASSPATH: $HADOOP_CONF_DI R

if ["x" I= "x$YARN CONF_DIR' |; then
CLASSPATH=" $CLASSPATH: $YARN_CONF DI R"
fi

Let's nmake sure that all needed hadoop Iibs are added properly
CLASSPATH=" $CLASSPATH: $HADOOP_HOWE/ cl i ent / *"
CLASSPATH=""$CLASSPATH:$HIVE_HOME/lib/*"

CLASSPATH=" $CLASSPATH: $($HADOOP_HOME/ bi n/ hadoop cl asspat h) "

Once configured, you can run some sample queries on spark SQL using scripts
included in demo:/ shel | / *Quer ySpar k. sh. By default, Spark prints queries on the
console. To modify this behavior you can edit the spark logging configuration
file fusr/1ib/ spark/conf/l og4j. properties.

The log printed by OracleRecordReader shows the actual query sent to Oracle
Database, as follows:

15/03/18 10:36:08 | NFO OracleRecordReader: Reading records from Oracle Table
using Query: SELECT FI RST_NAME, LAST_NAME, EMP_| D FROMEmployeeData

9.7 Writing Back to Oracle Database

ORACLE

In the typical use case for OD4H, you store the result sets of Hive or Spark SQL
gueries back to Oracle Database. OD4H implements OutputFormat to enable you to
write back to an Oracle Database table from Hadoop.

After the data is inserted into an Oracle Database table, you can then use your favorite
business intelligence tools for further data mining

The following query is from the OD4H demo code samples. It demonstrates writing
back to an external table called EmployeeBonusReport.

Example 9-1 Writing Hive or Spark Result Sets Back to Oracle Database

I NSERT | NTO Enpl oyeeBonusReport
SELECT Enpl oyeeDat aSi npl e. Fi rst_Nane, Enpl oyeeDat aSi npl e. Last _Nane,
Enpl oyeeBonus. bonus
FROM Enpl oyeeDat aSi npl e JO N Enpl oyeeBonus ON

9-19

Chapter 9
Writing Back to Oracle Database

(Enpl oyeeDat aSi npl e. Enp_I D=Enpl oyeeBonus. Enp_| D)
VWHERE sal ary > 70000 and bonus > 7000"

ORACLE" 9-20

Appendices

This section contains the following appendices.

e Using Oracle's Hive Storage Handler for Kafka to Create a Hive External Table for
Kafka Topics

e Apache License

» Additional Big Data Connector Resources

Using Oracle's Hive Storage Handler for
Kafka to Create a Hive External Table for
Kafka Topics

ORACLE

The Hive storage handler for Kafka enables Hive (as well as Oracle Big Data SQL) to
guery Kafka topics.

To provide access to Kafka data, you create a Hive external table over the Kafka
topics. The Oracle Big Data SQL storage handler that enables Hive to read the Kafka
data format is or acl e. hadoop. kaf ka. hi ve. Kaf kaSt or ageHand! er .

You can use this storage handler to create external Hive tables backed by data
residing in Kafka. Big Data SQL can then query the Kafka data through the external
Hive tables.

The Hive DDL is demonstrated by the following example, where topicl and topic2 are
two topics in Kafka broker whose keys are serialized by Kafka's String serializer and
whose values are serialized by kafka's Long serializer.

CREATE EXTERNAL TABLE test_table

row format serde ‘oracl e. hadoop. kaf ka. hi ve. Kaf kaSer De’

stored by 'oracl e. hadoop. kaf ka. hi ve. Kaf kaSt or ageHand| er'

tbl properties('oracle. kafka.tabl e. key.type' ='string',
"oracl e. kaf ka. tabl e. val ue. type' ="l ong',
"oracl e. kaf ka. boot strap. servers' =" nshgc0602: 9092' ,
"oracl e. kaf ka. tabl e. topi cs' =" topi cl, topic2');

The example below shows the resulting Hive table. The Kafka key, value, offset, topic
name, and partitionid are mapped to Hive columns. You can explicitly designate the
offset for each topic/partition pair through a WHERE clause in you Hive query.

hi ve> describe test_table;

(04

topic string fromdeserializer
partitionid int fromdeserializer
key string fromdeserializer
val ue bi gl nt fromdeserializer
of f set bi gi nt fromdeserializer
timestanptype smal | | nt fromdeserializer
timestanp timestanp fromdeserializer

Time taken: 0.084 seconds, Fetched: 7 row(s)

The content of the table is a snapshot of the Kafka topics when the Hive query is
executed. When new data is inserted into the Kafka topics, you can use the offset
column or the timestamp column to track the changes to the topic. The offsets are per
topic/partition. For example, the following query will return new messages after the
specified offsets in the where clause for each topic/partition:

hive> select * fromtest_table where (topic="topicl" and partitoinid=0 and of fset >
199) or (topic="topicl" and partitionid=1 and offset > 198) or (topic="topic2" and
partitioni d=0 and offset > 177) or (topic="topic2" and partitionid=1 and offset >
176);

A-1

ORACLE

Appendix A

You need to keep track of the offsets for all topic/partition. For example, you can use
an Oracle table to store these offsets. A more convenient way to keep track of new
data is using the timestamp column. You can query data after a specific time point
using the following query:

hive> select * fromtest_table where tinmestanp > '2017-07-12 11:30:00';
See the Property Reference section below for descriptions of all table properties

Property Reference

Table A-1 Table Properties of Hive Storage Handler for Kafka

|
Property Requir Description

Name ement

oracle.kaf Require A comma-separated list of Kafka topics. Each Kafka topic name must
ka.table.to d consists of only letters (uppercase and lowercase), numbers, .(dot),
pics _(underscore), and -(minus). The maximum length for each topic name

is 249. These topics must have the same serialization mechanisms. The
resulting Hive table consists of records from all the topics listed here. A
Hive column “topic” will be added and it will be set to the topic name for
each record.

oracle.kaf Require This property will be translated to the “bootstrap.servers” property for the

ka.bootstr d underlying Kafka consumer. The consumer makes use of all servers,

ap.servers irrespective of which servers are specified here for bootstrapping. This
list only impacts the initial hosts used to discover the full set of servers.
This list should be in the form host 1: port 1, host 2: port 2, Since

these servers are just used for the initial connection to discover the full
cluster membership (which may change dynamically), this list need not
contain the full set of servers. For availability reasons, you may want to
list more than one server.

oracle.kaf Optional The key type for your record. If unset, then the key part of the Kafka

ka.table.k record will be ignored in the Hive row. Only values of “string”, “integer”,

ey.type “long”, “double”, “avro”, “avro_confluent’are supported. “string”, “integer”,
“double” and “long” correspond to the built-in primitive serialization types
supported by Kafka. If this property is one of these primitive types, then
the Kafka key for each record will be mapped to one single Hive
Column. If this property is set to “avro” or “avro_confluent”, then
oracl e. kaf ka. t abl e. key. schema is required. The Kafka key for each
record will be deserialized into an Avro Object. If the Avro schema is of
record type then each first level field of the record will be mapped to a
single Hive column. If the Avro schema is not of Record Type, then it will
be mapped to a single Hive Column named “key”.

The difference between “avro” and “avro_confluent” is that the wire
format for the serialization is slightly different. For “avro”, the entire bytes
array of the key consists of the bytes of avro serialization. For
“avro_confluent”, the bytes array consists of a magic byte, a version
number, then the bytes of avro serialization of the key.

oracle.kaf Optional The value type of your record. If unset, then the value part of Kafka

ka.table.v record will be ignored in the Hive row. Use of this property is similar to

alue.type use of oracl e. kaf ka. t abl e. key. t ype. The difference between them is:
when the Avro Schema for Kafka value is not of record type. The whole
Avro object will be mapped to a single Hive Column named “value”
instead of “key”.

A-2

Appendix A

Table A-1 (Cont.) Table Properties of Hive Storage Handler for Kafka

Property
Name

Requir
ement

Description

oracle.kaf
ka.table.k

ey.writer.s
chema

oracle.kaf
ka.table.k
ey.schem
a

oracle.kaf
ka.table.v
alue.writer
.schema

oracle.kaf
ka.table.v
alue.sche
ma

oracle.kaf
ka.table.e
xtra.colum
ns

oracle.kaf
ka.chop.p
artition

oracle.kaf
ka.partitio
n.chunk.si
ze

Optional

Require
d when
“oracle.
kafka.ta
ble.key.t
ype” is
“avro”

or
“avro_c
onfluent

Optional

Require
d when
“oracle.
kafka.ta
ble.valu
e.type”
is “avro”
or
“avro_c
onfluent

Optional
, default
to “true”

Optional
, default
to false

Optional

An optional writer schema for the Kafka key’s Avro serialization. It's
required when the reader schema for the key is different from the
schema in which the keys are written to Kafka brokers. It must be the
exact schema in which Kafka keys are serialized.

The JSON string for the Kafka key's Avro reader schema. It doesn't
need to be exactly the same as the Kafka key's writer Avro schema. As
long as the reader schema is compatible with the Kafka key or the
converted object from the converter, it is valid. This enables you to
rename Hive columns and choose what fields to keep from the Kafka
key in the Hive row. If the schema in this property is different from the
schema in which the Kafka keys are serialized, then

oracl e. kaf ka. tabl e. key. wri ter. schema is required.

An optional writer schema for the Kafka value’s Avro serialization. Its
use is similar to or acl e. kaf ka. t abl e. key. wri ter. schena.

The JSON string for the Kafka value's Avro reader schema. Its use is
similar to or acl e. kaf ka. t abl e. key. schema.

A boolean flag to control whether to include extra Kafka columns:
paritionid, offset,timestanptype.

A Boolean flag to control whether to chop Kafka partitions into smaller
chunks. This is useful when the number of Kafka partitions is small and
the size of each Kafka partition is large.

When oracle.kafka.chop.partition is true, this property controls the
number of Kafka records in each partition chunk. It should be set a value
estimated by (Ideal size of a split)/(Average size of a Kafka record). For
example, if the ideal size of a split is 256 MB and the average size of s
Kafka record is 256 Bytes, then this property should be set to 1000000.

ORACLE

A-3

Apache License

ORACLE

Version 2.0, January 2004
http://ww. apache. org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in
or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by hame) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of
the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

B-1

http://www.apache.org/licenses/

ORACLE

Appendix B

"Contributor” shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and in
Source or Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if
and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the

B-2

ORACLE

Appendix B

Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for,
acceptance of support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such obligations, You
may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http:// ww. apache. org/licenses/ LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

B-3

http://www.apache.org/licenses/LICENSE-2.0

Appendix B
Apache Licensed Code

CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

This product includes software developed by The Apache Software Foundation (http:/I
www.apache.org/) (listed below):

B.1 Apache Licensed Code

ORACLE

The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at
http://ww. apache. org/licenses/ LI CENSE-2.0
A copy of the license is also reproduced below.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

Apache License

Version 2.0, January 2004

http:// ww. apache. org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

B-4

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/

ORACLE

Appendix B
Apache Licensed Code

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in
or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by hame) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of
the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed
by, or on behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor” shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement,
then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and in
Source or Object form, provided that you meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

B-5

ORACLE

Appendix B
Apache Licensed Code

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if
and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for,
acceptance of support, warranty, indemnity, or other liability obligations and/or
rights consistent with this License. However, in accepting such obligations, You
may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each

B-6

ORACLE

Appendix B
Apache Licensed Code

Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information. (Do
not include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http:// ww. apache. org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS I1S" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

This product includes software developed by The Apache Software Foundation
(http://ww. apache. org/) (listed below):

B-7

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/

Additional Big Data Connector Resources

ORACLE

The following are useful resources for learning about and using Oracle Big Data
Connectors.

Oracle Big Data Connector Downloads

The Oracle Technology Network (OTN) provides downloads of the latest versions as
well as earlier versions of the Oracle Big Data Connectors.

Oracle Big Data Connector Blogs and Community Forums

Oracle Blogs includes a number of postings on Oracle Big Data Connectors under the
topic Connecting Hadoop with Oracle, including the following.

e Oracle Shell for Hadoop Loaders (OHSH), an introduction to OHSH.

e Copy to Hadoop with OHSH , some OHSH examples using the Oracle Big Data
Lite VM.

e Using Oracle SQL Connector for HDFS with Oracle Wallet , a simple step-by-step
demonstration of how to use Oracle SQL Connector for HDFS with a client-side
Oracle Wallet.

e Oracle SQL Connector for HDFS and Oracle Database System Platforms, a post
about OSCH support for the various Oracle Database server platforms.

The Oracle Datasource for Apache Hadoop Community Forum provides blog posts on
OD4H and a discussion forum for OD4H users.

C-1

http://www.oracle.com/technetwork/database/database-technologies/bdc/big-data-connectors/downloads/index.html
https://blogs.oracle.com/
https://blogs.oracle.com/bigdataconnectors/entry/oracle_shell_for_hadoop_loaders
https://blogs.oracle.com/bigdataconnectors/entry/copy_to_hadoop_with_oshell
https://blogs.oracle.com/bigdataconnectors/entry/using_oracle_sql_connector_for
https://blogs.oracle.com/bigdataconnectors/?page=1
https://community.oracle.com/community/database/big_data/datasource-for-hadoop

Index

Symbols

%*

put annotation, 5-7
%annotations, 6-5, 6-75, 6-76
%ora-java

binding annotation, 5-8
%output annotation, 6-47
%output encoding annotation, 6-82
%output media-type annotation, 6-82
%updating annotation, 5-7

A

access privileges, Oracle Database, 1-12
adapters
Avro, 6-1
Oracle NoSQL Database, 6-31
sequence file, 6-57
text file, 6-72
tika, 6-80
XML file, 6-85
aggregate functions for Hive, 8-14
ALLOW_BACKSLASH_ESCAPING_ANY_CHAR
ACTER property, 6-21
ALLOW_COMMENTS property, 6-21
ALLOW_NON_NUMERIC_NUMBERS property,
6-21
ALLOW_NUMERIC_LEADING_ZEROS property,
6-21
ALLOW_SINGLE_QUOTES property, 6-21
ALLOW_UNQUOTED_CONTROL_CHARS
property, 6-21
ALLOW_UNQUOTED_FIELD_NAMES property,
6-21
ALTER SESSION commands, 2-45
analytic functions in R, 8-12
annotations
Avro collection, 6-3
equal to Oracle Loader for Hadoop
configuration properties, 6-29
for writing to Oracle NoSQL Database, 6-47
Oracle Database adapter, 6-24
Oracle NoSQL Database adapter, 6-41
parsing tika files, 6-82

ORACLE

annotations (continued)
reading from Oracle NoSQL Database, 6-44
reading sequence files, 6-62
reading text files, 6-75
reading XML files, 6-87
writing text files, 6-76
Apache Hadoop distribution, 1-3, 1-25
Apache licenses, 3-54, B-4
avro
compress annotation, 6-5
file annotation, 6-5
put annotation, 6-5
schema annotation, 6-5
schema-file annotation, 6-5
schema-kv annotation, 6-5, 6-41, 6-44, 6-47
Avro
annotations for reading, 6-3
annotations for writing, 6-5
Avro array,
reading as XML, 6-10
Auvro file adapter, 6-1
examples, 6-6
reading Avro as XML, 6-7
writing XML as Avro, 6-12
Avro files
collection annotations, 6-3
collection function, 6-3
converting text to, 6-6
functions for reading, 6-2
output file name, 6-5
put functions, 6-5
guerying records, 6-6
reading, 6-3
reading as XML, 6-7
writing, 6-5
Avro license, 3-54
Avro maps, 6-3
Avro maps, reading as XML, 6-9
Avro null values, 6-12
Avro primitives
reading as XML, 6-12
Avro reader schema, 6-4, 6-5, 6-45
Avro records, reading as XML, 6-8
Avro unions, reading as XML, 6-11
avro((colon))collection-avroxml function, 6-2

Index-1

avro((colon))get function, 6-3
avroxml method, 6-7, 6-12

B

balancing loads in Oracle Loader for Hadoop,
3-32

batchSize property, 6-54

bzip2 input files, 2-32

C

Index

CREATE TABLE
configuration properties, 7-7
examples, 7-9
syntax, 7-7
CREATE TABLE privilege, 1-12
createBadFiles property, 2-32
createLogFiles property, 2-32
CSV files, 2-37, 3-36

D

character encoding, 6-41, 6-44
character methods for Hive, 8-6
client libraries, 1-14
clients
configuring Hadoop, 1-30
coersing data types in R, 8-16
collection annotation
text files, 6-75
tika files, 6-82
collection annotations
Avro, 6-3
collection function (XQuery)
description, 5-4
collection functions
Oracle NoSQL Database adapter, 6-41
sequence files, 6-62
text files, 6-75
tika files, 6-82
collection-tika function, 6-35, 6-59
columnCount property (OSCH), 2-32
columnLength property (OSCH), 2-32
columnNames property (OSCH), 2-32
columnType property (OSCH), 2-32
compressed data files, 2-32
compressed files, 2-37
compression
data in database tables, 2-3
sequence files, 6-63
compression codec, 6-5
compression methods
Avro output files, 6-6
CompressionCodec property (OSCH), 2-32
configuration properties
for Oracle XQuery for Hadoop, 6-29
JSON file adapter, 6-21
Oracle NoSQL Database adapter, 6-55
Oracle XQuery for Hadoop, 5-19
configuration settings
Hadoop client, 1-30
Sqoop utility, 1-26
configuring a Hadoop client, 1-30
connecting to Oracle Database from R, 8-14
consistency property, 6-54

ORACLE

Data Pump files, 2-10
XML template, 2-11
data type mappings
between XQuery and Avro, 6-12
between XQuery and Oracle Database, 6-25
Oracle Database and XQuery, 6-24
data type mappings, Hive (OSCH), 2-32
data type testing in R, 8-16
data types
Oracle Loader for Hadoop, 3-12
database directories
for Oracle SQL Connector for HDFS, 1-9
database patches, 1-14, 2-10
database privileges, 1-12
database system, configuring to run MapReduce
jobs, 1-6
database tables
writing using Oracle XQuery for Hadoop,
6-23
databaseName property, Hive (OSCH), 2-32
dataCompressionCodec property (OSCH), 2-32
dataPathFilter property (OSCH), 2-32
dataPaths property (OSCH), 2-32
dateMask property (OSCH), 2-32
defaultDirectory property (OSCH), 2-32
deflate compression, 6-5
delimited text files
XML templates, 2-21
DelimitedTextlnputFormat class, 3-18, 3-40
Oracle Loader for Hadoop, 3-19
delimiter
for splitting text files, 6-75
Direct Connector for HDFS, 2-37
directories, 1-9
default HDFS for XQuery, 5-19
Oracle SQL Connector for HDFS home, 1-9
Sqgoop home, 1-26
Directory property (OSCH), 2-32
disable_directory_link_check access parameter,
2-10
distributed cache
accessing from Oracle XQuery for Hadoop,
5-7
downloading software, 1-4, 1-25-1-27, 1-31

Index-2

drivers
JDBC, 1-26, 3-26
ORACLE_DATAPUMP, 3-29
ORACLE_LOADER, 2-27
durability property, 6-54

E

encoding characters, 6-41, 6-44
external tables
about, 2-1
ExternalTable command
syntax, 2-7

F

fieldLength property (OSCH), 2-32
fieldTerminator property (OSCH), 2-32
file paths
locating in XQuery, 6-98
FLWOR requirements, 5-7
fn
nilled function, 6-8, 6-10
frame methods for Hive, 8-6
functions
for writing to Oracle NoSQL Database, 6-47
Oracle NoSQL Database, 6-33, 6-38, 6-40
parsing tika files, 6-81, 6-82
reading and writing sequence files, 6-58
reading and writing text files, 6-72
reading Avro files, 6-3
reading from Oracle NoSQL Database, 6-41,
6-44
reading JSON files, 6-17
reading sequence files, 6-62
reading text files, 6-75
reading XML files, 6-85, 6-87
writing Avro files, 6-5
writing sequence files, 6-63
writing text files, 6-76

G

get function

Oracle NoSQL Database adapter, 6-44
get-tika function, 6-37
gzip input files, 2-32

H

Hadoop client
configuring, 1-30
installing, 1-6
HADOOP_HOME environment variable, 1-26

ORACLE

Index

HADOOP_LIBEXEC_ DIR environment variable,
1-26
HDFS commands
issuing from R, 8-13
HDFS data
copying in R, 8-15
HDFS directories
creating in R, 8-13
HDEFS directory, 5-19
HDFS files
loading data into an Oracle database, 3-22
restrictions in Oracle R Advanced Analytics
for Hadoop, 8-5
hdfs_stream Bash shell script, 1-9
Hive access from R, 8-5
Hive access in R, 8-13
Hive data type mappings (OSCH), 2-32
Hive data types, support for, 8-8
Hive JAR files for Oracle Loader for Hadoop,
3-31
Hive tables
XML format, 2-14
hive.columnType property (OSCH), 2-32
hive.databaseName property (OSCH), 2-32
hive.partitionFilter property, 2-32
hive.tableName property, 2-32
HiveToAvrolnputFormat class, 3-20, 3-30
Hortonworks Data Platform distribution, 1-6
hosts property, 6-54

initialFieldEncloser property, 2-32
InputFormat class
Oracle Loader for Hadoop, 3-19
installation
Hadoop client, 1-6
Oracle Data Integrator Application Adapter
for Hadoop, 1-32
Oracle Loader for Hadoop, 1-14
Oracle R Advanced Analytics for Hadoop,
1-24
Oracle Shell for Hadoop Loaders Setup, 1-16
Oracle SQL Connector for HDFS, 1-5
Sqoop utility, 1-26
installation instructions, 1-1
Instant Client libraries, 1-14

J

JDBC drivers, 1-26, 3-26

json
get function, 6-18
parse-as-xml function, 6-18

JSON data formats

converting to XML, 6-22
JSON file adapter

configuration properties, 6-21
JSON files

reading, 6-17
JSON module, 6-17

examples, 6-19

K

kv
collection annotation, 6-41
collection-avroxml function, 6-34
collection-binxml function, 6-35
collection-text function, 6-33
collection-xml function, 6-34
get annotation, 6-44
get-avroxml function, 6-36
get-binxml function, 6-36
get-text function, 6-36
get-xml function, 6-36
key annotation, 6-41, 6-44
key-range function, 6-37
put annotation, 6-47
put-binxml function, 6-36
put-text function, 6-35
put-xml function, 6-36
kv-lob
get-binxml, 6-40
get-text, 6-40
get-tika, 6-40
get-xml, 6-40
put-binxml, 6-41
put-text, 6-41
put-xml, 6-41
kv-table
collection-jsontext, 6-38
KVAuvrolnputFormat class, 3-31
kvstore property, 6-54

L

licenses, 5-22, 8-19
licenses, third-party, 3-54, 4-3
load balancing

in Oracle Loader for Hadoop, 3-32
LOBSuffixproperty, 6-54
LOBTimeout property, 6-54
locationFileCount property, 2-32
log4j.logger.oracle.hadoop.xquery property, 5-19
logDirectory property, 2-32
logical methods for Hive, 8-6

ORACLE

Index

M

mapping
JSON to XML, 6-23
mappings
Oracle Database and XQuery data types,
6-24
mappings, Hive to Oracle Database (OSCH),
2-32
MapReduce functions
writing in R, 8-17
MasterPolicy durability, 6-54
matrix methods for Hive, 8-6

N

nilled elements, 6-8

nilled function, 6-12

null values in Avro, 6-12
numeric methods for Hive, 8-6

O

OCI Direct Path, 3-37
OHSH, 1-16
operating system user permissions, 1-9
ora-java
binding annotation, 5-8
oracle
columns annotation, 6-24
put annotation, 6-24
Oracle Data Integrator Application Adapter for
Hadoop
installing, 1-32
Oracle Database
annotations for writing, 6-24
connecting from R, 8-14
put function, 6-24
user privileges, 1-12
Oracle Database access from ORCH, 8-10
Oracle Database adapter, 6-23
configuration properties, 6-29
examples, 6-27
Oracle Database Adapter
using Oracle Loader for Hadoop, 6-23
Oracle Direct Connector for HDFS, 2-37
Oracle Exadata Database Machine
installing a Hadoop client, 1-7
Oracle Instant Client libraries, 1-14
Oracle Loader for Hadoop
description, 3-1
input formats, 3-22
installing, 1-14
supported database versions, 1-14

Index-4

Oracle NoSQL Database
annotations for writing, 6-47

Oracle NoSQL Database adapter, 6-31
annotations for reading, 6-41
collection function, 6-41
get function, 6-44
reading Avro as XML, 6-7
writing XML as Avro, 6-12

Oracle NoSQL Database Adapter
configuration properties, 6-54
examples, 6-49

Oracle NoSQL Database functions, 6-33, 6-38,

6-40

Oracle OCI Direct Path, 3-36, 3-37

Oracle permissions, 1-9

Oracle R Advanced Analytics for Hadoop
categorical list of functions, 8-11
connecting to Oracle Database, 8-14
copying HDFS data, 8-15
debugging functions, 8-17
description, 1-2, 8-2
HDFS commands issued from, 8-13
installation, 1-24
MapReduce functions, 8-17

Oracle RAC systems, installing a Hadoop client,

1-7

Oracle Shell for Hadoop Loaders Setup
installing, 1-16

Oracle Software Delivery Cloud, 1-4

Oracle SQL Connector for HDFS
description, 2-1
installation, 1-5
pattern-matching characters, 2-37
guery optimization, 2-45

Oracle Technology Network
downloads, 1-4, 1-26

Oracle XQuery for Hadoop, 5-1
accessing the distributed cache, 5-7
accessing user-defined XQuery library

modules and XML schemas, 5-8
basic transformation examples, 5-9
calling custom Java external functions, 5-8
configuration properties, 5-19
configuring Oracle NoSQL Database server,
6-32

description, 5-1
error logging levels, 5-19
error recovery setting, 5-19
hadoop command, 5-14
JSON module, 6-17
Oracle NoSQL Database adapter, 6-31
output directory, 5-19
running queries, 5-14
running queries locally, 5-16
sequence file adapter, 6-57

ORACLE

Index

Oracle XQuery for Hadoop (continued)
temp directory, 5-19
text file adapter, 6-72
tika adapter, 6-80
time zone, 5-19
XML file adapter, 6-85
Oracle XQuery for Hadoop adapters
overview, 5-4
Oracle XQuery for Hadoop modules
overview, 5-6
ORACLE_DATAPUMP driver, 3-29
ORACLE_LOADER driver, 2-27
oracle-property annotation, 6-24
oracle.hadoop.exttab.colMap.column_name.nulllf
Specifier property, 2-32
oracle.hadoop.exttab.createBadFiles property,
2-32
oracle.hadoop.exttab.createLogFiles property,
2-32
oracle.hadoop.exttab.hive.tableName property,
2-32
oracle.hadoop.exttab.initialFieldEncloser
property, 2-32
oracle.hadoop.exttab.locationFileCount property,
2-32
oracle.hadoop.exttab.logDirectory property, 2-32
oracle.hadoop.exttab.nulllfSpecifier property,
2-32
oracle.hadoop.exttab.preprocessorDirectory
property, 2-32
oracle.hadoop.exttab.preprocessorScript, 2-32
oracle.hadoop.exttab.recordDelimiter property,
2-32
oracle.hadoop.exttab.sourceType property, 2-32
oracle.hadoop.exttab.stringSizes property, 2-32
oracle.hadoop.exttab.tableName property, 2-32
oracle.hadoop.xquery.* properties, 5-19
oracle.hadoop.xquery.json.parser.*, 6-21
oracle.hadoop.xquery.kv property, 6-54
oracle.hadoop.xquery.kv.config.durability
property, 6-54
oracle.hadoop.xquery.kv.config.requestLimit
property, 6-54
oracle.hadoop.xquery.kv.config.requestTimeout
property, 6-54
oracle.hadoop.xquery.kv.config.socketOpenTime
out property, 6-54
oracle.hadoop.xquery.kv.config.socketReadTime
out property, 6-54
oracle.hadoop.xquery.lib.share property, 5-19
oracle.hadoop.xquery.tika.html.asis property,
6-83
oracle.hadoop.xquery.tika.locale property, 6-83
oracle.kv.batchSize property, 6-54
oracle.kv.consistency property, 6-54

oracle.kv.hosts configuration property, 6-55
oracle.kv.hosts property, 6-54
oracle.kv.kvstore configuration property, 6-55
oracle.kv.kvstore property, 6-54
oracle.kv.timeout property, 6-54
orahdfs-version.zip file, 1-8
orahdfs-version/bin directory, 1-9
OraLoader, 3-35
oraloader-<version>.zip file, 1-22
oraloader-version directory, 1-14, 1-22
oraloader-version.zip, 1-15
oraloader-version.zip file, 1-8, 1-14
OraloaderMetadata utility program, 3-16
ORCH package

installation, 1-25, 1-27
orch.tgz package, 1-27
ORE functions for Hive, 8-5
ore.create function, 8-9
ore.exec function, 8-9
ore.warn.order option, 8-10
OSCH_BIN_PATH directory, 1-12
output

encoding annotation, 6-41, 6-44, 6-62, 6-87

parameter annotation, 6-76
output annotation, 6-63
output directory for Oracle XQuery for Hadoop,

5-19

oxh

find function, 6-98

increment-counter function, 6-99

println function, 6-99

println-xml function, 6-99

property function, 6-100
oxh-charset property, 7-7
oxh-column property, 7-7
oxh-default-namespace property, 7-7
oxh-elements property, 7-7
oxh-entity.name property, 7-7
oxh-namespace.prefix property, 7-7
OXMLSerDe, 7-7

P

parallel processing, 1-3, 2-45

parsing options for JSON files, 6-21

parsing tika files, 6-81

partitioning, 3-12

PathFilter property (OSCH), 2-32

Paths property (OSCH), 2-32

pattern matching, 5-19

pattern matching (OSCH), 2-32

pattern-matching characters in Oracle SQL
Connector for HDFS, 2-37

preprocessor access parameter, 2-10

preprocessorDirectory property, 2-32

ORACLE

Index

privileges, Oracle Database, 1-12
put function (XQuery)
description, 5-4
put functions
Oracle NoSQL Database adapter, 6-47
sequence files, 6-63
text files, 6-76

Q

gueries
running in Oracle XQuery for Hadoop, 5-14
running locally in Oracle XQuery for Hadoop,
5-16
guery optimization for Oracle SQL Connector for
HDFS, 2-45

R

R data types, converting and testing, 8-16
R distribution, 1-25, 1-30
R Distribution, 1-27, 1-31
R functions

categorical listing, 8-11
R functions for Hive, 8-6
random order messages, 8-10
reading Avro files, 6-3
reading sequence files, 6-58
reading text files, 6-72
readZones property, 6-54
recordDelimiter property, 2-32
records, rejected, 3-32
rejected records, 3-32
ReplicaAck policy, 6-54
ReplicaPolicy durability, 6-54
requestLimit property, 6-54
requestTimeout property, 6-54

S

sampling data
from Oracle Loader for Hadoop, 3-32
scripts
debugging in R, 8-17
security property, 6-54
seq
collection annotation, 6-62
collection function, 6-58
collection-binxml function, 6-59
collection-xml function, 6-58
compress annotation, 6-63
file annotation, 6-63
key annotation, 6-62
put annotation, 6-63

Index-6

seq (continued)
put functions, 6-60
put-binxml function, 6-61
put-xml function, 6-60
split-max annotation, 6-62
split-min annotation, 6-62
sequence file adapter, 6-57
annotations for writing, 6-63
collection function, 6-62
examples, 6-65
sequence file adapter functions, 6-58
sequence files
compression, 6-63
output file name, 6-63
reading, 6-62
split size, 6-63
writing, 6-63
serialization parameter, 6-48, 6-77
serialization parameters, 6-100
skiperrors property for Oracle XQuery for
Hadoop, 5-19
skiperrors.counters property, 5-19
skiperrors.log.max property, 5-19
skiperrors.max property, 5-19
shappy compression, 6-5
socketOpenTimeout property, 6-54
socketReadTimeout property, 6-54
software downloads, 1-4, 1-25-1-27, 1-31
sourceType property, 2-32
split size
for Avro files, 6-4
sequence files, 6-63
text files, 6-75
split sizes, 6-4
splitting XML files, 6-88
SQL*Loader, 3-28
Sqoop, 8-11
Sqgoop utility
installing on a Hadoop client, 1-31
installing on a Hadoop cluster, 1-26
stringSizes property, 2-32
subrange specification, Oracle NoSQL Database
adapter, 6-43

T

tables
compression in database, 2-3
copying data from HDFS, 3-1
writing to Oracle Database, 6-24
temp directory, setting for Oracle XQuery for
Hadoop, 5-19
text
collection annotation, 6-75
collection function, 6-73

ORACLE

Index

text (continued)
collection-xml function, 6-73
compress annotations, 6-76
file annotation, 6-76
put annotation, 6-76
put function, 6-74
put-xml function, 6-74
split annotation, 6-75
split-max annotation, 6-75
trace function, 6-75
text file adapter, 6-72
collection function, 6-75
put function, 6-76
text files
converting to Avro, 6-6
delimiter, 6-75
reading, 6-75
reading and writing, 6-72
split size, 6-75
writing, 6-76
third-party licenses, 3-54, 4-3, 5-22, 8-19
tika
%output encoding annotation, 6-82
%output media-type annotation, 6-82
collection annotation, 6-82
collection function, 6-81
helper function, 6-81
parse function, 6-81
parse textual data, 6-81
tika adapter, 6-80
tika file adapter
collection function, 6-82
parsing, 6-81
tika files
parsing, 6-82
time zones in XQuery, 6-26
timeout property, 6-54
timestampMask property (OSCH), 2-32
timestampTZMask property (OSCH), 2-32
timezone property for Oracle XQuery for Hadoop,
5-19
type mappings
between XQuery and Avro, 6-12
between XQuery and Oracle Database, 6-25

U

uncompressed files, 2-37
updating functions, 5-7
UTF-8 encoding, 6-41, 6-44
UTL_FILE package, 1-12

V

vector methods for Hive, 8-6

wW

wildcards, 5-19

writing Avro files, 6-5

writing sequence files, 6-58
writing text files, 6-72

writing to Oracle tables, 6-23

X

XML
writing as Avro arrays, 6-15
writing as Avro maps, 6-14
writing as Avro primitives, 6-16
writing as Avro records, 6-13
writing as Avro unions, 6-15
XML file adapter, 6-85
examples, 6-89
XML files
reading, 6-85, 6-87
restrictions on splitting, 6-88
XML schemas
accessing user-defined, 5-8
XML template for Data Pump files, 2-11
XML templates
Data Pump files, 2-11
delimited text files, 2-21
Hive tables, 2-14

ORACLE

XML templates (continued)
XML_EXISTS function, 7-16
XML_QUERY function, 7-18
XML_QUERY_AS_primitive function, 7-20
XML_TABLE function, 7-23
xmlf

collection annotation, 6-87

collection functions, 6-85

split annotation, 6-87

split-entity annotation, 6-87

split-max annotation, 6-87

split-min annotation, 6-75, 6-87

split-namespace annotation, 6-87
XQuery, 5-1
XQuery library modules

accessing user-defined, 5-8
XQuery specification support, 5-7
XQuery transformations

requirements, 5-6
xquery.output property, 5-19
xquery.scratch property, 5-19
xquery.skiperrors property, 5-19
xquery.skiperrors.counters property, 5-19
xquery.skiperrors.log.max property, 5-19
xquery.skiperrors.max property, 5-19
xquery.timezone property, 5-19
XSi

nil attribute, 6-8

Index

Index-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Text Conventions
	Syntax Conventions
	Changes in Oracle Big Data Connectors Release 4.12

	Part I Setup
	1 Getting Started with Oracle Big Data Connectors
	1.1 About Oracle Big Data Connectors
	1.2 Big Data Concepts and Technologies
	1.2.1 What is MapReduce?
	1.2.2 What is Apache Hadoop?

	1.3 Downloading and Installing Oracle Big Data Connectors
	1.4 Certified Hadoop Platforms
	1.5 Oracle SQL Connector for Hadoop Distributed File System Setup
	1.5.1 Software Requirements
	1.5.2 Installing and Configuring a Hadoop Client on the Oracle Database System
	1.5.3 Installing Oracle SQL Connector for HDFS
	1.5.4 Oracle Database Privileges for OSCH Users
	1.5.5 OS-Level Requirements for OSCH Users
	1.5.6 Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster
	1.5.7 Using OSCH in Oracle SQL Developer

	1.6 Oracle Loader for Hadoop Setup
	1.6.1 Software Requirements
	1.6.2 Installing Oracle Loader for Hadoop
	1.6.3 Providing Support for Offline Database Mode
	1.6.4 Using Oracle Loader for Hadoop on a Secure Hadoop Cluster

	1.7 Oracle Shell for Hadoop Loaders Setup
	1.7.1 Installing Oracle Shell for Hadoop Loaders on a Hadoop Node
	1.7.2 Configuring OHSH to Enable Job Monitoring

	1.8 Oracle XQuery for Hadoop Setup
	1.8.1 Software Requirements
	1.8.2 Installing Oracle XQuery for Hadoop
	1.8.3 Troubleshooting the File Paths
	1.8.4 Configuring Oozie for the Oracle XQuery for Hadoop Action

	1.9 Oracle R Advanced Analytics for Hadoop Setup
	1.9.1 Installing the Software on Hadoop
	1.9.1.1 Software Requirements for a Third-Party Hadoop Cluster
	1.9.1.2 Installing Sqoop on a Third-Party Hadoop Cluster
	1.9.1.3 Installing Hive on a Third-Party Hadoop Cluster
	1.9.1.4 Installing R on a Hadoop Client
	1.9.1.5 Installing R on a Third-Party Hadoop Cluster
	1.9.1.6 Installing the ORCH Package on a Third-Party Hadoop Cluster

	1.9.2 Installing Additional R Packages
	1.9.3 Providing Remote Client Access to R Users
	1.9.3.1 Software Requirements for Remote Client Access
	1.9.3.2 Configuring the Server as a Hadoop Client
	1.9.3.3 Installing Sqoop on a Hadoop Client
	1.9.3.4 Installing R on a Hadoop Client
	1.9.3.5 Installing the ORCH Package on a Hadoop Client
	1.9.3.6 Installing the Oracle R Enterprise Client Packages (Optional)

	1.10 Oracle Data Integrator
	1.11 Oracle Datasource for Apache Hadoop Setup
	1.11.1 Configuring HiveServer2

	Part II Oracle Database Connectors
	2 Oracle SQL Connector for Hadoop Distributed File System
	2.1 About Oracle SQL Connector for HDFS
	2.2 Getting Started With Oracle SQL Connector for HDFS
	2.3 Configuring Your System for Oracle SQL Connector for HDFS
	2.4 Using Oracle SQL Connector for HDFS with Oracle Big Data Appliance and Oracle Exadata
	2.5 Using the ExternalTable Command-Line Tool
	2.5.1 About ExternalTable
	2.5.2 ExternalTable Command-Line Tool Syntax

	2.6 Creating External Tables
	2.6.1 Creating External Tables with the ExternalTable Tool
	2.6.2 Creating External Tables from Data Pump Format Files
	2.6.2.1 Required Properties
	2.6.2.2 Optional Properties
	2.6.2.3 Defining Properties in XML Files for Data Pump Format Files
	2.6.2.4 Example

	2.6.3 Creating External Tables from Hive Tables
	2.6.3.1 Hive Table Requirements
	2.6.3.2 Data Type Mappings
	2.6.3.3 Required Properties
	2.6.3.4 Optional Properties
	2.6.3.5 Defining Properties in XML Files for Hive Tables
	2.6.3.6 Example
	2.6.3.7 Creating External Tables from Partitioned Hive Tables
	2.6.3.7.1 Database Objects that Support Access to Partitioned Hive Tables
	2.6.3.7.2 Querying the Metadata Table
	2.6.3.7.3 Creating UNION ALL Views for Querying
	2.6.3.7.4 Error Messages
	2.6.3.7.5 Dropping Dangling Objects

	2.6.4 Creating External Tables from Delimited Text Files
	2.6.4.1 Data Type Mappings
	2.6.4.2 Required Properties
	2.6.4.3 Optional Properties
	2.6.4.4 Defining Properties in XML Files for Delimited Text Files
	2.6.4.5 Example

	2.6.5 Creating External Tables in SQL

	2.7 Updating External Tables
	2.7.1 ExternalTable Syntax for Publish
	2.7.2 ExternalTable Example for Publish

	2.8 Exploring External Tables and Location Files
	2.8.1 ExternalTable Syntax for Describe
	2.8.2 ExternalTable Example for Describe

	2.9 Dropping Database Objects Created by Oracle SQL Connector for HDFS
	2.9.1 ExternalTable Syntax for Drop
	2.9.2 ExternalTable Example for Drop

	2.10 More About External Tables Generated by the ExternalTable Tool
	2.10.1 About Configurable Column Mappings
	2.10.1.1 Default Column Mappings
	2.10.1.2 All Column Overrides
	2.10.1.3 One Column Overrides
	2.10.1.4 Mapping Override Examples

	2.10.2 What Are Location Files?
	2.10.3 Enabling Parallel Processing
	2.10.3.1 Setting Up the Degree of Parallelism

	2.10.4 Location File Management
	2.10.5 Location File Names

	2.11 Configuring Oracle SQL Connector for HDFS
	2.11.1 Creating a Configuration File
	2.11.2 Oracle SQL Connector for HDFS Configuration Property Reference

	2.12 Performance Tips for Querying Data in HDFS

	3 Oracle Loader for Hadoop
	3.1 What Is Oracle Loader for Hadoop?
	3.2 Interfaces to Oracle Loader For Hadoop
	3.3 Getting Started With Oracle Loader for Hadoop
	3.3.1 Additional Information

	3.4 Using Oracle Loader for Hadoop With the Hadoop Command Line Utility
	3.4.1 About the Modes of Operation
	3.4.1.1 Online Database Mode
	3.4.1.2 Offline Database Mode

	3.4.2 Creating the Target Table
	3.4.2.1 Supported Data Types for Target Tables
	3.4.2.2 Supported Partitioning Strategies for Target Tables
	3.4.2.3 Compression

	3.4.3 Creating a Job Configuration File
	3.4.4 About the Target Table Metadata
	3.4.4.1 Providing the Connection Details for Online Database Mode
	3.4.4.2 Generating the Target Table Metadata for Offline Database Mode
	3.4.4.2.1 OraLoaderMetadata Utility

	3.4.5 About Input Formats
	3.4.5.1 Delimited Text Input Format
	3.4.5.1.1 About DelimitedTextInputFormat
	3.4.5.1.2 Required Configuration Properties
	3.4.5.1.3 Optional Configuration Properties

	3.4.5.2 Complex Text Input Formats
	3.4.5.2.1 About RegexInputFormat
	3.4.5.2.2 Required Configuration Properties
	3.4.5.2.3 Optional Configuration Properties

	3.4.5.3 Hive Table Input Format
	3.4.5.3.1 About HiveToAvroInputFormat
	3.4.5.3.2 Required Configuration Properties
	3.4.5.3.3 Optional Configuration Properties

	3.4.5.4 Avro Input Format
	3.4.5.4.1 Configuration Properties

	3.4.5.5 Oracle NoSQL Database Input Format
	3.4.5.5.1 About KVAvroInputFormat
	3.4.5.5.2 Required Configuration Properties

	3.4.5.6 Custom Input Formats
	3.4.5.6.1 About Implementing a Custom Input Format
	3.4.5.6.2 About Error Handling
	3.4.5.6.3 Supporting Data Sampling
	3.4.5.6.4 InputFormat Source Code Example

	3.4.6 Mapping Input Fields to Target Table Columns
	3.4.6.1 Automatic Mapping
	3.4.6.2 Manual Mapping
	3.4.6.3 Converting a Loader Map File

	3.4.7 About Output Formats
	3.4.7.1 JDBC Output Format
	3.4.7.1.1 About JDBCOutputFormat
	3.4.7.1.2 Configuration Properties

	3.4.7.2 Oracle OCI Direct Path Output Format
	3.4.7.2.1 About OCIOutputFormat
	3.4.7.2.2 Configuration Properties

	3.4.7.3 Delimited Text Output Format
	3.4.7.3.1 About DelimitedTextOutputFormat
	3.4.7.3.2 Configuration Properties

	3.4.7.4 Oracle Data Pump Output Format
	3.4.7.4.1 About DataPumpOutputFormat

	3.4.8 Running a Loader Job
	3.4.8.1 Specifying Hive Input Format JAR Files
	3.4.8.2 Specifying Oracle NoSQL Database Input Format JAR Files
	3.4.8.3 Job Reporting

	3.4.9 Handling Rejected Records
	3.4.9.1 Logging Rejected Records in Bad Files
	3.4.9.2 Setting a Job Reject Limit

	3.4.10 Balancing Loads When Loading Data into Partitioned Tables
	3.4.10.1 Using the Sampling Feature
	3.4.10.2 Tuning Load Balancing
	3.4.10.3 Tuning Sampling Behavior
	3.4.10.4 When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme?
	3.4.10.5 Resolving Memory Issues
	3.4.10.6 What Happens When a Sampling Feature Property Has an Invalid Value?

	3.4.11 Optimizing Communications Between Oracle Engineered Systems

	3.5 Oracle Loader for Hadoop Configuration Property Reference
	3.6 Licenses for Third-Party Software Bundled With OLH
	3.6.1 Apache Avro 1.8.1
	3.6.2 Apache Commons Mathematics Library 2.2

	4 Ease of Use Tools for Oracle Big Data Connectors
	4.1 Introducing Oracle Shell for Hadoop Loaders
	4.1.1 Getting Started with Oracle Shell for Hadoop Loaders
	4.1.2 Third-Party Licenses for Bundled Software
	4.1.2.1 Apache Commons Exec 1.3
	4.1.2.2 ANTLR 4.7

	4.2 Using Oracle SQL Developer With Oracle Big Data Connectors

	Part III Oracle XQuery for Hadoop
	5 Using Oracle XQuery for Hadoop
	5.1 What Is Oracle XQuery for Hadoop?
	5.2 Getting Started With Oracle XQuery for Hadoop
	5.2.1 Basic Steps
	5.2.2 Example: Hello World!

	5.3 About the Oracle XQuery for Hadoop Functions
	5.3.1 About the Adapters
	5.3.2 About Other Modules for Use With Oracle XQuery for Hadoop

	5.4 Creating an XQuery Transformation
	5.4.1 XQuery Transformation Requirements
	5.4.2 About XQuery Language Support
	5.4.3 Accessing Data in the Hadoop Distributed Cache
	5.4.4 Calling Custom Java Functions from XQuery
	5.4.5 Accessing User-Defined XQuery Library Modules and XML Schemas
	5.4.6 XQuery Transformation Examples

	5.5 Running Queries
	5.5.1 Oracle XQuery for Hadoop Options
	5.5.2 Generic Options
	5.5.3 About Running Queries Locally

	5.6 Running Queries from Apache Oozie
	5.6.1 Getting Started Using the Oracle XQuery for Hadoop Oozie Action
	5.6.2 Supported XML Elements
	5.6.3 Example: Hello World

	5.7 Oracle XQuery for Hadoop Configuration Properties
	5.8 Third-Party Licenses for Bundled Software
	5.8.1 ANTLR 3.2
	5.8.2 Apache Ant 1.9.8
	5.8.3 Stax2 API 3.1.4
	5.8.4 Xerces 2 Java 2.11.0
	5.8.5 XMLBeans 2.6.4
	5.8.6 Woodstox XML Parser 5.0.2

	6 Oracle XQuery for Hadoop Reference
	6.1 Avro File Adapter
	6.1.1 Built-in Functions for Reading Avro Files
	6.1.1.1 avro:collection-avroxml
	6.1.1.2 avro:get

	6.1.2 Custom Functions for Reading Avro Container Files
	6.1.3 Custom Functions for Writing Avro Files
	6.1.4 Examples of Avro File Adapter Functions
	6.1.5 About Converting Values Between Avro and XML
	6.1.5.1 Reading Avro as XML
	6.1.5.1.1 Reading Records
	6.1.5.1.2 Reading Maps
	6.1.5.1.3 Reading Arrays
	6.1.5.1.4 Reading Unions
	6.1.5.1.5 Reading Primitives

	6.1.5.2 Writing XML as Avro
	6.1.5.2.1 Writing Records
	6.1.5.2.2 Writing Maps
	6.1.5.2.3 Writing Arrays
	6.1.5.2.4 Writing Unions
	6.1.5.2.5 Writing Primitives

	6.2 JSON File Adapter
	6.2.1 Built-in Functions for Reading JSON
	6.2.1.1 json:collection-jsonxml
	6.2.1.2 json:parse-as-xml
	6.2.1.3 json:get

	6.2.2 Custom Functions for Reading JSON Files
	6.2.3 Examples of JSON Functions
	6.2.4 JSON File Adapter Configuration Properties
	6.2.5 About Converting JSON Data Formats to XML
	6.2.5.1 About Converting JSON Objects to XML
	6.2.5.2 About Converting JSON Arrays to XML
	6.2.5.3 About Converting Other JSON Types

	6.3 Oracle Database Adapter
	6.3.1 Custom Functions for Writing to Oracle Database
	6.3.2 Examples of Oracle Database Adapter Functions
	6.3.3 Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-property Annotations

	6.4 Oracle NoSQL Database Adapter
	6.4.1 Prerequisites for Using the Oracle NoSQL Database Adapter
	6.4.2 Built-in Functions for Reading from and Writing to Oracle NoSQL Database
	6.4.2.1 kv:collection-text
	6.4.2.2 kv:collection-avroxml
	6.4.2.3 kv:collection-xml
	6.4.2.4 kv:collection-binxml
	6.4.2.5 kv:collection-tika
	6.4.2.6 kv:put-text
	6.4.2.7 kv:put-xml
	6.4.2.8 kv:put-binxml
	6.4.2.9 kv:get-text
	6.4.2.10 kv:get-avroxml
	6.4.2.11 kv:get-xml
	6.4.2.12 kv:get-binxml
	6.4.2.13 kv:get-tika
	6.4.2.14 kv:key-range
	6.4.2.15 kv:key-range

	6.4.3 Built-in Functions for Reading from and Writing to Oracle NoSQL Database using Table API
	6.4.3.1 kv-table:collection-jsontext
	6.4.3.2 kv-table:get-jsontext
	6.4.3.3 kv-table:put-jsontext

	6.4.4 Built-in Functions for Reading from and Writing to Oracle NoSQL Database using Large Object API
	6.4.4.1 kv-lob:get-text
	6.4.4.2 kv-lob:get-xml
	6.4.4.3 kv-lob:get-binxml
	6.4.4.4 kv-lob:get-tika
	6.4.4.5 kv-lob:put-text
	6.4.4.6 kv-lob:put-xml
	6.4.4.7 kv-lob:put-binxml

	6.4.5 Custom Functions for Reading Values from Oracle NoSQL Database
	6.4.6 Custom Functions for Retrieving Single Values from Oracle NoSQL Database
	6.4.7 Custom Functions for Reading Values from Oracle NoSQL Database using Table API
	6.4.8 Custom Functions for Reading Single Row from Oracle NoSQL Database using Table API
	6.4.9 Custom Functions for Retrieving Single Values from Oracle NoSQL Database using Large Object API
	6.4.10 Custom Functions for Writing to Oracle NoSQL Database
	6.4.11 Custom Functions for Writing Values to Oracle NoSQL Database using Table API
	6.4.12 Custom Functions for Writing Values to Oracle NoSQL Database using Large Object API
	6.4.13 Examples of Oracle NoSQL Database Adapter Functions
	6.4.14 Oracle NoSQL Database Adapter Configuration Properties

	6.5 Sequence File Adapter
	6.5.1 Built-in Functions for Reading and Writing Sequence Files
	6.5.1.1 seq:collection
	6.5.1.2 seq:collection-xml
	6.5.1.3 seq:collection-binxml
	6.5.1.4 seq:collection-tika
	6.5.1.5 seq:put
	6.5.1.6 seq:put-xml
	6.5.1.7 seq:put-binxml

	6.5.2 Custom Functions for Reading Sequence Files
	6.5.3 Custom Functions for Writing Sequence Files
	6.5.4 Examples of Sequence File Adapter Functions

	6.6 Solr Adapter
	6.6.1 Prerequisites for Using the Solr Adapter
	6.6.1.1 Configuration Settings
	6.6.1.2 Example Query Using the Solr Adapter

	6.6.2 Built-in Functions for Loading Data into Solr Servers
	6.6.2.1 solr:put

	6.6.3 Custom Functions for Loading Data into Solr Servers
	6.6.4 Examples of Solr Adapter Functions
	6.6.5 Solr Adapter Configuration Properties

	6.7 Text File Adapter
	6.7.1 Built-in Functions for Reading and Writing Text Files
	6.7.1.1 text:collection
	6.7.1.2 text:collection-xml
	6.7.1.3 text:put
	6.7.1.4 text:put-xml
	6.7.1.5 text:trace

	6.7.2 Custom Functions for Reading Text Files
	6.7.3 Custom Functions for Writing Text Files
	6.7.4 Examples of Text File Adapter Functions

	6.8 Tika File Adapter
	6.8.1 Built-in Library Functions for Parsing Files with Tika
	6.8.1.1 tika:collection
	6.8.1.2 tika:parse

	6.8.2 Custom Functions for Parsing Files with Tika
	6.8.3 Tika Parser Output Format
	6.8.4 Tika Adapter Configuration Properties
	6.8.5 Examples of Tika File Adapter Functions

	6.9 XML File Adapter
	6.9.1 Built-in Functions for Reading XML Files
	6.9.1.1 xmlf:collection (Single Task)
	6.9.1.2 xmlf:collection-multipart (Single Task)
	6.9.1.3 xmlf:collection (Multiple Tasks)

	6.9.2 Custom Functions for Reading XML Files
	6.9.3 Examples of XML File Adapter Functions

	6.10 Utility Module
	6.10.1 Oracle XQuery Functions for Duration, Date, and Time
	6.10.1.1 ora-fn:date-from-string-with-format
	6.10.1.2 ora-fn:date-to-string-with-format
	6.10.1.3 ora-fn:dateTime-from-string-with-format
	6.10.1.4 ora-fn:dateTime-to-string-with-format
	6.10.1.5 ora-fn:time-from-string-with-format
	6.10.1.6 ora-fn:time-to-string-with-format
	6.10.1.7 Format Argument
	6.10.1.8 Locale Argument

	6.10.2 Oracle XQuery Functions for Strings
	6.10.2.1 ora-fn:pad-left
	6.10.2.2 ora-fn:pad-right
	6.10.2.3 ora-fn:trim
	6.10.2.4 ora-fn:trim-left
	6.10.2.5 ora-fn:trim-right

	6.11 Hadoop Module
	6.11.1 Built-in Functions for Using Hadoop
	6.11.1.1 oxh:find
	6.11.1.2 oxh:increment-counter
	6.11.1.3 oxh:println
	6.11.1.4 oxh:println-xml
	6.11.1.5 oxh:property

	6.12 Serialization Annotations

	7 Oracle XML Extensions for Hive
	7.1 What are the XML Extensions for Hive?
	7.2 Using the Hive Extensions From the Command Line
	7.3 Using the Hive Extensions in HiveServer2
	7.4 About the Hive Functions
	7.5 Permanently Declaring the Hive Functions
	7.6 Creating XML Tables
	7.6.1 Hive CREATE TABLE Syntax for XML Tables
	7.6.2 CREATE TABLE Configuration Properties
	7.6.3 CREATE TABLE Examples
	7.6.3.1 Syntax Example
	7.6.3.2 Simple Examples
	7.6.3.3 OpenStreetMap Examples

	7.7 Oracle XML Functions for Hive Reference
	7.7.1 Data Type Conversions
	7.7.2 Hive Access to External Files

	7.8 Online Documentation of Functions
	7.9 xml_exists
	7.10 xml_query
	7.11 xml_query_as_primitive
	7.12 xml_table

	Part IV Oracle R Advanced Analytics for Hadoop
	8 Using Oracle R Advanced Analytics for Hadoop
	8.1 About Oracle R Advanced Analytics for Hadoop
	8.1.1 Oracle R Advanced Analytics for Hadoop Architecture
	8.1.2 Oracle R Advanced Analytics for Hadoop packages and functions
	8.1.3 Oracle R Advanced Analytics for Hadoop APIs
	8.1.4 Inputs to Oracle R Advanced Analytics for Hadoop

	8.2 Access to HDFS Files
	8.3 Access to Apache Hive
	8.3.1 ORCH Functions for Hive
	8.3.2 ORE Functions for Hive
	8.3.3 Generic R Functions Supported in Hive
	8.3.4 Support for Hive Data Types
	8.3.5 Usage Notes for Hive Access
	8.3.6 Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop

	8.4 Access to Oracle Database
	8.4.1 Usage Notes for Oracle Database Access
	8.4.2 Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise

	8.5 Oracle R Advanced Analytics for Hadoop Functions
	8.5.1 Native Analytical Functions
	8.5.2 Using the Hadoop Distributed File System (HDFS)
	8.5.3 Using Apache Hive
	8.5.4 Using Aggregate Functions in Hive
	8.5.5 Making Database Connections
	8.5.6 Copying Data and Working with HDFS Files
	8.5.7 Converting to R Data Types
	8.5.8 Using MapReduce
	8.5.9 Debugging Scripts

	8.6 Demos of Oracle R Advanced Analytics for Hadoop Functions
	8.7 Security Notes for Oracle R Advanced Analytics for Hadoop
	8.8 Third-Party Licenses for ORAAH
	8.8.1 ANTLR 4.7
	8.8.2 Scala 12.11.11
	8.8.3 Scala 12.11.12
	8.8.4 MPICH 3.3a2

	Part V Oracle DataSource for Apache Hadoop
	9 Oracle DataSource for Apache Hadoop (OD4H)
	9.1 Operational Data, Big Data and Requirements
	9.2 Overview of Oracle DataSource for Apache Hadoop (OD4H)
	9.2.1 Opportunity with Hadoop 2.x
	9.2.2 Oracle Tables as Hadoop Data Source
	9.2.3 External Tables
	9.2.3.1 TBLPROPERTIES
	9.2.3.2 SERDE PROPERTIES

	9.2.4 List of jars in the OD4H package

	9.3 How does OD4H work?
	9.3.1 Create a new Oracle Database Table or Reuse an Existing Table
	9.3.2 Hive DDL
	9.3.3 Creating External Tables in Hive

	9.4 Features of OD4H
	9.4.1 Performance And Scalability Features
	9.4.1.1 Splitters
	9.4.1.2 Choosing a Splitter
	9.4.1.3 Predicate Pushdown
	9.4.1.4 Projection Pushdown
	9.4.1.5 Partition Pruning

	9.4.2 Smart Connection Management
	9.4.3 Security Features
	9.4.3.1 Improved Authentication

	9.5 Using HiveQL with OD4H
	9.6 Using Spark SQL with OD4H
	9.7 Writing Back to Oracle Database

	Part VI Appendices
	A Using Oracle's Hive Storage Handler for Kafka to Create a Hive External Table for Kafka Topics
	B Apache License
	B.1 Apache Licensed Code

	C Additional Big Data Connector Resources

	Index

